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Abstract

Lung cancer incidence over 2005–2010 for 326 Local Authority Districts in England is investigated by

ecological regression. Motivated from mis-specification of a Negative Binomial additive model, a

semiparametric Negative Binomial M-quantile regression model is introduced. The additive part relates

to those univariate or bivariate smoothing components, which are included in the model to capture

nonlinearities in the predictor or to account for spatial dependence. All such components are estimated

using penalized splines. The results show the capability of the semiparametric Negative Binomial

M-quantile regression model to handle data with a strong spatial structure.
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1 Introduction

The aim of this paper is the ecological regression analysis for data on lung cancer incidence over
2005–2010 for 326 Local Authority Districts (LADs) in England. The data set is obtained from the
UK Public Health Observatory. The total number of observed cases is 165,476 (with the highest
number 3176 for Birmingham) for 313,404,270 person-years. The expected number of cases is
defined using internal standardization based on age-specific rates. The Standardized Mortality
Ratio (SMR) is defined as the ratio between observed and expected number of cases. The SMRs
range from 0.54 to 1.90. Figure 2 (top right panel) shows the geographical distribution of their
quintiles.

Lung cancer is the most common cancer worldwide and the second most prevalent in England.
The latest analysis of lung cancer incidence throughout England reports the highest values in the
north of England and lower values in the east, south-east and south-west, reflecting regional
variation in smoking prevalence. Moreover, lung cancer incidence is strongly related to
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deprivation and there is a clear trend of increasing values with increasing levels of deprivation.
Hence, in this work, we consider the index of deprivation and the smoking habit as covariates.

Indices of Deprivation 2007 (ID 2007 hereafter) are the English Government’s official measure of
multiple deprivation at small area level. The Index of Multiple Deprivation 2007 (IMD), which
forms part of the ID 2007, is based on the small area geography known as Lower Super Output
Areas. In most cases, these are smaller than wards, thus allowing for the identification of small
pockets of deprivation. IMD brings together 37 different indicators which cover specific aspects or
dimensions of deprivation: education, income, employment, health and disability, skills and
training, barriers to housing and services, living environment and crime. These are weighted and
combined to create the overall IMD. The majority of the data underpinning the IMD refers to 2005
although some data cover a number of years, for example an average of the period 2003–2005. ID
2007 includes the following measures of deprivation at 2007: the IMD as described above; County
Council summaries of the IMD; LAD summaries of the IMD; income deprivation affecting older
people index and income deprivation affecting children index. Proportion of adults who smoke
(SMOKE 2007 hereafter) refers to the population aged 16 and older who are cigarette smokers
and is measured using data from the 2007 edition of the General Lifestyle Survey, formerly known
as the General Household Survey. Both covariates are considered as score, so effect on disease risk
has been considered for a score point. Figure 1 shows the relationship between the relative risk for
lung cancer and these covariates in an ecological regression setting.

A Negative Binomial Generalized Linear Model (NBGLM) has been first fitted to these data. By
introducing expected cases as an offset term and a log link, we model the logarithm of the disease
relative risks instead of the count: log(relative risk) ¼ interceptþ ID 2007þ SMOKE 2007, model
(a). This is a quite good model in which both covariates are highly significant with residual Deviance
318.1 on 321 degrees of freedom and Akaike Information Criteria (AIC) 3518.1. However, the right
panel of Figure 1 may suggest a nonlinear relation with ID 2007. This leads to consider a Negative
Binomial Generalized Additive Model (NBGAM,1 Section 5.4) as a plausible model: log(relative
risk) ¼ interceptþ s(ID 2007)þ SMOKE 2007, model (b). This model has residual deviance 320.3 on

Figure 1. Scatter plots of the relative risk versus SMOKE 2007 (left) and versus ID 2007 (right).
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314.1 effective degrees of freedom and a smaller AIC (3490.9) with respect to model (a). The
nonlinear component in ID 2007 is tested to be significant. Figure 2 shows the maps for raw data
(SMR), the covariates (SMOKE 2007 and ID 2007) and Pearson residuals (range between �2.33 and
3.18) from model (b) fitted using the mgcv package of R. All maps are strongly spatially structured
and therefore suggest the inclusion of spatial information into the model. The latter consists of the
geographical coordinates (latitude and longitude) of each centroids of the LADs normalized so that
they take values in [0; 1].

The residual spatial structure of model (b) has been included in model (c) using a bivariate
penalized spline: log(relative risk) ¼ interceptþ s(ID 2007)þSMOKE 2007þ s(lon, lat). The
spatial component is highly significant. The model has a residual deviance 323.1 on 258.4
effective degrees of freedom and AIC is 3320.9, that is sensibly smaller than the others. Top
panels of Figure 3 show both smoothing components of model (c) on the linear predictor scale:
the left top plot exhibits the nonlinear relationship between the response variable and ID 2007; the
right top plot illustrates the bivariate penalized spline. It can be noted that the latter spline modeling
the spatial component gives the highest contribute in the north of England where the disease risk for
lung cancer is indeed quite large. On the other hand, the nonlinear relationship with ID 2007 seems
to be driven essentially by the behavior of three areas (Hackney, Newham, and Tower Hamlets, see
the right panel of Figure 1), which is different from the others: these neighboring areas (at the North
East of London) have high values for ID 2007 but moderate lung cancer mortality. Therefore, once
the spatial structure has been included in the model, a linear relation between the logarithm of the
relative risk and ID 2007 could be valid: the three areas are neighboring and the spatial spline could
adjust for them. For this reason a reduced NBGAM has been fitted: log(relative risk)
¼ interceptþ ID 2007þ SMOKE 2007þs(lon, lat), model (d). This latter model has a residual
deviance 319.7 on 263.9 effective degrees of freedom and AIC 3341.8.

