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Abstract 

The operating theatre is one of the most critical functional area in a hospital. In fact, it 

drives most of the hospital admissions and it is responsible for most of its costs. Optimising 

the operating theatre operations, is therefore a primary concern for an increasing number of 

hospitals. In this regard, one of the most challenging problem that hospitals need to face is 

the planning and scheduling of the surgical activities. This thesis focuses on the master surgi-

cal scheduling (MSS) problem. Such a problem consists in the determination of (i) the spe-

cialty (or specialties) to assign to each operating room and session of each day of the plan-

ning cycle and (ii) the number and the typologies of surgeries that should be performed in 

each operating room session. A number of authors have proposed models to support such a 

process. However, most of them test the models, often on real data, but do not illustrate 

practical aspects of their implementations. This thesis concerns an action research study 

aiming at addressing this gap and thus at developing and implementing a MSS tool in a real 

context i.e. the Meyer children’s hospital in Florence. As an action research, this study has a 

twofold objective: to solve a practically relevant problem and to contribute to the body of 

knowledge. In fact, first, it aims to implement a MSS tool at the Meyer hospital. Second, it 

proposes novel mixed integer programming models addressing the MSS problem and pro-

vides fresh insights about the its implementation process. These experience-driven evidenc-

es may be useful for researcher and practitioners to increase the chance to success in the 

transfer of a MSS model to their hospital settings. 
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Chapter 1  Introduction 

The operating theatre (OT) is considered as the ‘engine that drives the hospital’ (Beliën et 

al., 2006). Its activities, in fact, greatly influence those of other departments and, conse-

quently, the hospital performance as a whole (Cardoen et al., 2010). In addition, the OT is 

one of the most costly functional areas of a hospital (Denton et al. (2007), May et al. (2011)), 

and causes almost the 70% of all hospital admissions (Denton et al., 2007). Hospital manag-

ers are thus urged to maximise the patient throughput and the relevant revenues, rationalis-

ing the use of the hospital resources to contain costs. In this regard, there is unanimous con-

sensus that the performance of the OT strongly depends on the way the surgical activities 

are planned (Litvak and Long (2000), Guinet and Chaabane (2003)). In the literature the sur-

gical scheduling problem is typically seen as a three stages cascade process (Beliën and 

Demeulemeester, 2007): (i) the case-mix planning, i.e. the determination (usually on a yearly 

basis) of the total amount of operating room (OR) time to assign to each surgical specialty, 

(ii) the master surgical scheduling (MSS), i.e. the determination of the specialty (or special-

ties) to assign to each OR on each day of the planning horizon (e.g. two weeks or one month) 

and, sometimes, the specification of the number and typology of surgeries to be performed 

each day, and finally (iii) the selection and sequencing of patients who have to undergo a 

surgery. 
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In general, solving a surgical scheduling problem is noticeably complex. It requires the 

consideration of: (i) many different types of cases, characterised by different priority levels 

and requiring different procedures; (ii) many different types of resources, such as ORs, OR 

personnel (e.g., surgeons, anaesthetists and nurses), surgical and electro-medical equip-

ment, postsurgical resources (e.g., ICU, post-surgical units); (iii) the randomness associated 

with patients’ arrival, surgeries’ duration and patients’ length of stay (LoS) (May et al., 2000); 

and (iv) the conflicting priorities and preferences of the scheduling process stakeholders 

(Glouberman and Mintzberg, 2001). The complexity of such a process coupled with its signif-

icant economic and social impact has thus stimulated, in recent years, intensive research 

activities (Cardoen et al. (2010), Guerriero and Guido (2011), May et al. (2011)). The litera-

ture, indeed, abounds of models supporting the scheduling of surgical activities but there is 

the lack of contributions illustrating the models’ implementations (Cardoen et al., 2010). In 

fact most of the authors test their models on real data, but do not show the practical aspects 

resulting from the transfer of the model in a real setting. Looking at the literature it is possi-

ble to notice that the surgical scheduling is not the only field of the health care sector affect-

ed by the lack of implementation of models (Brailsford et al., 2009). Barriers to implementa-

tion do exist in many other areas due to two causes: the scarce involvement of the stake-

holders in the projects, which leads to a scarce understanding of the addressed problem; the 

need to publish in high quality journals, which brings academics to formulate more and more 

complex models, that are not implementable. 

This thesis reports the results of a project whose aim was to develop and implement a 

tool supporting the second phase of the surgical scheduling problem, i.e. the master surgical 

scheduling. The study has been inspired by a real context, the Meyer hospital in Florence, 

which is one of the most renowned children’s hospital in Europe. In order to overcome the 

aforementioned barriers to implementation the project has been organised as an action 

research (Coughlan and Coghlan, 2002). The high involvement of the researchers in the con-

text under study, which is a characteristic of the action research methodology, on the one 

hand, has led to a better understanding of the process and thus to a scheduling tool that 

produces satisfactory solutions from the stakeholders’ point of view. On the other hand, it 

has enabled a strong focus on the implementation results, that has allowed the actual trans-

fer of the tool. This thesis contributes to the body of knowledge in two ways: 

 it provides fresh insights about the implementation process of a MSS tool. In fact, 

the reflection process typical of the action research approach has allowed to ra-
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tionalise what has been experienced and to highlight what factors and conditions 

can facilitate or thwart the MSS tool implementation; 

 it provides different novel mixed integer programming models, which the tool 

was based on, that has been used to answer to other research questions about 

the MSS process emerged during the action research project. The formulation of 

these models and the relevant studies have been addressed using a model based 

research approach (Bertrand and Fransoo, 2002). 

1.1 Structure of the dissertation 

Figure 1 represents the structure of the thesis. 

 

Figure 1 – Dissertation structure 

In Chapter 2 the literature about the implementation of models in the health care sector 

and about the MSS problem is reviewed. In this chapter the research gaps are identified in 

CH.2 – LITERATURE REVIEW & RESEARCH QUESTIONS

RQ1: What factors and conditions can facilitate the implementation of a MSS tool?

RQ2: How is it possible to obtain efficient and robust MSS?

RQ3: Is it possible to obtain efficient and robust MSS through the resources utilization balancing?

RQ4:  What is the impact on the MSS of a flexible management of the critical resources?

CH.3 – METHODOLOGY

ACTION RESEARCH + MODEL–BASED RESEARCH

CH.4 - DIAGNOSING

CH.5 – PLANNING ACTION

CH.6 – TAKING ACTION

TEST CYCLES

IMPLEMENTATION CYCLES

RQ2+RQ3+RQ4

CH.7 – EVALUATING ACTION

CONTRIBUTE TO PRACTICE

CONTRIBUTE TO KNOWLEDGE RQ1

CH.8 – CONCLUSIONS & FUTURE RESEARCH

APPENDIX

ARTICLE I – RQ2 ARTICLE III – RQ4ARTICLE II – RQ3
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the light of the existent literature and the research questions addressed in this dissertation 

are formalised. 

Chapter 3 gives details about the methodology, i.e. a combination of action research and 

model-based research, adopted to answer to the research questions. 

Chapters from 4 to 7 are organised as the cyclical phases of the whole action research 

project. 

Chapter 4 concerns the context and the purpose of the project, i.e. what is the rationale 

for research and practice of the action research study, and the diagnosing phase, in which 

the problem to solve is identified after having gathered the relevant information. 

Chapter 5 is about action planning, i.e. what actions are needed to solve what have been 

diagnosed. 

Chapter 6 presents the actions undertaken. Single actions are conducted following the 

cyclical action research approach. The first cycles performed at this step aimed to develop 

the MSS model. The others pertain the implementation of the MSS tool. The studies con-

ducted in three of the former cycles have answered to some research questions that 

emerged during the project and have been the object of three published research articles. 

With respect to these actions, the chapter reports only the relevant main points. The integral 

versions of the articles, e.g. the models’ mathematical formulations, the experimental cam-

paigns descriptions, the numerical results, are included in the Appendix. 

Chapter 7 reports the evaluation of the actions undertaken during the project. The chap-

ter reports the main results for practice, i.e. qualitative and quantitative impact of the im-

plementation of the tool to the Meyer hospital, and for research, i.e. what are the lessons 

learned from the action research project, what insights about a MSS implementation process 

emerged. 

Chapter 8 concludes the dissertation and outlines possible directions for future research. 
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Chapter 2  Literature review 

As pointed out in the introduction, this thesis concerns an action research project aiming 

at developing and implementing a MSS tool in a real context. 

For this reason the literature review is organised in two parts. The first concerns the con-

tributions dealing with the implementation of quantitative models supporting decisions in 

the health care sector, with particular focus to the MSS field. Here the papers presenting 

models supporting the MSS process are identified and examined from the implementation 

perspective. 

The second part is relevant to the MSS model development. The MSS models proposed in 

the papers identified in the first paragraph are analysed to understand to what extent they 

might be suitable for the hospital setting under study, and consequently to identify the liter-

ature gaps to be addressed. The development of the model has been a gradual process and 

required the formulation and the test of different preliminary model versions. In fact, since 

action research is “a series of unfolding and unpredictable events” (Coughlan and Coghlan, 

2002), during the project new problems emerged, entailing different revisions of the model. 

In correspondence with each revision the literature review was further deepened, giving rise 

to other research questions. 
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Each of the following paragraphs of this chapter corresponds to a specific literature re-

view round. In each paragraph it is highlighted: 

 what specific problem emerged; 

 what is the relevant literature; 

 what are the literature gaps; 

 what are the research questions. 

2.1 Implementation of models for decision support in health care 

In the last years, a number of authors have highlighted how the literature lacks of evi-

dences of models implementation in the health care context. In his study, Wilson (1981) 

pointed out that only 16 out of 200 (8%) applications of computer simulation to health care 

problems achieved implementation. Referring to the 16 cases, he observed how (i) urgency 

of the decision making, (ii) timing of the project, (iii) availability of the relevant data and (iv) 

involvement of the organisation in the project are factors that positively contribute the im-

plementation to be successful. Despite of the increasing of the contributions in this field in 

the last years, Brailsford et al. (2009) discovered that the implementation rate has not im-

proved. In their review, they classify the studies on modelling in health care according to 

several dimensions, among which the level of implementation as well. In this regard they 

distinguish between (i) suggested (theoretically proposed by the authors), (ii) conceptualised 

(discussed with a client organisation), (iii) implemented (actually used in practice) and found 

that only the 5.3% of the examined studies belongs to the third category. Similar considera-

tions are pointed out also by Eldabi (2009), who identifies three kinds of implementation 

barriers: (i) conflicting interest of stakeholders, (ii) lack of relevant tools and (iii) mismatching 

expectations. He affirms that these barriers are due to the “wicked” nature of the health 

care problems (Rittel and Webber, 1973) and that “tame approaches” aiming at finding a 

solution rather than a resolution are not suitable for this typologies of problem. He argues 

that the most of the contributions in the literature are characterised by elements such as (i) 

prescription of single solutions, (ii) back-office calculations, (iii) lack of transparency and (iv) 

lack of interactions with and between stakeholders, thereby making the process a modelling 

exercise. The lack of implementation is also claimed in the works by Harper and Pitt (2004), 

Proudlove et al. (2007), Brailsford and Vissers (2011), Mahdavi et al. (2013) and Virtue et al. 

(2013). Referring to the cited literature, it seems that the major causes of the detachment 

between models and real world problems in the health care field are: 
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 the scarce involvement of the stakeholders in the projects, thereby leading to a 

scarce understanding of the addressed problem; 

 the needing to publish in high quality journals, that brings academics to formulate 

more and more complex models, requiring significant time to be formulated (usually 

not compatible with health care timescale) but that finally are not easy-to-use. 

Both of these factors lead to models that are not suitable to address the real world prob-

lems, thus causing a low implementation rate. 

All of these considerations are valid also for the models supporting the OT planning and 

scheduling. With respect to this particular topic, in their recent review, Cardoen et al. (2010) 

observe how the literature on surgical planning and scheduling lacks contributions in which 

authors show the results of the models’ implementation. The most of the authors test the 

models, often on real data, but do not illustrate practical aspects of their implementations. 

Indeed, they do not exclude that the published models have not been implemented at a lat-

er stage, but they claim the fact that authors hardly provide results about the implementa-

tion process. They encourage authors to share their relevant experiences, because 

knowledge about the possible causes of a failure or the reason that lead to success, may be 

of a great value to the research community. 

Referring to the studies addressed in the MSS field, the most relevant contributions pub-

lished in peer-reviewed journals have been examined. These papers are classified according 

to the dimensions proposed by Brailsford et al. (2009) so to highlight the implementation 

rate of the MSS models to the real world. 

Table 1 MSS models’ implementation report 
Suggested Conceptualised Implemented 

Vissers et al. (2005) 

Said et al. (2006) 

Tànfani and Testi (2010) 

Santibanez et al. (2007) 

Testi et al. (2007) 

van Oostrum et al. (2008) 

Zhang et al. (2008) 

Beliën et al. (2009) 

Blake and Donald (2002) 

As shown in Table 1, the most of the models are conceptualised, but only one of the ex-

amined papers reports the results of implementation. It cannot be assumed that the concep-

tualised models have not been implemented at all, but there is no evidence of the transfer of 

the solution to the studied context. 

It is worth pointing out that discussions about the implementation of a MSS tool are by 

no means novel in the literature. van Oostrum et al. (2010) discuss the pros and the cons of 

the adoption of a MSS approach for the OR planning and scheduling and its suitability with 
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different hospital organisation structures. However the authors do not provide insights on 

what factors may lead to success or not in implementing a MSS tool. This thesis aims to fill 

this literature gap, offering additional experience-driven fresh insights that may be useful for 

researcher and practitioners to increase the chance to success in the transfer of a MSS mod-

el to their hospital setting. One of the objectives of the thesis is thus to respond to the 

Cardoen et al. (2010) review’s call for research, addressing the following research question 

(RQ1): 

“What factors and conditions can facilitate the implementation of a MSS tool?” 

2.2 Development of models supporting the MSS process 

In the next paragraphs the models supporting the MSS process proposed in the literature 

are examined. Each paragraph represents a specific literature review round, each corre-

sponding to a different stage of the action research project. From a round to another, the 

literature review has concerned a higher number of papers, including those that were not 

published yet at the previous rounds. Each literature review compares one model and the 

relevant study proposed in this thesis with the existing ones from different perspectives. The 

analysis are presented in tabular form, allowing to highlight the differences between the 

literature and the study that was addressed at that round. Since the models and the studies 

have been object of the published articles included in the Appendix, each table comprises a 

different article included in this thesis. 

 The MSS models characteristics 2.2.1

At this stage of the project, the problem was to create and test a MSS model reflecting 

the setting under study and able to produce schedules that are efficient, i.e. characterised by 

a high number of scheduled surgeries, and robust, i.e. immune with respect to the variability 

of surgical times (ST) and lengths of stay (LoS). For this reason the previously identified pa-

pers proposing MSS mathematical models are further analysed according to different di-

mensions, mainly concerning the characteristics of the addressed problem and on how such 

problems are solved. Specifically, building on the taxonomy/dimensions proposed by 

Cardoen et al. (2010), the papers are analysed according to the following dimensions: (i) 

patient characteristics, i.e., the typology of the patients scheduled (elective vs. non-elective, 

inpatient vs. outpatient); (ii) performance criteria, i.e., the optimised utility function 

(throughput, resource utilisation and so on); (iii) the decision delineation, which identifies the 

entity (specialty, patient, etc.) to which/whom the decision applies and the type of decision 



15 
 

to support (e.g., the assignment of a specialty to a day vs. the assignment of a specific pa-

tient to a time slot); (iv) research methodology, which refers to the type of analysis (e.g., 

heuristic vs. exact optimisation) and to the solution techniques adopted (e.g., mathematical 

programming vs. simulation); (v) type of constraints, particularly the hard constraints that 

are considered (e.g., resource availability, demand, release/due date); (vi) uncertainty, which 

indicates if and how data randomness is managed; (vii) applicability of the research, which 

explains how the models have been tested (i.e., with real data, with realistic data, or not 

tested); (viii) a planning horizon indicating the time horizon on which the models have been 

applied. Dimensions (i), (v) and (vii) are taken as-is from Cardoen et al. (2010), while dimen-

sions (ii), (iii), (iv) and (vi) have been adapted through the addition of more details in order to 

better position the study with respect to the literature. Finally, dimension (viii) has been in-

troduced ex-novo. The review is organised and presented into tabular form (see Table 2), 

where rows represent the aforementioned dimensions, and each column represents one 

paper. Hence, each cell provides a brief description of a particular paper from a specific per-

spective. The first row of Table 2 represents the study, i.e. the model and the relevant test 

phase, conducted at this stage of the project. Such a row helps to highlight what are the dif-

ferences existing between this thesis and the rest of the MSS literature. 
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Table 2 MSS literature review – Source: Banditori et al. (2013) 

Article 
Patient 

characteristics 
Performance criteria 

Decision delineation Research methodology Type of constraints 

Uncertainty Applicability 
Planning 
horizon 

Scheduled 
‘object’ 

Decision 
details 

Type of analysis Solution technique Resource Others 

This thesis – 
Article I - 
Banditori et al. 
(2013) 

Elective inpa-
tients 

- Throughput maximisation 
- Appropriate waiting lists 
consumption 
- Proper bed allocation 

Specialties + 
procedure 
typologies + 
cases due 
dates 

Date, 
time slot, 
OR 

- Single criterion 
exact optimisation 
- Scenario analysis 

- Mixed integer 
programming 
- Discrete event 
simulation 

Units, surgical 
staff, equipment, 
regular OR time 

- Procedures’ 
due dates 
- Procedures 
mix 

Deterministic 
(optimisation), 
stochastic (robust-
ness test) ST and 
LoS 

Tested on real and 
realistic data 

1 month 

Blake and 
Donald (2002) 

Elective, not 
specified 

Minimisation, for each 
specialty, of the OR time 
undersupply with respect to 
fixed targets 

Specialties Date, OR 
Single criterion 
heuristic optimisa-
tion 

- Mixed integer 
programming 
- Constructive 
heuristic 

Surgical staff, 
equipment, 
regular OR time 

Max and min 
n° of OR 
blocks per 
week to 
specialties 

Deterministic Tested on real data 1 week 

Said et al. 
(2006) 

Elective, not 
specified 

Minimisation, for each 
specialty (or surgeon), of the 
gap between OR time 
demand and supply 

Specialties/ 
surgeons + 
procedure 
typologies 

Date, 
time, OR 

Single criterion exact 
optimisation 

Mixed integer 
programming 

Surgical staff, 
regular OR time 

Max and min 
n° of OR 
blocks per 
week to 
specialties 

Deterministic 

Randomly gener-
ated surgery 
duration and 
specialty/surgeon 
demand 

1 week 

Santibanez et al. 
(2007) 

Elective, not 
specified 

- Minimisation of the devia-
tion among scheduled and 
target throughput 
- Minimisation of bed 
utilisation 

Specialties + 
procedure 
typologies 

Date, 
hospital, 
OR 

- Single criterion 
exact optimisation 
- Scenario analysis 

Mixed integer 
programming 

Units, ICUs, 
surgical staff, 
equipment, 
regular OR time 

- Throughput 
target 
- Schedule 
cyclicity  

Deterministic Tested on real data 1 month 

Testi et al. 
(2007) 

Elective inpa-
tients 

- Minimisation of the gap 
between specialty demand 
and supply 
- Fulfilment of the surgeons’ 
preferences 
- OR overtime, resource 
utilisation, n° of shifted 
cases 

Specialties, 
surgeons, 
patients 

Date, 
time, OR 

- Single criterion 
exact optimisation 
- Scenario analysis 

- Mixed integer 
programming 
- Discrete event 
simulation 

Surgical staff, 
regular OR time, 
OR overtime 

Max and min 
n° of OR 
blocks per 
week to 
specialties 

Deterministic 
(optimisation), 
stochastic (scenario 
analysis) ST and 
arrivals 

Tested on real data 1 week 
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Table 3 MSS literature review – Source: Banditori et al. (2013) 

Article 
Patient 

characteristics 
Performance criteria 

Decision delineation Research methodology Type of constraints 

Uncertainty Applicability 
Planning 
horizon 

Scheduled 
‘object’ 

Decision 
details 

Type of analysis Solution technique Resource Others 

van Oostrum et 
al. (2008) 

Elective, not 
specified 

- Minimisation of the re-
quired ORs 
- Bed occupancy levelling 

Procedure 
typologies 

Date, OR 

- Multi-criteria exact 
optimisation 
- Multi-criteria 
heuristic optimisa-
tion 

- Mixed integer 
programming 
- Column genera-
tion 

Units, ICUs, OR 
overtime 

Throughput 
target 

Deterministic LoS, 
stochastic ST 

Tested on real data 
1–2 
weeks, 
1 month 

Zhang et al. 
(2008) 

- Elective, 
inpatients and 
outpatients 
- Non-elective, 
emergency 
cases 

- Minimisation of the pa-
tients’ LoS 
- Minimisation of OR time 
undersupply to specialties 

Specialties 
Date, 
time, OR 

- Single criterion 
exact optimisation 
- Scenario analysis 

- Mixed integer 
programming 
- Discrete event 
simulation 

Surgical staff, 
equipment, 
regular OR time 

Specialty 
demand 
(elective, 
non-elective) 

Deterministic 
(optimisation), 
stochastic (scenario 
analysis) ST and 
arrivals 

Tested on real data 
 

1 week 

Adan et al. 
(2009) 

Elective inpa-
tients 

Minimisation of the devia-
tion between realised and 
target resource utilisation 

Procedure 
typologies 

Date 
- Multi-criteria exact 
optimisation 
- Scenario analysis 

Mixed integer 
programming 

Units, ICUs, 
nursing staff, 
regular OR time 

- Throughput 
target 
- Additional 
restrictions  

Deterministic ST 

Deterministic IC 

nursing load 

Stochastic LoS 

Tested on real data 1 month 

Beliën et al. 
(2009) 

Elective inpa-
tients 

- Bed occupancy levelling 
- Schedule cyclicity 
- Minimisation of OR sharing 
among different specialties 

Surgeon 
Date, 
time, OR 

- Multi-criteria exact 
optimisation 
- Multi-criteria 
heuristic optimisa-
tion 

- Goal program-
ming 
- Simulated 
annealing 

Regular OR time 
Surgeon 
demand 

Deterministic 
(multinomial 
distribution for the 
n of patients per OR 
block and patient 
LoS) 

Tested on real data 
1–2 
weeks 

Tànfani and 
Testi (2010) 

Elective inpa-
tients 

Minimisation of patients’ 
waiting time 

Patients Date, OR 
Single criterion 
heuristic optimisa-
tion 

Constructive 
heuristic 

Units, ICUs, 
surgical staff, 
regular OR time, 
OR overtime 

Additional 
restrictions 

Deterministic 
Tested on realistic 
data 

1 week 
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Looking at Table 2 and Table 3, it can be noted that the proposed model exhibits decision 

variables that are similar to those used in Santibanez et al. (2007). However, the two models 

differ in several aspects. The most important is that the proposed model takes into account 

the cases’ due dates and, consequently, allows—to a certain extent—the exertion of control 

over the hospital’s waiting list. Another important feature is that it actually schedules proce-

dure typologies instead of cases. Such a characteristic is shared by half of the reviewed pa-

pers. However, none of these deals explicitly with cases’ due dates. While due dates are, 

indeed, considered in Tànfani and Testi (2010), their model assigns OR time slots to actual 

patients (instead of to procedure typologies) and assumes a planning horizon of one week. 

As such, their model is unsuitable for monthly planning. 

Finally, another important contribution of this part of the thesis is that it addresses ST 

and LoS uncertainty. In fact one of the aim of the study was to create a model able to pro-

duce solutions robust against their variability. Several other authors have incorporated LoS 

or ST uncertainty into their models (see Cardoen et al., 2010, p. 928). For example, van 

Oostrum et al. (2008) proposed an optimisation model where a constraint is inserted to keep 

the probability of realising an OR overtime from exceeding a defined threshold. Specifically, 

they exploited portfolio optimisation theory (Hans et al., 2008) to reduce the time required 

to complete a surgical session. In addition, they mitigated the effects of LoS variability 

through the proper balancing of bed usage. Other authors (e.g., Testi et al. (2007), VanBerkel 

and Blake (2007), Zhang et al. (2008)) have instead utilised simulation to evaluate, ex-post, 

the robustness of schedules produced by optimisation models. However none of them have 

considered simultaneously the variability of both ST and LoS, thereby leading to the follow-

ing research question (RQ2): 

“How is it possible to obtain efficient and robust MSS?” 

 Balancing objective functions in the MSS field 2.2.2

The solutions offered by the first model, despite being efficient and robust, exhibited a 

scarce balancing of the daily utilisations of the ORs and the post-surgical bed units (hereinaf-

ter beds). This fact was considered unacceptable by the hospital, making necessary to in-

clude the resources utilisation balancing as criterion in the objective function of the model. 

Moreover, balanced solutions should be more robust. In fact, in general, if the daily utilisa-

tion profiles of ORs and beds are nicely balanced there should be some idle resources to 

absorb the unexpected peaks caused by ST and LoS variability (Beliën et al., 2009). Hence, 
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utilisation balancing would have contributed also to increase the robustness of the solution, 

but the extent to which this would have happened was unknown. 

Consequently a new literature review round was addressed, comprising only those stud-

ies in the MSS fields dealing with resource balancing issues . The papers were analysed ac-

cording to the following seven dimensions: (i) balancing criteria, i.e. the criterion adopted to 

balance resource utilisation; (ii) balanced resources, i.e. the resources whose utilisation is 

balanced; (iii) solution technique, i.e. the typologies of model/s adopted to solve the problem 

addressed; (iv) type of analysis, i.e. the approach followed to solve the problem; (v) uncer-

tainty, that indicates if the parameters used in the model/s are deterministic or stochastic 

and, in this latter case, if the effect of randomness is assessed ex-post via simulation; (vi) 

types of distributions, i.e. empirical, theoretical or both, used to model the stochasticity of ST 

and/or LoS; (vii) investigated setting, i.e. the number and the type (real and/or realistic) of 

hospital settings where the proposed models are tested, and the number of dimensions (ex-

perimental factors) used to differentiate the settings from each other. Dimensions (iii) and 

(iv) are taken as is from the review scheme given by Cardoen et al. (2010). Dimensions (v) 

and (vii) has been adapted by adding some details. Dimensions (i), (ii) and (vi) have been 

developed ex-novo. The review is organised in tabular form and presented in Table 4. Each 

column of the table represents one dimension, while each row represents a paper. As in the 

previous paragraph, in order to emphasise the differences between this study and the relat-

ed literature, the first row represents the specific study of the thesis. Moreover the table 

comprises also an article (Banditori et al., 2014) in which very preliminary results of the pre-

sent study were reported. 

As it can be observed in Table 4, the minimisation of the maximum utilisation is the most 

common balancing criterion. It can involve one or more resources, thus respectively entail-

ing the minimisation of a single maximum value of daily utilisation or the sum of the maxi-

mum daily utilisation values.  

Referring to the balanced resources, beds (belonging to a single or multiple 

units/hospitals) are considered in all of the examined papers. In these papers, the major aim 

of the balancing is to reduce the bed utilisation variability thus to prevent schedule disrup-

tions and patient cancellations. In addition, some authors also consider other resources (e.g. 

IC beds, IC nurses). In the literature, OR balancing is only addressed by Adan et al. (2009) and 

Banditori et al. (2014). Most of the examined papers deal with the LoS randomness. Instead, 

ST randomness is only considered by van Oostrum et al. (2008) and Banditori et al. (2014). 
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Table 4 Balancing objective functions in the MSS field – Source: Cappanera et al. (2014) 
Article Balancing criteria Rresources Uncertainty Distributions Investigated settings 

This thesis – Article II - 

Cappanera et al. (2014) 

Minimisation of the maximum daily utilisation 

Minimisation of the difference between the maximum and 

the minimum daily utilisations 

Minimisation of the sum of the quadratic deviations from a 

threshold  

ORs 

Beds of a single 

unit 

Stochastic ST (ex-post) 

Stochastic LoS (ex-post) 

Empirical 

Theoretical 

 

1 real setting 

26 realistic settings 

3 experimental factors (Beds/ORs ratio, OR utilisation 

rate and case MIX) 

Santibáñez et al. (2007) Minimisation of the sum of the maximum daily utilisations 
Beds of different 

hospitals 

Deterministic ST 

Deterministic LoS 
None 1 real setting 

van Oostrum et al. (2008) Minimisation of the maximum daily utilisation 
Beds of different 

units 

Stochastic ST 

Deterministic LoS 
Empirical 

1 real setting 

35 realistic settings 

3 experimental factors (Planning horizon, N° of ORs. N° of 

bed types) 

Adan et al. (2009) Minimisation of the deviation from a target utilisation 

ORs 

Medium care beds 

IC beds 

IC nurses 

Deterministic ST 

Deterministic IC nursing load 

Stochastic LoS  

Empirical 

Theoretical 
1 real setting 

Beliën et al. (2009) 
Minimisation of the weighted sum of the quadratic mean and 

variance of the utilisations  

Beds of different 

units 
Stochastic Los Empirical 

1 real setting 

1 realistic setting 

1 experimental factor (Planning horizon) 

Chow et al. (2011) Minimisation of the sum of the maximum daily utilisations  
Beds of different 

units 

Deterministic ST 

Stochastic LoS (ex-post) 
Empirical 1 real setting 

Carter and Ketabi (2012) Minimisation of the sum of the maximum daily utilisations  
Beds of different 

units 

Deterministic ST 

Stochastic LoS 
Theoretical 1 real setting 

Banditori et al. (2014) 

Minimisation of the maximum daily utilisation 

Minimisation of the difference between the maximum and 

the minimum daily utilisations 

ORs 

Beds of a single 

unit 

Stochastic ST (ex-post) 

Stochastic LoS (ex-post) 
Empirical 

1 real setting 

4 realistic setting 

1 experimental factor (OR utilisation rate) 
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In sum, within the MSS literature, only the study of Banditori et al. (2014) explores how to 

obtain MSSs that are robust against both ST and LoS variability, by balancing both beds and 

ORs. However, such a study presents a number of shortcomings. First and foremost, it com-

pares two balancing criteria, namely the minimization of the maximum value and the mini-

mization of the difference between the maximum and the minimum values, but does not 

explain why in certain conditions and for certain performances one criterion performs better 

than the others. Second, the study’s computational campaign includes only a limited number 

of very similar hospital settings and it is based on empirical distributions only. These facts 

clearly hamper the external validity of the study findings that are, indeed, very context-

specific. Third, the study of Banditori et al. (2014) does not consider a fairly well known bal-

ancing criterion, i.e. the minimization of the sum of the squared positive deviations of the 

values from a fixed threshold (Sen et al., 1996). The study addressed in this part of the pro-

ject aims to fill this gap addressing the following research question (RQ3): 

“Is it possible to obtain efficient and robust MSS through the resources utilisation 

balancing?” 

 Resource management policies in the MSS field 2.2.3

At this stage the problem was to quantify the impact of different critical resources man-

agement policies on the MSS efficiency. The MSS literature is here analysed according to the 

resources that the models consider and to the way the models manage these resources, i.e. 

the degree of flexibility with which the resources are managed. Also this review round is 

organised in tabular form. Each column of Table 5 represents a resource, while each row 

represents a model. In each cell, it is specified if and how the resource is modelled. When a 

resource is not explicitly considered in the model, the cell contains “NEC.” In order to em-

phasise similarities and differences between this part of the thesis and the related literature, 

a row representing the study is added. 

When a study proposes both flexible and rigid approaches to manage a resource, either 

the alternatives are reported in the table. Table 5 reveals that most of the authors consid-

ered three main critical resources in their models: surgical teams, ORs and units’ beds. 

Therefore, the remainder of this paragraph will focus on these resources. 

 



22 
 

Table 5 Resources management policies in the MSS field – Source: Visintin et al. (2014) 
Article Surgical teams ORs Surgical units’ beds Other resources 

This thesis – Article II - 

Visintin et al. (2014) 

Number of sessions per surgical specialty bounded on a daily and on a weekly basis 
Session assignment performed: 
- Once and then considered as fixed (low flex) 
- Every time the MSS is produced, but only limited changes are allowed with 

respect to a predefined assignment (high flex) 

Fully interchangeable ORs 
Two sessions per day/OR 
Sessions: 
- Dedicated (low flex) 
- Mixed (high flex) 

Three types of surgical units (one day surgery unit and two 
regular units). 
- All units are dedicated to specific patient types, no 

mismatch allowed (low flex) 
- Regular units are pooled (high flex) 

NEC 

Blake et al. (2002) 
Number of sessions per surgical specialty bounded on a daily and on a weekly basis 
Session assignment performed once and then kept constant in the following period 

Partially interchangeable ORs 
One session per day/OR 
Mixed sessions 

NEC Medical equipment 

Vissers et al. (2005) NEC 
Fully interchangeable ORs 
One session per day/OR 
Mixed sessions 

Two types of surgical units (ICU and regular unit) 
Dedicated units, no mismatch allowed 

ICU nursing staff 

Santibáñez et al. (2007) 
Number of sessions per surgical specialty bounded on a daily and on a monthly 
basis 
Session assignment performed once and then considered as fixed 

Partially interchangeable ORs 
One or two sessions per day/OR 

Mixed sessions 

Two types of surgical units (SCU and regular unit) 
Dedicated units, no mismatch allowed 

NEC 

van Oostrum et al. (2008) NEC 
Fully interchangeable ORs 
One session per day/OR 
Mixed sessions 

Two types of surgical units (ICU and regular unit) 
Dedicated units, no mismatch allowed 

NEC 

Beliën et al. (2009) 
Number of sessions per surgical specialty bounded on a weekly basis 
Session assignment performed once and then considered as fixed 

Fully interchangeable ORs 
One or more sessions per day/OR 
Mixed sessions 

Several types of surgical units 
Dedicated units, no mismatch allowed 

NEC 

Tànfani and Testi (2010) 
Number of sessions per surgical specialty bounded on a weekly basis 
Session assignment performed every time MSS is produced 

Fully interchangeable ORs 
One or two sessions per day/OR 
Mixed sessions 

Two types of surgical units (ICU and regular unit) 
Dedicated units, no mismatch allowed 

NEC 

Agnetis et al. (2012) 

Number of sessions per surgical specialty bounded on a daily and on a weekly basis 
Session assignment performed: 
- Once and then considered as fixed (low flex) 
- Every time the MSS is produced, but only limited changes are allowed with 

respect to a predefined assignment (medium flex) 
- Every time the MSS is produced without limiting the changes allowed with re-

spect to a predefined assignment (high flex) 

Partially interchangeable ORs 
One or two sessions per day/OR 
Dedicated sessions 

NEC NEC 
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Surgical teams, i.e. the teams of surgeons belonging to the same specialty that actually 

carry out surgeries are considered explicitly in all but two models (i.e. the model of Vissers et 

al. (2005) and van Oostrum et al. (2008)). In the remaining works, the availability of surgical 

teams is modelled by limiting the number of sessions that each surgical specialty can per-

form on a weekly basis and/or daily basis. Based on these constraints, almost all models as-

sign sessions to specialties, thereby identifying when a surgery team will potentially operate 

in the planning horizon (session assignment). In addition, some models (Santibáñez et al., 

2007, van Oostrum et al., 2008, Banditori et al., 2013) also determine the type and/or the 

number of surgeries that surgical teams will execute in each session (surgery types assign-

ment). In (Agnetis et al., 2012), instead, one of the proposed models assumes that the ses-

sion assignment has already been done and, consequently, supports the surgery types as-

signment only. Most studies suggest that the session assignment should be carried out once 

and should not be changed frequently (Guerriero and Guido, 2011). The underlying assump-

tion of these studies is that it is not technically feasible to change the session assignment on 

a monthly (or more frequent) basis because it would make it very complex for surgeons to 

coordinate their activities inside and outside the OT (van Oostrum et al., 2010). Nonetheless, 

Agnetis et al. (2012) demonstrate that small and frequent changes in the session assignment 

can yield substantial benefits and that these benefits are higher than those associated with 

large yet less frequent changes. Therefore, the authors argue that a limited amount of flexi-

bility in managing surgical teams can produce benefits that are higher than the organisation-

al cost of implementing this solution. For that reason, this latter case was included in the 

study and compared to the case where the session assignment is considered as already hav-

ing been performed.  

Contrary to surgical teams, ORs are considered as critical in all the reviewed models. 

However, different authors model these resources in different ways. A first distinction is 

between interchangeable and partially interchangeable ORs. The former can host every type 

of surgery; the latter, instead, can host only a limited subset of surgeries and/or specialties. 

A second distinction pertains to how OR time is divided into sessions. Some authors consider 

one session per OR per day van Oostrum et al. (2008), some consider two (Santibáñez et al., 

2007) or more (Beliën et al., 2009) sessions per OR per day, while others allow both daily 

sessions and shorter sessions (Agnetis et al., 2012). A third distinction concerns the types of 

surgery that can be performed in the same OR session. For example, Agnetis et al. (2012) 

distinguishes two macro-types of surgeries: general surgeries and day surgeries. The former 

includes all the procedures leading to a LoS of at least two days (one night), and the latter 

includes those procedures associated with a LoS of just one day. Based on this distinction, 
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Agnetis et al. (2012)’s model allows only dedicated sessions, meaning that within the same 

session it is not possible to execute both day-surgeries and general surgeries. Instead, he 

most of the other models allow mixed sessions where these types of surgeries can coexist. 

While the interchangeability of an OR depends on the structural characteristics (e.g. the 

presence of certain equipment) of the OR itself, hospital managers have more degrees of 

freedom in deciding how to subdivide the OR time. Nonetheless, this decision is influenced 

by the actual number of surgical teams available for each specialty. For example, all-day-long 

sessions cannot be planned for those specialties relying on less than two surgical teams per 

day (except in extraordinary cases, one team cannot operate for the entire day). The deci-

sion to organise dedicated or mixed sessions, instead, is generally free. The literature sug-

gests that surgeons usually prefer dedicated sessions; surgeons, in fact, can reduce surgery 

time because of the repetitive nature of their work (Hans et al., 2008). On the other hand, a 

mixed session makes the scheduling process less constrained and as such, it potentially al-

lows scheduling a greater number of surgeries. In this study, both options are explored. 

Finally, post-surgical beds units, i.e. the facilities where patients are cared for following 

surgical procedures, are considered in six out of eight models. These units are usually classi-

fied based on the intensity of care required by the hospitalised patients: e.g. intensive care 

units, day-surgery units, regular units. Moreover, these units are characterised by a given 

capacity that is expressed in terms of the number of beds. Certain hospitals (e.g. the Meyer 

hospital) allocate patients to the regular units based on the specialty. Such a practice makes 

it easier and faster for surgeons to control and visit their hospitalised patients. Different 

models assume different numbers of units and unit types. All the reviewed models constrain 

each type of patient to be hospitalised into a specific unit. In general, the literature (Vincent 

et al., 1998) suggests that it is risky to accommodate patients requiring thorough care in 

units characterised by reduced nursing staff or that are physically located far away from the 

intensive care unit. Thus, units should be pooled only if they are characterised by similar care 

settings, which is the flexible practice explored in this study. Banditori et al. (2013)’s model, 

instead, violates this recommendation and allows bed mismatches whenever they allow in-

creasing the OT throughput. 

According to Table 1, it can be argued that flexible practices are considered in several 

studies. However, no study proposes an analysis that investigates how different flexible prac-

tices can interact, thereby leading to the following research question (RQ4): 

“What is the impact on the master surgical schedule of a flexible management of the critical 

resources?” 
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 Multi-criteria approaches to the MSS problem 2.2.4

During the project it emerged how the MSS problem is fundamentally characterised by 

different objectives. Hence, it was decided to address it through a multi-criteria approach. 

Looking at Tables 2-5 it can be noticed how some authors have proposed multi-criteria ap-

proaches to the problem (van Oostrum et al., 2008, Adan et al., 2009, Beliën et al., 2009), 

however none of their models resulted to be suitable to describe the characteristics of the 

Meyer hospital MSS problem. Consequently, in this thesis, based on the information gath-

ered during the project, a novel goal programming model for the MSS is proposed. 
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Chapter 3  Methodology 

The methodology used in the project is a combination of qualitative and quantitative 

techniques. The main project is organised as an action research project and, as such, aims to 

contribute both to knowledge (developing novel models to support the MSS problem and 

developing understanding about MSS models implementation) and practice (implementing a 

MSS tool at the Meyer hospital). However, while action research is used to guide the whole 

project and its cycles are the means through which developing new understanding about the 

MSS tool implementation, the models were created following a model based research ap-

proach. 

The next paragraphs give an overview on action research and model based research, with 

particular emphasis on the application of these methodologies in the operations manage-

ment field. This section ends showing why and how these two methodologies have been 

combined to deal with the problem addressed in this thesis. 

3.1 Action research 

Kurt Lewin is considered by the scientific community as the father of action research. In 

fact, the term “action research” can be found for the first time in the works he conducted 

together with his associates in the 1940s in the social sciences field. Despite action research 

methodology has been applied mostly in this field, in the last years it has been successfully 
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applied also to address operations management issues (Westbrook, 1993, Karlsson and 

Åhlström, 1996, Bennett and Lee, 2000, Hales and Chakravorty, 2006, LaGanga, 2011, 

Carvalho et al., 2014). This can be justified by the fact that operations management, as the 

social sciences, often involves people and organisation thus making this approach suitable to 

address the relevant problems (Westbrook, 1995). 

As survey based and case based, action research is an empirical research methodology. 

However these methodologies mainly differ in the way the researcher is involved in the or-

ganisation object of the study. In the surveys and in the case studies the researcher is a de-

tached observer and does not influence the processes of the context under study. Instead an 

action researcher is directly involved in the context and engages in the research together 

with the people of the client organisation. One definition of action research is given by 

(Shani and Pasmore, 1985, p. 439): 

“Action research may be defined as an emergent inquiry process in which applied behav-
ioural science knowledge is integrated with existing organizational knowledge and applied to 

solve real organizational problems. It is simultaneously concerned with bringing about 
change in organizations, in developing self-help competencies in organizational members 
and adding to scientific knowledge. Finally, it is an evolving process that is undertaken in a 

spirit of collaboration and co-inquiry.” 

According to Coughlan and Coghlan (2002), the major characteristics of this methodology 

are: 

 research in action, rather than research about action; 

 participative; 

 concurrent with action; 

 a sequence of events and a an approach to problem solving. 

