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Modeling crowdsourcing as 
collective problem solving
Andrea Guazzini1,2, Daniele Vilone3, Camillo Donati1, Annalisa Nardi1 & Zoran Levnajić4,5

Crowdsourcing is a process of accumulating the ideas, thoughts or information from many 
independent participants, with aim to find the best solution for a given challenge. Modern 
information technologies allow for massive number of subjects to be involved in a more or less 
spontaneous way. Still, the full potentials of crowdsourcing are yet to be reached. We introduce a 
modeling framework through which we study the effectiveness of crowdsourcing in relation to the 
level of collectivism in facing the problem. Our findings reveal an intricate relationship between 
the number of participants and the difficulty of the problem, indicating the optimal size of the 
crowdsourced group. We discuss our results in the context of modern utilization of crowdsourcing.

We learn by solving problems. During evolution humans have developed the ability not only to learn 
individually, but also to share the acquired knowledge. Indeed, there is little doubt about the role played 
by the natural selection in the emerging social nature of humans1,2. Human beings probably have an 
innate tendency to operate in groups: Pan troglodytes (common chimpanzee), the closest living relative 
of modern humans, is known to have a noticeable social structure3. The emerging skill of social problem 
solving has allowed our ancestors to face the challenges of gradually increasing complexity. This factor 
not only determined our evolutionary success, but it still shapes our cultural and social behavior4. In 
addition, everybody has at least minimal capacity to coordinate the activity of others and direct the pro-
cess of problem solving5,6. However, the existence of this ability is by no means obvious, as it requires 
an intricate synchronization between perception, communication and cognitive representation of the 
situation-task-others triad. Social Darwinism provides a framework to study the evolution this capacity, 
not just in terms of neurophysiology, but also in relation to the cognitive activities behind social problem 
solving.

On the other hand, any activity of intrinsically social nature requires a robust level of collaboration 
between the interacting subjects. The existence of a large sub-population of cooperators guarantees a sta-
ble support for the community, but at the same time creates a socioecological niche for the “free-riders” 
– the subjects benefiting from the available social support while providing little to its development. The 
free-riders are in fact known to be a well identifiable sub-population, competing to survive within var-
ious societies7,8. Still, their individualism in facing new tasks can eventually create new knowledge that 
could not have been created by working only as a collective. An individual facing a new challenge in 
isolation has considerably smaller chances of solving it, despite relying on the available knowledge. Yet, 
if a solution under these circumstances is ultimately found, this subject learns much more than when 
the solution is found collectively. Modeling this phenomenon is at the hearth of the paper that follows.

Fast forward to the present day, engaging citizens and stakeholders in gathering constructive ideas 
and practices is among the most interesting challenges of our time. Referred to as crowdsourcing9,10, this 
process is often defined as a “collective intelligence system”11,12. Crowdsourcing for ideas or solutions 
means that many subjects freely contribute independent suggestions. If a functional system of manag-
ing these suggestions is established, crowdsourcing can lead to surprising results, in the best sense of 
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collective problem solving. In his 2009 Polymath project, Cambridge mathematician Tim Gowers pro-
posed a very hard problem in his blog, that he estimated would take him months to solve. In only a few 
weeks, the community of his colleagues solved not only the original problem, but also a far much harder 
generalized version of it13. Needless to say, Wikipedia is probably the most successful example of the 
applied crowdsourcing14,15. Indeed, the extraordinary development of information and communication 
technologies calls for new practices of “virtual participation”, that would enable the simultaneous engage-
ment of a huge number of individuals16. Diverse studies and applications of crowdsourcing include crowd 
science17,18, public participation in planning projects19, public health20 and crowd funding21. Still, the 
full potentials of crowdsourcing in the digital era remains underused. Social media is probably the most 
powerful platform for this, which however requires a mechanism for systematic management of users’ 
engagement. In this context, the precise understanding of the origins and roles of free-riders in crowd-
sourcing has still to be strengthened, which is the core focus of this paper.