Bottom panels of Figure 3 show the parametric component for ID 2007 and the spatial
component for model (d). The spatial structure is very similar in complexity to that of model (c)
and, in fact, uses a similar number of degrees of freedom. Model (c) shows a smaller AIC value than
model (d), thereby suggesting that the nonlinear relationship with ID 2007 is significant. It should be
noted, however, that since the estimate of the overdispersion parameter of the Negative Binomial
(NB) model takes different values in these models, model comparison via AIC is to be taken with
care. In addition, model (c) and model (d) fit, similarly, the data: Figure 4 (left panels) shows the
distribution of the Pearson residuals obtained by models (c) and (d). For each LAD, the Pearson
residual is the raw residual (the difference between the observed number of cases and its predicted
value from the model) divided by the square root of the variance function.

The parametric effect of ID 2007 from model (d) seems to be mitigated by the values taken by the
three areas highlighted in Figure 1. Indeed, the relatively smaller value for SMR shown by these
three areas can be the effect of the activity of the North East London Cancer Network that in the
last decade has promoted screening and knowledge of cares and prevention. Therefore, another
approach can consider the three areas as possible outliers and use a robust approach. In addition,
plots from Figure 4 indicate the presence of other potential outlier observations in the data, with a
number of large Pearson residuals (absolute value greater than 2). This fact is also confirmed by the
right panels of Figure 4 which plot the raw residuals against the fitted values from models (c) and
(d).1 The x-axis ranges between 0 and 1500 in order to show clearly over 99% of the observations.
The plots suggest higher variability when the predicted value of the response variable is large. These
diagnostics, showing the presence of potential model mis-specification, suggest that the use of an
alternative to the models (c) and (d) may be justified in this case. Another arising problem is that the
covariates are obtained from UK Public Health Observatory data using small area estimation
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Figure 2. Maps of SMR (top left), SMOKE 2007 (top right), and ID 2007 (bottom left), Pearson residuals from model

(b) (bottom right).
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methods, so that they could have both sampling and nonsampling errors. For all these reasons, an
outlier-robust approach seems to be a reasonable alternative to the traditional models.

Recently, semiparametric models have been extensively used on ecological regression in disease
mapping.2–7 Such models aim to cope with various types of drawbacks that could lead to a
misspecification, for example:

(i) measurement errors on covariates3,8–11;
(ii) the possible nonlinear relation between relative risk and covariates12;
(iii) the robustness problem which can arise when disease risks and covariates exhibit a strong

spatial pattern and spatial structured terms are included.13–15

Figure 3. Penalized spline for ID 2007 (top left) and bivariate penalized spline (top right) from model (c). Parametric

term for ID 2007 (bottom left) and bivariate penalized spline (bottom right) from model (d).
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In Chambers et al.,3 the use of M-quantile regression is suggested to cope with problem (i) but
(ii) is neglected and (iii) is only sketched.

This paper aims to extend the model introduced in Chambers et al.,3 in order to handle (ii) and
(iii) as well. Specifically, since disease risk and the covariates exhibit a strong spatial structure, a
structured spatial component is included in the M-quantile predictor, following Pratesi et al.,16 by
means of a bivariate spline. The use of splines for the spatial part on disease mapping has been
suggested, among others, in the literature.5–7,17–20 In addition, NBGAM suggests the presence of a
nonlinear relation between disease risk and one of the covariates (ID 2007). We would like to

Figure 4. Pearson residuals (top left) and raw residuals versus predicted values (top right) from model (c). Pearson

residuals (bottom left) and raw residuals versus predicted values (bottom right) from model (d).
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investigate whether a robust version of models (c) and (d) may fit the data better and whether a
nonlinear component in ID 2007 is really needed or not.

This paper is organized as follows. Section 2 introduces the basic notation and briefly reviews
robust methods for NB data and the NB M-quantile model of Chambers et al.3 Section 3 illustrates
how the latter model is modified to take issues (ii) and (iii) into account. Results from the application
to lung cancer incidence ecological regression are reported in Section 4. Finally, Section 5 concludes
the paper with some comments and further topics of research.

2 Notation and background information

We denote by Yi and ti the number of observed and expected cases for area i ¼ 1,. . .,n, respectively.
In disease mapping, NB models have been used because Yi’s usually exhibit overdispersion with
respect to a Poisson model. It is common to use the mean parametrized NB,21 where E[Yi] ¼�i and
Var½Yi� ¼ �i þ �

2
i =�, and � is a parameter that measures overdispersion. In particular, smaller values

of � suggest larger overdispersion. In an NBGLM setting, the aim of the ecological regression is to
model �i. In this context, x is a p� 1 vector of explanatory variables (which is assumed to include
the constant term). The expected value of Yi given xi is modelled as �ðxi; bÞ ¼ exp �i ¼ ti expðx

T
i bÞ,

for i ¼ 1 , . . . , n, where b is a vector of p regression parameters and ti represents an offset term. This
leads to model relative risks instead of counts. Since the NB distribution is a member of the
exponential family for fixed �, this model is a special case of Generalized Linear Models (GLMs),
with the logð�Þ link function. In line with standard practice,22–24 GLM methodology can be used to
estimate b, by replacing � with a suitable estimate �̂ (e.g. obtained using the method of moments) and
by iterating estimation of b given �̂.

