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The scalar box integral and the Mellin - Barnes
representation

P. Valtancoli

Dipartimento di Fisica, Polo Scientifico Universitá di Firenze

and INFN, Sezione di Firenze (Italy)

Via G. Sansone 1, 50019 Sesto Fiorentino, Italy

Abstract

We solve exactly the scalar box integral using the Mellin-Barnes representation.
Firstly we recognize the hypergeometric functions resumming the series coming from
the scalar integrals, then we perform an analytic continuation before applying the
Laurent expansion in ε = (d− 4)/2 of the result.



1 Introduction

In 1974 ’t Hooft suggested that QCD in the planar limit was exactly solvable [1]. Unfor-

tunately this program was too difficult to solve. There are however simpler quantum field

theories in d = 4 that could enjoy this property. In particular N = 4 supersymmetric gauge

theory is a cousin of QCD, ultraviolet finite, which is also a conformal field theory ( the one

appearing in Maldacena’s AdS/CFT correspondence [2]). Can we solve N = 4 super-Yang-

Mills theory ? This is nowadays a hot topic, since its gravitational counterpart ( N = 8

supergravity ) is also probably the only gravitational field theory which is ultraviolet finite.

There are good reasons to believe that, in the ’t Hooft planar limit, higher loop orders

of N = 4 SYM are surprisingly simple. Indeed an iterative structure has been discovered at

least in the four point planar amplitude, relating the two and three loop amplitudes to the

one loop amplitude [3]-[4]-[5] and eventually allowing the perturbative series to be resummed

into a simpler result. This result has been found thanks to a work of Smirnov [6], which

has evaluated the Laurent expansion in ε = (d − 4)/2 of the associated two-loop planar

box integral. An important ingredient for his proof is the use of the Mellin-Barnes ( MB )

representation of the double planar box integral. However it is somehow disappointing that

this technique works only perturbatively in the infrared regulator ε.

In this paper we analyze the MB representation in all cases where a non-perturbative (

in ε ) amplitude can be computed, therefore concentrating our efforts to the four point one

loop planar box integral, which is the basic information for the higher loops resummation.

Also the arbitrary N(≥ 5)point one loop amplitudes can be reduced to a sum over a set of

basic scalar box four point integrals.

Back to the MB representation, the non-perturbative point of view we follow allows us

to rewrite the harmonic series coming from the one loop amplitude in terms of generalized

hypergeometric functions ( of several variables ) which in the massless and massive cases (

up to 2 external masses ) can be reduced to hypergeometric functions of a single variable.

A key ingredient in our method is that it is always necessary to perform an analytic

continuation of these hypergeometric functions before taking the Laurent expansion in ε.

We compare our findings with the direct method of integrating the scalar box and we find

general agreement.

Our non-perturbative method could in principle be generalizable to the study of the hard

two mass scalar box integral [7] and eventually the double box scalar integral [6]-[8], where

the hard part is to find the correct analytic continuation of an hypergeometric function

of three and four variables ( respectively ) which cannot be reduced to an hypergeometric
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function of a single variable. If we find the solution to this mathematical question we will

report on it.

2 Massless scalar box one loop integral

Let us start with the massless scalar one loop box integral in d-dimensional space-time (

ε = (d− 2)/4:

I = Γ(2− ε)

∫ 1

0

dx1 dx2 dx3 dx4 δ( x1 + x2 + x3 + x4 − 1 )

[ x1x3(−s) + x2x4(−t) ]ε−2 (2.1)

To proceed with the evaluation of the integral I we choose the Feynman parameters as

follows:

x1 = (1− x)(1− y)

x2 = x(1− y)

x3 = yz

x4 = y(1− z) (2.2)

In this way the integral over y factorizes and we end up with:

I =
Γ2(ε)

Γ(2ε)
Γ(2− ε)

∫ 1

0

dx

∫ 1

0

dz [ (1− x)z(−s) + (1− z)x(−t) ]ε−2

∫ 1

0

dy (y(1− y))ε−1 =
Γ2(ε)

Γ(2ε)
(2.3)

As we can see from eq. (2.3), the integration over x is straightforward and can be

analitically performed. The resulting expression is:

I =
Γ2(ε)

Γ(2ε)
Γ(1− ε)

∫ 1

0

dz

[
zε−1(−s)ε−1 − (1− z)ε−1(−t)ε−1

((1− z)(−t) + zs)

]
(2.4)

