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Abstract Basin response and hydrologic fluxes are functions of hydrologic states, most notably of soil
moisture. However, characterization of hillslope-scale soil moisture is challenging since it is both spatially
heterogeneous and dynamic. This paper introduces an entropy-based and discretization-invariant dimen-
sionless index of hydrologic complexityH that measures the distance of a given distribution of soil moisture
from a Dirac delta (most organization) and a uniform distribution (widest distribution). Applying the distrib-
uted hydrologic model MOBIDIC to seven test basins with areas ranging 1002103 km2 and representing
semiarid and temperate climates,H is shown to capture distributional characteristics of soil moisture fields.
It can also track the temporal evolution of the distributional features. Furthermore, this paper explores how
basin attributes affect the characteristicH, and howH can be used to explain interbasin variability in hydro-
logic response. Relationships are found only by grouping basins with the same climate or size. For the semi-
arid basins,H scales with catchment area, topographic wetness, infiltration ratio, and base flow index; while
H is inversely related to relief ratio.

1. Introduction

1.1. Overview
The hydrologic response (HR) of a basin pertains to how precipitation is partitioned into streamflow,
evapotranspiration (ET), and change in storage. These fluxes can be further partitioned, e.g., streamflow
into quick flow and base flow. The ability to explain or predict the response or the spatiotemporal vari-
ability of the above mentioned hydrologic fluxes and states has many important applications such as
flood forecasting, water budget studies, and design of efficient hydrologic observing systems. However,
it is difficult to explain much less predict the response because it is the combined manifestation of many
complex and interrelated factors that naturally vary both in space and time, and act over a variety of
scales.

Most studies of hydrologic response focus only on the streamflow component of the hydrologic
response and how it is influenced by a single factor or class of factors such as runoff contributing areas
and routing processes, catchment shape, topographic convergence index [Beven and Kirby, 1997], geo-
morphology [Rodriguez-Iturbe and Rinaldo, 1997; Di Lazzaro, 2008], and storm characteristics [Vivoni
et al., 2007]. Several studies with a broader focus investigate the hydrologic response across several
basins. Some of these studies are summarized and compared in Table 1. The majority used stream gauge
measurements while Berger and Entekhabi [2001] used numerically simulated streamflow, and [Cerdan
et al., 2004; Buttle et al., 2004] used both observed and simulated streamflow. These selected studies also
show how over the years the approach generally progressed in terms of the number and coverage of
basins used, the number and types of predictors and measures of response considered, and the com-
plexity of numerical models employed. Unfortunately, the findings of these studies are not general but
rather specific to the region or season studied, or the scale considered. For instance, based on different
studies and in no particular order, the interbasin variability of runoff ratio (streamflow Q divided by pre-
cipitation P) is found to be controlled mainly by physiography [Zecharias and Brutsaert, 1988; Sefton and
Howarth, 1998], climate [Merz et al., 2006; van Dijk, 2010], land use [Cerdan et al., 2004], preferential flow
paths and soil depth [Buttle et al., 2004]; or a combination of these attributes [Berger and Entekhabi,
2001; Sankarasubramanian and Vogel, 2002].
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The basin attributes (e.g., climate, topography, soil texture, etc.) are indirectly controlling hydrologic
response. There is also strong and long-standing evidence that vegetation distribution is a key determinant
and determines the hydrologic response of catchment, especially in water-limited evaporation regimes
[Mendez-Barroso and Vivoni, 2010; Mendez-Barroso et al., 2014]. These and other attributes affect hydrologic
response principally through the soil moisture state variable of catchment hydrology. Basin response and
hydrologic fluxes are direct functions of distributed hydrologic states, most notably of soil moisture, h,
which controls the partitioning of rainfall into infiltration and runoff, and also controls land surface tempera-
ture through its effect on the partitioning of available energy into sensible and latent heat fluxes. The distri-
butional features of h, both at the surface and in the root-zone, are important determinants of the
partitioning of atmospheric precipitation and radiative forcing into hydrologic and heat fluxes across the
basin [Grayson et al., 1997; Penna et al., 2009; Diek et al., 2014]. The characterization of h distributional fea-
tures is itself challenging since h is both heterogeneous and dynamic. Moreover, h is dynamic due to the
intermittency, seasonality, and interannual variability of meteorological forcings.