When there is a concern about the presence of influential observations, Cantoni and Ronchetti25

propose an approach to robust inference for GLMs based on quasi-likelihood. In particular, their
robust version of the estimating equations for the parameter b of a GLM is of the form

n�1
Xn
i¼1

vð yi,�iÞwðxiÞ�
0
i � �ðbÞ ¼ 0 ð1Þ

where E½Yi� ¼ �i ¼ �ðxi; bÞ ¼ g�1ðxTi bÞ,V½Yi� ¼ Vð�iÞ,�
0
i is the derivative of �i with respect to

b, �ðbÞ ¼ n�1
Pn

i¼1 E½vð yi,�iÞ�wðxiÞ�
0
i ensures the Fisher consistency of the estimator, and v(y, �) is

a bounded function of model residuals that controls the influence of the errors in y-space. Finally,
weights w(xi) are used to downweight leverage points. When w(xi) ¼ 1, for i ¼ 1 , . . . ,n and v(y,�) is
defined by Pearson residuals and the Huber influence function, Cantoni and Ronchetti25 call the
estimator defined by the solution to equation (1) as a Huber quasi-likelihood estimator. Note that
the solution to equation (1) can be obtained numerically by a Fisher scoring procedure.

Chambers et al.3 apply this approach to robust fitting of the mean parameterized NB model using
the following estimating equations

Cðb, cÞ :¼ n�1
Xn
i¼1

wð yi,�iÞ ¼ 0 ð2Þ

where wð yi,�iÞ ¼  ðriÞwðxiÞV
�1=2ð�iÞ�

0
i � �ðbÞ; ri ¼ V�1/2(�i)(yi��i) are Pearson residuals;  ð�Þ is the

Huber Proposal 2 influence function, such that

 ðrÞ ¼ r Ið�c5 r5 cÞ þ c sgnðrÞ Iðjrj � cÞ ð3Þ
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where Ið�Þ is the indicator function and c is the tuning constant; �i ¼ ti expðx
T
i bÞ; �0i ¼ �ix

T
i ;

Vð�iÞ ¼ �i þ �
2
i =�, with � > 0 the shape parameter. The correction term �ðbÞ can be computed

explicitly for the NB model (see Chambers et al.3 for details) and a robust procedure is also
proposed to estimate the scale parameter �. In particular, a robust scale estimator26 is considered
defined by

n�1
Xn
i¼1

 2ðriÞ � E  2 yi � �i

V1=2ð�iÞ

� �� �� �
¼ 0 ð4Þ

where E  2 yi��i

V1=2ð�iÞ

� 	h i
is a constant that ensures that the solution to equation (4) is Fisher consistent.

Equations (2) and (4) can be solved by iterating between a solution to equation (2) given � and a
solution to equation (4) given b.

Linear M-quantile regression provides a ‘quantile-like’ generalization of linear regression based
on influence functions.27 The M-quantile of order q of a continuous random variable Y with
continuous distribution function F(Y) is the value Qq such thatZ

 q
Y�Qq

�q

� �
dFðYÞ ¼ 0 ð5Þ

where  qðrÞ ¼ 2 ðrÞfqIðr4 0Þ þ ð1� qÞIðr � 0Þg, and  is a user-defined influence function. Here �q
is a suitable measure of scale of the random variable Y�Qq. Note that when  (r) ¼ sgn(r) we obtain
the standard quantile of order q, while when  (r) ¼ r we obtain the expectile of order q, which
represents a quantile-like generalization of the mean.28 In this paper, we will always consider as
influence function the Huber proposal 2 in equation (3), that depends on the tuning constant c. A
linear M-quantile regression model27 assumes that the q-th M-quantile of the conditional
distribution of Y given x, denoted by Qqðx; cÞ is such that

Qqðx; cÞ ¼ xTbq,c ð6Þ

where bq,c is an unknown vector of q-th M-quantile regression slope coefficients which are
independent of x. For ease of notation we will drop subscript c and use bq. For specified q and
continuous  , an estimate bbq of bq is obtained by solving the set of estimating equations

n�1
Xn
i¼1

 q ð yi � xTi bqÞ�̂
�1
q

n o
xi ¼ 0 ð7Þ

where �̂q is a suitable robust estimator of scale, e.g. �̂q ¼ median jrj=0:6745. Provided the tuning
constant c is bounded away from zero, we can solve equation (7) using standard iteratively
reweighted least squares. Furthermore, if  is continuous and monotone nondecreasing (e.g. a
Huber-type function) then this algorithm is guaranteed to converge to a unique solution.29

M-quantile regression models allow to trade robustness for efficiency by properly tuning such
constant c: robustness is increased as c decreases, while efficiency is increased as c increases with
expectile regression in the limit as c!1. In this way, we allow for a different set of regression
parameters for each value of q as for quantile regression, with the extra-flexibility of the  function
that may ensure robustness and a unique solution to the estimation procedure. Now, the quantile
function of a discrete random variable is not generally a monotone increasing function of q, so a

8 Statistical Methods in Medical Research 0(0)

 by guest on May 21, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [16.5.2014–1:04pm] [1–20]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140058/APPFile/SG-SMMJ140058.3d (SMM) [PREPRINTER stage]

unique solution to equation (7) for distinct values of q does not exist if Y is a count and  (r)¼sgn(r).
However, this is not the case if  is a continuous monotone nondecreasing function, for which a
unique solution always exists provided the expectation exists. This allows the concept of regression
M-quantiles to be extended to count data in a straightforward way. In the case of NB data,
Chambers et al.3 consider the following model for the q-th M-quantile of the conditional
distribution of Y given x