By noting that the first integral over z stands for the Euler representation of the hyper-

geometric function, we obtain the result:
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∫ 1

0

dz zε−1((−t)− z(−s− t))−1(−s)ε−1 =
1

ε

(−s)ε

s t
2F1

(
1, ε, ε + 1, 1 +

s

t

)
(2.5)

The other integral can be easily evaluated by replacing z → (1− z):

∫ 1

0

dz zε−1((−s)− z(−s− t))−1(−t)ε−1 =
1

ε

(−t)ε

s t
2F1

(
1, ε, ε + 1, 1 +

t

s

)
(2.6)

By summing eqs. (2.5) and (2.6) we finally find that the massless scalar box integral is:

I =
Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε s t

[
(−s)ε

2F1

(
1, ε, ε + 1, 1 +

s

t

)
+

+ (−t)ε
2F1

(
1, ε, ε + 1, 1 +

t

s

)]
(2.7)

The hypergeometric functions listed here admit the following Laurent expansion in the

infrared regulator ε:

2F1

(
1, ε, ε + 1, 1 +

s

t

)
= 1− ε log

(
−s

t

)
− ε2Li2

(
1 +

s

t

)
+ O(ε3) (2.8)

producing the well known perturbative result

I =
2

s t ε2

Γ(1− ε)Γ2(1 + ε)

Γ(1 + 2ε)

{
(−s)ε + (−t)ε + ε2Li2

(
−s

t

)
+ ε2Li2

(
− t

s

)
− ε2π2

3

}

(2.9)

that can be ultimately simplified by noting that

Li2

(
−s

t

)
+ Li2

(
− t

s

)
= −1

2
log2

(s

t

)
− π2

6
(2.10)

There is a second non-perturbative expression, owing to the following identity

1

ε
2F1 (1, ε, ε + 1, z) =

1

ε
+

1

1 + ε
z 2F1 (1, 1 + ε, 2 + ε, z) (2.11)

which allows to perform more easily the perturbative expansion in ε

I =
Γ2(ε)

Γ(2ε)

{
Γ(1− ε)

ε

(
(−s)ε

s t
+

(−t)ε

s t

)
+

3



+
Γ(1− ε)

(1 + ε)

[
(−s)ε

s t

(
1 +

s

t

)
2F1

(
1, 1 + ε, 2 + ε, 1 +

s

t

)

+
(−t)ε

s t

(
1 +

t

s

)
2F1

(
1, 1 + ε, 2 + ε, 1 +

t

s

)]}
(2.12)

Also this second hypergeometric function can be developed in power series of ε:

1

1 + ε
z 2F1(1, 1 + ε, 2 + ε, z) = − log(1− z) − εLi2(z) + O(ε2) (2.13)

In this case we note that in the second part of eq. (2.12) the term of order zero in ε

cancels out while the term of order ε is given by

− Li2

(
1 +

s

t

)
− Li2

(
1 +

t

s

)
− log(−s) log

(
−s

t

)
− log(−t) log

(
− t

s

)

= Li2

(
−s

t

)
+ Li2

(
− t

s

)
− π2

3
(2.14)

In this way the formula (2.9) is recovered.

3 Mellin - Barnes representation of the massless scalar

box integral

We are going to compare the non-perturbative calculation of the massless scalar box (2.7)

with the MB representation, a powerful method that has allowed to perform analytically

more complicated integrals, like the scalar double box integral.

The MB representation allows us to rewrite the massless scalar box integral

I =
Γ2(ε)

Γ(2ε)
Γ(2− ε)

∫ 1

0

dx

∫ 1

0

dz [ (1− x)z (−s) + (1− z)x (−t) ]ε−2 (3.1)

in the following way

Γ(2− ε) [ (1− x)z (−s) + (1− z)x (−t) ]ε−2 =

=
1

2πi

∫ +i∞

−i∞
dw Γ(2− ε + w) Γ(−w)

( (1− z) x (−t) )w

( (1− x) z (−s) )2−ε+w
(3.2)
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The integrals in x and z are now factorized and produce:

∫ 1

0

dx xw (1− x)ε−2−w =
Γ(w + 1)Γ(ε− 1− w)

Γ(ε)∫ 1

0

dz (1− z)w zε−2−w =
Γ(w + 1)Γ(ε− 1− w)

Γ(ε)
(3.3)

from which we obtain the MB representation of the massless scalar box as

I =
1

Γ(2ε)

∫ +i∞

−i∞

dw

2πi

(−t)w

(−s)2−ε+w
Γ2(w + 1) Γ(2− ε + w) Γ(−w) Γ2(ε− 1− w) (3.4)

We can close the integration contour to the left or to the right and the result is unaffected

by this choice. We always elaborate these integrals exactly without developing in Laurent

expansion of ε; our point of view is therefore different from the usual applications of the MB

representation we have seen in literature.