Hence, an action research study has a twofold aim: to solve a practically relevant problem 

and to contribute to the body of knowledge. The researcher is not a mere observer of the 

system as in the traditional positivist science: he engages with the client organisation and 

acts like a facilitator of the change in the organisation. Action research is “a series of unfold-

ing and unpredictable events”. These events unfold following a cyclical path, comprising: (i) 

diagnosing the problem, (ii) planning the required actions, (iii) taking the planned action, (iv) 

evaluating the outcomes of the performed actions. During the unfolding of these cycles the 

researcher contributes to practice helping the organisation to solve a problem and contrib-

ute to knowledge standing back form the action, reflecting on it and on its outcomes. This 

reflection process is the core of the action research, since its results, that are the lessons 
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learned from the action research project, represent the contribute of the researcher to the 

body of knowledge. 

The characteristics of action research has been also analysed by Gummesson (2000). 

Specifically he outlines the following ten major characteristics: 

1. action researchers take action: the researcher is not a mere observer of the system 

but he engages with the client organisation and acts like a facilitator of the change in 

the organisation; 

2. action research always involves two goals: an action research study has a twofold 

aim, to solve a practically relevant problem and to contribute to the body of 

knowledge; 

3. action research is interactive: the researcher and the people of the organisation un-

der study work together and react to the contingent events happening during the 

project 

4. action research aims at developing holistic understanding; 

5. action research is fundamentally about change: in the sense that it is applicable to 

manage the change in an organisation; 

6. action research requires on understanding of the ethical framework, since ethical 

principles must be considered because actions may impact on the people of the or-

ganisation 

7. action research can include all types of data gathering methods: both qualitative, 

e.g. interviews, and quantitative, e.g. surveys, are allowed; 

8. action research requires a breadth of pre-understanding; 

9. action research should be conducted in real time, as action research is an unfolding 

series of events; however retrospective action research is also acceptable; 

10. the action research paradigm requires its own criteria. 

As mentioned, action research works as a cyclical process. It comprises one pre-step and 

four basic main steps. The pre-step concerns the context and the purpose of the study. At 

this phase the researcher, based on his knowledge about the specific context and about 

business organisations, is called to answer to the following questions: 

1. what is the rationale for action? 

2. what is the rationale for research? 

Specifically, the action researcher must respectively: 



30 
 

1. understand what is the need and the desirability of the project in the organisa-

tion, what are the forces driving the necessity to change and thus establish col-

laborative relationships with those who have or need to have the ownership of 

the project; hence, an action research team, composed by the researchers and 

member of the organisation, has to be arranged; 

2. understand why this action research is worth studying, thus why action research 

is the suitable methodology for the problem under study and what is the ex-

pected contribution to the body of knowledge. 

The main steps, instead, represent the core of the action research project. As action re-

search is participative, it is important that during all these steps researchers and members of 

the client organisation adopt a collaborative approach, working together within the action 

research team. The members of the organisation are the ones who know the context under 

study best and thus know what will work or not. Their involvement is crucial because they 

will be ones that will implement the developed solution and know how to manage resistance 

best. The four steps are: 

1. diagnosing: that concern in identifying what are the issues, on the basis of which 

the actions will be planned and taken. At these stage “hard” data, e.g. statistics 

about resources utilisation, and “soft” data, e.g. people perceptions, are gath-

ered through different methods, e.g. direct observation, interviews and discus-

sions; 

2. planning action: at this step action is planned in the light of the results of the pre-

step and the diagnosis; 

3. taking action: after the planning phase, the action is implemented in the context 

of study; 

4. evaluate action: outcomes of the previous implementing phase are here ana-

lysed; the results of this assessment feed the following diagnosing step leading to 

the following cycle. 

During the unfolding of the action research cycles as described, the researcher has to 

stand out from the action and to reflect on what is going on. This meta learning process is a 

continuous inquiring process, that the researchers perform to create knowledge about what 

they are experiencing. This process is fundamental to create actionable knowledge and to 

achieve the objective of contributing to the body of literature. 
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In order to explain how an action research project unfolds, Coghlan and Brannick (2005) 

use the image of a clock. An action research project is composed of different cycles. These 

cycles have a different time span, and are performed concurrently. 

“The hour hand, which takes twelve hours to complete its cycle, may represent the pro-
ject as a whole which may take several years to complete its cycle. The minute hand, which 
takes an hour to complete its cycle, may represent phases or particular sections of the pro-
ject. The second hand, which completes its cycle in a minute, may represent specific actions 
within the project, such as a specific meeting or interview. As in the clock, where the revolu-
tions of the three hands are concurrent and where the revolutions of the second hand ena-
ble the revolutions of the minute hand and the revolutions of the second and minute hands 
enable the completion of the hour hand, the short-term action research cycles contribute to 

the medium term cycles which contribute to the longer-term cycle.” 

This simile will be useful in the last paragraph of this section to explain how the research 

project of this thesis is organised. 

3.2 Model-based research 

Also described in the operations management literature as analytical modelling 

(Meredith et al., 1989), quantitative model based research is a methodology “where models 

of causal relationships between control variables and performance variables are developed, 

analysed or tested” (Bertrand and Fransoo, 2002). The relationships between independent 

and dependent variables are here meant as causal and strongly quantitative: a change of 

value alpha in the independent variable provokes a variation of f(alpha) in an independent 

variable. Mathematical modelling and simulation are examples of techniques used in this 

research methodology. 

With the purpose to classify the operations management model-based research litera-

ture, Bertrand and Fransoo (2002) distinguish between axiomatic and empirical research and 

between descriptive and normative research (Table 6). 

Table 6 Model based research 
 Descriptive Normative 

Empirical ED EN 

Axiomatic AD AN 

Source: Bertrand and Fransoo (2002) 

Axiomatic research is mainly driven by the model itself. The model is usually an idealised 

version of the real-context and is formulated with some assumptions that are justified by the 

extent to which these assumptions do not affect the purposes of the study. The objective of 

the researcher is to find solutions within the defined model and make sure that these solu-

tions provide insights into the structure of the problem as defined by model itself. It can be 
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both descriptive, i.e. aiming at understanding and describing the causal relationships be-

tween the variables in the process under study, and normative, i.e. aiming at predicting the 

effect of new strategies and policies, improving the results available in the literature. 

Instead empirical research is guided by empirical findings and measurements. Here the 

aim of the researcher is to guarantee that the model accurately replicates observations and 

actions in reality and thus to remove the assumptions owned by the axiomatic approaches. 

As the axiomatic research, empirical research can be both descriptive and normative. 

In order to highlight the differences among these four approaches to the model based re-

search, Bertrand and Fransoo (2002) use the model proposed by Mitroff et al. (1974). The 

model concerns the operational research typical approach in solving problems. Specifically 

four cyclical steps are identified (Figure 2): 

1. conceptualisation, where the problem addresses is conceptualised and decisions 

about what variables have to be included in the model are taken; 

2. modelling, concerning the model formulation according to the conceptualised 

problem; 

3. model solving, concerning finding a solution to the formulated model; 

4. implementation, which means the transfer of the model results to the studied 

real context. 

 

Figure 2 Mitroff model - Source: Mitroff et al. (1974) 

As pointed out by Mitroff et al. (1974), a research cycle can begin and end at any step of 

the cycle and sometimes “shortcuts” in the cycle happen. 

According to the Mitroff et al. (1974)’s model, the model based research typologies can 

be described as follows (Figure 3): 
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 axiomatic descriptive research (AD) is a cycle comprising only modelling, as the 

researcher focuses on developing model to better understand the model itself, 

based on a conceptual model often taken from the literature; 

 axiomatic normative (AN) is a cycle comprising both model formulation and 

model solving; the researcher, in addition to conceptualize and formulate the 

model, focuses on finding solutions to the model and to feed them back to the 

model formulation; 

 empirical descriptive (ED) is a cycle comprising conceptualization, modelling and 

validation 

 empirical normative (EN) is the most complete cycle comprising all the steps of 

the cycles model. 

 

 

Figure 3 Model based research cycles – Based on Mitroff et al. (1974) 

3.3 Why combining action and model-based research 

This thesis is based on a project aiming at implementing a MSS tool in a real hospital set-

ting. Two main issues arise from this statement: 

1. formulating the MSS model on which the tool is be based on; 

2. implementing the MSS tool in the real hospital setting under study. 

Apart from the fact that both issues lead to rethink the MSS process (due to the introduc-

tion of the tool), the specific problems arising from these issues are very different in nature. 

The first issue requires to identify the MSS characteristics, to formulate a model that repli-

cates, under certain assumptions, the actual process and to test the performance of the 

model. The second issue requires to deal with the impact that the introduced change might 

have on the organisation, to manage the resistance to change of the involved members of 

the organisation and to reflect on the outcomes. As such, it requires to adopt different 

methodologies to address the two issues. 

AD AN ED EN
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In order to address the first issue, based on the setting and on the general characteristics 

of the MSS problem recognised in the literature, the specific MSS problem must be concep-

tualised and modelled. The model must then be tested to provide useful feed-back to fine 

tune the model formulation. Hence, the axiomatic model-based methodology seemed to be 

the most suitable approach to address the first issue. However, since the MSS conceptual 

model has been based on elements both from literature and the real context, the conceptu-

alisation phase was indeed a relevant phase of the adopted approach. As a result the fol-

lowed research methodology slightly differs from the classical axiomatic normative approach 

(Figure 4). 

 

Figure 4 Modified AN model based research cycle – Based on Mitroff et al. (1974) 

Instead, in order to address the second issue, the action research methodology was 

adopted. Since action research is characterised by a strong participation of the researcher in 

the organisation, it seemed to be the best approach to overcome the barriers to implemen-

tation. In addition, this high involvement would likely lead to a better understanding of the 

process and thus to a MSS model that produces satisfactory solutions from the stakeholders’ 

point of view. Finally the reflection process typical of the action research approach will allow 

to better rationalise what has been experienced, in order to highlight what factors and con-

ditions have facilitated or thwarted the MSS tool implementation process. 

 

As a final remark it is worth to point out that the use of two or more research methodol-

ogies to address different aspects of the same problem in the operations management field 

has been recently encouraged by Sodhi and Tang (2014). In their paper they state that the 

different stages of the research stream, i.e. (i) awareness, (ii) framing, (iii) modelling and (iv) 

validation, can be all addressed through a single research approach, but this would lead to 

two major problems: (i) “island of methodology” and (ii) disconnection from practice. They 

argue that these problems can be avoided adopting different research methodologies to 

address the different phases, given the fact that each research methodology is more suitable 

that the others to face a specific phase of the research stream. For this reason they finally 

Classic AN Modified approach
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encourage doctoral students to adopt different research methodologies when approaching 

new problems. 

3.4 How action and model-based research are combined 

Figure 5 reports a scheme of the research project on which this thesis is based on. 

 

Figure 5 Action research project scheme 

The whole project is organised as an action research project. In the central part of Figure 

5 it is possible to observe the main cycle that represents the project (in the clock simile by 

Coghlan and Brannick (2005) the hour hand). Its outcomes, i.e. implementing a MSS tool and 

providing insights on such a process, in the lower part of the figure. As pointed out in the 

literature review chapter, these two outcomes are respectively practically and scientifically 

relevant. During the main cycle, other smaller cycles have been undertaken (in the clock 

simile by Coghlan and Brannick (2005) the minute hand). Each cycle represents a different 

MSS model formulation and test and their activities were undertaken following a axiomatic 

model based research approach. To some extent a parallel between the phases of the mod-

el-based and the action research in the smaller cycles can be made. Conceptualization can 

be consider as the diagnosing phase, that uses the output of the previous evaluation phase 

to define the problem to be solved. The model formulation can be represented by the plan-
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ning phase in which it is established how the problem would be solved. The model solving, 

both for test or implementation purposes, can be seen as the taking action phase, in which 

the effort is focused on solving the problem. Feed-back phase can be considered as the eval-

uation phase. As a results, someone can argue that these phases can be conducted regard-

less the action research approach and its cycles. This can be true. However, the need to in-

tegrate the model based approach in the action research cycles arises from two facts. First, 

often models fail to be implemented because their solutions are not satisfactory. This is of-

ten due to a scarce understanding of the problem by the researchers. The strong involve-

ment of the organisation members typical of the action research projects can overcome this 

issue. The problem conceptualisation, the model formulation, the model solving and the 

feed-back, i.e. each cycle, were conducted within the action research team thus ensuring the 

solutions provided by the model to be both satisfactory and implementable. Second, the 

inquiring process typical of the action research approach undertaken during these cycles 

allowed to reflect on what characteristics of a MSS model make its solutions more imple-

mentable. This process has been fundamental to respond to the first research question of 

this thesis and thus to contribute to the body of knowledge. 

As the main cycle, the smaller cycles have produced practically and scientifically relevant 

results as well. Details about these results will be given in the further sections. 

The next chapters of this thesis are organised following the typical action research cycle 

that comprises four basic steps (Coghlan and Brannick, 2005): 

1. diagnosis; 

2. planning action; 

3. taking action; 

4. evaluating action. 
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Chapter 4  Diagnosing 

4.1 Context and purpose 

 What is the rationale for action? 4.1.1

This thesis is based on a research project involving the IBIS lab research group and the 

Meyer hospital. The hospital top management was committed to optimise the operations of 

the OT in terms of resource utilisation and throughput. Improving these performance in fact 

leads to: 

 increase the revenues – since hospitals in Italy are subjected to the DRG reimburse-

ment system (Fattore and Torbica, 2006), the higher the patient throughput, the 

higher the total incomes; 

 decrease the costs – principally extra-costs associated to personnel that must work 

overtime; 

 increase the patients satisfaction – because a higher throughput brings to a reduc-

tion of the patients’ waiting times. 

Since the performance of the OT strongly depends upon how its activities are scheduled, 

the hospital management decided to focus on the surgical planning and scheduling process. 

At Meyer hospital such a process was not optimised and after a first analysis it seemed that 

there was a vast room for improvement. 
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The project started in 2011 with the aim to implement, and thus to transfer to the hospi-

tal, a MSS tool, through which the planner of the hospital would have been able to produce 

optimised surgical schedules. Since it was decided to organise the project as an action re-

search project, an action research team was set up. The team was composed by the IBIS lab 

researchers and by the members of the organisation that are mostly involved in the surgical 

scheduling process, that are: 

 the general and the medical director, who committed the study; 

 the OT manager, who is responsible for the assignment of OR sessions to the surgical 

specialties; 

 the beds manager, who is responsible for the allocation of patients to the post-

surgical units; 

 one member of the planning department, who is responsible for reporting schedul-

ing issues of the planning department to the OT and the beds manager. 

However, other members of the organisation, like surgeons or the planning department 

personnel, have been occasionally involved in the project. 

 What is the rationale for research? 4.1.2

As pointed out in the literature review chapter, the problem of models implementation in 

the health care context, but generally speaking, the problem of disconnection of the re-

search from practice, is actually a significant issue that operations management researchers 

are called to face before starting a project. Action research is indeed a methodology that can 

overcome this issue. In fact, its aim is to provide outcomes both for practice and research. 

Such a twofold aim is pursued through a strong and continuous collaboration between re-

searchers and practitioners that ensures the practical relevance of the study. 

With specific regard to the surgical planning and scheduling models, Cardoen et al. (2010) 

point out how literature lacks of contributions in which authors show the results of the im-

plementation of their models to the real setting under study. The continuous interaction of 

the researcher with the process stakeholders (that is a characteristic of the action research) 

allows to better understand the characteristics of the problem and thus to develop models 

that are easily implementable. The reflection process during the project allows find out more 

about what are the conditions that facilitate a surgical scheduling model implementation. 

Finally the models and the studies are novel with respect to the existent literature. 

In summary this action research study contributes to knowledge in three ways: 
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 it gives fresh insights about what characteristics of a MSS model make it easy-to-

implement; 

 it provides experience-driven understanding about what conditions can facilitate a 

MSS tool implementation process; 

 it presents new MSS models and shows the results of novel studies performed 

through these models, 

thus responding to the research questions pointed out in the literature review chapter. 

4.2 Diagnosing 

The aim of this phase was to understand the surgical planning and scheduling process of 

the Meyer hospital. The relevant data have been gathered through different methods includ-

ing direct observation, interviews and the analysis of the information systems. 

The direct observation focused on both the activities of planning department and the ac-

tivities performed in the OT. The interviews involved all the hospital members of the action 

research team, the planning department personnel and some members of the OT staff, i.e. 

surgeons, anaesthetists and nurses. The analysis of information systems concerned hospital 

data base (for those information that were digitalised) and documental analyses (for those 

information that were not digitalised and thus that are managed “on paper”). 

This data gathering phase allowed to deeply understand the relevant process and to 

make hypothesis on which parts of the process can be improved. 

 The planning and surgical scheduling process at the Meyer hospital 4.2.1

The Meyer hospital OT consists of seven ORs: five of these are partially interchangeable 

and host 15 surgical specialties (urology, otorhinolaryngology, paediatric surgery, neonatal 

surgery, ophthalmology, orthopaedic surgery, gynaecology and obstetrics, trauma centre, 

hand and microsurgery, oral and maxillofacial surgery, orthopaedic oncology, cardiothoracic 

surgery, gastroenterology, burns and plastic surgery); the remaining two ORs are dedicated 

almost entirely to specific surgical specialties or treatments (hemodynamics and bronchial 

endoscopy) and partially to emergencies and urgencies. At the Meyer hospital, emergencies 

and urgencies are managed by allocating them a fixed amount of operating room sessions 

and a fixed number of beds. The Meyer hospital actually allocates 42 beds to elective pa-

tients. However this number can change during the year due to unexpected urgencies and 

emergency. The beds are organised into three physically distinct units. One unit accommo-

dates patients with short expected LoS, i.e. day surgeries, which occupy a bed for a single 
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day. The other two units accommodate patients with longer expected LoS, i.e. ordinary sur-

geries, which occupy a bed for more than one day. 

The hospital waiting lists, i.e. the set of patients needing a surgery, are populated on the 

basis of surgery request forms that are filled out by surgeons after visiting the patients. The 

form clearly indicates, for each case: (i) the surgical specialty, (ii) the diagnosis, (iii) the pro-

cedure that the patient is expected to undergo and (iv) a priority class. The priority class de-

termines the maximum number of days within which the case should be scheduled and, 

thus, the case’s due date. There are four possible priority classes. The first three classes are 

associated with 30, 60 and 180 days of waiting time, respectively. The fourth class indicates 

that the patient does not have a due date. In addition, the form indicates: (v) the expected 

duration of the procedure (surgery duration); and (vi) the expected LoS. There are three pos-

sible time ranges for procedure duration: less than one hour (short duration), between one 

and two hours (medium duration), and more than two hours (long duration). With respect to 

the expected LoS, the form indicates if the patient is a day surgery or an ordinary surgery. 

Presently, at the Meyer hospital, the activities of the surgical specialties that use the five 

aforementioned interchangeable ORs are planned by the planning department. The activities 

of the remaining specialties are managed by their respective departments. 

At the Meyer hospital the surgical planning and scheduling process works as the typical 

process reported in literature (Beliën and Demeulemeester, 2007). It is a three-phase pro-

cess, consisting of case mix planning, MSS and patients selection and sequencing. 

 

Figure 6 The surgical planning and scheduling process 

As can be noticed from Figure 6, it is a cascade process in the sense that the output of the 

upstream sub-process represents the input for the downstream one. Each sub-process has 

different frequency and planning horizon. Moving from the case mix to the patients selection 

and sequencing, frequency increases and planning horizon decreases. 

The case mix planning is performed once a year. It consists of a negotiation process be-

tween the hospital management and the surgeons responsible for the different surgical spe-
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cialties. The decisions taken at this step concern the number of OR hours that each specialty 

is assigned with on an annual basis. 

The MSS is performed once a month and consists of the assignment of the specific OR 

sessions to the different surgical specialties, for a number of sessions that depends on the 

output of the case mix planning. Basically the MSS is a timetable that specifies what specialty 

will operate on a given day, at a given time, in a given OR. In addition, it provides a rough 

indication of the number of day surgeries and ordinary surgeries that should be performed 

in each session. At this stage the availability of the OR anaesthetists, nurses and electro med-

ical equipment is considered. The MSS is performed by the OR and the beds manager in con-

cert with the surgeons. These latter are asked to indicate particular requirements and pref-

erences. It is worth noticing that, due to logistical reasons, the MSS tends to remain constant 

during the year. In fact keeping the MSS constant makes the surgeons easier to coordinate 

their surgical activities with the other ones outside the hospital. However each month little 

changes in the MSS are usually made. 

The patients selection and sequencing is performed once a week. In this phase the surgi-

cal planning department personnel call the patients and recruit them for undergoing the 

surgeries, thus populating the OR sessions indicated in the MSS. Patients are chosen such 

that: (i) the sum of the expected surgery duration of the cases assigned to each session does 

not exceed the duration of the session itself; (ii) the expected number of hospitalised pa-

tients for each day does not exceed the number of expected available beds; and (iii) the per-

centage of short-, medium- and long-lasting surgeries scheduled in the weekly plan reflects 

approximately the percentage on the waiting list. At the Meyer hospital, the demand for 

short-, medium- and long-lasting surgeries has proven to be fairly constant all year round. 

Hence, by scheduling a constant mix of short-, medium- and long-lasting surgeries, the hos-

pital avoids leaving an excessive amount of long-lasting surgeries on waiting lists, which 

would make the scheduling process more complex in the following weeks or months. Lastly, 

if possible, patients with closer due dates are given higher priority. 

During the patients schedule execution, the planning the department is also asked to 

manage the variations to the schedule that may occur as a consequence of: 

 a cancellation due to a patient no-show (need to replace the cancelled patient); 

 a patient with higher priority that must be scheduled in the place of a yet sched-

uled patient (need to cancel one or more surgery to schedule this patient); 
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 any other unpredictable event that can give rise to a schedule disruption, e.g. the 

lack of beds because some patients needed to stay in their beds more than ex-

pected. 

 Information systems analysis 4.2.2

From a “surgical request” perspective, the surgical process can be represented as in Fig-

ure 7. 

 

Figure 7 The surgical process at the Meyer hospital 

The process starts with the medical examination. The surgeon sees the patient and make 

a surgery request whether the patient needs a surgery. The request is sent to the planning 

department and, together the other requests, constitute the waiting lists. Subsequently, the 

patient is called to make a pre-operative assessment with the anaesthetist. If the anaesthe-

tist gives positive feedback than the patient can be scheduled. After a certain amount of 

time, that depends on different factors (see the previous paragraph), the patient is selected 

from the waiting lists to be operated. Then the patient is hospitalised and a surgeon, that is 

not necessarily the one who prescribed the surgery, operates the patient. After the surgery, 

the patient stays in a bed for a certain period and after that he is discharged. During this 

process several data about the patient/request are transferred and stored. These data con-

cern: 

1. information ante-surgery (green dotted line in Figure 7), that are information 

stored before the surgery is performed, mainly request’s details, data about 

anaesthetist assessment, fixed date of the surgery, contacts with the patient’s; 

2. information post-surgery (red dotted line in Figure 7), that are information stored 

during the patient hospitalization concerning data about the surgery, such as, ac-

tual surgical date and times, name of the surgeon, actual diagnosis and surgical 

procedure performed and data about the hospitalization, such as admission date 

or discharge date. 

All the data belonging to the second category were digitalised and stored in a two data-

base called respectively ROI (“Registro operatorio informatizzato”) and AD (“Ammesso-
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Dimesso”). Instead data belonging the first category were not digitalised and the requests 

were managed “on paper”. However there was an on-going project aiming at implementing 

a new information system software. Such a new software, on the one hand, aims to digitalize 

the waiting list information, i.e. the information belonging to the aforementioned first cate-

gory, on the other hand, aims to integrate the ante and post-surgeries’ information. 

 Data analysis and process criticalities 4.2.3

The collected data and information were then analysed. The fact that the waiting lists are 

managed on paper did not allow to make an initial quantitative assessment about the situa-

tion of the patients waiting times. However the interviews with the personnel of the plan-

ning department reveal how the lists were growing. They argued that each month the num-

ber of incoming surgical requests were higher than the number of surgeries they are able to 

schedule. Moreover they claimed other facts: 

“It’s difficult is to select patients in order to respect their priorities and due dates”; 

“The indications reported in the MSS about the number of patients to be scheduled are 

too rough. In order to prevent OR overtime and beds overbooking it happens that we sched-

ule less surgeries than the indicated number” 

“We are not able to adequately cope with the short notice cancellations. These patients 

must be replaced with other ones that have already undergone the anaesthetist examination 

and that are expected have the same ST and LoS. It is difficult to decide what patients to pre-

pare because the indications about ST and LoS on the requests are too rough. Hence it hap-

pens that the replacement of a cancelled patient is made with a patient that requires a dif-

ferent amount of resources” 

“Surgeons requests about scheduling specific patients in specific sessions are difficult to 

manage because often are not compatible with the indications reported in the MSS” 

Instead, data about the STs and patients’ LoSs were available. The former have been col-

lected from the ROI database, the latter from the AD database. The elaboration of these 

data allowed us to calculate respectively OR and beds’ utilisation. The analysis of the medical 

records showed how OR utilisation can be significantly improved. Beds’ utilisation on the 

contrary was high. From this first analysis beds seemed to be the bottleneck of the surgical 

process. Such a consideration was confirmed by the interviews with the OT and beds man-

ager. This latter claimed that: 
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“It often happens that there are too many patients to accommodate thereby leading to 

open the day surgery unit at night or to cancel surgical patients, due to bed shortages” 

These cancellations are probably the reason why OT manager claimed that: 

“ORs are often underutilised” 

Finally, we realised that the other resources involved in the surgical process, i.e. OR and 

nurses and electro medical equipment, were not scarce and their availability did not repre-

sent a constraint for the OT performance. 

In summary, the direct observation of the surgical scheduling process, the interviews and 

the data analysis revealed different facts: 

 besides the ORs, also surgical teams and beds were critical resources and must 

be necessarily considered in the surgical scheduling process; 

 with respect to these critical resources, there was the need to report a more 

clear indication on the surgical requests about the critical resources that the pa-

tient is expected to require. The requests, in fact, reported only a clear indication 

about what surgical specialty the patient requires but not about the ST and LoS; 

this indications would help the planning department to 

o schedule an adequate number of patients while preventing operating 

room overtime and post-surgical beds overbooking and 

o prepare an adequate set of patients for replacing the short notice cancel-

lations; 

 the decision on how to assign the ORs to the different specialties is taken sepa-

rately from the decision on how to assign the beds. The first decision is taken in 

the MSS and the second one in the patients selection and sequencing, after the 

first one has been already taken. Such a scarce coordination, which is due to the 

cascade approach, might lead to underutilise the ORs, because the beds might 

constraint the system more than the case in which they are considered in the 

MSS phase. 

For these reasons the surgical scheduling process needed to be redesigned. The next par-

agraph illustrates how actions were planned to improve the process. 
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Chapter 5  Planning action 

After the diagnosing phase, in which the members of the action research team collabo-

rate to understand what is going on in the organisation under study, actions to solve the 

identified problems have to be planned. Since action research is “an unfolding series of un-

predictable events” it was difficult to know exactly what actions would have been taken dur-

ing the whole project. As a consequence it was difficult to make a specific plan and to expect 

how long the project would have taken to provide the pursued results. 

In the previous chapter some criticalities of the actual surgical planning process identified 

by the AR team have been pointed out. In order to solve such criticalities the AR team decid-

ed to develop a MSS tool after redesigning the scheduling process. Despite the impossibility 

to make a detailed plan, we figure out to take different actions, following four different lines 

of intervention: 

 patients classification; 

 process redesign; 

 tool development; 

 tool fine-tuning. 



46 
 

5.1 Patients classification 

In order to give the possibility to accurately compute how much resources are utilised as 

a consequence of a certain patients schedule, patients must be categorised according to 

their resources consumption. Since we identified three critical resources, namely the surgical 

teams, the ORs and the beds, we decided to classify the patients in the waiting list in the so-

called surgery groups. The patients pertaining to a same surgery group require a surgical 

team belonging to the same specialty, are expected to require a similar amount of OR time, 

i.e. are characterised by a similar expected ST, and are expected to occupy a bed for the 

same number of days they are expected, i.e. are characterised by the same expected LoS. 

The information about the surgery group, besides being useful to the planning department 

personnel both in the phases of patients selection and replacement, would have been useful 

in the new scheduling process to integrate the decision of the assignment of the ORs and the 

beds to the specialties in the MSS phase. 

5.2 Process redesign 

As pointed out in the diagnosis section, the classic surgical planning framework, that is 

the one adopted at the Meyer hospital, does not allow for the downstream resources coor-

dination. These resources are to some extent considered only in the patient selection and 

sequencing stage, after the MSS has been already performed. As a consequence, down-

stream resources, that are considered only in the patients selection and sequencing phase, 

might constraint the scheduling process more in the case that they are considered in the 

MSS. For this reason we decided to integrate the assignment of the surgical specialties to the 

beds and the assignment of the surgical specialties to the OR sessions in the MSS phase. We 

called this new approach enhanced MSS. In this new MSS process, besides deciding what 

specialties will occupy the different OR sessions, it is established also how many cases, be-

longing to the different surgery group, will be scheduled in the different OR sessions. Adding 

the surgery group information at this stage guarantees a higher coordination of the up-

stream and downstream resources, thus leading to higher utilisation of the OT. At this stage 

the selection of the surgery group is made also considering the due dates of the relevant 

patients. Since the planning horizon in the MSS is longer than in the patient selection and 

sequencing phase, considering the due date at this stage improves their fulfilment rate. 

Besides improving the OT performance and the due date fulfilment, such a new process 

helps the planning department personnel in the patients selection and sequencing phase, 

because they have not to decide the number and the type of patients to schedule. 
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5.3 Tool development and implementation 

The tool supporting the new MSS process should enable the end-user to: 

1. produce the MSS following the enhanced MSS approach; 

2. assess the feasibility of a modification of the current MSS as a consequence of 

certain events. 

With regard to the first point, we decided to integrate in the tool a mixed integer pro-

gramming model to create optimised MSSs. The model must take into account of different 

aspects that are considered as fundamental for the MSS. Specifically it must take into ac-

count: 

 the limited availability of the three critical resources (ORs, beds, surgical teams); 

 the patients characteristics, in terms of the critical resources consumption, i.e. the 

surgery groups, and the priorities/ urgency of the patients, i.e. the patients’ due 

dates; 

 the uncertainty affecting the surgical times and the LoSs; 

 other characteristics reflecting the process stakeholders’ priorities and needs. 

The aim was to obtain a model able to produce schedules that satisfy the stakeholders’ 

expectations. 

In order to cope with the second point we decided to give the possibility to the end-user 

to visualise the utilisation of the critical resources of the current MSS and to calculate the 

impact that a modification may have on them. In fact it may happen that the MSS needs to 

be changed at the last minute because of 

 a cancellation due to a scheduled patient that cannot undergo the surgery, in this 

case there is the need to replace the cancelled patient to avoid unused capacity; 

 a patient with higher priority that must be scheduled, in this case there is the need 

to cancel one or more surgeries to schedule this patient without exceeding the 

available capacity. 

In both cases it is necessary to assess the feasibility of the change with respect to the ac-

tual utilisation of the resources. In fact 

 in the waiting lists it is not always possible to find a patient belonging to the same 

surgery group of the cancelled scheduled patient; 

 in the schedule it is not always possible to find a patient belonging to the same sur-

gery group of the patient with higher priority that needs to be scheduled. 
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In these cases the replacement must be done with a patient belonging to a different sur-

gery group, thus requiring a different amount of resources. A tool that enables the end-user 

to assess the impact of any modification is essential to avoid significant under or over-

utilisation of the available resources capacity. 

5.4 Data requirement 

In order to use the aforementioned scheduling tool several digitalised data were re-

quired. The tool in fact should be easily fed with updated data each time a new schedule is 

produced. These data are mainly relevant to the characteristics of the patients in the waiting 

list, e.g. how many patients are available to be scheduled, what are their priorities, what are 

the diagnoses and the surgical procedures they must undergo. As pointed out in the diagno-

sis section, all these data were available but they were not digitalised at that moment. How-

ever, as said, there was an on-going project aiming at introducing a software for the waiting 

list management through which the waiting list data would have been digitalised. Hence, 

even if data were not available for the prompt implementation of a scheduling tool, the on-

going project for the introduction of the new waiting lists management system seemed to 

represent the best conditions for the introduction of a new scheduling tool, which might 

require some information that are not considered in standard waiting list management soft-

ware. The fact that a new information system was in course of implementation, in fact, could 

allow us to guide the definition of the information about the patient that should be editable 

through the waiting list management software and that are required to the scheduling tool 

to work. From the discussions within the action research team, it emerged what information 

about the patients in the waiting list were required by the model and thus by the tool. Spe-

cifically the following information were needed: 

 an indication of the expected ST, an indication of the expected pre and post-

surgical LoS and the surgical specialty, i.e. the surgery group. This latter depends 

on the pathology affecting the patient and the procedure he/she must undergo 

and on the surgical specialty of the surgical team he/she requires. At that mo-

ment the surgery group information about the ST and the LoS were not reported 

on the surgery requests, however there was the need to give the possibility to as-

sociate this information to the patient when the request is inserted in the system 

through the new waiting list management system; 

 indications about the day on which the surgery should be performed. These indi-

cations were usually reported on the surgery requests. However every time they 
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were written in different ways. Sometimes there was indicated only the priority 

class, sometimes there was a priority class and an extended indication, e.g. “to be 

operated before” and a date, sometimes no indication were provided. For the 

tool purposes, it was essential to standardise the way this information are pro-

vided on the surgery requests. For this reason it was decided to give the possibil-

ity to enter the following information in the new waiting list management system 

when prescribing a surgery: 

o a latest due date, that can be explicitly specified by the surgeon on the 

surgery request or can be calculated adding the number of days within 

the surgery should be performed, 30, 60 or 180 days, given by the pa-

tient priority class, to the arrival date of the surgery request to the plan-

ning department; 

o an earliest programmable date. In fact because despite the fact that the 

patient is in the waiting list, it may happen that the patient should not 

undergo the surgery before a certain date, e.g. the patients’ family may 

have problems to organise for the surgery before a certain day; 

o a specific date, indicating the date the patient must necessarily undergo 

the surgery. It often happens when the patient hospitalization is difficult 

to organise from a logistic point of view, e.g. the patient lives far from 

the hospital. 

The model will use these information when producing the MSS. 
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Chapter 6  Taking action 

The previous chapter identifies what actions were required to implement the scheduling 

tool. Even if the contents of the actions to conduct were quite clear, it was difficult to predict 

how the project would have unfolded and thus how many cycles would have been needed to 

achieve the tool implementation. However we expected to undertake two types of cycles, 

depending on the relevant aim. A first type of cycle, i.e. the test cycles, would have aimed to 

develop a model able to produce schedules that are easily implementable A second type of 

cycle, i.e. the implementation cycle, aimed to transfer of the tool to the Meyer hospital. Each 

cycle would have represented a specific MSS production. 

6.1 Action research test cycles 

As pointed out in the methodology chapter, some of the smaller cycles of the project, i.e. 

the test cycles, have been addressed through the axiomatic model based methodology. 

However each models’ development and the test is undertaken following an action research 

approach. In Figure 8 is reported a scheme of a test cycle. 

In the diagnosing phase the relevant information are gathered and used to conceptualise 

the problem to solve. In the planning phase a model is formulated based on the conceptuali-

sation at the previous step. In the taking action phase the model is fed with real data coming 

from the Meyer hospital and solved. 
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Figure 8 Action research test cycle scheme 

The obtained solution is then discussed within the action research team to understand to 

what extent the schedule is satisfactory or not. In this latter case the feedback about the 

solution is used to start another cycle with the aim to modify the model and improve the 

quality of the solution. The self-reflection process on the outcomes of these cycles allowed 

to understand what characteristics of the MSS model make it easier to implement. During 

the unfolding of these cycle it was also defined the information that were required by the 

model and thus what data about the patients would have been needed to be editable 

through the new waiting list management system. 

An implementable version of the MSS model was obtained after four action research test 

cycles. In each of these cycles a different version of the model was formulated and tested. 

The contents of the first three cycles have been the object of three studies, in which the 

results have been useful to answers to the research questions pointed out in the literature 

review chapter. Since the aim of this chapter is to show why and how the models have been 

changed during the project, it reports only a summary of the contents of these studies. Spe-

cifically each paragraph corresponds to a cycle, in which it is highlighted what are the char-

acteristics of the developed model, why these characteristics have been chosen , what are 

the results of the tests, what findings emerged from these tests and how these results influ-

enced the following cycles. The paragraphs do not report the mathematical formulation of 

the model, details about the experimental campaigns and numerical results. The interested 

reader is referred to the Appendix in which the complete versions of the articles concerning 

these studies are included. 

All the models were developed using the surgery groups information and are based on 

the enhanced MSS approach. Each model is characterised by an objective function, which 
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gives the criterion/criteria to optimise, and a set of constraints. Referring to the constraints, 

two types are considered: the first refers to the availability of the critical resources, the sec-

ond refers to some quality requisites of the solution, mainly related to the patients’ due 

dates and to the scheduled cases mix with respect to the surgery groups. Despite all the 

models consider these issues, each one differs in the way these issues are mathematically 

modelled. Since data about the waiting lists were not digitalised at moment of the these 

cycles, some ad-hoc instances were created to test the models. Details about the data analy-

sis and the instances generation are reported in the original articles. 

 Test cycle I 6.1.1

Diagnosing – problem conceptualisation 

The interviews with the members of the action research team allowed to define a first 

version of the MSS problem. Specifically, from the interviews emerged that: 

 since resources availability (and hence costs) are fixed in the short term, in order 

to maximise efficiency, the solution must be produced maximising the number of 

scheduled surgeries; in this sense an efficient solution allows for the maximisa-

tion of revenues, for the containment of the costs and for an increase in the pa-

tient satisfaction as a consequence of the reduction of their waiting times; 

 the solution must be robust against the variability of the ST and the LoS, in the 

sense that it should give rise to few or no disruptions when a surgery lasts more 

than its expected ST or a patient stays in his bed more than his expected LoS. In 

these cases we may have, respectively, overtime and overbooking, that entail 

costs and patients dissatisfaction; 

 OR daily availability is organised in two sessions, morning and afternoon, for 

which the surgical specialties guarantee the availability of a certain number of 

surgical teams; 

 beds are organised in three units, each accommodating cases characterised by 

the same LoS, e.g., day surgery unit for cases with a LoS equal to one day, week 

hospital unit for a LoS equal to two days and ordinary unit for LoSs longer than 

two days. When possible, each case type should be accommodated in the appro-

priate unit. However, bed mismatches, e.g., long-stay case types accommodated 

in day surgery unit, may be tolerated if they allow for an increase in the through-

put; 

 as many as possible patients’ must be scheduled before the relevant due dates; 
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 leaving an excessive number of surgeries with approaching due date or long du-

ration on the waiting list should be avoided. Otherwise, the maximisation of the 

throughput in the current planning horizon would lead to criticalities in the long 

run. 

Action planning – model formulation 

In order to deal with the aforementioned requirements, a mixed integer programming 

model was formulated. Such a model allowed the production of the MSS and exhibits the 

following constraints and objective function: 

 at most, one surgical specialty can be assigned to a given OR session, i.e. a given 

OR, on a given session, on a given day; in a certain OR session, however, the 

model is free to schedule cases belonging to each surgery group within that spe-

cialty; 

 surgical specialties guarantee the availability of a certain number of surgical 

teams (0 or 1) for each for each session, for each day; 

 bed mismatches are allowed but their number is penalised; 

 with respect to the patients’ due dates, the model imposes the strict fulfilment 

for those patients whose due date expires in the planning horizon; the missed 

scheduling of the other patients, i.e. those whose due date expires in the follow-

ing periods, is penalised according to the relevant due date, i.e. the more the pa-

tient’s due date is forthcoming, the higher the penalty; 

 the solution must be characterised by a certain mix with respect to the surgical 

time. Specifically we classified the surgery groups in three categories depending 

on the ST, short-, medium- and long-lasting surgery groups and imposes that the 

percentage of cases belonging to these time ranges must fall into a range; 

 the objective function is composed of three terms and the importance of each 

term is given by a weight; specifically the weights are chosen in the way that the 

tree criteria are hierarchically ordered. The first and most important term is the 

maximisation of the number of scheduled surgeries. The second term is the min-

imization of the penalties relevant to the patients’ due dates. The third and less 

important term is the minimization of the penalties associated with the bed mis-

matches. 

In order to test the robustness of the solution produced by the optimisation model, we 

created also a discrete-event simulation model through which it was possible to assess the 
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impact of the variability of the ST and the LoS on the deterministic solution, in terms of over-

time and overbooking cancellations. 

Action taking – model solving 

The mixed-integer programming model formulated at the previous step has been used to 

produce the MSS. This schedule has been then simulated through a simulation model to as-

sess its robustness. Since the schedule was not robust, i.e. it gave rise to an unacceptable 

amount of OR overtime and beds overbooking cancellations, we decided to introduce the 

resource slacks in the optimisation phase. Specifically the MSS is produced considering a 

smaller amount of OR time and beds than what is actually available. By introducing resource 

slacks, the optimisation model schedules fewer surgeries and, consequently, the obtained 

solution likely gives rise to fewer cancellations and to less overtime. 

Evaluating action – feed-back 

The experimental campaign performed at this cycle shown how a MSS that is robust 

against variability of ST and LoS can be achieved through the adoption of the resource slacks. 

A trade-off between efficiency and robustness does exist: the higher the efficiency, i.e. the 

number of scheduled surgeries, the lower the robustness and vice versa. Referring to the 

case of the Meyer hospital we demonstrate how adopting slacks of 10% and 12% respective-

ly for ORs and beds, it is possible to schedule a higher number of surgeries with respect to 

the actual planning process, i.e. 582 vs. 495, experiencing at maximum 9 overbooking can-

cellations over a planning horizon of 4 weeks. The obtained solutions were discussed within 

the action research team. Despite the positive feedbacks about the results of the study, the 

proposed solutions did not satisfy the expectation of the stakeholders, specifically: 

 in the stakeholders’ opinion, the MSS exhibited too many day surgeries with re-

spect to the number of day surgeries that were usually performed at the Meyer 

hospital; 

 daily resources utilisations, especially the OR ones but also beds’ ones, were un-

balanced, e.g. in some cases OR sessions utilisation were under the 50%. 