Qqðx, t; cÞ ¼ t expðxTbqÞ ð8Þ

In order to estimate bq Chambers et al.3 consider the extension of equation (2) to the M-quantile
case, by replacing �i by Qq(xi,ti;c), leading to the estimating equations

Cðbq, cÞ :¼ n�1
Xn
i¼1

 qð yi,Qqðxi, ti; cÞÞ ¼ 0 ð9Þ

3 Semiparametric M-quantile regression models for Negative
Binomial data

Semiparametric regression models are a powerful extension of linear regression models in which one
or more explanatory variables enter the model nonparametrically, i.e. without a pre-specified
functional form. Among the many methods proposed in the literature to estimate such models,
that based on penalized (P-) splines has gained much attention in the literature in the past 15
years, thanks to its simplicity and flexibility to be extended to handle very diverse situations (see
Ruppert et al.30 for an introduction and Ruppert et al.31 for a more up to date review). In this
section, we first illustrate how to import the flexibility of such models for M-quantile regression and
when data are NB, describe the estimation procedure and then provide details on how to use such
models for disease mapping.

3.1 Model specification

Pratesi et al.16 introduce semiparametric M-quantile regression models to enhance the flexibility of
linear M-quantile regression models and to grant robustness to classical semiparametric regression
models based on P-splines. In M-quantile semiparametric regression, the q-th M-quantile of the
conditional distribution of Y given x is assumed to take the form of an additive model, e.g.

Qqðx, cÞ ¼ �0,q þ �1,qx1 þ ~mqðx2Þ þ ~mqðx3, x4Þ ð10Þ

in which explanatory variable x1 enters the model linearly, while the association with x2 (x3, x4) is
assumed to be a univariate (bivariate) unknown smooth function ~mqð�Þ. Such smooth functions are
then estimated using P-splines.

In this paper, we wish to import the flexibility of such a model to the case in which our data are
NB. In particular, we wish to extend the linear predictor of model (8) to encompass the presence of
smooth components as those reported in equation (10). Hence, as an example of additive
model for the linear predictor of the NB M-quantile model, we can consider the following form
for the q-th M-quantile of the conditional distribution of Y given x

Qqðx, t; cÞ ¼ t exp �0,q þ �1,qx1 þ ~mqðx2Þ þ ~mqðx3,x4Þ

 �

ð11Þ

Dreassi et al. 9
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The aforementioned exemplification will turn out to be particularly useful for handling the
data considered in this paper. In fact, model (c) considered in the Introduction is of the
form log(relative risk) ¼ interceptþ SMOKE 2007þ s(ID 2007)þ s(lon,lat). Note that model (d),
on the other hand, simplifies equation (11) by fitting a parametric component for ID
2007, log(relative risk) ¼ interceptþ SMOKE 2007þ ID 2007þ s(lon,lat), assuming
Qqðx, t; cÞ ¼ t expf�0,q þ �1,qx1 þ �2,qx2 þ ~mqðx3, x4Þg.

Both smooth components in equation (11) will be handled using P-splines. Let us first focus on
the univariate smooth component ~mqðx2Þ that, as in classical nonparametric regression based on
P-splines, is assumed to be approximated sufficiently well by a polynomial spline of degree l.
In particular, ~mqðx2Þ will be approximated by

mq½x2; bq� ¼
XK
k¼1

bk,qB
ðl Þ
k ðx2Þ ð12Þ

where the B
ðl Þ
k ðx2Þ are B-splines basis functions,32 bk,q are the corresponding coefficients for

k ¼1 , . . . ,K and K is the dimension of the basis that depends on the number of fixed knots. If K
is sufficiently large, the class of functions in equation (12) is very large and can approximate most
smooth functions. In particular, it is common practice in the P-splines context, to place at most 35
knots (for small datasets, one knot every 4–5 observations) at uniformly spread quantiles of the
unique values of x2. Pratesi et al.

16 consider truncated polynomial basis functions in equation (12)
instead of B-splines to approximate the function ~mqð�Þ. Truncated polynomial bases are easier to
interpret, but usually exhibit a large degree of correlation that hinders convergence of numerical
methods. Other bases can be used like radial or tensor basis functions (see Wood1 for details on
this).

Given the large number of knots, their influence is limited by putting a constraint on the size
of the spline coefficients. Using B-splines, a difference penalty is applied to the vector of parameters
bq ¼ ðb1,q, . . . , bK,qÞ

T. In particular, let Dðd Þ denote a difference matrix of order d; then the penalty
matrix is given by P1 ¼ Dðd ÞTDðd Þ and provides a penalty made of squared d-th order differences in
the sequence of coefficients. For example, if d ¼ 1, then bTqP1bq ¼

PK�1
k¼1 ðbkþ1,q � bk,qÞ

2:
The bivariate smooth component ~mqðx3, x4Þ, on the other hand, is approximated using a set of

radial basis functions (see e.g. Ruppert et al.30: p. 253). In particular

mq½x3, x4;�1,q,�2,q, aq� ¼a1,qx3þ�2,qx4þ
XJ
j¼1

aj,qZjðx3, x4Þ ð13Þ

where aj,q, for j ¼ 1 , . . . , J are the coefficients of the radial basis functions

