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Abstract 

Background 

CDKL5 (Cyclin-dependent kinase-like 5) is mutated in many severe neurodevelopmental disorders, 

including atypical Rett syndrome. CDKL5 was shown to interact with synaptic proteins, but an in 

vivo analysis of CDKL5 role in dendritic spine dynamics and synaptic molecular organization is 

still lacking.  

Methods 

In vivo 2-photon microscopy of the somatosensory cortex of CDKL5
-/y

 mice was applied to monitor 

structural dynamics of dendritic spines. Synaptic function and plasticity was measured using 

electrophysiological recordings of excitatory post-synaptic currents and long-term potentiation 

(LTP) in brain slices, and assessing the expression of synaptic PSD-95 protein. Finally, we studied 

the impact of IGF-1 treatment on CDKL5 null mice, to restore the synaptic deficits.   

Results 

Adult mutant mice showed a significant reduction in spine density and PSD-95-positive synaptic 

puncta, a reduction of persistent spines and impaired LTP. In juvenile mutants short-term spine 

elimination but not formation was dramatically increased. Exogenous administration of IGF-1 

rescued defective rpS6 phosphorylation, spine density, and PSD-95 expression. Endogenous 

cortical IGF-1 levels were unaffected by CDKL5 deletion. 

Conclusion 

These data demonstrate that dendritic spine stabilization is strongly regulated by CDKL5. 

Moreover, our data suggest that IGF-1 treatment could be a promising candidate for clinical trials in 

CDKL5 patients.  
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CDKL5 disorder is a neurodevelopmental pathology with characteristics like intellectual 

disability, stereotypies, and autism closely related to Rett syndrome (RTT) (1-3), but showing 

distinctive features such as early onset (first week-5 months of life) epilepsy and severe hypotonia 

(4). Very little is known about the function of CDKL5 in brain cells. In mice, CDKL5 is expressed 

at low levels at embryonic stages and its expression is markedly up-regulated during postnatal brain 

development (5, 6). Expression analysis suggested that CDKL5 can be localized in postsynaptic 

structures (7) where RNA interference and mutation analysis showed that it can regulate dendritic 

spine density and morphology and modulate excitatory synaptic function (8). The synaptic 

localization of CDKL5 seems to be regulated by its direct interaction with the palmitoylated form of 

postsynaptic density protein 95 (PSD-95) (9, 10), or by the formation of a complex involving PSD-

95 and its interacting protein netrin-G1 ligand (NGL-1), a target of CDKL5 kinase activity (8). 

Recently, CDKL5-loss-of-function murine models that recapitulate some aspects of the human 

disease have become available (3, 11) making possible to test whether spine and synaptic alterations 

are present also in vivo. Recent studies have shown that adult dendritic spines maintain a significant 

degree of plasticity undergoing different processes such as formation, elongation, stabilization, and 

retraction (12,13,14). Thus, to understand the role of CDKL5 in these processes, we analyzed the 

dynamical changes of dendritic spines in CDKL5
-/y

 mice (11) both during postnatal development 

and adulthood by means of in vivo two photon imaging. Converging evidence showed that CDKL5 

absence results in a specific deficit of dendritic spines stabilization that was prominent in juvenile 

mice and that persisted in the adult. Consistently, the density of dendritic spines was greatly 

reduced. Spine deficits were accompanied by molecular and functional synaptic alterations 

consisting in a reduction of synaptic PSD-95, impaired LTP maintenance, and reduced spontaneous 

EPSC frequency. 

No cure is currently available for CDKL5 patients and no treatment has been attempted so 

far to modulate the phenotype of CDKL5
-/y

 mice. Considering the strong impairment in dendritic 

spine stability observed in juvenile CDKL5
-/y

 mice, we used this phenotype to evaluate the effects 
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of a treatment aimed at ameliorating CDKL5
-/y

 mice condition. Insulin-like growth factor 1 (IGF-1) 

is an activator of the Akt-mTOR pathway (15, 16) a molecular cascade involved in several 

neurodevelopmental disorders that is hypofunctional in CDKL5
-/y

 mice (11). Moreover, IGF-1 

treatment was found to ameliorate spine dynamics and behavioural phenotype in murine models of 

RTT involving MeCP2 deletion (17, 18) and a clinical trial is ongoing in MeCP2 patients (19). We 

found that systemic IGF-1 treatment restored spine density, spine elimination rate, and synaptic 

PSD-95 levels in CDKL5
-/y

 mice, thus candidating IGF-1 as a treatment for CDKL5 disorder. 