Psychologists have repeatedly shown that certain general intelligence emerges from the correlations 
among peoples’ performance22,23. But the true nature of “collective intelligence”, which is expected to 
determine the capacity of collective problem solving, remains elusive24,25. Woolley et al. found a converg-
ing evidence of collective intelligence by explaining a group performance on a wide variety of tasks26. 
Upon establishing the name “c-factor” for the obtained value of collective intelligence, they fund this 
value not to be strongly correlated with the average or maximum individual intelligence of the group 
members, but instead with other parameters such as social sensitivity, conversational turn-taking and the 
proportion of females. On a different front, there are massive efforts to develop computational27–29 and 
experimental models30–33 of collective social behavior, primarily within the framework of game theory 
and computational social science34–36. These studies systematically show that cooperation is in general 
always beneficial for the community, which calls for mechanisms to discourage defection and oppose its 
strong appeal as a temporary benefit for an individual37–42.

All these findings reveal an extremely complex scenario, in which too many dimensions must be taken 
into account to obtain even a nearly realistic model of crowdsourcing. Seeking to implement at least the 
core assumptions, we propose a stylized model linking the process of crowdsourcing to better studied 
process of collective problem solving. Our model is grounded in the fact that a (social) player can choose 
to either share the acquire knowledge with others or not, which in turn determines the amount of help 
obtained from the community, dictating the improvement of this player’s individual skills. Our model 
is implemented both computationally as a stochastic evolutionary system, and analytically via methods 
of statistical physics. The model is inspired by the sociopsychological bases of knowledge dynamics that 
follow from the discussion above. As we show, similarly to defection emergence in game-theoretic mod-
els, free-riding here is a direct consequence of the evolutionary nature of our model and the interaction 
between the involved degrees of freedom. However, despite evolving towards maximizing the knowledge 
of the individual subjects, our model reveals a critical group size where an interesting balance between 
collective and individual approaches is maintained. This is, to our best knowledge, an entirely new model 
of crowdsourcing.

Model
Below we present the computational model, which for better clarity, we do in several steps. First we 
explain the process that we wish to model. Our interest is to see how dividing a given population with 
fixed number of subjects (below called players) into several smaller groups, will influence the ability of 
these groups to cope with the problems (below called tasks) of different difficulty. We look on one end 
at the situation where everybody is in the same group, and on the other at the scenario of each player 
working alone. Between these two extremes, we look for the optimal group size that would allow for its 
players to learn the most. We are also interested in how the average intensity of collaboration relates to 
the group size.

General setting. We consider a population of N players divided into n groups. Each group has the 
same size (number of players) S, so that =S N

n
. We take N =  100, and consider seven specific choices of 

S to keep n integer. These sizes are S =  1, 2, 5, 10, 25, 50, 100, respectively corresponding to dividing the 
population into n =  100, 50, 20, 10, 4, 2, 1 groups. The total number of players N =  100 always remains 
fixed.

Collaboration and task assignment. Once n and S are selected, we proceed by assigning a value pi 
to each player i in each group. Each pi is chosen uniformly at random between 0 and 1. pi identifies the 
player’s tendency to collaborate with other group members when solving a certain task (the tendency to 
work collectively as opposed to individually). Small values of pi (close to 0) indicate a preference for indi-
vidualism, while large values (close to 1) indicate a tendency to collaborate. The values pi do not change 
and are hence characteristic for each player. Next, a group is assigned a task to be solved, quantified by 
the value R, which is randomly uniformly chosen between 0 and 1. R measures the simplicity of the task, 
in the sense that R close to 1 indicates an easy task, whereas R close to 0 implies a hard task (in other 
words, the difficulty of the task is 1 −  R). Each of n groups that work in parallel is assigned the tasks of 
the same simplicity R. For R we consider the following thirteen choices R =  0.0001, 0.001, 0.01, 0.1, 0.2, 
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0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Note that our scale for smaller R is exponential, while it is linear for 
larger R, in order to better examine very hard tasks where collective working is expected to be beneficial.

The definition of a simulation. For each choice of group size S, and for each choice of tasks simplic-
ity R (both among the pre-specified 7 ×  13 values mentioned above), we run a sequence of crowdsourc-
ing games detailed below. Thus, each simulation is carried out for a fixed choice of S and R, which are 
the two main parameters in our analysis that follows. Our interest is to examine the task solving behavior 
of a group of S players when confronted with a task of simplicity R. The games in each simulation are 
done separately within each of the n groups.

One iteration. One iteration (or a time-step) for a given group consists of the following three steps:

•	 We establish a subgroup of players which play this iteration together and call them ‘collectivists’. Each 
player i joins the collectivists with the probability pi. Each player that did not join the collectivists, 
plays this iteration alone. We call each such player an ‘individualist’. Thus, a group is in each iteration 
divided into a subgroup of collectivists, in addition to the remaining number of individualists. Thus, 
larger pi means that for most iterations this player will end up as a collectivist.

