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A minimal observable length is a common feature of theories that aim to merge quantum

physics and gravity. Quantum mechanically, this concept is associated with a nonzero

minimal uncertainty in position measurements, which is encoded in deformed commutation

relations. In spite of increasing theoretical interest, the subject suffers from the complete

lack of dedicated experiments and bounds to the deformation parameters have just been

extrapolated from indirect measurements. As recently proposed, low-energy mechanical

oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free

evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses

around the Planck mass mP (E22 mg). The direct check against a model of deformed

dynamics substantially lowers the previous limits on the parameters quantifying the

commutator deformation.

DOI: 10.1038/ncomms8503 OPEN

1 Physics Division, School of Science and Technology, University of Camerino, via Madonna delle Carceri 9, Camerino (MC) I-62032, Italy. 2 INFN, Sezione di
Perugia, Via A. Pascoli, Perugia I-06123, Italy. 3 Nanoscience-Trento-FBK Division, Institute of Materials for Electronics and Magnetism, Povo (TN) I-38123,
Italy. 4 Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Application, Povo (TN) I-38123, Italy. 5 Dipartimento di
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T
he emergence of a minimal observable length, at least as
small as the Planck length LP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘G=c3

p
¼ 1:6�10� 35 m,

is a general feature of different quantum gravity models1,2.
In the framework of quantum mechanics, the measurement
accuracy is at the heart of the Heisenberg relations, that, however,
does not imply an absolute minimum uncertainty in the position.
An arbitrarily precise measurement of the position of a particle
is indeed possible at the cost of our knowledge about its
momentum. This consideration motivated the introduction of
generalized uncertainty principles (GUPs)1–8, such as

DqDp � ‘
2

1þb0
LPDp
‘

� �2
 !

: ð1Þ

Equation 1 implies indeed a nonzero minimal uncertainty
Dqmin ¼

ffiffiffiffiffi
b0

p
LP. The dimensionless parameter b0 is usually

assumed to be around unity, in which case the corrections are
negligible unless energies (lengths) are close to the Planck energy
(length). However, since there are no theories supporting this
assumption, the deformation parameter has necessarily to be
bound by the experiments. Any experimental upper limit for
b041 would constrain new physics below the length scaleffiffiffiffiffi

b0

p
LP

9.
A direct consequence of relation (1) is an increase of the

ground state energy Emin of an harmonic oscillator. Recently, an
upper limit to Emin has been placed by analysing the residual
motion of the first longitudinal mode of the bar detector of
gravitational waves AURIGA10,11. Although the imposed bound,
b0o1033, is extremely far from the Planck scale, it provides a first
measurement just below the electroweak scale (corresponding to
1017 LP).

To the GUP (1) it is possible to associate a modified canonical
commutator1,3,4:

½q; p� ¼ i‘ 1þ b0
LPp
‘

� �2
 !

: ð2Þ

Its introduction represents a further conceptual step, as it
defines the algebraic structure from which the GUP should
follow, and it implies changes in the whole energy spectrum of
quantum systems, as well as in the time evolution of a given
observable.

Because of its importance as a prototype system, several studies
have been focused on harmonic oscillators. Modifications of
stationary states are calculated in refs 12–14. Approaches to
construct generalized coherent states are proposed in refs 15,16.
The modified time evolution and expectation values of position
and momentum operators are discussed in refs 17–19, whereas in
ref. 20 Chen et al. calculated the temporal behaviour of the
position and momentum uncertainties in a coherent state, finding
a squeezing effect.

In spite of this huge theoretical interest, the subject suffers
from the complete lack of dedicated experiments and so far
limits to the deformation parameters have been extrapolated
from indirect measurements9,21,22. It has recently been proposed
that the effect of a modified commutator could be revealed
by studying the opto-mechanical interaction of macroscopic
mechanical oscillators23. Here we elaborate a different
experimental protocol and describe a set of dedicated
experiments with state of the art micro- and nano-oscillators.
We show that, in the Heisenberg picture of quantum mechanics
and assuming the validity of the commutator (2) for the
coordinates of the centre-of-mass (c.m.), the time evolution of
its position exhibits an additional third harmonic term and a
dependence of the oscillation frequency on its amplitude. The
strength of such effects depends on b0. We then analyse the

dynamics of different oscillators to place upper bounds to
the parameters quantifying the deformation to the standard
quantum-mechanical commutator. Such bounds span a wide
range of test mass values, around the landmark given by the
Planck mass. Previous limits, derived indirectly from the analysis
of some metrological experiments, are substantially lowered, by
several orders of magnitude.