Zj ðx3, x4Þ ¼ jjðx3, x4Þ � ð	3j, 	4jÞjj
2 log jjðx3, x4Þ � ð	3j, 	4jÞjj

that depend on the distance in the (x3, x4)-space between a point and the knot (	3j,	4j). Such basis
functions are radially symmetric about each point and are, therefore, rotationally invariant. This is a
particularly useful property when smoothing geographical data because the final smooth is
independent of axis orientation. The choice of the number J and location of knots in two
dimensions is more challenging than in the univariate case, because knots need to be a subset of
the observations nicely scattered to cover the (x3, x4)-domain. Ruppert et al.30 suggest
J ¼ maxf20;minðn=4; 150Þg as a default in two dimensions. The location of the knots can be
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determined using space filling designs or clustering methods. For the present data, we will use the
clara function of the clustering package of R.

As for the univariate case, the influence of the knots is limited by putting a penalty to the vector
of spline coefficients. For radial smoothers, the penalty matrix can be defined to be

P2¼ jjð	3j, 	4jÞ � ð	3j0 , 	4j0 Þjj
2logjjð	3j, 	4jÞ � ð	3j0 , 	4j0 Þjj1�j, j0�J:

It is the J� J matrix of values given by the radial basis functions applied to the knots and
therefore the penalty aTqP2aq has the radial symmetry property. In addition, such a choice
corresponds to the thin plate spline family of smoothers and to the penalization of the second
derivative. In case of large correlation among the Zj’s, a transformation can be performed using
Demmler–Reinsch orthogonalization to improve the performance of numerical methods
(see e.g. Ruppert et al.,30: Appendix B).

3.2 Estimation procedure

Given data {yi,ti,x1i,x2i,x3i,x4i}, for i ¼ 1 , . . . ,n, let

ui ¼ ð1, x1i, x3i, x4i,B
ðl Þ
1 ðx2iÞ, . . . ,B

ðl Þ
K ðx2iÞ,Z1ðx3i, x4iÞ, . . . ,ZJðx3i, x4iÞÞ

T

be the collection of all covariates and spline representations. Then, for an M-quantile q and a
value for the tuning constant c, estimation of the vector of all coefficients cq ¼

ð�0,q,�1,q,�1,q,�2,q, b
T
q , a

T
q Þ

T can be accommodated by mimicking penalization of an objective
function and solving the following set of estimating equations

Cðcq, cÞ :¼ n�1
Xn
i¼1

wqð yi,Qqðui, ti; cÞÞ þ ,qP
q ¼ 0ð4þKþJÞ ð14Þ

where

wqð yi,Qqðui, ti; cÞÞ ¼  qðriqÞwðuiÞ
Q0qðui, ti; cÞ

V1=2ðQqðui, ti; cÞÞ
� �ðcqÞ

� �
ð15Þ

with

. residuals riq ¼ V�1/2[Qq(ui,ti;c)](yi�Qq(ui,ti;c)),

. Qqðui, ti; cÞ ¼ ti expfu
T
i cqg,

. VðQqðui, ti; cÞÞ ¼ Qqðui, ti; cÞ þQqðui, ti; cÞ
2=�q, �q 4 0 the shape parameter,

. Q0qðui, ti; cÞ ¼ Qqðui, ti; cÞui,

. ,q ¼ blockdiag 04�4, �1,qIK�K, �2,qIJ�J

 �

, and
. P ¼ blockdiag 04�4,P1,P2f g:

Matrix P summarizes all the penalties of the procedure, i.e. no penalization for the linear/
parametric components of the model and different penalties for B-splines and thin plate splines.
Matrix ,q collects the corresponding smoothing parameters, with larger values of the smoothing
parameters �1,q and �2,q corresponding to smoother approximations. Selection of good smoothing
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parameters is crucial for adequate approximation of the final model and will be discussed in
Section 3.3.

The correction for ensuring Fisher consistency can be computed explicitly and is given by

�ðcqÞ ¼ n�1
Xn
i¼1

wqðriqÞwðuiÞ �c P Yi � j1ð Þ þ c P Yi � j2 þ 1ð Þ



þ
Qqðui, ti; cÞ

V1=2ðQqðui, ti; cÞÞ
PðYi ¼ j1Þ 1þ

j1
�q

� �

�
Qqðui, ti; cÞ

V1=2ðQqðui, ti; cÞÞ
PðYi ¼ j2Þ 1þ

j2
�q

� ��
V�1=2ðQqðui, ti; cÞÞQqðui, ti; cÞui

where j1 ¼ Qqðui, ti; cÞ � cV1=2ðQqðui, ti; cÞÞ
� 


, j2 ¼ Qqðui, ti; cÞ þ cV1=2ðQqðui, ti; cÞÞ
� 


, and wqðriqÞ ¼
2 ½q Iðriq 4 0Þ þ ð1� qÞIðriq � 0Þ�.

