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Abstract: 

 

RNA interference has been envisaged as powerful tool for molecular and clinical investigation with a 

great potential for clinical applications. In recent years increased understanding of cancer biology and 

stem cell biology has dramatically accelerated the development of technology for cell and gene therapy 

in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit 

several central nervous system diseases. Furthermore, a description is made of innovative strategies of 

delivery into the brain by means of viral and non-viral vectors with high potential for translation into 

clinical use. Problems are also highlighted that might hamper the transition from bench to bed, 

analysing the lack of reliable preclinical models with predictive validity and the lack of effective 

delivery systems which are able to overcome biological barriers and specifically reach the brain site of 

action. 

 

Keywords: neurodegeneration, gene therapy, RNA interference, nanoparticles,  

Introduction 

“Experimental introduction of RNA into cells can be used in certain biological systems to interfere 

with the function of an endogenous gene”. The real meaning of this sentence was probably far from 

being appreciated at the time Fire and Mello wrote their manuscript [1,2], but since then RNA 

interference has been investigated extensively in the laboratory setting and there is great interest in 

translating siRNA into clinical application. In recent years, increased understanding of cancer biology 

and stem cell biology has dramatically accelerated technological advances in cell and gene therapy in 

these areas. This led to important medical progress, enabling therapists to design rationale-based 

personalised interventions.  In this context, RNAi interference (RNAi) has become a powerful gene 
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silencing technology widely exploited as research tool.  Most relevantly, RNAi quickly progressed to 

being probed as a potential treatment for the vast array of human conditions that could benefit from 

regulation of disease-associated genes.  Nonetheless, a significant gap still remains between basic 

science and medical applications, in part due to the shortage of preclinical models with predictive 

validity. Translational research is the mission of scientists who take on significant challenges to 

develop innovative clinical trial designs; to accelerate the development of protocols for evaluating 

safety and efficacy by minimizing the number of patients required; to interpret biologic effects of cell 

and/or gene based therapies in patients; and to dissect the impact of therapeutic combinations. The 

journey from bench to bedside has never seemed so short however finding new ways to overcome this 

gap is still a major challenge [3]. Numerous reviews have preceded our overview on siRNA, a clear 

sign of ongoing interest in such an innovative and yet only partially explored biological mechanism. 

Here, we focus on the most recent reports of innovative use of siRNA in several central nervous system 

(CNS) diseases, and the successful attempts to deliver siRNA into the CNS with attendant high 

potential for translation into clinical use. Intriguingly, recent work raises the possibility that 

endogenous short RNAs (microRNA) may also have therapeutic potential in the CNS. This subject has 

already been reviewed elsewhere [4]. 

The RNA interference machinery 

 

The ability of the cells to interfere with RNA translation is a conserved mechanism in eukaryotic 

organisms that use it to regulate, through genes expression, cellular metabolism, growth and 

differentiation, to maintain genome integrity, to fight viral infections and null mobile genetic elements. 

The components of the RNAi machinery were identified soon after the RNAi epiphany. By the time the 

2006 Nobel Prize was awarded, the whole chains of intracellular events and the molecular players 
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involved were recognised. However, it has only recently become evident that specific intracellular 

compartmentalisation of components seems to play an important role in the silencing cascade[5,6]. In 

the cytoplasm RNAi pathway involves two specialized ribonucleases that control the production and 

function of small regulatory RNAs [7,8]. Pre-siRNAs are first processed by the endonuclease Dicer 

into 21–23 nucleotide fragments, leaving 2 single-stranded nucleotide overhanging at the 3′end. These 

small RNAs are transferred to Argonaute proteins (Ago), and subsequently to the RNA-inducing 

silencing complex (RISC). The duplex helix is unwound and the “guide strand” is used to direct 

sequence-specific cleavage of complementary RNAs to guide the sequence-specific silencing of 

expression of targeted gene expression for research or therapeutic applications (Fig. 1). This 

mechanism is also, in part, shared with the endogenous silencing mechanism agent miRNA. This is 

produced in the nucleus throughout several maturation steps that form pre-miRNA/pri-miRNA and is 

exported into the cytoplasm by the active carrier, exportin, where it encounters Dicer, which in turn 

cleaves endogenous pre-miRNA sequences that regulate gene expression. miRNA biogenesis results 

predominantly in translational repression of target genes and, in some cases, degradation of target 

mRNAs. 

 

Once inside the cytoplasm the fate of siRNA is quite certain, although unexpected events might dictate 

the degree of complementarity held by the “guide strand”, causing reduced silencing of selected 

mRNAs and protein downregulation, as well as possible misregulation caused by off-target side effects. 

The main challenge in using siRNA as a therapeutic agent is that of selectively targeting the host cell 

inside the living organism. Biological barriers, such as the blood brain barrier (BBB) in the central 

nervous system (CNS), and enzymatic degradation tend to hamper the systemic use of siRNA-based 

therapeutics.  
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To stay on target 

 

RNA silencing is now one of the most widely used techniques for gene expression regulation used in 

both research and clinical applications. However, recent insights on the possible undesired side effects 

of siRNA represent a major obstacle before it can be used as a drug [9]. Nonspecific effects of siRNA 

both in an animal model or patients have been thoroughly reviewed elsewhere[10]. They are generally 

described as sequence dependent and sequence independent events. Interference with the endogenous 

miRNA machinery and stability of the circulating RNA molecules are thought to be occurrences related 

to specific sequence (homology of the siRNA towards a miRNA target) and concentration. On the other 

hand, sequence-non-specific responses depending on siRNA length and structure may induce inherent 

toxicity given by off-target effects and triggering of immune responses toward dsRNA through cellular 

sensors of foreign RNA, such as RIG-I or Toll-like receptors, involved in innate immune antiviral 

responses[11].Traditionally, chemical modifications of siRNA structure, such as 2′O- methylation of 

the second base of the guide strand of the siRNA and the introduction of modifications with locked 

nucleic acids (LNA) help to reduce most of the unwanted side effects without affecting the degree of 

silencing of the intended target. Alternatively, modifications at the 5‟ end or 3‟ end have been 

described to make the designed antisense strand more available for the RISC complex than the sense 

strand[12]. Similarly, the introduction of a controlled degree of asymmetry in the guide and passenger 

strands reduced disadvantages due to siRNA off target effect. To reduce the incidence of possible off 

target interactions, basic and translational research may benefit from the several websites, recently 

made available for the design of the effective siRNAs. 

While structurally inherent drawbacks of siRNA substantially compromise its in vivo gene silencing 

activity, cell-targeted delivery may represent another obstacle for siRNA-based drug clinical 
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development. One of the trickiest aspect of the use of siRNA as a therapeutic agent is in fact the 

possibility to selectively reach the host cell inside the living organism. Degradation by serum nucleases 

and rapid elimination via the kidneys rapidly reduce siRNA concentration. Biological barriers, such as 

the BBB in the central nervous system CNS and enzymatic degradation hampered systemic use of 

siRNA-based therapeutics, however the development of biovectors and nanocarriers has recently 

incentivized the development of siRNA based new therapeutic strategies[13]. 