•	 For each individualist separately we choose a number for this iteration Gi. This Gi is the desired 
gain for this player, whose meaning is clarified below. Gi is an integer chosen uniformly at random 
between 1 and 10. Larger Gi means smaller chance to win (solve the task), but with potentially bigger 
gain if the task is actually solved.

•	 Now, each collectivist solves the task with the probability R, while each individualist solves the task 
with the probability RGi (since R ≤  1, larger Gi means smaller chance of solving). These two different 
probabilities model the fact that by approaching the task in isolation, an individualist has in fact to 
solve a Gi times harder task. In contrast, collectivists face the task together which improves the chance 
for each of them to solve it. This difference is reflected in their respective scores, as explained below.

Each iteration finishes with some players winning (solving the task) and others losing (not solving the 
task). Both a collectivist and an individualist can win or lose. Next iteration begins with a new draw of 
collectivists using the same values pi. These rules apply equally for all n groups that play simultaneously 
and in all iterations.

Group’s capacity and player’s fitness. Once the winners and losers for a given iteration are known, 
we proceed with assigning the scores. For a given group we introduce an integer parameter ∑j called 
capacity (we use j to index groups, in order to differentiate from i which indexes players within a group). 
Capacity is simply the number of iterations in which at least one collectivist has solved the task, regard-
less of R. It models the collective knowledge of a group, i.e., the group’s capacity to solve increasingly 
challenging tasks. It is defined for each group, regardless of its iteration-dependent divisions into collec-
tivists and individualists. Initially we set for all groups ∑j =  0. We update ∑j →  ∑j +  1 each time at least 
one player playing as a collectivist solves the task (and regardless of how many individualists solve it). 
Next we introduce for each player a parameter called fitness or pay-off πi. It models player’s own benefit 
in terms of new knowledge acquired. A collectivist who solves a task contributes to each player in the 
group (collectivist and individualist) the additional fitness ∑

S
i , where ∑i is the updated capacity. A collec-

tivist who fails to solve the task does not contribute anything. An individualist who solves the task gains 
additional fitness Gi without contributing anything to the other players, while an individualist who fails 
makes no additional gain. Still, each individualist always gains ∑

S
i  per each collectivist that had solved 

the task. This organization of pay-offs models the fact that collectivists distribute new knowledge both 
to themselves and to all others, while individualists keep it for themselves. Collectivists however solve 
easier tasks since they work together, but with potentially lesser new knowledge (fitness) gained for each 
of them separately. In contrast, by working alone, individualists solve harder tasks but learn much more 
when they actually solve them, while avoiding to share this new knowledge with anyone else.

Motivation behind two scoring scales. Our model attempts to portray the incremental nature of 
human advances, for which there is evidence of superlinear behavior. To illustrate with a toy example, 
the invention of the microscope (first advancement), linked to the discovery of a new molecule (second 
advancement), can ultimately lead to the creation of the cure for a dangerous disease (third advance-
ment). This represents a chain of fitness gains, with the total gain much larger than the simple addition of 
the payoffs due to single advancements in optics and chemistry. Thus, two distinct gaining schemes can 
be established: the individual scheme related to the skills for solving daily problems in a given time and 
context, and the global scheme which represents the society knowledge accumulated over the history. 
These two we respectively model as the payoff and the capacity.

Example. To clarify our scoring scheme, say in a given iteration s collectivists manage to solve the 
task in a group j of size S. The group’s capacity increases by one ∑j →  ∑j +  1. Fitness updates are as follows: 
each collectivist, regardless of having solved the task or not, gains π π→ + ∑

i i
s
S

i . Each individualist that 
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solves the task gains π π→ + +∑ Gi i
s
S i

i . A failing individualist makes the same gain as a collectivist 
π π→ + ∑
i i

s
S

i . Thus, an individualist can count one the same gain as a collectivist, but if no collectivist 
solves that task, even that gain is lost. Both capacity and the fitness increase monotonically over time, 
depending on the distribution of collaboration tendencies pi, and the values of S and R.