As important and as direct an influence on hydrologic response as they may be, the spatial and temporal
distributional features of h at catchment scale have not been routinely observed. Only recently has the sci-
entific community dedicated significant efforts to addressing this problem through pervasive ground-based
monitoring networks [Dorigo et al., 2011], remote sensing [Moghaddam et al., 2013], etc. Meanwhile, in
attempts to capture some of the most salient features of the distribution, there is a rich set of early studies
that work with the mean (central tendency) and the dispersion (variance) of h distribution across basins.
Since h is a bounded random variable, the spatial variance r2 hð Þ usually increases as the basin mean soil
moisture �h distances from the dry or wet extrema. In semiarid regions, r2 hð Þ generally increases with �h [Fer-
nandez and Ceballos, 2003]. In humid regions, r2 hð Þ generally decreases as �h increases [Meyles et al., 2003;
Teuling and Troch, 2005]. And in temperate regions, r2 hð Þ peaks at intermediate �h [Famiglietti et al., 1999,
2008; Lawrence and Hornberger, 2007]. Mahmood and Vivoni [2008, 2011] show that both the spatial auto-
correlation length and spatial coefficient of variation (CV) not only characterize the spatial soil moisture dis-
tribution but also partially control its temporal evolution.

In a closely related study to the one reported here but with different focus and approach, Nippgen et al.
[2011] link mean time-to-response of basin discharge to landscape structure and climate. They focus on a

Table 1. Comparison of Select Previous Studies That Investigate the Use of Multiple Predictors of Hydrologic Response Through Hydrograph Analysis

Reference Zecharias and Brutsaert [1988] Sefton and Howarth [1988] Berger and Entekhabi [2001]
Sankarasubramanian

and Vogel [2002]

# of basins 19 60 10 1305
Area 8–180 km2 9–900 km2 10–325 km2 >50 km2

Location Appalachians, US England and Wales Continental US Continental US
Predictors of HR 8 Topography and

geomorphology
29 Physiography,

climate and land cover
8 Physiography

and climate
4 Physiography and climate

Measures of HR Base flow Qbf Streamflow Q Q/P, ET=Ep , h, riparian
zones extent

Runoff ratio Q/P

Streamflow data Observed Observed Modeled Observed
Hydrologic model None Lumped and

semiphysics-based
Semidistributed

equilibrium model
None

Findings 98% of Qbf variance
f ðA, relief, length of
perennial streams)

63% of Q variance
5f (elevation, TWI,

stream freq., A)

87% of Q/P
variance 5 f ðP=Ep , slope,
stream density, infil. cap.)

71% of Q/P variance 5

f ðP=Ep , slope, stream density,
infil. cap.)

Reference Cerdan et al., [2004] Buttle et al. [2004] Merz et al. [2006] van Dijk [2010]

# of basins 3 1 40 1 337 183
Area Plot–10 km2 3.2 ha 80–10,000 km2 51–1780 km2

Location France Canadian Shield Austria Australia
Predictors of HR Physiography, land use Topography, soils, and plants Physiography, climate

and land cover/use
Physiography, climate

and land cover
Measures of HR Streamflow Q Q=P;Q;Qbf , GW depth Streamflow Q Q, Qbf

Streamflow data Observed and modeled Observed and modeled Observed Observed
Hydrologic model Distributed

conceptual model
Semidistributed

physics-based model
None Simple linear-reservoir

Findings R/P decreases as A
and % of arable land increase

Dominant controls are
preferential flow paths

and soil depth

Q/P is controlled by mean P
and little by soil type or land cover

Q and Qbf are controlled
by Ep and monthly P
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basin in Montana with seven instrumented subcatchments. The region has significant snow hydrology and
vegetation gradient with elevation. They fit a convolution linear transfer model (taken to be the gamma
function) that translates a measured effective daily rainfall and snowmelt into daily output (daily discharge).
The Nippgen et al. [2011] landscape features are overlapping with the metrics used in this study and particu-
larly well suited for their experimental basin. They include mean and median landscape slope, distance to
creek, gradient to creek, hillslope power, terrain convergence, upslope accumulated area, ratio of riparian
area to hillslope area, average tree height, potential annual solar insolation, and presence of geologic strata.
They find that the mean (time) hydrologic response of the catchments has no significant correlations with
landscape variables and modeled mean catchment response with the exception of mean convergence ter-
rain convergence which shows a very strong statistical correspondence. More importantly they find that the
effect of one or two variables superimposed onto the others can explain more of the variabilities. Section
4 in Nippgen et al. [2011] poses a number of important questions and hypotheses and their Figure 8 and
Table 5 contain the results relevant to this study. Whereas Nippgen et al. [2011] focus on time scale of catch-
ment response to excess precipitation, in this study we focus on hydrologic response in terms of precipita-
tion partitioning and marginal distribution of surface soil moisture in the catchment.

In this paper, we also focus on the spatial distribution of soil moisture across the basin as the intermediary
between basin attributes (e.g., climate, topography, etc.) and hydrologic response (e.g., partitioning of precipita-
tion into runoff, evaporation, etc.). We introduce a statistical measure of the distribution which is more informa-
tive than mean and variance alone. For illustration, the measure is evaluated over time using numerically
simulated soil moisture fields for different seasons and climate conditions. Furthermore, the measure is eval-
uated for water held in storage under distinct physical conditions. Soil water is partitioned into moisture that
can readily drain under gravity (gravitational water) and water that is held in storage under capillary action (cap-
illary water). Water from each of these reservoirs is accessible to different hydrologic fluxes. Gravitational water
mostly contributes to quick runoff and groundwater recharge. Capillary water mostly contributes to evaporation.