Another fact that we noticed during the experimental campaign was that the due dates’ 

strict fulfilment can strongly limit the potentiality of the model and in some cases it might 

also give rise to the model infeasibility. 
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 Test cycle II 6.1.2

Diagnosing – problem conceptualisation 

Since the solution obtained at the previous cycle was not satisfactory, the model needed 

to be modified: 

 the number of day surgeries was too high, and this was probably due to the pos-

sibility of the model to allow bed mismatches. In fact, if the model had not the 

possibility to make bed mismatches, the number of daily day surgery would be 

limited by the number of available beds in the day surgery unit. If bed mis-

matched are allowed, another bounding strategy should be adopted; 

 the solution should have been more balanced with respect to the daily resources 

utilisations. This because a fair distribution of the workload positively affects the 

satisfaction of OR personnel, e.g. surgical teams, nurses. Moreover, in general, if 

the daily utilisation profiles of ORs and beds are nicely balanced, there should be 

some idle resources to absorb the unexpected peaks caused by ST and LoS varia-

bility (Beliën et al., 2009). In other terms, a higher balancing should lead to a 

higher robustness, especially when average resource utilisation is high; 

 the due dates’ strict fulfilment can limit the number of scheduled surgeries. The 

due dates’ respect is an important issue for a hospital, however the hospital 

members of the action research team recognised that the strict respect of the 

due dates (via hard constraint) can be meaningless, especially for those patients 

with low priority and that are expected to stay in the waiting list for long time. 

For this reason we decided to relax the due dates’ constraints with the aim to 

improve the objective function’s value; 

 in order to further improve the performance of the model we decided to change 

the way the model deals with the availability of the surgical teams. 

Action planning – model formulation 

At this stage some constraints and the objective function have been changed. Specifically: 

 referring to the ORs, at most, one surgical specialty can be assigned to a given OR 

session; in a certain OR session, the model is still free to schedule cases belonging 

to each surgery group within that specialty; 
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 surgical teams availability is here expressed in terms of maximum weekly number 

of OR sessions; however, surgical teams belonging to the same surgical specialty 

cannot occupy more than one OR at the same time; 

 mix and patients due dates’ are regulated through the combination of two mix 

constraints; the first impose that the solution must be characterised by a certain 

mix with respect to the LoS, the second impose a mix with respect to the ST. Spe-

cifically, with regard to the LoS, the cases are subdivided in two classes: the day 

surgeries and the ordinary surgeries; on the other side, with regard to the ST, the 

cases are subdivided into the following two classes: short lasting surgeries (less 

than 1 hour) and long lasting surgeries (more than 1 hour). Then, the two mix 

constraints specify that for each class, the scheduled surgeries in that class fall 

within a minimum and maximum percentage of the overall scheduled surgeries. 

These minimum and maximum percentages are defined based on the composi-

tion of the current waiting list, i.e. mix and patients due dates’; 

 bed units are pooled, in the sense that bed mismatches can still occur; however, 

the number of day surgeries is now bounded by the mix constraints; hence there 

is not the need to penalise them in the objective function; 

 the objective function still has three terms; however the terms about the penali-

sation of the due date’s missing and the bed mismatches are now substituted by 

two terms aiming respectively at balancing the OR and the beds’ daily utilisations. 

Since the aim is to obtain balanced solutions, the balancing terms were priori-

tised with respect to the efficiency term. This latter term allows to obtain, among 

the balanced solutions, the one characterised by the highest number of surger-

ies. Furthermore, since overbooking was considered more undesirable than over-

time at the Meyer hospital, the beds’ balancing was prioritised with respect to OR 

balancing. 

Action taking – model solving 

As in the first cycle, at this stage the MIP model was used to produce the MSS and the 

simulation model to test the robustness of the MSS against the ST and LoS variability. The 

experimental campaign here aimed to assess the impact on efficiency and robustness of 

three different objective functions, each of which incorporates a different criterion for the 

balancing of the resource utilisations. Specifically these criteria are (i) the minimisation of 

the maximum daily utilisation, (ii) the minimisation of the range between the maximum and 

minimum utilisation (minRng) and (iii) the minimisation of the overrun (minOvrn), i.e. the 
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positive deviation between the actual resource utilisations and target utilisation values. By 

using the Meyer hospital’s data, three different schedules were produced through the three 

models and their robustness were assessed by means of the simulation model. In order to 

give generalizability to the results of the study, these objective functions were tested in cor-

respondence with several realistic hospital settings, that were created starting from the 

Meyer hospital’s one. In particular these settings were characterised by different values of: 

 minimum and maximum percentage values for the mix constraints; 

 available beds/OR time ratio; 

 minimum and maximum percentage values constraining the overall OR utilisa-

tion. 

Evaluating action – feed-back 

The study performed at this cycle revealed that none of the investigated policies allows 

superior performance in terms of efficiency, balancing and robustness to be achieved con-

currently. However, depending on the hospital management's priorities and needs, it is al-

ways possible to identify a policy that allows for a reasonable trade-off among these perfor-

mance criteria. In the case of the Meyer hospital, minOvrn seemed to be the best balancing 

policy because it represents somehow an intermediate case with respect to the other two 

policies. In fact minRng is at least effective as the other policies in balancing the beds. In ad-

dition, it allows for a better OR balancing and thus for a smaller overtime. Moreover, it leads 

to higher bed saturation and to a larger number of scheduled surgeries. However, it also 

causes a higher overbooking. The properties of minMax are quite the opposite than minRng. 

Finally looking at the numbers, consistently with the literature (Proudlove et al., 2007) and 

with the results obtained at the previous cycle, a target daily resource utilisation of around 

85% seemed to be an adequate value for guarantying the robustness of the schedules. 

With respect to the solution obtained, however, the stakeholders were not still satisfied: 

despite the fact that the number of day surgery was now adequate, the solution exhibited 

too many of surgeries with LoS equal to two days. In addition the combination of the two 

percentage mix constraints would still lead to the model infeasibility. Finally the solution also 

evidenced how the way with which the surgical teams were managed was too flexible and 

thus scarcely implementable: some assignment surgical specialty-day were not implementa-

ble because surgeons are not always available for surgical activities. They in fact need to 

coordinate them with the other activities inside and outside the hospital. 
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 Test cycle III 6.1.3

Diagnosing – problem conceptualisation 

As a consequence of the feedback of the previous cycle, the model required some chang-

es as follows: 

 we decided not to utilise percentages constraints to deal with the patients’ due 

dates and the mix of the solutions because, besides causing problems in terms of 

model feasibility, they can strongly limit the potentiality of the model; 

 it was necessary to modify again the way that surgical teams’ availability is man-

aged, making it less flexible; 

 it should be useful to understand what is the impact of certain choices about how 

the resources are management and thus modelled. 

Action planning – model formulation 

Based on the emerged problems, the model was modified as follows: 

 instead of percentage mix constraints, we added to the model some constraints 

that guarantee a minimum number of surgery to be scheduled for each surgery 

group in the waiting lists; each target number is established according to the due 

dates of the patients in the waiting list and to the mix desired by the process 

stakeholders; 

 it was decided to fix the assignment of the specialties to the OR sessions 

 with respect to ORs it was decided to model them in such a way that a given OR 

session is dedicated, i.e. it can host either day surgeries or ordinary surgeries; 

 beds are here dedicated and not pooled as in the previous cycles; 

 the objective function maximises the number of scheduled surgeries, i.e. the effi-

ciency; robustness is pursued by means of resource slacks equal to 15% both for 

ORs and beds. 

However, besides this base model, we decided to create several different version of the 

model in order to investigate what is the impact on the performance of the process of a 

more flexible management policy of the critical resources. Specifically, in the “flexible ver-

sion” of the model, resources are modelled as follows: 
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 the assignment of the surgical specialties to the OR sessions is not fixed but can 

change every time the MSS is produced; the number of changes with respect to 

the original assignment can be set by through the model; 

 bed units are pooled; 

 OR session are mixed and can host both day and ordinary surgeries. 

Action taking – model solving 

The base model was solved to obtain the solution relevant to the Meyer hospital. Howev-

er we wanted to show to the action research team what it would have been the increase in 

the efficiency if resource were managed more flexibly. To do so, and to give generalizability 

to the study, we carried out an experimental campaign based on a 23 experimental design 

(Montgomery and Runger, 2003). In detail, we consider the way the three critical resources 

are managed as factors and we assume two possible levels for each factor: “high” when the 

resource is managed in a flexible way and “low” otherwise. Combining factors and factor 

levels, we obtained eight (=23) configurations. For each of them we ran the optimisation 

model in correspondence with 30 randomly generated instances, that were obtained start-

ing from real data coming from the Meyer hospital. 

Evaluating action – feed-back 

The analysis revealed that the best results in terms of efficiency can be achieved by man-

aging flexibly both surgical teams and ORs. Moreover, the analysis showed that, if a hospital 

cannot manage flexibly the surgical teams, then it can still improve its efficiency by managing 

flexibly the ORs and vice versa. However, the analysis revealed that if both surgical teams 

and ORs are managed flexibly, pooling surgical units has no significant impact, while if only 

one of these two resources (or none) are managed flexibly, then pooling surgical units pro-

duces significant benefits. However, even if the flexible management could have improved 

the efficiency of the process, it was decided to not implement any of these practices. In fact 

the benefits arising from the flexible management of the resources were considered by the 

stakeholders too low to justify the organisational costs emerging to implement it. With re-

spect to the solution relevant to the Meyer hospital, the stakeholders were still unsatisfied. 

The solution exhibited too few long ordinary surgeries in terms of both ST and LoS. In fact, in 

order to prevent infeasibilities, the target number of surgeries for each surgery group was 

set at a low level. Hence, the model, after satisfying these constraints, in order to maximise 

efficiency, chase surgeries that “consume” few resources to fill the remaining room. Finally, 

imposing a strict upper bound on the maximum utilisation of the resources, i.e. though the 
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introduction of the resource slack, can make to exclude solutions that are more efficient 

than the optimal one and that are still robust. For example a solution with the daily utilisa-

tion of one OR equal to 85.5% is unfeasible for a model with a resource slack equal to 15%. 

However it could be more efficient and still robust than optimal solution of the model. 

 Test cycle IV 6.1.4

Diagnosing – problem conceptualisation 

After three action research test cycles some evidences emerged: 

 hard constraints for the quality requisites of the solutions, i.e. patients’ due dates 

fulfilment and the mix of the scheduled surgeries, can make the model infeasible, 

depending on the input data; a model whose feasibility is too sensitive with re-

spect to the data is not implementable; infeasibilities are in fact difficult to man-

age for people without expertise in the modelling field; 

 there is the need to deal with patients’ due dates and the mix, but neither the 

percentage range constraint nor the coverage constraint seemed to suitable to 

make the model able to produce satisfactory solutions; 

 it is better to pursue robustness integrating the resource utilisations balancing in 

the objective function; utilising resource slacks can make to not consider some 

solutions that are still robust and more efficient. 

In order to deal with these issues we decided to modify the model, including also the pa-

tients’ due date fulfilment and the mix respect in the objective function. Hence the objective 

function comprises five criteria: 

1. maximisation of the number of scheduled surgeries; 

2. balancing of the daily utilisations of the ORs; 

3. balancing of the daily utilisations of the beds; 

4. patients’ due dates fulfilment; 

5. surgeries’ mix respect. 

We decided to adopt a goal programming approach in which the importance of each ob-

jective can be set depending on the preferences of the decision maker. This flexibility 

seemed to make the goal programming approach the most suitable to address the our prob-

lem. In fact the importance of the different criteria can be easily fine-tuned by the model 

user though a set of weights, thus allowing to alternatively focus on different objectives de-

pending on the stakeholders’ preferences and needs. 



62 
 

With respect to the resources management, the stakeholders decided to not implement 

any flexible practice. Surgical teams availability is fixed through an allocation grid which indi-

cates for each day, for each OR and for each session the specialty and the type of surgery, 

i.e. ordinary or day surgeries, that can be performed. Hence each OR session can host only 

ordinary or day surgeries. Finally post-surgical units are dedicated, i.e. they can host exclu-

sively patients belonging to certain surgery groups and bed mismatches are not allowed. 

Action planning – model formulation 

Based on the previous conceptualization, a new MIP model was developed. In this para-

graph the mathematical formulation of the new model is given. 

Let us define the following sets and parameters 

S the set of specialties 
K the set of surgery groups 
O the set of ORs 
D the set of days in the planning horizon 
T the set of time slots 
B the set of post-surgical beds units 
P the set of patients’ priority classes 
F the set of surgery types, i.e. ordinary or day surgery 
I the set of the criteria 

sfodtG

 

the allocation grid, equal to 1 if surgeries of type f and belonging to the special-
ty s can be performed in the OR o, on day d, in session t, 0 otherwise 

ks  the specialty of surgery group k 

kf  the surgery type of surgery group k 

odtH  the available time of OR o on day d, time slot t 

k  the expected ST of surgery group k 

k  the expected LoS after surgery required by group k  

k  the expected LoS before surgery required by group k 

bdR  the number of beds in unit b available on day d 

kdE  the number of cases in surgery group k, whose earliest programmable date is 
on day d 

e  the number of time periods preceding and following the planning horizon 

pcL  the number of cases of priority p whose due date is on day c, 

eDDDcPp  ..., 1  

q̂  the target value for the OR utilisation rate 

r̂  the target value for the beds utilisation rate 

kw  the weight associated with surgery group k 
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kŷ  the target number of surgeries belonging to surgery group k 

pjw  the penalty associated with cases of priority p with due date in 
jD  not sched-

uled in the planning horizon, ejPp ,..,1,    

in̂  the target value for the objective i 

iW  the weight associated with criteria i 

 
In addition, let us define the following variables: 

kpodty  the number of procedures of surgery group k assigned to OR o on day d in 
time slot t 

bdz  the number of beds of type b occupied on day d 

odtq  the utilisation rate of the OR o, on day d, in session t 

bdr  the utilisation rate of the beds in unit b on day d 

phu  the number of cases with priority p with due date in time period 
jD  not 

scheduled in the planning horizon, ejPp ,..,1,   


odtq  the positive deviation of the utilisation rate of the OR o, on day d, in session t 
from the fixed target  



odtq  the negative deviation of the utilisation rate of the OR o, on day d, in session t 
from the fixed target  



bdr  the positive deviation of the utilisation rate of the beds in unit b on day d from 
the fixed target  



bdr  the negative deviation of the utilisation rate of the beds in unit b on day d 
from the fixed target  



ky  the negative deviation of the number of scheduled surgeries belonging to the 
group k the fixed target 

in  the value associated with the objective i 



in  the positive deviation of the objective i from the fixed target 



in  the negative deviation of the objective i from the fixed target 

 

Since the allocation grid is fixed in input through the parameter sfodtG , the surgery groups 

k(S) that can be scheduled in a given OR o, on a given day d in the time slot t are restricted to 

the ones belonging to the surgical specialty s and type f for which the parameter sfodtG  is 

equal to 1. For this reason variables y are defined on a subset of the set 

)( TDOPK  . Specifically, we introduce, for each surgery group k , the set Ak that is 

a collection of triples (o,d,t) indicating, the OR sessions, in which the surgery group k can be 

scheduled. More formally, if ks and kf  denote respectively the specialty and the type of 

surgery group k, Ak are defined as follows: 
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Constraints (1) assure that for each OR session, the sum of the surgical times of the sched-

uled surgeries does not exceed the available time. Constraints (2) compute the number of 

utilised beds for each unit and for each day of the planning horizon. Constraints (3) limit the 

number of occupied beds. Constraints (4) and constraints (5) compute respectively the daily 

utilisation of the OR sessions and of the different units. Constraints (6) assure that the num-

ber of scheduled surgeries for each group does not exceed the number of cases that are 

available, depending on the relevant earliest programmable dates.  

Constraints (7) allows for the respect of the due dates’ of the patients in the waiting list. 

Specifically, these covering constraints impose that the number of schedules surgeries of a 

given priority p should be greater or equal to the number of cases in the waiting lists belong-
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ing to the same priority. If this cannot happen the corresponding variable u, which measures 

the number of not scheduled surgeries of priority p and with a due date falling in the time 

period D or Dj, assumes a value greater than zero. The summation of the u variables is pe-

nalised in the objective function according to the priority and the due date time period.  

Constraints (8) and (9) compute the OR session daily utilisation positive and negative devia-

tions from the fixed target, for each triple (o,d,t). Constraints (10) and (11) are their counter-

parts for the units utilisation. Constraints (12) calculate the negative deviation of the number 

of scheduled surgeries belonging to a given surgery group from the relevant fixed target. 

Constraints (13)-(17) compute the values of the five objectives, specifically we have: Con-

straint (13) computes the value of the number of scheduled surgeries, Constraints (14) and 

(15) calculate the sum of the deviations from the fixed targets of the OR session daily utilisa-

tions and of the units daily utilisations respectively. Constraint (16) calculate the weighted 

sum of the penalties associated with the missing achievement of the target levels for the 

number of scheduled surgeries of the different groups. Constraint (17) instead computes the 

weighted sum of the penalties associated with the scheduling of the patients with certain 

due dates and priorities. Constraints (18)-(19) compute, for each objective the positive and 

the negative deviation from the fixed target. The remaining constraints impose that y varia-

bles are positive, integer and defined as previously mentioned and the other variables are 

positive. The weighted sum of the deviations calculated in constraints (18) and (19) is mini-

mised in the objective function (30). 

Action taking – model solving 

Since at that moment information about the waiting lists were digitalised, the model was 

tested with the actual data about the patients in the waiting lists. 

With respect to the model’s parameters we considered: 

 a planning horizon of 4 weeks; 

 14 surgical specialties and 126 surgery groups; 

 5 ORs, whose availability was established by the allocation grid defined by the OR 

manager; 

 3 surgical units, i.e. day surgery unit, which accommodates the day surgery patients 

of each specialty, week hospital and ordinary unit, accommodating the ordinary pa-

tients of different specialties; 

 a target value for the daily utilisations of OR sessions and units of 85%; 
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 for the cases whose earliest programmable date is before the first day of the plan-

ning horizon we consider the first day itself as earliest programmable date; 

 the target number of cases for each surgery group is fixed according to stakeholders’ 

preferences on the mix; the weights kw  are set in the way that the model prioritises 

the surgery groups with longer waiting lists; 

 in order to penalise the missing scheduling of a patient having a certain priority class 

and due date, the patients are clustered in three time periods (e=2), according to 

the relevant due dates: 

o patients whose due date is expired D1; 

o patients whose due date expires in the planning horizon D; 

o patients whose due date expires beyond the planning horizon D2; 

In order to take into account of the due dates of the patients before and after the 

planning horizon, we extended the planning horizon at right and at left of a number 

of days that is three times the planning horizon itself. When a patient did not report 

a due date, we assumed its value equal to the last day of the right extension of the 

planning horizon. The weights 
pjw  in the fifth objective are set in the way that the 

model prioritises (i) cases belonging to different due dates’ time clusters; and (ii) 

cases with higher priority. With respect to the time clusters the weights are set in 

the way that the model priorities the patients whose due date expires in the plan-

ning horizon, then it chooses among patients whose due date is expired and finally 

among patients whose due dates expire beyond the planning horizon; 

 the weights in the objective function iW  are set to give a decreasing importance to 

the objectives following this order: OR balancing, bed balancing, mix, due dates and 

number of scheduled surgeries; 

 the targets for the different objectives are represented by the ideal values that these 

objectives can assume; specifically they are calculated by solving the models consid-

ering only one objective at a time. The values obtained solving the five sub-problems 

are then used to solve the goal programming model. Since the target values are ide-

al values, depending on the typology of objective that is considered, i.e. minimisa-

tion or maximisation, respectively negative and positive deviation variables with re-

spect to the objective can be eliminated. For example, for an objective that is max-

imised, i.e. the number of scheduled surgeries, the ideal value will be always higher 

or equal to the value assumed by the objective and positive deviation variable can 

be eliminated. 
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Evaluating action – feed-back 

The MSS produced by the model was judged as satisfactory by the stakeholders: it al-

lowed for a quite high number of scheduled surgeries (considering the available resources), 

i.e. 462, it presented a fairly balanced daily utilisation profile of the ORs and the beds’ units, 

i.e. with daily utilisation values ranging from 79% to 90%, and it was satisfactory with respect 

to the due dates fulfilment and the mix, i.e. it allowed for the fulfilment of the 93% of the 

patients with a due date expiring in the planning horizon (100% of the patients with higher 

priority) and it reflected the target number of surgeries fixed by the stakeholders for each 

surgery group. This version of the model was then chosen to be integrated in the scheduling 

tool. 

6.2 Action research implementation cycles 

In this paragraph the implementation process of the model is described. From the first 

implementation, several research implementation cycles have been conducted, each of 

which represents the production and the implementation of a MSS relevant to a given peri-

od. The results of the steps of these cycles are summarised in the following paragraphs, or-

ganised as the phases of a single cycle. In each phase the most valuable findings are high-

lighted. 

Diagnosing 

Once an implementable version of the model was available, it would have been integrat-

ed in a scheduling tool, to make it usable by the personnel of the Meyer hospital. As pointed 

out in Chapter 5, the scheduling tool should enable the end-user to: 

1. produce a new MSS, through the integration with the MIP model 

2. manage the produced MSS, giving the possibility to change it after it was created. 

In the first step the tool should enable the end-user to entry all the parameters needed 

by the model, e.g. the allocation grid, the daily availability of ORs and beds in the units, the 

weights of the objective function. This data, together with the information on the current 

waiting list, would have been used by the model to produce the MSS. Another information 

required for the MSS production were the requests that surgeons usually made to the plan-

ning department personnel about the patients to schedule. During the implementation cy-

cles the model was modified to keep into consideration of these requests. 
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With respect to the time when the MSS is produced, since the planning department per-

sonnel start selecting and calling patients one week before the schedule is executed, in each 

cycle the model has been run one week in advance with respect to the period it refers to. 

Planning action 

Before the implementation, the scheduling tool needed to be created. Based on the 

model and the stakeholders’ requirements the scheduling tool was developed as an excel-

based tool. The tool integrates via VBA the production of the MSS (the MIP model and the 

solver) and its management during the its execution as shown in Figure 9. 

 

Figure 9 The surgical scheduling tool 

In the production phase the tool is fed by the waiting lists and from other data that are 

manually entered by the end-user, e.g. the daily availability of ORs and units. The produced 

MSS is visualised on a excel sheet together with the relevant statistics, mainly the resource 

utilisations in the different days of the planning horizon. Each time the schedule on the excel 

sheet is changed, the end-user can visualise the impact of these changes on the statistics 

sheet. 

In each cycle, actions were planned according to the results of the previous cycles and 

the feedbacks given by the stakeholders. Several changes to the model have been made dur-

ing the implementation project. Details about these modifications are given in the next par-

agraphs. 

Taking action 

The first MSS was created on October 25th, 2013 and referred to the period November 4th 

– December 1st, with a planning horizon of four weeks. After the first implementation more 

than 20 MSSs has been produced, entailing more than 20 action research implementation 

cycles. In this thesis the last implemented MSS considered is the one relevant to July 2014. 
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During the whole implementation process the hospital members were trained to use the 

tool for both the MSS production and management. The training activities concerned not 

only the technical aspects of the scheduling tool usage, but also on how to identify the criti-

calities of a specific MSS through the tool and what are the possible ways to solve them. The 

personnel of the hospital has been thus trained to help themselves, that is fundamental for 

the implementation purposes. 

In the first three cycles the MSS were produced and managed through the scheduling 

tool by the IBIS Lab members of the action research team. The hospital members of the 

team were called just to give the indications about the schedule requisites and to ask for 

making the changes to the schedule in order to verify their feasibility. Meanwhile they were 

able to become familiar with the tool, understanding better how to use it and what kind of 

analysis it allows to perform. After three cycles, the hospital members were able to use the 

tool for the MSS managing purposes. At that moment the MSS production phase was still 

demanded to the IBIS Lab researchers, but the tool was transferred to the hospital and used 

by the bed manager. At present the production of the MSS is made by the IBIS Lab and hos-

pital members together and entirely managed by the beds manager. 

Evaluating action 

The results of the actions taken in the implementation cycles were assessed each time by 

the stakeholders. The feedbacks were used in the following cycles to modify the model and 

make it able to produce better solutions. Specifically: 

1. the planning horizon was reduced from 4 weeks to 2 weeks. The MSS needs to be 

produced with updated data about the cases that are in the waiting lists. The shorter 

the planning horizon, the higher the frequency with which the MSS is performed and 

the more updated are the input waiting lists. However the planning horizon cannot 

be too short because that would make difficult to manage the patients’ due dates 

(resources are less coordinated). Hence, when deciding about the length of the 

planning horizon, the need of updated data about the waiting list must be traded off 

with the need to respect the patients’ due dates; 

2. some coverage constraints about the number of cases to schedule belonging to the 

different surgery groups were added to the model and it was given the possibility to 

modify relevant parameters in the scheduling tool. Each time the MSS was created, 

in fact, surgeons made some requests about the patients or the typologies of pa-

tients to schedule. Some requests examples are: 
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 specific/minimum number of patients belonging to a specific specialty in a spe-

cific OR session; 

 specific/minimum number of patients belonging to certain surgery type and 

specialty in a specific OR session; 

 specific/minimum number of patients belonging to a certain surgery group in a 

specific OR session; 

 specific/minimum number of patients belonging to a specific specialty in a spe-

cific week (for those specialties with more than one OR session per week); 

 specific/minimum number of patients belonging to certain surgery type and 

specialty in a specific week (for those specialties with more than one OR session 

per week); 

 specific/minimum number of patients belonging to a certain surgery group in a 

specific week (for those specialties with more than one OR session per week). 

As hard constraints, these requests can cause model infeasibilities and jeopardise 

the effectiveness of the model. Moreover, since resources are shared by the differ-

ent specialties, satisfying the requests of some surgeons may disadvantages the spe-

cialties whose surgeons do not make requests, making the process unfair. These re-

quests were often justified by the clinical conditions of the patients, but sometimes 

they were not. For this reason it was decided to make the OT manager responsible 

for judging these issues and thus to establish which requests had to be considered 

when creating the MSS. The aim was to limit the number of these requests as much 

as possible; 

3. a criterion concerning the scheduling of the patients with longer waiting times was 

added to the objective function. In fact, some surgical specialties, i.e. those special-

ties in which the most of patients are not assigned with a due date, had a significant 

number of patients with very long waiting times. Hence there was the need to priori-

tise these patients; 

4. In order to improve the efficiency of the MSS, some changes to the allocation grid 

were made. The ordinary unit utilisation profile resulting from the starting allocation 

grid in fact was characterised by lower utilisation on the beginning of the week and 

higher in the end. For this reason it was decided to move a OR session of a specialty 

whose cases are hospitalised in that unit from Thursday to Monday. As a result, the 

number of scheduled surgeries improved and the unit utilisation were smoothed. 

However, it is worth to point out that only few changes to the allocation grid have 
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been made, because, as consequence of such changes, surgeons usually needed to 

reorganise their activities during the week; 

5. the values of the weights assigned with the different criteria in the objective func-

tion were changed during the implementation process, mainly for two reasons: 

a. the priorities of the stakeholders changed, causing a different ranking of the 

objectives; 

b. we gained a knowledge about the relationships existing among the objec-

tives. In general establishing what are the relationships among the weights 

in an objective function is not an easy issue. Given a certain weights configu-

ration, the same variation of two different weights may have a totally differ-

ent impact on the solution of the model, depending on the sensitivity of the 

solution to the weights. It not only depends on the structure of the model 

but also on the considered data set. For some objectives, the same value 

can be reached with different surgery combinations and thus the variation 

of the relevant weight does not impact on the value of the objective func-

tion. However the solutions can be very different for the other objectives 

perspective. For example, the same OR and units utilisation balancing can be 

reached with very different values of due dates’ fulfilment and mix. The var-

iation of the objectives corresponding to these latter criteria have a higher 

impact on the solution with respect to the same variation on the former 

two, i.e. the objective function is more sensitive to the weights of the due 

dates and the mix with respect to the one associated with the OR and units 

utilisation balancing. 

 



73 
 

 

Chapter 7  Evaluating Action 

In this chapter the results of the action research study are presented. Specifically the 

chapter is organised in two parts: the contribution to practice and the contribution to 

knowledge. The first part illustrates the qualitative and quantitative results of the scheduling 

tool implementation process at the Meyer hospital. The second part highlights what is the 

concrete contribution to knowledge of the study, i.e. what insights and understanding have 

been developed about a MSS tool implementation. 

7.1 Contribution to practice 

 Qualitative results 7.1.1

This study has effectively brought to the implementation of the developed scheduling 

tool, and thus the main objective of the study has been achieved. The enhanced MSS ap-

proach is now integral part of the Meyer hospital processes, influencing the activities of all 

the people involved in the MSS process. The new concept of surgery group is now familiar to 

everyone. This concept has made people more sensitive to the impact and the consequences 

on the utilisation of shared resources of the scheduling of the surgeries. Everyone agree with 

the fact that the scheduling process now is more structured than before and that every deci-

sion is taken with more awareness. For example, the OR manager said that: 
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“Surgeons now complete the assigned surgical sessions in time” 

meaning that OR overtime, that cause extra-costs, is less likely to occur. The beds manager 

said that 

“Bed units occupation is now more under control” 

and this means that overbooking, which is one of the major cause of patients cancellations 

and postponements, is less likely to occur, increasing the patients satisfaction. The members 

of the planning department said that 

“It is easier to select the patients to schedule” 

In fact, they no more have to decide the number and the kind of patients to call to popu-

late the MSS, because this already contains the information about the number of patients to 

schedule and the surgery group they must belong to. The surgeons were not very enthusias-

tic about the project at the beginning because they feared that the enhanced MSS approach 

would have reduced their autonomy in the choice of the patients to operate. For this reason 

the changes have been introduced gradually, allowing the surgeons to propose what pa-

tients to schedule and putting the OT manager judgement as a filter. This decision revealed 

to be successful: surgeons are now convinced about the benefits of the project. They recog-

nised that the assignment of the beds to specialties is now more fair, as it is guided by a 

mathematical model. The general and medical directors, whose commitment has been fun-

damental to win the resistance to change in the organisation, are satisfied of the obtained 

results (details are given in the next paragraph) and decided to continue the collaboration 

with the researchers of the IBIS Lab. 

 Quantitative results 7.1.2

In order to demonstrate the effectiveness of the implemented scheduling tool, hereafter 

it is made a comparison of the relevant performance before and after the implementation. 

Specifically the comparison of the performance is made between the first months on the 

2013, i.e. January 2013-October 2013, and the period from the first implementation and July 

2014, i.e. November 2013-July 2014. The results are reported in Table 7. As shown in the 

first part of such a table, despite between the two periods the ORs available time were re-

duced of around the 13%, passing from 201.9 to 176.4 mean weekly hours, the overall work-

load (in terms of OR room utilised hours) has not significantly decreased, passing from 140 

to 137.7 mean weekly hours. As a result we observed an increase of around the 9% of the 

utilisation rate of the ORs: in fact, the overall workload decrease has been less than propor-
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tional and thus lower than the ORs available time reduction. Such a little decrease in the OR 

workload reflected on the mean number of surgery performed each week, whose difference 

before and after the implementation is around 0.5 surgeries, i.e. 96.6 vs. 96.1. 

Table 7 Tool implementation results 
 BEFORE AFTER 

OR workload 

  - OR mean utilisation [%] 69.3 78.1 

  - OR mean weekly utilisation [hours] 140 137.7 

  - OR mean weekly availability [hours] 201.9 176.4 

   

Executed surgeries   

  - Mean weekly number [patient] 96.6 96.1 

  - Percentage of day surgeries [%] 48.1 55.5 

  - Patients per OR hour [patient/hours] 0.48 0.54 

   

Number of patients requiring an ordinary bed  [patient] 

  - Daily mean 20.9 20.3 

  - StDev 6.1 4.3 

  - Median 22 21 

  - 95
th

 percentile 29.3 27 

  - Maximum value 35 30 

   

Number of patients requiring a DS bed [patient] 

  - Daily mean 9.3 10.8 

  - StDev 3.8 3.1 

  - Median 9 12 

  - 95
th

 percentile 15.3 14 

  - Maximum value 24 16 

 

The percentage of day surgeries has grown from the 48.1% to the 55.5%. This happened 

because between the two periods, some typologies of surgery that before the implementa-

tion were typically characterised by a LoS of 2 days are now performed as day surgeries. This 

fact and the little decrease in the OR workload have led to an increase in the mean daily 

number of patients requiring a day surgery bed, i.e. from 9.3 to 10.8 patients/day, and to a 

decrease in the mean daily number of patients requiring an ordinary bed, i.e. from 20.9 to 

20.3. However, observing the other measures, it emerges how daily units utilisations are 

now more balanced: for both units in fact the standard deviation of the number of patients 

requiring a bed is now smaller. Moreover the value corresponding to the 95th percentile is 

smaller or equal to the number of available beds, i.e. respectively, for the day surgery unit 14 
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and 14, for the ordinary units 27 and 28., which more likely lead to less patients cancella-

tions. 

7.2 Contribution to knowledge 

This paragraph reports the outcomes of the self-reflection process undertaken during 

project. Specifically it describes what lessons about the implementation of a MSS tool have 

been learned during the unfolding of the action research cycles. Lessons have been catego-

rised in two typologies: the first is what are the characteristics of a MSS model that make it 

easier to implement. The second is what conditions facilitate the implementation process of 

a MSS tool. Hence, the first category refers to specific aspects of the mathematical model, 

e.g. how to model variables, constraints and objectives. The second type of lessons is more 

general, and refers to the insights and to the understanding about how to manage the im-

plementation process. 

 MSS model characteristics 7.2.1

1. Importance of considering the surgery groups when creating the MSS: considering 

the surgery group at this stage entails considering the downstream resources. This 

would lead to better performance of the process in terms of throughput, due dates 

fulfilment and robustness. In addition surgery groups makes easier to replace sched-

uled patients, which is a particularly important issue for children’s hospital. 

2. If assignment of specialties to sessions can’t significantly vary during the year, in or-

der to optimise the units utilisation, it is important to choose the best allocation for 

those specialties whose surgery groups are almost characterised by the same post-

surgical LoS (e.g. avoid to assign two specialties whose surgery groups are character-

ised by two days of post-surgical LoS in consecutive days). 

3. Cases in the waiting list should be characterised by two dates: the earliest program-

mable date and the latest due date, i.e. the due date, which together define the in-

terval in which the patient should undergo the surgery. 

4. The tool should allow for fixing the date of the surgery for certain patients, i.e. those 

whose scheduling is complex from a logistic point of view, e.g. patients that live very 

far from the hospital and need to know the date of the surgery very far in advance 

to organise the trip. 

5. Hard constraints on the quality of the schedule, e.g. due dates, mix constraints, 

should be avoided. Depending on the instance, in fact they can lead to model infea-

sibilities that are not easily manageable by the end-users. If hard constraints are re-
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quired, e.g. the ones at point 4, train adequately the end-user to help him/herself in 

detecting what constraints may cause infeasibilities. 

6. Constraints should be tuneable as much as possible. For this reason it is important to 

understand what are the operative conditions that may change most frequently and 

give the possibility to the scheduler to utilise the these constraints in the tool, e.g. 

the most frequent requests made by the surgeon about the quality of the schedule. 

7. The tool should be easily tuneable with respect to the objectives to optimise, be-

cause the stakeholders priorities and needs may change in the course of time, e.g. 

multi-criteria approaches. 

 MSS implementation process 7.2.2

1. Consistently with Carvalho et al. (2014), regardless the stakeholders’ importance, 

sometimes characteristics and expectations are explicit and easy to understand. 

Sometimes instead they can be tacit and difficult to deduce. The best way to obtain 

a model able to produce satisfactory schedules is to create a solution and asking the 

stakeholders to comment on it. This feedback can give information that are often 

more valuable that the one obtained with generic interviews. 

2. In order to overcome the resistance to change of the members of the hospital, the 

strong commitment of the top management is essential. 

3. Before introducing a change in a practice, assess the resistance to change of the in-

volved members. Sometimes resistance to change can make the project fail. For this 

reason it is advisable to gradually introduce the changes. 

4. In order to keep high the hospital members’ participation, during the implementa-

tion process clearly show the practical benefits given by the introduction of the tool. 
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Chapter 8  Conclusions and 

future research 

8.1 Conclusions 

This thesis concerns a study aiming at developing and implementing a scheduling tool for 

the master surgical scheduling process. The project has been addressed combining the ac-

tion research and the model based research methodologies. The former has guided the 

whole project, while the latter has been specifically used to develop and test the mathemat-

ical models which the tool is based on. As an action research, the project has contributed to 

practice, solving a practical problem, and to knowledge, answering to several research ques-

tions. 

In particular, the project allowed the development and the successful implementation of 

a master surgical scheduling tool at the Meyer hospital, which is the organisation that has 

inspired the study. The implementation has led to an improvement of the surgical process 

performance as discussed in Chapter 7. 

From the contribution to knowledge perspective, the study has allowed to answer to sev-

eral research questions. 
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RQ1: What factors and conditions can facilitate the implementation of a master surgical 

scheduling tool? 

During the unfolding of the action research cycles, the self-reflection process typical of 

the action research approach has led to rationalise what experienced and to develop un-

derstanding about the scheduling tool implementation process. The emerged insights 

have been categorised in two typologies: the characteristics which make the MSS model 

easier to implement and more general indications about how to manage the implementa-

tion process. Detailed indications are given in Chapter 7. 

 

Four novel mixed integer programming models for the MSS production are proposed in 

this thesis. Each model was created in a specific cycle and represents an improved version of 

the model developed at the preceding cycle, which implements the feedbacks of the stake-

holders on the solutions obtained in the relevant testing phases. These cycles are addressed 

through a model based approach. The studies conducted in these cycle has allowed  to an-

swer to different research questions that emerged during the project. 

 

RQ2: How is it possible to obtain efficient and robust master surgical schedules? 

The study relevant to this research question has been published in (Banditori et al., 

2013). The relevant article, which is article n. 1, is reported in the Appendix. In the study a 

novel MSS MIP model was developed. The schedules produced by this model were then 

simulated, via a discrete event simulation model, in order to assess their robustness 

against the variability of surgical times and LoS. In order to trade-off efficiency and ro-

bustness, a resource-slack strategy, i.e. instantiating the optimization model considering 

an amount of resources lower than the one actually available, is tested. The performed 

experimental campaign shown how a MSS that is robust against variability of the surgical 

times and the length of stay can be achieved through the adoption of the resource slacks. 

A trade-off between efficiency and robustness does exist: the higher the efficiency, i.e. 

the number of scheduled surgeries, the lower the robustness and vice versa. Referring to 

the considered setting, it has been demonstrated how adopting slacks of 10% and 12% 

respectively for ORs and beds, it is possible to schedule a higher number of surgeries with 

respect to the actual planning process 
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RQ3: Is it possible to obtain efficient and robust master surgical schedules through the re-

sources utilisation balancing? 

The study relevant to this research question has been published in (Cappanera et al., 

2014). The relevant article, which is article n. 2, is reported in the Appendix. In this study 

the relationships between efficiency, robustness and balancing are investigated through a 

combined optimization-simulation approach. Three well-known different balancing crite-

ria were tested in correspondence with different hospital settings. The criteria are the fol-

lowing: the minimisation of the maximum value, i.e. minMax, the minimisation of the dif-

ference between the maximum and the minimum values, i.e. minRng, the minimisation of 

the squared positive deviation a the values from a fixed threshold, i.e. minOvrn. The ex-

perimental campaign reveals that none of the investigated policies allows superior per-

formance in terms of efficiency, balancing and robustness to be achieved concurrently. 

However, depending on the hospital management's priorities and needs, it is always pos-

sible to identify a policy that allows for a reasonable trade-off among these performance 

criteria. Specifically minOvrn seemed to be the best balancing policy because it repre-

sents somehow an intermediate case with respect to the other two policies. In fact 

minRng is at least effective as the other policies in balancing the beds. In addition, it al-

lows for a better OR balancing and thus for a smaller overtime. Moreover, it leads to 

higher bed saturation and to a larger number of scheduled surgeries. However, it also 

causes a higher overbooking. The properties of minMax are quite the opposite than 

minRng. 

 

RQ4: What is the impact on the master surgical schedule of a flexible management of the 

critical resources? 

The study relevant to this research question has been published in (Visintin et al., 2014). 

The relevant article, which is article n. 3, is reported in the Appendix. In the study a new 

MSS was developed. The model allows to consider two different level of flexibility in the 

management of surgical teams, ORs and post-surgical beds. A design of experiment was 

then conducted to assess to what extent the flexible management of one or more of 

these resources can improve the surgical process throughput. The analysis revealed that 

the best results can be achieved by managing flexibly both surgical teams and ORs. 

Moreover, the analysis showed that, if a hospital cannot manage flexibly the surgical 

teams, then it can still improve its efficiency by managing flexibly the ORs and vice versa. 
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However, the analysis revealed that if both surgical teams and ORs are managed flexibly, 

pooling surgical units has no significant impact, while if only one of these two resources 

(or none) are managed flexibly, then pooling surgical units produces significant benefits. 

However, even if the flexible management could improve the efficiency of the process, it 

was decided to not implement any of these practices. In fact the benefits arising from the 

flexible management of the resources were considered by the stakeholders too low to 

justify the organisational cost needed to implement it. 

8.2 Limitations and future research 

From the practice perspective, even if the tool have been implemented, the project is not 

over yet. The obtained results are quite satisfactory, but the OT performance can be further 

improved. In fact, changes were introduced gradually, removing only partially the actual 

practices at the Meyer hospital, because we realised that radical changes could make the 

project fail. Removing these practices, and thus further improving the operating theatre per-

formance, will be certainly one of the aim of the future actions of the project. 