For example, let us choose to analyze the poles to the left:

1) it is more simple to analyze the simple poles w = ε− 2− n; the corresponding series

can be resummed into the following hypergeometric function

I1 =
Γ2(ε)

Γ(2ε)

Γ2(1− ε)

Γ(2− ε)
(−t)ε−2

2F1

(
1, 1, 2− ε,−s

t

)
(3.5)

At fist sight this result is not much interesting, since this hypergeometric function doesn’t

admit a meaningful development in ε like those of the direct method. It turns out that it is

necessary to perform an analytic continuation into the right variables, before that developing

in ε makes sense.

We are forced to choose the following analytic continuation

2F1

(
1, 1, 2− ε,−s

t

)
=

(
− t

s

)
Γ2(ε)

Γ(1 + ε)Γ(ε− 1)
2F1

(
1, ε, ε + 1, 1 +

t

s

)

−
(
− t

s

)1−ε
Γ2(ε)Γ(1− ε)

Γ(ε− 1)

(
1 +

s

t

)−ε

(3.6)

It then appears the first part of the standard solution obtained with the direct method,

( see eq. (2.7))
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Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε

(−t)ε

s t
2F1

(
1, ε, ε + 1, 1 +

t

s

)
(3.7)

and a spurious term

− Γ3(ε)

Γ(2ε)

Γ2(1− ε)

s t
sε

(
1 +

s

t

)−ε

(3.8)

2) let us consider now the contribution of the double poles. It turns out that in order

to get a well defined resummed expression it is necessary to regularize the double poles

introducing a parameter δ:

I =
1

Γ(2ε)
lim
δ→0

∫ +i∞

−∞

dw

2πi

(−t)w

(−s)2−ε+w
Γ(w + 1 + δ) Γ(w + 1) Γ(2− ε + w) Γ(−w)

Γ(ε− 1− w) Γ(ε− 1− w − δ) (3.9)

Case 2a) first consider the simple poles w = −1−n− δ. Their contribution can be easily

resummed into the following formula

I2a =
Γ2(ε)

Γ(2ε)
lim
δ→0

Γ(−δ) Γ(1 + δ)
Γ(ε + δ)Γ(1− ε− δ)

Γ(ε)

(−s)ε

s t

(
1 +

s

t

)−ε (s

t

)δ

(3.10)

A development in δ is necessary

Γ(ε + δ) Γ(1− ε− δ) = Γ(ε)Γ(1− ε) (1 + δ(ψ(ε)− ψ(1− ε))) + O(δ2) (3.11)

It follows that

I2a = − lim
δ→0

1

δ

Γ2(ε)

Γ(2ε)
Γ(1− ε)

(−s)ε

s t

(
1 +

s

t

)−ε

− Γ2(ε)

Γ(2ε)
Γ(1− ε)

(
ψ(ε)− ψ(1− ε) + log

s

t

) (−s)ε

s t

(
1 +

s

t

)−ε

+ O(δ) (3.12)

I2a contains a singular term in δ and a finite term, which is the main contribution.

Case 2b); we analyze now the simple poles w = −1 − n. Their contribution can be

summarized as
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I2b =
Γ2(ε)

Γ(2ε)
lim
δ→0

1

δ

Γ(ε− δ)Γ(1− ε)

Γ(1− δ)Γ(ε)

(−s)ε

s t
2F1

(
1, ε− δ, 1− δ,−s

t

)
(3.13)

Again we must choose a convenient analytic continuation in the variable (1 + s
t
):

2F1

(
1, ε− δ, 1− δ,−s

t

)
=

Γ(1− δ) Γ(−ε)

Γ(−δ) Γ(1− ε)
2F1

(
1, ε− δ, 1 + ε, 1 +

s

t

)

+
Γ(1− δ)Γ(ε)

Γ(ε− δ)

(
1 +

s

t

)−ε

2F1

(
−δ, 1− ε, 1− ε, 1 +

s

t

)

(3.14)

The firs term goes like δ and in this case it is possible to take directly the limit δ → 0:

I2b ← Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε

(−s)ε

s t
2F1

(
1, ε, ε + 1, 1 +

s

t

)
(3.15)

representing the residual part of the exact solution ( eq. (2.7)).