Rounds and replacement of players. n groups of size S play the game simultaneously for a given 
R. After 1000 iterations, which we call one round, the game is interrupted. We compute the mean fitness 
π of all players regardless the group they belong to. We remove at random 20% of players whose fitness 
is below π. They are replaced by new players whose pi are drawn anew, so that the groups’ sizes S are 
preserved. All groups’ capacities ∑j and all players’ fitnesses πi are reset to 0. The value R remains the 
same. Note that the only thing that has changed from one round to another is the structure of groups in 
terms of players’ pi, i.e., the distribution of pi within each group. Better fit players are kept in the game, 
in addition to 80% of lesser fit players. It is the player’s pi and its relation with other player’s pi-s that 
dictates the player’s overall performance in any game.

Full game and full simulation. A round consists of 1000 iterations, and a game consists of 2000 
rounds. Thus, the systems evolves over 2000 rounds, with evolutionary selection being applied at the 
beginning of each round. We checked that the numbers of iterations and rounds are sufficient for reach-
ing a stable configuration. Upon finishing a game, we are left with the distribution of pi that optimally 
fits for solving the task of given simplicity R while operating in a group of size S. For better statistics, 
we conduct 20 games for each choice of S and R and average the results, so that the final values do not 
depend on random realizations in our model. As we are interested only in the final distribution of pi, the 
choice of the initial distribution for pi basically plays no role.

Results
For each simulation done for fixed S and R, we store the following quantities: p, the mean of player’s 
collaboration probabilities pi in one group, π, the mean players’ fitness πi in one group, and ∑max, the 
capacity ∑ reached by a given group after 2000 rounds (i.e., the final value of ∑). Each quantity is stored 
after averaging over 20 games. Our first result, as expected by evolutionary nature of our algorithm, is 
that for any fixed R, the final results for all groups of given size S are the same. So for example, all n =  4 
groups with S =  25 players ultimately reach the same p, π and ∑max for any given R. This means it suffices 
to consider only one group of size S. Therefore, in what follows we represent our findings via final values 
of p, π and ∑max as function of R and S.

We begin by examining p, the mean collaboration probability in a group of size S which is undertak-
ing the task of simplicity R. The results are shown in Fig.  1 as a surfaceplot. For very hard problems 
(small R), players have no preference on collaborating, so = .p 0 5 regardless of S. In contrast, for very easy 
tasks, players in small groups strongly tend to collaborate, while players in big groups tend to work 
individually.

On the other hand, for small groups the tendency to collaborate increases with increasing task sim-
plicity, while for big groups this tendency actually decreases. In between, for groups of size roughly 
S =  50, the collaboration probability is basically constant with R, and hence independent on the task 
that such group is facing.

Figure 1. The value of p as a function of group size S and the tasks simplicity R. Colors denote p (red - 
large, green - medium, blue - small). Note that the scale in R is illustrative.
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To examine these trends in more detail, we show in Fig. 2 the sequence of profiles of π for constant 
R (left) and for constant S (right).

Looking at the left plot, for the most difficult tasks the p is indeed constant with the group size, while 
for simpler tasks it exhibits a clear trend: smaller groups tend to collaborate more intensely, while players 
in the larger groups are predominantly individualists. Groups with approximately 50 players seem always 
to display = .p 0 5 regardless of R. This is also confirmed by the plots on right in Fig. 2: all curves with 
exception of S =  100 indicate that collaboration propensity increases with task simplicity. This increase 
becomes more and more moderate with the group size, so that finally, for S =  100 we find a clear negative 
trend: collaboration propensity decreases with the task simplicity. In between we find an almost constant 
curve for roughly S =  50.

We interpret these findings as follows. When the task is extremely difficult, it is hard to solve it col-
lectively as well as individually. Thus, in such cases there is no particular preference for either approach, 
regardless of the group size. As the task becomes gradually easier, it is less beneficial for players in small 
groups to work individually, since this quickly reduces the size of the collaborating subgroup, ultimately 
making it so small that there is little or no fitness gained from it for anybody. This in turn means that by 
collaborating a player is more safe to gain at least some fitness. In contrast, easier problems encourage 
the players in large groups to defect collaboration, since the collaborating subgroup is always fairly large 
and contributes significant fitness. These circumstances allow for more “individually oriented” players to 
seek their luck by defecting, which they can do safely since at least some fitness is practically guaranteed. 
This feature captures the concept of free-riders discussed in the Introduction. These players contribute 
no knowledge of their own to the collective, but at the same time manage to benefit from the novelties 
reached collectively by the rest of the group. The equilibrium case of groups with approximately S =  50 
players is the optimal system where both collaboration and individualism are equally beneficial for task 
of any difficulty. Such group has a good balance between its collectivist part which slowly but surely 
generates new knowledge, and its individualists who are still on average equally fit as collectivists.