From a research perspective, in this thesis, the findings emerging from the development 

and the implementation of a MSS tool have been presented. Specifically these findings are 

mainly relevant to (i) the relationships between efficiency, resources utilisation balancing 

and robustness and to the flexible management of the critical resources in the MSS context 

and to (ii) the lessons learned about the implementation of a MSS model/tool. All these find-

ings have been empirically obtained stating from a single setting, i.e. the Meyer hospital. This 

fact reduce the generalizability of the study. In order to increase the external validity of the 

former findings the computational campaigns have been extended generating several in-

stances and considering different hospital settings. The lessons learned instead, that are the 

findings emerging from the reflection process of the action research project, are based on 

that single setting. However, in the light of the literature and of the experience gained on 

the health care field, it is reasonable to assume that these lessons can be applied to other 

hospital settings, since the characteristics of the Meyer hospital MSS process are shared by 

the most of the hospital. Despite these facts, hospitals whose setting significantly differ from 

the Meyer’s one, e.g. hospitals in which other resources are critical, hospitals in which emer-

gencies are prevalent and are not managed through dedicated resources, may not take ad-

vantage of these findings. For these reasons, studying the development and the implemen-

tation of the scheduling models in very different settings would be useful to validate the 

empirical findings of this thesis. 
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1 Introduction 

The operating theatre is considered to be the ‘engine that drives the hospital’ (Beliën 

et al., 2006). In fact, its activities are tightly interconnected with those of other 

departments and, consequently, its performance dramatically influences hospital 

performance as a whole (Cardoen et al., 2010). In addition to being one of the most 

costly functional areas of the hospital (Denton et al. 2007; May et al. 2011), the 

operating theatre is the principal reason for almost 70% of all hospital admissions 

(Denton et al., 2007). Hospital managers are, therefore, urged to maximise the 

patient throughput and associated revenues, and to optimise the use of medical 

resources to reduce costs. In this regard, surgical scheduling is of paramount 

importance. However, solving a surgical scheduling problem is remarkably complex. 

It requires, in general, consideration of: (i) many different types of cases, 

characterised by different priority levels and requiring different procedures; (ii) many 

different types of resources, such as operating rooms (ORs), OR personnel (e.g., 

surgeons, anaesthetists and nurses), surgical and electro-medical equipment, 

postsurgical resources (e.g., ICU, wards); (iii) the randomness associated with 

patients’ arrival, surgeries’ duration and patients’ length of stay (LoS) (May et al., 

2000); and (iv) the conflicting priorities and preferences of the scheduling process 

stakeholders (Glouberman & Mintzberg, 2001). For these reasons, the use of 

quantitative techniques, such as mathematical modelling and simulation, seems 

necessary (Utley et al., 2009). In the literature, the surgical scheduling process is 

typically seen as entailing three stages: (i) determination of the OR time to assign to 

each surgical specialty (the case mix planning problem); (ii) determination of the 

specialty (or specialties) to assign to each OR on each day of the planning horizon 

(the so-called Master Surgical Scheduling problem, or MSS); and (iii) selection and 

sequencing of patients who have to undergo surgery, according to the MSS. This 

process is usually studied in cascade, i.e., by considering the output of the upstream 

stage as the input for the downstream stage (Beliën & Demeulemeester, 2007). In 

this regard, it is worth pointing out that the literature offers slightly different 

definitions of MSS (e.g., Blake et al. 2002; Van Oostrum et al. 2008). However, there 

is unanimous consensus that MSS construction does not entail the selection and 

sequencing of the actual patients to undergo surgery. 

In this paper, we propose a Mixed Integer Programming (MIP) model to address the 

MSS problem on a one-month planning horizon, where the time is split into time 

slots. We assume a block scheduling approach, i.e., MSS is produced by assigning on 

a monthly basis a number of OR blocks to each specialty (Van Oostrum et al., 2010). 
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Specifically, our model assumes that each case on the hospital waiting list: (i) is 

characterised by a due date and (ii) can be assigned to a surgery group. Each surgery 

group includes procedures that belong to the same specialty and are expected to 

require a similar amount of resources, i.e., they are characterised by similar expected 

durations and LoS. We also hypothesise that different case types should be 

accommodated in different bed types, according to their LoS. The proposed model 

produces a solution that indicates, for each day of the month and for each time slot 

(block) of the day, the number of cases to be treated in each surgery group. 

Consequently, the model focuses on the second stage of the surgical scheduling 

process while supporting also the third one. It does not, in fact, select and sequence 

the patients who must undergo surgery during a given month, but it does indicate 

pools of cases (those needing surgeries that fall within the specified surgery groups) 

that should be given higher priority during the selection and sequencing process. In 

particular, the model assigns surgery groups to time slots in a way that (i) patient 

throughput is maximised, (ii) surgery groups with a higher number of cases with 

closer due dates are given higher priority, and (iii) the number of bed mismatches 

(e.g., long-stay patients temporarily accommodated in short-stay beds) is minimised. 

In this study, through discrete event simulation, we also test the MSS’s robustness 

against the variability of both surgery duration and patient LoS. Moreover, we show 

that, by combining optimisation and simulation, it is possible to trade off efficiency 

and robustness (Bertsimas & Sim, 2004), i.e., it is possible to find solutions that 

allow for the execution of a satisfactory number of surgeries without incurring undue 

overtime and/or excessive overbooking cancellations.  

Our study is inspired by the Meyer University Children’s Hospital (hereafter Meyer 

Hospital), one of the most renowned children’s hospitals in Italy, and both the 

optimisation and the simulation models presented here are tested on empirical data 

from this hospital.  

Children’s hospitals represent very interesting settings for the study of surgical 

scheduling problems (Crowe et al., 2011), specifically to address issues related to 

schedule robustness. These hospitals present two main peculiarities. First, they need 

to manage a higher number of patient-driven cancellations, as children are more 

likely to fall ill than adults (Bathla et al., 2010). Consequently, while on the one 

hand, it is impractical to fix the day of surgery too far in advance, on the other hand, 

even if patients are scheduled with short notice (e.g., one week), some of them will 

probably fall ill between the day the appointment is made and the day the surgery is 

scheduled. Second, last-minute hospital-driven cancellations, i.e., cancellation on the 
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day of surgery due to a bed shortage, must be prevented or minimised. A cancellation 

can actually lead to psychological trauma to both the patient and her/his family (Tait 

et al., 1997), especially if the child has been obligated to fast for a prolonged time 

before the cancellation (Bathla et al., 2010). Furthermore, cancellations represent a 

significant inconvenience to the child’s parents, who may miss additional workdays 

(Bathla et al., 2010; Tait et al., 1997). For a children’s hospital, thus, being able to 

rely on a robust schedule is of paramount importance.  

It is worth noting that schedule disruptions and cancellations are also a major 

concern even outside the paediatric setting (Beliën & Demeulemeester, 2007; Hans et 

al., 2008). Indeed, our study is based on features and requirements that are shared by 

many types of hospitals (Cardoen et al., 2010; Guerriero & Guido, 2011; May et al., 

2011) including: the adoption of a block scheduling process; the subdivision of the 

procedures into surgery groups; the presence of ORs, beds and surgical teams as 

critical resources; incompatibility between specialties and ORs, as well as between 

case types and bed types; the need to meet certain due dates; and the wish to 

maximise the patient throughput. As a result, the MIP model, as well as the combined 

approach presented in this paper, can be applied in many different real-life settings 

and is of interest to a wide audience of scholars and practitioners.  

 

2 Literature review 

The problem of surgical planning and scheduling has been the subject of a sizeable 

number of contributions, especially over the last decade (Cardoen et al., 2010). 

Given that excellent updated reviews on this topic have recently been published 

(Cardoen et al. 2010; Guerriero & Guido 2011; May et al. 2011), a broad review of 

the literature is outside the scope of this work. Instead, we narrow the scope of our 

review to papers that have presented mathematical models that support the MSS 

process. With respect to this subset, the review covers, to the best of our knowledge, 

all of the most relevant contributions that have been published in peer-reviewed 

journals. 

Building on the taxonomy/dimensions proposed by Cardoen et al. (2010), we provide 

a thorough description of the mathematical models available in the literature and 

identify the gaps that we aim to fill with our model. The papers reviewed here are 

analysed according to the following dimensions: (i) patient characteristics, i.e., the 

typology of the patients scheduled (elective vs. non-elective, inpatient vs. outpatient); 

(ii) performance measures, i.e., the optimised utility function (throughput, resource 

utilisation and so on); (iii) the decision delineation, which identifies the entity 
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(specialty, patient, etc.) to which/whom the decision applies and the type of decision 

to support (e.g., the assignment of a specialty to a day vs. the assignment of a 

specific patient to a time slot); (iv) research methodology, which refers to the type of 

analysis (e.g., heuristic vs. exact optimisation) and to the solution techniques adopted 

(e.g., mathematical programming vs. simulation); (v) type of constraints, particularly 

the hard constraints that are considered (e.g., resource availability, demand, 

release/due date); (vi) uncertainty, which indicates if and how data randomness is 

managed; (vii) applicability of the research, which explains how the models have 

been tested (i.e., with real data, with realistic data, or not tested); and (viii) a 

planning horizon indicating the time horizon on which the models have been applied. 

Dimensions (i), (v) and (vii) are taken as-is from Cardoen et al. (2010), while 

dimensions (ii), (iii), (iv) and (vi) have been adapted through the addition of more 

details in order to better position our contribution with respect to the literature. 

Finally, dimension (viii) has been introduced ex-novo. The review is organised and 

presented into tabular form (see Table 1 and Table 2), where rows represent the 

aforementioned dimensions, and each column represents one paper. Hence, each cell 

provides a brief description of a particular paper from a specific perspective. 
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TABLE 1. MSS literature review: part 1/2 

 Our work 
Blake et al. 

(2002) 

Vissers et al. 

(2005) 

Said et al. 

(2006) 

Santibàñez et 

al. (2007) 

Patient characteristics 
Elective 

Inpatients 

Elective 

Not specified 

Elective 

Inpatients 

Elective 

Not specified 

Elective 

Not specified 

Performance criteria 

- Throughput 

maximisation 

- Appropriate 

waiting lists 

consumption 

- Proper bed 

allocation 

Minimisation, 

for each 

specialty, of the 

OR time 

undersupply 

with respect to 

fixed targets 

Minimisation of 

the deviation 

between realised 

and target 

resource 

utilisation 

Minimisation, 

for each 

specialty (or 

surgeon), of the 

gap between OR 

time demand 

and supply 

- Minimisation 

of the deviation 

among 

scheduled and 

target 

throughput 

- Minimisation 

of bed utilisation 

Decision 

delineation 

Schedule

d 

‘object’ 

Specialties + 

procedure 

typologies  

Specialties 
Procedure 

typologies 

Specialties/ 

surgeons + 

procedure 

typologies 

Specialties + 

procedure 

typologies 

Decision 

details 

Date, time slot, 

OR 
Date, OR Date Date, time, OR 

Date, hospital, 

OR 

Research 

methodolo

gy 

Type of 

analysis 

- Multi-criteria 

hierarchical 

exact 

optimisation 

- Scenario 

analysis 

Single criterion 

heuristic 

optimisation 

- Single criterion 

exact 

optimisation 

- Scenario 

analysis 

Single criterion 

exact 

optimisation 

- Single criterion 

exact 

optimisation 

- Scenario 

analysis 

Solution 

technique 

- Mixed integer 

programming 

- Discrete event 

simulation 

- Mixed integer 

programming 

- Constructive 

heuristic 

Mixed integer 

programming 

Mixed integer 

programming 

Mixed integer 

programming 

Type of 

constraints 

Resource 

Wards, surgical 

staff, equipment, 

regular OR time 

Surgical staff, 

equipment, 

regular OR time 

Wards, ICUs, 

nursing staff, 

regular OR time 

Surgical staff, 

regular OR time 

Wards, ICUs, 

surgical staff, 

equipment, 

regular OR time 

Others 

- Procedures’ 

due dates 

- Procedures 

mix 

Max and min n° 

of OR blocks 

per week to 

specialties 

- Throughput 

target 

- Additional 

restrictions  

Max and min n° 

of OR blocks 

per week to 

specialties 

- Throughput 

target 

- Schedule 

cyclicity  

Uncertainty 

Deterministic 

(optimisation), 

stochastic 

(robustness test) 

surgery duration 

and LoS 

Deterministic Deterministic Deterministic Deterministic 

Applicability 
Tested on real 

and realistic data 

Tested on real 

data 

Tested on real 

data 

Randomly 

generated 

surgery duration 

and 

specialty/surgeo

n demand 

Tested on real 

data 

Planning horizon 1 month 1 week 1 month 1 week 1 month 
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TABLE 2. MSS literature review: part 2/2 

 Testi et al. 

(2007) 

Van Oostrum 

et al. (2008) 

Zhang et al. 

(2008) 

Beliën et al. 

(2009) 

Tànfani & 

Testi (2010) 

Patient characteristics 
Elective 

Inpatients 

Elective 

Not specified 

-Elective 

 In&outpatients 

-Non-elective 

 Emergency 

cases 

Elective 

Inpatients 

Elective 

Inpatients 

Performance criteria 

- Minimisation 

of the gap 

between 

specialty 

demand and 

supply 

- Fulfilment of 

the surgeons’ 

preferences 

- OR overtime, 

resource 

utilisation, n° of 

shifted cases 

- Minimisation 

of the required 

ORs 

- Bed 

occupancy 

levelling 

- Minimisation 

of the patients’ 

LoS 

- Minimisation 

of OR time 

undersupply to 

specialties 

- Bed 

occupancy 

levelling 

- Schedule 

cyclicity 

- Minimisation 

of OR sharing 

among different 

specialties 

Minimisation of 

patients’ waiting 

time 

Decision 

delineation 

Scheduled 

‘object’ 

Specialties, 

surgeons, 

patients 

Procedure 

typologies 
Specialties Surgeons Patients 

Decision 

details 
Date, time, OR Date, OR Date, time, OR Date, time, OR Date, OR 

Research 

methodology 

Type of 

analysis 

- Single 

criterion exact 

optimisation 

- Scenario 

analysis 

- Multi-criteria 

exact 

optimisation 

- Multi-criteria 

heuristic 

optimisation 

- Multi-criteria 

hierarchical 

exact 

optimisation 

- Scenario 

analysis 

- Multi-criteria 

exact 

optimisation 

- Multi-criteria 

heuristic 

optimisation 

Single criterion 

heuristic 

optimisation 

Solution 

technique 

- Mixed integer 

programming 

- Discrete event 

simulation 

- Mixed integer 

programming 

- Column 

generation 

-Decomposition 

approach 

- Mixed integer 

programming 

- Discrete event 

simulation 

- Goal 

programming 

- Simulated 

annealing 

Constructive 

heuristic 

Type of 

constraints 

Resource 

Surgical staff, 

regular OR 

time, OR 

overtime 

Wards, ICUs, 

OR overtime 

Surgical staff, 

equipment, 

regular OR time 

Regular OR 

time 

Wards, ICUs, 

surgical staff, 

regular OR 

time, OR 

overtime 

Others 

Max and min n° 

of OR blocks 

per week to 

specialties 

Throughput 

target 

Specialty 

demand 

(elective, non-

elective) 

Surgeon 

demand 

Additional 

restrictions 

Uncertainty 

Deterministic 

(optimisation), 

stochastic 

(scenario 

analysis) 

surgery duration 

and arrivals 

Deterministic 

LoS, stochastic 

surgery duration 

Deterministic 

(optimisation), 

stochastic 

(scenario 

analysis) 

surgery duration 

and arrivals 

Deterministic 

(multinomial 

distribution for 

the number of 

patients per OR 

block and 

patient LoS) 

Deterministic 

Applicability 
Tested on real 

data 

Tested on real 

data 

Tested on real 

data 

Tested on real 

data 

Tested on 

realistic data 

Planning horizon 1 week 
1–2 weeks, 1 

month 
1 week 1–2 weeks 1 week 
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The first column of Table 1 refers to our work. Comparing Tables 1 and 2, it can be 

noted that our model exhibits decision variables that are similar to those used in 

Santibanez et al. (2007). However, the two models differ in several aspects. The most 

important is that our model (as will be thoroughly explained in Sections 4 and 7) 

takes into account the cases’ due dates and, consequently, allows—to a certain 

extent—the exertion of control over the hospital’s waiting list. Another important 

feature of our model is that it actually schedules procedure typologies (which are 

referred to as surgery groups) instead of cases. Such a characteristic is shared by half 

of the reviewed papers. However, none of these deals explicitly with cases’ due 

dates. While due dates are, indeed, considered in Tànfani & Testi (2010), their model 

assigns time slots to actual patients (instead of to procedure typologies) and assumes 

a planning horizon of one week. As such, their model is unsuitable for monthly 

planning, especially in contexts like children’s hospitals, where a high rate of patient-

driven cancellations makes it impossible to schedule patients too far in advance. 

Finally, another important contribution of our study is that it addresses uncertainty. 

Several other authors have incorporated LoS or surgery duration uncertainty into 

their models (see Cardoen et al., 2010, p. 928). For example, Van Oostrum et al. 

(2008) proposed an optimisation model where a constraint is inserted to keep the 

probability of realising an OR overtime from exceeding a defined threshold. 

Specifically, they exploited portfolio optimisation theory (Hans et al., 2008) to 

reduce the time required to complete a surgical session. In addition, they mitigated 

the effects of LoS variability through the proper balancing of bed usage. Other 

authors (e.g., Testi et al. (2007), VanBerkel & Blake (2007), Zhang et al. (2008)) 

have instead utilised simulation to evaluate, ex-post, the robustness of schedules 

produced by optimisation models.  

In our study, we propose also a novel optimisation-simulation approach to the MSS 

problem. Our approach allows for the evaluation of the robustness of the MSS 

produced by the MIP model, and permits the fine-tuning of the optimisation model to 

trade off robustness and efficiency. While the use of simulation in health care settings 

is by no means a new topic (Sobolev et al., 2011), to the best of our knowledge, 

simulation has never before been used to fine tune optimisation models. 

In sum, our study offers two major contributions to the MSS literature. First, it 

presents a new MIP model to support the surgical scheduling process. This model 

maximises patient throughput, assigns procedure typologies to OR time slots and 

presents three new features, allowing us to (i) take into account cases’ due-dates, (ii) 

minimise bed mismatches and (iii) produce solutions characterised by a desired mix 
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of surgeries. Second, this study proposes an optimisation-simulation approach that 

allows for the fine-tuning of the MIP model to obtain robust and easy-to-implement 

solutions.  

In the following sections, we will present the problem addressed, the MIP model 

developed, the results of our study and, finally, our conclusions and suggestions for 

future research. 

 

3 Problem addressed 

In this section, we describe the main features that characterise our problem. Given a 

planning horizon where each day is organised as a set of time slots, a set of resources 

and a set of elective cases, each of which is characterised by a due date and by a 

surgery group, we jointly address the following two problems:  

1. the assignment of specialties to each OR and time slot of the planning horizon;  

2. the determination of the number of procedures that belong to each surgery 

group to be scheduled in each OR and time slot of the planning horizon, 

with the objective of maximising the number of scheduled surgeries. 

We consider three resources: ORs, surgical teams and beds. Moreover, we assume 

that beds are organised into a certain number of wards each accommodating cases 

characterised by the same LoS, e.g., short-stay beds for cases with a LoS equal to one 

day, medium-stay beds for a LoS equal to two days and long-stay beds for LoSs 

longer than two days. 

The problem’s solution must respect several feasibility constraints. Specifically, it 

has to: (i) be compatible with the daily availability of the aforementioned resources; 

and (ii) respect the compatibility between ORs and specialties, as well as between 

bed types and surgery groups. We assume, in fact, that certain ORs/time slots may 

not be suitable for certain specialties/surgery groups and that certain bed types are 

not compatible with certain surgery groups. Finally, the solution must (iii) guarantee 

the fulfilment of the cases’ due dates. 

The solution should respect quality requirements as well. In particular, when 

possible, each case type should be accommodated in an appropriate bed type. 

However, bed mismatches, e.g., long-stay case types accommodated in short-stay 

beds, may be tolerated if they allow for an increase in the throughput. Additionally, 

leaving an excessive number of surgeries with approaching due date, long duration 

and/or long LoS on the waiting list should be avoided. Otherwise, the maximisation 

of the throughput in the current planning horizon will lead to criticalities in the long 

run. 
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In the next section, we present the mathematical formulation of the model we have 

developed to address the problem described here. 

 

4 Optimisation model 

The proposed model satisfies the aforementioned feasibility and quality 

requirements. In order to limit the emergence of critical situations after the planning 

horizon, the horizon is extended to the right with e consecutive and not overlapping 

time periods (as an example, we might consider a one-month planning horizon and 

e=2 extra time periods of seven days each). Moreover, we assume that each surgery 

group is also characterised by a surgery duration range that classifies the procedures 

of the group as short-, medium-, or long-lasting procedures, according to their 

duration. Hence, surgery durations are categorised within a set of surgery duration 

ranges, thereby allowing for the specification of the mix of short-, medium- and 

long-lasting surgeries to be scheduled in the planning horizon. The mix constraints 

represent a means to avoid leaving an excessive number of long-lasting surgeries on 

the waiting list. It is worth noting that mix constraints could also be formulated in 

terms of LoS ranges to control the mix of short-, medium- and long-stay case types 

scheduled in the planning horizon. 

 

Let us define the following sets and parameters: 

e the number of time periods following the planning horizon 

D  the set of days in the planning horizon indexed by d 

jD
~

 the j-th time period following the planning horizon, ej ,..,1  

T  the set of time slots indexed by t 

O the set of ORs indexed by o 

S  the set of specialties indexed by s 

K the set of surgery groups indexed by k 

B the set of bed types indexed by b 

G the set of surgery duration ranges indexed by g 

M a suitably big constant 

0W >> 1W >> 2W  the weights used in the objective function  

kjw  
the penalty associated with cases in surgery group k with due date in jD

~
 

not scheduled in the planning horizon, ejKk ,..,1,    

sdtV
 

the maximum number of surgical teams available for specialty s, on day 
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d in time slot t, TtDdSs  ,,  

odtH
 

the available time of OR o on day d, time slot t, TtDdOo  ,,  

kdL
 

the number of cases in surgery group k needing a surgical procedure 

within day d, eDDDdKk
~

...
~

, 1   

bdB
 

the number of beds of type b available on day d, DdBb  ,  

g
T  

the minimum percentage of procedures with a surgery duration in range 

g that has to be scheduled, Gg  

gT  
the maximum percentage of procedures with a surgery duration in range 

g that can be scheduled, Gg  

ks
 

the specialty of surgery group k, Kk  

kr  
the bed type required by surgery group k, Kk  

k  
the average surgery duration, expressed in minutes, of surgery group k, 

Kk  

kg
 

the range to which the surgery duration of surgery group k belongs, 

Kk   

k
 

the average number of days of hospitalisation before surgery required by 

group k, Kk  

k  
the average number of days of hospitalisation after surgery required by 

group k, Kk . 

Then let us define the following four families of variables: 






  

 
sodtx

 

1 if specialty s is assigned to OR o on day d and  time slot t 

0 otherwise  

TtDdOoSs  ,,, , such that specialty s can be performed in OR o 

kodty

 

the number of procedures of surgery group k assigned to OR o on day d 

in time slot t, TtDdOoKk  ,,,  

kju
 

the number of cases of surgery group k with due date in time period jD
~

 
not scheduled in the planning horizon, ejKk ,..,1,   

dbbv '  
the number of beds of type b’ used in place of beds of type b on day d, 

DdBbb  ,, '
. 

Furthermore, let us define the following auxiliary variables: 

bdz
 

the number of beds of type b occupied on day d, DdBb  , . 

Observe that compatibility constraints between specialties/surgical groups and 

ORs/time slots are defined implicitly in the statement of variables x and y. 

Using these variables and parameters, we can state the model formally as follows:  

  











TtDd
OoKk

ej
Kk

Dd
bbBbb

dbbkjkjkodt vWuwWyW

,
,,

,..,1
, ,':',

'210  max  (4.1) 
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



Ss

sodtx 1 TtDdOo  ,,  (4.2) 





Oo

sdtsodt Vx  TtDdSs  ,,  (4.3) 

sodt

ssKk

kodt Mxy
k

 
:




  
TtDdOoSs  ,,,  (4.4) 

  k kodt odt

k K

y H


  TtDdOo  ,,  (4.5) 

 


 



TtddDd
Oo ddDd

kdtkod  Ly

,':'
, ':'

''  
0:,  kdLDdKk  (4.6) 

 


 



TtDd
Oo DDDd

kd

j

h

khkodt

j

L  uy

,
,

~
...

~
1 1

    ejKk ,...,1,   (4.7) 

min( , )

'

: , ' max(1, )
,

     
k

kk

D d

kod t bd

k K r b d d
o O t T

y z






   
 

   DdBb  ,  (4.8) 





bbBb

dbbbdbd vBz
':'

'  DdBb  ,  (4.9) 

 
 


Bb

bd

Bb bbBbb

dbbbd Bvz
':',

'  Dd   (4.10) 

 











TtDdOo
ggKk

TtDd
OoKk

kodtgkodt

TtDd
OoKk

kodtg
k

yTyyT

,,
,:

,
,

,
,,

 

Gg   (4.11) 

 1 ,0 sodtx  TtDdOoSs  ,,,  

kodty  ℕ TtDdOoKk  ,,,  

0bdz   DdBb  ,  

0kju   ejKk ,...,1,   

0' dbbv   DdbbBbb  ,':',  

 

The objective function (4.1) involves three criteria that are hierarchically ordered. 

Specifically, the first criterion is the maximisation of the number of surgeries planned 

(and consequently, of patient throughput), whereas the second and third criteria are, 

respectively, the minimisation of penalties resulting from missing due dates and the 

minimisation of bed mismatches. 

In particular, the model guarantees that all of the cases with a due date within the 

planning horizon will be planned via a hard constraint (see Constraints (4.6)). In 

addition, if there are enough resources, the model also schedules cases with a due 

date outside the planning horizon. The second criterion of the objective function 
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determines how these latter cases are selected. Specifically, weights kjw  depend both 

on the surgery group k and on the time period j. For example, the closer the due date 

is, the higher the weight, while the shorter the waiting list relative to a given surgery 

group, the lower its weight. 0W , 1W  and 2W  are weights that are used to reflect the 

priority of the three criteria.  

In this model, each day of the planning horizon is characterised by T  time slots; in 

many hospitals (and also in our case study), each day is organised into two time slots, 

morning and afternoon. Constraints (4.2) assure that, at most, one specialty can be 

assigned to an OR in a given time slot, each day. Constraints (4.3) guarantee that the 

number of ORs assigned during the same time slot for a given specialty s does not 

exceed the maximum number sdtV  of surgical teams available for specialty s, on day 

d in time slot t. A pre-processing phase is performed to eliminate all variables xsodt for 

which the corresponding parameter sdtV is zero.
 
Constraints (4.4) bind the x and y 

variables together; specifically, they state that, given specialty s, OR o, day d and 

time slot t, no procedure of that specialty can be planned ( 0
:

  ssKk kodt
k

y ) if that 

specialty has not been assigned to OR o ( 0sodtx ). On the other hand, Constraints 

(4.4) are redundant when specialty s is assigned to OR o on a given day d, time slot t 

(i.e., 1sodtx ); in that case, the constraints state that the maximum number of 

procedures performed cannot exceed a big-M, which represents an upper bound on 

the number of workable procedures. Constraints (4.5) guarantee that the time 

consumed by all of the procedures planned in OR o on a given day d during time slot 

t will not exceed the OR available time odtH . Constraints (4.6) and (4.7) are covering 

constraints used to manage the waiting lists. Specifically, the number kdL  of patients 

who must undergo a procedure of surgery group k by day d (the so-called due date) is 

supposed to be known. Constraints (4.6) assure that such procedures take place in the 

planning horizon within day d, i.e., on any of the days preceding d or on d itself. 

Additionally, Constraints (4.7) also allow the potential for scheduling patients with 

due dates outside the planning horizon, so as to limit criticality in the following 

planning horizons. Constraints (4.7) exhibit a similar structure to Constraints (4.6) 

and count the number kju
 
of patients requiring a surgery in group k, not scheduled in 

the planning horizon and whose due dates fall in time period jD
~

. For example, when 

the first time period outside the planning horizon is considered (i.e., j=1), the 
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constraints assure that, for each surgery group, the sum of the number of procedures 

scheduled in the planning horizon and the number of procedures with a due date 

within 
1

~
D  not scheduled is at least equal to the number of patients who must undergo 

a procedure within the last day in 
1

~
D . The objective function minimises the 

unscheduled procedures by giving priority to surgery groups k, for which the due 

date falls within a closer time period and for which the waiting list is longer. The idea 

is that the closer the due date is, the higher the priority becomes; additionally, all of 

the surgery groups with a due date within the same time period that are not 

eventually planned in the time horizon are penalised in the same way. Constraints 

(4.8)–(4.10) control bed occupancy. As discussed in Section 3, several bed types are 

considered. Constraints (4.8) compute the number of beds of type b occupied on day 

d by taking into account all of those procedures planned on day d’ that require a bed 

of type b and whose LoS comprises d. This number is stored in the auxiliary variable 

bdz . Constraints (4.9), for each bed type b and day d, impose an upper limit on the 

number of occupied beds and, at the same time, state that a bed mismatch may occur 

at the cost of paying a penalty dbbv ' , which measures the number of beds of type b’ 

used in place of beds of type b on day d. Note that if beds of type b’ cannot be used 

instead of beds of type b on a given day d, the corresponding variable dbbv '  is fixed to 

zero. Finally, Constraints (4.10) state that the number of beds occupied, either 

properly or not, must not exceed the total number of beds available, regardless of the 

type. Constraints (4.11), guarantee that, for each surgery duration range gG, the 

number of procedures belonging to g that are performed within the current planning 

horizon is between a lower (
g

T ) and an upper ( gT ) threshold percentage of the total 

number of procedures performed. The remaining constraints impose that x variables 

are binary, y variables are non-negative integers and other variables are non-negative. 

 

5 Scope of application 

In this section, we illustrate a computational analysis where the model’s performance 

has been tested in correspondence with different hospital settings. 

The settings presented in this section were based upon real empirical data, i.e., the 

Meyer Hospital, which is thoroughly described in Section 6.1. The settings were then 

modified through changing the value of the most significant parameters.  
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In particular, to test the applicability of our MIP model in different contexts and to 

assess the generalisability of our study, we have considered: 

 three different hospital dimensions (Dim1, Dim2, Dim3);  

 three different planning horizon lengths (7, 14, 28 days); and 

 two different ways of organising the surgical sessions (1 time slot, 2 time 

slots). 

Specifically, we consider a relatively ‘small’ hospital (Dim1), like Meyer Hospital, 

which is characterised by 5 ORs, 47 beds and 1sdtV  surgical teams available for 

each specialty s, day d, time slot t. We then performed analyses with two further 

hospital dimensions settings, in which the ORs, beds and number of surgical teams 

were doubled (Dim2) and tripled (Dim3), respectively. 

For all of these types of hospitals, we have considered short ( D =7), medium ( D

=14) and long ( D =28) planning horizons, and we hypothesised that the surgical 

activities are organised either into one time slot ( T =1) or into two time slots ( T =2). 

Finally, we have considered that the ORs can be utilised 5 days a week with an 

available time of 690 min/day, and we have assumed full compatibility between 

ORs/time slots and specialties/surgical groups. These latter hypotheses make the 

problem less constrained than the real case presented in Section 6. 

We have thus investigated, in total, 3x3x2=18 different settings. The values of the 

parameters utilised to define these settings are justified by the literature (see Section 

2 and Cardoen et al. (2010)). For each of the aforementioned settings, we have 

analysed the model’s behaviour in correspondence with 10 different realistic waiting 

lists. These waiting lists, in fact, were based upon a real one containing 2,391 cases 

organised into 54 surgical groups k ( K =54), each of which was characterised by an 

average surgery duration ( k ) and LoS )( kk   . In line with the dimensions Dim2 

and Dim3, the number of patients on the list for each surgery group was doubled and 

tripled, respectively. The randomisation was carried out by adding a number of days 

to the real cases’ due dates; this number was obtained by sampling a discrete uniform 

distribution that ranged from -15 to +15. 

Therefore, this computational analysis is based on 180 (=18x10) different and 

randomly generated problem instances. The model was coded using AMPL and 

solved with the IBM ILOG CPLEX solver (version 11.2) running on a PC equipped 

with an Intel iCore 5 processor and 4 GB of RAM. For each instance, we analysed 

the solutions obtained by bounding the computational time to 10 and 30 minutes.  
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Table 3 shows the average number of variables and constraints characterising the 

problem in correspondence with each setting after the CPLEX pre-solving. Each 

average value presented in this section refers to one setting and it is computed over 

ten instances. 

 

TABLE 3. Number of variables and constraints after pre-solving 

 

Variables  Constraints 

|T|=1  |T|=2  |T|=1  |T|=2 

Dim1 Dim2 Dim3 Dim1 Dim2 Dim3  Dim1 Dim2 Dim3 Dim1 Dim2 Dim3 

|D|=7  978.9 1813.9 2648.9 1801.4 3471.4 5141.4  986.9 1752.4 2517.4 1775.3 3305.7 4835.7 

|D|=14  1873.7 3543.2 5212.7 3535.8 6875.8 10215.8  1860.3 3389.8 4919.3 3442.6 6502.6 9562.6 

|D|=28 3632.6 6968.6 10304.6 6973.8 13653.8 20333.8  3585.7 6641.7 9697.7 6760.6 12880.6 19000.6 

 

Figure 1, instead, shows the average relaxation time for each setting. 

  
FIG. 1. Average relaxation time (sec) for different settings. 

 

As can be noted, the average relaxation time, i.e., the time required to solve the linear 

relaxation of the MIP problem, grows as the dimension of the instances increases. 

Nonetheless, it remains acceptable (less than 16 seconds) even for the biggest 

instances in the computational campaign. It is worth pointing out that, even with a 

10-minute time limit, we found at least one feasible solution for all the 180 instances. 

However, we found optimal solutions in only a small number of cases. Indeed, with a 

time limit of 10 minutes, we found no optimal solutions for D =28. Similarly, for D
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=14, we found only one optimal solution. The number of optimal solutions does not 

increase significantly when the time limit is increased to 30 minutes. However, the 

Relative Mipgap reported in Table 4 reveals that solutions of very good quality were 

found in most cases (gaps<1.5%). Unfortunately, the quality of the solution degrades 

as the dimension of the instances grows. Nevertheless, solutions of tolerable quality 

(i.e., gap<12%) were found within 10 minutes even for quite big instances, e.g., D

=28 or T =2. These gaps decrease when the time limit is increased to 30 minutes 

(see Table 4). On the other hand, no reduction of the gap occurs for the biggest 

instances, even if the time limit is increased (see bold entries in Table 4).  

 

TABLE 4. Relative Optimality Gaps 

 

Time limit = 10 min   Time limit = 30 min  

|T|=1  |T|=2  |T|=1  |T|=2 

Dim1 Dim2 Dim3 Dim1 Dim2 Dim3  Dim1 Dim2 Dim3 Dim1 Dim2 Dim3 

|D|=7  0.09% 0.06% 0.13% 0.15% 0.12% 0.29%  0.07% 0.06% 0.11% 0.15% 0.06% 0.15% 

|D|=14  0.42% 0.59% 0.60% 0.57% 7.46% 33.99%  0.34% 0.44% 0.48% 0.57% 1.30% 19.33% 

|D|=28 1.31% 6.80% 9.19% 11.62% 40.56% 38.97%  1.25% 5.81% 9.11% 3.06% 40.56% 38.97% 

 

In sum, it is possible to state that the model allows us to find satisfactory solutions in 

a reasonable amount of time for: (i) relatively small hospitals (5 ORs/47 beds), 

regardless of the planning horizon and of the number of time slots; and (ii) short 

planning horizons (7 days), regardless of the hospital dimensions (up to 15 ORs and 

141 beds) and time slots (up to 2 time slots). 

 

6 Case description: the surgical scheduling process at Meyer 

Hospital 

The surgical unit at Meyer Hospital consists of seven ORs: five of these are partially 

interchangeable and host 15 surgical specialties (urology, otorhinolaryngology, 

paediatric surgery, neonatal surgery, ophthalmology, orthopaedic surgery, 

gynaecology and obstetrics, trauma centre, hand and microsurgery, oral and 

maxillofacial surgery, orthopaedic oncology, cardiothoracic surgery, 

gastroenterology, burns and plastic surgery); the remaining two ORs are dedicated 

almost entirely to specific surgical specialties (neurosurgery) or treatments 

(hemodynamics and bronchial endoscopy) and partially to emergencies and 

urgencies. At Meyer Hospital, emergencies and urgencies are managed by allocating 

them a fixed amount of OR time-slots and a fixed number of beds. Meyer Hospital 

allocates 47 beds to elective patients. These beds are organised into three wards 
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according to the patients’ expected LoS, i.e., long, medium and short. The hospital 

waiting lists are populated on the basis of surgery request forms that are filled out by 

surgeons. The form clearly indicates, for each case: (i) the diagnosis; (ii) the 

procedure that the patient is expected to undergo; and (iii) a priority class. The 

priority class determines the maximum number of days within which the case should 

be scheduled and, thus, the case’s due date. There are three possible priority classes, 

and these are associated with 30, 60 and 90 days of waiting time, respectively. Even 

though the hospital is not obliged by law to meet the promised due date, there is a 

strong commitment to increase hospital performance in terms of due date fulfilment. 

In addition, the form indicates: (iv) the expected duration of the procedure (surgery 

duration); and (v) the expected LoS. There are three possible time ranges for 

procedure duration: less than one hour (short duration), between one and two hours 

(medium duration), and more than two hours (long duration). With respect to the 

expected LoS, a distinction is made between day surgeries (which occupy a bed for a 

single day) and ordinary surgeries (which occupy a bed for more than one day). 

Presently, at Meyer Hospital, the activities of the 15 surgical specialties that use the 

five aforementioned interchangeable ORs are planned by a Planning Department, 

which is headed by a bed manager. The activities of the remaining specialties are 

managed by their respective departments and are not considered in this paper. The 

entire planning process is performed manually, and it is organised into two stages. In 

the first stage, on a monthly basis, a timetable is produced that indicates the 

specialties assigned to each OR and to each time slot (morning or afternoon) on each 

day. In addition, it provides a rough indication of the number of day surgeries and 

ordinary surgeries that should be performed in each slot. Such a timetable is 

produced by taking into account the fact that each specialty can ensure the 

availability of a surgical team only during certain days/time slots within the planning 

horizon. It is worth pointing out that, given the need to coordinate surgeons’ 

activities within and outside the surgical department, the specialties tend to hold 

these availabilities constant year round. 

In the second stage, Planning Department personnel compile the timetable on a 

weekly basis, assigning cases to each OR for each time slot. Cases are chosen such 

that: (i) the sum of the expected surgery duration of the cases assigned to each time 

slot does not exceed the duration of the time slot itself; (ii) the expected number of 

hospitalised patients for each day does not exceed the number of expected available 

beds; and (iii) the percentage of short-, medium- and long-lasting surgeries scheduled 

in the weekly plan reflects approximately the percentage on the waiting list. At 
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Meyer Hospital, the demand for short-, medium- and long-lasting surgeries has 

proven to be fairly constant year round. Hence, by scheduling a constant mix of 

short-, medium- and long-lasting surgeries, the hospital avoids leaving an excessive 

amount of long-lasting surgeries on waiting lists, which would make the scheduling 

process more complex in the following weeks or months. Lastly, if possible, patients 

with closer due dates are given higher priority. The selected patients are then called 

to be operated on and a recovery date is given. If a patient is not available to be 

scheduled (i.e., because s/he is ill), then another case within the same specialty and 

with a similar (or shorter) expected surgery duration and LoS is called in her/his 

place. To prevent overtime and cancellations, each week the Planning Department 

schedules a fewer number of surgeries (by almost 15%) than what is suggested in the 

monthly plan. This practice leads to the underutilisation of both the ORs and the 

beds. Unfortunately, such underutilisation is further exacerbated by last-minute 

patient-driven cancellations, which account for almost 10% of the cases scheduled. 

In the next subsection, we present the data we used to test our model, all of which 

originated from the planning period between 5 September 2011 and 2 October 2011. 

 

7 Computational results 

In this section, we present the computational results of our study. In the following 

subsections, we illustrate; (i) the data we used to test both the optimisation and the 

simulation model; (ii) the results of the optimisation model and a scenario analysis; 

(iii) the results of the simulation analysis; and (iv) the combined optimisation–

simulation approach.  

For all of the analysed scenarios, we limited the computational time to 10 minutes. 

For each, we found a solution with an optimality gap of at most 0.5%.  

Hereinafter, we will denote random variables with capital Greek letters, such as Α, Β, 

Γ, the values that random variables take on with lowercase Greek letters, such as α, 

β, γ, and the random variables’ mean values with lowercase Greek letters with a bar 

on top, such as  ,  ,  . 

7.1 Input data 

 OR available time and beds  7.1.1

The model considers 47 beds: 14 in the short-stay ward (day surgery), 19 in the 

medium-stay ward and 14 in the long-stay ward. As mentioned, it considers five ORs 

that can be utilised by 15 specialties. These ORs are not available on all the days and 
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time slots in the planning horizon. The total monthly OR available time is equal to 

819.5 hours. 

 Surgery duration, LoS and surgery groups 7.1.2

To calculate the values of the surgery durations and the LoS to use in the model, we 

analysed two years of surgical records. Each record indicated: i) the estimated 

surgery duration (short, medium, or long) and LoS (expressed in days), as indicated 

by the surgeon when s/he prescribed the surgery (see Section 6); and ii) the actual 

values of both the surgery duration and the LoS. Combining, for each specialty, the 

different values of the estimated surgery duration and LoS, we created 54 

homogeneous surgery groups. For example, a group labelled Urology-Short-2 

includes procedures (e.g., varicocelectomy, orchidopexy, etc.) that, ex-ante, were 

expected to require a urology surgical team, occupy the OR for a small amount of 

time (less than one hour) and give rise to a post-surgical LoS of two days (i.e., the 

patient was expected to occupy one bed for two days: the day of the surgery and the 

following day). For each group k, the surgery duration ( k ) and the post-surgical LoS 

( kΑ ) are random variables. Hence, we determined their empirical distribution and 

calculated their respective mean values k  and k . Finally, since in our setting, 

patients do not occupy beds in the surgical department in the days preceding surgery, 

we have set k =0. All of the solutions of the optimisation model presented in this 

paper are based on these mean values. 

 Availability of surgical teams 7.1.3

We considered the actual number of available surgical teams that each specialty 

could ensure for each day and time slot of the period under investigation. 

 Waiting list  7.1.4

We analysed the hospital waiting list as follows. For each surgery group, we created 

a dedicated waiting list that contained all of the cases that needed a procedure that 

fell within the surgery group itself. Then, surgery groups were clustered based on the 

number of cases on their waiting lists. With this method, we identified five clusters. 