Results
Theoretical model. The basic idea of our analysis is assuming
that the commutation relations between the operator q describing
a measured position in a macroscopic harmonic oscillator, and its
conjugate momentum p, are modified with respect to their
standard form. In other words, and more generally, we suppose
that the deformed commutator should be applied to any couple of
position/momentum conjugate observables that are treated in a
quantum way in experiments and standard theories. At the same
time, we keep the validity of the Heisenberg equations for the
temporal evolution of an operator Ô, that is, dÔ=dt ¼ ½Ô;H�=i‘ ,
where H is the Hamiltonian. For an oscillator with mass m and
resonance angular frequency o0, we also assume that the
Hamiltonian maintains its classical form H ¼ mo2

0q2=2þ p2=2m.
Such hypotheses are also underlying the proposal of ref. 23.

We first define the usual dimensionless coordinates Q and P,
according to q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=ðmo0Þ

p
Q and p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘mo0
p

P. The
Hamiltonian is now written in the standard form
H ¼ ‘o0

2 ðQ2þ P2Þ and the commutator of Equation 2 becomes

½Q; P� ¼ ið1þbP2Þ; ð3Þ
where b ¼ b0ð‘mo0=m2

Pc2Þ is a further dimensionless
parameter that we assume to be small (boo1). Such assumption
will have to be consistent with the experimental results. We now
apply the transform

P ¼ ð1þ 1
3
b~P2Þ~P ð4Þ

discussed, for example, in ref. 22. As we will see later, to our
purpose ~P is just an auxiliary operator, we do not need to decide if
either P or ~P corresponds to the classical momentum. Q and ~P
obey the (non deformed) canonical commutation relation
½Q; ~P� ¼ i. At the first order in b, the Hamiltonian can now be
written as

H ¼ ‘o0

2
ðQ2þ ~P2Þþ ‘o0

3
b~P4: ð5Þ

The Heisenberg evolution equations for Q and ~P, using the
Hamiltonian (5) read

_Q ¼ o0~Pð1þ 4
3
b~P2Þ; ð6aÞ

_~P ¼ �o0Q: ð6bÞ
The coupled relations (6) are formally equivalent to the

equations describing the evolution of a free anharmonic
oscillator with position � ~P (Q is its conjugate momentum), in
a potential V ¼ o2

0ð~P2=2þb~P4=3Þ containing a fourth-order
component.

The Poincaré’s solution24, for initial conditions � ~Pð0Þ ¼ A and
_~Pð0Þ ¼ 0, is � ~PðtÞ ¼ Aðð1þE=32Þcosð~otÞ� ðE=32Þcosð3~otÞÞ;
where E ¼ � 4A2b=3 and ~o ¼ ð1� 3

8EÞo0. The solution is
valid at the first order in E, and implies two relevant effects with
respect to the harmonic oscillator: the appearance of
the third harmonic and, less obvious, a dependence of the
oscillation frequency on the amplitude (more precisely, a
quadratic dependence of the frequency shift on the oscillation
amplitude).
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Using again Equation 6b to find Q(t), keeping the first order in
bQ2

0 where Q0 is the oscillation amplitude for Q, we obtain

Q ¼ Q0 sinð~otÞþ b
8

Q2
0sinð3~otÞ

� �
; ð7Þ

where

~o ¼ ð1þ b
2

Q2
0Þo0: ð8Þ

The position Q(t) is our meaningful (that is, measured) variable,
whatever is the physical meaning of P and ~P. P. Pedram calculates
in ref. 19 the evolution of an harmonic oscillator with an
Hamiltonian deformed according to the GUP considered in this
work, and finds a frequency modified as (in our notation)
~o ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bQ2

0

p
. Such expression is equivalent to Equation 8 in

the limit of small ðbQ2
0Þ, satisfied in the present work.

We have performed the experiments with highly isolated
oscillators, that is, with a high mechanical quality factor
Qm:¼o0t, where t is a long but nonetheless finite relaxation
time, responsible for an additional term � 2P/t in the right-hand
side of Equation 6b. Damping has a twofold effect: (i) an
exponential decay of the oscillation amplitude; (ii) a nontrivial
time-dependence of the phase. In the limit Qmc1, the dynamics
is described by a modified version of Equation 7 with the
replacements ~ot ! FðtÞ, implying ~oðtÞ ¼ dF=dt and Q0-Q0

exp(� t/t). More details on the inclusion of damping in the
evolution equations are reported in the Supplementary Notes 1
and 2.