The measure applied to the marginal probability density distributions of soil moisture is based on informa-
tion theory. The measure is termed hydrologic complexity since it is designed to characterize the complex-
ity of the hydrologic response of basins. This assumes that the soil layer has first-order control on the
hydrologic response of basins, while deeper hydrogeology only has indirect influence through the bidirec-
tional soil moisture—groundwater interactions such as percolation, return flow (wetting from below), and
capillary rise. Other complications such as karst geology and deep subsurface runoff along soil-bedrock
interface, that strongly influence the hydrologic response of some basins, are not considered by the pro-
posed measure of hydrologic complexity.

In general, the least hydrologically complex basin is one that can be characterized by the so-called bucket
representation. For example, the runoff response is precipitation exceedance of a soil moisture deficit value.
For this least complex basin, the soil moisture distribution across the basin (marginal probability density
function) is a Dirac delta function. The hydrologic complexity metric H for this basin, as introduced in this
study, is zero. In the most complex basin, the hydrologic response is considered complex because storms of
all sizes lead to some hydrologic response like runoff. Also the other hydrologic fluxes like base flow and
evaporation are working to balance the basin water budget at all times. The marginal probability density
function of such a basin is wide and variable across the possible values for the hydrologic state. In the limit,
the distribution of the bounded soil moisture random variable for most complex basins is uniform across
the soil moisture range.H approaches unity under these conditions.

The hydrologic complexity H is evaluated for several basins with different topographic conditions, drainage
areas, and climates. We examine basin attributes (topography, slope, climate, etc.) that influence the distri-
bution of soil moisture in order to determine which attributes affect the hydrologic complexity and hence
the distributional features of soil moisture across the basin most. We also explore whether the basin charac-
teristic hydrologic complexityH is related to some traditional measures of basin hydrologic response.

2. Entropy as an Organizing Principle

Entropy is a measure of the disorder or uncertainty of a system. Usually entropy is expressed in terms of
the discrete or Shannon entropy H which is defined for a discrete random variable X with potential states
fx1; x2; . . . ; xNg and probability mass function (PMF), p(x), as:
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HðXÞ52
XN

i51

pðxiÞ log pðxiÞ (1)

Singh [2011] provides a review of the use of entropy theory in hydrology, and suggests its use as an organiz-
ing principle in hydrology.

As discussed, basin response and hydrologic fluxes are functions of states most notably of soil moisture
which is usually expressed as either volumetric soil moisture h [L3/L3], or percent saturation. It can also be
expressed as available storage 8e [L] which is particularly useful in water balance analysis. Interchangeably,
8e can be referred to as the soil water deficit. When the soil is saturated, 8e50, whereas when the soil is dry,
8e58e;max which is simply the product of effective porosity and soil depth.

Figure 1 shows the conceptual diagram of the two end-members of the possible spatial distributions of 8e

in a basin. The simplest case is when 8e is the same across the basin. The probability density function (PDF),
f ð8eÞ, is a Dirac delta function as shown in the bottom plot. For this case, the basin can be represented by a
single bucket with deterministic response or spatially constant fluxes. The most complex case is when f ð8eÞ
is equally likely to take any value within its range, i.e., it is uniformly distributed from 0 to 8e;max . For this
case, the fluxes are spatially variable and the response is complicated. Naturally of course, a basin or a hill-
slope will have a spatial distribution of 8e that is intermediate between these limiting cases. It is useful then
to have a metric to quantify the distance of a given distribution of 8e from these limiting distributions.

With this motivation, Martina and Entekhabi [2006] introduced a dimensionless index of hydrologic com-
plexity they defined as the Shannon entropy of 8e, normalized by log(N), where N is the number of bins
used to generate the PMF. The normalization constrains the values of the index between zero and unity. In
this paper, we present a revised formulation of this index that makes its value invariant also to
discretization.

Let X be the relative soil water deficit, with spatial distribution f(x) for x 2 ½0; 1�, and
ð1

0
f ðxÞdx51:

X58e=8e;max (2)

The revised dimensionless measure of hydrologic complexity H is defined as,

H5exp hðXÞ½ � (3)

where h(X) is the differential entropy of X,

Figure 1. Conceptual diagram of the limiting cases: the soil water deficit is (left) the same across the basin; and (right) uniformly distrib-
uted from zero to a maximum value. Bottom plots show the probability density functions of 8e .
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hðXÞ52

ð
f ðxÞ logf ðxÞ dx (4)

With the given definition of X, h(X) above is also equal to the negative of the relative entropy, otherwise
known as the Kullback-Liebler divergence DKL, of f(x) from a reference distribution g(x) which in this case is
a uniform distribution in the interval ½0; 1�.

hðXÞ52DKL f jjgð Þ for x 2 ½0; 1�; with arbitrary f ðxÞ; and gðxÞ � U½0; 1� (5)

An important property of DKL is that it is always nonnegative with DKL 5 0 if and only if f(x) and g(x) have
the same support set and f ðxÞ5gðxÞ everywhere in the support set [Michalowicz et al., 2014].