Equation (14) can be solved using Fisher scoring by first computing �E½@Cðcq, cÞ=@cq�. This
quantity is given by

�E
@Cðcq, cÞ
@cq

" #
¼ �n�1

Xn
i¼1

E
@

@cq
wqð yi,Qqðui, ti; cÞÞ

" #
� ,qP ð16Þ

By adapting the computation developed for NB M-quantile models in Chambers et al.3 we get

n�1
Xn
i¼1

wiE  qðriqÞ
@ log f ðYijui; cqÞ

@Qqðui, ti; cÞ

@Qqðui, ti; cÞ

@cq
ui

" #
þ ,qP

¼ n�1
Xn
i¼1

wiE  qðriqÞ
yi �Qqðui, ti; cÞ

VðQqðui, ti; cÞÞ

� �
Qqðui, ti; cÞuiu

T
i þ ,qP

By using a Fisher scoring algorithm we can obtain estimates of cq for a fixed value of the smoothing
parameters matrix ,q and shape parameter yq using

cðtÞq ¼ cðt�1Þq þ ½UTWUþ ,qP�
�1
½UTxþ ,qP


ðt�1Þ
q � ð17Þ

where U is the design matrix with ui on its i-th row,

W ¼ diag wðuiÞE  qðriqÞ
yi �Qqðui, ti; cÞ

VðQqðui, ti; cÞÞ

� �
Qqðui, ti; cÞ

� �
i¼1,...,n

and xðn�1Þ ¼ fwðuiÞð qðriqÞ � E½ qðriqÞ�Þgi¼1,..., n
The shape parameter �q is estimated for a fixed value of the smoothing parameters matrix ,q and

of cq following Chambers et al.3 as the solution to

n�1
Xn
i¼1

 2
qðriqÞ � E  2

q

Yi �Qqðui, ti; cÞ

V1=2ðQqðui, ti; cÞÞ

� �� �� �
¼ 0 ð18Þ
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where E  2
q

Yi�Qqðui, ti;cÞ

V1=2ðQqðui, ti;cÞÞ

� 	h i
is a constant that ensures Fisher consistency for estimation of �q and  q

is given in equation (15).

3.3 Smoothing parameters selection

Up to now we have illustrated estimation of cq and �q for a fixed value of the smoothing parameter
matrix ,q. Letbcq and �̂q be such estimates and let

ŷi ¼ Q̂qðui, ti; cÞ ¼ ti exp uTi 
̂q

 �

ð19Þ

Here, we develop a Generalized Cross Validation (GCV) criterion to be used to determine the
value of the smoothing parameters �1,q and �2,q collected in ,q. GCV depends on the effective
number of degrees of freedom used by the model and these, in turn, can be usually computed
from the smoother matrix. In our model, however, a fitted value ŷi is a nonlinear function of the
vector of yi; therefore, there is no matrix S,q such that ŷi ¼ S,q

yi and hence the usual definition of a
smoother matrix does not apply. However, we will define the smoother matrix S,q at quantile q to be
that matrix such that

Q̂qðui, ti; cÞ �Qqðui, ti; cÞ � S,q
ð yi � E½Yi�Þ

Using a Taylor approximation, we can write

Q̂qðui, ti; cÞ �Qqðui, ti; cÞ �WU½UTWUþ ,qP�
�1UT yi � E½Yi�ð Þ

and have a definition for the smoother matrix to be

S,q
¼WU½UTWUþ ,qP�

�1UT ð20Þ

Thus, an estimate of the effective number of degrees of freedom used by the model is given by its
trace. The GCV criterion can then be defined as

GCVð,qÞ ¼
n�1

Pn
i¼1 2Devð yi, ŷi;,qÞ

½1� n�1�DevðS,q
Þ�
2

ð21Þ

where

Devð yi, ŷi;,qÞ ¼

�̂q log
ŷi

�̂q
þ 1

 !
if yi ¼ 0

ð�̂q þ 1Þ log
ŷi

�̂q
þ 1

 !
þ yi log

yi
ŷi
� ð yi þ �̂qÞ log

yi

�̂q
þ 1

 !
if yi ¼ 1, 2, . . .

8>>>>>><>>>>>>:
is the i-th contribution to the deviance of the model for a fixed value of the smoothing parameter
matrix ,q, and � is a constant that penalizes additional effective degrees of freedom measured by the
trace of the smoother matrix.
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The complete algorithm for the estimation of cq, smoothing parameters in ,q and the shape
parameter �q can be described as follows:

(1) For each value of q and a fixed c, choose the initial values cð0Þq , ,ð0Þq , and �ð0Þq . Set b ¼ 0.
(2a) calculate c bþ1ð Þ

q from the Fisher scoring in (17);
(2b) calculate ,q from formula (21);
(2c) calculate � bþ1ð Þ

q from criterion (18);
(2d) set b ¼ bþ 1.
(3) Iterate steps (2a)–(2d) until convergence is achieved.

Routines in R to this end are available from the authors, and we refer to the ‘ensemble’ model for
a range of values of q as a SPNBMQ model in what follows.

3.4 Disease mapping via SPNBMQ

Usually, models characterize the variability associated with the conditional distribution of an
overdispersed count variable Y given covariates x in terms of latent clustering and heterogeneity
effects. On the other hand, M-quantile models can be used to characterize overdispersion in a
different way by attaching to each observed count a so-called ‘M-quantile coefficient’. The M-
quantile coefficient associated with the observed value yi of a continuously distributed random
variable Y and an associated covariate value xi is the value qi such that Q̂qiðxi; cÞ ¼ yi,

29,33 i.e.
that value of q for which the fitted value reproduces the observed one. Typically, this equation is
solved by fitting regression M-quantiles on a finite grid G ¼ f0< q1< q2< . . .< qL�1< qL< 1} of L
values of q and then using linear interpolation.