Materials and Methods 

Mice were handled according to protocols approved by the Italian Ministry of Health. All mice 

were kept in a normal 12 h light/dark cycle in a temperature–controlled room (20°C) and had access 

to food and water ad libitum.  The CDKL5
 
null line of mice (11) was crossed with Thy-1 GFP 

transgenic mice (line M) (20) to produce the experimental animals: homozygous mutant (CDKL5
-/y

) 

males and their CDKL5
+/y

 littermates. 

Surgery: In order to acquire images of the dendritic spines of the somatosensory cortex, mice 

underwent surgery to grant optical access to the living cortex (21). Mice were anaesthetized with an 

intraperitoneal injection (1 ml per 0.05 kg body weight) of avertin. Mice were treated with carprofen 

(Rimadyl, Pfizer, daily i.p. injections of 0.3 ml from a 0.50 mg ml
−1

 stock), starting immediately 

before the cranial window implantation (see supplementary online material). 

In vivo two-photon imaging: Imaging sessions were carried out on a 2-photon microscope setup 

obtained by fitting a 5 W laser (Mira, Coherent) tuned at 890 nm that delivered 20-30 mW at the 

sample on a Olympus Fluoview confocal microscope. A CCD (charge-coupled device) camera was 

used to acquire a high-quality picture of the brain vasculature, which was used as a landmark for 

future relocation. Two-photon imaging was restricted to the apical dendrites of layer V pyramidal 

neurons present in cortical layers II/III (50–200 µm below the cortical surface). Images was 

acquired with a water immersion lens (Olympus 20×, NA 0.95) and digitized at a resolution of 

1024x1024 pixels at zoom 10x. The stack step size was 0.475 µm (22).  
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IGF-1 treatment: Subcutaneous injections of 2-4 microliters of a solution of full-length IGF-1 

(IU100; 1.8 µg/g body weight; Biovision) solved in saline were delivered to in CDKL5
+/y

 and 

CDKL5
-/y

 mice (17, 22).  To study IGF-1 effect in young mice we performed a single injection 

daily for 4 days from P24 to P27 and the imaging was performed at P27 and P28. For the adult 

study we injected IGF-1 daily between the first two imaging sessions (P120-P124). Subcutaneous 

injections were performed using a catheter with a 20 gauge needle connected to a Hamilton syringe. 
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Results 

 

Decreased density of dendritic spines in pyramidal neurons of CDKL5
-/y

 mice. 

We implanted P30 GFP positive CDKL5
-/y

 and CDKL5
+/y

 mice with a cranial window 

overlying the somatosensory cortex. The apical dendritic tufts of layer V pyramidal cells were 

repeatedly acquired between P50 and P80 during five imaging sessions (Figure 1A).  

At all ages,  CDKL5
-/y

 mice (n=8, 492 spines) had a significantly lower dendritic spine 

density than CDKL5
+/y

 (n=7, 789 spines) (figure 1B-C; two-way ANOVA factor genotype: 

F(1,57)=77.55, p<0.001, 28 dendrites for CDKL5
+/y

, 31 for CDKL5
-/y

, post hoc Bonferroni t-test, 

p<0.001). Intriguingly, the factor age seemed to have a significantly different effect within each 

genotype (two-way ANOVA interaction age × genotype: F(4,227)=8.077, p<0.001). Indeed,  linear 

fits of the spine density as a function of age for individual dendrites revealed that in CDKL5
+/y

 mice 

spine density was virtually constant during the period of observation (slope: 0.0017± 0.0014 

spines/µm/day; one sample t-test t(27)=1.2, p=0.24), whilst spine density of mutant mice showed a 

significant decrease with time (slope: -0.0052± 0.0009 spines/µm/day; one sample t test t(30) = -

5.56, p<0.001). These data suggest that adult CDKL5
-/y

 mutants show a relatively small but 

significant reduction in spine density during the 30 days period of observation. 

To understand whether synaptic contacts are also affected in CDKL5
-/y 

mice, we performed 

immunofluorescence experiments analyzing the localization of PSD-95, a postsynaptic marker of 

excitatory synapses (Figure S1). The data showed that CDKL5
-/y

 mice displayed a strong reduction 

of PSD-95-positive synaptic puncta (n=6 each group, layer II-III t(10)=2.46 t-test p=0.008, layer V 

t(10)=2.44 t-test p=0.011) both in layer II-III and V of the somatosensory cortex (Figure 1 D-E) 

indicating that CDKL5 deletion causes a robust loss of excitatory synaptic contacts. 
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Impairment of long-term spine survival in CDKL5
-/y

 mice 

To dissect out the role of CDKL5 in spine formation and elimination (23), we measured the 

fraction of spines undergoing formation and elimination over 4 days by comparing dendrites at P50 

with those at P54. Figure S2 shows that there is no effect of genotype neither on spine gain (t-test 

p=0.21; t(57)=1.27), nor on spine loss (t-test p=0.88, t(57)=0.14) indicating that CDKL5 effect on 

spine stability in adult mice cannot be detected with this short time interval. 