 

Delivery of siRNA to the CNS 

 

Delivery of therapeutics based on RNA interference to the CNS is one of the major challenges 

currently hindering its use in clinical applications [14]. In the laboratory setting, several vectors have 

been used to transport and release nucleic acids into cells [15], but these are not yet suitable for clinical 

applications. Despite being used successfully in laboratory models, for many of these vehicles it is 

unclear whether they can safely transport and release the siRNA cargo into the neural parenchyma 

[16,17]. The CNS is protected by the BBB, a specialized capillary wall impermeable to most of the 

blood molecules and surrounded by perivascular astrocytes, macrophages, oligodendrocytes, as well as 

microglia and neural terminations. In addition to safety, technologies used to deliver siRNA 

therapeutics must possess other critical features such as vector stability, protection of the nucleic acid 

during administration and efficient release of that nucleic acid in the targeted tissue. Despite recent 

proof-of-concept reports and a growing body of siRNA research, off-target effects and inappropriate 

immune responses may jeopardise potential siRNA drug candidates even if they reach the advanced 

phase of clinical trials [18].  
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Due to their dimensions, siRNA-vector systems are often identified as nano-systems, with respect to 

either biological molecules (i.e. peptides, viruses, natural polymers) or artificial materials customized at 

the nanometric scale (i.e. lipid nanoparticles, polymeric nanoparticles, lipoplexes) (Fig. 1). From a 

translational medicine perspective, siRNA carriers can be divided into viral and non-viral systems. 

Both types have been demonstrated to be effective in vitro and some are also effective in vivo. 

Viral vectors 

Viral-mediated interference of gene expression by siRNA in the brain was demonstrated ten years ago 

in a seminal paper, by Xia and colleagues [19]. Potent gene suppression of GFP in eGFP-transgenic 

mice striatum was achieved by direct intraventricular administration of recombinant adenovirus. The 

same group also demonstrated therapeutic potential of siRNA in pre-clinical studies with a transgenic 

mouse model of the monogenetic disorder spinocerebellar ataxia (SCA) [20]. Specifically, the authors 

introduced viral vectors expressing DNA encoding short hairpin RNAs (shRNAs) directed against the 

transgenic mutated human ataxin-1 gene, thereby reducing the pathology in the mouse model. 

This viral expression-based system engages the RNAi pathway at the pri-miRNA/pre-miRNA stage in 

the nucleus (Fig. 1). Efficient viral gene delivery strategies employed preferentially lentiviruses, 

adenoviruses (AV) and adeno-associated viruses (AAVs), each of which has distinct advantages and 

disadvantages [21]. 

 Lentiviruses, which belong to the retrovirus family, can integrate into the genome of the host cell, 

thereby maintaining gene expression through cell division. Long-term transcription of shRNAs can be 

necessary for diseases affecting proliferating cell types but is generally not essential for non-dividing 

cells as neurons. Moreover, the possibility of introducing harmful insertion mutations means that 

clinical translation with lentiviral vectors is deemed high risk. AVs have the advantage of efficient 

penetration in different cell types including differentiated cells, since their infection is independent of 

the cell cycle. Gene delivery by AVs typically results in high levels of RNAi expression and, in 
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contrast to lentiviruses, integration of adenoviral DNA into the host genome is rare, with little chance 

of insertional mutagenesis. Despite these properties, AVs have been shown to induce immune system  

responses resulting in transient transgene expression in various immunocompetent mice models 

relevant to gene therapy research [22]. Nevertheless, improvements in vector design have significantly 

enhanced AV vector performance. Due to their lower immunogenicity, stability in the episomal form 

and penetration of non-dividing cells, AAVs have recently emerged as the preferred viral vectors for 

targeting neurodegenerative diseases (e.g. Huntington disease) that require downregulation of a single 

mutant gene, at least in pre-clinical models [23]. 

In addition to possible unexpected inflammatory immune reactions and insertional mutagenesis 

induced within the host genome, siRNA expressed in an uncontrolled manner by viral vectors may 

provoke cellular toxicity due to oversaturation of RNAi pathways [24]. Several obstacles are still 

present before viral vectors can be deemed safe carriers for siRNA therapeutics. However, some 

improvements may be obtained with the manipulation of viral capsids and envelopes, allowing a 

change of tropism and immunogenicity, a process called “pseudotyping” [21]. Another means of 

overcoming peripheral immune surveillance is the direct infusion of viral vectors into the brain 

parenchyma or by intraventricular injection, which have already been applied in clinical trials for gene 

therapy[16]. Obviously, the use of such invasive techniques should be confined to “undrugable” 

diseases. However, recent results on the safety of these viral vectors from both pre-clinical gene 

therapy studies on primates and clinical trials using AAVs vectors seem promising with both 

demonstrating good safety tolerance, including in patients with neurological diseases such as 

Parkinson‟s Disease [25-28] or late infantile neuronal ceroid lipofuscinosis [29,30]. 
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Non-viral vectors 

 

Peptides 

Molecular engineering of viral proteins allowed their use of viral infection mechanisms to selectively 

target the CNS after systemic injection [31]. Kumar et al. showed the potential of a modified rabies 

virus peptide, which binds the alfa-7 subunit of the acetylcholine receptor (AchR), to selectively 

transport and release functional siRNA into neurons. This method of delivery requires an appropriate 

siRNA-binding site on the vector, which has been achieved by linking nine arginine residues to the 

targeting peptide. Once inside the cell, siRNA was efficacious, although the mechanism of detachment 

remains unclear. The demonstration that such carrier was suitable for non-invasive systemic injection, 

able to cross the BBB and specifically release siRNA against viral encephalitis, thereby improving the 

survival of infected mice, was a seminal one. It has somewhat paved the way towards therapeutic 

application of siRNA in the CNS using peptide vectors. 

Different peptide vectors have also been designed to target receptor-mediated transcytosis across the 

BBB facilitating delivery to the brain parenchyma. Among those peptides, lipoprotein receptor-related 

protein (LPR) binding peptides, called Angiopeps, seem to be efficiently trancytosed in vitro and in 

vivo [32]. 

 

Nanoparticles 

Many aspects of delivery systems can be refined to improve their efficacy. Selective targeting, by 

peptides or specific antibodies is one possibility for improving delivery [31]. Serum degradation of 

nucleic acids occurring in the blood stream can be avoided by cargo encapsulation into nanoparticles. 

Although several and diverse types of non-viral nanoparticles have been proved functional for invasive 

siRNA release into the CNS [33-36], the most promising carriers for non-invasive delivery are based 
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on polymers [37,2] or lipids [38]. Among polymeric materials, dendrimers seem to be promising 

nucleic acid-carriers for translational medicine [39] due to their versatile properties and solubility. 

These hyperbranched star-shaped nanocarriers can be efficiently functionalised (e.g. with neuro-

specific peptides) to purposely cross the BBB and target neurons [40].  

However clinical applications, that often require long term and repeated administrations of therapeutics 

would require biodegradable nanomaterials approved by regulatory authorities. Furthermore, 

biodegradability is a major prerequisite for any nanomaterial targeting the CNS, since accumulation of 

non-degradable particles can result in unexpected dangerous side effects. Polylactide-co-glycolide 

(PLGA) and polylactide (PLA) are FDA-approved polymers for clinical use [41]. PLGA and PLA 

autocatalysis produces lactic and glycolic acids which are substrates for the Krebs cycle, resulting in 

complete and safe degradation of the carrier [42]. Notably, however, PLA and PLGA nanoparticles, 

and many other nanoparticles, are quickly removed from the body by the reticulo-endothelial system 

(RES) when injected in the blood circulation [43]. A common mechanism of their elimination is by 

serum protein adsorption onto engineered nanoparticles that regulates their interaction with blood cells, 

endothelial cells and surrounding tissues. To overcome degradation and removal from the peripheral 

circulation before reaching and crossing the BBB, nanoparticles can be further modified with specific 

moieties that are strategically designed on purpose for therapeutic applications [44]. For example, 

modification of nanoparticles or therapeutics with hydrophilic polymeric coating, such as polyethylene 

glycol (PEG), is widely used to avoid opsonisation, prolong the life span in the blood and help to 

targeted delivery [45]. Lipid nanostructure engineered particles, (i.e. liposomes, core-shell 

nanoparticles, lipoplexes) have also been widely used as non-viral vectors for siRNA delivery [46-48]. 

