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Abstract 

Combustion instabilities represent a long known problem in combustion technology. The environment-friendly lean 
premixed gas turbines exhibit an increased risk of occurrence of thermo-acoustically induced combustion oscillations. 
In the present work the stability of a lean premixed swirl-stabilized combustor, experimentally studied at Technische 
Universitӓt of Munich, has been investigated. The complex interaction between the system acoustics and the turbulent 
swirling flame is studied using unsteady CFD simulations with Flamelet-Generated Manifolds combustion model. 
Results were validated against experimental data. Perturbations are introduced in the system imposing a broadband 
excitation as inlet boundary condition. The flame response to the perturbation is then computed and described 
exploiting system identification techniques. The identified Flame Transfer Function (FTF) shows quantitative 
agreement with experiment for amplitude and phase, especially for the low frequency range. At higher frequencies 
the phase prediction slightly deteriorates while the gain is still well described. The obtained results are implemented 
into a finite element model of the combustor in order to analyze the stability of the system. Results are compared with 
available experimental data showing a satisfactory agreement. The advantage introduced by a more sophisticated 
model for FTF is further evidenced comparing the results with those obtained with analytical formulation found in 
literature. 
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1. Introduction 

Lean premixed combustion technology can be considered the most effective solution to meet the 
stringent regulations on pollutant emissions, in particular NOx. One of the most critical issues of lean 
combustion technology is the occurrence of combustion instabilities related to the coupling between 
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pressure oscillations and thermal fluctuations excited by unsteady heat release. Such instabilities may 
damage combustor's components and limit the range of stable operating conditions so that the prediction 
of the thermoacoustic behaviour of the system becomes of crucial importance.  

Among the methods used to predict the thermoacoustic instabilities of a combustor, such as the 
solution of full three-dimensional unsteady Navier-Stokes equations or low-order models as 1D-acoustic 
elements networks, Finite Element Methods (FEM) may be used to solve for the complete 3D problem. 
The set of linear transport equations for the perturbations of velocity, temperature and density can be 
derived by linearizing the Navier-Stokes equations. It is often assumed that the mean flow is at rest so that 
a wave equation for the acoustic perturbations can be derived, where the local unsteady heat release 
appears as a forcing term. To model the latter an accurate description of the flame dynamics is necessary 
and it is usually expressed in terms of Flame Transfer Function (FTF).  

The FTF may be obtained experimentally, e.g. using chemiluminescence to evaluate heat release 
combined with velocity or pressure sensors [1]. However, the experimental determination of FTFs can be 
difficult, very expensive and requires very careful experimental work – especially in the presence of 
turbulent flow or combustion – sophisticated post-processing, and long test runs [2].  

An attractive way to determine the FTF is its computation from computational time series data 
generated with unsteady CFD simulations where the flame dynamics is reproduced. A simulation is 
performed exciting the system with a carefully designed broadband signal while recording the time series 
of both velocity and heat release fluctuations. The FTF is then reconstructed from these data, using 
methods from system identification.  

Otherwise, analytical models have been proposed which are derived under simplifying assumptions.  
In this work the dynamic response of a perfectly premixed swirled flame, well studied in literature [1], 

[3-6], is investigated with numerical simulations, with the main aim of assessing and verifying the 
procedure described above. In the following sections the test case and the numerical setup are presented 
together with the obtained FTF. Finally, the results obtained from FEM simulations with both the classical 
n-  model and the computed FTF are compared. 

 

2. Dynamic behavior of a perfectly premixed combustion system 

The dynamic response of a combustion system can be described, in linear regime, in terms of heat 
release fluctuations which are influenced by several factors. Among these, the most important two are the 
mass flow rate and the equivalence ratio fluctuations.  

In a perfectly premixed system, as the one studied in the present work, no equivalence ratio 
fluctuations are present: the main mechanism inducing a heat release perturbation is a modulation of the 
flow upstream the flame, the axial velocity fluctuation at the burner exit. A perturbation comes from the 
burner and propagates from this section downstream the flame causing a variation of the flame area and 
position. The local turbulent field and the turbulent flame speed can be also modified with a direct effect 
on the reaction speed. The strength of the disturbance is directly related to that of the velocity fluctuation 
at the burner.  

