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Chapter 1 

 

Introduction 

1.1 Overview 

In this introductive chapter different points related to the phosphorus 

chemistry will be mentioned. The opening section reports a general 

description of the element phosphorus and its allotropic modifications 

before taking into detailed consideration the reactivity of white 

phosphorus, emphasizing on the production of organophosphorus 

compounds through catalytic processes involving the activation of P4 

mediated by transition metal complexes. The second section reports a 

brief introduction about the importance of phosphines ligands in catalysis, 

particularly addressing the role of fluorophosphine ligands. Finally, the 

last section deals with the synthesis of metal phosphides nanoparticles, 

which are of great interest on diverse fields, particularly in catalysis, 

aiming at P4-derived metal phosphide nanoparticles. 
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1.2 The element Phosphorus 

Phosphorus (P) is a chemical element whose name is derived from the 

Greek φώς ‘phos’ meaning “light” and φόρος ‘phoros’ meaning “bearer”. 

It is the 11th element most abundant on the earth and it is essential to all 

life. The average human body contains about 650 grams of P. It is 

necessary for the formation and maintenance of bones and teeth in all 

vertebrates, mainly in the form of hydroxyapatite [Ca10(PO4)6(OH)2]. 

Phosphorus, as phosphate form, is vital at cellular level. It is a key 

structural component of DNA and RNA, being part of the backbone of the 

molecule, sugar phosphates form the helical structure of every molecule. 

It provides the orientation of the phospholipids and, consequently, the 

structural characteristics of the cell membrane. ATP (adenosine 

triphosphate) is the principal molecule responsible of the intracellular 

energy transport.1,2 

 

1.2.1 Allotropes of elemental phosphorus 

Phosphorus as elemental form has different allotropes: white, red, violet 

and black.3 

White phosphorus [P4] is the most common and reactive and the least 

stable allotrope of phosphorus. It is a waxy white or yellowish solid, with 

a characteristic garlic smell and it is highly flammable when it is in 

contact with air. Industrially, production of white phosphorus uses the 

Boyle process, see Scheme 1.1., where phosphate rocks are reacted with 

silica (melting agent) and coke (reducing agent) in an electric furnace at 

1400–1500 °C. At these temperature, phosphate anion is reduced to 
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phosphorus vapor P2, which is condensed into solid P4 under water,4 the 

suitable medium used to store it avoiding its violent oxidation or air 

combustion. Besides, different methods of purification of white 

phosphorus are used. 

 

Ca3(PO4)2 + 3 SiO2 + 5 C � P4 + 3 CaSiO3 + 5 CO 

Scheme 1.1. Industrial production of white phosphorus. 

 

White phosphorus has a unique structure formed by discrete tetrahedral 

tetraatomic molecules with P-P distances of 2.21 pm and P-P-P angle of 

60°, see Figure 1.1. Depending on the temperature and pressure, three 

modifications of white phosphorus (α−, β−, γ−) are possible. α-P4 form 

occurs at room temperature as a body-centered cubic plastic crystal with 

P4 molecules dynamically rotating around their centers of gravity. β-P4 

form exhibits an hexagonal crystal structure, whose molecules have fixed 

orientations. It is stable at room temperature and pressure higher than 1.0 

GPa or at temperatures below 197 K and ambient pressure. Instead, γ-P4, 

triclinic modification, is also stable at low temperature but up to 160 K.5 

 

 

Figure 1.1. a) solid white phosphorus. b) tetrahedral structure of white 
phosphorus. 

 

White phosphorus melts at a temperature of 44 °C. When P4 is heated 

upon 800 °C, dissociation on phosphorus vapor containing diatomic P2 
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molecules starts, being this latter the thermodinamically stable form at 

temperatures above 1200 °C. At temperatures above 2000 °C, the 

diphosphorus molecule is dissociated into atomic phosphorus.6 

White phosphorus is extremely toxic, hepatic and renal damages are 

observed as well as blood disorders, such as anemia and leucopenia.7 

Besides, in the 19th and early 20th, prolongued exposures to white 

phosphorus without proper safewards in matches industry led to a bone 

osteonecrosis in the jaws, chronic disease commonly called “Phossy 

jaw”.8 

 

Red phosphorus [Pn] is an amorphous polymeric material, made of long 

chains of phosphorus atoms, much more stable, less reactive, less toxic 

and easy to handle. It ignites exposed to air at temperatures only above 

240 °C or by a strong impact or friction at room temperature. It oxidizes 

slowly at room temperature emitting phosphorescence. Red phosphorus 

can be prepared exposing white phosphorus to sunlight or on heating at 

250-350 °C, using iodine as catalyst. It can be transformed into white 

phosphorus after heating up to 260 °C.9 It is a component of striking 

surfaces for safety matches.10 

 

 

Figure 1.2. Molecular chain structure of red phosphorus.  