PEGylated liposomes modified with specific monoclonal antibodies, called Trojan Horses Liposomes 

(THL) are good candidate vectors for siRNA delivery into the CNS after systemic administration [49]. 

THL, modified with specific brain-targeting antibodies, have been already proven as both efficient and 
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specific gene delivery carriers in vivo after intravenous administration that can mediate functional 

motor improvement in an experimental model of Parkinson‟s disease [2]. However, nanoparticles 

require further pre-clinical investigation with regard to their ability to mediate neurotoxicity and 

immunogenicity in vivo prior to their therapeutic application for delivering siRNA.  

A recent report combining biotechnology with naturally-occurring nanoparticles [50] showed that the 

translational potential of siRNA delivery in the CNS is promising. Exosomes obtained from primary 

dendritic cells harvested from murine bone marrow, were purified and engineered. To confer targeting 

specificity, the authors fused central nervous system–specific rabies viral glycoprotein (RVG) to the 

extra-exosomal N-terminus of murine LAMP2b, a protein abundantly found in exosomal membranes, 

limiting off-target side effects and toxicity[51]. After siRNA encapsulation, exosomes have been 

systemically injected and, subsequently, gene knockdown was observed in different regions of the 

brain. Using an autologous source of exosomes, the immunoreactivity was negligible, in vitro and in 

vivo, suggesting that siRNA-loaded exosomes are potentially suitable for long-term silencing, via 

repeated multiple administration without loss in delivery efficacy. It is maybe possible therefore to 

exploit a piggy-back mechanism using exosomes loaded with exogenous siRNA [51]in the future 

clinical treatment of chronic neurodegenerative disorders. Finally, Nakajima and co-workers [52] 

reported that intracerebroventricular injection of chemically modified naked Accell siRNA 

(Dharmacon), without any transfection reagent, achieved gene downregulation in several areas of the 

brain, including cortical layers I and II and other sub-cortical regions such striatum. As ICV injections 

are considered reasonably non-invasive, Accell siRNA delivery may have the potential for 

neurotherapeutic exploitation when it is necessary to reach vast areas of the brain [53,54]. Moreover, as 

gene knockdown was selectively achieved in differentiated mature neurons, this strategy might be 

exploited in neuron-specific diseases, such as neurodegenerative disorders.  

Intranasal: an old route for new delivery  
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In an attempt to explore new delivery strategies to reach the CNS, the intranasal route is a simple and 

compliance-friendly approach which is worth serious consideration as it represents the „door‟ to the 

olfactory bulb and brain [55]. The majority of studies on intranasal delivery describe brain distribution 

of neurotrophic proteins such as interferon [56], NGF [57,58] and BDNF [59,60] in Alzheimer models 

[61]. A new pilot clinical trial involves the use of old molecules such as insulin to revoke mild 

cognitive impairment [62]. The translational potential of intranasal delivery is confirmed by the large 

number of commercial patents for pulmonary disorders describing the use of siRNA in either naked 

form or along with a single/multiple delivery vectors. Moreover, accounts of siRNA intranasal delivery 

to the CNS have been very recently published. Rennen and co-workers [63] using fluorescent-labelled 

siRNA (siSTABLE, Dharmacon) were able to trace the nerve pathways that led siRNA molecules to 

their neuronal target. Labelled siRNA was concentrated in vesicles near the surface of the olfactory 

mucosa. In the lamina propria, siRNA was found within Bowman‟s Glands and associated with both 

blood vessels and olfactory nerve bundles. Delivery progressed along the length of olfactory nerves, 

exiting the olfactory mucosa, crossing the cribriform plate and involving the anterior regions of the 

olfactory bulbs. Perez et al., [64] demonstrated that intranasal administration of a mucoadhesive gel 

containing siRNA dendriplexes increases their direct brain delivery. Most relevantly, Kim and co-

workers achieved neuroprotection by intranasal delivery of high mobility group box 1 (HMGB1) 

siRNA in a rat model of focal cerebral ischemia [65]. HMGB1 plays a major role as endogenous 

danger signal, which is released by necrotic cells and activated macrophages and monocytes. HMGB1 

mediates inflammation and acute damage leading to apoptotic neuronal death in the post-ischemic 

brain. HMGB1 siRNA was delivered using a biodegradable PAMAM dendrimer to rat brain after 

ischemia, and resulted in a significant reduction of infarct volume as well as improvements in motor 

function and other neurological deficits. 
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siRNA delivery strategies for neurodegenerative diseases 

Many neurological conditions that have been to date considered „undruggable', arise from alteration of 

gene and protein synthesis and could theoretically be treated by using siRNA, primarily directed to 

rebalance altered neuronal functions [66]. Since the earliest reports, the use of siRNA as an 

investigative tool has provided valuable information about CNS function and helped to determine the 

relevance of gene-based therapies for neuronal diseases[67,68]. Many reviews in the recent years have 

reported about the pre-clinical progress in RNA interference-based therapeutics [69] on delivery 

strategies [70] and on the use of RNA interference to identify novel therapeutic targets [71] in 

neurodegenerative CNS disorders such as Alzheimer's disease , Parkinson's, Huntington's diseases and 

amyotrophic lateral sclerosis (ALS) (Table 1). 

 

Alzheimer‟s disease (AD) is a neurodegenerative disease leading to progressive cognitive decline and 

memory loss. Abnormal behaviour, agitation and mood swings arise along with dementia. Amyloid 

plaques and neurofibrillary tangles, which are formed via aggregation of extracellular amyloid -

peptide (A) and intracellular hyper-phosphorylated tau, respectively, are the most characteristic 

feature of the Alzheimer brain, together with pronounced neuronal cell and synaptic loss. The search 

for target molecules associated with AD neuronal degeneration and inflammation reaction continues 

both in vitro [72-74] and in vivo, using siRNA sequences directed against potential molecular key 

players, however not many of these approaches have yield potential therapies, even at the preclinical 

stage. -secretase (-site APP-cleaving enzyme 1, BACE1) is a key component of the chain of enzymes 

that generate Afrom a type I membrane protein, amyloid precursor protein (APP), through sequential 

proteolytic cleavage events. Since A production strongly depends on BACE1, downregulation of 

BACE1 has long been considered as a good potential target for genetic therapy and an alternative to 
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pharmacological treatment in AD [75,76]. Similarly, targeted reduction of expression of APP 

expression may be of therapeutic benefit[67]. Lentivirus-mediated gene transfer of BACE1 siRNA in 