The complete derivation of H can be found in Castillo [2014]. In this paper, we would like to point out that
H is (i) computed based on differential entropy instead of Shannon entropy; (ii) computed for random varia-
bles X with values strictly in the interval 0–1; (iii) uses the Kullback-Leibler divergence to ensure that
hðXÞ � 0; and (iv) applies an exponential transformation so that H 2 ½0; 1�, with H50 for the simplest, and
H51 for the most complex case, respectively.

Figure 2 (top-left and bottom-left plots) corresponds to the two limiting cases shown in Figure 1. The H for
these two cases are 1 and 0 reflecting the most complex ðH51Þ and the most organized ðH50Þ. For two
intermediate complexity cases (right plots), the H takes on values in between 0 and 1. Figure 2 shows the
invariance of the measureH to discretization N or Dx with Dx51=N.

H can be used to (i) analyze how the complexity of the spatial distribution of X evolves over time; and (ii)
compare the characteristic distribution of X for different basins. The remainder of this paper demonstrates
the latter application. The hydrology of multiple test basins with areas ranging 1002103 km2 and represent-
ing semiarid and temperate climates is simulated using a distributed hydrologic model. Next we investigate
(i) how the distributional features of soil water deficit evolve over time; (ii) what factors (physiography, spa-
tial scale, climate, etc.) affect the characteristic H; and (iii) how the characteristic H is related to other tradi-
tional measures of basin hydrologic response.

3. Methods

3.1. Test Basins
Table 2 identifies the seven test basins. The test basins are chosen to represent two contrasting climatic
regimes—temperate and semiarid, and represent four orders of catchment area. In addition, the test basins
cover test sites of NASA’s AirMOSS (airmoss.jpl.nasa.gov) and SoilSCAPE (soilscape.usc.edu) projects. The
goals of both projects include the investigation of the space-time variability of soil moisture and the design
of effective and efficient in situ and airborne observing systems to support spaceborne platforms for meas-
uring soil moisture. Soil moisture observations from these projects were used for model calibration. The first
column lists the basin ID with the letter denoting the climate (‘‘S’’ for semiarid and ‘‘T’’ for temperate) and
the number denoting the size of the basin (‘‘0,’’ ‘‘1,’’ ‘‘2,’’ and ‘‘3,’’ for areas of about 100, 101, 102, and 103 sq
km, respectively). The last column shows the dominant land cover and land use. The location maps of these
basins are shown in Figure 3. Basins S0, S1, S2, S3, and T0 cover field sites of the Soil moisture Sensing Con-
troller and oPtimal Estimator (SoilSCAPE) Project, see Moghaddam et al. [2013]. T2 and T3 are tests basins in
the Distributed Model Intercomparison Project (DMIP), see Reed et al. [2004]. Note that basin S3 includes
some upland areas with snowmelt, however this process was not considered in the study. Additional prop-
erties of the test basins are listed in Table 3.

In this exploratory study, we focus on two climates and basins that span four orders of magnitude in area.
One climate regime has strong seasonality and one is without a distinct precipitation season. We emphasize
that more basins should be tested beyond the limited set used in this study in order to (i) further test the
applicability of H under different conditions; and (ii) establish more robust relationships between H and
catchment attributes influencing hydrologic response.

3.2. The Hydrologic Model MOBIDIC
Numerical simulations of the test basins are performed using the Modello Bilancio Idrologico DIstributo e
Continuo (MOBIDIC), a raster-distributed and continuous catchment hydrologic model that solves mass and
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energy balance simultaneously. MOBIDIC represents the basin by simulating a system of water reservoirs
and the mass and energy fluxes between them. For computational parsimony and to account for the differ-
ent roles of gravity and capillary forces in storing and moving soil water, each plan element (i.e., pixel) of
soil is represented by a single soil layer divided into a gravity reservoir composed of large pores which drain
under gravity, and a capillary reservoir composed of small pores that do not drain under gravity and hold
water under capillary action. The volume capacity per unit area [L3/L2] of these reservoirs is denoted by
Wg;max , and Wc;max , respectively, which are parameterized as,

Wg;max5d hsat2hfldð Þ (6)

Wc;max5d hfld (7)

where d [L] is the depth of the modeled soil; and hsat and hfld [L3/L3] are the volumetric soil moisture at satu-
ration and field capacity, respectively. hsat and hfld are initialized based on soil texture type and using the
range of values reported by Rawls et al. [1982].