The first includes all of the surgery groups with more than 200 cases on their lists; 

the second includes the surgery groups with 151 to 200 cases on their lists, and so on 

(see the rows in Table 5). The cases within each cluster were then subdivided based 

on their due dates. We identified six time intervals into which each case’s due date 

could fall: within 28 days, from 29 to 36 days and so on (see the columns in Table 5). 
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The resulting breakdown of the waiting lists on 5 September 2011 is shown in Table 

5 and will be commented on hereafter. 

 

TABLE 5. Actual waiting list on 5 September 2011 

Clusters N° of cases in list for each surgery 

group included in the cluster 

Time intervals (days) Tot N° of 

cases in list < 28 29-36 37-44 45-52 53-60 > 60 

1 > 200  106 28 4 17 90 565 810 

2 151-200 26 18 6 1 28 98 177 

3 101-150 11 2 0 0 8 108 129 

4 51-100 51 21 11 8 37 394 522 

5 0-50 120 61 9 13 123 427 753 

 Total N° of cases in list 314 130 30 39 286 1592  

 

For example, cluster 1 contained 810 cases, 106 of which had due dates expiring 

within 28 days. More specifically, these cases belonged to two surgery groups: 

Urology-Short-1 (331 cases, with 28 expiring within 28 days) and Paediatric 

Surgery-Short-1 (479 cases, with 78 expiring within 28 days). Looking at Table 5, it 

is possible to observe that: i) many cases (1,592) had due dates that were still 

somewhat remote (more than 60 days from the beginning of the planning horizon); 

and ii) 314 cases had due dates that expired within 28 days (these also include cases 

that were already late on 5 September 2011). Both of these facts were due to a lack of 

control over the waiting lists. On the one hand, many cases had been placed on the 

waiting list with no due date or with very remote due dates (this is typical for 

surgeries that, sooner or later, children are expected to undergo, but that are relevant 

to pathologies that don’t cause any problem in the short term). On the other hand, a 

consistent number of surgeries with approaching (or expired) due dates had not been 

scheduled in the preceding weeks. Unfortunately, the accommodation of such a high 

number of cases (314) with due dates that fell within the planning horizon was not 

compatible with the availability of surgical teams that each specialty had ensured for 

the same period. For example, a certain number of cases had a due date d’, but 

required a surgical team that was only available later than d’. Thus, it wasn’t possible 

to meet the expected due date and, consequently, the model wasn’t able to find any 

feasible solution. To handle such a criticality, we agreed with the hospital 

management to postpone all of the due dates for 15 days. The composition of the 

resulting adjusted waiting lists is shown in Table 6. 
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TABLE 6. Adjusted waiting lists on 5 September 2011 

Cluster 
N° of cases in list for each surgery 

group included in the cluster 

Time intervals (days) Tot N° of 

cases in list < 28 29-36 37-44 45-52 53-60 > 60 

1 > 200 21 11 74 30 11 663 810 

2 151-200 11 6 10 17 7 126 177 

3 101-150 1 1 9 2 0 116 129 

4 51-100 21 10 26 21 18 488 584 

5 0-50 25 14 79 60 11 502 691 

 Total N° of cases in list 79 42 198 130 47 1895  

 

All of the solutions presented in this paper are based on the adjusted waiting lists 

(Table 6). As will be shown in Section 7.2.1, despite using the adjusted waiting lists, 

the solutions presented allow us to respect most of the real due dates (i.e., before 

postponement). The adjusted lists were also used to create the realistic instances 

presented in Section 5. 

 Objective function penalties  7.1.5

The weights kjw  of the objective function are set in such a way that the model 

prioritises (i) the groups whose waiting lists include a higher number of cases with 

closer due dates; and (ii) groups with longer waiting lists. The weights are set to give 

higher priority to the due dates. Hence, the length of the waiting list will discriminate 

between two solutions only when these solutions are equivalent in terms of due 

dates. 

  Allowed mix variation. 7.1.6

We have set the lower bound (
g

T ) and the upper bound ( gT ) in Constraints (4.11) so 

that the model is allowed to schedule a certain percentage of short-, medium- and 

long-lasting surgeries, which will differ at most by 3% from the percentage on the 

waiting list. The actual mix on the waiting list is 74% short-, 21% medium-, 5% 

long-lasting surgeries. 

7.2 Optimisation results 

 Model output 7.2.1

Table 7 summarises the model’s output relative to the base scenario.  

TABLE 7. Base scenario: output summary 

 Model output 

Planned surgeries 651 

- short duration [%] 74.3 

- medium duration [%] 20.6 

- long duration [%] 5.1 

OR utilisation rate [%] 83.2 

Bed utilisation rate [%] 81.8 

Bed mismatch rate [%] 3.3 
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The number of planned surgeries (651) is remarkably higher than the number 

planned by the hospital for the same period (495). In addition, it allows for obtaining 

high OR and bed utilisation rates (which rise to 95% on weekdays) and a low bed 

mismatch rate. Figure 2 illustrates the daily profile of the OR (left) and bed 

utilisation (right). 

  

FIG. 2. Base scenario: OR and bed utilisation daily rates. 

As can be noted, bed utilisation has a similar profile over the last three weeks (days 8 

to 28), whereas it denotes a different pattern in the first week. This is because the 

number of time slots that are allotted, each day, to the 15 specialties considered by 

the model is not constant, but varies from a maximum of nine to a minimum of zero. 

In particular, on the third day of the first week, more than 30% of the available time 

slots are allotted to specialties that are not considered by the model (see Fig.3). This 

explains why the bed utilisation rate (which refers only to the specialties considered 

by the model) sharply decreases on the fourth day.  

 

 

FIG. 3. Base scenario: bed utilisation (●) and time-slot availability (×) daily rates. 

Table 8 shows how waiting lists are consumed, indicating, in each cell, the number of 

surgeries planned and, in round brackets, the percentage of surgeries planned that 

were on the waiting list. 
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TABLE 8. Waiting list consumption 

Cluster 
Time intervals (days) 

TOT 
< 28 29-36 37-44 45-52 53-60 > 60 

1 21 (100%) 11 (100%) 74 (100%) 21 (70%) 4 (36.4%) 0 (0%) 131 (16.2%) 

2 11 (100%) 6 (100%) 10 (100%) 17 (100%) 4 (57.1%) 0 (0%) 48 (27.1%) 

3 1 (100%) 1 (100%) 5 (55.6%) 0 (0%) 0 (N.A.) 0 (0%) 7 (5.4%) 

4 21 (100%) 7 (70%) 16 (61.5%) 13 (61.9%) 7 (38.9%) 32 (6.6%) 96 (16.4%) 

5 25 (100%) 11 (78.6%) 59 (74.7%) 42 (70%) 3 (27.3%) 229 (45.6%) 369 (53.4%) 

 79 (100%) 36 (85.7%) 164 (82.8%) 93 (71.5%) 18 (38.3%) 261 (13.8%)   

 

As expected, the model allows for planning a higher percentage of surgeries with 

closer due dates. To obtain a higher consumption of the waiting lists of the groups 

belonging to the first clusters, it would be sufficient to appropriately set the weights 

(due to space constraints, such a setting is not presented here). In addition, it is worth 

noting that, although the due dates had been postponed by 15 days (see Section 

7.1.4), 279 (=79+36+164) of the 314 surgeries (see Table 5) that were due in the first 

28 days (and whose adjusted due dates fell between the first and the 44
th

 day of the 

planning horizon), were in fact scheduled. This means that postponing the due dates 

allowed us to find a solution that scheduled 89% of the interventions that were 

actually due for the current month. The remaining 11% of interventions could not be 

scheduled due to a lack of resources.  

 Scenario analysis. 7.2.2

In this section, we illustrate the results of a scenario analysis. In particular, we want 

to test how the model solution, specifically the number of planned surgeries, would 

change as a consequence of: (i) an increase in the number of beds and/or the OR 

available time; (ii) an increase in the availability of surgical teams; or (iii) variation 

in the composition of the mix of short-, medium- and long-lasting surgeries that the 

model is allowed to plan. 

7.2.2.1 Impact of an increase in the available number of beds and/or OR time 

To investigate the impact of an increase in the number of beds and/or OR time on the 

model output, we analysed three scenarios. In the first, the number of beds is 

increased by 10% (ΔBed=10%). In the second, the total OR available time is 

increased by 10% (ΔOR=10%). In the third, both the number of beds and the total 

OR available time are increased by 10% (ΔOR=ΔBed=10%). The results are 

presented in Table 9. 

  



24 

TABLE 9. Scenario 1 to 3: increase of the OR available time and/or the number of 

beds  

 Base scenario 

Scenario 1 

(ΔOR=0% 
ΔBed=10%) 

Scenario 2 

(ΔOR=10% 
ΔBed=0%) 

Scenario 3 

(ΔOR=10% 
ΔBed=10%) 

Planned surgeries 651 694 677 737 

- short duration [%] 74.3 74.4 74 74.9 

- medium duration [%] 20.6 20.6 21 20.1 

- long duration [%] 5.1 5 5 5 

OR utilisation rate [%] 83.2 89.1 78.2 85.3 

Bed utilisation rate [%] 81.8 78.2 82.8 80.7 

Bed mismatch rate [%] 3.3 0.7 4.7 1.1 

 

Starting from the base scenario (Table 7), it is possible to increase the number of 

planned surgeries both by only adding beds (scenario 1, +43 surgeries) and by only 

increasing the OR available time (scenario 2, +26 surgeries). The marginal benefits 

of increasing one resource once the other has already been increased leads to 

substantial benefits as well. In fact, in a move from scenario 1 to scenario 3 or from 

scenario 2 to scenario 3, it is possible to plan an additional 43 or 60 surgeries, 

respectively. 

7.2.2.2 Impact of an increase of surgeons’ availability 

One feature of our setting is that the MSS must be produced by taking into account 

that, for each specialty, the availability of a surgical team is ensured only on pre-

determined days and time slots within the planning horizon (see Section 6). 

Considering this fact, however, does not allow for the full exploitation of the model. 

On the contrary, by allowing the model to freely assign specialties to sessions, it is 

possible to determine when each specialty should ensure the availability of surgical 

teams, in order to maximise the value of the objective function. In Table 10, for 

example, we show the results if each specialty were potentially able to ensure the 

availability of one surgical team for every day and session within the planning 

horizon, and if the model were completely free to assign specialties to ORs/sessions. 

TABLE 10. Scenario 4: increase in the surgical teams’ availability 

 Scenario 4 

(Higher surgical teams availability) 

Planned surgeries 685 

- short duration [%] 74.9 

- medium duration [%] 20 

- long duration [%] 5.1 

OR utilisation rate [%] 86.6 

Bed utilisation rate [%] 82.0 

Bed mismatch rate [%] 3.2 

 

With respect to the base scenario (Table 7), it can be noted that an increase in the 

surgical teams’ availability leads to a substantial increase in the number of planned 
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surgeries (685 vs. 651) and in OR utilisation (86.6% vs. 83.2%). The surgery mix, 

the bed utilisation and the bed mismatch rate, however, remain constant. Hence, 

ceteris paribus, a higher availability of surgical teams allows for a substantial 

increase in the number of planned surgeries. 

7.2.2.3 Impact of mix variation 

Another feature of our setting is that the MSS must contain a constant mix of short-, 

medium- and long-lasting procedures. Such a result is obtained by limiting the 

allowed mix variation (Constraints (4.11)) to a maximum value of 3%. In this 

subsection, we illustrate how the solution would change if we were to provide a 

different setting for this constraint. In particular, we test what happens if: i) the 

maximum allowed mix variation is set to 0% (no mix variation allowed); and ii) the 

mix constraint is removed (100% mix variation allowed). The results of these 

analyses are summarised in Table 11 and commented upon hereafter. 

 

TABLE 11. Scenarios 5 and 6: change in the allowed mix variation 

 

Scenario 5 

(Allowed mix variation=0%) 
Scenario 6 

(Allowed mix variation=100%) 

Planned surgeries 600 661 

- short duration [%] 74.0 73.1 

- medium duration [%] 21.0 25.3 

- long duration [%] 5.0 1.7 

OR utilisation rate [%] 77.7 83.3 

Bed utilisation rate [%] 78.4 81.8 

Bed mismatch rate [%] 2.1 3.4 

 

When the allowed mix variation is set to zero, the solution is remarkably worse than 

the one in the base scenario. In fact, in this setting, the model is able to schedule only 

600 surgeries instead of 651. On the contrary, if we remove the mix constraints, the 

number of planned surgeries increases from 651 to 661. Such a solution, however, is 

characterised by a surgery mix that is particularly lacking in long-lasting surgeries 

(11 vs. 33). This means that a higher percentage of long-lasting (and resource-

consuming) procedures will be left on the waiting list, thereby making the scheduling 

process more complex in the following months. By allowing a mix variation of 3% 

(base scenario) instead, we obtain a better trade-off between planned surgeries and 

actual surgery mix. 

7.3 Simulation analysis 

In this section, we illustrate the results of the simulation analysis. This section is 

organised into two parts. First, we provide a short description of the simulation 

model, which will also be used in Section 7.4. Second, we use the simulation model 

to test the robustness of the solution produced by the optimisation model against the 
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variability of the surgery duration and of post-surgical LoS. The simulation model 

described in this section was created with Rockwell Arena (version 13.9) and 

integrated with AMPL via VBA. 

 Simulation model 7.3.1

The analyses presented in the next sections are based on a discrete event simulation 

model that works as follows. Based on the optimisation model’s solution, for each 

simulated day, the simulator generates a number of entities equal to the number of 

surgeries planned for the day and assigns a surgery group, OR and time slot to each 

entity. Hence, every day, before the beginning of the morning session, the model 

verifies whether there are enough beds to accommodate the number of cases planned 

in the MSS for that day. If the number of surgeries planned exceeds the number of 

beds available, than the model randomly deletes a number of entities that is equal to 

the number of surgeries planned minus the number of beds available. The remaining 

entities seize a bed each for a time that is randomly sampled from the empirical 

distribution of k . In addition, by following the MSS, each of these entities seizes an 

OR for a time that is randomly sampled from the empirical distribution of the surgery 

duration k . Then, the model records the number of surgeries actually executed (ε), 

the number of surgeries cancelled (ω), the total overtime (θ), the OR utilisation rate 

(τ), and the bed utilisation rate (σ). In the next section, we present the results of the 

simulation with respect to the base scenario. 

 Simulation model results: base scenario 7.3.2

Table 12 summarises the output of 20 simulation runs relevant to the base scenario. 

For each performance, we indicate the value obtained with the optimisation model 

and the mean values, standard errors (SE) and minimum and maximum obtained with 

the simulation. 

TABLE 12. Simulation results: base scenario 

 Optimisation 

output 

Simulation output 

Mean SE Min Max 

Planned surgeries 651 651 - 651 651 

OR utilisation rate [%] 83.2 76.8 0.2 75.4 78.2 

Bed utilisation rate [%] 81.8 77.5 0.1 76.4 78.6 

Overtime [h] - 16.3 0.9 9.4 23.3 

Cancelled surgeries - 46.9 1.4 35 59 

Executed surgeries - 604.1 1.4 592 616 

 

As can be noted, because of the variability of the post-surgical LoS, almost 47 

surgeries (7.2%) of the planned 651 could not be executed due to a bed shortage. 
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Such a circumstance, in turn, led to lower rates of bed and OR utilisation. In Fig. 4, 

we show the boxplot of the daily OR and bed utilisation rates, respectively. 

  

FIG. 4. Boxplot of the daily OR (left) and bed utilisation (right) rates. 

Looking at the boxplots (Fig. 4), it is possible to observe that the OR utilisation rate 

is characterised by a high variability and is sometimes larger than 100%. In fact, 

despite the 47 cancellations, the variability of the surgery duration relevant to the 

remaining 604 surgeries caused an overtime of almost 16 h/month. The range for 

daily overtime, in turn, is [0; 6.75] hours, where 6.75 is calculated, as suggested by 

Kelton et al. (2002, p. 39), as the maximum of the individual replication maxima. 

The mean value of daily overtime, instead, is 0.58 hours (or 0.68, if Sundays are 

excluded). On the contrary, it is possible to observe that the first quartile of daily bed 

utilisation is always above 80% (excluding weekends), and the inter-quartile range is 

rather small. In sum, the simulation suggests that if the MSS obtained with the 

optimisation model were implemented, then the hospital would need to cancel 7.2% 

of the surgeries planned, and it would experience an overtime of 16 h/month. Such a 

high number of cancellations would surely lead to patient dissatisfaction and, to a 

certain extent, undermine the hospital’s ability to control the waiting list (i.e., a 

patient with an approaching due date might be cancelled even though it would be 

impossible to schedule her/him again in the current month). In the next section, we 

illustrate how these issues can be fixed by using a combined optimisation–simulation 

approach. 

7.4 Combined optimisation-simulation approach  

In the previous section, we have shown that, because of the randomness of surgery 

duration and post-surgical LoS, the implementation of the solution of the 

optimisation model leads to cancellations and overtime. In many cases, cancellations 

and overtime can be highly undesirable (which is surely the case at Meyer Hospital). 

Given a certain set of resources (e.g., beds, ORs and surgical teams), a way to reduce 

the number of cancellations and obtain a more robust solution consists of running the 

Day

O
R

 u
ti
liz

a
ti
o
n
 r

a
te

 [
%

]

28272625242322212019181716151413121110987654321

130

120

110

100

90

80

70

60

50

40

30

20

10

0

Day

B
e
d
 u

ti
liz

a
ti
o
n
 r

a
te

 [
%

]

28272625242322212019181716151413121110987654321

130

120

110

100

90

80

70

60

50

40

30

20

10

0



28 

optimisation model while considering a smaller amount of resources than what is 

actually available (Hans et al., 2008). By introducing resource slacks, the 

optimisation model schedules fewer surgeries and, consequently, the obtained 

solution likely gives rise to fewer cancellations and to less overtime.  

However if the decrease of cancelled surgeries (Δω<0), is smaller than the decrease 

of the planned surgeries (ΔN<0), then also the number of executed surgeries 

decreases (Δε=ΔN-Δω<0). In other words, utilising a more robust schedule likely 

leads to the execution of fewer surgeries. Consequently, the benefits in terms of 

patient satisfaction arising from the reduction in cancellations need to be balanced 

against the (opportunity) costs of executing fewer surgeries. Hereafter, we illustrate 

how the simulation and optimisation models can be used jointly to manage this trade-

off between robustness and efficiency. The combined optimisation–simulation 

approach is based upon three steps. 

1. Optimisation. The optimisation model runs in several different configurations. In 

each configuration, the model finds a solution that is based on an OR available 

time and on the availability of a certain number of beds, which are reduced by a 

percentage equal to h%  and b% , respectively, with respect to real values. The 

number of surgeries that the optimisation model will plan (N), as well as the total 

planned surgery duration (P) (left-hand-side of Constraints (4.5)), obviously 

depend on h%  and b% , i.e., N=N( h% , b% ) and P=P( h% , b% ). 

2. Simulation. Each solution obtained in the previous step undergoes several 

simulation runs. The simulation is carried out by considering the real number of 

beds and the real total OR available time. The number of cancellations (Ω), the 

number of surgeries executed (Ε), and overtime (Θ) will depend upon h%  and 

b%  as well, i.e., Ω=Ω( h% , b% ), Ε=Ε( h% , b% ), Θ=Θ( h% , b% ). 

3. Analysis. The results of the simulations are analysed to identify solutions with an 

acceptable robustness. To identify the acceptable robustness levels, we proceed 

as follows. For each configuration ( h% , b% ) we define a cancellation threshold 

T  and an overtime threshold T . The former is calculated as a percentage %  of 

the number of planned surgeries (i.e., T = % N( h% , b% )). The latter is 

calculated as a percentage %  of the total planned surgery duration (i.e., T = %

P( h% , b% )). The solutions for which the probability of exceeding at least one of 
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these two thresholds is smaller than 0.05 are considered ‘robust’. Among the 

robust solutions, we choose the one allowing, on average, for the execution of the 

highest number of surgeries. 

The results of the application of the combined approach to the Meyer Hospital case 

are illustrated in the next subsection. 

 Combined approach results  7.4.1

We defined 11 different possible values for h%  and b%  (i.e., 0%, 2%, 4%, 6%, 8%, 

10%, 12%, 14%, 16%, 18% and 20%), thereby obtaining 121 different 

configurations. Hence, for each configuration, we solved the optimisation model and 

carried out 20 simulation runs. To identify the acceptable solutions, we have set % =

% =1%. Then, for each configuration, we performed two one-tailed t-tests and 

calculated the relevant p-values ( 1p , 2p ) (Montgomery & Runger, 2002, p. 337). 

With the first t-test, we tested whether the mean value of the number of cancelled 

surgeries ( ) was significantly smaller than T . In statistical terms, we tested the 

null hypothesis,  TH :0 , against the alternative hypothesis,  TH :1 .With the 

second t-test, instead, we tested whether the mean value of the overtime ( ) was 

significantly smaller than T  (in this case,  TH :0  and  TH :1 ). The 

configurations for which   or   were not significantly smaller than their threshold 

values (p>0.05) were discarded. For all the remaining configurations, we carried out 

a Pearson correlation analysis revealing that   and   were not significantly 

correlated (p>0.05). Hence, for each of these configurations, we calculated the 

probability ( 12p ) of considering the configuration acceptable when it actually is not. 

To do so, we operated as follows. For each of the aforementioned t-test i, the 

probability of no Type I error is (
ip1 ). Hence, since the variables   and   were 

not correlated, the overall probability of no Type I error is 

)1)(1()1( 2112 ppp   and, consequently, the probability of at least one Type I 

error is equal to  )1)(1(1 2112 ppp  . Therefore, we considered as acceptable 

those configurations for which p12<0.05. Fig. 5 shows the contour maps plotted 

against h%  and b% , respectively, of the planned surgeries (N) and of the mean 

values of the executed surgeries ( ), the cancellations ( ) and overtime ( ).  
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FIG. 5. Contour maps of N (upper left graph), 𝜺̅ (upper right graph), 𝝎̅ (lower left graph) and 𝜽̅ (lower right graph)  

%h

%
b

645

635

625

615

600

585

570

555
540

645

635

625

615

600

585

570

555
540

20181614121086420

20

18

16

14

12

10

8

6

4

2

0

%h

%
b

600

595

590

585

580

575

570

565

560

550
540

600

595

590

585

580

575

570

565

560

550
540

20181614121086420

20

18

16

14

12

10

8

6

4

2

0

%h

%
b

40 35

30

25

20

15

10

5

3

1

40 35

30

25

20

15

10

5

3

1

20181614121086420

20

18

16

14

12

10

8

6

4

2

0

%h

%
b

15

12

11

9

8

6

5

4

4

4

3

2

15

12

11

9

8

6

5

4

4

4

3

2

20181614121086420

20

18

16

14

12

10

8

6

4

2

0



31 

The dots in each graph of Fig. 5 represent the configurations that were investigated. 

The black dots represent the acceptable configurations, whereas the white dots 

represent the unacceptable (non-robust) ones. Table 13, instead, shows the simulation 

results (mean, Standard Error SE, threshold value Tω, t-value with the relevant 

degrees of freedom t(19) and p-value pi) in correspondence with the acceptable 

configurations. Due to space constraints, here we only show the results relative to the 

robust configurations allowing the execution of at least 565 surgeries.  

TABLE 13. Hospital performance in correspondence with the acceptable 

configurations 

Config. N P 
 

Executed 

surgeries 
 Cancelled surgeries  Overtime (h)  

p12 

 Mean SE  Mean SE Tω t(19) p1  Mean SE Tθ t(19) p2  

(10,12) 586 661.2  582.4 0.6  3.6 0.6 5.9 -3.9 0.001  5 0.5 6.6 -3 0.004  0.004 

(10,14) 579 648.8  576.3 0.5  2.7 0.5 5.8 -6 0.000  4.1 0.4 6.5 -6.8 0.000  0.000 

(10,16) 570 640.1  569.2 0.3  0.8 0.3 5.7 -17.7 0.000  5.5 0.5 6.4 -1.8 0.046  0.046 

(12,12) 574 648.5  570 0.6  4 0.6 5.7 -2.9 0.005  4.3 0.4 6.5 -5.9 0.000  0.005 

(14,10) 580 656.8  575.8 0.7  4.2 0.7 5.8 -2.2 0.018  4.5 0.3 6.6 -6.5 0.000  0.018 

(14,12) 573 651.9  569.6 0.6  3.4 0.6 5.7 -4 0.000  3.9 0.4 6.5 -7.7 0.000  0.000 

 

Looking at Fig. 5 and at Table 13, it is possible to draw several conclusions. First, a 

trade-off between robustness and efficiency does exist. As a matter of fact, the 

configurations characterised by high robustness are clearly separated from those 

characterised by high numbers of planned and executed surgeries. The former are 

situated in the upper-right part of the contour maps, whereas the latter are in the 

lower-left corner. Second, the configurations associated with robust solutions are 

characterised by moderately high values of both h%  (e.g., h% ≥10%) and b%  (e.g., 

b% ≥10%). Hence, acting on only one type of resource slack brings about 

unsatisfactory solutions. In fact, increasing only b%  keeping h% =0, while leading 

to a small number of cancellations, also gives rise to high amounts of overtime. 

Instead, by increasing h%  keeping b% =0, it is possible to reduce overtime, but the 

number of cancellations remains high. Third, when the values of h%  and b%  are 

too high (e.g., h% ≥14% or b% ≥16%, or both) the number of executed surgeries 

decreases too much. Fourth, the best configuration is the one characterised by h%

=10% and b% =12%. Among the acceptable solutions, this is, in fact, the 

configuration that has, on average, the highest value of executed surgeries. Table 14 

compares the performance obtained utilising only the optimisation model with the 
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outcomes associated with the combined approach. Both solutions refer to the base 

scenario (see Section 6). 

TABLE 14. Combined approach results: base scenario 

 

Base Configuration  

 (%h=0; %b=0) 
 

Best Configuration 

(%h=10; %b=12) 

Optim. 

output 

Simulation output  Optim. 

output 

Simulation output 

 Mean SE Min Max  Mean SE Min Max 

Planned surgeries 651 651 - 651 651  586 586 - 586 586 

OR utilisation rate [%] 83.2 76.8 0.2 75.4 78.2  74.2 73.7 0.2 72.4 75.5 

Bed utilisation rate [%] 81.8 77.5 0.1 76.4 78.6  72 73.8 0.2 72.6 75.4 

Overtime [h] - 16.3 0.9 9.4 23.3  - 5 0.5 1.3 9.7 

Cancelled surgeries - 46.9 1.4 35 59  - 3.6 0.6 0 9 

Executed surgeries - 604.1 1.4 592 616  - 582.4 0.6 577 586 

 

If compared with the solution of the optimisation model, the one obtained with the 

combined approach is characterised by a number of cancellations that is significantly 

smaller (t(25)=28.25, p=0.000) and by a significantly smaller amount of overtime 

(t(31)=10.87, p=0.000), i.e., it is more robust. Such a solution will, therefore, lead to 

higher patient satisfaction, better control of the waiting list and lower costs. These 

benefits, however, need to be balanced against the opportunity cost of executing 

significantly fewer surgeries (t(25)=14.16, p=0.000). 

 Scenario analysis 7.4.2

In this section, we illustrate an example of the application of the combined approach 

to a scenario analysis. In particular, we investigate scenarios 1 (ΔBed=10%), 2 (ΔOR 

time=10%) and 3 (ΔBed=ΔOR=10%), presented in Section 7.2.2.1. 

To apply the combined approach, for each scenario analysis we investigated 121 

configurations (obtained with the same criteria that were described in Section 7.2.2). 

After we identified the robust configurations, we chose the best one. The results of 

the scenario analyses are summarised in Table 15 and commented upon hereafter. 

TABLE 15. Combined approach results: scenario analysis 

 

 Scenario 1 

 (ΔOR=0% ΔBed=10%) 

Best configuration 

 (%h=10; %b=12) 

 Scenario 2 

(ΔOR=10% ΔBed=0%) 

Best configuration 

(%h=10; %b=14) 

 Scenario 3 

(ΔOR=10% ΔBed=10%) 

Best configuration 

(%h=14; %b=16) 

  Mean SE Min  Max  Mean SE Min Max  Mean SE Min Max 

Planned  625 - 625 625  592 - 592 592  633 - 633 633 

OR utilisation rate [%]  78.7 0.2 77 80.1  67.7 0.1 66.5 68.6  72.1 0.2 70.3 73.2 

Bed utilisation rate [%]  70.7 0.2 69.1 71.6  72.1 0.2 70.9 73,4  69.6 0.2 68.6 71.4 

Overtime [h]  4.9 0.5 1.4 9.8  5.2 0.4 1.8 9.2  5.5 0.4 2.6 9.4 

Cancelled surgeries  2.5 0.5 0 8  4.6 0.6 0 8  4.2 0.7 0 10 

Executed surgeries  622.5 0.5 617 625  587.4 0.6 584 592  628.8 0.7 623 633 
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By comparing the results presented in Table 15 with those relevant to the base 

scenario (Table 14), it is possible to observe that: first, adding 10% more beds 

(scenario 1) leads to an increase in the number of executed surgeries 

(+40.1%/+6.9%). This is, on average, relatively higher than the number that can be 

obtained by increasing the OR available time by 10% (+5%/+0.8%, scenario 2). 

Second, increasing the OR available time by 10% once 10% more beds have already 

been added (i.e., moving from scenario 1 to scenario 3) allows, on average, the 

execution of only 6.3 additional surgeries (+1%).  

It is worth noting that scenario analysis based on the combined approach allows us to 

take decisions based on accurate estimates of the performance that the hospital will 

actually achieve if the investigated solutions are implemented. On the contrary, if we 

utilise only the optimisation model, the comparison of scenarios would be based on 

solutions that neglect the randomness of the data. These solutions, unfortunately, can 

differ a great deal from those that will actually be implemented. Consequently, the 

resulting comparison can be misleading. In fact, in Section 7.2.2.1, we concluded 

that increasing the OR available time by 10%, after having added 10% more beds, 

would allow for the planning of 43 more surgeries. Unfortunately, however, the 

combined approach has revealed that such a solution is not acceptable and that the 

best acceptable solution associated with the third scenario ( h% =14%, b% =16%) is 

characterised, on average, by a mere 6.3 more executed surgeries than the best 

acceptable solution associated with the first scenario ( h% =4%, b% =14%). 

Therefore, investments to increase the OR available time, if undertaken exclusively 

on the basis of the optimisation model results, will probably fail to produce the 

expected returns. 

 

8 Conclusions and future research 

This paper offers two main contributions to the research on the master surgical 

scheduling problem. It presents both an original MIP model and an original 

combined optimisation–simulation approach. The MIP model allows us to obtain a 

MSS that permits the maximisation of patient throughput and control of hospital 

waiting lists. The combined optimisation–simulation approach, instead, allows us to 

obtain a robust MSS while effectively trading off robustness and efficiency. Our 

study has, therefore, notable practical implications as well. By applying the presented 

combined approach, hospital managers can obtain a MSS that is characterised by the 
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desired degree of robustness, and will thus be better able to manage waiting lists and 

make more informed investment decisions. Moreover, the adoption of surgery groups 

can simplify the short-term assignment of cases to OR time slots (the third step of the 

surgical scheduling process). In fact, the combined approach, if applied to the Meyer 

Hospital case, would help improve the hospital’s performance in three ways. First, by 

selecting the best robust configuration (i.e., h% =10, b% =12), the Planning 

Department would have scheduled 582 surgeries instead of 495. Since the MSS 

suggests a pool of cases, i.e., those needing surgeries that fall within specific surgery 

groups, eligible to be scheduled, it would have been easier for the Planning 

Department to fill in the schedule. In addition, when necessary, it would have made it 

easier to replace unavailable patients on short notice without significant schedule 

disruptions. Third, by executing the surgeries planned in the MSS, the hospital would 

have appropriately utilised the waiting lists, reduced its backlog and experienced a 

maximum of nine overbooking cancellations. 

However, the scenario analysis presented here does not suffice to support the 

hospital’s investment decisions. These decisions would also require taking into 

account the costs that adding resources (e.g., surgical teams, beds, or OR time) 

would incur, and they should not be based solely on one problem instance. 

Nonetheless, our study demonstrates that the combined approach can offer more 

accurate scenario analyses. 

This study, of course, is not without its limitations. First, as we illustrated in Section 

5, the MIP model might be difficult to apply to support a master surgical scheduling 

process with a planning horizon of one month in large hospitals (e.g., a hospital with 

more than 10 ORs and 94 beds). In these settings, in fact, the applicability of the 

presented approach can be undermined by excessive computational time. To address 

these problems, ad-hoc algorithms should be purposely developed. Second, we have 

not investigated how different ways of grouping the procedures into surgical groups 

might affect the model’s solution. Third, we have neglected to factor in certain 

hospital resources (e.g., ICU, electro-medical devices) that were not considered 

critical in our setting, but that in other hospitals may be highly critical. Finally, since 

in our setting non-elective patients are handled with dedicated resources (i.e., 

dedicated OR, time slots and beds), we only considered elective patients. 

Nonetheless, the presented combined approach would also seem promising for the 

study of the impact of the randomness caused by emergencies, urgencies and no-

shows on hospital performance.  
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The development of ad-hoc algorithms to solve large problem instances, the addition 

of new resource constraints, the investigation of different ways of clustering 

procedures into surgery groups and the incorporation of emergencies, urgencies and 

no-shows into the simulation model will certainly be the object of our future research 

efforts. 
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1 Introduction 

The Operating Theatre (OT) is one of the most critical functional areas in a hospital. 

It drives almost 70% of the hospital’s admissions and determines most of its costs 

(Denton et al., 2007). Improving the OT performance, thus, represents a strategic 

objective for a growing number of hospitals. In this regard, hospital managers have 

widely recognised that the performance of the OT largely depends on the way the 

surgical activities are scheduled (Litvak and Long, 2000, Guinet and Chaabane, 

2003). This challenging topic has encouraged the development of a significant 

number of mathematical models that support the surgical planning and scheduling 

process (Cardoen et al., 2010, Guerriero and Guido, 2011, May et al., 2011, 

Dobrzykowski et al., 2013). 

In the literature, such a process is considered to entail three stages i.e., case mix 

planning, master surgical scheduling (MSS) and patients scheduling, where the 

output of the upstream stage is the input of the downstream one (Beliën and 

Demeulemeester, 2007). 

In the case mix planning stage, each specialty (e.g. urology, orthopaedic surgery, 

etc.) is assigned with a total OR time, which is usually expressed in terms of sessions 

per week/month. The master surgical scheduling stage, instead, consists in producing 

a timetable (the MSS) where a specialty is assigned to each OR session for each day 

of the planning horizon. Finally, in the patients scheduling stage, patients who have 

to undergo surgery are selected and sequenced within each session of the MSS. 

This study focuses on the second stage, i.e. the MSS problem. Coherently with 

Banditori et al. (2013 and 2014), in this study we consider a situation where the case 

mix planning, has already been performed and we address the problem of 

determining: (i) the specialty (or specialties) to assign to each operating room (OR) 

and session of each day of the planning horizon; (ii) the number and type of surgeries 

that should be performed in each OR session (van Oostrum et al., 2008). Such a plan 

serves as an input for the patient scheduling stage. Solving a MSS problem has been 

proven to be extremely complex. Indeed, it requires taking into account many 

resources (ORs, post-surgical beds, surgical teams, ICU) and dealing with the 

randomness of surgical times (ST) and patients’ length of stay (LoS) (Cardoen et al., 

2010, Guerriero and Guido, 2011). In addition, it necessitates to take into 

consideration the conflicting priorities of different stakeholders, e.g. hospital 

managers, surgeons, nurses, patients (Glouberman and Mintzberg, 2001, Marcon et 

al., 2003). 
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In general, to fulfil the expectations of these stakeholders a MSS should be efficient 

(Cardoen et al., 2010, Guerriero and Guido, 2011), balanced (Litvak and Long, 

2000) and robust (Banditori et al., 2013, 2014). In fact, it should allow for the 

increase of revenues and for the reduction of waiting times by maximising the 

number of patients scheduled (efficiency). In addition, it should determine a fair 

allocation of the workload among the people (doctors, nurses, etc.) working in the 

OT and in the post-surgical wards (balancing). Finally, it should prevent schedule 

disruptions, i.e. it should prevent OR overtime and/or bed overbooking that are 

usually caused by the variability of both ST and LoS (robustness). 

This study is based on a combined optimisation-simulation approach and has a 

twofold aim: 

i. compare three different scheduling policies and identify the one that under 

given operational conditions allows for the trade-off between efficiency, balancing 

and robustness best fitting the hospital priorities and its needs, 

ii. explain why in certain conditions certain scheduling policies are superior to 

the others. 

All the investigated policies aim to maximise the number of scheduled surgeries and 

to balance the utilisation of both post-surgical beds (hereafter beds) and ORs. 

However, these policies adopt different balancing criteria. The first policy (hereafter 

referred to as minMax) minimises the maximum daily utilisation of beds and ORs. 

The second one (hereafter referred to as minRng), instead, minimises the range 

between the maximum and minimum utilisation of these resources. Finally, the third 

policy (hereafter referred to as minOvrn), minimises the overrun, i.e. the positive 

deviation between the actual resource utilisations and target utilisation values. 

In this study, we develop a mixed-integer programming (MIP) model, which is based 

on the models presented in Banditori et al. (2013 and 2014) and compare three 

alternative objective functions. 

Each objective function corresponds to one of the aforementioned scheduling 

policies. The model variables and constraints do not vary across policies. We assume 

that the cases in a hospital’s waiting list can be classified into homogeneous surgery 

groups that are based on the resources (e.g. ORs, beds) that they are expected to 

require. Hence, the model produces a solution (the MSS) indicating the number of 

cases to treat and the surgery group these cases must belong to for each day of the 

planning horizon, for each OR, and for each session of the day. Such a solution also 

has to satisfy Quality of Service (QoS) requisites, i.e. it should allow the desired 

case-mix and the desired level of OR utilisation to be obtained. 
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The MIP model assumes deterministic values for the parameters ST and LoS. Thus, 

to assess the impact that the variability of these parameters has on the MSS 

robustness, we use a discrete-event simulation model. Such a model samples the 

values of ST and LoS from suitable probability distributions. By combining 

optimisation and simulation, we are able to calculate the overtime and the 

overbooking that would emerge as a consequence of the implementation of a given 

MSS. 

The underlying conjecture of this study is that, in general, if the daily utilisation 

profiles of ORs and beds are nicely balanced, there should be some idle resources to 

absorb the unexpected peaks caused by ST and LoS variability (Beliën et al., 2009). 

In other terms, a higher balancing should lead to a higher robustness, especially when 

average resource utilisation is high. However, resource balancing can be achieved by 

using different scheduling policies, where each policy allows for the scheduling of a 

different number of surgeries (efficiency). In this study, the trade-off between 

efficiency, balancing and robustness is empirically investigated. 

The main contribution of this work is to offer fresh insights into the relationship 

between efficiency, balancing and robustness in the surgical scheduling field, and to 

provide a thorough assessment of the pros and cons associated with the utilisation of 

three alternative scheduling policies. This work is based on real data from the Meyer 

University Children’s Hospital (hereinafter Meyer Hospital) a leading Italian 

hospital. Starting from this data, we create 26 additional “realistic” hospital settings, 

thus to compare the scheduling policies in different scenarios. Moreover, to increase 

the external validity of our findings, the schedules produced in the optimisation 

phase have been simulated using both empirical distributions and theoretical 

(lognormal) distributions, for both ST and LoS.  

The major findings of our work are that: 

(i) a scheduling policy that allows achieving for a given hospital setting, superior 

performances in terms of efficiency and balancing and robustness, does not exist;  

(ii) in general, when the focus is on efficiency, the best policy is the one that 

minimises the resources utilisation range (minRng). This policy allows for the 

containment of the overtime and for a good balancing of both beds and ORs. On the 

contrary, when the focus is on how to avoid overbooking, other policies (minMax, 

minOvrn) should be preferred. 

(iii)  these results are consistent across different distributional models 

Another important contribution of this study is to explain the causal mechanisms that 

make some scheduling policies outperform the others. 
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The empirical results of this work are organised in tables (Table 5 to Table 12) that 

can help managers in choosing the scheduling policies that best fit their own hospital 

settings and priorities. 

The remainder of the paper is organised as follows: in Section 2, we provide a review 

of the literature. In Section 3, we present the characteristics of the addressed MSS 

problem. In Section 4, we describe the optimisation and simulation models. In 

Section 5, we illustrate the experimental campaign we have carried out, whose 

results are presented in Section 6. Subsequently, in Section 7, we draw the 

conclusions and outline the direction of our future research efforts. 

2 Literature review 

Balancing/levelling issues emerge from different fields of application, i.e. machine 

scheduling (Sen et al., 1995, Caramia and Dell'Olmo, 2003), crew scheduling 

(Cappanera and Scutellà, 2011), project scheduling (Neumann and Zimmerman, 

1999), surgical scheduling (Banditori et al 2014) and have been the object of a large 

number of contributions.  

In this review, we primarily focus on works studying the workload balancing 

problem in the MSS context, i.e. the problem of equally distributing a certain 

workload among a given set of resources (e.g. beds, ORs). The papers reviewed here 

are analysed according to the following seven dimensions: (i) balancing criteria, i.e. 

the criterion adopted to balance resource utilisation; (ii) balanced resources, i.e. the 

resources whose utilisation is balanced; (iii) solution technique, i.e. the typologies of 

model/s adopted to solve the problem addressed; (iv) type of analysis, i.e. the 

approach followed to solve the problem; (v) uncertainty, that indicates if the 

parameters used in the model/s are deterministic or stochastic and, in this latter case, 

if the effect of randomness is assessed ex-post via simulation; (vi) types of 

distributions, i.e. empirical, theoretical or both, used to model the stochasticity of ST 

and/or LoS; (vii) investigated setting, i.e. the number and the type (real and/or 

realistic) of hospital settings where the proposed models are tested, and the number 

of dimensions (experimental factors) used to differentiate the settings from each 

other. Dimensions (iii) and (iv) are taken as is from the review scheme given by 

Cardoen et al. (2010). Dimensions (v) and (vii) has been adapted by adding some 

details. Dimensions (i), (ii) and (vi) have been developed ex-novo. The review is 

organised in tabular form and presented in Table 1. Each column of the table 

represents one dimension, while each row represents a paper. In order to emphasise 

the differences between our study and the related literature we have added one row 

representing our study.  
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As it can be observed in Table 1, the minimisation of the maximum utilisation is the 

most common balancing criterion. It can involve one or more resources, thus 

respectively entailing the minimisation of a single maximum value of daily 

utilisation or the sum of the maximum daily utilisation values.  