 

Violet phosphorus, also called ‘Hittorf phosphorus’, is a crystalline 

monoclinic or rombohedral allotrope. It is also much less reactive than 
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white phosphorus and it is not conductor of the electricity. It is obtained 

after heating red phosphorus for a long time at 530 °C. It can also be 

prepared by dissolving white phosphorus in molten lead at 500 °C. It does 

not ignite below 400°C, it is not poisonous and does not glow in the air.11 

 

Black phosphorus is the most stable allotrope of phosphorus and the least 

reactive. It can be prepared from white phosphorus at high pressure,12 

using mercury as catalyst,13 or liquid bismuth14 or from red 

phosphorus.15,16 Black phosphorus has high density. It crystallizes in 

orthorhombic form at standard conditions consisting of parallel puckered 

double layers.17 Optical,18 semiconducting,19 properties of black 

phosphorus have been described. 

 

 

Figure 1.3. Crystals of black phosphorus. 

 

As graphite, black phosphorus can be exfoliated either by Scotch tape 

method or by liquid phase exfoliation, producing a 2D material, named 

phosphorene. Exfoliated few-layer black phosphorus see Figure 1.4., are 

very sensitive to air, moisture and light, studies on its degradation are in 

progress, meanwhile a variety of applications as in FET (field effect 

transistors), solar cell, lithium and sodium ion batteries, or gas sensors 

have been demonstrated.20 
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Figure 1.4. Single layer black phosphorus a) top view b) side view.21 

 

1.3 Reactivity of white phosphorus 

The high reactivity and instability of P4 is related to the high bond strain 

energy of the tetrahedron cage.22 The general reactivity pattern of P4 is 

shown in Scheme 1.2., electron lone pairs at the P apexs and the filled σ-

orbital of the P-P bonds are the places of main nucleophilicity where the 

outer electrophile is directed. 

 

 

 

Scheme 1.2. Reactivity pattern of white phosphorus in the presence of 
electrophiles and nucleophiles. 
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Ab initio calculations on the protonation of P4 cage were reported23 

showing the favored protonation is carried out at a vertex of the P4 

molecule, followed by an edge protonation. Besides, computational 

methods to calculate the basicity of P4 in gaseous phase were described 

revealing that the stability of H+ bridged opened P-P edge structure is 

45.2 kJ mol-1 more than an apex-attached molecule.24 

White phosphorus may react with electrophiles only in the presence of a 

previously added nucleophile. Indeed, after a nucleophilic species has 

promoted the cleavage of a P-P bond of the P4 cage a site with electron 

density, as shown in Scheme 1.3., is generated at the opposite wing, 

which is then prone to react with an electrophile. Strong nucleophiles 

drive the equilibrium to the right, while the reaction of P4 with a weak 

nucleophile is pushed onwards by the presence of an electrophile. 

 

 

 

Scheme 1.3. 

 

The nucleophilic attack on white phosphorus by main group element or 

transition metals has historically been one of the most studied methods of 

white phosphorus derivatization and will be discussed in the following 

sections. 
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1.3.1. Activation of P4 by main group element 

Activation of white phosphorus by alkali metals gives the formation of 

alkali metal phosphide or oligophosphides, depending on the conditions 

and the stoichiometry of the reaction. The reactivity of half equivalent of 

white phosphorus with the organomagnesium complex [(LDipp)Mg(n-Bu)] 

(LDipp= 2,6-iPrC6H3) was recently studied25 and led to the formation of a 

new dinuclear complex [(LDipp)Mg]2[n-Bu2P4] (1) bearing a non-planar 

functionalized dianion, [n-Bu2P4]2- as shown in Scheme 1.4. By adding to 

the starting organomagnesium reagent a stoichiometric amount of P4 and 

keeping for one week at room temperature, the dimer [(LDipp)Mg]2[n-

Bu2P8] (2) containing the cluster dianion [n-Bu2P8]2- was isolated. The 

latter could be obtained as well by heating [(LDipp)Mg]2[n-Bu2P4] for 2 

days. 

 

 

Scheme 1.4. P4 activation with an organomagnesium complex. 

 

Intriguing studies from the group of Guy Bertrand, highlight carbenes as 

highly potential candidate to activate white phosphorus affording its 

fragmentation or re-aggregation. Carbonyl-decorated carbenes (CDCs) 
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are a kind of carbenes containing different number of carbonyl groups in 

different positions in the backbone. They are very reactive and the 

activation of white phosphorus is analog to the N-heterocyclic carbenes 

(NHCs), the most nucleophilic carbenes, which lead to the formation of 

P12-containing compound capped by two NHC ligands.26 In case of 

CDCs,27 the electrophilicity of the carbenes influences the product. For a 

weakly electrophilic carbene, the linear P4-diphosphene 3 is formed while 

using a strongly electrophilic carbene the P8 cluster 4 is obtained. 