Within each computational time step, dt [T], the hydrologic fluxes [L T21] linking elements across the land-
scape include precipitation P, infiltration-excess runoff RH, partial-area (saturation from below) runoff RD,
return flow RR, total runoff RT, infiltration I, absorption Qas from Wg to Wc, percolation Qper, lateral subsurface

Figure 2. The revised dimensionless hydrologic complexity indexH is independent of numerical discretization (N5 number of bins). The insets show the PDFs used.
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flow QL, capillary rise Qcap, and evapotranspiration E. These water fluxes can be limited by the available
water to be transported, the available receiving storage, or the allowable transport rate.

The water content states of the soil gravity and capillary reservoirs evolve according to equations (8) and
(9). The gravity storage is filled by infiltration and lateral subsurface flow from upstream cell(s). It is depleted
by absorption into available capillary storage, percolation to deeper soil, and lateral subsurface flow to
downstream cell. The subscripts ‘‘up’’ and ‘‘down’’ denote incoming flow from upstream cell(s), and out-
going flow to downstream cell, respectively, which are determined using D8 flow routing [Tarbonton, 1997].
If Wg > Wg;max (caused by high QL;up), then the excess gravity water will be released to the surface as return
flow. Meanwhile, in addition to absorption from gravity storage, the available capillary storage is also filled
by capillary rise from deeper soil or from groundwater. The capillary storage is only depleted by
evapotranspiration.

Table 2. Description of the Test Basins

ID Name and Location Climate Land Cover/Use

S0 Tonzi Ranch, CA Semiarid Woody savanna
S1 Vaira Ranch, CA Semiarid Grassland, woody savanna, shrubland
S2 Willow Creek Basin, CA Semiarid Woody savanna, grassland, shrubland
S3 San Joaquin R.B., CA Semiarid Grassland, farmland, woody savanna
T0 SOILSCAPE site, Canton, OK Temperate Pasture with some trees
T2 Baron Fork R.B., Dutchmills, AR Temperate Pasture, forest
T3 Blue River Basin, OK Temperate Grassland, farmland, woodlands

Figure 3. Location of the test basins: (top) nested semiarid basins in California; and (bottom) temperate basins in Oklahoma-Arkansas.
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dWg = dt5I1QL;up2Qas2Qper2QL;down2RR (8)

dWc = dt5Qas1Qcap2E (9)

Infiltration rate can be limited by soil hydraulic conductivity Ks, while adsorption, percolation, and lateral
subsurface flow, are computed using equations (10)–(12), respectively. j, c, and b are dimensionless param-
eters with values from 0 to 1.

QL5b Wg (10)

Qas5j ðWg;max2WgÞ (11)

Qper5c Wg (12)

For a more detailed discussion of the mass and energy balance of MOBIDIC along with the formulation of
each of the mass and energy fluxes, the reader is referred to Castelli et al. [2009] and Castillo et al. [2014].

MOBIDIC is currently being used in the system of flood forecasting [Castelli et al., 2006] and sustainable
water management [Castelli et al., 2009] of the Arno River Basin Authority in Italy. In our recent paper [Cas-
tillo et al., 2014], using two test sites with different climates (semiarid and subhumid) and groundwater con-
nectivity, we showed that MOBIDIC can capture the magnitude range and dynamics of observed depth-
averaged soil moisture as accurately as a benchmark model that uses multiple soil layers and employs the
nonlinear Richards Equation to model flow in unsaturated soils.

Development of a MOBIDIC model for a certain basin includes preprocessing of topographic and geomor-
phologic model inputs, such as pit-filling of the DEM, determination of flow directions, computation of con-
tributing area, and delineation of the river network and the basin boundary. Other required model inputs
are land cover and soil maps, which are in turn used to derive parameters such as albedo and Ks. MOBIDIC
can output time series of streamflow Q and base flow Qbf at any point along the river network, and hydro-
logic fluxes (e.g., I, RT, and E) and states (e.g., Wc and Wg) across the basin.

In the current study, the MOBIDIC models for test basins S2, S3, T2, and T3, were calibrated mainly against
observed streamflow, whereas test basins S0, S1, and T0, where streamflow observations are not available,
were calibrated mainly against observed soil moisture fields. In addition, for all the test basins, a number of
qualitative checks focusing on the realism of each and all simulated hydrologic variables (e.g., ET, Qbf, soil
temperature, etc.) were performed.

3.3. Relationship ofHWith Other Hydrologic Variables
H is evaluated using the relative soil water deficit X defined in (2). Since MOBIDIC uses a dual-
compartmentalized soil, the complexity of the capillary and gravity reservoirs,Hc andHg, defined as,

Hc5Hc Xcð Þ; Xc58e;c=8e;max (13)

Hg5Hg Xg
� �

; Xg58e;g=8e;max (14)

are also investigated.