APP transgenic mice caused a significant drop in BACE1 and consequent improvement of impaired 

neuronal integrity [77]. More recently, Alvarez-Erviti et al., reported the systemic delivery of BACE-1 

siRNA using an RVG-ligand-targeted-exosome-mediated technique [50]. Specifically, tail vein 

injection of BACE-1 siRNA-loaded exosomes achieved protein knockdown in several brain regions 

expressing the RVG-ligand (the nicotine receptor AchR), with a significant decrease in total β-

amyloid 1-42 levels. Another strategy for reducing inflammation and amyloid burden in AD might be 

silencing of DNA damage inducible gene 153 (GADD153; also called CHOP) that plays a role in AD 

as well as Parkinson‟s disease, amyotrophic lateral sclerosis (ALS) and Huntington‟s disease. In AD, 

CHOP is activated by cholesterol-oxidized metabolite (oxysterol) 27-hydroxycholesterol (27-OHC), 

causing an increase in both A 40-42 expression and the pro-apoptotic proteins Bax and caspase-3. In 

organotypic rabbit hippocampus slices, GADD153 siRNA reduced the effect of 27-OHC, protected 

neurons against oxidative damage by reactive oxygen species (ROS) and regulated basal expression of 

the antiapoptotic protein Bcl-2 [78]. This study provides supporting evidence indicating that [75], 

siRNA-mediated inhibition of -amyloid expression and BACE-1 activity, among all possible targets, 

may be the most promising target for clinical translation in the short-term. 

 

Silencing mutated genes in Huntington disease 

The potential of gene silencing in Huntington‟s disease (HD) has been extensively studied [79,23]. HD 

is caused by dominant heterozygous expansion of a CAG repeat in the Huntingtin (Htt) gene, which 

generates an extended polyglutamine in exon1 of the multifunctional protein HTT. The central nervous 

system is especially sensitive to expression of mutant HTT, with striatal neurons suffering the most 

severe degeneration [80]. Abnormal protein folding and protein-protein interactions cause HTT protein 
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toxicity. HD post-mortem brains contain inclusion bodies expressing both mutant and wild type 

huntingtin. Silencing mutant HTT mRNA has been found to provide therapeutic benefit [81]. However, 

other proteins involved in HTT metabolism, such as huntingtin- associated protein 1 (HAP1) that plays 

a role in HTT transportation, may also be targets for silencing therapy [82]. As cleaved mutant HTT 

induces apoptosis, silencing of those proteins responsible for HTT cleavage such as metalloproteases 

[81] is one strategy for reducing HTT-induced toxicity. Moreover, siRNAs have also been employed 

for the study of downstream HTT-triggered caspase cascades leading to neurodegeneration by 

apoptosis [83]. HD research effort is now focussed on the important issue of optimising RNAi for 

therapeutic use, minimizing side-effects [17,84], and regulating the scalability of preclinical models 

(for a dedicated review see [23]). Numerous studies have stressed that siRNA used against HTT does 

not discriminate between mutated and wild type alleles both during development [85] and in adults. 

Preservation of physiological levels of HTT is a crucial spatial and temporal requirement for neural 

development and cell migration. Moreover, wild-type HTT has been documented to provide a positive 

effect on cell survival and can mitigate the effects of the mutant HTT. Studies carried out on patients 

showed that the mutant htt allele often contains single nucleotide polymorphisms (SNPs) [86,87].Thus 

targeting SNPs might achieve a higher degree of selective inhibition for the mutated alleles. However, 

this approach would require somewhat laborious development of different compounds, selective for 

each of the five SNPs detected in humans. Another strategy to achieve mutated allele silencing is to 

hijack the interference pathways naturally used by miRNA. miRNA-induced silencing occurs as 

sequence mismatch is carried on the guide strand of the duplex. This strategy was used in a patient-

derived fibroblast cell line GM04281 [69 CAG repeats/mutant; 17 repeats/wild-type allele [88] (locked 

oligonucleotides)]. In that study, several sequences with different mismatches placed sequentially 

throughout the duplexes on the guide strand complementary to the CAG repeat were used, thereby 

achieving more selective mismatch-related mutated allele silencing.    
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Scalability is another crucial bottleneck in the translation of basic research to the clinical setting. 

Translational medicine relies on preclinical experiments preferably carried out on reliable close-to-

human situations, such as non-human primates [89]. Recombinant adeno-associated viral vectors were 

used to deliver RNAi silencing constructs for htt gene to Rhesus monkey striatum (rAAV-miRNA). 

Reduction in total expression of HTT protein was well tolerated in this model with no evident immune 

reaction development of gliosis or motor impairment in treated animals [90]. More recently, Stiles et 

al., [91]reported the silencing of mutated HTT using siRNA, by convection-enhanced delivery (CED). 

Several challenges were overcome in this work, including the use of an implanted catheter fixed in the 

brain for as long as 28 days. Furthermore, positive pressure was required to overcome the resistance of 

the brain tissue against siRNA movement through the interstitial space, with relevant distribution of 

radiolabelled siRNA being achieved in the putamen. The most important take home message in this 

study was that the technique is able to provide silencing, for long time, in wide areas of the brain using 

a well-tolerated dose of siRNA. Studies in non-human primates are laborious and expensive however 

they do represent a crucial physiological step toward clinical translation.  

 

Developing siRNA strategies for Parkinson disease. 

Parkinson‟s disease (PD) is one of the most common neurological disorders mainly characterized by 

the death of dopamine(DA) producing neurons in the substantia nigra. PD is predominantly idiopathic 

in its late-onset form, however familial, early onset forms of disease have been described. Since early 

reports [92] it was clear that applied siRNA technology in PD could be potentially beneficial. The use 

of lentivirus siRNA technology in PD was recently reviewed [93], as was research on PD gene therapy 

[94] in preclinical mouse models. The majority of reports however have focused on the use of siRNA 

as a research strategy, mostly investigating relevant neurodegenerative and inflammatory patterns in 
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established or primary cell lines.  These early preclinical investigationscan only partially shed light on 

the translational potential of siRNA in PD. 

One common feature among the various forms of PD is protein accumulation and aberrant protein 

clearance. PD is characterised by intracytoplasmic inclusions called Lewy bodies (LB). Synphilin-1, -

synuclein, and Parkin represent the major components of LB and are likely to be involved in the 

pathogenesis of Parkinson's disease. Several authors have targeted genetic loci involved in familial 

forms [92], such as PARK1, most of which are related to the formation of -synuclein. A single point 

mutation (A53T) in -synuclein gene is thought to give rise to the presence of misfoldedprotein in LB 

causing the autosomal dominant form of familial PD. Silencing of this gene with siRNA could hold 

therapeutic potential reducing the tendency for -synuclein to aggregate and induce neuronal toxicity. 

Mutations in the parkin gene (PARK2 locus, chromosome 6q) are accountable for the formation as well 

as the maintenance of LB, representing potential risk factors in sporadic PD. LB formation has been 

also ascribed to alterations of the ubiquitin-proteasome system[95]. Recently, LB formation was 

reverted regulating monoubuquitination of -synuclein by enzymes such as SIAH that have been 

reported to promote ubiquitin transfer[96]. However, the role of SIAH in ubiquitination of -synuclein 

has been questioned by findings suggesting that Siah-1 might play a role in Parkinson‟s LB formation 

through the regulation of synphilin-1 function[97]. Thus, the possibility of using SIAH as a target 

for a siRNA based approach to revert LB formation remains controversial. Another enzyme involved in 

deubiquitinating -synuclein is USP9X. The use of siRNA to silence USP9X in SH-SY5Y cells 

reduced synuclein aggregation [98]. The synuclein structurally related protein 14-3-3 was also targeted 

with neuroprotective effects using in vivo delivery to PD models of short hairpin RNA carried by viral 

vectors [99].  
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A role for PKCδ in dopaminergic neuron degeneration was described [100]. 6-OHDA, a neurotoxican 

used for modelling in vitro neurodegeneration, induces apoptotic cell death through PKCδ activation. 