(Scheme 1.5.) 
 

 

 

Scheme 1.5. Reaction of white phosphorus with carbonyl-decorated carbenes. 

 

In case of electrophilic cyclic six-membered diamido carbenes, (DACs) a 

donor stabilized P8 unit can be prepared from white phosphorus. This P8 
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cluster, as for 4, could also be prepared with the less electrophilic cyclic 

(alkyl)(amino) carbenes (CAACs) if P4 is in excess, suggesting that the 

outcome of the reactions of carbenes with white phosphorus could be 

influenced by stoichiometry,28 in contrast with the P4-bearing molecules 

favor the diastereoselective formation of two phosphorus-carbon bonds. 

In addition, the reaction of white phosphorus with the extremely 

electrophilic seven-membered cyclic benzamidocarbene shown in 

Scheme 1.6. led to the isolation of an organophosphorus derivatives 

where P4 has a butterfly geometry 5, resembling the eta-2 coordinated 

towards a metal center.29 

 

 

 

Scheme 1.6. Reaction of seven membered cyclic benzamidocarbene with white 
phosphorus. 

 

1.3.2 Activation of P4 by transition metals 

After the discovery in the 70’s that metal complexes can coordinate, 

activate and transform white phosphorus, a period of intensive research 

on the topic associated with transition metal-mediated activation of P4 

started.  
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As summarized by the right side of Scheme 1.7., white phosphorus is 

nowadays the starting material to synthesize most of the 

organophosphorus compounds, by following the chlorination route. This 

encompasses the reaction of white phosphorus with chlorine to afford 

either PCl3 or POCl3; in a following step the phosphorus chlorides are 

used to carry out the phosphorylation of an organic substrate to eventually 

afford the desired organophosphorus derivative. This worldwide used 

industrial technology is environmentally harmful because requires large 

quantities of Cl2 and a huge amount of HCl is formed as by-product, 

requiring high cost for its proper disposal. For this reason, the ideal, 

environmentally friendly process that may combine directly white 

phosphorus and an organic compound, could be a catalytic process, 

mediated by a transition metal complex as shown in the left side of 

Scheme 1.7. In the latter route, a metal-mediated catalytic process would 

involve the presence of oxygen as mild oxidant and would produce water 

as a by-product.30 
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Scheme 1.7. Traditional (right) and catalytic (left) routes to synthesized 
organophosphorus compounds 

 

A relevant contribution on this regard comes from Kilian et al.31, who 

recently found out that P4 can react with phenol in aerobic conditions in 

the presence of iodine and Fe(acac)3 as catalyst affording quantitative 

conversion to triphenyl phosphate and producing as by-product only 

water. Mechanistic studies were carried out to understand the reaction 

pathway and in particular the rate-limiting steps in order to optimize the 

process. Iodine, also used in catalytic amount, served to oxidize P4 to 

P(III) by forming PI3. Additionally, it was observed that the reaction did 

not proceed under anaerobic conditions, being oxygen indispensible first 

to oxidize P(III) to P(V) in the catalytic step where PI3 reacted with 

phenol. Secondly, O2 was responsible for the re-oxidation of the by-

product HI back to iodine, as shown in Scheme 1.8. The reaction, carried 

out at 80 °C and with a loading of 25 mol% Fe(acac)3, was applied 



Chapter 1 

14 
 

successfully also to functionalized phenols giving high conversion and 

very good selectivity. 

 

 

 

Scheme 1.8. Iron-catalyzed aerobic reaction of white phosphorus with phenol. 

 

The feasibility of a catalytic process, in which white phosphorus is 

selectively and quantitatively converted into highly valuable phosphines 

was shown by Cummins32 who published a niobium-mediated catalytic 

cycle producing phosphorus-rich organic molecules from P4 through 

activation, functionalization, and transfer reactions. 

Recently, Diaconescu and co-workers33 explored the activation of white 

phosphorus in the presence of early transition metals aiming to the 

development of a catalytic protocol to transform P4 directly into 

organophosphorus compounds. The direct reaction of P4 with group 3 

metal complexes, [(NNfc)Sc]2(µ-C10H8) [(Sc2-naph)] and 
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[(NNfc)Y(THF)]2(µ-C10H8) [Y2-naph)], where NNfc = 1,1’-

fc(NSitBuMe2)2, fc = ferrocenylene, naph = naphthalene (µ-C10H8), leads 

to the formation of a polyphosphide cage, P7
3-, also known as Zintl anion, 

which behave as a ligand for scandium and yttrium, see Scheme 1.6. 