The second term can be resummed as

lim
δ→0

1

δ

Γ2(ε)

Γ(2ε)
Γ(1− ε)

(−s)ε

s t

(
1 +

s

t

)−ε (
−s

t

)δ

(3.16)

that can be decomposed in a term divergent in δ plus a finite term

lim
δ→0

1

δ

Γ2(ε)

Γ(2ε)
Γ(1− ε)

(−s)ε

s t

(
1 +

s

t

)−ε

+
Γ2(ε)

Γ(2ε)
Γ(1− ε) log

(
−s

t

) (−s)ε

s t

(
1 +

s

t

)−ε

(3.17)

Collecting our partial findings, we obtain with MB representation the exact solution plus

the following spurious terms

Γ2(ε)

Γ(2ε)
Γ(1− ε)

(−s)ε

s t

(
1 +

s

t

)−ε

{ log (−1) + Γ(ε)Γ(1− ε) ( cos(πε) − (−1)ε)} = 0

(3.18)

Surprisingly this lengthly expression is zero due to non trivial cancellation between all

terms.
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4 The scalar box integral with one external mass

The next step is comparing the MB representation with the direct method in the case of

one external mass. To be precise we start with the following integral

Im(s, t, m) = Γ(2− ε)

∫ 1

0

dx1 dx2 dx3 dx4 δ( x1 + x2 + x3 + x4 − 1 )

[ x1x3(−s) + x2x4(−t) + x1x4(−m2) ]
ε−2

(4.1)

We choose the Feynman parameters as in the formula(2.2) and we find the following

expression

Im =
Γ2(ε)

Γ(2ε)
Γ(2−ε)

∫ 1

0

dx

∫ 1

0

dz [ (1− x) z (−s) + (1− z) x (−t) + (1− x)(1− z)(−m2) ]
ε−2

(4.2)

The integration in x is again obvious and it gives rise to

Im =
Γ2(ε)

Γ(2ε)
Γ(1− ε)

∫ 1

0

dz

[
( z(−s) + (1− z)(−m2) )ε−1 − ((1− z)(−t) )ε−1

(1− z)(m2 − t) + zs

]
(4.3)

It is convenient introducing the following notations

z0 =
m2 − t

m2 − t− s
z1 =

m2

m2 − s
(4.4)

from which the integral Im we want to compute is of the form

Im =
Γ2(ε)

Γ(2ε)
Γ(1− ε)

{
(m2 − s)ε−1

(s + t−m2)

∫ 1

0

dz
(z − z1)

ε−1

z − z0

− (−t)ε−1

(s + t−m2)

∫ 1

0

dz
(1− z)ε−1

z − z0

}
(4.5)

The first part can be rearranged as follows

∫ 1

0

dz
(z − z1)

ε−1

z − z0

= (−z1)
ε−1

(
z1

z1 − z0

) ∫ 1

0

dw wε−1

(
1− z1

z1 − z0

w

)−1
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− (1− z1)
ε−1

(
1− z1

z0 − z1

) ∫ 1

0

dw wε−1

(
1− 1− z1

z0 − z1

w

)−1

=

=
(−z1)

ε−1

ε

(
z1

z1 − z0

)
2F1

(
1, ε, ε + 1,

z1

z1 − z0

)

− (1− z1)
ε−1

ε

(
1− z1

z0 − z1

)
2F1

(
1, ε, ε + 1,

1− z1

z0 − z1

)
(4.6)

By substituting eq. (4.6) in Im and taking into account the definitions of z0 and z1 in

terms of m2, s, t we finally obtain

Im
1 =

Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε

{
(−s)ε

s t
2F1

(
1, ε, ε + 1,

s + t−m2

t

)

− (−m2)ε

s t
2F1

(
1, ε, ε + 1,

m2(s + t−m2)

s t

)}
(4.7)

The second part of eq. (4.5) is easily computed by replacing z → (1− z)

Im
2 =

Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε

[
(−t)ε

s t
2F1

(
1, ε, ε + 1,

s + t−m2

s

)]
(4.8)

The complete result is simply the sum of eqs.(4.7) and (4.8)

Im = Im
1 + Im

2 (4.9)

In the limit m2 → 0 the massless scalar box integral I(s, t) is found.