Next, we analyzed if CDKL5 can be implicated in long-term maintenance of persistent 

dendritic spines.  To this aim, we tracked the fate of individual spines observed in the first imaging 

session (P50) and calculated the fraction of spines surviving (survival fraction) at the subsequent 

imaging sessions until P80 (Figure 2A). At the end of the examination period (P80), only 64% of 

the spines that were observed at P50 had survived in the CDKL5
-/y

 mice, whereas the control 

littermates displayed a survival rate of 75%. We fitted the data with an exponential function with 

the parameter S corresponding to the asymptotic survival fraction, and the parameter τ 

corresponding to the time constant necessary to lose 37% of the spines bound to disappear (21) 

(Figure 2B).  Figure 2C shows that CDKL5
-/y

 group had a significantly lower S parameter (t-test, 

t(50)=2.9 p=0.005) and  longer τ (t-test, t(50)=-2.82 p=0.006) than CDKL5
+/y 

suggesting that 

dendritic spines require more days to become stable in CDKL5
-/y 

mice. The lack of stability of 

CDKL5
-/y

 spines is also apparent by comparing spine survival at the two final imaging sessions. 

Whereas surviving spines reached a plateau and did not change significantly in CDKL5
+/y 

mice (t-

test, t(54)= 0.85 p=0.39), surviving spines continued to decrease in CDKL5
-/y

 mice (t-test, 

t(60)=2.32 p=0.02). To further investigate this point, we measured the fraction of spines gained 

during the imaging sessions and persisting for at least 8 days (new persistent, NP). We found that 

NP spines were present at significantly lower level in CDKL5
-/y

 mice than controls (Figure 2D) 

(X
2
(1)= 6.76; p=0.009). In agreement with a reduced long-term spine stability in CDKL5

-/y
 mice, 

morphological analysis of dendritic spines revealed the presence of characteristics of immature 

spines (12) in CDKL5
-/y

 mice. Indeed, spine neck was significantly longer and spine head 
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significantly smaller in CDKL5
-/y

 than in controls mice (Figure 2E-F) (length t-test t(177)=-1.95 

p=0.05; head width t-test t(177)=2.92 p=0.003). Thus, long-term survival of dendritic spines is 

impaired in adult CDKL5
-/y

 mice. 

 

Impaired synaptic transmission and plasticity in CDKL5
-/y

 mice 

We investigated synaptic plasticity in GFP-positive adult CDKL5
-/y

 mice. Acute somatosensory 

cortex slices of P80 mutant and wild-type mice were used to study LTP of field potentials evoked 

by stimulating the horizontal connections in layer II-III. After I/O curve assessment, stimulation 

intensity was chosen to evoke half-maximal response. Neither the I/O curve (fig. S3) nor 

stimulation intensity (CDKL5
+/y

 158±29 µA; CDKL5
-/y

 149±19 µA, t-test t(10)=0.27 p=0.79) were 

different between CDKL5
+/y

 and CDKL5
-/y

 mice. In CDKL5
+/y

 mice, theta burst stimulation 

resulted in a robust LTP induction whereas CDKL5
-/y

 mice showed a dramatic impairment of LTP 

expression (Figure 3, 8 slices from 8 CDKL5
+/y 

mice, 4 slices from 4 CDKL5
-/y 

mice; two-way 

ANOVA time × genotype p<0.001 F(1,10)=25.0 post-hoc Holm-Sidak comparison p<0.001 

t(10)=7.07). 

We then studied excitatory synaptic transmission by recording spontaneous mini-EPSCs 

(mEPSCs). mEPSCs were recorded by whole-cell recordings targeted to GFP-labelled layer V 

pyramidal cells of somatosensory cortex slices of CDKL5
-/y

 and CDKL5
+/y 

mice. No difference was 

present in resting potential and input resistance (Table 1). mEPSCs from CDKL5
+/y

 neurons had an 

average mEPSC frequency that was significantly higher than CDKL5
-/y

 mice (Figure 4B-C) with 

shorter inter-event intervals (Figure 4E, Kolmogorov-Smirnov test, D=0.454, p<0.001). mEPSC 

median amplitude was similar between CDKL5
-/y

 and CDKL5
+/y

 mice (amplitude t-test t(21)=-

0.141 p=0.45; frequency  t(21)=2.22 p=0.039; 12 slices from 4 CDKL5
+/y 

mice; 11 slices from 5 

CDKL5
-/y 

mice) (Figure 4A); however, the cumulative distribution of mEPSCs amplitudes for 

CDKL5
+/y

 mice is significantly shifted towards larger values respect to CDKL5
-/y

 mice 

(Kolmogorov-Smirnov test, D=0.406, p<0.001, Figure 4D).  
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Dendritic spine density is already affected in developing CDKL5
-/y

 

We studied whether dendritic spine density and dynamics in mutant mice during 

development (P27-P28). Since at this age it is not possible to provide an interval of 20 days 

between cranial window implantation and imaging, we imaged dendritic spines using the thinned 

skull approach (24). 