Suppression of PKCδ expression by siRNA protected N27 cells from 6-OHDA-induced apoptotic cell 

death [101]. siRNAs were also employed to study mediators involved in chaperone–mediated 

autophagy such as lysosomal LAMP2A [102] and heatshock (HSC) 70 protein expression, and genes 

involved in selective clearance of damaged mitochondria such as PARKIN and PINK1[103].  

The progressive loss of dopaminergic regulation occurring in Parkinson’s disease (PD) provokes a 

cascade of functional changes in the basal ganglia circuitry, which may sustain the development of the 

symptoms.  One of the major metabolic changes in the basal ganglia circuitry after nigrostriatal 

denervation and loss of DA, is the cellular up-regulation of the messenger RNA coding for the 67 kDa 

isoform of glutamic acid decarboxylase (GAD67 mRNA), the synthetic enzyme of GABA, an indirect 

marker of GABAergic activity. Counteracting GAD67 increase, by means of siRNA delivered into the 

striatum using lentiviral vectors, was able to restore normal neuronal activity [104]. 

Enzymes involved in the degradation of dopamine are obvious targets for siRNA therapies in PD, 

therefore the list of attempts will probably become longer in the future. The current data did not allow 

an immediate translation of results into pre/clinical application. 

 

Employing siRNA to tackle schizophrenia symptoms  

Schizophrenia is a multifactorial syndrome believed to arise from a „nurture and nature‟ interplay in 

which genetic and environmental causes coexist [105]. In contrast to PD, the so-called dopaminergic 

hypothesis states that overproduction of dopamine in the brain is common in people with schizophrenia 

[106]. The etiological DA hypothesis of schizophrenia is a classic, but perhaps simplistic, interpretation 

that excess dopaminergic activation may cause some symptoms of schizophrenia. Clinical treatment of 

this disease generally involves medications that block dopamine receptors in the brain [107].  Target-
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specific siRNA sequences have been used to define the relevance for schizophrenia of selected 

metabolic [108,109] as well as signalling pathways. For example, silencing of Disrupted-in-

schizophrenia 1 (DISC1) or dysbindin-1 [110,111] - both implicated in neurodevelopmental regulation 

of axonal growth - might shed some light on the cause of neuronal disarray, which is a characteristic 

morphological feature of the hippocampus and prefrontal cortex in schizophrenia. Similarly, synapsin 

II silencing in the prefrontal cortex may provide a new model for studying the role of prefrontal 

excitatory circuitry alteration in schizophrenia [112]. The only recent in vivo study, aimed at supporting 

the therapeutic use of siRNA in schizophrenia [113], demonstrated that intraventricular injection of a 

plasmid expressing D2DR siRNA achieved downregulation of dopamine receptor expression that, 

importantly, correlated with a reduction in schizophrenia-like hyperactivity induced by the dopamine 

receptor agonist apomorphine.  

 

siRNA use in amyotrophic lateral sclerosis. 

Among the neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) is characterized by the 

degeneration of “lower motor neurons” in the spinal cord and brainstem, and degeneration of the 

descending motor pathway in the corticospinal tracts, leading to paralysis and death. ALS occurs in the 

majority of cases in a sporadic form.  However familial forms causally linked to nonsense single point 

mutations in the Cu, Zn superoxide dismutase (SOD1) gene has been discovered. At least 150 

mutations in the coding sequence have been identified that are able to induce misfolding and 

aggregation of the protein in the motor neuron cytoplasm[114]. 

RNAi has previously been demonstrated to be a suitable strategy for silencing SOD1 and inducing the 

slowdown of the disease in genetically relevant animal models [115-117]. Until recently, 

silencingstrategies were designed using siRNA against SOD1 allele harbouring missense point 

mutations while preserving wild-type allelic functions, however, recent reports [118,119] suggest that 
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the product of the normal SOD1 allele modulates the toxicity of mutant SOD1 in familial ALS and 

concur at the formation of aggregates and inclusion bodies generated by mutant SOD1.Generally, viral 

transfection of shRNA [120] is used to achieve selective mutant allele silencing.  Several reports have 

described lentiviral vector shRNA delivery leading to long-lasting transgene expression in vivo, as 

would be required for chronic diseases such as ALS. Specifically, shRNA silencing of mutant SOD1 

expression in vivo delays the onset of ALS and extends the survival of SOD1G93A mice, which is 

correlated with improved motor performance and motor neuron survival [121,122]. However, Towne et 

al., could not find any therapeutic benefit after multiple injections of AAV-shRNA for SOD1 into the 

neonatal muscles of a familial ALS mouse model [123], although transduction of motoneurons did 

occur at all spinal cord levels up to the brain stem. Protection from muscle atrophy, neuromuscular 

junction denervation, and motoneuron loss did not improve quality of life or lifespan in these animals. 

These authors emphasised the importance of precise endpoint reading, which accurately parallels the 

human pathology in the strive towards translational success. Also in an ALS mouse model, siRNA 

SOD1G93A was, for the first time, reported to be retrogradely transported, from the surgically severed 

end to the nuclear region of the sciatic nerves [124].  

Other mediators of ALS pathogenesis have been investigated as potential therapeutic candidates. For 

example, CHOP is involved in the ER-dependent stress pathways that lead to neurodegeneration and 

cyclin-dependent kinase 5 (CDK5), regulated by p25, causes neuroinflammation [125]. Targeting the 

natural gene silencing mechanism of DNA methyltransferase Dnmt1 and 3, which are overexpressed in 

motoneurons during apoptosis, might also provide neuroprotection [126]. In all these cases, however, 

siRNA is used primarily as a research tool.  Despite the significant effectiveness of potential 

therapeutics observed in preclinical trials [127], SOD1 RNAi has not yet reached clinical trials for 

patients with ALS. Moreover, the development of effective treatments of ALS depends strictly on 
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selective delivery, and the development of non-viral carriers to selectively reach motoneuron 

populations. 