The result (4.9) can be put in another form which makes more explicit the Laurent

expansion in ε of the non-perturbative solution

Im =
Γ2(ε)

Γ(2ε)

{
Γ(1− ε)

ε

(
(−s)ε

s t
+

(−t)ε

s t
− (−m2)ε

s t

)

+
Γ(1− ε)

(1 + ε)

[
(−s)ε

s t

(
s + t−m2

t

)
2F1

(
1, 1 + ε, 2 + ε,

s + t−m2

t

)

+
(−t)ε

s t

(
s + t−m2

s

)
2F1

(
1, 1 + ε, 2 + ε,

s + t−m2

s

)

− (−m2)ε

s t

(
m2(s + t−m2)

s t

)
2F1

(
1, 1 + ε, 2 + ε,

m2(s + t−m2)

s t

)]}
(4.10)

In the expansion in ε it is enough to recall that
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1

1 + ε
z 2F1 (1, 1 + ε, 2 + ε, z) = − log(1− z) − ε Li2(z) + O(ε2) (4.11)

The logarithmic terms cancels out between them, and at the order ε we find using the

identity

Li2(1− x) = Li2(x) − π2

6
+ log(x) log(1− x) (4.12)

the following contribution

Li2

(
m2 − t

s

)
+ Li2

(
m2 − s

t

)
− Li2

(
(m2 − s) (m2 − t)

s t

)
− π2

6
(4.13)

5 Comparison with the Mellin - Barnes integral repre-

sentation

The integral Im (eq.(4.1)) contains the sum of three terms and can be developed using the

MB representation by decomposing twice that sum

Γ(2− ε) ( x1x3(−s) + x2x4(−t) + x1x4(−m2) )ε−2 =

=

∫ +i∞

−i∞

dα

2πi

∫ +i∞

−i∞

dβ

2πi
Γ(−α) Γ(−β) Γ(2− ε + α + β)

(x1x4(−m2))α (x1x3(−s))β (x2x4(−t))ε−2−α−β (5.1)

Introducing the usual Feynman parameters ( see eq. (2.2)) we find

Im =
1

Γ(2ε)

∫ +i∞

−i∞

dα

2πi

∫ +i∞

−i∞

dβ

2πi
Γ(−α) Γ(−β) Γ(2− ε + α + β) Γ(ε− 1− α− β)

Γ(1 + β) Γ(ε− 1− β) Γ(1 + α + β) (−m2)α (−s)β (−t)ε−2−α−β (5.2)

It is more convenient integrating firstly in α and then in β

Im =
(−t)ε−2

Γ(2ε)

∫ +i∞

−i∞

dβ

2πi

(s

t

)β

Γ(−β) Γ(1 + β) Γ(ε− 1− β)
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∫ +i∞

−i∞

dα

2πi

(
m2

t

)α

Γ(−α) Γ(ε− 1− α− β) Γ(2− ε + α + β) Γ(1 + α + β)

(5.3)

1) let us discuss the poles to the left of α

α = −1− k − β (5.4)

The corresponding series can be resummed as

Im
1 =

(−t)ε

t (m2 − t)

Γ(ε) Γ(1− ε)

Γ(2ε)

∫ +i∞

−i∞

dβ

2πi

(
s

m2 − t

)β

Γ(−β) Γ(ε−1−β) Γ2(1+β) (5.5)

Without loss of generality, we close the contour integral in β to the right. There are two

contributions

Case 1a: β = n

Ĩ =

∫ +i∞

−i∞

dβ

2πi

(
s

m2 − t

)β

Γ(−β) Γ(ε− 1− β) Γ2(1 + β) →

→ − Γ(ε)

1− ε
2F1

(
1, 1, 2− ε,

s

m2 − t

)
(5.6)

and

Case 1b: β = ε− 1 + n

Ĩ → Γ2(ε) Γ(1− ε)

(
m2 − t

s

) (
s

m2 − s− t

)ε

(5.7)

By using the formula of analytic continuation

2F1 (1, 1, 2− ε, z) =
Γ2(ε)

Γ(1 + ε)Γ(ε− 1)

1

z
2F1

(
1, ε, ε + 1, 1− 1

z

)

− Γ2(ε)Γ(1− ε)

Γ(ε− 1)
zε−1 (1− z)−ε (5.8)

the whole contribution simplifies to
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Ĩ =
Γ(ε)