Experimental apparatus. We have examined three kinds of
oscillators, with masses of respectively E10� 4, E10� 7 and
E10� 11 kg. The measurements are performed by exciting an
oscillation mode and monitoring a possible dependence of the
oscillation frequency and shape (that is, harmonic contents) on its
amplitude, during the free decay. To keep a more general analysis,
we will consider both indicators independently.

The first device is a ‘double paddle oscillator’ (DPO)25 made
from a 300-mm thick silicon plate (Fig. 1a). Thanks to its shape,
for two particular balanced oscillation modes, the antisymmetric
torsion modes (AS), the oscillator is supported by the outer frame
with negligible energy dissipation and it can therefore be
considered as isolated from the background26. Vibrations are
excited and detected capacitively, thanks to two gold electrodes
evaporated over the oscillator, and two external electrodes. The
sample is kept in a vacuum chamber, and its temperature is
stabilized at 293 K within 2 mK, a crucial feature to maintain a
constant resonance frequency during the measurements. We have
monitored the AS2 mode, with a resonance frequency of 5636 Hz
and a mechanical quality factor of 1.18� 105 (at room
temperature). The overall c.m. of the oscillator remains at rest
during the AS motion. To our purpose, we consider the positions
of the couple of c.m.’s corresponding to the two half-oscillators
that move symmetrically around the oscillator rest plane
(a deeper discussion of this issue is reported in ref. 10). The
meaningful mass is the reduced mass of the couple of half-
oscillators, that is calculated by Finite Element Method
simulations and is m¼ 0.033 g.

For the measurements at intermediate mass we have used a
silicon wheel oscillator, made on the 70-mm thick device layer of
an Silicon-On-Insulator wafer and composed of a central disk
kept by structured beams27, balanced by four counterweights on
the beams joints that so become nodal points (Fig. 1b)28. On the
surface of the central disk, a multilayer SiO2/Ta2O5 dielectric
coating forms an high reflectivity mirror. The device also includes
intermediate stages of mechanical isolation. The design strategy
allows to obtain a balanced oscillating mode (its resonance

frequency is 141,797 Hz), with a planar motion of the central
mass (significantly reducing the contribution of the optical
coating to the structural dissipation) and a strong isolation from
the frame. The oscillator is mechanically excited using a
piezoelectric ceramic glued on the sample mount. The surface
of the core
of the device works as end mirror in one arm of a
stabilized Michelson interferometer, that allows to measure its
displacement. The quality factor surpasses 106 at the temperature
of 4.3 K, kept during the measurements. As for the DPO, the c.m.
of the oscillator remains at rest and, for the following analysis of
the possible quantum gravity effects, we consider the reduced
mass m¼ 20mg. We have also performed room temperature
measurements on a simpler device, lacking of counterweights,
with an oscillating mass of 77 mg and a frequency of 128,965 Hz.

Finally, the lighter oscillators is a L¼ 0.5 mm side, 30 nm thick,
square membrane of stoichiometric silicon nitride, grown on a
5 mm� 5 mm, 200-mm thick silicon substrate29. Thanks to the
high tensile stress, the vibration can be described by standard
membrane modes, the lowest one (monitored in this work) with
shape z(x,y)¼A cos(px/L) cos(py/L), where (x,y) are the
coordinates measured from the membrane centre, along
directions parallel to its sides (Fig. 1c). The physical mass of
the membrane is 20 ng, respectively, and the c.m. is at the
position (0,0,zcm) with zcm¼ 4A/p2 (the central position A is the
monitored observable). We have performed the measurements in
a cryostat at the temperature of 65 K and pressure of 10� 4 Pa,
where the oscillation frequency is 747 kHz and the quality factor
is 8.6� 105. Excitation and readout are performed as in the
experiment with the wheel oscillators.