siRNA therapeutic attempt in stroke 

Cerebral stroke can leave surviving patients with long-lasting physical mental and psychological 

symptoms that affect many aspects of their lives. Ischemic stroke represents the majority of cases and 

is caused by oxygen flow reduction or interruption to neurons, which consequentially suffer hypoxia 

leading to cell death by apoptosis and necrosis. Stroke may also be mediated by intracerebral 

hemorrhagia. The goal of therapeutic intervention is aimed at restoring lost neurological functions in 

affected patients. In recent years, with advances in silencing technology, many attempts have been 

made to induce neuroprotection and reduce inflammation [128,129,65], delay scar tissue formation and 

activate adult neuronal plasticity [84,3], enhance neurogenesis from the SVZ [130,131],and replace lost 

cells through stem cell insertions [132,133] in models of stroke. All of these strategies relay on the 

regulation of protein pathways to restoring impaired function after insult. As such, an RNA interference 

strategy either with shRNA [132] or siRNA is used [134-137] to silence protein pathways activated 

after stroke and to identifynew molecular targets both in cell culture and animal models. However, to 

date, very few reports suggest a realistic possibility of using siRNA formulations as clinical 

therapeutics for preserving neuronal function in stroke [33]. This gap between bench and bedside is, in 

part, due to the widespread nature of damage induced by the unpredictable occurrence of a sudden 

ischemic insult. It also partially reflects the inaccessibility of damaged sites within the brain 

parenchyma, as well as the lack of selective targeting of therapeutics. Although frequently damaged 

during and after ischemia or haemorrhagic events, the BBB still represents an obstacle to efficient 

delivery of agents. Therefore, optimisation of delivery [128,138,139] and of administration regimes 

will be necessary for more efficient evaluation of siRNA-based therapeutics in stroke.  
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Inducing neuroprotection after stroke seems to be the preferred intervention route to restore neuronal 

activity and function. Blocking apoptotic pathways [140] using siRNA against apoptosis signal-

regulating kinase 1 (Ask1) down-regulates the expression of Ask1 and prevents apoptotic neuronal cell 

death after intracerebroventricular infusion with osmotic minipumps. This treatment rescued brain 

damage after ischemia/reperfusion (I/R) in mice that underwent occlusion of the middle cerebral artery 

for 1h, followed by reperfusion. Although Ask1-siRNA attenuates upregulation of Ask1, and reduced 

infarction in ischemic brain after I/R, there were no reports of behavioural outcome in treated animals. 

A classic neuroprotective intervention is to target apoptotic gene translation that regulates intracellular 

caspase-dependent apoptosis. Delayed apoptosis and other genetically-based cell death signalling 

triggered under conditions of both transient focal and global ischemia represent suitable drug target. 

The transcription factor C/EBP homologous protein (CHOP, DDIT3/GADD153) functions mainly as a 

pro-apoptotic mediator after ER stress in several pathologies[141] and participates in delayed 

adaptation in cortical neurons after hypoxia [142]. CHOP acts at a post-transcriptional level through 

p38 MAPK in response to severe ER stress, activating the expression of Bim, leading to Caspase-3 

dependent apoptosis. He and collaborators [143] recently proved that ICV pre-treatment with CHOP 

siRNA in a subarachnoid hemorrhagia (SAH) model resulted in the significant upregulation of 

antiapoptotic Bcl2, and downregulation of the executioner Caspase-3. Interestingly, neurological 

deficits[144] were reduced in siRNA-treated animals, suggesting some translational potential for 

siRNA-based therapeutics targeting apoptotic mechanisms after SAH. Recently caspase-3 was targeted 

directly through delivering of siRNA locally by intraparenchymal injection. In an endothelin-induced 

ischemia rat model, acute local delivery of caspase-3-siRNA-loaded carbonanotubes in the primary 

motor cortex 24 hours prior to stroke induction reduced neuronal apoptosis and prevented microglia 

activation after stroke [33]. Most importantly, forelimb motor function was completely restored in 

animals treated with caspase-3 siRNA. Internalization of carbonanotubes into neurons, verified by 
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TEM, suggested that intracellular release of siRNA from the vector was achieved. Post-ischemic 

delivery of siRNA loaded carbo-nanovectors was not so effective in restoring motor functions. A 

constant, although not significant, improvement in a motor skilled reaching test was described, 

suggesting a potential for clinical application. Even if carbonanotubes do not seem to produce major 

adverse effects after intraparenchymal injection [145], limitations do remain as their delivery requires 

an invasive procedure that is not translatable to clinical practice. 

In many other situations, siRNA has been used to elucidate the role of potential neurodegenerative 

mediators [135]. For example, CysC, an endogenous inhibitor of cysteine protease activity, regulates 

autophagy, a protection mechanism activated after cell damage. Blocking autophagy in oxygen 

deprivation cell culture model of N2A culture model and in primary neurons using beclin1 siRNA 

eliminated the protective effect of CysC from serum deprivation-induced death [136]. Using a 

proprietary dendriplex complex (TRANSGEDEN) for siRNA delivery, knockdown of Beclin-1 in rat 

cortical primary neuron was demonstrated [146] to prevents autophagy and NMDA mediated Ca
2+

 

cellular influx, leading to cell death. Beclin-1 prevention of autophagy can therefore be considered a 

protective mechanism against excitotoxicity, and thus a potential strategy for neuroprotection after 

stroke damage. siRNA silencing of sigma-1 receptor induced neuroprotection, demonstrating the 

important role of this protein, which is expressed by reactive astrocytes and neurons, and its 

neuroplastic regulation of axonal elongation in primary neurons[147]. 

As a consequence of stroke, inflammation and immune system activation occur and inflammatory 

mechanisms substantially contribute to secondary brain damage [148]. The maturation and propagation 

of the damage is largely sustained by activation of the local immune system and a major role is played 

by activation of adhesion molecules. A possible anti-inflammatory restorative strategy consists in 

targeting adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells 

that mediate lymphocyte trafficking into the damaged brain via interaction with leukocyte very late 
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antigen-4 (VLA-4). Inhibiting this interaction by hydrodynamic in vivo administration of VCAM-1 

siRNA significantly reduced VCAM-1 protein expression and, in turn, cerebral granulocyte and T cell 

trafficking and activation of cytotoxic IFN-γ. Together with circulating immune system elements, 

activation of local microglia occurs after disruption of the BBB or blood extravasations. Vascular 

adhesion protein-1 (VAP-1) a cell-surface expressed glycoprotein, has recently emerged as a potential 

target for inflammatory regulation in the brain as it supports leukocyte adhesion to the cells. Ma and 

co-workers [139] recently found that blocking of VAP-1 via ICV injection of siRNA, inhibits 

leukocyte migration, reduces the infiltration of systemic immune cells and downregulates the 

expression of adhesion molecule ICAM-1. siRNA-based VAP-1 inhibition of the inflammatory cascade 

also reduced treated animal neuro-behavioural impairment, suggesting that  VAP-1 siRNA has 

potential therapeutic efficacy.  

 

Overall in stroke, the general limitationsof siRNA for clinical use are its delivery across the BBB and 

the narrow therapeutic time window for intervention. siRNA delivery to the brain could exploit the 

transient increased permeability of the BBB following brain insults. However, given its characteristic 

variability, to rely onincreased BBB permeability to achieve effective therapeutic delivery is 

considered risky. New siRNA modifications or delivery systems are needed to overcome the vascular 

endothelial cell barrier of the CNS. Moreover, in most of the cases considered, experimental protocols 

included pretreatment of animals with selected siRNA molecules. This does not reflect a clinical setting 

and appropriate modification must take place with the view of validating the protocols.This uncertainty 

might result in lack of pharmaceutical investments in siRNA-based clinical trials for stroke therapy 