As shown in figure 5A-B, at P27 CDKL5
-/y

 mice displayed significantly less spine density 

than CDKL5
+/y

 littermates (t-test t(115)=4.03; p<0.0001; n=62 dendrites from 20 CDKL5
+/y

 mice; 

55 dendrites from 23 CDKL5
-/y

 mice). By contrast, the density of filopodia was similar between the 

two genotypes (t-test t(115)=-0.24; p=0.81), suggesting that CDKL5 is not involved in the 

production of new spines but, rather in the stabilization of spines with mature morphology. Indeed, 

spines of mushroom-like morphology, that are considered to be mature spines, were significantly 

increased  in CDKL5
+/y 

with respect to CDKL5
-/y

 (t-test, t(29)=2.78 p=0.009). To assess whether 

the decrease in spine number was reflected by a reduction in excitatory synaptic contacts, we 

performed immunofluorescence experiments for the excitatory synaptic marker PSD-95. The data 

showed (Figure 5 C-D) that CDKL5
-/y

 mice displayed a reduction of PSD-95-positive puncta  both 

in layer II-III and V of somatosensory cortex  already at P28 (n=6 for each group, layer II-III t-test 

p=0.002 t(10)=2.96, layer V t-test p=0.006 t(10)=1.89). 

 

Enhanced short-term loss of dendritic spines in developing CDKL5
-/y

 mice 

To investigate spine dynamics in  developing CDKL5
-/y

 mice we calculated dendritic spine 

gain and loss between two imaging sessions separated by one day beginning at P27 (Figure 6 A-C). 

We found that the fraction of spines gained in 24 hours is similar between the two genotypes (t-test 

t(43)=0.15 p=0.87). Conversely, the fraction of lost spines was greatly increased in the mutant mice 

respect to wt littermates (t-test t(43)=-2.95 p=0.005; n=21 dendrites,  from 11 CDKL5
+/y

 mice, 570 
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spines; 24 dendrites from 14 CDKL5
-/y

 mice, 487 spines). Thus, CDKL5 plays a crucial role in 

limiting short term pruning of dendritic spines during development.  

 

IGF-1 administration rescues defective PSD-95 expression and S6 

phosphorylation in CDKL5
-/y

 mice 

IGF-1 is an activator of Akt/mTOR/S6 pathway (16) that was found to have beneficial effects in 

murine models of RTT involving MeCP2 deletion (17, 18). Therefore, we investigated the effects of 

IGF-1 on S6 phosphorylation (11) in the somatosensory cortex. We followed a protocol of  IGF-1 

administration with daily doses of 1.8 µg/g body weight from P24 to P27 that we previously 

showed to be able to improve spine motility in MeCP2 mutants (22). Phosphorylation of Ser240-

244 residues of S6 ribosomal protein (n=8-9 animals for group) is specifically induced by the action 

of the mTOR/PI3K pathway (25). S6 Ser240-244 phosphorylation was reduced in CDKL5
-/y

 mice 

treated with vehicle with respect to CDKL5
+/y

, however IGF-1 treatment rescued S6 

phosphorylation to normal levels. (Figure 7A-B, two-way ANOVA; factor genotype F(1,30)=4,41 

p=0.044; treatment F(1,30)=19,1 p<0,001;  interaction treatment × genotype F(1,33)=0,013 p=0.9; 

post-hoc Holm-Sidak comparisons: genotype within vehicle t=2.15 p=0.039, genotype within IGF-1 

t=1.15 p=0.25, treatment within CDKL5
-/y 

 t=3.25 p=0.003, treatment within CDKL5
+/y

 t=2.93 

p=0.006). 

Previous work showed that IGF-1 can rescue deficits in PSD-95 synaptic expression in 

models of RTT carrying deletion of MeCP2 (18). Thus, we studied whether IGF-1 could improve 

the PSD-95 deficit observed in CDKL5
-/y 

mice.  We extracted the PSD fraction from synaptosomes 

and we assessed PSD-95 by western blot (n=9 animals for group). Vehicle treated CDKL5
-/y

 had 

less PSD-95 than CDKL5
+/y

, however IGF-1 rescued PSD-95 reduction (Figure 7C-D, two-way 

ANOVA; factor genotype F(1,28)=7,99 p=0.009; treatment F(1,28)=8,64 p=0.007,  interaction 

treatment × genotype F(1,31)=0,029 p=0.85, post-hoc comparison genotype within vehicle t=2.06 
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p=0.049, genotype within IGF-1 t=2.05 p=0.049, treatment within CDKL5
-/y

 t=2.07  p=0.048, 

treatment within CDKL5
+/y

 t=2.19 p=0.037). 