The dynamic response of a flame to a perturbation can be represented in the frequency domain by its 
Flame Transfer Function: 
 

                                                                                                  (1) 
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Where ω is the frequency and where the velocity fluctuations at the burner exit ( ) and the heat 
release ones ( ) are normalized with their respective mean values  and . 

The previous expression identifies a single-input single-output system: a black-box with a single 
variable as input (velocity fluctuations just upstream the flame) and a single output (heat release 
fluctuations) as shown in Fig. 1. Considering a linear time-invariant single-input single-output system, 
from theory of systems it is well known that its behaviour is completely determined once that its response 
to the unit impulse, or equivalently its frequency response (the FTF), is known.  

From the time series of the input excitation and of its response, it is possible to calculate the unit 
impulse response using System Identification (SI) techniques. In particular, a well-established procedure 
(see i.e. [7]) based on a linear least square optimization and exploiting correlation functions is considered 
(Wiener-Hopf method). The computed unit impulse response is then Z-transformed to obtain the FTF. 

More details on the System Identification method and its application to thermoacoustics may be found 
i.e. in [1], [3]–[6]). 

 

Fig. 1 Scheme of the Single-Input Single-Output model used for the flame 

In the present work the time series for the SI comes from an unsteady-CFD simulation: the system is 
excited at the inlet and the time series of both the velocity fluctuations at a specific section upstream the 
flame, and of the global heat release fluctuations on the whole domain, are recorded.  

A key point of the procedure is the input signal choice. In general, the frequency spectrum is to be 
excited in the range of interest. Therefore, a broadband signal that allows doing it in a single CFD 
simulation should be chosen. Alternatively, with a much more computationally expensive procedure, the 
FTF for one particular frequency can be computed at a time. An input signal with low intensity can lead to 
poor results, especially in presence of noise [6]. On the other hand, the signal must be limited in amplitude 
to respect the linearity hypothesis lying behind the identification procedure (e.g. below the 20% of the 
mean velocity). Comparing several signal used in literature (random binary signal, random noise etc.) a 
specific signal has been designed. This is basically a square wave with random variable amplitude that 
allows the direct control of the cut-off frequency and signal intensity without deteriorating its quality. For 
further detail refer to [8]. 

3. Test case and numerical setup 

The identification strategy described is applied to the BRS combustion, experimentally and 
numerically studied at the TUM University in Munchen. In particular, experimental measurement [3] [4] 
of FTF are available for two operating conditions, at 30kW and 50kW, while velocity profiles at three 
axial locations are available only for the latter. 

The BRS combustor is operated at ambient pressure with a perfectly-premixed lean mixture of air and 
methane (ϕ = 0.77). It has an axial swirler for the generation of the vortex breakdown and flame 
anchoring.  The swirler is mounted on a centre-body at 30 mm upstream of the burner exit, an annular 
section with an inner diameter of 16 mm and an outer diameter of 40 mm. The combustor has a square 
section (90mmx90mm) combustion chamber and a total length of 300mm. 

     The geometry (in Fig.2) is then reconstructed from sketches and schemes of the test rig in [3]. 
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Fig.2 BRS combustor: numerical domain 

The flame is simulated using Unsteady-RANS and the commercial software ANSYS Fluent 15.0 
Exploiting the domain periodicity just one quarter of the domain has been simulated. Adiabatic non-

slip condition is applied at the mixing tube walls while at the combustor wall a temperature of 600K has 
been assigned. At the outlet a Non Reflecting Boundary Condition is adopted to avoid that flame dynamic 
behavior and the identification procedure being influenced by wave reflected at the boundary.  

Standard k – ε model is used as turbulence model.  
In order to choose a combustion model, a comparison between the Perfectly Premixed model with the 

classical Turbulent Flame Speed closure proposed by Zimont [9] and the Flamelet Generated Manifolds 
(FGM) model [10] has been carried out.   