Reaction of both Sc3P7 and Y3P7 with three equivalents of Me3SiI gave 

(Me3Si)3P7 and yielded as by-product the salt scandium/yttrium iodide, 

which can coordinate the ferrocenylene and naphathalene ligands yielding 

back the arene complex capable of further activating an equimolar amount 

of P4 closing the catalytic cycle, as shown in Scheme 1.9. This constitutes 

the first example of transferring the Zintl anion [P7]3- to an organic 

species and establishes a synthetic cycle for the direct transformation of 

P4 into an organophosphorus cage. 

 

 

 

Scheme 1.9. Catalytic cycle mediated by either scandium or yttrium. 
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Organophosphorus compounds have a plethora of applications. They are 

used in agriculture, as pesticides or herbicides, in catalytic processes as 

ligands towards metal centers, in the industry of lubricants, flame 

retardants and additives for plastic materials and are becoming more and 

more important in different biological fields with special attention to 

antiviral compounds and specific drugs for the treatment of bone tissue 

deseases. Military and nuclear industry applications complete the large 

scenario of uses of organophosphorus compounds. Therefore, there is a 

great interest on the development of eco-friendly pathways for the 

preparation of such derivatives, in particular the search for catalytic 

processes that blends P4 with organic substrates, represents a very 

important target for industry. This has stimulated several academic and 

industrial research teams to study the activation of P4 by a metal complex, 

in stoichiometric ratio, thus mimicking the initial step of a possible 

catalytic cycle capable of affording specific organophosphorus derivatives 

from elemental phosphorus and organic substrates. 

Since the discovery in 1971 by Ginsberg and Lindsell that P4 can react 

with the Wilkinson complex34 affording the first transition metal complex 

containing white phosphorus as a ligand [Rh(PPh3)2Cl(η2-P4)] 6, see 

Scheme 1.10., the reactivity of P4 towards a variety of transition metal 

fragments has been studied. 
 

 

Scheme 1.10. Synthesis of [Rh(PPh3)2Cl(η2-P4)] 
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Various coordination topologies of white phosphorus towards the metal 

center have been elucidated and are summarised in Scheme 1.11. 

 

 

 

Scheme 1.11. Coordination modes of P4 towards a transition metal. 
 

Some representative examples on the activation of white phosphorus 

mediated by late transition metal fragments showing the different 

coordination modes willbe described below. 

The first complex containing the intact η1-P4 ligand was prepared by 

Sacconi et al.35 By reacting the trigonal pyramidal complex [(NP3)Ni] 

where [NP3 = N(CH2CH2PPh2)3] with P4 at 0 °C, a N-Ni decoordination 

took place while white phosphorus enters into the coordination sphere of 

nickel as monohapto tetrahedro-tetraphosphorus ligand forming the 

product [(NP3)Ni(η1-P4)] 7 (Scheme 1.12.) where a tetrahedral geometry 

around the metal is achieved. 

 

 

 

Scheme 1.12. Preparation of [(NP3)Ni(η1-P4)] 
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After the work of Sacconi, Stoppioni and Peruzzini have successfully 

carried out the coordination of white phosphorus as an intact tetrahedro-

η1-P4 ligand towards a variety of metals including rhenium, cobalt, 

rhodium, iron, ruthenium and osmium. Of particular interest, the synthesis 

of metal complexes of formula [CpRM(L)2(η1-P4)]+ (CpR = C5Me5, M = 

Fe, L = ½ dppe 8; M = Ru, L = PEt3 9a, dppe 9b.36 CpR = C5H5, M = Os, 

L = PPh3 10;37 M = Ru, L = PPh3 11a,38 ½ dppe 11b39) was carried out in 

mild conditions as shown in Scheme 1.13. Complexes bearing Cp ligand 

need firstly the abstraction of the chloride ligand by the action of a 

chloride scavenger as AgOTf or TlPF6, followed by the addition of P4. 

These compounds, although may be manipulated in the air without 

decomposition, are not stable towards traces of water, because the P4 

moiety a complicated metal-mediated hydrolytic process resulting in the 

formation of PH3, which coordinates to ruthenium and free oxyacids, 

including H3PO3, H3PO2, and, likely, H3PO. On the other hand, the 

addition of a chloride scavenger is not neccesary for complexes bearing 

Cp*, where the chloride ligand is easily displaced by P4. Unexpectedly, 

these latter complexes are stable towards hydrolysis at room temperature. 