Finally, we analyzed cortical levels of IGF-1 in both P27 and P90 CDKL5
-/y

 mice. No 

difference of IGF-1 expression was observed between CDKL5
+/y

 and CDKL5
-/y

 (Figure 7E,F), 

suggesting that IGF-1 effects in CDKL5
-/y

 mice are not due to a restoration of altered cortical IGF-1 

levels. 

 

 

IGF-1 administration rescues spine density and turnover in developing and 

adult CDKL5
-/y

 mice 

 We then asked whether IGF-1 delivery could rescue the dendritic spine deficits of CDKL5
-/y

 mice. 

To assess the effects of IGF-1 in juvenile mice spine imaging was performed at P27 and P28 

(Figure 8A, experimental time line) in four experimental groups: CDKL5
+/y

 and CDKL5
-/y

, injected 

with vehicle or IGF-1 (CDKL5
+/y 

vehicle, 27 dendrites from 6 mice, 968 spines; CDKL5
-/y 

vehicle, 

25 dendrites from 8 mice, 668 spines; CDKL5
+/y 

IGF-1, 20 dendrites from 7 mice, 695 spines; 

CDKL5
-/y 

IGF-1, 40 dendrites from 12 mice, 1191 spines). The analysis of spine density revealed a 

significant effect of genotype and a significant interaction treatment × genotype (Figure 8B, two-

way ANOVA, factor genotype F(1,104)=13.71 p<0.001; interaction treatment x genotype 

F(1,107)=5.06 p=0.02). No main effect of treatment was present (factor treatment F(1,104)= 2.63 

p=0.10). As expected from our previous results, post-hoc comparisons revealed that CDKL5
-/y

 mice 

treated with vehicle showed reduced spine density with respect to CDKL5
+/y

 vehicle treated mice 

(Holm-Sidak test p<0.001, t(47)= 4.14). Intriguingly, IGF-1 significantly enhanced spine density of 

CDKL5
-/y

 mice with respect to vehicle treated CDKL5
-/y

 mice (Holm-Sidak p=0.004 t(59)= 2.91). 

Spine turnover analysis (CDKL5
+/y 

vehicle 13 dendrites from 6 mice; CDKL5
-/y 

vehicle 19 dendrites 

from 7 mice; CDKL5
+/y 

IGF-1 10 dendrites from 5 mice; CDKL5
-/y 

IGF-1 21 dendrites from 7 

mice) revealed that spine loss was significantly affected by the genotype with an interaction 
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genotype x treatment (two-way ANOVA; factor genotype F(1,55)=3.93 p=0.05; interaction 

treatment × genotype F(1,58)= 4.21 p=0.04). Post-hoc comparisons showed that, as in untreated 

mice, CDKL5
-/y

 mice treated with vehicle had an abnormally high rate of spine loss as compared 

with vehicle treated CDKL5
+/y

 (Figure 8 C-D, Holm-Sidak test p=0.004 t(28)=3.04). By contrast, 

spine loss was fully rescued in the CDKL5
-/y

 mice treated with IGF-1 (Holm-Sidak test p=0.002 

t(37)=3.30). No effect of genotype or treatment was present on spine gain (two-way ANOVA; 

factor treatment F(1,55)=0.46 p=0.49; factor genotype F(1,55)=0.88 p=0.35; interaction treatment × 

genotype F(1,58)=2.48 p=0.12). Thus, the spine deficit phenotype of juvenile CDKL5
-/y 

can be 

counteracted by IGF-1. 

We next asked if the beneficial effect of IGF-1 can occur also in adult CDKL5
-/y 

mice. After 

cranial window implantation at P30, dendritic spines of CDKL5
-/y 

mice were imaged at P120 

(Figure 9A). Mice were then randomly assigned to the IGF-1 or the vehicle group (n=5 mice per 

group). Immediately at the end of the treatment (P124) spine density showed a significant increase 

in the IGF-1 group (Figure 9B). By contrast, vehicle treated CDKL5
-/y 

mice showed the reduction in 

dendritic spine density observed also in untreated CDKL5
-/y 

mice. Spine turnover analysis (Figure 

9C) revealed that spine increase was due to reduced spine loss (t(77)=2.82 p=0.005) and also to an 

increase in spine gain (t(77)=3.21 p=0.001). These data show that IGF-1 is effective on spine 

density also in adult CDKL5
-/y 

mice. 