Measurements and data analysis. The first step in the data
analysis is applying to the data stream q(t) a numerical lock-in:
the two quadratures X(t) and Y(t) are calculated by multiplying
the data respectively by sin(o0t) and cos(o0t), where o0 is the
oscillation angular frequency of the acquired time series, esti-
mated preliminarily from a spectrum, and applying appropriate
low-pass filtering. The oscillation amplitude is calculated as
q0ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þY2
p

and the phase as F(t)¼ arctan(Y/X). For the
DPO oscillator, this process is directly performed by the hardware
lock-in amplifier, that is also used to frequency downshift the
signal of the wheel oscillator at cryogenic temperature before its
acquisition. q0(t) is fitted with an exponential decay (examples are
shown in Fig. 1), while F(t), that always remains within ±p rad,
is fitted with a linear function that gives the optimal frequency
and phase with respect to the preliminary tries o0 and F(0)¼ 0.
The residuals DF of the fit are differentiated to estimate the
fluctuations Do in the oscillation frequency. In Fig. 2, we show
Do as a function of q0, together with its fit with the function
Do ¼ aþ bq2

0. The derived value and uncertainty in the
quadratic coefficient b are the meaningful quantities that can be
used to establish upper limits to the deformation parameter b0.
The background mechanical noise in all the experiments is
dominated by the oscillator thermal noise (as verified with spectra
taken without excitation). The consequent statistical uncertainty
in the calculated Do is inversely proportional to the amplitude q0,
and such a weight is indeed used in the fitting procedures.

In the case of the DPO oscillator (Fig. 2a), Do versus q0 has a
clear shape that is given by the intrinsic oscillator nonlinearity.
A similar, weaker effect is observed for the wheel oscillator at
cryogenic temperature and for the membrane, at the largest
excitation amplitudes (Figs 2b,c). The quadratic coefficient for
the membrane is in agreement with its calculation based on the
nonlinear behaviour observed for larger amplitudes in the
frequency domain30. Since structural nonlinearity is hard to
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model, we cannot distinguish it from possible quantum gravity
effects. Therefore, we just place our upper bound in
correspondence of the first (the strongest) nonlinear behaviour
encountered. The meaningful quantity to calculate an upper limit
to b0 is the mean value of b plus its uncertainty. The latter is
calculated from the standard deviation on several independent
measurements, and it is in agreement with the error estimated

from the residuals of each fit, after decimation of the data sets to
obtain uncorrelated data points. The experiment has been
repeated for several excitation levels, finding the expected
improvements in the upper limit to b at increasing amplitudes
(inset of Fig. 2c).

As previously discussed, a further useful indicator is the
amplitude of the third harmonic component, also extracted with a
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Figure 1 | Oscillating devices. Finite elements simulation of the shapes of the oscillation modes investigated in this work (a, b, c), phase (d, e, f) and

amplitude (g, h, i) of the oscillation during a free decay, obtained by phase-sensitive analysis of the measured position. In the left panels, the colour scale

represents the relative magnitude of the displacement for each modal shape, decreasing from red to blue. Red solid lines: linear and exponential fits

respectively to the phase (blue dots) and the amplitude (green dots) experimental data. Graphs (a, d, g) refer to the DPO oscillator, consisting of two

inertial members, head and a couple of wings, linked by a torsion rod (the neck) and connected to the outer frame by a leg. The displayed AS mode consist

of a twist of the neck around the symmetry axis and a synchronous oscillation of the wings. The elastic energy is primarily located at the neck, where the

maximum strain field occurs during the oscillations, while the leg remains at rest and the foot can be supported by the outer frame with negligible energy

dissipation. Graphs (b, e, h) refer to the balanced wheel oscillator. The central disk has a diameter of 0.54 mm, and the shape of the beams maintain it flat

during the motion (as shown by its homogeneous colour) reducing the dissipation on the 0.4-mm diameter optical coating. The four paddles are carefully

sized in order to balance the stress induced by the strain of the beams on the supporting wheel, such that the joints correspond to nodal points. An

additional external wheel further improves the isolation from the background. Graphs (c, f, i) refer to the L¼0.5-mm side, 30-nm thick, square membrane

of stoichiometric SiN membrane. Its high stress increases the mechanical quality factor thanks to the dilution effect.
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we report the values of the quadratic coefficient b measured for the membrane oscillator at different excitation amplitudes, with their 95% confidence

error bars (for appreciating the improvement in the accuracy, we just show the positive vertical semi-axis in logarithmic scale). For the two points at highest

amplitude, the measured b is significantly different from zero. The green lines show the interval of b calculated from the nonlinear behaviour observed in the

frequency domain for stronger excitation.
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lock-in procedure. The value of b inferred from such parameter
using Equation 7, is to ascribe to the relatively poor linearity of
the readout, and is therefore considered as an upper limit to
possible quantum gravity effects.