 

 

 

Scheme 1.13. Synthesis of complexes [CpRM(L) 2(η1-P4)]+. 
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As reported above, after the first complex bearing P4 as a dihapto ligand, 

[Rh(PPh3)2Cl(η2-P4)], was prepared by Ginsberg, analog rhodium and 

iridium complexes containing phosphines other than triphenylphosphine 

were prepared.34  As shown in Scheme 1.14., Scherer et al.40 prepared the 

complex [Cp*Co(η2-P4)(CO)] 12 by thermolysis of the dimer [Cp*Co(µ-

CO)]2 in the presence of an excess of white phosphorus at 60 °C and after 

loosing a CO, a complex incorporating P4 as a dihapto ligand was 

isolated. 

 

 

Scheme 1.14. Synthesis of [Cp*Co(η2-P4)(CO)] by thermolysis. 

 

Reaction of the highly reactive complex [Ir(dppm)2]OTf (OTf = CF3SO3, 

dppm = Ph2CH2PPh2) with white phosphorus at room temperature 

resulted in the nucleophilic attack of one terminal Ph2Pend of the dppm to 

the P4 molecule, leading to [Ir(dppm)(Ph2PCH2PPh2PPPP)]OTf (13) 

which contains a new unexpected ligand constituted by a chain of five 

phosphorus atoms, Ph2PCH2PPh2PPPP, coordinated to iridium. 13 

exhibits a pseudo-octahedral coordination around the metal, see Scheme 

1.15. A possible resonance structure of this ligand containing a dihapto 

P=P bond is also shown. On the other hand, the same reaction carried out 

at -40°C allowed us to isolate the iridium complex [Ir(dppm)2(η2-P4)]OTf 

(14) where white phosphorus behaves as a dihapto ligand, assuming a 

butterfly geometry.41 Reaction of 13 with water in the presence of an 
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amine allowed the functionalization of the polyphosphorus ligand 

Ph2PCH2PPh2PPPP and gave[Ir(κ2-dppm)(κ1-dppm){η3-P3P(O)H}] 15 

that displays a rare η3-P3P(O)H puckered tetraphosphabutadienylide 

ring.42 

 

Scheme 1.15. Synthesis of the complexes 14 and 15. 

 

While η1- and η2-P4 species were well known since the first studies 

dealing with the coordination chemistry of P4, the first example of η3-P4 

coordination topology was reported in 2010 by Driess et al.43 As shown in 

Scheme 1.16., white phosphorus was reacted with dinuclear β-

diketiminate nickel(I) complexes affording dinuclear derivatives 

[(LNi I)2P4] (L: L iPr = CH[CMeN(2,6-iPr2C6H3)]2 16a, LEt = 

CH[CMeN(2,6-Et2C6H3)]2 16b) bearing a double η3-P4 moiety, where 

three phosphorus atoms are coordinated to each metal center without 

reduction of P4. These complexes are diamagnetic in the solid state but 

16a can reversibly dissociate in solution into a paramagnetic η2-P4 NiI 

complex 17 and [(LiPrNi)2·(toluene)]. 
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Scheme 1.16. Activation of P4 mediated by β-diketiminate nickel(I) 
complexes. 

 

Driess et al.44 studied also the reactivity of white phosphorus with β-

diketiminato cobalt(I) complexes and isolated successfully the first 

complexes bearing the neutral tetraphosphacyclobutadiene ligand 

[(LCo)2(µ2:η4,η4-P4)] (L: LDipp = CH[CHN(2,6-iPr2C6H3)]2 18a, LDep = 

CH[CMeN(2,6-Et2C6H3)]2 18b), (Scheme 1.17.), whose molecular 

structure contains a [Co2(µ2:η4,η4-P4)] octahedral core, coordinated by 
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two slightly puckered β-diketiminato ligands. The P4 unit featured by 

complexes 18 is planar with two long and two short P-P bonds which 

form a rectangular arrangement of P-atoms. These complexes are 

diamagnetic in the solid state but their dissociation in solution led to 

paramagnetic species, as described above for Ni(I) complex 16a. Mixed-

valent monoanionic complexes [(LCoII/III )2(µ2:η4,η4-P4)][K(DME) 4] (L = 

LDipp 19a, LDep 19b; DME = dimethoxyethane), containing an almost 

square planar cyclo-P4
2- unit, with π-electron delocalization within the P4 

ring, were isolated after reduction of 18 with an equimolar amount of KC8 

(see Scheme 1.17.).  
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Scheme 1.17. Activation of P4 mediated by β-diketiminato Co(I) complexes. 