To assess whether the spine density increase induced by IGF-1 could persist after the end of 

the treatment we imaged again the same dendrites 16 and 20 days after the end of the treatment 

(P140 and P144). IGF-1 treated mice maintained significantly more spines than vehicle treated mice 

at these time points (Figure 9B; two way ANOVA effect of time F(2,175)=5.06 p=0.007; effect of 

treatment F(2,175)=30.99 p<0.001; post hoc comparisons: IGF-1 was significantly different from 

vehicle at P124 t=4.63 p<0.001, P140 t=2.24 p=0.003, and P144 t=3.18 p=0.002).  
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Discussion 

Our study shows that CDKL5, a protein that when mutated causes atypical RTT, plays a 

crucial role in the organization and maintenance of synaptic structure in vivo. By performing 

repeated in vivo two-photon imaging in CDKL5
-/y

 mice (11), we pinpointed the cellular process 

affected by CDKL5 absence. Indeed, new spines were normally generated but failed to stabilize and 

were eliminated at abnormally high rate in the absence of CDKL5. This deficit resulted in a strong 

decrease in spine density of pyramidal cells, nearly half as much, that was accompanied by a 

decrease of PSD-95-positive puncta together with a reduction of PSD-95 expression in the PSD 

enriched fraction of synaptosomes. Morphological and molecular alterations of synapses were 

reflected by functional impairments consisting in a reduction in the frequency of miniature EPSCs, 

possibly due to decreased synapse number, and defective LTP.  

Previous studies performed in neuronal cultures converged in identifying mechanisms of 

synaptic stabilization involving PSD-95 as a target of CDKL5 action. It was found that CDKL5 is 

present at excitatory synapses where it is necessary to phosphorylate the cell adhesion molecule 

NGL-1 (8). In turn, NGL-1 phosphorylation would be necessary to produce a stable association 

between NGL-1 and PSD-95 promoting synaptic stabilization and formation of mature dendritic 

spines. Indeed, the authors found a decrease of mature dendritic spine density in response to 

CDKL5 knockdown in neuronal cultures and in the P11 cortex in vivo. The presence of spine 

alterations during early development suggests that the impairment of dendritic spine maturation 

represents a primary phenotype induced by CDKL5 mutation. Intriguingly, the authors also 

observed that overall dendritic protrusion density was increased, suggesting that at early 

developmental stages CDKL5 could also play a role in limiting filopodia outgrowth or that the 

excess protrusions present after CDKL5 knockdown represent atrophic spines unable to complete 

the maturation process leading to a stable spine. Importantly, an alteration in dendritic spine 

formation was also observed in neurons derived from induced pluripotent stem cells reprogrammed 

from patient fibroblasts suggesting that spine and synaptic abnormalities are likely present also in 
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patients (8). Zhu and colleagues proposed that CDKL5 directly interacts with PSD-95 in a PSD-95 

palmitoylation-dependent way and that this interaction targets CDKL5 to excitatory synapses (10). 

Pathogenic mutations of CDKL5, by interfering with this mechanism, resulted in impaired spine 

maturation and reduced spine density in cultured neurons (10). Our in vivo data showing decreased 

synaptic PSD-95 clusters could be explained by these molecular models of CDKL5 action at 

postsynaptic sites. Moreover, in vivo data showed that newly formed spines that failed to acquire 

well clustered PSD-95 rarely survived for more than one day (26). Thus, impaired PSD-95 

stabilization in our CDKL5 mutant mice could also promote the excessive spine elimination that we 

observe in juvenile mice. CDKL5 is clearly important for spine stability also in adult animals as 

persistent spines were significantly reduced in CDKL5 mutants.  Even in mature spines a smaller 

PSD-95 positive PSD was observed well before the actual pruning event in those spines that were 

doomed to disappear (26), raising the possibility that this mechanism could explain the long-term 

instability that we observed in adult CDKL5 mutants. Taken together these observations suggest 

that, like MeCP2 (27, 28), CDKL5 could have a lifelong role on neuronal function. 

The dependence of CDKL5 binding of PSD-95 upon PSD-95 palmitoylation suggests the 

possibility that CDKL5 dynamically interacts with PSD-95 in an activity-dependent way (9).  It has 

been previously shown that palmitate cycling on PSD-95 is regulated by electrical activity and can 

control synaptic strength and activity-dependent plasticity (29). Our experiments showing a 

dramatic LTP impairment in CDKL5
-/y

 mice cortex are in line with this hypothesis. Overall our 

results add to those of the literature reinforcing the idea that CDKL5 disease is caused from a deficit 

of impaired synaptic organization and plasticity, similarly to what happens in classical RTT caused 

by mutations of MeCP2 gene (30).  