Table 3. Properties of the Test Basins

Topography Geomorphology Soil Properties Climate
Storm

Properties
Mixed

ID Area (km2) Relief (m) s50 Dd (km21) L (km) Ks (mm/h) �d (mm) hfld hsat
�P (mm/yr) Ep=�P is (mm) ts (h) Ir

S0 0.45 34 0.04 2.67 0.98 28 368 0.15 0.24 569 3.71 11.1 14.4 0.028
S1 3.09 76 0.14 2.42 2.92 45 353 0.18 0.30 579 3.73 11.1 14.4 0.017
S2 54 316 0.08 2.17 19.2 17 842 0.24 0.43 576 3.50 11.1 14.4 0.045
S3 852 1278 0.18 1.20 91.2 6 613 0.14 0.31 580 3.48 11.1 14.4 0.014
T0 0.45 18 0.03 0.73 0.16 38 1113 0.15 0.29 1210 1.62 14.4 9.8 0.039
T2 108 252 0.11 1.95 18.9 11 594 0.16 0.30 1027 1.69 9.0 12.5 0.066
T3 1259 242 0.03 0.36 143. 7 1483 0.15 0.41 941 1.92 10.1 13.9 0.104
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In order to gain insights into the partitioning of water in different storages, the dynamics of water in capil-
lary storage and in gravity storage are considered relative to total available storage. The range of X is the
interval [0,1]. But since 8e;max5Wc;max1Wg;max , the range of Xc and Xg are only subsets of this interval,

Xc 2 ½0;Wc;max=8e;max � (15)

Xg 2 ½0;Wg;max=8e;max � (16)

X5Xc1Xg; X 2 ½0; 1� (17)

3.3.1. Basin Attributes as Predictors ofH
The characteristic distributions of 8e are hypothesized to be related to observable basin attributes. As tests,
the relationships between temporal mean of H; Hc , and Hg, to the following basin attributes are investi-
gated for the basins in Table 2:

1. Catchment area A (km2): A basic spatial scale predictor that characterizes the dampening of hydrologic
response in most cases.

2. Median slope s50 : The gradient along hillslopes, which influences both surface and subsurface runoff
generation.

3. log10ðA=s50Þ (km): The basin-scale equivalent of the topographic wetness index (TWI) of Beven and Kirby
[1979].

4. Relief ratio rr : The range in elevation, zmax2zmin, normalized by the length of the mainstream L. As
opposed to s50, this indicates the gradient along channels.

5. Drainage density Dd (km21): The ratio of total stream length to A. High Dd implies high channelization of
precipitation and shorter residence time. This also indicates the extent of riparian zones.

6. Mean soil moisture capacity 8e;max (m): The spatial mean of the product of the saturated soil moisture con-
tent hsat and the depth d (m) of the modeled soil layer. With the precipitation forcing minus evapotranspi-
ration, this measure yields the characteristic time scale of the basin storage change.

7. Aridity Ep=�P : The ratio between the annual mean potential evaporation (computed based on Penman
[1948]) divided by the annual mean precipitation.

8. Infiltration ratio Ir : The mean precipitation intensity is=ts (mm/h) (mean storm depth is (mm) divided by
mean storm duration ts (h)) during a storm event divided by the basin-averaged soil hydraulic conductiv-
ity Ks . Ir characterizes the propensity of the basin to stormflow runoff.

3.3.2.H as Predictor of Hydrologic Response
The utility of H; Hc , and Hg to explain the basin response is also investigated by relating them with the
flux-based measures of hydrologic response listed below. The overbar symbol indicates temporal average.

1. ET efficiency ET=Ep : Ratio of basin-averaged ET to the potential rate Ep.

2. Runoff ratio �Q=�P : Fraction of precipitation that becomes runoff.

3. Base flow index BFI (Qbf =�Q): Fraction of streamflow contributed by base flow.

4. Results and Discussion

4.1. Basin-Scale Partitioning of Precipitation
Table 4 lists the diagnostic information on the calibrations. The Pearson correlation R ranges from 0.83 to
0.95, while the absolute bias B ranges from 0.05 to 0.12. The basin-scale partitioning of precipitation is
shown in Figure 4. Taking the test basins all together, there is no clear pattern. However, by grouping the
basins based on catchment area, a consistent pattern emerges. As shown, for basins with similar catchment
area, the basin with higher median slope has higher runoff ratio and lower ET efficiency. The net ground-
water recharge constitutes only a small fraction of the annual precipitation in all the test basins especially in
the large basins where the spatial mean of percolation and channel leakage are balanced by capillary rise
and channel seepage.
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4.2. Hydrologic Complexity
Figure 5 shows the maps as well as the
marginal PDFs of the temporal mean of
relative soil water deficit, �x ,

�x58e=8e;max (18)

of basin S0 which is the least complex
with H �xð Þ50:09, and of basin T2 which is the most complex with H �xð Þ50:62 among the test basins. The
overbar denotes temporal average. Basin S0 �x is concentrated within the interval [0.4,0.6] and its PDF is
closer to a Dirac delta than a uniform distribution, i.e., the PDF is highly divergent from a uniform distribu-
tion. In contrast, basin T2 �x spans almost the entire interval [0,1] and its PDF is closer to a uniform distribu-
tion than a Dirac delta, i.e., the PDF is not highly divergent from a uniform distribution.