To support these observations with the results for the mean fitness π and the maximal capacity ∑max, 
we show in Fig. 3 the surfaceplots for these two quantities. Both surfaceplots display similar features: as 
expected, the biggest values are found for the simplest tasks when faced by the largest groups.

Smallest π and ∑max correspond to the most difficult of tasks when approached by the smallest groups. 
The group with S =  50 players optimizes the gain in both quantities, and in fact performs better than the 
group with S =  100 players. This resonates with the earlier observation that this group has the best bal-
ance between collectivism and individualism. Indeed, by working excessively in isolation and looking too 
eagerly for free rides, the players in S =  100 group at the end achieve lesser total fitness, despite their 
larger size which could have made them all much better fit. It is easy to conclude that this trend would 
actually further increase with even larger groups, leaving S =  50 as the only optimal case. This confirms 
that the knowledge accumulation in too large groups is actually slower than in groups of certain mod-
erate size, when the balanced tendencies for collective and individual approach. On the other hand, one 
could argue that in a real-life scenario this might in fact be in the long-run beneficial for the society. 
Namely, the individually gained unique knowledge, that could not have been gained via pure collectiv-
ism, might eventually be shared with the rest of the community, and hence available to everyone. By 
running the simulations with a number of players different from N =  100, we confirmed that the equi-
librium group size is indeed robust to this, and is always approximately N/2.

Figure 2. Left: the values of p as function of group size S for varying values of R (see legend). Right: the 
values of p as function of task simplicity R for varying values of S (see legend).



www.nature.com/scientificreports/

6Scientific RepoRts | 5:16557 | DOI: 10.1038/srep16557

Analytical approach. We now show that the above numerical findings can be justified via analytical 
treatment, relying on standard methods from statistical physics. Let us consider the average fitness for a 
given player, depending on the player’s strategy and the strategy of the opponents. We call j the player’s 
group and αj the collectivists density in this group. The average fitness of a collectivist in j at time t is then

∑π α=




+




,

( )
1

1
c j j

t

j

where ∑t
j is the capacity reached at time t in group j, and ⋅  indicate averaging. On its turn, individ-

ualist (defector) average fitness is

π π= + , ( )GR 2d j c j
G

where, by definition, = /G 11 5 is the mean value of the integer random number ∈ , ,… ,G {1 2 10}i . Of 
course, within the same group j it is always π π>d j c j

, so that in absence of competition between the 
groups (i.e., S =  N, n =  1) individualism is the best strategy, as confirmed by the simulations. On the 
other hand, for n ≥  2, let us think about a group l made up by only collectivists, compared with a group 
j with just one individualist (we consider this scenario as it the best situation for a defector). In this case, 
l's collectivist have a better fitness than j's defector if it results

∑ ∑π π= + > =


 −








+




+

( )S
GR1 1 1 1

3c l
t

l

d j
t

j
G

Here we distinguish two cases, the large group size S 1, and the opposite regime where S ~ 1. We 
treat these two cases separately below.

In the large group size limit, the equation (3) reduces to

∑ ∑+ >




+




+

( )
GR1 1

4t

l

t

j
G

Equation (4) implies that in order to have the best fitness, collectivist in l must have reached at time 
t a capacity such that

∑ ∑ δ− > = .
( )

GR
5t

l

t

j
G

This clearly implies that δ increases monotonically with R, going from 0 to 11/5. This means that, with 
increasing R cooperative groups have to reach a higher capacity to thrive, but this is balanced by the 
higher ease to solve the tasks: the combined effect is that, given the group size, the final cooperation level 
does not depend strongly on R, as shown in Fig. 1. On the other hand, increasing R enhances the global 

Figure 3. Left: the mean fitness π reached by a given group of size S when solving the task of simplicity 
R. Right: the same for maximum capacity ∑max.
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fitness, because it is easier to solve the tasks and, for a cooperative group, reach a higher capacity with 
respect to the others, as depicted in equation (5). This behavior is confirmed in Fig. 3, where an increase 
for increasing R is observable in the average agent fitness. The narrow tilt change for .R 0 5 can be 
understood considering that when R becomes smaller than R* =  0.5, also δ gets smaller than δ .

⁎ 0 5, 
that is, there is practically no need to reach a higher capacity for cooperators to thrive, lowering the 
global fitness.