Referring to the balanced resources, beds (belonging to a single or multiple 

wards/hospitals) are considered in all of the examined papers. In these papers, the 

major aim of this balancing is to reduce the bed utilisation variability thus to prevent 

schedule disruptions and patient cancellations. In addition, some authors also 

consider other resources (e.g. IC beds, IC nurses). In the literature, OR balancing is 

only addressed by Adan et al. (2009) and Banditori et al. (2014). Most of the 

examined papers deal with the LoS randomness. Instead, ST randomness is only 

considered by van Oostrum et al. (2008) and Banditori et al (2014). 
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Table 1- The MSS balancing literature review 
 Balancing criteria Balanced resources Solution technique Type of analysis Uncertainty Type of distr. Investigated settings 

Our study  Minimisation of the maximum daily 

utilisation 

Minimisation of the difference 

between the maximum and the 

minimum daily utilisations 

Minimisation of the sum of the 

quadratic overrun  

ORs 

Beds of a single 

ward 

Mixed integer 

programming 

Quadratic 

programming 

Discrete-event 

simulation 

Single criterion 

exact optimisation 

Scenario analysis 

Stochastic ST (ex-

post) 

Stochastic LoS (ex-

post) 

Empirical 

Theoretical 

 

1 real setting 

26 realistic settings 

3 experimental factors 

(Beds/ORs ratio, OR 

utilisation rate and case 

MIX) 

Santibáñez et al. 

(2007) 

Minimisation of the sum of the 

maximum daily utilisations 

Beds of different 

hospitals 

Mixed integer 

programming 

Single criterion 

exact optimisation 

Deterministic ST 

Deterministic LoS 

None 1 real setting 

van Oostrum et 

al. (2008) 

Minimisation of the maximum daily 

utilisation 

Beds of different 

wards 

Mixed integer 

programming 

Column generation 

Decomposition 

approach 

Multi-criteria 

exact/heuristic 

optimisation 

Stochastic ST 

Deterministic LoS 

Empirical 1 real setting 

35 realistic settings 

3 experimental factors 

(Planning horizon, N° of 

ORs. N° of bed types) 

Adan et al. 

(2009) 

Minimisation of the deviation from a 

target utilisation 

ORs 

Medium care beds 

IC beds 

IC nurses 

Mixed integer 

programming  

Single criterion 

exact optimisation 

Deterministic ST 

Deterministic IC 

nursing load 

Stochastic LoS  

Empirical 

Theoretical 

1 real setting 

Beliën et al. 

(2009) 

Minimisation of the weighted sum 

of the quadratic mean and variance 

of the utilisations  

Beds of different 

wards 

Mixed integer 

programming 

Quadratic 

programming 

Goal programming 

Simulated annealing 

Multi-criteria 

exact/heuristic 

optimisation 

Stochastic Los Empirical 1 real setting 

1 realistic setting 

1 experimental factor 

(Planning horizon) 

 

Chow et al. 

(2011) 

Minimisation of the sum of the 

maximum daily utilisations  

Beds of different 

wards 

Mixed integer 

programming 

Single criterion 

exact optimisation 

Scenario analysis 

Deterministic ST 

Stochastic LoS (ex-

post) 

Empirical 1 real setting 

Carter and 

Ketabi (2012) 

Minimisation of the sum of the 

maximum daily utilisations  

Beds of different 

wards 

Integer programming Single criterion 

exact optimisation 

Deterministic ST 

Stochastic LoS 

Theoretical 1 real setting 

Banditori et al. 

(2014) 

Minimisation of the maximum daily 

utilisation 

Minimisation of the difference 

between the maximum and the 

minimum daily utilisations 

ORs 

Beds of a single 

ward 

Mixed integer 

programming 

Discrete-event 

simulation 

Single criterion 

exact optimisation 

Scenario analysis 

Stochastic ST (ex-

post) 

Stochastic LoS (ex-

post) 

Empirical 1 real setting 

4 realistic setting 

1 experimental factor (OR 

utilisation rate) 
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It is worth pointing out, however, that the papers in Table 1 are not the only works 

addressing the robustness issues in the surgical scheduling field. There are, indeed, 

studies that address these issues, also considering different sources of randomness. 

However, they do not investigate the relationship between robustness and resources 

balancing. For instance, Mannino et al. (2012) propose a pattern based MIP model 

for the MSS and apply a light robustness approach (Fischetti and Monaci, 2009) to 

cope with the uncertainty associated with the surgery demand. Hans et al. (2008) 

instead address the patient scheduling problem by proposing different heuristics, in 

which one of the objectives is to minimise the risk of overtime. They consider 

stochastic STs and exploit the portfolio effect, thus to minimise the required OR 

slacks. Resource slacks are also used in Banditori et al. (2013) both for beds and 

ORs. There an optimisation-simulation approach is used to determine the resource 

slacks that best fit the hospital needs. A combined optimisation-simulation approach 

is also used by Lamiri et al. (2009), who combine Monte Carlo simulation and mixed 

integer programming to address problems where OR capacity is shared by elective 

and emergency patients, and by Zhang et al. (2008), who propose a MIP model and 

then test the robustness of the model’ solutions against the randomness of surgery 

demand, via simulation. Choi and Wilhelm (2014), instead, solve a block surgical 

schedule problem following a newsvendor approach. Specifically they assume 

normally distributed ST and determine the duration and the sequence of the OR time 

blocks in order to minimise the costs associated with the expected early or late 

completion of the OR activities. 

In sum, within the MSS literature, only the study of Banditori et al. (2014) explores 

how to obtain MSSs that are robust against both ST and LoS variability, by balancing 

both beds and ORs. However, such a study presents a number of shortcomings. First 

and foremost, it compares two balancing criteria, namely minMax and minRng, but 

does not explain why in certain conditions and for certain performances one criterion 

performs better than the others. Second, the study’s computational campaign 

includes only a limited number of very similar hospital settings and it is based on 

empirical distributions only. These facts clearly hamper the external validity of the 

study findings that are, indeed, very context-specific. Third, the study of Banditori et 

al. (2014) does not consider a fairly well known balancing criterion, i.e. the minOvrn 

one (Sen et al., 1995). Our study overcomes all these shortcomings. Indeed, we 

compare three balancing criteria, through an extensive computational campaign that 

combines 27 hospital settings and both empirical and theoretical distributions. Such 
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experimental campaign allowed us to explain why some criteria outmatch the others 

and to obtain results that are generalizable to a wide set of hospital settings. 

In the following section, we will present the models used to make these comparisons 

and to address the aforementioned literature gaps. 

3 Problem addressed 

In this study, we consider a planning horizon expressed in days and three critical 

resources: surgeons, ORs and beds. We assume that the hospital can always rely on a 

sufficient number of OR nurses and anaesthetists, thus, these resources are not 

included in the model. Consistently with Banditori et al. (2013 and 2014), we 

organise the elective cases in the waiting list in specialties and within the same 

specialty, in surgery groups, including surgeries with similar ST and LoS (see 

Section 5.2). Each specialty is assigned with a certain number of time slots per week, 

which depends on the number of surgeons the specialty relies on. We hypothesise 

that once a specialty is assigned to a certain time slot it will always be able to deploy 

a surgeon team suitable to execute the surgeries scheduled in that time slot. ORs are 

characterised by an available time, which is subdivided into a set of time slots. Beds 

accommodate patients after the surgery. Based on its surgery group, a case occupies 

one OR for a time equal to ST and one bed for a time equal to LoS. 

The problem we address consists in determining, for each OR, for each time slot and 

for each day of the planning horizon:  

(i) the specialty to schedule, and 

(ii) the number of surgeries belonging to each surgery group that should be 

performed 

with the aim of maximising the number of surgeries scheduled and balancing the 

beds and OR daily workloads. 

In addition, the solution must also comply with some of the hospital’s management 

requirements (QoS requisites). These requirements pertain to the case-mix and the 

OR target utilisation. The former specify that the mix of surgeries in the MSS has to 

reflect on the mix of the surgeries on the waiting list. To this aim, the cases in the 

waiting list are organised into classes according to their LoS and ST. Specifically, 

with regard to the LoS, the cases are subdivided in two classes: the ones with a short 

LoS (short-stay surgeries) and the ones with a long LoS (long-stay surgery); on the 

other side, with regard to the ST, the cases are subdivided into the following two 
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classes: short lasting surgeries and long lasting surgeries. Then, the case mix 

constraints specify that for each class, the scheduled surgeries in that class fall within 

a minimum and maximum percentage of the overall scheduled surgeries; the range is 

consistently defined with the dimension of the class in the waiting list. The latter 

QoS requisite sets a range, where the average OR utilisation should fall. By fixing 

the case mix, on the one hand, it is possible to avoid leaving an excessive number of 

complex cases (i.e. with long LoS and/or ST) on the waiting list, which would make 

the scheduling process more complex in the following periods. On the other hand, it 

is possible to avoid hospitalising an excessive number of complex cases at the same 

time, thereby reducing the clinical risk (Vincent et al., 1998). Similarly, by setting a 

range for the OR utilisation, the management ensures that the solution complies with 

the given efficiency targets (lower bound) and, at the same time, it avoids an 

excessive OR utilisation (upper bound), which could result in an excessive OT 

personnel workload. 

The optimisation and simulation models we developed in this study are thoroughly 

described in the next section. 

4 Models 

4.1 Optimisation model 

Let us define the following sets and parameters: 

D the set of days of the planning horizon, indexed by d 

D  the set of days in D in which the ORs are open 

T the set of time slots, indexed by t 

O the set of ORs, indexed by o 

S the set of surgical specialties, indexed by s 

K the set of surgery groups, indexed by k 

G the set of the ST classes, indexed by g (short-lasting vs. long-lasting 

surgeries) 

J the set of the LoS classes, indexed by j (short-stay vs. long-stay 

surgeries) 

Hodt the available time of OR o, on day d and time slot t 
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Fd the number of beds available on day d 

sk the specialty of surgery group k 

gk the ST class that the surgery group k belongs to 

jk the LoS class that the surgery group k belongs to 

ck the average surgery duration of surgery group k 

gG ,
g

G  the maximum and the minimum percentage of schedulable surgeries 

belonging to the g-th ST class 

jJ ,
j

J  the maximum and the minimum percentage of schedulable surgeries 

belonging to the j-th LoS class 

U ,U  the upper and the lower threshold on the total OR utilisation 

W1, W2, W3 the weights used in the objective functions. 

The problem mathematical formulation involves two families of main variables each 

of them related to a specific kind of decision: the binary assignment variables x and 

the non-negative integer scheduling variables y. The former define which specialty is 

assigned to each OR in each day and in each time slot of the planning horizon. The 

latter define the number of surgeries scheduled in each time slot for each surgery 

group. Specifically,  

xsodt binary, 1 if specialty s is assigned to OR o on day d and time slot t, 0 

otherwise  

ykodt the number of surgeries in surgery group k assigned to OR o on day d 

in time slot t. 

Hereafter we discuss the feasibility set these variables belong to, splitting it in two 

blocks: the first block refers to constraints that are quite common in any hospital 

setting and that have already been widely discussed and used in the literature. The 

second block of constraints, instead refers to quality of service (QoS) constraints 

which reflect the peculiarities of the specific settings addressed, though quite 

widespread, and to the definition of balancing criteria. 
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The feasibility constraints belonging to the first block are described informally 

without giving their mathematical formulation. The interested reader is referred to 

Banditori et al. (2014) for a detailed description. They include constraints that 

control the following issues: (i) at most one surgical specialty can be assigned to a 

given OR in each time slot of the planning horizon; (ii) in each time slot, a given 

specialty cannot occupy more than one OR; (iii) the correct binding of the 

assignment variables x and scheduling variables y: specifically, these constraints 

guarantee that no surgery of a given specialty is scheduled in a given OR and time 

slot, unless that specialty has been assigned to that OR in that time slot; (iv) the total 

time consumed by all the surgeries scheduled in a given OR, in each time slot, cannot 

exceed the available OR time; (v) the computation of the number of beds occupied in 

each day properly keeping into account the average number of days of 

hospitalisation, before and after surgeries; and (vi) the surgeons availability for each 

week, i.e. the number of slots assigned to a given specialty in a given week cannot 

exceed the number of slots that such a specialty can cover with the surgeons 

available. In the following the feasibility set defined by the constraints (i) to (vi) is 

referred to as set E. 

Conversely, the second block of feasibility constraints is defined in a more formal 

way. In addition to the assignment (x) and scheduling variables (y), let us define the 

following auxiliary variables: 

zd the number of beds occupied on day d 

uodt the utilisation rate of OR o, on the day d and time slot t 

vd the utilisation rate of beds on day d. 

Using these variables and the parameters listed at the beginning of this section, we 

can complete the definition of the feasibility set as follows: 

d d
z F d D   (4.1.1) 

, : ,
, ,, ,

       g
kodt kodt kodtg

k K o O k K g g k K o Ok
d D t T d D t To O d D t T

G y y G y
     
     

          g G   (4.1.2) 

, : ,
, ,, ,

       j
kodt kodt kodtj

k K o O k K j j k K o Ok
d D t T d D t To O d D t T

J y y J y
     
     

          j J   (4.1.3) 
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(4.1.6) 

sodt
Ex        , , ,s S o O d D t T         (4.1.7) 

kodt
y E       , , ,k K o O d D t T         (4.1.8) 

A brief description of the constraints follows. Constraints (4.1.1) guarantee that the 

number of beds occupied in each day of the planning horizon does not exceed the 

bed availability. Constraints (4.1.2) and (4.1.3) are the case mix constraints. The first 

control the composition of the mix of surgeries in terms of ST; for each ST class, 

they state that the number of scheduled surgeries in the class falls inside a pre-

defined range. The second are the counterparts for the LoS classes and assure that the 

number of scheduled surgeries belonging to each LoS class falls in a specified range. 

Constraints (4.1.4) and (4.1.5) respectively compute the daily utilisation rate of OR 

time slots and beds. These auxiliary variables are only inserted for matter of clarity. 

Constraint (4.1.6) pertains to the OR utilisation target and imposes that the average 

OR utilisation falls between the pre-defined lower and upper bounds, U  and U . 

Finally, constraints (4.1.7) and (4.1.8) assure that the assignment and scheduling 

variables satisfy also the feasibility set denoted by E.  

Three alternative objective functions are considered, and each of them implements a 

different scheduling policy, as discussed in the introduction. All the objective 

functions are composed of three terms, whose relative importance is given by the 

weights W1, W2, W3. The first and the second term of the three objective functions are 

the balancing terms. The former acts on OR utilisations, while the latter acts on the 

beds’ ones. Finally, the third term of the objective functions maximises the number 

of scheduled surgeries. For each objective function, specific variables and constraints 

are defined.  
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The first objective function (4.1.9), referred to as minMax, minimises the maximum 

ORs (u ) and beds ( v ) daily utilisations, i.e.: 

1 2 3
,
,

min      
kodt

k K o O
d D t T

W u W v W y
 
 

    (4.1.9) 

odt
u u       , ,o O d D t T       (4.1.10) 

d
v v       d D   (4.1.11) 

Constraints (4.1.10) and (4.1.11), used in combination with the objective function 

(4.1.9), respectively assure that daily utilisation of ORs and beds does not exceed the 

corresponding maximum daily utilisation. 

The second objective function (4.1.12), referred to as minRng, minimises the gaps 

between the maximum and the minimum values of ORs and beds’ daily utilisations: 

as before, u  and v  represent the maximum daily utilisations of ORs and beds, 

whereas u  and v  represent the minimum values of such utilisations. 

1 2 3
,
,

min    ( ) ( )   
kodt

k K o O
d D t T

W u u W v v W y
 
 

      (4.1.12) 

odt
u u u        , ,o O d D t T       (4.1.13) 

d
v v v        d D   (4.1.14) 

The third objective function (4.1.15), referred to as minOvrn, minimises the sum of 

the quadratic positive deviations (overrun) of the ORs and the beds daily utilisations 

from a fixed threshold. Specifically,
odtû  represents, for the OR o, on the day d and 

time slot t, the positive deviation of the total operating time scheduled from the fixed 

percentage threshold U of the available time for that OR, day, and time slot (see 

constraints (4.1.16)); on the other hand,
dv̂  represents, for each day d, the positive 

deviation of the number of occupied beds from the fixed percentage threshold V of 

the number of available beds for that day (see constraints (4.1.17)). In order to 

penalise the bigger deviations more than the smaller ones, the objective function is 

quadratic. As a consequence, here the resource utilisations (and the introduced 

overrun variables) are expressed in terms of absolute values instead of relative values 
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ranging from 0 to 1. Constraints (4.1.18) and (4.1.19) define the non-negativity of the 

variables involved. 

2 2

1 2 3
,,
,

ˆ ˆmin          
odt d kodt

d D k K o Oo O d D
d D t Tt T

W u W v W y
   

 

     
(4.1.15) 

ˆ   
odt k kodt odt

k K

u c y UH


        , ,o O d D t T       
(4.1.16) 

ˆ
d d d

v z VF        d D   (4.1.17) 

ˆ 0
odt

u        , ,o O d D t T       (4.1.18) 

ˆ 0
d

v        d D   (4.1.19) 

4.2 Simulation model 

The simulation model used in this study works as follows. The model reads the 

schedule produced in the optimisation phase, generates a number of entities equal to 

the number of surgeries planned for the planning horizon and assigns a surgery group 

to each entity. Hence, for each simulated day, the model creates a number of entities 

equal to those planned for the day. These entities seize the ORs and the beds they are 

assigned to and release them after a time that is randomly sampled from a suitable 

probability distribution (a thorough discussion of the probability distributions we use 

in the model is presented in Section 5.2). The model, thus, keeps track of the actual 

duration of the surgical sessions and of the number of beds that would actually be 

needed to accommodate the scheduled patient. If the duration of a session exceeds 

the OR time allotted to the session itself, then the model registers the number of 

overtime minutes worked. Similarly, if the number of beds occupied on a given day 

exceeds the number of beds that are actually available, the model then keeps track of 

the overbooking. 

5 Experimental campaign 

5.1 Input data 

As we pointed out in the introduction, our experimental campaign was inspired by 

Meyer Hospital. Such a hospital is characterised by: 

 12 surgical specialties. Each surgical specialty is associated with surgeon 

teams that can cover a certain number of time slots per week. 
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 39 surgery groups. Each case in the Meyer Hospital waiting list is 

characterised by a surgery group. Surgery groups are assigned by surgeons 

when they prescribe a surgery and indicate the specialty (e.g. urology), an 

estimate of the surgery duration and an estimate of the LoS. More 

specifically, regarding to the ST, cases are labelled as type A (0<ST≤60 

minutes), type B (60<ST≤120 minutes) and type C (ST>120 minutes). 

Instead, regarding the LoS, cases are labelled according to the days the 

patient is expected to occupy a bed (1,2,3,… days). For example, a group 

labelled ORL-A-2 includes cases that are expected to require an 

othorinolaringoiatry surgeon team, occupy the OR for less than one hour and 

give rise to a LoS of two days. 

 A planning horizon of 2 weeks. 

 47 beds and 4 ORs dedicated to elective patients. Each OR is open 11.5 hours 

a day, 5 days per week. This leads to a Beds/OR Ratio being equal to 1.02 

[beds/hour]. Such a ratio is calculated by dividing the number of beds for the 

daily OR available time, this latter being calculated as the product of the 

number of ORs and the OR daily available time, i.e. Beds/OR time Ratio 

=47/(4x11.5) =1.02. Additional OR time-slots and beds are allocated to non-

elective patients (emergencies and urgencies).  

 A target case-mix composed of 

o 40% of short-stay surgeries (SLoS, LoS<2 days) and 60% of long-

stay surgeries (LLoS, LoS≥2 days),  

o 64% of short-lasting surgeries (SST, type A, ST≤60 minutes) and 

36% of and long-lasting surgeries (LST, type B and C, ST>60 

minutes).  

 A target OR utilisation range equal to 80-85%. 

 A strong focus on preventing bed shortage. 

5.2 Data analysis 

To calculate the values of ST and LoS to use in the optimisation and simulation 

models, we analysed two years of surgical records. Each record corresponded to a 

case and indicated: 

 the surgery group the case was assigned to when surgeon prescribed the 

surgery, 

 the actual duration of the surgery (ST) and the actual patient’s LoS. 
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For each surgery group, we calculated the descriptive statistics of ST and LoS. The 

mean values of ST and LoS were used to run the optimisation model. To perform the 

simulation analysis, instead, we needed to identify, for each surgery group, suitable 

probability distributions. To this aim, we first extracted the empirical distributions 

associated with ST and LoS. Using empirical distributions, instead of theoretical 

ones, carries two main advantages (Law and Kelton, 2000, pag. 296): (i) it allows 

avoiding the occurrence of fairly large (or small) values that might not practically 

occur in realty; (ii) it allows for better capturing the characteristics of the data when 

theoretical distributions display poor fit. On the other hand, the aim of our simulation 

model is not to reproduce very accurately a specific hospital setting, rather, its aim is 

to derive conclusions that can be extended to a variety of hospitals. To this purpose, 

the utilisation of empirical distributions represents a limitation. To extend the 

generalizability of the results it is advisable to use theoretical distributions (Law and 

Kelton, 2000, p. 296). In fact, it is reasonable to assume that ST and LoS may follow 

similar distributions across a variety of hospitals, even though the distributions’ 

parameters may change from one hospital to another. Since our data are positively 

skewed and non-negative, we decided to fit several non-negative continuous 

theoretical distributions, namely, lognormal, 3-parameters lognormal, gamma and 

Weibull. 

More specifically, for each surgery group, for each variable (ST, LoS) and for each 

distribution, we carried out an Anderson Darling (AD) goodness-of-fit test and tested 

the null hypothesis of the data being distributed according to the investigated 

distribution. Looking at the test’s statistics and p-values and by visually inspecting 

the relevant probability plots, we found that the lognormal models fitted our data 

better than the other ones, both for ST and LOS. Such a finding is consistent with the 

literature. There is, in fact, consensus that lognormal models are suitable to represent 

both ST (May et al., 2000, Stepaniak et al., 2009) and LoS (Marazzi et al., 1998, 

Carter and Ketabi, 2012). 

However, even if the lognormal distributions fitted better than other distributions for 

certain surgery groups, they do not showed, in absolute terms, a good fit, especially 

for LoS. In Table 2, we cluster the surgery groups according with the number of 

occurrences (No) in the data set (the dimensional classes are taken from (Stepaniak et 

al., 2009)). Hence, for each cluster we show the number of times we fail to reject the 

null hypotheses (p>0.05) of the data being lognormally distributed. 
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Table 2 –Results of the Anderson Darling (AD) goodness-of-fit test for ST (left side) and LoS (right 

side) 

ST 
    

LoS 
   

Number of  

occurrences  

Groups  

in the class 

Groups where 

 p>0.05 
% 

 

Number of  

occurrences  

Groups 

in the class 

Groups where  

p>0.05 
% 

No≥200 9 0 0% 
 

No≥200 9 0 0% 

30≤No<200 16 7 44% 
 

30≤No<200 16 2 13% 

No<30 13 12 92% 
 

No<30 13 5 38% 

Total 38 19 50% 
 

Total 38 7 18% 

 

Referring to the 2-parameters lognormal model, we rejected the null hypotheses 50% 

of the time for ST, and 82% of the time for LoS. It is necessary to point out, 

however, that when samples are large, e.g. No>200, the power of goodness-of-fit 

tests increases, the confidence intervals shrink and consequently it is very likely to 

reject the null hypotheses (p<0.05) even for small and practically not relevant 

deviations from the investigated distributions. For that reason, it is always necessary 

to plot the data in order to make an informed decision about the extent of the 

deviation (Field, 2005 p. 93). Indeed, in several cases even when the p-value was 

smaller than 0.05, the histogram and probability plots revealed a quite satisfactory fit. 

In Figure 1 there is the example of the surgery group URO-B-1 for which ST 

displayed a satisfactory fit but the AD test returned p<0.05. 

Referring to the 3-parameters lognormal model, instead, there is no established 

method for calculating the p-value (D’Agostino and Stephens, 1986). Hence, we 

performed a Likelihood Ratio Test (LRT) and compared the 3-parameter model with 

its 2-parameter counterparts. The LRT is a statistical test of the goodness-of-fit 

between two models. In our case, a LRT’s p-value (which is referred to as LRT-p) 

smaller than 0.05, implies that the 3-parameters distribution fits significantly better 

than the 2-parameter one. 

Looking at the LRT p-values, we found that only for a limited number of surgery 

groups the 3-parameters lognormal distribution improved the fit (LRT-P<0.05, 11 

times for ST and 7 times for LoS). In most of the other cases, we obtained LRT-p> 

0.05 and lower values of the AD test statistic. In addition, also in those cases where 

LRT-p<0.05, the AD test statistic relevant to the 2- and 3-parameters distributions 

were rather similar. In these situations, it is advisable to use the distribution that has a 

calculated p-value, i.e. the 2-parameters lognormal one. In sum, combining a visual 

inspection of the histograms and probability plots with an analysis of p-values, LRT-
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p values and AD test statistics, we concluded that for both ST and LoS the theoretical 

distribution best fitting our data was the 2-parameters lognormal one. 

 

 

Figure 1 - Histogram with fitted lognormal distribution (top) and probability plot (bottom) of ST for 

surgery group URO-B-1 

5.3 Scenario analysed 

In this study, we investigated 27 hospital settings. For each setting, we run the 

optimisation model in correspondence with all the objective functions. For each 

obtained solution we run the simulation model using four different types of 

probability distributions. The hospital settings we investigated and the distributions 

we used are described in the next sections. 

5.3.1 Hospital settings 

In this study, we investigate 27 settings. These settings have been obtained by 

combining different values of the following parameters: 

(i) case mix complexity (MIX); 
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(ii) hospital Beds/OR time Ratio (BOR); 

(iii) target OR utilisation range (OUR). 

Specifically, we started from the Meyer Hospital values of MIX, BOR and OUR, and 

we increased (decreased) them by a fixed percentage (25% for MIX, 10% for BOR, 

5% for the OUR boundaries), thus, to obtain three different levels (low, medium, 

high) for each parameter. Parameters and levels are combined together, thus 

summing up to the 27 scenarios, the Meyer Hospital one plus 26 additional realistic 

hospital settings. 

The different values of BOR were obtained by increasing (decreasing) the number of 

beds and by keeping the OR time constant. Table 3 shows the values associated with 

each level. 

Table 3 – Hospital settings parameters 

Level MIX (X-axes) BOR (Y-axes) OUR (Z-axes) 

Low 
SLoS (LLoS)=30% (70%) 

SST (LST)=52%(48%) 
0.9 

U  75% 

U 80% 

Medium 
SLoS (LLoS)=40% (60%) 

SST (LST)=64%(36%) 
1.0 

U 80% 

U 85% 

High 
SLoS (LLoS)=50% (50%) 

SST (LST)=80%(20%) 
1.1 

U 85% 

U 90% 

In the additional 26 hospital settings, all the other model parameters are either 

constant and equal to their counterparts in the Meyer Hospital setting or depend on 

the parameters used to calculate MIX, BOR and OUR. More specifically, we used 

the same weights for all the objective functions. These weights do not vary across 

scenarios and are set so that W2>>W1>>W3. 

In fact, since we aimed to obtain balanced solutions, the balancing terms were 

prioritised with respect to the efficiency term. This latter term allows us to obtain, 

among the balanced solutions, the one characterised by the highest number of 

surgeries. Furthermore, since overbooking is considered more undesirable than 

overtime at Meyer Hospital, the beds’ balancing is prioritised with respect to OR 

balancing. In addition, we linked the parameters (
g

G , gG ) and (
j

J , jJ ) with the target 

MIX and we allowed a maximum deviation of 10%. Finally, for all the scenarios, we 

set the thresholds U and V equal to U . 

Figure 2 graphically represents the hospital settings investigated in our experimental 

campaign. The grey dot identifies the Meyer Hospital setting. 
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Figure 2–Investigated settings 

The rationale inspiring the generation of these settings is threefold.  

First, we wanted to use easy-to-calculate and relative parameters (indeed, MIX, 

BOR and OUR are percentages). By doing so, it is possible to obtain study’s findings 

that are less dependent from the absolute hospital dimensions (in terms of beds and 

OR available time) and thus easier to extend to many different hospitals settings.  

Second, we were interested in combining different levels of MIX and BOR. As 

Bowers (2013) argues, in fact, the benefits of having more beds given a certain 

number of ORs - or vice-versa - is “greater if the resources are reasonably well 

matched, relative to the mean theatre and bed requirements per patient” i.e. these 

benefits are greater for some coherent combination of MIX and BOR. 

Third, we wanted to assess whether the ranking of the different scheduling policies, 

for any given combination of MIX and BOR, remains the same across different 

OUR.  

In addition to test our scheduling policies in different settings, we wanted also to 

obtain findings tenable under different, yet realistic, distributional assumptions. To 

this aim, we simulated each optimisation model’s solution using four types of 

distributions. These distributions are described in the next section. 

5.3.2 Distributions 

The simulation analysis was conducted using, for each surgery group, and for both 

ST and LoS, four types of distributions. The basic idea was to verify whether the 

relative performance of the three scheduling policies, in terms of overbooking and 
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overtime, are somehow influenced by the distributions adopted to our data. To this 

aim, we considered, for each surgery group, and for both ST and LoS, their empirical 

distributions (D1), the best fitting (lognormal) distributions (D2), as well as 

“extreme” examples of artificially created lognormal distributions (D3, D4). These 

latter distributions are characterised by the same expected value of D2 but, 

respectively, by an extremely skewed and platykurtic shape (D3) and by an 

extremely symmetric and leptokurtic shape (D4).  

To define the parameters of D3 and D4, we proceeded as follows. First, for each 

surgery group we used the parameters of the fitted lognormal distributions (D2) to 

calculate the expected values of both ST and LoS. If a variable X is lognormally 

distributed its probability density function is:  

2(ln( ) )
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and its expected value can be calculated as: 

1 2

2[ ]E X e
 

  (5.3.2.2) 

Second, for each surgery group we set the values of [ ], [ ]E ST E LoS  equal to the 

ones relevant to D2, we fixed the values of the scale parameter (σ) and, finally, we 

used equation (5.3.2.2) again to calculate the location parameter μ (μ=ln(E[x])-

0.5σ
2
). For all the surgery groups, the values of σ used in D3 and D4 are the reported 

in Table 4. 

Table 4 - Scale parameters of the lognormal distributions D3 and D4 

 D3 D4 

σ(ST) 0.5 0.1 

σ(LoS) 1.5 0.1 

 

The values of σ used in D3 and D4 are extreme yet reasonable. In fact they represent, 

respectively, the upper and lower bound of σ(ST) and σ(LoS) across surgery groups 

in our data-set. As an example in Figure 3, we show the shapes and the parameters of 

the distributions D2, D3, and D4, relevant to the surgery group URO-B-1 (the shape 

of D1 is represented in the histogram in Figure 1). For all the distributions 

E[ST]=71.94 minutes. 
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Figure 3 Lognormal probability density functions for ST of surgery group URO-B-1 (D2-continuous 

line, D3-dashed line, D4-dotted line) 

5.4 Analysis performed 

For each setting, we instantiated the optimisation model using the mean value of ST 

and LoS, and tested the three scheduling policies described in Section 4. We obtained 

81 (=3x27) solutions. For each solution, we calculated the number of scheduled 

surgeries (N) and the mean (M), the standard deviation (Sd), the maximum (Max), 

the range (Rng) and the sum of the quadratic overrun (Ovrn), of both the beds and 

OR daily utilisations. Each solution was subsequently simulated performing 30 

simulation runs and using the empirical distributions of ST and LoS. For each 

solution we calculated the mean (M), standard error of the mean (SE) and the 

maximum (Max) across the replications of the overtime (OVT) and overbooking 

(OVB). To test whether there was a significant effect of the scheduling policy on the 

M(OVB), for each setting, we carried out a one-way ANOVA using the scheduling 

policies as factors. The ANOVA revealed a significant effect (p<0.05) for all the 

settings for which we found a feasible solution. Secondly, for each setting, we 

carried out a Games-Howell post-hoc test, to compare all policies with each other, 

rank them and control the family error rate (Field, 2005, p.310) to a 0.05 level. For 

each pairwise comparison, we assigned the same rank to those policies for which the 

post-hoc test did not allow for the identification of a significant (p>0.05) difference 

between the relevant M(OVB). The same procedure was applied for M(OVT). The 

result of these tests, and thus the policy rankings are presented in Table 8 and Table 

9. 
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Subsequently, the simulation experiments and the follow-up analysis were replicated 

using the remaining three distributions (D2, D3, D4). As we will discuss in detail in 

Section 6.2.4, when distributions are positively skewed and platykurtic it is more 

likely to obtain very high values of ST and LoS that could lead to unacceptable 

values of OVT and OVB. In this situation, even well balanced solutions might not be 

robust. In this cases, a possible way to achieve robustness - at the expenses of the 

overall efficiency- is to use values greater than the mean to run the optimisation 

model. To explore this alternative way to obtain robustness, we have replicated the 

whole analysis, using, in the optimisation phase, the third quartiles of ST and LoS. 

It is worth mentioning that ANOVA is a parametric test and, as such, it requires the 

data to meet the hypotheses of independence, normality and homoscedasticity. We 

checked these assumptions, but unfortunately, for some settings, we found out that 

our data violated the assumption of homoscedasticity. In fact, in some cases the 

Levene’s test of homogeneity of variance revealed that it was not possible to reject 

the test’s null hypothesis that the sample variances were unequal, at a 0.05 level of 

significance. However, as pointed out by Field (2005, p.354), even if the assumption 

of homoscedasticity is violated, ANOVA is still robust when: (i) sample sizes are 

equal and (ii) variances are proportional to the means (Budescu, 1982, Budescu and 

Appelbaum, 1981). Since our data respect both these conditions, we can trust the 

results of our ANOVAs. To deal with the fact that the homogeneity of variances 

hypothesis was violated, we carried out the post-hoc comparison using the Games–

Howell procedure. Such a test is one of the post-hoc tests specially designed for 

situations in which variances differ. In particular, it has been proven to be the most 

powerful when, as in our case, the sample sizes are not too small (Field, 2005, 

p.355). We can thus trust our post-hoc test results as well. 

We coded the optimisation models in AMPL and solved them through the IBM 

ILOG Cplex Solver (version 12.4) running on a PC equipped with an Intel iCore 7 

processor and 8 GB of RAM. For each optimisation run, we bound the computational 

time to 1 hour. The Cplex options were set so as to emphasise feasibility over 

optimality, perform an aggressive level of probing (Savelsbergh, 1994) and limit the 

maximum size for the Branch and Bound node file (mipemphasis=1, probe=3, 

nodefile=2, workfilelim=1028). These settings allowed us to find a feasible solution 

for a higher number of scenarios with respect to the default Cplex options. The 

simulation model, instead, was created using Rockwell Arena (version 13.9) and 

integrated with AMPL via VBA. 



24 

6 Empirical results 

Due to space constraints, it is not possible to present the results relevant to all the 27 

settings in full. Consequently, at first, we will thoroughly discuss the results 

associated with three base settings. One of these setting refers to the Meyer Hospital 

case, the other two settings are obtained starting from the Meyer Hospital case and 

varying the values of OUR. Presenting these three base settings in detail, allows us to 

explain the causal mechanisms that make some scheduling policies outperform the 

others. The simulation experiments used in this section 6.1, use empirical 

distributions for both ST and LoS. 

 

Figure 4 - Base settings 

Subsequently, we will present the results relevant to all the other settings and 

distributional models in a more aggregated manner. 

6.1 Base settings 

6.1.1 Optimisation phase 

Figure 5 and Figure 6 present the results of the base settings. Each figure includes 

four graphs.  

The x-entry of each graph represents a different level of OUR. The y-entry, instead, 

represents an output of the optimisation phase. The four graphs in Figure 5 report the 

statistics (Max, M, Rng and Sd, respectively) relevant to the bed utilisation, whereas 

those in Figure 6 report the same statistics that are relevant to the OR utilisation. 

Each symbol on the graphs is associated with a different objective function, the lines 
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connecting the symbols are drawn for the sake of clarity, but do not represent any 

experimental point. 

Looking at Figure 5, it is possible to notice that the beds are pretty well balanced. In 

fact, Sd(Beds)=0, Rng(Beds)=0 and thus M(Beds)=Max(Beds) for all the solutions, 

except for the one corresponding to a high OUR value and the minOvrn policy. In 

addition, minRng obtains the highest M(Beds) across OUR levels. Such a high beds 

utilisation, however, leads to high Ovrn(Beds). 

Looking at Figure 6, instead, we can observe that: (i) no policy leads to perfect OR 

balancing (Sd(ORs)>0 and Rng(ORs)>0), (ii) across OUR levels, minRng performs 

better than minMax and minOvrn. In fact, it allows us to obtain the highest M(ORs) 

and, at the same time, the lowest Max(ORs), Rng(ORs) and Ovrn(ORs). Indeed, 

minRng leads to a lower Max(ORs) than minMax, and to a lower Ovrn(ORs) than 

minOvrn. This fact can be the explained as follows: all the objective functions are 

hierarchical and the bed balancing term is more important than the OR balancing 

term. Hence, for both minRng and minMax, the best solutions are characterised by 

Sd(Beds)=0 i.e. by perfect bed balancing. When the beds are perfectly balanced, 

Rng(Beds)=0, Max(Beds)=M(Beds)=Min(Beds) and Ovrn(Beds)=0. A perfect bed 

balance, can indeed be obtained in correspondence with different levels of bed 

utilisation. However, minMax is only optimised in those cases where Max(Beds) 

=M(Beds) is at a minimum. Instead, minRng is also optimised in the cases where 

Max(Beds) differs from the minimum. It means that with minRng, it is possible to 

explore a higher number of solutions in order to find the one that leads to a better 

balancing of the ORs. Our experimental campaign reveals that among the solutions 

for which Rng(Beds)=0 and Max(Beds) is not optimised, it is possible to find 

solutions characterised by the smallest possible values of Rng(ORs), Max(ORs) and 

Ovrn(ORs). 
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Figure 5 - Base settings optimisation results – bed utilisation 
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Figure 6 - Base settings optimisation results – OR utilisation 
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Figure 7 reports the number of scheduled surgeries associated with each solution. As 

it can be noticed, for all the policies the number of scheduled surgeries increases as 

OUR increases. 

By comparing the policies to each other, it emerges that minRng is the one that 

allows for the largest number of surgeries to be scheduled. This is not surprising; 

minMax and minOvrn, in fact, are associated, for each OUR level, with a lower 

M(Beds) and Ovrn(Beds). It implies that in order to achieve a given OUR, they 

schedule a smaller number of surgeries characterised by a higher ST.  

 

Figure 7 - Base settings number of scheduled surgeries 

6.1.2 Simulation phase 

Figure 8 presents the results of the simulation phase. In particular, it reports the 95% 

confidence intervals for the M(OVB) and M(OVT) (left- and right-hand graph, 

respectively). The results presented in this section refers to empirical distributions 

(D1). 

As it can be noticed, both OVT and OVB increases as the OUR increases. 

From statistical analysis, it emerges that, for each scenario, minRng leads to a 

M(OVB) that is significantly larger than the one associated with minMax and 

minOvrn. The difference between the values associated with these latter policies is 

indeed statistically significant (p<0.05) only for high values of OUR. However, also 

in this latter case, such a difference is not practically relevant. M(OVT) increases 

with OUR, as well. However, in this case, for all the scenarios, minRng leads to an 

overtime that is significantly lower than the one associated with minMax and 

minOrvn. 
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Figure 8 - Base settings simulation results 

In summary, from the analysis of these base settings it emerges that MinRng is at 

least effective as the other policies in balancing the beds. In addition, it allows for a 

better OR balancing and thus for a smaller overtime. Moreover, it leads to higher bed 

saturation and to a larger number of scheduled surgeries. However, it also causes a 

higher overbooking, especially when OUR is high. The properties of minMax are 

quite the opposite, while minOvrn somehow represents an intermediate case. 

6.2 Generalisation 

In this section, we discuss the generalisability of the previous findings exploring 

different hospital settings and different types of distributions. Furthermore, we will 

present the insight emerging from the additional scenarios. 

6.2.1 Optimisation phase 

Table 5, Table 6 and Table 7 report the results of the optimisation phase, where each 

table is associated with a different performance (number of scheduled surgeries N, 

standard deviation of the bed utilisation Sd(Beds) and of OR utilisation Sd(ORs), 

respectively). Each cell of the tables represents a different setting. Each cell 

indicates, for each scheduling policy, the value of the performance under 

investigation. Within each cell, the policies are ranked from the best (rank=1) to the 

worst one (rank=3). Due to space constraints, the data relevant to the maximum 

utilisations, utilisation ranges and overruns (that we presented for the base settings) is 

not presented here. 
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Looking at the experimental results, it can be noticed that there is a setting, i.e. 

MIX=high, BOR=low and OUR=high, for which it was not possible to find a 

feasible solution. The explanation for this is that when the number of beds is low 

(BOR=low), to achieve a high OR utilisation (OUR=high), the model, regardless of 

the objective function, has to schedule a high number of surgeries characterised by 

low LoS and high ST. It, obviously, does not allow to obtain solutions that are 

characterised by a high percentage of short surgeries (MIX=high). 