Figure 6 shows the hyetograph and time series ofH; Hc , andHg for basins S2 and T2 that have comparable
areas but diverse climates. For all test basins, the simulated period is 3 years but only 1 year is shown for
illustration. First for S2 (top plot), there is marked seasonality with most of the year being dry and the
months of November–February receiving almost all of the annual precipitation. The soil moisture distribu-
tion mode lags precipitation by about a month. In dry conditions, most of the gravity reservoirs are com-
pletely empty so Hg is low and its value corresponds to the complexity of the time-invariant maximum
capacity of the gravity reservoirs,H�g,

H�g5Hg 8e;g;max=8e;max
� �

(19)

In contrast, there is higher spatial variability in xc soHc contributes more of the total complexityH. It should
be noted that H is not additive and the sum of Hc and Hg does not necessarily have to equal H. In wet
conditions, the trend is reversed. Since the capillary reservoirs are more filled, xc � 0 across the basin so
Hc ! 0. The gravity reservoirs are variably saturated so Hg is high and it accounts for most of the total
complexity. In intermediate wetness conditions, e.g., mid-March 2004, Hc and Hg both contribute signifi-
cantly toH. Meanwhile, the temperate basin T2 (bottom plot) receives more precipitation and the seasonal-
ity is mild. As a result, the general condition in the basin is often closer to wet than dry so Hg contributes
most of the total complexity.

From the time series, the minimum, mean, and maximum values of H; Hc , and Hg for each basin, are com-
puted. The characteristic mean values, and their relationships with some of the tested basin attributes, are
plotted in Figures 7–10. As pointed in the analysis of basin-scale precipitation partitioning, it is difficult to
see relationships if all basins are analyzed together. More clear relationships are found by comparing only
basins with similar climate or size. For instance, Figure 7 shows how the complexity indices vary with aridity
for basins of similar spatial scale. Overall, the total complexityH (and alsoHg) is higher in temperate basins.

This is consistent with the
understanding that soil moisture
is lower and upper-bounded so
its variability is higher at inter-
mediate wetness conditions, see
e.g., Lawrence and Hornberger
[2007]. Independently, Hc of T2
and T3 are lower than those of
S2 and S3 because the capillary
reservoirs in the temperate
basins are often saturated, i.e.,
they are less hydrologically
active. Smaller basins have
greater complexity than their
larger counterparts for the same
climate. Figure 7 is limited to
size and climate distinguishing
features only.

Table 4. Performance of Calibrated Models (R—Pearson Correlation; B—
Absolute Bias)

ID S0 S1 S2 S3 T0 T2 T3

R 0.92 0.95 0.83 0.84 0.88 0.94 0.91
B 0.06 0.05 0.09 0.06 0.03 0.10 0.12

Area, A: [  102 km2  ] [  103 km2  ]

Slope, s50 [%]:     3        4      14                  8       11                 3      18           
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Figure 4. Basin-scale precipitation partitioning with basins grouped by catchment area
and arranged in increasing median slope.
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Figure 8 shows that for both the semiarid and temperate test basins,H; Hc , and Hg generally increase with
catchment area log10A (top plots). The relationships with the basin-scale analog of topographic wetness
index log10ðA=s50Þ (bottom plots) are practically the same as with log10A, with marginal improvement for
the semiarid basins and marginal degradation for the temperate basins. Furthermore, Figures 9 and 10
show that H; Hc , and Hg are inversely related to relief ratio, and proportionally related to infiltration ratio.
Weaker or no significant relationships are found for the other basin attributes considered.

Figure 5. Map and PDF of characteristic (temporal mean) relative soil water deficit, �x58e=8e;max of basins (left) S0 and (right) T2. Orange
dots mark basin outlets.

Figure 6. Time series of H; Hc , and Hg for basins (top) S2, and (bottom) T2.
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Figure 11 shows the relationship
between the temporal mean of
the complexity indices with
three traditional measures of
hydrologic response. The top
row shows that the ET efficiency
is practically independent of the
complexity indices. In fact and
as expected, ET efficiency is
mainly a function of aridity. The
middle row shows that the run-
off ratio generally increases with
H; Hc , or Hg. Basins with higher
value hydrologic complexity
have a higher runoff ratio
because storms with varied
magnitudes (storm totals) con-
tribute to runoff. In less complex
basins, only storms of a certain
magnitude and higher lead to
runoff generation. This is evi-
dent in the stronger relationship
between runoff ratio and Hg

when compared to Hc (middle
row of Figure 11). The base flow
fraction of total basin stream-
flow (BFI) is proportional to the
hydrologic complexity of the
basins (bottom-left plot in Fig-
ure 11). The relationship is prin-
cipally due to the Hg of the
basins. With greater range in the
distribution of soil moisture

across the basin, the drainage of the basin during interstorm periods can persist for longer and become a
more important component of basin outflow. The relationships with runoff ratio or BFI are stronger with H
orHg, than with Hc , because the state of the capillary reservoirs have less influence on runoff.