 
Treatment of [(LDippFeI)2toluene] with P4 gave the dinuclear complex 

[(LDippFeIII)2(µ2:η2,η2-P2)2] (20) with two dianionic P2 units, see Scheme 

1.18. Further reduction with KC8 afforded the mixed-valent complex 

[(LDippFeII/III )2(µ2:η2,η2-P2)2] [K(THF)6] (21), with geometrical parameters 

of the ligands almost identical to those observed for the precursor; only a 
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slight variation on the P-P distances was observed. All these complexes 

are paramagnetic in solution and in the solid state.45 (Scheme 1.18.)  
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P

P P

FeLDipp

P

KC8

-

THF, DME
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+

20 21  

Scheme 1.18. Synthesis of β-diketiminato trivalent and mixed-valent Fe 
complexes. 

 

Recently, it was shown that the metal-mediated activation of white 

phosphorus can proceed as well by a radical mechanism. A contribution 

by Cummins’ group showed that trialkyl, triaryl, trisilyl and tristannyl 

phosphines can be prepared directly from P4 through a radical reaction 

mediated by a titanium complex, in stoichiometric amount respect to P4.46 

Wolf et al.47 performed the reaction of the 17e- nickel(I) radical 

[CpNi(LDipp)]with P4 which resulted in the nickel tetraphosphide 

[{CpNi(L Dipp)} 2(µ-η1:η1-P4)] (22), as shown in Scheme 1.19., with a 

butterfly-P4
2- ligand bridging the two metal centers. 

 

 

 

Scheme 1.19. Synthesis of the novel [{(C5H5)Ni(LDipp)} 2(µ−η1:η1P4)]. 
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Activation of white phosphorus mediated by hindered CpR radicals was 

studied by Scheer et al.48 Starting from a copper or iron salt in the 

presence of substituted cyclopentadienes, see Scheme 1.20., a radical 

{CpR} · is formed that easily reacts with P4 through a selective cleavage of 

one P-P bond and led to the formation of a new family of butterfly 

organophosphorus compounds CpR
2P4 (CpR: CpBIG = C5(4-nBuC6H4)5) 

23a, Cp’’’ = C5H2
tBu3 23b, Cp* = C5Me5 23c, Cp4iPr = C5H4

iPr 23d). 

While the “copper route” works only for CpBIG, the “iron route” has the 

advantage to be extended to other CpR, as shown in Scheme 1.20. This 

provides a practical and safe pathway to activate selectively white 

phosphorus through a stoichiometric process mediated by a transition 

metal. 

 

 

Scheme 1.20. Activation of white phosphorus by hindered organic radicals. 

 

Beyond the coordination topologies of P4 towards a metal shown in 

Scheme 1.11., fragmentation of white phosphorus into P3, P2 or P units or 

re-aggregation to form Pn cluster, where n>4, were observed. A recent 

example of fragmentation49 was observed in the reaction of oxidative 
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addition of P4 to the dimer trans-[RhICl(CO)(dppm)]2. As shown in 

Scheme 1.21., the first RhII carbonyl dimer [RhII2(CO)2(µ-dppm)2(µ,η2-

P2)]24 containing a diphosphenyl µ,η2-P2 (µ-κ2:κ2-P2) ligand was isolated 

and characterized by X-ray structure analysis. 

 

 

 
Scheme 1.21. Activation of P4 mediated by a rhodium A-frame dimer. 

 

Scheer and co-workers50 studied the reactivity of white phosphorus 

towards the cobalt dimer {[Cp’’’Co] 2(toluene)} where Cp’’’= η5-1,2,4-
tBu3C5H2 which easily decomposes in solution to give electronically 

unsaturated 14-valence-electron [Cp’’’Co] moiety. The latter reacts with 

P4 under mild conditions and shows the ability to stabilize large Pn units. 

Using an excess of P4, or changing the reaction conditions, such as 

temperature and reaction time, the formation cobalt-coordinated 

phosphorus cages of different size, such as P8, P12, P16 and P24, was 

accomplished (see Scheme 1.22.) 
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Scheme 1.22. Preparation of P8, P12, P16 and P24 cobalt clusters from white 
phosphorus and [Co2(µ2,η6,η6-C7H8)] depending on the reaction conditions. 
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1.4 Phosphines and related compounds 

Phosphines are a class of organophosphorus compounds with oxidation 

state of phosphorus -3. Phosphine, PH3, is the most simple phosphine. It 

is a colourless, flammable, toxic gas. Industrially, its production is 

accomplished by boiling white phosphorus with a strong basic solution in 

atmosphere of coal gas or hydrogen.51 

 

 

 

Substitution of hydrogen atoms of PH3 by alkyl or aryl groups gives 

primary (RPH2), secondary (R2PH) and tertiary phosphines (R3P). Like 

amines, phosphines have pyramidal geometry with an electron lone pair 

on the central P-atom that can be donated to electrophilic centers. 