 

siRNA anticancer therapy in CNS 
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Glioblastoma (GBM) is the most common primary brain tumour in adults and has a devastating 

prognosis, with median survival of less than two years. Notwithstanding poor molecular stability, 

targeting and delivery efficacy, siRNA technology has been employed to determine differences in type, 

stage and prevalence of candidate biomarkers in GBM [149]. Moreover, dedicated delivery technology 

has been developed to overcome CNS barriers [150,151]. Here we focus on those studies of siRNA 

delivery to the brain [152] that seem to have potential for clinical drug development for central nervous 

system tumours. GBM arises due to the summation of multiple activating and inactivating genetic 

lesions. Moreover, neovasculature processes [153] and cell migration [154] can determine growth 

progression and metastasis.  As for many other research areas, RNA interference technology in GBM 

represents a first choice tool for investigation of cancer-related intracellular pathways, to identify 

mechanisms that sustain GBM cell survival, [155-157] metastatic evolution [158,159] and stem cell 

recruitment, as well as extracellular matrix protein activation [160,161]. siRNA silencing strategy is 

used to highlight gene products that, when suppressed, sensitize GBM cells to radiotherapy [162] and 

chemotherapy, allowing for the potential development of siRNA-drug combined therapy [149]. We 

report several examples of such studies that employed, for example, siRNA-mediated NF-B silencing 

to reduce growth [163] involving EGFR activation, to sustain cell infiltration via Akt signalling 

pathways [164] or through interleukin 8 [165]. Silencing of the urokinase proteolytic pathway, in 

glioma and meningioma cells, inhibits extracellular matrix proteolysis and cell signalling, thus reducing 

cell migration, proliferation and survival [166]. Cathepsin-B activates pro-urokinase-type plasminogen 

activator, a serine protease involved, via urokinase-type plasminogen activator receptor (uPAR), in 

ECM degradation, matrix metalloproteinase (MMP) activation [167] and tumour cell invasion. In the 

U251 glioma cell line, uPAR and cathepsin B siRNA-mediated downregulation suppressed Bcl-2 

expression, possibly though inhibition of the PI3/Akt pathway. For translational purposes, in vivo 

studies are more relevant, and many reports indicated the inhibitor of apoptosis protein, survivin, as a 
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likely candidate for RNAi therapy. Survivin is a member of the family of inhibitor of apoptosis proteins 

(IAPs) involved in cell division and inhibition of apoptosis [168] through interaction with TRAIL /NF-

B pathways [169]. It is highly expressed in cancer tissues and cancer cell lines and barely detected in 

normal differentiated tissues. Survivin-shRNA inhibited growth and reduced angiogenesis in an U251 

transfected cell xenograft nude mouse model [170]. More recently, in an intracranial nude mouse 

model of human glioma U87, survivin-siRNAwas conjugated to a single-chain variable fragment 

(scFv) of TfR to elevate the neuronal targeting efficiency of its BBB receptor-mediated endocytic 

transport systems [171]. Tail vein injection of scFv-TfR-survivin-siRNA suppressed survivin levels and 

prolonged the survival times of these mice.  Similarly, i.p administration of polyethylenimine 

(PEI)/siRNA complexes produced efficient knock down of survivin and arrested subcutaneous U373-

MG tumour growth, enhancing the survival rate of NMRInu/nu mice orthopically transplanted with 

U87-MG [150]. Silencing with siRNA to survivin in syngenic immunocompetent mice also 

demonstrated that survivin down regulation mediates its anticancer effect also through the TRAIL 

pathway, which has been shown to increase the cytotoxic responses of human NK cells [172]. 

Although syngenic xenograft models are widely used, a humanized mouse model might more closely 

resemble the cascade of events seen in patients and confer a higher confidence for translational 

purposes [173,174]. 

The feasibility of a new delivery strategy using siRNA-PEG/solid lipid nanoparticle complexes for the 

systemic clinical treatment of GBM was demonstrated in orthotopic the U87-MG xenograft model 

[151]. The potential of c-Met silencing in growth and metastasis was previously investigated in glioma 

U251 cells using shRNA interference [175]. c-Met is overexpressed in brain tumours and its level 

frequently correlates with tumour grade and poor prognosis. Silencing of receptor tyrosine kinase 

(RTK) c-Met by intravenous administration of siRNA-PEG/SLN complexes suppressed tumour growth 

without showing any systemic toxicity in mice.  Together with c-Met, the receptor tyrosine kinase 
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family also includes the EGF receptor (EGFR), the PDGF receptor (PDGFR) and the VEGF receptor 

(VEGFR,) and their expression is frequently deregulated in gliomas [176,177]. Michiue et al. [178] 

successfully inhibited tumour growth in vitro (human T98MG cells) and in vivo (xenograft) using a 

combined approach to silence both the overexpressed upstream receptor (EGFR), or its truncated form 

EGFRvIII, as well as members of the Akt kinase family involved in downstream cell growth and 

survival. To allow for efficient delivery, siRNA was bound to a peptide transduction delivery domain 

fused to a dsRNA-binding domain (PTD-DRBD) to mask the siRNA anionic negative charge. In vivo 

PTD-DRBD delivery of EGFR and Akt2 siRNAs induced tumour-specific apoptosis and significantly 

increased survival in intracerebral GBM mouse models.  Selected mRNA targeting optimized delivery 

and the synergistic strategy contributed to the observed success; however the intraparenchymal route 

still represents a drawback for translational application in clinics. Recently, in an in vitro study, 

cyclodextrin-modified multivalent dendritic polyamines (carrying different siRNA at the same time) 

significantly inhibited cell proliferation and induced apoptosis more efficiently than individual 

treatments. To date, however, of the wide range of possible therapeutic agents for the treatment of 

GBM, none has been selected as a suitable candidate for siRNA-based clinical trials. Instead one 

clinical trial, which includes the use of siRNA as a research tool, has been initiated for neuroblastoma 

(NB), the most common and deadly extra-cranial solid tumour in children. In that study, siRNA is used 

to silence the expression of developmentally regulated 4-N-acetylgalactosaminyltransferase III on 

differentiating neuronal cells. This protein is fundamental for the development and differentiation of 

the nervous system, through regulation of cell contact and signalling [179]. β1,4-N-

acetylgalactosaminyltransferase III (B4GALNT3) exhibits GalNActransferase activity to express the 

GalNAc β 1,4GlcNAc structure on neuroblasts. Its altered expression is associated with the 

development of NB whereas its increased expression is positively correlated with favourable prognosis. 

This clinical trial protocol aims to investigate the administration of B4GALNT3-siRNA to nude mice 
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bearing xenografts, to establish the role of glycosyltransferases regulating NB cell behaviour, as a 

possible oncogenic therapeutic target.  

 

Retinoblastoma 

Another common paediatric tumour is retinoblastoma, which occurs due to a mutation of the 

retinoblastoma tumour suppressor gene, and may occur in both eyes.  Although several therapeutic 

strategies have been recently developed, in severe cases, enucleation is still a therapeutic option. 

Downregulation of gene expression with siRNA is a credible strategyto prevent or suppress tumour 

growth over extended periods, with the aim of sparing remaining sight. Recent in vitro studies used 

interference to different molecular targets in the human Y79 retinoblastoma [180] cell line to induce 

apoptosis and increase chemosensitivity in cultured cells [181]. Connexin 46 (Cx46) gap junction 

protein is involved in the development of neoplastic and malignant progression. Cx46 is found in solid 

tumours with a hypoxic component, including human Y79 retinoblastoma cells, where it is believed to 

act as a regulator of tumour progression and aggressiveness. In an in vivo xenograft model of human 

retinoblastoma Y79 cells [182] it was demonstrated that intratumour injections of Anti-Cx46 siRNA 

significantly reduced the mass tumour, probably by reducing resistance to hypoxia. Optimization of 

siRNA formulation to confer a longer half-life might improve the translational application of siRNA in 

retinoblastoma therapy, as well as in other solid tumours where Cx46 is highly expressed. 

 

Retinal disease 

Several clinical trials based on siRNA drugs have been conducted in the area of retinal degeneration. 