5. Summary and Conclusions

Basin response and hydrologic fluxes are functions of hydrologic states, most notably of soil moisture. To
characterize the spatial distribution of soil moisture and understand its evolution in time, we introduced a
modified version of the Martina and Entekhabi [2006] dimensionless index of hydrologic complexity H
which measures the distance of a given distribution from two limiting distributions: Dirac delta and uniform
distribution. The modifications make H invariant to discretization. The modified H is based on differential
entropy, and is computed for a dimensionless random variable that is strictly in the interval [0,1]. Here the
relative soil water deficit �x is used. H is independent of the arrangement or clustering of the marginal prob-
abilities of a given PDF, whereas the commonly used coefficient of variation is not since it depends on the
mean of the PDF.

For demonstration, H is applied on seven test basins with area ranging from 100 to 103 km2 and represent-
ing semiarid and temperate climates. Calibrated models of these basins are developed using the distributed
hydrologic model MOBIDIC. While best efforts were done to ensure accuracy and realism of the calibrated
models, it should be noted that the findings of this study are associated with model assumptions. Since a
key feature of MOBIDIC is the partitioning of each pixel of soil into gravity reservoir and capillary reservoirs,
we also investigated the complexity of these subsystems, Hc and Hg, respectively. We show that H; Hc ,

Figure 7. Temporal mean of (from top) H; Hc , and Hg , versus aridity for semiarid and
temperate test basins. Squares and triangles are temporal mean, respectively.
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and Hg, track the evolution of the distributional features of soil moisture. In dry conditions, the gravity res-
ervoirs are mostly empty so Hg is low and its value corresponds to the complexity of the time-invariant
maximum capacity of the gravity reservoirs, H�g. In contrast, there is higher spatial variability in the content
of the capillary reservoirs so Hc is higher and contributes more to the total complexity H. In wet conditions,
the capillary reservoirs are mostly saturated so Hc ! 0 while the gravity reservoirs are variably saturated so
Hg is high and it contributes most ofH.

This paper also explored what and how basin attributes affect the characteristic value of H; Hc , and Hg,
and how these complexity indices can be used to explain interbasin variability in hydrologic response. Clear
and meaningful relationships are found only when basins with the same climate or size are grouped. For
basins of similar size, H andHg are highest in temperate climate, consistent with soil moisture being lower-
bounded so its variability is higher at intermediate values. Hc generally increases with aridity since the cap-
illary reservoirs are often saturated in the temperate basins, i.e., they are less hydrologically active, and proc-
esses controlled by the state of the capillary reservoirs, e.g., ET, are more important in arid environments.
Grouping basins with the same climate, it was found that (i) H; Hc , and Hg, are proportionally related to
catchment area, basin-scale topographic wetness index, and infiltration ratio, but inversely related to relief
ratio. H and Hg are positively correlated with base flow index. No significant relationships are found for the

Figure 8. Temporal mean of (left to right)H; Hc , andHg , versus spatial scales: (top) catchment area log10A (km2), and (bottom) basin-scale topographic wetness index log10ðA=s50Þ.
Trend lines: solid for semiarid basins; and dashed for temperate basins.

Figure 9. Temporal mean of (left to right) H; Hc , and Hg , versus relief ratio rr. Trend lines: solid for semiarid basins; and dashed for temperate basins.
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other basin attributes considered, as well as with ET efficiency and runoff ratio. The current study is explora-
tory and tests with more basins with various settings, scales, and climates, are needed to verify the relation-
ships found.

Limitations of the current approach include: (1) the lack of testing with directly observed soil moisture fields
at fine spatial and temporal resolution, (2) accounting for different types of runoff generation such as

Figure 10. Temporal mean of (left to right) H; Hc , and Hg , versus infiltration ratio Ir . Trend lines: solid for semiarid basins; and dashed for temperate basins.

Figure 11. Temporal mean of (left to right) H; Hc , and Hg , versus (top to bottom) ET efficiency, runoff ratio, and BFI. Trend lines: solid for semiarid basins; and dashed for temperate
basins.
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infiltration excess, (3) treatment of seasonal snow, snowpack, and snowmelt, and (4) incorporation of case-
specific hydrogeological factors such as fractured bedrock and surface features such as rock outcrops,
among others. The focus is on hydrologic response factors that can be considered shared and common
among many but not all catchment, i.e., surface soil reservoir fill and runoff generation during storm and
redistribution events. Some future research directions should address these limitations. Some, such as lack
of space-time direct observations of soil moisture fields may be binding constraints today but feasible in
the future. Snow processes and different mechanisms of runoff generation may be added. Hydrogeological
and other case-specific complexities cannot be generalized and have to be dealt with in each case
distinctly.
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