As far as the former is concerned, an equation for the reaction progress variable c is solved, which 
completely describes the reaction in case of a premixed adiabatic (heat-loss effect not taken into account) 
flame. The progress variable source term is set proportional to a turbulent flame speed ST that depends on 
the physical-chemical characteristics of the fuel mixture through its laminar flame speed SL and on the 
local turbulence level: 
 

                                                                                                                   (2) 
 

Being the RMS of velocity fluctuations,  the integral scale, the thermal diffusivity. The model 
constant A is empirical and the suggested value is 0.52 for most hydrocarbon fuels and G the stretch 
factor [9]. 

The FGM chemistry reduction technique, instead, combines the advantages of chemistry reduction and 
flamelet models. The approach shares with the latter the idea that a multi-dimensional flame can be 
considered as an ensemble of one-dimensional flames, while a low-dimensional manifold is constructed 
solving one-dimensional flamelets [10]. As other manifolds, the number of independent control variables 
(manifold dimension) can be increased (i.e. progress variable c, heat loss, turbulence etc.) thus improving 
the description of the combustion process. In the present work, non-adiabatic premixed flamelet 
configuration and GRI-Mech 3.0 mechanism is used to generate laminar flamelets database for the FGM. 
All the variables are defined as a function of both mixture fraction Z and reaction progress variable c. The 
latter dimension makes FGM model sensitive to finite chemistry effects due to a reaction in progress and 
not instantaneously completed. The final manifold includes turbulence effects, after a PDF integration 
routine, and has four input parameters: Z, reaction progress variable c and their respective variances. The 
progress variable definition, used in the flamelet parametrization, is based on CO and CO2 mass fractions. 
The Fluent Finite Rate/Turbulent Flame Speed, where the minimum between the source term coming 
from the flamelet manifold and the Turbulent Flame Speed closure one  is used to model the c-equation 
source term.  

A computational mesh of around 1.3E6 elements is chosen after a mesh sensitivity analysis.  
After a first stabilization period, necessary for the intrinsic non-stationary phenomena to rise and 

propagate through the domain, the mean values are computed. Successively, the broadband excitation is 
superimposed at the inlet velocity and both the velocity at the reference section and the heat release are 



362   Alessandro Innocenti et al.  /  Energy Procedia   82  ( 2015 )  358 – 365 

recorded.  
The results obtained with the two models against experimental profiles of velocity at three axial 

locations, available for the 50kW configuration [1], are shown in Fig. 3. 
At all the three planes (30, 60 and 80 mm downstream the burner exit) the FGM catches better the 

flow-field inside the combustor: position of the high speed jet, velocity peak and recirculation region. 
 

 

Fig. 3 Velocity profiles at three axial locations obtained with the tested combustion models 

The inclusion of finite-rate effect in the FGM model allows a better reproduction of the flame and is 
therefore adopted for the following analysis. 

4. Results 

For the Flame Transfer Function the 30kW case has been simulated. The computed FTF is depicted in 
Fig. 4 in terms of gain and phase as function of the frequency.  

The obtained response shows the typical features of a perfectly premixed flame response. 
The theoretical limits for a premixed Flame Transfer Function are, in fact, observed: for zero frequency 

the gain tends to 1 while the phase correctly approaches to 0. This is due to the quasi-steady response of 
the flame so that any fluctuation in the mixture flow is translated into an equal fluctuation of heat release 
[11].  

                     

Fig. 4 Computed (CFD-SI) and experimental (Exp.) FTFs 

At the other limit for , the dispersion of the perturbation is large, so that the flame does not 
follow the perturbation any more, and the gain of the FTF tends to 0: The flame is acting as a low-pass 
filter. 

Comparing the results with experimental data it is possible to observe a good agreement for the 
amplitude all over the range. The peak location is caught by the model as well as the corresponding value. 
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A minimum gain is predicted at around 200Hz, then the curve follows the experimental plateau.  
The phase matches the experimental data up to a frequency of 200 Hz. After that a small discontinuity 

is evident and the slope of the numerical curve is changed. In this second part of the frequency range 
experimental results are not perfectly matched and higher values are predicted for the phase.  