Phosphines are widely used as ligands for transition metals because of 

their extreme versatility in term of both steric hindrance and electronic 

properties. The analysis of the structure-activity relationship is a keyword 

on the design of new ligands.52 For instance, chiral phosphine ligands are 

used as ligands in asymmetric catalysis.53 Different factors, such as 

electronic contributions, steric bulk or bite angle size, influence the 

bonding of phosphorus donor ligands to transition metals and afterwards 

the resulting catalytic activity of the coordination complexes is affected. 
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1.4.1 Electronic and steric properties 

Phosphines possess an amphoteric electronic character, since metal-

phosphine bonding can be explained by σ-donation, effective dative 

electron donation of the phosphorus lone pair towards empty metal 

orbitals and π-acidity, referring to the acceptance (back donation) of 

electron density from filled metal orbitals to empty ligand orbitals (σ*P-

R). (Scheme 1.21.) Phosphine ligands can be strong π-acceptors, if R is 

an electron with-drawing substituent, favoring the π-acceptor 

backbonding, or weak π-acceptors if R is an electron–donating one.54 For 

example, phosphines, like PMe3, PEt3 or PMe2Ph are strong σ-donors and 

poor π-acceptors. On the other hand, phosphites, like P(OMe)3, P(OPh)3, 

are weak σ-donors with a strong π-acidity character. The effect of the σ-

donation and π-back-donation in transition metal complexes can be seen 

as a result of the symmetry of the orbitals involved in the metal 

phosphorus bonding. 

 

 

 

Scheme 1.21. P→M σ-donation, M→P π- backbonding. 

 

Steric parameters are closely related with electronic effects. For 

monodentate phosphine ligands, metal-ligand bondings are affected by 

both the electronic and steric properties of the ligand. Tolman55 

introduced the “cone angle θ" concept to quantify the size of the ligand, 
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i.e. the steric bulk, see Scheme 1.22. This parameter controls the 

reactivity of transition-metal complexes in terms of ligand dissociation 

rates, insertion barriers, cis-trans isomerization, and so on. Allen and co-

workers56 developed a computational method to determine the exact cone 

angle applicable to any ligand tied to a metal center. 

 

 

 

Scheme 1.22. Tolman’s cone angle (θ) of a phosphine bound to a metal. 

 

A geometric parameter associated to any chelating ligand, but meanly to 

diphosphines, is the "bite angle effect" (β), see Scheme 1.23. 

Diphosphines are a kind of chelating ligand, consisting of 2 phosphine 

groups bridged by a backbone. They have the capacity to increase the 

stability and, in some cases, the regio- and the stereoselectivity of the 

catalytic system. Two different effects are related to the bite angle of 

diphosphines affecting the properties of the metal complexes. On the one 

hand, the steric bite angle effect which is related to the steric interactions 

(ligand–ligand or ligand–substrate) around the metal complex generated 

when the backbone is modified and keeping the substituents at the 

phosphorus donor atoms constant. The resulting steric interactions can 

change the activity or selectivity of the catalytic system. On the other 

hand, the electronic bite angle effect is referred to electronic 

modifications at the catalytic metal centre when the bite angle of the 
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bidentate ligand is changed. The bite angle determines metal 

hybridisation and, as a consequence, metal orbital energies and reactivity, 

thus, it could be described as an orbital effect. Both effects, different in 

nature but with the same origin, affect in different way and are connected 

when diphosphines with variable bite angles are used.57 

 

 

Scheme 1.23. Measurement of the bite angle β and the cone angle θ in bidentate 
phosphines. 

 

1.4.2 Halophosphines 

Halophosphines, PX3 (X = halogen) are a special kind of 

organophosphorus compounds whose formal oxidation number is +3. 

Especially, chlorophosphines have great interest in organic and inorganic 

chemistry and play an important role for the manufacturing of 

organophosphorus compounds.58 Fluorophosphines are a class of ligand 

barely studied, in spite of their strong π-accepting properties, similar to 

carbon monoxide, with high ability to stabilize transition metal fragments. 