Table 5 - Experimental campaign optimisation results – number of scheduled surgeries  

N Low OUR Medium OUR High OUR 

High 

MIX 

High 

BOR 

1.minRng (330) 
2.minOvrn (293) 

3.minMax (286) 

1.minRng (327) 
2.minOvrn (315) 

3.minMax (312) 

1.minRng (354) 
2.minMax (340) 

3.minOvrn (329) 

Med 

BOR 

1.minRng (309) 

2.minMax (286) 
3.minOvrn (281) 

1.minRng (334) 

2.minMax (313) 
3.minOvrn (304) 

1.minRng (340) 

2.minMax (330) 
3.minOvrn (322) 

Low 

BOR 

1.minRng (312) 

2.minMax (286) 
3.minOvrn (284) 

1.minRng (318) 

2.minMax (312) 
3.minOvrn (305) 

infeasible 

Med 
MIX 

High 
BOR 

1.minRng (300) 

2.minOvrn (270) 

3.minMax (260) 

1.minRng (314) 

2.minOvrn (286) 

3.minMax (280) 

1.minRng (341) 

2.minMax (301) 

3.minOvrn (300) 

Med 
BOR 

1.minRng (299) 

2.minOvrn (262) 

3.minMax (260) 

1.minRng (309) 

2.minMax (280) 

3.minOvrn (276) 

1.minRng (328) 

2.minOvrn (302) 

3.minMax (300) 

Low 
BOR 

1.minRng (300) 
2.minOvrn (260) 

3.minMax (259) 

1.minRng (302) 
2.minMax (280) 

2.minOvrn (280) 

1.minMax (301) 
1.minRng (301) 

3.minOvrn (300) 

Low  

MIX 

High 

BOR 

1.minRng (280) 

2.minOvrn (252) 

3.minMax (241) 

1.minRng (293) 

2.minOvrn (265) 

3.minMax (261) 

1.minRng (297) 

2.minOvrn (282) 

3.minMax (279) 

Med 

BOR 

1.minRng (286) 
2.minOvrn (241) 

3.minMax (240) 

1.minRng (293) 
2.minMax (258) 

2.minOvrn (258) 

1.minRng (292) 
2.minMax (280) 

3.minOvrn (277) 

Low 

BOR 

1.minRng (279) 

2.minMax (243) 
3.minOvrn (236) 

1.minRng (282) 

2.minMax (261) 
3.minOvrn (258) 

1.minRng (282) 

2.minMax (280) 
3.minOvrn (276) 
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Table 6 - Experimental campaign optimisation results - standard deviation of the bed utilisation [%] 

Sd(Beds)  Low OUR Medium OUR High OUR 

High 
MIX 

High 

BOR 

1.minMax (0) 

1.minRng (0) 
1.minOvrn (0) 

1.minMax (0) 

1.minRng (0) 
1.minOvrn (0) 

1.minMax (0) 

1.minRng (0) 
1.minOvrn (0) 

Med 
BOR 

1.minMax (0) 

1.minRng (0) 
2.minOvrn (8.3) 

1.minMax (0) 

1.minRng (0) 
2.minOvrn (0.9) 

1.minMax (0) 

1.minRng (0) 
2.minOvrn (1.1) 

Low 
BOR 

1.minMax (0) 

1.minRng (0) 

2.minOvrn (1.9) 

1.minMax (0) 

1.minRng (0) 

2.minOvrn (1) 

infeasible 

Med 

MIX 

High 
BOR 

1.minMax (0) 

1.minRng (0) 

2.minOvrn (0.6) 

1.minMax (0) 

1.minRng (0) 

1.minOvrn (0) 

1.minMax (0) 

1.minRng (0) 

2.minOvrn (2.4) 

Med 

BOR 

1.minMax (0) 
1.minRng (0) 

1.minOvrn (0) 

1.minMax (0) 
1.minRng (0) 

1.minOvrn (0) 

1.minMax (0) 
1.minRng (0) 

2.minOvrn (1.3) 

Low 

BOR 

1.minMax (0) 
1.minRng (0) 

2.minOvrn (1.7) 

1.minMax (0) 
1.minRng (0) 

2.minOvrn (2.8) 

1.minMax (0) 
1.minRng (0) 

2.minOvrn (2) 

Low  

MIX 

High 

BOR 

1.minMax (0) 

1.minRng (0) 
2.minOvrn (0.6) 

1.minMax (0) 

1.minRng (0) 
2.minOvrn (0.6) 

1.minMax (0) 

1.minRng (0) 
2.minOvrn (0.8) 

Med 

BOR 

1.minMax (0) 

1.minRng (0) 
1.minOvrn (0) 

1.minMax (0) 

1.minRng (0) 
1.minOvrn (0) 

1.minMax (0) 

1.minRng (0) 
1.minOvrn (0) 

Low 
BOR 

1.minMax (0) 

1.minRng (0) 

2.minOvrn (2) 

1.minMax (0) 

1.minRng (0) 

2.minOvrn (3.3) 

1.minMax (0) 

1.minRng (0) 

2.minOvrn (2.5) 

 

Table 7 - Experimental campaign optimisation results - standard deviation of the OR utilisation [%] 

Sd(ORs) Low OUR Medium OUR High OUR 

High 

MIX 

High 

BOR 

1.minRng (2.2) 

2.minOvrn (4) 
3.minMax (19.4) 

1.minRng (1.4) 

2.minOvrn (8.9) 
3.minMax (15.2) 

1.minRng (2.7) 

2.minOvrn (9) 
3.minMax (15.3) 

Med 

BOR 

1.minRng (1.6) 

2.minMax (23) 
3.minOvrn (26.8) 

1.minRng (1.6) 

2.minMax (15.4) 
3.minOvrn (18.9) 

1.minRng (2.4) 

2.minMax (11.8) 
3.minOvrn (16.2) 

Low 
BOR 

1.minRng (1.4) 

2.minMax (23.1) 

3.minOvrn (24.3) 

1.minRng (3) 

2.minMax (15.4) 

3.minOvrn (18.8) 

infeasible 

Med 
MIX 

High 
BOR 

1.minRng (1.1) 

2.minOvrn (3.2) 

3.minMax (32.2) 

1.minRng (1.3) 

2.minOvrn (8) 

3.minMax (29.5) 

1.minRng (1.7) 

2.minOvrn (3.5) 

3.minMax (25.5) 

Med 
BOR 

1.minRng (1.1) 

2.minOvrn (19.3) 

3.minMax (30.8) 

1.minRng (1.4) 

2.minOvrn (25.2) 

3.minMax (29.4) 

1.minRng (1.5) 

2.minMax (24.2) 

3.minOvrn (26.9) 

Low 

BOR 

1.minRng (1) 
2.minMax (30.7) 

3.minOvrn (32.1) 

1.minRng (1.8) 
2.minOvrn (24.7) 

3.minMax (29.4) 

1.minRng (8.9) 
2.minOvrn (21.9) 

3.minMax (25.4) 

Low  

MIX 

High 

BOR 

1.minRng (1) 
2.minOvrn (3.4) 

3.minMax (34.2) 

1.minRng (1.2) 
2.minOvrn (4.1) 

3.minMax (31.4) 

1.minRng (0.9) 
2.minOvrn (3.7) 

3.minMax (28.4) 

Med 

BOR 

1.minRng (1.5) 

2.minOvrn (21) 
3.minMax (33.3) 

1.minRng (1.3) 

2.minOvrn (27.5) 
3.minMax (32.1) 

1.minRng (0.9) 

2.minOvrn (26.6) 
3.minMax (27.8) 

Low 

BOR 

1.minRng (1) 

2.minMax (35.5) 
3.minOvrn (36.6) 

1.minRng (2.1) 

2.minMax (31.7) 
3.minOvrn (33.2) 

1.minRng (11.7) 

2.minMax (27.2) 
3.minOvrn (28.2) 

 



32 

Moreover, the results clearly show that some of the findings emerged from the 

analysis of the base settings, are indeed generalisable to the other settings. In fact, 

regardless of BOR and MIX, whenever it was possible to find feasible solutions, we 

observed that: (i) minRng is the policy that allows for the scheduling of the largest 

number of surgeries; (ii) for each policy, the beds are more balanced than ORs; (iii) 

the solutions obtained by minMax and minRng are characterised by perfect bed 

balancing (Sd(Beds)=0). Instead, most of the solutions obtained with minOvrn are 

pretty unbalanced (yet, also for this policy, Sd(Beds) is always lower than 10%); (iv) 

no policy leads to perfect ORs balancing, in fact, Sd(ORs) is always larger than zero; 

(v) minRng performs better than the other policies in terms of OR balancing and 

utilisation. In fact it allows the smallest values of Max(ORs), Rng(ORs) and 

Ovrn(ORs) to be obtained and at the same time the highest value of M(ORs) (due to 

space constraints are not reported here). The explanation we gave in Section 6.1.1 for 

this unobvious phenomenon seems to hold across the scenarios. 

Furthermore, the analysis of these additional settings showed that regardless of the 

level of MIX and OUR, when BOR increases, minOvrn allows for a fairly good OR 

balancing. In fact, with BOR=low or BOR=medium, minOvrn led to values of 

Sd(ORs) similar to the ones of minMax. On the contrary, when BOR=high, Sd(ORs) 

decreases till the values are similar to the ones of minRng. We have not observed any 

significant change in the ranking of scheduling policies across MIX levels. 

6.2.2 Simulation phase, empirical distributions 

Table 8 and Table 9 report the results of the simulation phase. As for the base 

settings, the results presented in this section refer to empirical distributions (D1). 

These tables are organised as the ones relevant to the optimisation phase and report, 

respectively, the mean values (M) and the standard deviations (Sd) of OVB and 

OVT. Since OVB and OVT are stochastic variables, to rank the different scheduling 

policies within each cell, we proceeded as explained in Section 5.4. 
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Table 8 - Experimental campaign simulation results, empirical distributions (D1) – mean values (M) 

and standard deviations (Sd) of overbooking [beds] 

Overbooking  Low OUR Medium OUR High OUR 

High 
MIX 

High 
BOR 

1.minMax (M=0, Sd=0) 

1.minRng (M=0, Sd=0) 

1.minOvrn (M=0.1, Sd=0.3) 

1.minMax (M=0, Sd=0) 

1.minOvrn (M=0, Sd=0) 

2.minRng (M=1.2, Sd=1.8) 

1.minOvrn (M=0.1, Sd=0.3) 

2.minMax (M=0.5, Sd=1) 

3.minRng (M=6.2, Sd=3.9) 

Med 
BOR 

1.minMax (M=0, Sd=0) 

1.minRng (M=0.2, Sd=0.7) 

2.minOvrn (M=1.5, Sd=1.4) 

1.minMax (M=0.2, Sd=0.5) 

1.minOvrn (M=0.2, Sd=0.6) 

2.minRng (M=6.1, Sd=4.1) 

1.minOvrn (M=2.5, Sd=2.1) 

2.minMax (M=4.5, Sd=3) 

3.minRng (M=22.1, Sd=6.3) 

Low 

BOR 

1.minOvrn (M=0.8, Sd=1.2) 
1.minMax (M=1, Sd=1.5) 

2.minRng (M=20.3, Sd=5.8) 

1.minOvrn (M=10.7, Sd=4.5) 
2.minMax (M=14.6, Sd=5.5) 

3.minRng (M=22.6, Sd=5.1) 

infeasible 

Med 

MIX 

High 

BOR 

1.minMax (M=0, Sd=0) 
1.minRng (M=0, Sd=0) 

1.minOvrn (M=0, Sd=0) 

1.minMax (M=0, Sd=0) 
1.minOvrn (M=0, Sd=0) 

1.minRng (M=0.1, Sd=0.3) 

1.minMax (M=0, Sd=0) 
1.minOvrn (M=0.1, Sd=0.3) 

2.minRng (M=3.9, Sd=3) 

Med 

BOR 

1.minMax (M=0, Sd=0) 
1.minOvrn (M=0, Sd=0) 

2.minRng (M=0.8, Sd=1.1) 

1.minOvrn (M=0, Sd=0.2) 
1.minMax (M=0.1, Sd=0.4) 

2.minRng (M=2.1, Sd=1.7) 

1.minOvrn (M=0.5, Sd=1.2) 
2.minMax (M=1.8, Sd=2.3) 

3.minRng (M=10.3, Sd=4.4) 

Low 

BOR 

1.minMax (M=0.5, Sd=0.8) 

1.minOvrn (M=0.6, Sd=1.3) 
2.minRng (M=22.3, Sd=7.5) 

1.minOvrn (M=5.2, Sd=2.7) 

1.minMax (M=6.4, Sd=3.5) 
2.minRng (M=20, Sd=4.9) 

1.minMax (M=19.9, Sd=6.5) 

1-2.minOvrn (M=23.5, Sd=7) 
2.minRng (M=26.8, Sd=6.3) 

Low 
MIX 

High 

BOR 

1.minMax (M=0,Sd=0) 

1.minRng (M=0, Sd=0) 
1.minOvrn (M=0, Sd=0) 

1.minMax (M=0, Sd=0) 

1.minRng (M=0, Sd=0) 
1.minOvrn (M=0, Sd=0) 

1.minMax (M=0, Sd=0.2) 

1.minOvrn (M=0.1, Sd=0.3) 
1.minRng (M=0.2, Sd=0.4) 

Med 
BOR 

1.minMax (M=0, Sd=0) 

1.minOvrn (M=0, Sd=0) 

2.minRng (M=1, Sd=1.2) 

1.minMax (M=0, Sd=0) 

1.minOvrn (M=0, Sd=0) 

2.minRng (M=1.9, Sd=2.2) 

1.minOvrn (M=0.4, Sd=0.9) 

1.minMax (M=1.6, Sd=2.7) 

2.minRng (M=5, Sd=3.2) 

Low 
BOR 

1.minMax (M=0.5, Sd=1) 

1.minOvrn (M=0.9, Sd=1.4) 

2.minRng (M=18.5, Sd=5.6) 

1.minMax (M=3.7, Sd=2.2) 

2.minOvrn (M=5.3, Sd=2.8) 

3.minRng (M=17.9, Sd=5.1) 

1.minOvrn (M=15.4, Sd=5.9) 

1.minMax (M=16.6, Sd=4.4) 

2.minRng (M=19.2, Sd=5.9) 

 

Table 9 - Experimental campaign simulation results, empirical distributions (D1) – mean values (M) 

and standard deviations (Sd) of overtime [min] 

Overtime Low OUR Medium OUR High OUR 

High 

MIX 

High 

BOR 

1.minOvrn (M=0.5, Sd=2.7) 
2.minRng (M=8.9, Sd=16.8) 

3.minMax (M=99.9, Sd=93.3) 

1.minOvrn (M=44.5, Sd=53.7) 
1.minRng (M=52.7, Sd=100.3) 

2.minMax (M=116.3, Sd=64) 

1.minRng (M=83.3, Sd=66.1) 
1.minOvrn (M=102.7, Sd=99.5) 

2.minMax (M=226.4, Sd=107.8) 

Med 

BOR 

1.minRng (M=8.2, Sd=19.3) 

2.minMax (M=118.3, Sd=81.1) 
3.minOvrn (M=203.2, Sd=121.9) 

1.minRng (M=22.5, Sd=34.9) 

2.minMax (M=101.8, Sd=67.6) 
3.minOvrn (M=243.4, Sd=128.7) 

1.minRng (M=102.3, Sd=64.5) 
2.minMax (M=158.5, Sd=77.8) 

3.minOvrn (M=296.4, 

Sd=130.5) 

Low 

BOR 

1.minRng (M=2.7, Sd=8.8) 
2.minMax (M=115.4, Sd=75.2) 

3.minOvrn (M=243.3, Sd=108.1) 

1.minRng (M=22.6, Sd=30.2) 
2.minMax (M=84.9, Sd=74.7) 

3.minOvrn (M=247.6, Sd=137.4) 

infeasible 

Med 
MIX 

High 

BOR 

1.minRng (M=1.2, Sd=3.9) 
1.minOvrn (M=3, Sd=10.5) 

2.minMax (M=363.9, Sd=138.9) 

1.minRng (M=27.2, Sd=42.9) 
1.minOvrn (M=31.6, Sd=40.9) 

2.minMax (M=459.9, Sd=180.9) 

1.minOvrn (M=63.4, Sd=78.6) 
2.minRng (M=130, Sd=97.6) 

3.minMax (M=457.6, Sd=169) 

Med 

BOR 

1.minRng (M=13.2, Sd=21.2) 

2.minOvrn (M=47.2, Sd=54.5) 
3.minMax (M=245.4, Sd=115.6) 

1.minRng (M=28.5, Sd=43.5) 

2.minOvrn (M=214.1, Sd=121) 
3.minMax (M=417.6, Sd=182.8) 

1.minRng (M=59.8, Sd=55.8) 

2.minMax (M=423.5, Sd=166.4) 
2.minOvrn (M=466, Sd=170.5) 

Low 
BOR 

1.minRng (M=6.8, Sd=14.7) 

2.minMax (M=268.4, Sd=144) 

2.minOvrn (M=282.9, Sd=126.4) 

1.minRng (M=19.1, Sd=32.1) 

2.minOvrn (M=240.1, Sd=120.3) 

2.minMax (M=299.6, Sd=144.4) 

1.minRng (M=259.2, Sd=142.6) 

2.minOvrn (M=415.9, 
Sd=164.7) 

2.minMax (M=425.1, Sd=128.3) 

Low 

MIX 

High 

BOR 

1.minOvrn (M=4.2, Sd=14.3) 
1.minRng (M=8.4, Sd=22.3) 

2.minMax (M=303.2, Sd=136.2) 

1.minOvrn (M=19.4, Sd=40.4) 
1.minRng (M=26.4, Sd=34.6) 

2.minMax (M=362.9, Sd=135.3) 

1.minOvrn (M=42.5, Sd=49) 
1.minRng (M=77.1, Sd=85) 

2.minMax (M=465.8, Sd=163.4) 

Med 
BOR 

1.minRng (M=14.2, Sd=19.5) 

2.minOvrn (M=53.3, Sd=67.6) 

3.minMax (M=222.6, Sd=116.9) 

1.minRng (M=28.8, Sd=47.9) 

2.minOvrn (M=248.1, Sd=131.3) 

3.minMax (M=508.4, Sd=168.9) 

1.minRng (M=67.9, Sd=55.7) 

2.minOvrn (M=448.2, 
Sd=160.6) 

2.minMax (M=515.8, Sd=156.1) 

Low 

BOR 

1.minRng (M=2.7, Sd=7.7) 

2.minOvrn (M=389.8, Sd=156.4) 
2.minMax (M=455.5, Sd=192.5) 

1.minRng (M=20.8, Sd=31) 

2.minMax (M=382.9, Sd=143.6) 
3.minOvrn (M=552.4, Sd=215) 

1.minRng (M=276.6, Sd=129.7) 
2.minOvrn (M=494.6, 

Sd=164.7) 

2.minMax (M=526.6, Sd=203.9) 
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Referring to the relative rank of the scheduling policies, the simulation analysis 

confirms most of the findings found for the base settings. In particular: (i) minRng 

leads to overbookings that (if different from zero) are significantly higher than those 

associated with minMax and minOvrn, regardless of the levels of MIX and BOR. 

These latter policies, instead, do not significantly differ in terms of overbooking. 

There is only one setting (MIX=high, BOR=med, OUR=low) where minOvrn leads 

to the highest values of overbooking. This is probably due to the fact that this is the 

only scenario where the solver was unable to find a feasible solution where beds 

were well balanced within the given time limit (Table 6). (ii) minRng leads to the 

best results in terms of overtimes in most of the scenarios. However, when BOR is 

high minOvrn and minRng lead to overtimes that do not significantly differ from 

each other. Moreover, in the two scenarios (MIX=med, BOR=high, OUR=high and 

MIX=high, BOR=high, OUR=low) minOvrn leads to overtimes that are significantly 

smaller than those of minRng. However, the difference between the results 

associated with the two policies is only practically relevant in the first case (in the 

second case is just 8.4 minutes in two weeks). 

From the simulation analysis, it also emerges that if BOR increases, then M(OVB) 

decreases (and vice-versa). In fact, for each target OR utilisation (OUR) and MIX, if 

the number of available beds (and thus BOR) increases, the probability of having 

additional beds to accommodate patients whose actual LoS lasts more than its 

expected value increases as well. 

Finally, we can observe that, if the ORs are not well balanced then M(OVT) can also 

be high when OUR is low. On the contrary, if the ORs are well balanced then 

M(OVT) is only high for high level of OUR. This fact confirms our initial 

conjecture. 

6.2.3 Simulation phase, theoretical distributions 

In this section we discuss whether the findings relevant to D1 hold also for the other 

distributions. In Table 10 and Table 11 we report the results associated with the use 

of fitted lognormal distributions (D2). Comparing these tables with Tables 8 and 9, it 

clearly emerges that the relative rankings of the different policies do not change for 

most of the settings. In fact, as in the previous case: (i) minRng leads to the largest 

M(OVB) even if in two settings (MIX=low, BOR=low, OUR=high and MIX=med, 

BOR=low, OUR=high) M(OVB) associated with minRng are not significantly larger 

than those of minOvrn: (ii) minRng leads to the smallest M(OVT), with the only 
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exception of scenario (MIX=med, BOR=high, OUR=high). Comparing the results of 

D2 and D1 it can also be noticed that, on average, M(OVT) and M(OVB) of D2 are 

larger than those of D1. As we pointed out on Section 5.2, this is due to the fact that 

contrary to the empirical distributions the lognormal ones are unbounded, as such, 

they periodically return fairly large values of ST and LoS during the run. 

Due to space constraints, we do not report the tables relevant to D3 and D4. 

However, the results associated with these distributions are consistent with those 

presented so far. 

In particular, with D3 (leptokurtic and symmetric distributions - small values of 

σ(ST) and σ(LoS)) we still obtain that minRng leads to the largest overbookings. 

There is only one case (MIX=high, BOR=med, OUR=low) where minOvrn is 

characterised by a M(OVB) that is significantly larger than the one of minRng but 

the difference between these values (+ 0.3 beds in two weeks) is not practically 

relevant. Looking at the overtimes, instead, minRng always leads to the smallest 

values. 

Table 10 - Experimental campaign simulation results, fitted lognormal distributions (D2) –  mean 

values (M) and standard deviations (Sd) of overbooking [beds] 

Overbooking  Low OUR Medium OUR High OUR 

High 

MIX 

High 

BOR 

1.minMax (M=0, Sd=0) 
1.minOvrn (M=0, Sd=0.2) 

2.minRng (M=2.8, Sd=3) 

1.minMax (M=0.4, Sd=1) 
1.minOvrn (M=0.5, Sd=1.4) 

2.minRng (M=7.2, Sd=3.6) 

1.minOvrn (M=3.6, Sd=2.7) 
2.minMax (M=6.3, Sd=3.4) 

3.minRng (M=20.6, Sd=6.6) 

Med 

BOR 

1.minMax (M=0, Sd=0.2) 
2.minOvrn (M=3.7, Sd=2.3) 

2.minRng (M=5.7, Sd=4.1) 

1.minOvrn (M=3.4, Sd=2.7) 
1.minMax (M=3.6, Sd=2.8) 

2.minRng (M=24.9, Sd=7.5) 

1.minOvrn (M=14.6, Sd=6.5) 
1.minMax (M=16.1, Sd=7.6) 

2.minRng (M=44.8, Sd=8.8) 

Low 

BOR 

1.minMax (M=7.5, Sd=3.7) 
1.minOvrn (M=8.7, Sd=3.9) 

2.minRng (M=43.6, Sd=10) 

1.minOvrn (M=28.8, Sd=8) 
1.minMax (M=32.6, Sd=7.8) 

2.minRng (M=45.4, Sd=9.7) 

infeasible 

Med 

MIX 

High 

BOR 

1.minMax (M=0, Sd=0) 

1.minOvrn (M=0, Sd=0) 
1.minRng (M=0.5, Sd=1.5) 

1.minMax (M=0, Sd=0.2) 

1.minOvrn (M=0.2, Sd=0.5) 
2.minRng (M=1.6, Sd=2) 

1.minMax (M=0.8, Sd=1.3) 

1.minOvrn (M=1.3, Sd=1.8) 
2.minRng (M=15.3, Sd=6.9) 

Med 

BOR 

1.minOvrn (M=0, Sd=0.2) 

1.minMax (M=0.2, Sd=0.6) 
2.minRng (M=6.2, Sd=5.1) 

1.minMax (M=1, Sd=1.5) 

1.minOvrn (M=1.2, Sd=1.9) 
2.minRng (M=13, Sd=5.3) 

1.minOvrn (M=5.4, Sd=3.1) 

1.minMax (M=7.3, Sd=4.9) 
2.minRng (M=24, Sd=8.6) 

Low 
BOR 

1.minMax (M=3.9, Sd=2.9) 

1.minOvrn (M=4, Sd=2.4) 

2.minRng (M=38.9, Sd=9.2) 

1.minMax (M=13.9, Sd=6.4) 

1.minOvrn (M=14.3, Sd=5.1) 

2.minRng (M=39.8, Sd=9.9) 

1.minMax (M=36.5, Sd=7.8) 

2.minRng (M=43.6, Sd=9.4) 

2.minOvrn (M=46.2, Sd=7.4) 

Low 

MIX 

High 
BOR 

1.minOvrn (M=0, Sd=0) 

1.minMax (M=0, Sd=0) 

1.minRng (M=0.1, Sd=0.3) 

1.minMax (M=0, Sd=0) 

1.minOvrn (M=0.1, Sd=0.3) 

2.minRng (M=0.9, Sd=1.3) 

1.minMax (M=0.1, Sd=0.3) 

2.minOvrn (M=1.4, Sd=1.5) 

3.minRng (M=3.8, Sd=3.3)\ 

Med 

BOR 

1.minMax (M=0, Sd=0) 
1.minOvrn (M=0.1, Sd=0.3) 

2.minRng (M=7.5, Sd=5) 

1.minMax (M=0.3, Sd=0.6) 
1.minOvrn (M=0.2, Sd=0.7) 

2.minRng (M=11.4, Sd=7) 

1.minOvrn (M=1.5, Sd=1.9) 
2.minMax (M=4.6, Sd=2.8) 

3.minRng (M=15.5, Sd=6.2) 

Low 

BOR 

1.minOvrn (M=2.1, Sd=2.1) 
1.minMax (M=2.9, Sd=2.2) 

2.minRng (M=31.3, Sd=7.2) 

1.minMax (M=9.5, Sd=4.3) 
1.minOvrn (M=10.2, Sd=4.3) 

2.minRng (M=28.6, Sd=6) 

1.minOvrn (M=26, Sd=7.4) 
1.minMax (M=28.7, Sd=8.1) 

1.minRng (M=30, Sd=7.1) 
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Table 11 - Experimental campaign simulation results, fitted lognormal distributions (D2) –  mean 

values (M) and standard deviations (Sd) of overtime [min] 

Overtime Low OUR Medium OUR High OUR 

High 
MIX 

High 
BOR 

1.minRng (M=25.8, Sd=48.4) 

1.minOvrn (M=42.5, Sd=65.7) 

2.minMax (M=215.2, Sd=130.2) 

1.minOvrn (M=93.3, Sd=79.7) 

1.minRng (M=135.1, Sd=103.7) 

2.minMax (M=228.7, Sd=102.4) 

1.minOvrn (M=137.8, Sd=85.4) 

1.minRng (M=153.4, Sd=92) 

2.minMax (M=337, Sd=171.8) 

Med 
BOR 

1.minRng (M=6.9, Sd=25.7) 

2.minMax (M=233.2, Sd=133.8) 

2.minOvrn (M=277.2, Sd=138.2) 

1.minRng (M=35.5, Sd=43.3) 

2.minMax (M=195.8, Sd=121.8) 

3.minOvrn (M=307.3, Sd=138.2) 

1.minRng (M=146.7, Sd=132.5) 

2.minMax (M=295.4, Sd=201.8) 

3.minOvrn (M=426, Sd=190.7) 

Low 

BOR 

1.minRng (M=13.6, Sd=38.1) 
2.minMax (M=253.8, Sd=143.4) 

2.minOvrn (M=342.5, Sd=159.1) 

1.minRng (M=66.7, Sd=91) 
2.minMax (M=175.2, Sd=103.4) 

3.minOvrn (M=330.8, Sd=138.9) 

infeasible 

Med 

MIX 

High 

BOR 

1.minOvrn (M=16.2, Sd=28.6) 
1.minRng (M=38.1, Sd=53.1) 

2.minMax (M=471.8, Sd=198.9) 

1.minRng (M=41.6, Sd=48.4) 
2.minOvrn (M=83, Sd=73) 

3.minMax (M=627.9, Sd=197.2) 

1.minOvrn (M=97.5, Sd=86.5) 
2.minRng (M=200.6, Sd=138.9) 

3.minMax (M=627.8, Sd=221.2) 

Med 

BOR 

1.minRng (M=25.9, Sd=54.1) 
2.minOvrn (M=122.3, Sd=118.4) 

3.minMax (M=374, Sd=172) 

1.minRng (M=56.5, Sd=59) 
2.minOvrn (M=257, Sd=137.1) 

3.minMax (M=562.3, Sd=127.3) 

1.minRng (M=109.6, Sd=114) 
2.minMax (M=538.4, Sd=222.2) 

2.minOvrn (M=576.2, Sd=209.8) 

Low 

BOR 

1.minRng (M=17.6, Sd=24.5) 

2.minMax (M=352.6, Sd=186.7) 
3.minOvrn (M=495.2, Sd=181.5) 

1.minRng (M=38.1, Sd=54.9) 

2.minOvrn (M=363, Sd=210.1) 
2.minMax (M=454.8, Sd=195.8) 

1.minRng (M=254.7, Sd=115.6) 

2.minOvrn (M=470.8, Sd=164) 
2.minMax (M=538.4, Sd=170.3) 

Low 
MIX 

High 

BOR 

1.minOvrn (M=28.9, Sd=54.1) 

1.minRng (M=37, Sd=49.4) 
2.minMax (M=348.6, Sd=105.6) 

1.minRng (M=26.6, Sd=31.1) 

2.minOvrn (M=86.6, Sd=87.4) 
3.minMax (M=510.8, Sd=204.8) 

1.minRng (M=93.4 Sd=,71.3) 

2.minOvrn (M=170.8, Sd=129.6) 
3.minMax (M=698.8, Sd=254.3) 

Med 
BOR 

1.minRng (M=23.9, Sd=34.2) 

2.minOvrn (M=84.2, Sd=70.3) 

3.minMax (M=386.5, Sd=193) 

1.minRng (M=33.1, Sd=41.9) 

2.minOvrn (M=384.1, Sd=148.8) 

2.minMax (M=468.8, Sd=186.7) 

1.minRng (M=141.9, Sd=121.6) 

2.minOvrn (M=545.9, Sd=178.3) 

3.minMax (M=679.1, Sd=203.1) 

Low 
BOR 

1.minRng (M=31.8, Sd=74) 

2.minOvrn (M=525.6, Sd=161.5) 

2.minMax (M=568.6, Sd=226.7) 

1.minRng (M=53.2, Sd=82.8) 

2.minMax (M=520.2, Sd=228.3) 

2.minOvrn (M=607.6, Sd=228.7) 

1.minRng (M=392.9, Sd=146.5) 

2.minMax (M=643.3, Sd=191.7) 

2.minOvrn (M=667, Sd=223.5) 

 

With D4 (platykurtic and positively skewed distributions - small values of σ(ST) and 

σ(LoS)), again, minRng is associated with the largest overbookings. In several 

scenarios, however, these values are not significantly larger than those of the other 

scheduling policies. There is also a scenario (MIX=low, BOR=med, OUR=high) 

where minMax causes a M(OVB) that is significantly larger than the one of minRng. 

The difference between these values, however, is very small (+ 2.3 beds in two 

weeks). Referring to the overtime, D4 shows results that are consistent with those of 

D2. 

6.2.4 Optimisation and simulation approach using third quartiles values of ST 

and LoS 

Looking at Tables 8 and 9 (or equivalently at Tables 10 and 11) it emerges that for 

certain settings (e.g. MIX=low, BOR=low, OUR=high) the values of both overtime 

and overbooking might not be acceptable. In these cases, implementing the well-

balanced solutions obtained in the optimisation phase does not allow achieving 

robustness. In these cases, a way to achieve robustness is to use values of ST and 

LoS greater than the mean in the optimisation phase. By doing so, it is possible to 

obtain solutions that are still balanced but are characterised by a smaller number of 

surgeries and, consequently, more robust. 
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In Table 12, we show the results relevant to the “critical” setting (MIX=low, 

BOR=low, OUR=high) and compare the solutions obtained using: in the 

optimisation phase, the mean values (M) and the third quartiles (Q3) of ST and LoS 

respectively; in the simulation phase, the fitted lognormal distributions (D2) of ST 

and LoS.  

Table 12 Simulation results using the mean values (M) and third quartiles (Q3) of ST and LoS in the 

optimisation phase (setting (MIX=low, BOR=low, OUR=high)). 

 M  Q3 

 Scheduled 

surgeries 

Overtime 

[min] 

Overbooking 

[beds] 

Scheduled 

surgeries  

Overtime 

[min] 

Overbooking 

[beds] 

minMax 280 M=643.3, 

Sd=191.7 

M=28.7, Sd=8.1 246 M=42.9, 

Sd=42.8 

M=2.1, Sd=2.2 

minRng 282 M=392.9, 

Sd=146.5 

M=30, Sd=7.1 270 M=8.8, 

Sd=20.7 

M=21.6, 

Sd=6.7 

minOvrn 276 M=667, 

Sd=223.5 

M=26, Sd=7.4 243 M=59.7, 

Sd=61.2 

M=2.5, Sd=2.4 

 

As can be noticed using Q3 in the optimisation phase leads to less efficient solutions, 

especially for minMax (ΔScheduled=36) and minOvrn and (ΔScheduled=32). 

However, by scheduling fewer surgeries it is possible to obtain solutions that are 

sufficiently robust with respect to both overtime and overbooking. Indeed, over a 

planning horizon of two weeks, M(OVT) and M(OVB) associated with minMax are 

respectively equal to 42.9 minutes and 2.1 beds and those associated with minOvrn 

are respectively equal to 59.7 minutes 2.5 beds. minRng, instead, still lead to 

unsatisfactory overbookings (21.6 beds). Finally, it can be observed that despite of 

the statistic used in the optimisation model (mean, Q3), the overtimes and 

overbookings associated with minMax and minOvrn do not significantly differ 

(p>0.05) from each other. Due to space constraints the results relevant to the other 

settings are not reported upon here. 

7 Conclusions 

The aim of this study was to compare three different scheduling policies, namely 

minRng, minMax and minOvrn. Specifically, we were interested in comparing the 

value of efficiency, balancing and robustness that can be obtained by implementing 

these policies in different hospital settings. To do so, we have utilised a combined 

optimisation-simulation approach, where the schedule produced by the optimisation 

model was tested via simulation in order to take into consideration the variability of 

surgical time and length of stay. 
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We generated 27 hospital settings, starting from the data of a real hospital (Meyer 

Hospital). Specifically, we combined three different levels of the following three 

parameters: (i) hospital’s Beds/OR time Ratio (BOR); (ii) case mix complexity 

(MIX); (iii) target OR utilisation range (OUR). The data pertaining to both surgical 

time and length of stay comes from real medical records. 

The simulation analysis was performed using both empirical and theoretical 

lognormal distributions. In particular we use the lognormal distribution best fitting 

our data, as well as two “extreme” lognormal distributions, artificially created to 

explore distributions with highly skewed and platykurtic shape and situation with 

symmetric and leptokurtic shape. 

From our experimental campaign, it clearly emerges that there is no policy 

dominating the others in terms of efficiency and balancing and robustness. In 

general, minRng leads to the highest bed utilisation and to the largest number of 

scheduled surgeries, to the best OR balancing and to the smallest overtime. 

For each setting, minRng leads to a maximum OR utilisation that is lower than the 

one of minMax and to an OR overrun than is lower than the one of minOvrn. 

However, minRng also leads to the highest values of overbooking. In fact, even if 

allowing for a perfect bed balancing, this policy leads to very high levels of bed 

utilisation. As the simulation results clearly show, such a high bed utilisation likely 

leads to bed shortages when the patients’ LoS lasts more than expected, and thus to 

overbooking. 

In summary, in order to avoid overbooking, minMax and minOvrn should be 

preferred to minRng. The relative ranking of minMax and minOvrn, in terms of 

efficiency, varies according to the setting, but the number of scheduled surgeries (see 

Table 5) with these policies does not differ much from each other, and it is almost 

always smaller than the one associated with minRng. On the contrary, if the focus is 

on efficiency, the best choice is minRng, which also allows for low values of 

overtime. 

For most of the investigated settings, our analysis reveals that there is also an 

unobvious trade-off between overbooking and overtime. In fact, only in a few cases 

it is possible to obtain low values for both of these performances. Nonetheless, 

extremely robust solutions can still be obtained when BOR is high. In these settings 

in fact, minOvrn allows for achieving solutions characterised by both low overtimes 

and overbookings. Indeed, in these cases, minOvrn leads to overtimes that either do 
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not significantly differ from, or are significantly smaller than, those obtained with 

minRng. In addition, minOvrn leads to overbookings that are smaller than, or equal 

to, the ones of minRng and minMax. These solutions are however characterised by a 

small number of scheduled surgeries. 

The analysis also reveals that for certain settings (e.g. those with BOR=low and 

OUR= high) using the mean values of ST and LoS in the optimisation phase may 

lead to large values of overtime and overbooking. In these situations, to obtain robust 

solutions it is advisable to run the optimisation model with values greater than the 

mean, e.g. the third quartile, and to use the minMax or minOvrn objective functions. 

This study addresses a literature gap and, at the same time, has notable practical 

implications. Indeed, to the best of our knowledge, this is the first work in the vast 

literature on the MSS problem that:  

i) compares three alternative scheduling policies investigating the efficiency, 

balancing and robustness that can be achieved implementing them; 

ii) explains the causal mechanism that in given circumstances make certain 

polices outperform the others; 

iii) assesses the generalizability of the proposed findings by means of a vast 

experimental campaign including a vast number (27) of realistic settings and four 

different types of distributions. 

Referring to the practical relevance, this study can help hospital managers to 

understand the pros and cons associated with the use of different scheduling policies 

in different operational conditions. In this regard, Table 5 to Table 12 can be seen as 

tools that support the hospital managers in order to identify the scheduling policy 

best fitting their priorities and needs. Since the parameters of MIX, BOR and OUR 

are relative, i.e. they do not depend on the absolute hospital dimensions, and since 

our findings do not change according to the probability distributions used to model 

the stochasticity of ST and LoS, each studied setting can be considered as being 

representative of a wide set of hospitals. 

This study, however, is not without its limitations. First, we investigated a vast, yet 

limited, number of hospital settings. Hospitals with MIX, BOR and OUR that are 

significantly different from the ones considered in this study might not take 

advantage of our research. Second, regardless of the values of MIX, BOR and OUR, 
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we have not addressed how the actual hospital dimension, e.g. the number of beds 

and ORs, could affect the computational efficiency of the optimisation model. Third, 

we have not considered certain hospital resources (e.g. anaesthetists, ICU beds, 

nursing staff, medical devices) whose utilisation might need to be balanced as well. 

Finally, in this study, we assumed that non-elective patients are handled with 

dedicated resources (as it actually happens at the Meyer Hospital). The extension of 

the computational campaign to other hospital settings, the analysis of the 

optimisation model scalability and the evaluation of the impact of non-elective 

patients on the resource balancing will certainly be the object of our future research 

efforts. Another interesting avenue for future research includes the definition of 

alternative ways to address the robustness of the schedules, e.g. the formulation of a 

stochastic integer programming problem. 
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1 Introduction 

The Operating Theatre (OT) is widely acknowledged as the functional area driving 

most hospitals’ costs and revenues (Denton et al., 2007). The surgical scheduling 

process, i.e. the process by which OT activities are planned, dramatically influences 

OT performance and, as such, it is the object of growing attention from hospital 

managers worldwide. Such a process, however, is extremely complex to manage. In 

fact, it requires the consideration of many resources (operating rooms (ORs), surgical 

teams, and nursing staff as well as downstream resources, such as surgical units and 

intensive care units (ICUs)) operating in a context affected by a high variability 

(Litvak and Long, 2000) and characterised by people - surgeons, patients, hospital 

managers - with conflicting priorities (Glouberman and Mintzberg, 2001). The 

complexity of the surgical scheduling process coupled with its significant economic 

and social impact has thus stimulated, in recent years, intensive research activities as 

well (Cardoen et al., 2010, Guerriero and Guido, 2011, May et al., 2011). The 

literature, indeed, abounds with models supporting the scheduling of surgical 

activities. In particular, the mainstream literature presents the consensus that solving 

a surgical scheduling problem requires addressing three intertwined sub-problems 

(Beliën and Demeulemeester, 2007): (i) the case-mix planning, i.e. the determination 

(usually on a yearly basis) of the total amount of OR time to assign to each surgical 

specialty, (ii) the master surgical scheduling, i.e. the determination of the specialty 

(or specialties) to assign to each OR on each day of the planning horizon (e.g. two 

weeks or one month) and, in certain cases, the specification of the number and 

typology of surgeries to be performed each day, and finally (iii) the selection and 

sequencing of patients who have to undergo surgery. Typically, these three sub-

problems are solved in cascade; the case-mix determined at the first stage is used in 

the definition of the master surgical schedule (MSS). The MSS, in turn, is used as 

input for patient selection and sequencing. 

This study focuses on the master surgical scheduling sub-problem. In the literature, 

the models supporting such a sub-problem consider slightly different sets of 

resources (ORs, surgical units, surgical teams, and the ICU) and make different 

assumptions about how flexibly these critical resources are managed. Some studies 

propose scenario analysis to assess the effects associated with the flexible 

management of certain resources, such as surgical teams or surgical units (Banditori 

et al., 2013, Agnetis et al., 2012). However, despite the fact that flexibility is by no 

means a new topic (Balasubramanian et al., 2012, Buzacott and Mandelbaum, 2008, 
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Chou et al., 2008, Gupta and Shanthikumar, 2008), to date the literature lacks of 

contributions that have systematically studied the impact of flexibility on OT 

performance.  

This study addresses this gap by adding two main contributions. First, it presents a 

novel mixed integer programming model to support MSS production. Second, it uses 

the model to investigate the main and interaction effects associated with the flexible 

management of three critical resources: surgical teams, ORs and surgical units.  

The model assumes that surgical cases can be organised into homogeneous surgery 

groups (Santibáñez et al., 2007, Banditori et al., 2013) based on their specialty, their 

expected surgical time (ST) and their expected length of stay (LoS), that is, based on 

the extent to which these cases are expected to “consume” the previously mentioned 

critical resources. The model creates a solution indicating for each OR session (i.e. 

for each day, for each OR and for each session) in the planning horizon the number 

of surgeries to perform and the surgery group these cases must belong to. The 

model’s objective function is the maximisation of the number of scheduled surgeries. 