Looking at Fig. 5 where the normalized heat release is plotted against experiments (proportional to OH 
concentration), it is possible to see that the simulation predicts the maximum heat release location with 
reasonable accuracy even if the predicted flame seems to be slightly shorter and moved upstream. This 
could be due to the fact that the flame stabilizes in both the inner and outer shear layers, while 
experimentally only in the inner one. The predicted phase is therefore smaller as the time lag that is, 
response of the flame to the perturbation reduces with the flame length. 
 

 
Fig. 5 Area normalizes heat release distribution 

4.1. Stability analysis 

     The computed FTF is then used to perform a linear stability analysis. Simulations are also 
performed with the analytical n-τ model [12] so that a comparison can be made between the two flame 
models.  

When using the flame n-τ model, the interaction index  is set to a constant value of 1, while the time 
lag τ assumes local values equal to the convective time from the burner outlet to the flame point 
considered. It should be noted that the described flame response described in Section 4, the gain above 
unity for the low frequency range as well as the low-pass filter behaviour is neglected when considering 
the . 

In order to compare the results with experiments [4], where a longer combustor was used so that 
unstable modes exhibit, the combustor   length is changed to 700 mm, in this case.       A FEM model of 
the combustor is generated in COMSOL Multyphysics [13]. The Helmholtz equation (Eq. 3) is solved in 
the frequency domain with an additional source term representing heat release rate fluctuations: 

 

                                                                                                                            (3)  

 
Where  is the heat release fluctuation,  is the pressure fluctuation, c the sound velocity, γ the specific 

heat ratio. . ω is a complex quantity whose real part represents the frequency of oscillations and 
the imaginary one the growth rate which characterize the stability of a mode.  

The swirler is replaced in the model by its transfer matrix, computed following the procedure described 
in [14]. The burner transfer matrix obtained in this way includes the effects of the mean flow in the swirler 
section on the local acoustics. Temperature profile and flame volume are imported in the FEM model 
from CFD data. In Fig. 6 it is possible to observe the flame region, where the source term of Eq. 2 is 
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applied. No pressure fluctuations are imposed at both inlet and outlet section ( ). 
To solve for the problem the COMSOL Pressure Acoustic module is employed and the domain is 

discretized with a computational mesh able to detect acoustic modes up to 2kHz. 
 

 
Fig. 6 Predicted eigenvalues using n- τ model and the computed FTF 

When the computed FTF is used, three modes are detected in the range 0-300 Hz where the 
measurements were available (see Fig. 6). In particular, one unstable mode is predicted at 107,3 Hz 
(experimentally found at 103.3 Hz) and two other stable modes, experimentally found at 35 and 260 Hz. 
The model is then able to identify the main modes as well as their stability. 

In case of using the n-τ model only the first mode at 48.2 Hz was found as convergence issues arose 
when looking for the other modes.  

The adoption of a more refined model as the Flame Transfer Function computed from CFD data leads 
to improved results and seem to introduce also a stabilisation in the solution procedure of the FEM code.  

5. Conclusions 

     The dynamic response of a perfectly premixed flame has been characterized in terms of Flame 
Transfer Fucntion exploiting numerical simulations and system identification technique. A combustion 
model sensitivity has been carried out showing that when finite-rate effects are taken into account a better 
agreement is obtained with experiments.  

     Comparisons with measured FTF allow the validation of the procedure for FTF identification from 
CFD simulations. Good agreement is obtained for the identified Flame Transfer Function in terms of both 
gain and phase. The predicted FTF shows the classical premixed-like shape and the theoretical limits are 
well respected. A stability analisys of the combustor has been carried out with a FEM simulation 
comparing the results obtained with the computed FTF with those where the n- τ model is implemented 
and with experiments, showing the model ability to identify the main modes as well as their stability.  
Improved results and easier convergence are obtained with the computed FTF.  

     The validated procedure will be applied in future works to industrial configurations of gas turbine 
combustors. An upgrade will be necessary to take into account equivalence ratio fluctuations effects on 
the flame response, related to the technically-premixed nature of practical burners, that is, modelling the 
flame as a multi-input single-output. 
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