It has to be underscored that other molecular alterations can be induced by CDKL5 

mutations (7). For instance, the analysis of the genetic models of CDKL5 deletion reported deficits 

in the activation of several kinases (3, 11 ). In particular, phosphorylation of Ser240-244 of S6, a 

specific target of the AKT-mTOR pathway, is downregulated in CDKL5 mutants, a feature also 
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shared by RTT models carrying MeCP2 deletion (3, 11, 31). IGF-1 is a potential activator of this 

pathway (18, 32, 33) and treatment with IGF-1 improves organism function, specific behaviors, 

cellular pathway activation, and synaptic plasticity in mice model of RTT syndrome (19, 34) and 

Phelan-McDermid syndrome, a syndrome caused by mutations of PSD-95 binding protein Shank-3 

(35). In particular, MeCP2 mutant mice were found to have an impaired spine motility and 

formation (22, 36). Also in this case, IGF-1 was able to rescue the spine impairment present in 

MeCP2 null mice (22). Our experiments show that IGF-1 is able to rescue S6 phosphorylation, 

spine deficits and PSD-95 decrease also in CDKL5
-/y

 mice. Synaptic PSD-95 expression was 

increased by IGF-1 also in CDKL5
+/y

 mice whereas spine density was not affected, suggesting that 

each synapse could have more PSD-95 or more PSD-95 puncta are present on the same spine or 

along dendritic shafts. These molecular alterations of CDKL5
-/y

 mice do not seem to be due to 

lower-than-normal levels of endogenous IGF-1 because we found normal cortical IGF-1 levels in 

CDKL5
-/y

 mice.  Thus, the effects of exogenous IGF-1 could be brought about by a potentiation of 

defective signalling pathways, such as those converging on S6 phosphorylation. 

Importantly, IGF-1 improved spine density also in adult CDKL5
-/y

 mice when the synaptic 

deficit is established. Moreover, repeated imaging of the same dendrites before and after the IGF-1 

treatment showed that the increased spine density induced by IGF-1 was still present 20 days after 

the end of the IGF-1 treatment suggesting that the spines induced by IGF-1 are long-lasting.  

The results of a phase 1 study on the use of IGF-1 in patients affected by classical RTT 

caused by MeCP2 mutations has been recently published (19). Our results prompt a thorough 

investigation of the IGF-1 effects in CDKL5 disease preclinical models and possibly to establish a 

firm background for a clinical use of IGF-1 also in girls carrying CDKL5 mutations. 
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Figure Captions 

Figure 1. Synaptic alterations in adult CDKL5
-/y

 mice. A, Experimental time line for in vivo 

imaging. B, Image of a dendritic branch from a CDKL5
+/y

 and CDKL5
-/y

 mice at P50, showing 

decrease spine density. C, Mean spine density from P50 until P80 in CDKL5
+/y

 and CDKL5
-/y

 mice. 

CDKL5
-/y

 mice always displayed  lower spine densities compared with CDKL5
+/y

 littermates. D, 

Confocal images of PSD-95 puncta detected by immunohistochemistry in CDKL5
+/y

 and CDKL5
-/y

 

mice. E, Quantification of PSD-95 puncta (number of PSD-95 puncta/micron
2
) in the layer II-III 

and V of somatosensory cortex of CDKL5
+/y

 and CDKL5
-/y

 mice. 

 

Figure 2. Spine stabilization is affected in adult CDKL5
-/y

 mice. A, Images of a dendritic branch 

from a CDKL5
+/y

 and CDKL5
-/y

 mice at the beginning (P50) and at the end of the imaging period 

(P80). Yellow arrows indicate that spines that survived through this period. Red arrows indicate 

spines that are lost over time (scale bar 2 µm). B, Survival fraction of spines present at P50 and 

then monitored at P54, P58, P65 and P80 both in CDKL5
+/y

 (black) and CDKL5
-/y

 mice (grey). 

Continuous lines are exponential fits of the data. C, Average of fit parameter S (Asymptotic Survival 

Rate) for CDKL5
+/y

 and CDKL5
-/y

 mice. Mutants have significantly lower survival. Average values 

of fit parameter τ (time constant of the fit) for CDKL5
+/y

 and CDKL5
-/y

. CDKL5
-/y 

mice have longer 

average time constant. D, Fraction of NP spines is reduced in CDKL5
-/y

 mice. E-F, Images of 

dendritic branch (E) and quantification (F) show that CDKL5
-/y

 mice have longer spines and with a 

thinner head. 