In the limit of S approaching to 1, equation (3) reduces to

∑> − ,
( )

kR 1
6t

l
k

relation automatically satisfied for ∑ ≥ 2t
l , implying that as a group solves the second task, cooperation 

becomes the best strategy (in other words, free-riding is no longer convenient). This is also confirmed 
in Fig.  1, where it is clear that for small group size cooperation is in general enhanced, and increases 
more with increasing R. This analytical reasoning hence entirely confirms our numerical findings.

Discussion
The above numerical and analytical study showed two consistent results. First, when facing the prob-
lems whose difficulty is not extreme, small groups tend to collaborate significantly more than large 
groups. In fact, very large groups end up having lesser average fitness due to excessive individualism 
being stimulated in these conditions. Small groups are actually known to have weaker knowledge and 
culture preservation due to not having enough “critical mass” of subjects43. In contrast, large groups 
have too many free-riders which slows down the knowledge generation process. This agrees with the 
sociopsychological observations about the sub-population of free-riders, who use the niche provided by 
the stable knowledge support generated by the collaborating majority. Still, when tasks become more 
demanding, large groups gradually discourage individualism, and cooperation restores to a level equal 
to individualism. Second, there exist and optimal group size, where the stimulations for collectivism and 
individualism are in balance so that both are equally encouraged, regardless of the task difficulty. Note 
that this effect is exclusively the consequence of the critical group size, and the evolution which keeps 
the size fixed. Interestingly, groups of exactly this size ultimately manage to have not only the highest 
fitness, but also the best capacity. This indicates that under proper scenario, optimal utilization of crowd-
sourcing is possible only by virtue of managing the number of subjects involved in a certain experiment 
or real-life situation.

The stated conclusion holds even in the presence of defection, which is very realistic. Our evolution 
was tuned towards optimizing the fitness of individual players, rather than the group’s capacity, done by 
gradually eliminating less fit players. Note however, that under these circumstances, it still holds that 
the group of critical size performs best in both average fitness and maximal capacity. That is to say, for 
the critical size, the system simultaneously reaches both individual and collective optimum, i.e., they do 
not necessarily exclude each other, as it is usually the case in the game-theoretic models. So, while our 
results do confirm that free-riding is related to the defection phenomena known from game theory, we 
show that in the considered model of knowledge dynamics a certain amount of free-riding can play a 
particular role, as it opens the avenue for individually oriented subjects to gain unique knowledges. As 
already mentioned, free riding in the real world might ultimately prove advantageous for the society, 
since this unique knowledge can still at some point be shared with other, and become part of the knowl-
edge support provided for future generations44. Not surprisingly, it is well known that several societies 
throughout history become powerful by benefiting from inventions coming from global civilization, 
while withholding their own knowledge and technology generated under these circumstances. Still, such 
societies in return do eventually provide benefits to the rest of the world via different means45.

Limitations of the model involve the fact that players’ collaboration probabilities are not affected by 
outcomes in iterations and rounds. We considered more realistic to adopt an evolutionary model instead, 
where the group population is adjusted for better performance by searching for the optimal distribution 
of collaboration probabilities. Another limitation is related to not tuning our model to favor capacity 
instead of fitness. This would have a different outcome, not allowing for any individualism. However, 
given the ubiquity of free-riding in nature, we consider more instructive to include it in our model. Of 
course, there is always an open question of designing better and more realistic models, which with mod-
ern computing power is increasingly easy to simulate. As far as robustness to the choice of parameters 
goes, we have tried several choices of parameters defining our model (for example the span of Gi), and 
have always recovered qualitatively the same results.

The most important direction of this field lies of course in testing the potentials of crowdsourcing 
via real experiments. This refers to social experiments with controlled rules and known participants, 
as well as to uncontrolled online experiments, where people are engaged spontaneously and without 
external organization17. Although several important results have been recently reported in this direc-
tion, a standard framework for undertaking such experiments has yet to be established. Finally, this 
related to extending the range of applicability of crowdsourcing, chiefly using Internet and tools such as 
Mechanical Turk46, where the crucial issue revolves around findings ways to best stimulate and engage 
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the participants to contribute ideas and thoughts. In conclusion, we hope that our results provide a new 
stepping stone for better understanding and eventual large-scale usage of crowdsourcing, which is to lead 
to better exploiting the full potential of our more than ever connected civilization.
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