ε

(
m2 − t

s

)
2F1

(
1, ε, ε + 1,

s + t−m2

s

)
(5.9)

therefore the case 1, which is the simplest one, results in

Im
1 =

(−t)ε

s t

Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε
2F1

(
1, ε, ε + 1,

s + t−m2

s

)
(5.10)

2) let us analyze the more difficult case, i.e. the series of poles

α = −2− k − β + ε (5.11)

Im
2 =

(−m2)ε−2

Γ(2ε)

∞∑

k=0

(−1)k Γ(ε− 1− k)

(
t

m2

)k

∫ +i∞

−i∞

dβ

2πi

( s

m2

)β

Γ(−β) Γ(1 + β) Γ(ε− 1− β) Γ(k + 2 + β − ε) (5.12)

Again we choose for simplicity to analyze the poles to the right

Case 2a: β = n

Im
2a =

(−m2)ε−2

Γ(2ε)
Γ2(ε− 1)Γ(2− ε)

∞∑

k,n=0

Γ(n + k + 2− ε)Γ(2− ε)

Γ(k + 2− ε)Γ(n + 2− ε)

(
t

m2

)k ( s

m2

)n

(5.13)

This double series is tabulated [9] and corresponds to a generalized hypergeometric func-

tion of two variables ( in particular of type 2)

Im
2a = − (−m2)ε−2 Γ(ε)Γ(1− ε)Γ(ε− 1)

Γ(2ε)
F2

(
2− ε, 1, 1, 2− ε, 2− ε;

t

m2
,

s

m2

)
(5.14)

Let us note that this particular hypergeometric function of two variables can be reduced

to a hypergeometric function of a single variable [9]

F2(α, β, β′, α, α; x, y) = (1− x)−β (1− y)−β′
2F1

(
β, β′, α,

x y

(1− x) (1− y)

)
(5.15)

from which we obtain

12



Im
2a = − (−m2)ε

(m2 − t) (m2 − s)

Γ(ε)Γ(1− ε)Γ(ε− 1)

Γ(2ε)
2F1

(
1, 1, 2− ε,

s t

(m2 − s) (m2 − t)

)

(5.16)

It is necessary applying again the analytic continuation (5.8), to obtain

Im
2a = − (−m2)ε

s t

Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε
2F1

(
1, ε, ε + 1,

m2(s + t−m2)

s t

)

+
(−m2)ε

s t

Γ3(ε)Γ2(1− ε)

Γ(2ε)

(
m2(m2 − s− t)

s t

)−ε

(5.17)

This formula contains a part of the exact solution plus a spurious term, as in the massless

case.

Case 2b) let us analyze the poles β = n + ε− 1.

In this case the resummation is easier and results in

Im
2b = − (−s)ε

s (m2 − s)

Γ2(ε)Γ(1− ε)

Γ(2ε) (1− ε)
2F1

(
1, 1, 2− ε,

t

m2 − s

)
(5.18)

Applying again the analytic continuation formula ( eq.(5.8)), we obtain

Im
2b =

(−s)ε

s t

Γ2(ε)

Γ(2ε)

Γ(1− ε)

ε
2F1

(
1, ε, ε + 1,

s + t−m2

t

)

− (−s)ε

s t

Γ3(ε)Γ2(1− ε)

Γ(2ε)

(
m2 − s− t

t

)−ε

(5.19)

To summarize, considering the sum of the three terms

Im = Im
1 + Im

2a + Im
2b (5.20)

the spurious terms cancel out and we faithfully reproduce the exact result ( see eq. (4.9)).

To conclude the Mellin-Barnes method is completely equivalent to the direct method in

the massive case, as in the massless case. We expect the same conclusion also in the case

of easy two mass scalar box integral [7], whose exact result can be represented in terms of

hypergeometric functions depending only on a single variable.
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6 Conclusions

Using the Feynman parameter method, we have compared the Mellin-Barnes representation

and the direct method of solving one loop scalar integrals at a non-perturbative level in the

infrared regulator ε. Usually the MB representation is used in literature perturbatively in

ε; in our approach we firstly recognize the hypergeometric functions resumming the series

coming from the scalar integrals, then we perform an analytic continuation in the right

variables before applying the Laurent expansion in ε of the result.

Our method has been tested in the massless and massive ( with one external mass ) cases,

but in principle it could be generalizable to more complicated integrals, like the hard two

mass scalar box [7] and the double scalar box [6]-[8]. Work is in progress in this direction.
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