In addition to presenting the model, we show how such a model can be modified by 

acting on its variables, parameters and constraints to incorporate a more or less 

flexible management of surgical teams, ORs and surgical units. The different 

versions of the model are then used to carry out an experimental campaign based on 

a 2
3
 experimental design (Montgomery and Runger, 2003). In detail, we consider the 

way the three critical resources are managed as factors and we assume two possible 

levels for each factor: “high” when the resource is managed in a flexible way and 

“low” otherwise. More specifically: 

1) With respect to surgical teams (“Teams” factor), we analyse the case where 

the assignment of surgical teams to sessions is fixed (fixed surgical teams 

assignment, low level) and the case where such an assignment can change 

every time the MSS is produced (variable surgical teams assignment, high 

level). 

2) With respect to ORs (“ORs” factor), we distinguish the case where ORs are 

used to perform, within the same session, either long-stay (LoS>1 day) 

surgeries or short-stay (LoS=1 day) surgeries (dedicated sessions, low level) 

and the case where both types of surgeries can be performed within the same 

session (mixed sessions, high level).  
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3) With respect to surgical units (“Units” factor), we distinguish the case where 

units characterised by the same care setting (in terms of nursing staff, 

equipment, etc.) are used to host cases of specific specialties only (dedicated 

units, low level) and the case where these units are pooled to host patients of 

all specialties (pooled units, high level). 

In the remainder of the paper, when a resource is managed flexibly, we will say that 

the hospital implements a flexible practice with respect to such a resource. 

Combining factors and factor levels, we obtained eight (=2
3
) configurations. For 

each of them we ran the optimisation model in correspondence with 30 randomly 

generated instances. These instances were obtained starting from real data coming 

from the Meyer University Children’s Hospital (hereinafter Meyer Hospital) a 

leading Italian hospital. The remainder of the paper is organised as follows: in 

Section 2, we provide a brief review of the literature. In Section 3, we describe the 

optimisation models. In Section 4, we illustrate the experimental campaign. In 

Section 5, we present the empirical results and in Section 6 we discuss them. 

Subsequently, in Section 7, we draw the conclusions and outline the direction of our 

future research efforts. 

2 Literature review 

The master surgical scheduling problem has been the object of several studies (see 

the reviews of Cardoen et al. (2010), Guerriero and Guido (2011), May et al. (2011)). 

In Table 1, we review the most important mathematical models supporting the 

production of MSS that appeared in the literature. Each column of the table (except 

the last one) represents a resource, while each row represents a model. In each cell, 

we specify if and how the resource is modelled. When a resource is not explicitly 

considered in the model, the cell contains “NEC.” In the last column of the table, 

instead, we report the methodology adopted in the relevant study. 

In order to emphasise similarities and differences between our study and the related 

literature, we have added a row representing our model. When a study proposes both 

flexible and rigid approaches to manage a resource, we report all the alternatives in 

the table. Table 1 reveals that most of the authors considered three main critical 

resources in their models: surgical teams, ORs and surgical units’ beds. Therefore, 

the remainder of this review will focus on these resources. 
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Table 1 – MSS literature review: resources modelled and operational assumptions  

Paper Surgical teams OR Surgical units’ beds Other 

resources 

Type of analysis and solution 

technique 

Our study 

 

Number of sessions per surgical specialty bounded on a daily and on 

a weekly basis 

Session assignment performed: 

- Once and then considered as fixed (low flex) 

- Every time the MSS is produced, but only limited changes are 

allowed with respect to a predefined assignment (high flex) 

Fully interchangeable ORs 

Two sessions per day/OR 

Sessions:  

- Dedicated (low flex) 

- Mixed (high flex) 

Three types of surgical units (one day 

surgery unit and two regular units). 

- All units are dedicated to specific patient 

types, no mismatch allowed (low flex) 

- Regular units are pooled (high flex) 

NEC Single criterion exact optimisation, 

scenario analysis 

Mixed integer programming 

Blake et al. (2002) Number of sessions per surgical specialty bounded on a daily and on 

a weekly basis 

Session assignment performed once and then kept constant in the 

following period 

Partially interchangeable ORs 

One session per day/OR 

Mixed sessions 

NEC Medical 

equipment 

Single criterion heuristic 

optimisation, scenario analysis 

Mixed integer programming, 

constructive heuristic 

Vissers et al. (2005) NEC Fully interchangeable ORs 

One session per day/OR 

Mixed sessions 

Two types of surgical units (ICU and regular 

unit) 

Dedicated units, no mismatch allowed 

ICU nursing 

staff 

Single criterion exact optimisation 

Mixed integer programming 

Santibáñez et al. 

(2007) 

Number of sessions per surgical specialty bounded on a daily and on 

a monthly basis 

Session assignment performed once and then considered as fixed 

Partially interchangeable ORs 

One or two sessions per day/OR 

Mixed sessions 

Two types of surgical units (SCU and 

regular unit) 

Dedicated units, no mismatch allowed 

NEC Single criterion exact optimisation 

Mixed integer programming 

van Oostrum et al. 

(2008) 

NEC Fully interchangeable ORs 

One session per day/OR 

Mixed sessions 

Two types of surgical units (ICU and regular 

unit) 

Dedicated units, no mismatch allowed 

NEC Multi-criteria exact optimisation, 

multi-criteria heuristic optimisation 

Mixed integer programming, 

column generation, decomposition 

approach 

Beliën et al. (2009) Number of sessions per surgical specialty bounded on a weekly 

basis 

Session assignment performed once and then considered as fixed 

Fully interchangeable ORs 

One or more sessions per day/OR 

Mixed sessions 

Several types of surgical units 

Dedicated units, no mismatch allowed 

NEC Multi-criteria heuristic optimisation, 

goal programming 

Simulated annealing 

Tànfani and Testi 

(2010) 

Number of sessions per surgical specialty bounded on a weekly 

basis 

Session assignment performed every time MSS is produced 

Fully interchangeable ORs 

One or two sessions per day/OR 

Mixed sessions 

Two types of surgical units (ICU and regular 

unit) 

Dedicated units, no mismatch allowed 

NEC Single criterion heuristic 

optimisation 

Constructive heuristic 

Banditori et al. (2013) Number of sessions per surgical specialty bounded on a daily basis 

Session assignments performed every time MSS is produced 

Partially interchangeable ORs 

Two sessions per day/OR 

Mixed sessions 

Three types of surgical units 

Dedicated units, no mismatch allowed 

NEC Multi-criteria hierarchical exact 

optimisation, scenario analysis 

Mixed integer programming, 

discrete event simulation 

Agnetis et al. (2012) Number of sessions per surgical specialty bounded on a daily and on 

a weekly basis 

Session assignment performed: 

- Once and then considered as fixed (low flex) 

- Every time the MSS is produced, but only limited changes are 

allowed with respect to a predefined assignment (medium flex) 

- Every time the MSS is produced without limiting the changes 

allowed with respect to a predefined assignment (high flex) 

Partially interchangeable ORs 

One or two sessions per day/OR 

Dedicated sessions 

NEC NEC Single criterion exact optimisation, 

scenario analysis 

Mixed integer programming 
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Surgical teams, i.e. the teams of surgeons belonging to the same specialty that 

actually carry out surgeries are considered explicitly in all but two models (i.e. the 

model of Vissers et al. (2005) and van Oostrum et al. (2008)). In the remaining 

works, the availability of surgical teams is modelled by limiting the number of 

sessions that each surgical specialty can perform on a weekly basis and/or daily 

basis. Based on these constraints, almost all models assign sessions to specialties, 

thereby identifying when a surgical team will potentially operate in the planning 

horizon (session assignment). In addition, some models (Santibáñez et al., 2007, van 

Oostrum et al., 2008, Banditori et al., 2013) also determine the type and/or the 

number of surgeries that surgical teams will execute in each session (surgery types 

assignment). In (Agnetis et al., 2012), instead, one of the proposed models assumes 

that the session assignment has already been done and, consequently, supports the 

surgery types assignment only. Most studies suggest that the session assignment 

should be carried out once and should not be changed frequently (Guerriero and 

Guido, 2011). The underlying assumption of these studies is that it is not technically 

feasible to change the session assignment on a monthly (or more frequent) basis 

because it would make it very complex for surgeons to coordinate their activities 

inside and outside the OT (van Oostrum et al., 2010). Nonetheless, Agnetis et al. 

(2012) demonstrate that small and frequent changes in the session assignment can 

yield substantial benefits and that these benefits are higher than those associated with 

large yet less frequent changes. Therefore, the authors argue that a limited amount of 

flexibility in managing surgical teams can produce benefits that are higher than the 

organisational cost of implementing this solution. For that reason, we decided to 

include this latter case in our study and compare it with the case where the session 

assignment is considered as already having been performed.  

Contrary to surgical teams, ORs are considered as critical in all the reviewed models. 

However, different authors model these resources in different ways. A first 

distinction is between interchangeable and partially interchangeable ORs. The 

former can host every type of surgery; the latter, instead, can host only a limited 

subset of surgeries and/or specialties. A second distinction pertains to how OR time 

is divided into sessions. Some authors consider one session per OR per day (van 

Oostrum et al., 2008), some consider two (Santibáñez et al., 2007) or more (Beliën et 

al., 2009) sessions per OR per day, while others allow both daily sessions and shorter 

sessions (Agnetis et al., 2012). A third distinction concerns the types of surgery that 

can be performed in the same OR session. For example, Agnetis et al. (2012) 

distinguishes two macro-types of surgeries: general surgeries and day surgeries. The 



6 

former includes all the procedures leading to a LoS of at least two days (one night), 

and the latter includes those procedures associated with a LoS of just one day. Based 

on this distinction, Agnetis et al. (2012)’s model allows only dedicated sessions, 

meaning that within the same session it is not possible to execute both day-surgeries 

and general surgeries. Instead, other models (e.g. Banditori et al. (2013)) allow 

mixed sessions where these types of surgeries can coexist. While the 

interchangeability of an OR depends on the structural characteristics (e.g. the 

presence of certain equipment) of the OR itself, hospital managers have more 

degrees of freedom in deciding how to subdivide the OR time. Nonetheless, this 

decision is influenced by the actual number of surgical teams available for each 

specialty (Banditori et al., 2013). For example, all-day-long sessions cannot be 

planned for those specialties relying on less than two surgical teams per day (except 

in extraordinary cases, one team cannot operate for the entire day). The decision to 

organise dedicated or mixed sessions, instead, is generally free. The literature 

suggests that surgeons usually prefer dedicated sessions; surgeons, in fact, can reduce 

surgery time because of the repetitive nature of their work (Hans et al., 2008). On the 

other hand, a mixed session makes the scheduling process less constrained and as 

such, it potentially allows scheduling a greater number of surgeries. In this study, we 

explore both options. 

Finally, surgical units, i.e. the facilities where patients are cared for following 

surgical procedures, are considered in six out of eight models. These units are usually 

classified based on the intensity of care required by the hospitalised patients: e.g. 

ICUs, day-surgery units, regular units. Moreover, these units are characterised by a 

given capacity that is expressed in terms of the number of beds. Certain hospitals 

(e.g. Meyer Hospital) allocate patients to the regular units based on the specialty. 

Such a practice makes it easier and faster for surgeons to control and visit their 

hospitalised patients. Different models assume different numbers of units and unit 

types. All the reviewed models except Banditori et al. (2013) constrain each type of 

patient to be hospitalised into a specific unit. In general, the literature (Vincent et al., 

1998) suggests that it is risky to accommodate patients requiring thorough care in 

units characterised by reduced nursing staff or that are physically located far away 

from the intensive care unit. Thus, units should be pooled only if they are 

characterised by similar care settings, which is the flexible practice explored in this 

study. Banditori et al. (2013)’s model, instead, violates this recommendation and 

allows bed mismatches whenever they allow increasing the OT throughput. 
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According to Table 1, it can be argued that flexible practices are considered in 

several studies. However, no study proposes an analysis that investigates how 

different flexible practices can interact. With this study, we aim to address this 

literature gap. In sum, our study (i) proposes a model that considers critical resources 

that are included in the vast majority of the other studies; (ii) investigates three 

flexible practices that are reasonable and justified in light of the extant literature but 

that previous studies have considered only separately or by combining a very limited 

number of different scenarios (two at maximum); (iii) assesses, in statistical terms, 

the main and the interaction effects of the mentioned practices and to the best of our 

knowledge is the only study to do so. These facts ensure that the results presented in 

the next sections can be of value for a wide audience of practitioners and scholars 

and also that this study adds a significant contribution to the literature. 

3 Model description 

In this section, we present the mathematical models we have developed. Specifically, 

first we present a version of the model that does not implement any flexible practice 

(hereafter referred to as the “rigid model”). Then we show how such a model can be 

modified to incorporate flexibility with respect to the management of surgical teams, 

ORs and surgical units. 

All the models presented in this work address a twofold problem: (i) determining the 

number of cases to assign to each OR session of the planning horizon; (ii) 

determining the surgery group these cases must belong to. The models consider three 

critical resources: (i) ORs, whose available time is organised in sessions; (ii) surgical 

units, which accommodate patients after the surgery; (iii) surgical teams, dedicated to 

one specialty each, whose availability is defined in terms of number of OR sessions. 

Cases belonging to the same surgery group require the same specialty, the same 

amount of OR time and will occupy a surgical unit for the same amount of time. 

Let us define the following sets and parameters that are common to the rigid model 

and to its extensions as follows: 

W the set of weeks in the planning horizon, indexed by w 

D the set of days in the planning horizon, indexed by d 

T the set of sessions, indexed by t 

O the set of ORs, indexed by o 
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S the set of surgical specialties, indexed by s 

K the set of surgery groups, indexed by k 

M a suitably big constant 

Hodt the available time of OR o, on day d and session t 

Fbd the number of beds in the surgical unit b available on day d 

Lsw the availability of surgical teams with specialty s for week w, 

expressed in number of OR sessions 

sk the specialty of surgery group k 

rk the typology of surgery group k (short-stay surgery – SS vs. long-stay 

surgery – LS) 

ck the average surgery duration of surgery group k 

bk, ak the average number of days of hospitalisation, before and after 

surgery, required by surgery group k 

Yk the minimum number of procedures of surgery group k to be 

scheduled.  

3.1 Rigid model 

In this model, we assume that the session assignment has already been done. 

Consequently, we rely on an allocation grid G as an input. Specifically, for each 

specialty s, day d and session t, Gsdt is equal to 1 if specialty s is allocated on day d, 

session t, and 0 otherwise.  

Grid G must respect the following feasibility constraints: 





Ss

sdt OG ||   TtDd  ,  (3.1.1) 

sw

w

wd

sdt

Tt

LG  
 

7

67

  WwSs  ,  (3.1.2) 

Constraints (3.1.1) assure that on each day d and session t, the number of specialties 

assigned to an OR does not exceed the number of available ORs (|O|). Constraints 

(3.1.2) instead control that the number of sessions assigned weekly to a given s is 
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exactly the value resulting from the upstream case-mix planning problem. Then, in 

the rigid model, an OR o has to be assigned to each triple (s,d,t) for which Gsdt = 1. 

For a matter of convenience, we denote this with the following: 

 ( , , ) s.t. , , and 1 
sdt

G s d t s S d D t T G     . 

The rigid scheduling model takes the following two main decisions: 

1. Assign an OR to each triple (s,d,t) in G   

2. Determine, for each surgery group k, the number of procedures to schedule in 

correspondence with each triple (s,d,t) in G  where s is the specialty 

associated with k. 

Then let us define the following main and auxiliary variables:  

qgo binary, 1 if triple g = (s,d,t) in G  is assigned to OR o, 0 otherwise  

ykdto the number of procedures in surgery group k assigned to OR o on day 

d in time slot t 

zbd the number of beds belonging to surgical unit b occupied on day d 

uodt binary, 1 if OR o on day d and session t is dedicated to short-stay 

surgeries, 0 otherwise. 

Using these variables and parameters, we can state the rigid model as follows: 

 


TtDd
OoKk

kodty

,
,,

max  
(3.1.3) 





GtdsgSs

goq
),,(:

1 TtDdOo  ,,  (3.1.4) 





Oo

goq 1 Gg  (3.1.5) 





ssKk

gokdto

k

Mqy
:

 OoGtdsg  ,),,(  (3.1.6) 
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



Kk

odtkdtok Hyc  TtDdOo  ,,  (3.1.7) 

 









Tt
OoKk

bd

bdD

add

tokd zy
k

k,,

),min(

),1max('

'  DdBb  ,  (3.1.8) 

bdbd Fz   DdBb  ,  (3.1.9) 

: " "

kdto odt

k K r SSk

y Mu
 

  TtDdOo  ,,  (3.1.10) 

: " "

(1 )
kdto odt

k K r LSk

y M u
 

   TtDdOo  ,,  (3.1.11) 

k

Tt
DdOo

kdto Yy 

 ,,

 
Kk  (3.1.12) 

 1,0goq  OoGg  ,  (3.1.13) 

Nkdtoy  OoTtDdKk  ,,,  (3.1.14) 

N
bd

z   DdBb  ,  (3.1.15) 

 0,1
odt

u   TtDdOo  ,,  (3.1.16) 

 

The objective function (3.1.3) maximises the number of procedures scheduled in the 

planning horizon. Constraints (3.1.4) guarantee that each OR-session can host a 

specialty at most. Constraints (3.1.5) assure that all the triples (s,d,t) in G  are 

assigned to some OR o. Constraints (3.1.6) bind together assignment variables q and 

variables y: specifically, they state that if the triple (s,d,t) in G  has not been assigned 

to OR o, then no procedure belonging to a group characterised by specialty s can be 

performed in OR o, on day d and session t. In contrast, when the triple g=(s,d,t) in G  

is assigned to OR o (qgo=1), then the corresponding constraint is redundant since it 

imposes that the number of procedures of that specialty scheduled in that OR session 

does not exceed the suitably big constant M. Specifically, M is set equal to the 

maximum number of shortest procedures a session can host. Constraints (3.1.7) 

guarantee that the total duration of the procedures scheduled in an OR session does 

not exceed the available time of that OR session. Constraints (3.1.8) and (3.1.9) are 

used to properly manage beds; specifically, for each day d and surgical unit b, they 
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respectively compute the number zbd of beds occupied and limit such a number to the 

bed availability Fbd. To correctly determine the bed occupancy on a given day d, we 

have to consider all the patients whose stay in the surgical units, before (bk) and after 

surgery (ak), overlaps day d. More specifically, in a given day d, we have to consider 

the beds occupied by patients who have undergone a surgery before day d and who 

are still in the hospital on day d as well as all the patients who will undergo surgeries 

after day d and that have been pre-hospitalised, in addition to the patients that 

undergo a surgery exactly on day d. Constraints (3.1.10) and (3.1.11) refer to the 

management of dedicated sessions, and they assure that in a given OR session, long-

stay and short-stay surgeries are mutually exclusive. In fact, the binary variable uodt 

is equal to 1 if OR o on day d and session t is dedicated to short-stay surgeries. In 

this case, constraints (3.1.11) assure that in that OR session no long-stay surgery is 

performed. In contrast, when uodt is equal to 0, the corresponding OR session can 

host only long-stay surgeries. Constraints (3.1.12) relate to target efficiency and they 

impose that for each surgery group k the number of procedures performed is not 

smaller than the target value Yk. Indeed, the MSS must guarantee to schedule a 

minimum number of surgeries for each surgery group. Such a requisite is set to avoid 

solutions planning an excessive number of surgeries belonging to easy-to-schedule 

surgery groups (i.e. groups characterised by short ST and LoS). This method ensures 

a reasonable waiting time for patients of each group and allows distributing complex-

to-schedule surgeries over time. 

Finally, constraints (3.1.13), (3.1.14), (3.1.15), and (3.1.16) define the domain of the 

variables.  

In the following section, we describe how to extend/modify the rigid model in order 

to take into account the flexible practices discussed in the previous section. 

3.2 Flexibility with respect to surgical teams 

In this scenario, differently from the rigid model, the allocation grid is not an input 

for the scheduling model. Instead, the grid is the output of the model that decides the 

specialty to assign to each OR, day and session in the planning horizon. However, 

only limited variations with respect to the original grid are allowed in order to 

guarantee that the new grid is still implementable. To this aim, the following 

variables are defined: 

xsdto binary, 1 if specialty s is assigned to OR o on day d and session t, 0 

otherwise  
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x
+

sdt binary, 1 if a swap from 0 to 1 occurs with respect to Gsdt, 0 otherwise. 

All the constraints that in the rigid model are implicitly satisfied by the pre-defined 

grid G have now to be explicitly guaranteed through the following set of constraints: 





Ss

sodtx 1   TtDdOo  ,,  (3.2.1) 





Oo

sodtx 1  TtDdSs  ,,  (3.2.2) 

sw

w

wd

sodt

TtOo

Lx 


7

67,

  WwSs  ,  (3.2.3) 





ssKk

sodtkodt

k

Mxy
:

  TtDdOoSs  ,,,  (3.2.4) 

 1,0sodtx   TtDdOoSs  ,,,  (3.2.5) 

 

Specifically, constraints (3.2.1) assure that each OR on each day and in each session 

of the planning horizon is assigned to at most one specialty. Constraints (3.2.2) 

guarantee that each specialty is assigned to at most one OR in each day and session. 

Constraints (3.2.3) impose that the number of sessions assigned weekly to a given 

specialty s is exactly the value resulting from the upstream case-mix planning 

problem. Constraints (3.2.4) bind together assignment (x) and scheduling (y) 

variables; specifically, they assure that no procedure with specialty s is scheduled in 

OR o, on day d and session t unless specialty s has been assigned to that OR, on that 

day and session. Conversely, these constraints become redundant when xsodt=1 since 

they impose that the number of procedures scheduled does not exceed a suitably 

defined big M. Finally, constraints (3.2.5) define the domain of the assignment 

variables. 

Furthermore, we introduced the following constraints to control the variations with 

respect to the grid G: 





 sdtsdt

Oo

sodt xGx  TtDdSs  ,,  (3.2.6) 




 
TtDd

sdt Ax
,

 Ss  (3.2.7) 
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Specifically, constraints (3.2.6) allow that any variation of element Gsdt can occur. In 

particular, if Gsdt = 0, i.e. if specialty s is not allocated to day d, session t, the new 

grid defined through variables x may allow that specialty s is assigned to some OR in 

that day and session. When this variation occurs, variable x
+

sdt takes value 1 and it 

accounts for a zero to one swap with respect to G. In addition, xsodt specifies the OR o 

to which specialty s is assigned in day d, session t. 

One to zero swaps, instead, do not need to be explicitly controlled. In fact, since we 

hypothesize that the number of sessions dedicated to each specialty in the planning 

period is constant, when a one to zero swap occurs also a zero to one swap takes 

place and this latter swap is controlled by x
+

sdt as well. The number of zero to one 

swaps affecting the specialty s cannot exceed the maximum number A  of allowed 

variations (see constraints (3.2.7)). 

3.3 Flexibility with respect to ORs 

To implement this type of flexibility, it is sufficient to remove constraints (3.1.10) 

and (3.1.11), thus enlarging the feasibility region and allowing both short-stay and 

long-stay surgeries to be scheduled in the same session. 

3.4 Flexibility with respect to surgical units  

Each procedure is associated with a surgical unit. If surgical units are managed 

flexibly, then they are pooled. With this method, patients can be hospitalised in units 

that differ from the one originally assigned to them. To model this practice, we 

introduce the following variables: 

vbb’d the number of beds of surgical unit b’ used in place of beds of surgical unit b 

on day d. 

Constraints (3.1.9) in the rigid model are then updated with constraints (3.4.1). These 

constraints allow that on a given day for a given surgical unit the number of beds 

occupied in that unit exceeds capacity. Moreover, we add constraints (3.4.2), which 

limit the overall number of beds occupied to the overall bed availability. 





bbBb

dbbbdbd vFz
':'

'

  
DdBb  ,  (3.4.1) 





Bb

db

bbBbb

dbb

Bb

bd Fvz
':',

'

  
Dd  (3.4.2) 
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4 Methodology 

To assess the effects of the implementation of flexible practices on MSS efficiency, 

we use a 2
3
 factorial design comprising the following: 

 Three factors: Teams, ORs, Units. Each factor corresponds to one of the 

critical resources incorporated in the model. 

 Two possible levels for each factor: high when the resource is managed in a 

flexible way and low otherwise.  

 One response variable, i.e. the number of surgeries scheduled. 

Factors and factor levels are reported in Table 2, and the experimental design is 

illustrated in Figure 1. 

Table 2 - Factorial design 

Symbol Factor Name Low level High level 

A Teams Fixed surgical teams assignment. The 

allocation grid is fixed. 

Variable surgical teams assignment. At 

maximum, one swap per specialty is 

allowed with respect to a predefined 

allocation grid. 

B ORs Dedicated sessions. OR can host 

either short-stay or long-stay 

surgeries. 

Mixed sessions. OR can host both short-

stay and long-stay surgeries. 

C Units Dedicated units. Unit 1 and Unit 2 are 

dedicated to different types of long-

stay patients. 

Pooled units. Unit 1 and Unit 2 are used 

interchangeably. 

 

 

Treatment 

Factors 

Teams 

(A) 

ORs  

(B) 

Units  

(C) 

(1) Low Low Low 

a High Low Low 

b Low High Low 

c Low Low High 

ab High High Low 

ac High Low High 

bc Low High High 

abc High High High 
 

Figure 1 Experimental design 

ac 

Teams (A) 

Units (C) 

abc 

(1) 

bc 

a 

c 

b ab 

OR (B) 
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Each factor is associated with an uppercase letter (A, B, C). Each vertex of the cube 

represents a treatment. Treatments are labelled according to the Montgomery and 

Runger’s (2003, p.524) notation. According to this notation, a treatment combination 

is represented by a series of lowercase letters. If a letter is present, the corresponding 

factor is run at the high level in that treatment combination; if it is absent, the factor 

is run at its low level. The treatment combination with all the factors at the low level 

is represented by (1). 

To implement the different treatments, the optimisation model is extended as 

described in Section 3. For each treatment, we have analysed the result of the 

optimisation model in correspondence of 30 randomly generated instances. These 

instances differ in each other’s in terms of allocation grid G.  

We coded the optimisation models in AMPL and solved them through the IBM 

ILOG Cplex Solver (version 12.4) running on a personal computer equipped with an 

Intel Core i7 processor and 8 GB of RAM. For each optimisation run, we bound the 

computational time to 1 hour. The results of our experimental campaign are 

presented in the next section. 

5 Empirical results 

In this section, we present the data we used to run the optimisation model(s) and the 

results of the experiments. 

5.1 Input data 

As we pointed out in the introduction, our study was inspired by Meyer Hospital. 

Such a hospital is characterised by the following features: 

(i) 12 surgical specialties. Each surgical specialty is associated with 

surgical teams that can cover a certain number of sessions per week. 

(ii) 38 surgery groups. Surgery groups have been created following 

Banditori et al.’s (2013) methodology. For each surgery group (k), we 

calculated the mean value of LoS and ST and used these values to set 

the parameters ak and ck of the optimisation models, respectively. 

(iii) A planning horizon of two weeks. 

(iv) Defined lower bounds (Yk) for the number of surgeries to schedule 

within the planning horizon for each surgery group k. These lower 

bounds are fixed by the hospital’s top management on a yearly basis.  
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(v) 3 surgical units: a day surgery unit and two regular units (Unit 1 and 2). 

The day surgery unit contains 14 beds, and Unit 1 and Unit 2 contain 19 

and 14 beds, respectively. 

(vi) The day surgery unit can host only short-stay patients, i.e. patients 

whose expected LoS is one day (no night), regardless of the speciality. 

In contrast, Units 1 and 2 can accommodate long-stay patients only for 

certain specialties. Long-stay patients can be hospitalised either in Unit 

1 or in Unit 2, and mismatches are not allowed.  

(vii) 4 interchangeable ORs dedicated to elective patients. Each OR is open 

10 hours a day, 5 days per week. The OR time is subdivided into two 

sessions, morning and afternoon. Additional OR sessions and beds are 

allocated to non-elective patients (emergencies and urgencies).  

(viii) OR sessions are “dedicated,” i.e. in a session where long-stay surgeries 

are performed, no short-stay surgery can be scheduled and vice versa. 

In addition, afternoon sessions can host only long-stay surgeries, while 

morning sessions can host both long-stay and short-stay surgeries. 

(ix) An allocation grid G that fixes the specialty to assign to each OR 

session. 

(x) No deviation from the allocation grid G is tolerated. 

Features (i, ii, iii, iv, v, and vii) do not change across treatments and instances. 

Features (vi, viii and x) change depending on the treatment, as described in Table 2. 

Feature (ix) changes according to the instance, which is randomly generated. The 

Meyer Hospital case corresponds to the treatment (1) in Table 2. 

5.2 Optimisation output 

Table 3 shows the results of the optimisation models. It displays the mean values, 

calculated across instances, of the scheduled surgeries and of the optimality gap. In 

addition, for each treatment, the table shows the number of instances for which the 

optimisation model found the optimal solution and the minimum and the maximum 

optimality gaps across the 30 instances. 

As can be seen for some treatments and instances, it was not possible to find an 

optimal solution within the fixed time limit. Nonetheless, the mean optimality gap 

associated with each treatment never exceeds 3.6%. 
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Table 3 Optimisation Output 

Treatment 

Mean of 

scheduled 

surgeries 

Mean of 

optimality 

gap 

Optimal 

solutions 

found 

Min of 

optimality gap 

Max of 

optimality gap 

(1) 272.1 0.0% 30/30 0.0% 0.0% 

a 280.2 2.7% 0/30 1.8% 3.6% 

b 278.2 0.0% 30/30 0.0% 0.0% 

c 274.7 0.0% 30/30 0.0% 0.0% 

ab 286.7 0.5% 7/30 0.0% 1.4% 

ac 281.9 2.6% 0/30 1.4% 3.6% 

bc 279.2 0.0% 30/30 0.0% 0.0% 

abc 287.0 0.5% 5/30 0.0% 1.4% 

The table shows that when moving from treatment (1) to treatment abc, the number 

of surgeries scheduled increases by 14.9. Therefore, implementing all the mentioned 

flexible practices yields, on average, a monthly increase of around 30 surgeries. To 

interpret these results, we performed an analysis of variance (ANOVA) and assessed 

the statistical significance and the magnitude of all main and interaction effects. 

Moreover, we carried out several Tukey’s post-hoc tests to compare treatments with 

each other and rank them in terms of scheduled surgeries while controlling the 

familywise error rate (Field, 2005, p.310) to a 0.05 level. These statistical analyses 

are presented in the next section. 

5.3 Statistical analysis 

Table 4 displays the complete ANOVA table including the magnitude of the 

estimated effects and their level of significance. The ANOVA analysis included an 

accurate check of the assumptions of normality of error terms and homogeneity of 

variance. More specifically, we carried out a Ryan-Joiner test and failed to reject 

(p=0.099) the null hypothesis of normally distributed errors. Similarly, we performed 

the Levene’s test and failed to reject the null hypothesis of the variances being equal 

(p=0.087).  

Table 4 Analysis of variance and effects summary table for scheduled surgeries 

 DF Sum of squares Mean squares F Effect  p 

Teams 1 3744.6 3744.6 2378.4 7.9 0.000 (*) 

Ors 1 1837.1 1837.1 1166.8 5.5 0.000 (*) 

Units 1 117.6 117.6 74.7 1.4 0.000 (*) 

Teams*Ors 1 4.8 4.8 3.1 0.3 0.080 

Teams*Units 1 8.8 8.8 5.6 -0.4 0.020 (*) 

Ors*Units 1 33.8 33.8 21.4 -0.8 0.000 (*) 

Teams*Ors*Units 1 0.1 0.1 0.0 0.0 0.837 

Error 232.0 365.3    2.1    

Total 239.0 6112.0     
(*) significant at the α = 0.05 level 
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Table 4 shows that, assuming an α = 0.05 significance level, all the main effects are 

significant (p<0.05). Similarly there is a significant, yet negative, interaction effect 

between Teams factor (A) and the Units factor (C) (p=0.020) and between the ORs 

factor (B) and Units factor (C) (p=0.000). Other 2-way and 3-way interaction effects, 

instead, are not statistically significant (p>0.05). The main and interaction effects are 

plotted in Figure 2 and Figure 3, respectively.  

Looking at the main effects (Figure 2), it can be noted that, on average, an increase in 

the level of each factor leads to an increase in the number of surgeries scheduled. For 

example, when the Teams factor (A) is run at a high level (i.e. treatments a, ab, ac, 

abc), the model schedules, on average, 283.9 surgeries. Instead, when the Teams 

factor (A) is run at its low level (i.e. treatments b, c, bc, (1)), the model schedules, on 

average, 276 surgeries (in fact, main effect (A) =283.9-276= 7.9) 

 
Figure 2 Main effects for scheduled surgeries, mean values 

However, as in our case, when one or more significant interaction effects are present, 

the interpretation of the main effects can be incomplete or misleading. In fact, when 

an interaction factor is significant, the impact of one factor depends on the level of 

another factor. For example, in our case, the significant interaction between B and C 

factors implies that the effect on scheduling surgeries (dependent variable) of B 

depends on the level of C and vice versa. In particular, since the interaction effect is 

negative, increasing B when C is at a high level leads, on average, to a variation in 

terms of the number of scheduled surgeries that is significantly smaller than the 

variation obtained by increasing B when C is at a low level. If this latter variation 

were negative, i.e. if increasing B when C is low would lead to a decrease in the 

surgeries scheduled, then the interpretation of the main effects would be completely 



19 

misleading. In this latter case, in fact, increasing B from low to high in the presence 

of a high level of C would determine a decrease of the surgeries scheduled, which is 

the opposite of what one would expect looking at the main effects of B and C. To 

prevent misleading interpretations of the main effects, however, it is sufficient to 

observe the interaction graphs in Figure 3. 

 
Figure 3 Interaction plot for scheduled surgeries, data means 

In Figure 3, the lines in each cell do not cross. Therefore, for each factor, the number 

of surgeries scheduled is, on average, higher when the factor is high than when the 

factor is low, regardless of the level of the other factors. Therefore, moving a factor 

from low to high leads to a benefit in terms of scheduled surgeries, regardless of the 

levels of the other factors. 

To compare treatments with each other and rank them, we used the Tukey’s post hoc 

procedure. This procedure allows us to compare all different combinations of the 

treatment groups and to control the familywise error rate without sacrificing the 

statistical power. For each pairwise comparison, we assigned the same rank (1, 2, 

etc.) to those treatment groups for which the post-hoc test did not allow for the 

identification of a significant (p>0.05) difference between the number of scheduled 

surgeries. The results of these tests are shown in Table 5 and will be discussed in the 

next section along with their practical implications. 
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Table 5 Pairwise comparisons, grouping information using Tukey’s method and 95.0% 

confidence level 

Comparisons 
Treatment group 

code 
Treatment groups N Mean Rank 

1 (1.1) a, ab, ac, abc 120 283.9 1 

 (1.2) b, c, bc, (1) 120 276 2 

2 (2.1) ab, abc, bc, b 120 282.8 1 

 (2.2) ac, a, c, (1) 120 277.2 2 

3 (3.1) abc, ac, bc, c 120 280.7 1 

 (3.2) ab, a , b, (1) 120 279.3 2 

4 (4.1) ab, abc 60 286.9 1 

 (4.2) ac, a 60 281 2 

 (4.3) bc, b 60 278.7 3 

 (4.4) c, (1) 60 273.4 4 

5 (5.1) abc, ac 60 284.5 1 

 (5.2) ab, a 60 283.4 2 

 (5.3) bc, c 60 276.9 3 

 (5.4) b, (1) 60 275.1 4 

6 (6.1) abc, bc 60 283.1 1 

 (6.2) ab, b 60 282.4 2 

 (6.3) ac, c 60 278.3 3 

 (6.4) a, (1) 60 276.1 4 

7 (7.1) abc 30 287 1 

 (7.2) ab 30 286.7 1 

 (7.3) ac 30 281.9 2 

 (7.4) a 30 280.2 3 

 (7.5) bc 30 279.2 4 

 (7.6) b 30 278.2 5 

 (7.7) c 30 274.7 6 

 (7.8) (1) 30 272.1 7 

6 Discussion 

Looking at pairwise comparisons 1 to 3 in Table 5, emerges that, between the three 

investigated flexible practices, the one that, on average, leads to the largest increase 

in the number of surgeries scheduled is the variable surgical teams assignment 

(groups 1.1 vs. 1.2). This practice is followed by the introduction of mixed session 

(groups 2.1 vs. 2.2) and by the surgical units pooling (groups 3.1 vs. 3.2). 

The pairwise comparisons 4 in Table 5, in their turn, reveal that, on average, the 

introduction of a variable surgical teams assignment significantly increases the 

number of surgeries scheduled both when ORs can host mixed sessions (groups 4.1 

vs. 4.3) and when ORs are organised into dedicated sessions (groups 4.2 vs. 4.4). 

Similarly, they reveal that introducing mixed sessions increases the number of 

surgeries scheduled in the presence of both a variable surgical teams assignment 
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(groups 4.1 vs. 4.2) and fixed surgical teams assignment (groups 4.3 vs. 4.4). 

However, the increase that can be obtained introducing a variable surgical teams 

assignment is larger than the one that can be obtained introducing mixed sessions 

(groups 4.2 vs. 4.3). 

Similarly, the pairwise comparisons 5 in Table 5, show that, on average, introducing 

a variable surgical teams assignment increases the number of surgeries scheduled 

both when surgical units are pooled (groups 5.1 vs. 5.3) and when they are not 

(groups 5.2 vs. 5.4). Similarly, pooling surgical units increases the number of 

surgeries scheduled both in presence of a variable (groups 5.1 vs. 5.2) and a fixed 

surgical teams assignment (groups 5.3 vs. 5.4). The increase that can be obtained 

introducing a variable surgical teams assignment is larger than the one that can be 

obtained by pooling surgical units (groups 5.2 vs. 5.3). 

In the same way, the pairwise comparisons 6 in Table 5, show that, on average, 

introducing mixed sessions increases the number of surgeries scheduled, both when 

surgical units are pooled (groups 6.1 vs. 6.3) and when they are not pooled (groups 

6.2 vs. 6.4). Similarly, pooling surgical units increases the number of surgeries 

scheduled, both in the presence of dedicated sessions (groups 6.1 vs. 6.2) and in 

presence of mixed sessions (groups 6.3 vs. 6.4). The increase that can be obtained 

introducing mixed sessions is larger than those that can be obtained by pooling 

surgical units (groups 6.2 vs. 6.3) 

Finally, from the pairwise comparisons 7 in Table 5 emerges that for hospitals where 

no flexible practices are implemented, the best results in terms of surgeries scheduled 

can be achieved by introducing flexibility with respect to surgical teams and ORs 

(groups 7.2 vs. 7.8). In fact, once these two flexible practices are implemented, 

pooling surgical units does not yield any significant additional advantage (groups 7.1 

vs. 7.2). On the other hand, if mixed session cannot be implemented, then pooling 

surgical units significantly increases the number of surgeries scheduled both when 

surgical teams are managed flexibly (groups 7.3 vs. 7.4) and when they are not 

(groups 7.7 vs. 7.8). Equivalently, if surgical teams cannot be managed flexibly, then 

pooling surgical units significantly increases the number of surgeries scheduled both 

when ORs are managed flexibly (groups 7.5 vs. 7.6) and when they are not (groups 

7.6 vs. 7.8). Finally, for hospitals where no flexible practice is implemented, 

introducing flexibility with respect to surgical teams leads to an increase in the 

scheduled surgeries that is statistically larger than the one that can be obtained by 

introducing flexibility with respect to ORs and surgical units (groups 7.4 vs. 7.5). 
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As a final remark, it is worth mentioning that the statistical significance of an effect 

does not necessarily imply that such an effect is also practically relevant. The post-

hoc test, in fact, reveals if the difference between the mean number of surgeries 

associated with two treatment groups is statistically different from zero. A difference 

greater than zero (say, one surgery in two weeks) is not necessarily practically 

relevant and does not necessarily imply that the associated flexible practice deserves 

to be implemented. Indeed, the benefits that are possible to obtain with a flexible 

practice should always be traded off with the costs of implementation. For example, 

the sessions assignment is often the output of a lengthy and complex negotiation 

process between stakeholders (surgeons, management, nursing staff) with different 

priorities and needs. Thus to avoid conflicts, a hospital could also decide to renounce 

the potential benefits of implementing a variable surgical teams assignment. 

7 Conclusion and future research 

In this study, we presented a novel mixed integer programming model to address the 

master surgical scheduling problem. In addition, we evaluated the impact in terms of 

scheduled surgeries of the implementation of different combinations of three flexible 

practices: (i) variable surgical teams assignment, (ii) mixed sessions and (iii) pooled 

surgical units.  

Our analysis revealed that to maximise the number of scheduled surgeries it is 

sufficient to introduce a variable surgical teams assignment and mixed sessions. In 

fact, if both these practices are implemented, pooling surgical units carries no 

additional advantages. However, if only one of these flexible practices (or none) is 

implemented, then pooling surgical units produces significant benefits. Moreover, 

the analysis showed that, if a hospital cannot implement a variable surgical teams 

assignment, then it can still improve its efficiency by introducing mixed sessions 

and, similarly, if it cannot implement mixed sessions, it can improve its efficiency by 

introducing a variable surgical teams assignment.  

This study considers hospital features that are included in the vast majority of the 

contributions available in the master surgical scheduling literature and explores 

flexible practices that are reasonable according to such a literature. Moreover, it is 

the first study to propose a systematic analysis of the effect of the implementation of 

these practices. As such, both the presented model and the implications of the 

analysis can be of interest for a wide audience of practitioners and scholars. 
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Of course, this study is not without limitations. First, we investigated only a limited 

number of hospital settings. For example, we neglected to factor in certain hospital 

resources (e.g. ICU, electro-medical devices) that are not considered critical at 

Meyer Hospital but that may be highly critical in other hospitals. Second, we have 

not investigated how the MIP model would perform in terms of computational time if 

the problem dimension increases, e.g. if the planning horizon is extended to one 

month or if the number of ORs and beds increases. Finally, we only considered 

elective patients. Nonetheless, it might be interesting to investigate how the 

implementation of flexible practices could help improve hospital performance in 

presence of emergencies, urgencies and no-shows (Stuart and Kozan, 2012). The 

extension of the computational campaign to other hospital settings, the analysis of 

the optimisation model scalability, the design of ad-hoc methodologies to cope with 

large scale instances and the incorporation of non-elective patients in the analysis 

will certainly be the object of our future research efforts. 
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