When dealing with NB data, however, the proposed model is such that Qqðui, ti; cÞ ¼ ti expfu
T
i cqg

and an M-quantile coefficient cannot be found with the aforementioned approach for those
observations for which yi ¼ 0, since Qq(ui,ti;c) has a strictly positive domain. To overcome this
problem we use the definition proposed in Chambers et al.3

Q̂qðui, ti; cÞ ¼
kðuiÞ yi ¼ 0
yi yi ¼ 1, 2, . . .

�
ð22Þ

where kð�Þ denotes an appropriate strictly positive boundary function for the data set. In particular,
since we can argue that observation yi ¼ 0 should have a smaller q-value then observation yj ¼ 0
when Q̂0:5ðui, ti; cÞ4 Q̂0:5ðuj, tj; cÞ, we can set kðuiÞ ¼ minf1� , 
½Q̂0:5ðui, ti; cÞ�

�1
g in equation (22),

where 
4 0 is a small positive constant.
M-quantile coefficients allow for a better representation of the conditional distribution of Y given

the covariates and can be used to capture residual between-area variation. In particular, we can use
the deviation of the area-specific M-quantile coefficient 
̂qi from the ‘median’ M-quantile coefficient

̂0:5. In particular, the SPNBMQ predictor of the count in area i is then given by

Q̂qi ui, ti; cð Þ ¼ ti exp uTi 
̂qi
� �

¼ ti exp uTi 
̂0:5 þ uTi 
̂qi � 
̂0:5
� �� �

ð23Þ

where the last term on the right-hand side can be interpreted as a pseudo-random effect for area i,
allowing also for estimation of area effects.
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4 Results

In this section, we illustrate the main results of the SPNBMQ approach using the data on the lung
cancer incidence over 2005–2010 for 326 LADs in England. The diagnostic analysis in Section 1
allows us to detect the presence of large residuals and it motivates the recourse to robust methods
such as an M-quantile model with a bounded  function. In particular, we have fitted to the data the
following models: (1) SPNBMQ(c), log(relative risk) ¼ interceptþ SMOKE 2007þ s(ID
2007)þ s(lon,lat) and (2) the SPNBMQ(d) log(relative risk) ¼ interceptþ SMOKE 2007þ ID
2007þ s(lon,lat).

Figure 5. M-quantile coefficient for different quantiles for SMOKE 2007 (top left) and (solid line) the estimated

P-splines on ID 2007 for different quantiles q ¼ 0.25, 0.50, and 0.75 from SPNBMQ(c) model and (dashed line) the

corresponding coefficient for ID 2007 from SPNBMQ(d) (top right). Bottom panel M-quantile coefficient for different

quantiles for SMOKE 2007 (left) and ID 2007 (right) from SPNBMQ(d).

Dreassi et al. 15

 by guest on May 21, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [16.5.2014–1:04pm] [1–20]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140058/APPFile/SG-SMMJ140058.3d (SMM) [PREPRINTER stage]

The values of Pearson residuals in Figure 4 suggest to use a Huber proposal 2 with the tuning
constant c equal to 2. SPNBMQ(c) has been fitted by using cubic B-splines (l ¼ 3) with K ¼ 30 knots
for ID 2007 with a difference matrix of order d ¼ 3. For the bivariate smooth component of both
SPNBMQ(c) and SPNBMQ(d) models, a set of radial basis functions (as specified in Section 3.1)
with J ¼ 90 knots, has been applied. The Demmler–Reinsch orthogonalization has been performed
to ensure the numerical method convergence. The value of � in the GCV criterion is fixed to 1.2 for
all quantiles. The estimated value of �q is large (>100) for each quantile, by this showing that
overdispersion is not present in the data, similarly to the NBGAM models.

Comparison between the two models could be carried on by using the GCV criterion in equation
(21). The GCV criterion takes value 2.48 for model SPNBMQ(c) and value 2.05 for model
SPNBMQ(d) by this suggesting that, when using a roust model, the nonlinear relationship with
ID 2007 does not provide an improvement in the fit. The use of GCV for model comparison needs
caution here because � is not a maximum likelihood estimator and the deviance depends on its value.
Nonetheless, it is a useful way to compare SPNBMQ models although further research is needed to
develop other criteria possibly based on quasi-likelihoods.34

Figure 6. Contour plot of estimated bivariate spline for different quantiles q ¼ 0.10, 0.25, 0.75, and 0.90 from

SPNBMQ(d) model.
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Figure 5 (left panel) exhibits the change in the coefficient �1,q for SMOKE 2007 on the
SPNBMQ(c) (top) and SPNBMQ(d) (bottom) models as the quantile index q ranges from zero to
one. The path seems to be rather linear and shows a slight increase in the value of �1,q with q. The
value at the median is similar to that coming (0.12) from the NBGAM model (c) considered in the
Introduction. Figure 5 (top right panel) shows, on the other hand, the estimated P-spline for ID
2007 at the quartiles and, in dashed line, the corresponding linear approximation from the
SPNBMQ(d) model. It is clear that there is a different approximation for large values of ID
2007. In particular, by looking at the right panel of Figure 1, we can see that the P-splines try to
approximate the pattern given by the last few LADs that show large values of ID 2007 but small
relative risks. This suggests that estimates obtained by SPNBMQ(d) model for the areas with larger
values of ID 2007 will be all moved upward compared to those obtained from the SPNBMQ(c)
model. In fact, the estimated coefficient for ID 2007 from model SPNBMQ(d) at quantile 0.5 is
sensibly larger (0.069) than that from model NBGAM(c) (0.058), thereby showing the efficacy of the
bounded influence function on adjusting the role of outlying areas on estimating the effect of ID
2007 on SMR. Convergence issues for the SPNBMQ estimation algorithm for values of q near zero
and near one mean that these estimated coefficients behave in a rather nonlinear fashion in the tails
of the q distribution, as is particularly evident for ID 2007 in Figure 5 for SPNBMQ(d) model. These
estimated tail coefficients should therefore be treated with caution.