A model-independent constraint to possible effects of a
deformed commutator can be derived from the residual
frequency fluctuations Do, considered as a function of the
oscillation amplitude (reported in Fig. 2). To this purpose, we
summarize in Table 1 the maximum relative frequency shift and
the maximum dimensionless oscillation amplitude Q0(0), for the
different oscillator masses examined in this work. These data can
be used to test any modified dynamics and provide the
consequent upper limits to the involved parameters.

For a more accurate and specific bound, we focus on the model
described by Equations 7 and 8. The values and uncertainties in b
and b0 are obtained from b and from the third harmonic
distortion, using the oscillator parameters (namely, its mass and
frequency). In Table 1 we summarize our results for the different
upper limits, given at the 95% confidence level. The results for b0

are also displayed in Fig. 3 as a function of the oscillator mass,
and compared with some previously existing limits. We have
achieved a significant improvement, by many orders of
magnitude, working on systems with disparate mass scales and
considering different measured observables.

Discussion
We have performed an extended experimental analysis of the
possible dependence of the oscillation frequency and third
harmonic distortion on the oscillation amplitude in micro- and
nano-oscillators, spanning a wide range of masses. Assuming that
a deformed commutator between position and momentum
governs the dynamics through standard Heisenberg equations,
we obtain a reduction by many orders of magnitude of the
previous upper limits to the parameters quantifying the
commutator deformation. We remark that the measurements
have been performed on state of the art oscillators, allowing low
statistical uncertainty (because of the high mechanical quality
factor), low background noise (thanks to the shot-noise limited
detection and the cryogenic environment), high-frequency
stability (beyond the resonance linewidth), and the highest
excitation amplitude allowed by each oscillator. The latter
condition is not commonly explored in metrological micro- and
nano-oscillators31,32, and we could indeed achieve the limit given
by the intrinsic oscillators nonlinearity. These effects are not well
mastered at present, therefore we have kept the conservative
attitude of setting an upper limit to the overall nonlinear
behaviour, which includes possible quantum gravity effects.
A detailed modelling of the structural nonlinearity could allow
in the future to subtract their effects from our data (in particular
in the case of the DPO, for which the shape of Do versus q0 is
clearly different from a parabola), and thus set even stronger

limits to the remaining nonlinearity and actually to b0.
The mentioned crucial properties (high Qm, high-resonance
frequency at a given mass, high-frequency stability) must be
conserved or improved in possible further experiments aiming to
lower the bounds on the deformation parameters. We stress
however that, at present, the wall in our experiment is given by
dynamic range, actually determined by the structural nonlinearity
that should be reduced to improve the results. In this regard, an
interesting possibility to be explored is the use of high-quality
bulk crystalline resonators32,33.

Extending the use of the Heisenberg evolution equations with
deformed commutators from an ideal particle to a macroscopic
dynamics is not free from conceptual problems34.

A direct extrapolation from quantum to classical dynamics,
discussed, for example, in refs 35–37, implies crucial
consequences, the first being the violation of the equivalence

Table 1 | Results of the experiment.

Mass (kg) Frequency (Hz) Max. ampl. (nm) Max. Q0 Max. Dx/x0 b b0 Indicator

3.3� 10� 5 5.64� 103 600 6� 1010 4� 10� 7 7� 10� 29 3� 107 Do
3.3� 10� 5 5.64� 103 7� 10� 25 2� 1011 Third harmonic
7.7� 10�8 1.29� 105 8� 10� 24 5� 1013 Do
7.7� 10�8 1.29� 105 2� 10� 19 2� 1018 Third harmonic
2� 10�8 1.42� 105 55 7� 108 6� 10� 8 3� 10� 25 6� 1012 Do
2� 10� 11 7.47� 105 7.5 7� 106 4� 10�8 4� 10� 21 2� 1019 Do
2� 10� 11 7.47� 105 47 4� 107 3� 10�6 4� 10� 21 2� 1019 Do
2� 10� 11 7.47� 105 2� 10� 14 1� 1026 Third harmonic

Maximum relative frequency shifts measured for different oscillators, corresponding oscillation amplitudes, and upper limits to the deformation parameters b and b0 obtained in this work.

Mass (kg)
10–11 10–10 10–9 10–8 10–7 10–6 10–5 10–4

1036

1032

1028

1024

1020

1016

1012

108

104

100

� 0

Figure 3 | Upper limits to the deformed commutator. The parameter b0

quantifies the deformation to the standard commutator between position

and momentum, or the scale
ffiffiffiffiffiffi
b0

p
LP below which new physics could come

into play. Full symbols reports its upper limits obtained in this work, as a

function of the mass. Red dots: from the dependence of the oscillation

frequency from its amplitude; magenta stars: from the third harmonic

distortion. In the former data set, for the intermediate mass range

(10–100mg), we report the results obtained with two different oscillators.