Wet age-related macular degeneration (AMD) is an eye disease characterized by the growth of 

abnormal retinal blood vessels that leak blood or fluid [183]. This disease was the first target for siRNA 

therapy.  The macula consists of a thin layer of photoreceptors and its degeneration causes rapid and 
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severe central vision loss leading to visual impairment, with patients partially losing their central field 

of vision. Although it does not lead to total blindness, AMD severely affects a vast proportion of the 

over-50 population, severely impinging on quality of life and social health costs. To date, the aetiology 

of AMD is not clear and cures are not available, however pathological angiogenesis mediated by 

endothelial growth factor receptors (VEGFR) is considered the major cause [184]. Stimulation of 

VEGF and placental growth factor (PlGF) results in the growth of new blood vessels. The first siRNA-

based clinical trial sponsored by Allergan (ClinicalTrials.gov Identifier: NCT00395057) is aimed at 

silencing the expression of VEGF Receptor-1 (VEGFR-1) on ocular vascular endothelial cells, to 

downregulate associated signalling pathways. Intravitreal injection of a modified siRNA drug, AGN 

211745, has demonstrated an improved pharmacokinetic profile in pre-clinical studies compared to 

unmodified siRNAs. Studies progressed to Phase II to complete dose scaling (2008) and biological and 

anatomical assessment in the retina. A further update reported on a 24-month study to evaluate multiple 

doses in the treatment of subfovealchoroidal neovascularization associated AMD.   

Quark Pharmaceuticals is recruiting patient cohorts for an escalation study to evaluate the effect of PF-

04523655 (PF), a small interfering RNA (siRNA) with 2‟O-methyl nucleosides in every pair of the 

oligonucleotide sequence, to inhibit the expression of the hypoxia-inducible gene RTP801. This gene 

has long been implicated in the induction of retinopathy as a complication of Diabetes Mellitus where it 

is associated with retinal neovascularisation and increased vascular permeability causing increased 

retinal thickness and eventual loss of visual acuity [185]. The MATISSE clinical trial aims to evaluate 

the toxicity and efficacy of PF in combination, or not, with Ranibizumab (DME). This trial is supported 

by preliminary clinical evidence that a smaller group of patients participating in a underpowered pre-

trial study benefitted from the combined therapy [184] 
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A further incentive to develop siRNA-based drugs for retinopathy derives from the relatively easy and 

immune-privileged access to the eye compartment. Until recently, intravitreal delivery of siRNA was 

considered an optimal route, as many of the drawbacks regarding, siRNA degradation, off-target 

delivery and immunogenicity encountered using other administration routes seemed absent.  However, 

a warning against the use of naked unmodified double strand-siRNA in human clinical trials arose from 

studies [186] demonstrating that a 21er naked double stranded siRNA, injected into the eye stopped 

angiogenesis in mouse models of age-related macular degeneration regardless of their sequence. 

Kleinman et al. [18] also demonstrated that treatment efficacy was not exerted through RNAi, but 

instead through an already described immune reaction caused by extracellular interaction of dsRNAs 

with Toll-like receptor-3 (TLR3). This interaction caused upregulation of gamma interferon and 

interleukin 12, setting off a cascade of events that downregulated the neovascular processes and 

induced caspase 3-dependent apoptotic death of the retinal pigment epithelium. Misinterpretation of 

this clinical trial data forced Opko Health Inc. to withdraw from a stage III clinical trial for the study of 

a combinatory protocol of bevasiranib and lucentis, two approved drugs, for AMD (Opko Health, Inc. 

NCT00259753).  

Treatment of Pain 

Pain is an evolutionary component of the sensory system, which is critical for survival when facing 

environmental stresses. Translational pain research aims at understanding pain phenomena in humans, 

limiting direct and corollary suffering [187]. Chronic pain develops as a syndrome and has major socio-

economic impact. Neuropathic pain is a component of chronic pain caused by an initial primary lesion 

to, or dysfunction of, the peripheral nervous system (PNS) which, in turn, causes modification at the 

cortical level [2]. Although the causes remain poorly understood, chronic pain correlates with altered 

expression and distribution of several proteins in sensory peripheral neurons, mostly excitatory channel 
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components such as sodium- or calcium-dependent channel subunits. Molecular strategies for 

therapeutic targeting of primary sensory neurons in chronic pain syndrome involving RNA interference 

(RNAi) is a novel approach to human treatment of neuropathic pain [188]. In rats, the intrathecal 

delivery route has been used to target the ganglion protein pain modulator activin βC [189], or 

excitation channel components such as P2X and NaV1.8 [190] with reduced neuropathic pain 

symptoms. Chitosan-siRNA nanoparticles were prepared with siRNA sequences directed against M2, 

M3, and M4 mAChR and administered intrathecally [191].  

 

Another relevant target for pain treatment in the DRG sensory neurons is the transient receptor 

potential vanilloid subtype 1 (TRPV1) which plays a key role in visceral pain [192]. TRPV channels 

respond to several stresses to induce pain, inflammation and tissue fibrosis [190]. Most notably, this 

receptor family is functionally expressed in human conjunctivae epithelial [193] cells, and TRPV 

channel activation in ocular tissues is associated with symptoms occurring in patients suffering from 

dry eye syndrome [194]. Major advances in TRPV1-siRNA delivery in the eye compartment led to 

Phase 1 clinical trials for dry eye syndrome. Sylentis, has received authorisation from the Spanish 

Medicines and Health Products Agency to commence clinical trials with SYL1001 for treating or 

preventing eye discomfort. A phase I Study has been set up to evaluate the ocular tolerance of 

SYL1001 in healthy volunteers.  

 

Final comments 

Great expectations abound whenever scientists announce exciting advances in neuroscience and 

genomics, however not so many of these discoveries have been translated into clinical medicine. 

siRNA has become the fastest chart topper in drug delivery.  A simplistic way to approach the 

challenge of siRNA could be “if you can bring it there in one piece it will work”. Over the years, many 
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phrases have been used to describe the potential of siRNA technology, but „magic bullet‟ is one phrase 

that perseveres. However, this line of thinking overshadows its biological and clinical shortcomings. 

Another definition for this misplaced excitement is “clinical naïveté” as the key question remains of 

how to translate the laboratory experience to a clinical setting, which somehow involves personalised 

medicine. This transition is hampered by the lack of reliable preclinical models with predictive validity, 

which is jeopardising the effort put into genomic probing for relevant biomarkers.  The lack of 

efficacious delivery systems able to overcome biological barriers and specifically reach the brain as site 

of action is another major hurdle. Finally, approval and regulatory problems abound with siRNA, as 

evidenced by the granting of FDA approval to only few siRNA-based therapeutics. To date at least 

twenty-five registered clinical trials are based on, or involve, siRNA technology. Among these, the 

large majority are using siRNA to target the CNS (neuropathic molecular oedema, and ocular pain) 

while others are developed for cancer treatment (i.e.neuroblastoma). For some trials, research did not 

successfully translate for either patients or investors due to lack of expected therapeutic effects or 

misleading interpretation of preliminary data. Such setbacks have shed a dim light on the entire siRNA 

technology platform, which has already suffered from lack of pharmaceutical investment. In this 

scenario, the bench-to-bedside gap can only be reconciled with a leap of faith, but new and ground-

breaking reports [195,64,196,113,52] are still coming through that raise hope for the future application 

of siRNA.  
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