The reliability of the results depends not only on the availability of the auxiliary information, but
also on the choice of the smoothing parameters which contribute to the bivariate spline effect at each
quantile. The latter evaluated at different quantiles shows that the contribution seems to be able to
mimic the spatial trend of the study variable. Figure 6 describes the contour of the estimated
bivariate P-splines at different quantiles (q ¼ 0.10, 0.25, 0.75, and 0.90) from model

Figure 7. Maps of M-quantile coefficients qi (right) and estimated relative risks (left) from SPNBMQ(d) model.
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SPNBMQ(d). The estimated spline effect at q ¼ 0.90 takes the highest values in higher risk areas as,
for example, for those areas near London, while for the highly industrialized zones of northern
England, as Liverpool and Manchester, we have relatively lower values for q ¼ 0.10. We observe
negative values for all quantiles for the South-East region where low relative risks are estimated.

Generalized Linear Mixed Models include random area effects to account for between-area
variation. The M-quantile approach avoids distributional assumptions as well as problems
associated with the specification of random effects, allowing between-area differences to be
characterized by the variation of area-specific M-quantile coefficients. Figure 7 (left panel) reports
the spatial distribution of the M-quantile coefficients, the qi’s, which reflects variability not explained
by the covariates. A similar reasoning in a completely different context can be found in Kokic
et al.,29 where M-quantile regression is employed to measure production performance and units
are ranked according to their M-quantile coefficient after accounting for covariates. The qi values for
Hackney, Newham and Tower Hamlets from model SPNBMQ(c) are respectively 0.25, 0.20, and
0.74 and from model SPNBMQ(d) 0.03, 0.01, and 0.03. Once the effects for ID 2007 are linear, the
qi’s decrease drastically for the three areas. This means that the values of the three areas are in the
tail of the distribution and then they can be considered as outlier values under the SPNBMQ(d)
model. This property of the M-quantile approach is evident also from Figure 8 that compares

Figure 8. Estimated relative risk from NBGAM model (d) and model SPNBMQ(d). Estimates are color-coded

according to estimated q-values.
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estimated relative risks from SPNBMQ(d) model and those obtained using NBGAM model (d) (for
a discussion of P-splines models for disease mapping see Goicoa et al.17). From this figure it is clear
that the two sets of estimates are strongly correlated, but that those based on the proposed method
add to those based on the NBGAM model (d) the information coming from M-quantile coefficients:
LADs characterized by a relatively smaller (larger) qi tend to have overestimated (underestimated)
relative risks by NBGAM that relies on the model only.

Figure 7 (right panel) shows the relative risk estimated from the SPNBMQ(d) model. This map
points out the expected geographic differences, due to variation in SMOKE 2007 and the two
smoothing components. The incidence of lung cancer is generally lower than average in the south
and midlands of England, with the exception of some health authorities in London and the
Birmingham conurbation. There is a band of higher than average relative risk across the formerly
highly industrialized parts of northern England, from Liverpool and Manchester in the west to Hull
in the east. Higher values have been observed also in Teesside and Tyneside.

5 Conclusions

A semiparametric NB M-quantile model for ecological regression on disease mapping is proposed
and is used to obtain relative risk estimates. The novelty of the paper consists on the inclusion of
smoothing components on the quantile predictor of an NB M-quantile regression. In particular,
these components can represent spatial effects and the nonlinear relation between covariates and the
response variable. This approach reduces the need for parametric assumptions, so that model
misspecification problems are reduced. These smoothing components have been estimated using
penalized splines.

The results from the application to data on Lung cancer incidence over 2005–2010 for 326 LADs
in England show that the proposed methodology provides a reasonable and useful alternative to
existing methods when assumptions of the parametric model are not valid. In particular, it is a
method that is robust to outlying observations and to mis-specification of the linear predictor
structure.

Despite the fact that the proposed methodology provides encouraging results, further research is
necessary. To start with, the estimation of the area quantile coefficients is challenging and alternative
approaches should be investigated. Moreover, a drawback for all quantile-type fitted regression
functions is the phenomenon of quantile crossing. This occurs when two or more estimated
quantiles or M-quantile functions cross or overlap. It may be due to model misspecification,
collinearity or huge outlying values. He35 proposed a simple way to a posteriori restrict quantile
regression while maintaining sufficient modelling flexibility. This method has been used by Pratesi
et al.16 for overcoming the problem of quantile crossing for P-splines M-quantile regression models.
Hence, this approach could be easily extended to the SPNB M-quantile model. Moreover, further
research is necessary in order to understand how the proposed M-quantile method, NBGAM and
Empirical Bayes, Hierarchical Bayes (assuming no clustering effects and assuming clustering effects)
compare in terms of their performance.

A further extension could be the development of a bootstrap-based Mean Square Error (MSE)
estimator. This latter, may offer a stable approximation of the actual MSE of the estimated relative
risk. For example, an MSE estimator based on the semiparametric bootstrap (proposed also in
Chambers et al.3 and Tzavidis et al.36) could be considered. Finally, the time dimension, as done for
the spatial dimension, could be added into the proposed Semiparametric NB M-quantile model in
order to provide robust estimates of the relative risk in space and time.
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