 

Figure 3. Long term potentiation deficit in adult CDKL5
-/y

 mice. Field potential amplitude 

normalized to pre-theta burst level is reported for CDKL5
-/y

 and CDKL5
+/y

 littermates. Examples of 

field potential waveforms before (light grey) and after (black) LTP induction are reported at the 

top.  

 

Figure 4. Impaired synaptic function in CDKL5
-/y 

mice. A, Average mEPSCs amplitude in 

pyramidal cells of layer V of CDKL5
-/y

 and CDKL5
+/y

 littermates. B, mEPSC frequency is reduced 

in CDKL5
-/y 

mice. C, Sample traces at low (left) and high (right) magnification. D, Cumulative 

distribution of mEPSCs amplitude shows a small but significant reduction. E, CDKL5
-/y

 mice have 

longer  inter-event intervals.  
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Figure 5. Reduced spine and PSD-95 positive puncta density in P27-P28 CDKL5
-/y

 mice. A, 

Dendritic branch of CDKL5
+/y

 and CDKL5
-/y

 mice at P27, showing a decreased number of spines 

but not filopodia (arrows). B, Spine, but not filopodia density is decreased in P27 CDKL5
-/y

 mice. 

C, Examples of PSD-95 staining in layer V. D, Punctuate synaptic PSD-95 is reduced both in 

superficial and deep layers.  

 

Figure 6. Selective impairment in spine elimination in P27-P28 CDKL5
-/y

 mice. A, Images of 

dendritic branches of a CDKL5
+/y

 and CDKL5
-/y

 mice at P27 and P28. Yellow arrows indicate 

persistent spines, blue arrows spines that appear at P28, red arrows spines that are lost at P28. B, 

Experimental time line for in vivo imaging of young mice. C, Spine gain and loss between P27 and 

P28 in CDKL5
-/y

 and CDKL5
+/y

 littermates. CDKL5
-/y

 mice displayed a higher fraction of lost 

spines than controls but normal spine gain. 

 

Figure 7. IGF-1 improves molecular deficits of CDKL5
-/y

 mice. A, Examples of western blots for 

phosphorylated Ser240-244 and total S6. B, IGF-1 promotes Ser240-244 S6 phosphorylation. C, 

Examples of western blots of PSD-95. D, IGF-1 enhances PSD-95 expression. E and F, IGF-1 

protein levels are not different in CDKL5
-/y

 and CDKL5
+/y

 mice. Quantification of IGF-1 levels in 

somatosensory cortex of P27 (E) and P90 mice (F) was performed by ELISA.  

 

 

Figure 8. IGF-1 treatment improves spine density and elimination in P27-P28  CDKL5
-/y 

mice . A, 

Scheme of IGF-1 treatment and repeated imaging timeline. B, Spine and filopodia density in P27 

CDKL5
-/y 

or wild type littermates treated with IGF-1 or vehicle. IGF-1 rescued the spine density 

reduction present in vehicle treated mutants. C, Images of dendritic branches of CDKL5
-/y

 mice at 

P27 and P28, top: vehicle treatment, bottom: IGF-1 treatment. Yellow arrows indicate persistent 

spines, blue arrows spines that appear at P28, red arrows spines that are lost at P28 (scale bar 1 

µm). D, Spine gain and loss between P27 and P28 in CDKL5
-/y

 and wild type littermates treated 

with IGF-1 or vehicle. Graphs show that the abnormally high loss of spines present in CDKL5
-/y

 

mice is rescued by IGF-1.  

 

Figure 9. IGF-1 treatment improves spine density and turnover in adult P120 CDKL5
-/y 

mice. A, 

Experimental time line for in vivo imaging of adult mice. B, Spine density normalized to  pre-

treatment density (P120) is reported for CDKL5
-/y

 mice treated with vehicle or IGF-1 between the 

first two imaging sessions (P120-P124). IGF-1 induced an increase in spine density followed by a 
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decrease after treatment interruption. At all time points, IGF-1 treated mice had more spines than 

vehicle treated mice. C, Fraction of the total number of spines gained and lost between P120 and 

P124 in CDKL5
-/y 

treated with IGF-1 or vehicle. IGF-1 enhanced spine gain and reduced spine 

loss.  

Table 1. Resting potential  and input resistance are unaffected by CDKL5 deletion. 

Resting potential (Vm)  and input resistance (Rin) were not statistically different in CDKL5
-/y

 (n= 12 

cells for CDKL5
+/y 

mice, n=11 cells for CDKL5
-/y

 mice; Vm t-test t(21)=-0.48 p=0.64; Rin t-test 

t(21)=-0.72 p=0.48).  

 

 Vm (mV) Rin (MΩ) 

CDKL5
+/y

 -60.2±1.7 152.1±36.4 

CDKL5
-/y

 -61.2±1.1 118.31±29.1 
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