Light blue shows the area below the electroweak scale, dark blue the area

that remains unexplored. Dashed lines report some previously estimated

upper limits, obtained in mass ranges outside this graph (as indicated by

the arrows). Green: from high-resolution spectroscopy on the hydrogen

atom, considering the ground state Lamb shift (upper line)21 and the 1S–2S

level difference (lower line)22. Magenta: from the AURIGA detector10,11.

Yellow: from the lack of violation of the equivalence principle39. The vertical

line corresponds to the Planck mass (22mg).
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principle38–40. Current bounds to such violation, obtained using
sensitive torsion balances41, correspond to a deformation
parameter b0o1021(ref. 39). Our limits are substantially lower.
Our model shows that remarkable deviations from classical
trajectories are, in any case, expected as soon as the momentum is
of the order of (or exceeds) mPc. This condition is straightforward
at astronomic level42, and even for kilogram-scale bodies. This
may either indicate the breakdown of the Eherenfest’ theorem at
all scales18 (requiring to revise the rules connecting quantum to
classical dynamics), or a possible mass dependence of the
deformation parameter. In this context our experiments,
involving a wide range of masses, taking as ‘natural’ reference
the Planck mass, become particularly meaningful. Our
experimental results, when used to set limits on the deformed
commutator described in Equation (2), should not be simply
intended as a check of possible deformations of quantum
mechanics, but as a test of a ‘composite’ hypothesis, involving
also the form of the classical limit corresponding to the modified
quantum rules.

As a second general remark, it should be underlined that the
role of the c.m. coordinates in a deformed space is still a matter of
debate. As recently remarked in ref. 43, the motion of the c.m.
typically do not involve a Planck energy concentrated in a
Planck-scale volume. In the same article, the author constructs a
deformed commutator for a composite system starting from a
number N of elementary constituents, and shows that the
deformation parameter should scale as N� 2. Therefore, even
assuming the constituent particles to be affected by Planck scale
physics, the c.m. of a composite macroscopic body would be
much more weakly affected. This approach leads to the
interesting (maybe troubling) conclusion that free elementary
particles should feel quantum gravitational effects in a different
way with respect to, for example, protons or atoms or, in other
words, that spacetime properties should depend on the kind of
particle22,44. We further remark that, at the present stage, we do
not know at which constituent-particle level quantum gravity
effects could intervene44, and there are no theories even
suggesting what such ‘elementary constituents’ should be. Other
works suggest instead that the effects should scale as the number
of elementary interactions45.

A different point of view is to consider the effects of an
intrinsically discrete spacetime on the dynamics of a quantum
system. We remark that, in quantum mechanics, the wavefunc-
tion associated to the c.m. has properties that cannot be simply
reduced to the coordinates of the constituent particles. It has been
shown that a discretization of spacetime, (for example, related to
the creation and annihilation of particle–antiparticle pairs) would
naturally suggest discretization of the Hilbert space associated to
the considered quantum system46. Although our universe might
still be infinite in extent, any experiment or observation involves
just a finite region of spacetime. In ref. 47 is investigated the
emergence of extended uncertainty relations for discrete
coordinate and momentum operators in such finite discrete
configuration spaces, which can be formulated in the form of a
GUP. In this context, deformed commutators appear as the
manifestation of the background discreteness, with the minimal
scale being a fundamental property of spacetime. In this case, one
could expect also the low-energy motion of a macroscopic body
to be affected, independently on the measurement process.

Although all these approaches are formally correct, they
rely on very different hypothesis, whose validity should be
checked by experimental measurements. This represents a
strong motivation for the realization of experiments involving
macroscopic mechanical oscillators. We notice that clear
quantum signatures have been recently obtained even in
‘macroscopic’ nano-oscillators48–51 very similar to those

exploited in this work, suggesting that well isolated mechanical
oscillators are indeed privileged experimental systems to explore
the classical-to-quantum transition. Since gravity effects could
have a role in the wavefunction decoherence that marks such
transition52,53, and it cannot be excluded that quantum gravity is
inextricably linked to peculiar quantum features, an intriguing
extension of the present experiment (or a similar investigation)
would naturally be performed with macroscopic oscillators in a
fully quantum regime.
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