Historically, different methods for the synthesis of fluorophosphines have 

been described using a variety of mild or strong fluorinating agents 

according to the different precursors. Coordination of the highly toxic PF3 

gas under harsh conditions directly to the metal fragment,59,60,61 chlorine-
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fluorine exchange in chlorophosphines, using fluoride salts,62,63,64 or 

conversion of phosphorus oxyacids using α-fluoroenamines or cyanuric 

fluoride65 are just a few examples of the many synthetic methodologies 

followed for the preparation of fluorophosphines. Due to their instability 

towards redox disproportionation,66 only few applications of 

fluorophosphines in catalysis have been described. In spite of the high 

conversion on the olefin-hydrogenation reaction in the presence of 

[RhH(PF3)(PPh3)3].67 Nixon et al.68 studied the catalytic activity of 

different Ru(II) complexes bearing fluorophosphines of general formula 

[RuH(PRF2)x(PPh3)4-x] (R = NMe2, F; x = 1, 2) whose activity was slight 

or non-existent in 1-octene hydrogenation. Pringle69 prepared 

fluorophosphines ligands having a phosphatrioxa-adamantane and 

phospha bicyclic backbone. They resulted to be thermally stable and, 

once coordinated to rhodium or nickel, their catalyitic activity was 

studied. The new complexes showed to perform as well as, or better than 

commercial rhodium complexes in the hydroformylation of 1-heptene and 

commercial nickel complexes in the hydrocyanation of 3-pentenenitrile. 

 

1.5. Metal Phosphides 

Transition metal phosphides, whose general formula is MxPy, are well 

known for their capability to form a great variety of binary phases with 

compositions spanning from metal-rich to phosphorus-rich (i.e. Cu3P to 

MnP4). They are endowed with peculiar electronic properties that open to 

a broad number of applications.70 Phosphorus-rich MPx phases have been 

described as promising material for Li-ion battery electrodes,71 on this 

regard, the first study appeared in 2002 describing the Li-uptake by a 
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Co2P electrode.72 One of the most interesting applications is their catalytic 

activity, since the 1990s metal phosphide nanoparticles have been applied 

in hydrotreating reactions.73 Some studies on electronic applications, such 

as the use of semiconducting Zn3P2 nanowires as metal–insulator–

semiconductor field-effect transistors74 was reported. Further applications 

as initiators on nanostructures growth, as well as optical and magnetic 

uses have been described.70 

The synthesis of metal phosphide nanoparticles requires a strict control of 

the process because several characteristics as composition, shape, size and 

crystallinity are strongly dependent on the reaction conditions: 

stoichiometry of the reagents, temperature, metal and phosphorus 

precursor, reducing agent, reaction time and medium.75 Generally, metal 

phosphide nanoparticles can be obtained by thermal treatment of Mn+ or 

M0 organometallic precursors or directly from preformed metallic M(0) 

nanoparticles. Different ‘P’ sources can be used for these purposes. 

Phosphine PH3, generated in situ from sodium hypophosphite (NaH2PO2) 

in basic hydrotermal conditions has been the P-source in the synthesis of 

nickel phosphide nanoparticles,76 also PH3 produced by addition of HCl 

on Zn3P2 or Ca3P2, in situ or as secondary reaction, respectively, was used 

for the synthesis of indium phosphide nanoparticles.70 Due to the high 

toxicity of PH3, the preparation of metal phosphides using phosphines as 

safer alternative ‘P’ sources was preferred. Tris-n-octylphosphine (TOP) 

has been used not only as capping agent to stabilize metal nanoparticles, 

but also as ‘P’ source.77 Actually, it is the most often P-source used in the 

formation of metal phosphide nanoparticles due to its low toxicity. 

Generally, formation of metal phosphide nanoparticles using TOP is 

produced from preformed metal nanoparticles or metal (0) precursors by 
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thermal decomposition, requiring temperatures of ca. 300 °C. The use of 

other phosphines, such as PEt3 or PPh3 or even, highly reactive 

phosphines, such as P(SiMe3)3 or P(GeMe3)3, have also been studied. 

Phosphorus as elemental form can be also used as ‘P’ source.78 Its use has 

some advantages, such as a better control of the M/P ratio, no by-products 

formation and does not require harsh reaction conditions, as high 

temperature. 

 

1.6 Aims of the thesis 

As previously reported, phosphorus chemistry is a very broad field with a 

great range of applications. The objectives of this PhD thesis are related 

to different aspects of low-valent phosphorus chemistry: going from the 

synthesis of fluorophosphine ligands through a “green” and innovative 

pathway, to the activation and functionalization of elemental white 

phosphorus in the presence of late transition metals, and, finally, to the 

not yet explored synthesis of ruthenium phosphide nanoparticles starting 

from white phosphorus. 

The research described in Chapter 2 aims at the synthesis of 

fluorophosphine ligands starting from phosphorus oxyacids and using a 

mild, commercially available, deoxofluorinating reagent, thus 

circunventing the use of toxic reagents, commonly used in this reaction.  

On chapter 3, the activation of white phosphorus mediated by unsaturated 

ruthenium complexes bearing a bulky phosphine (i.e.PCy3) and different 

halogen ligands is described. Moreover and more interestingly the 

functionalization of coordinated P4 has been accomplished by subsequent 
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reaction with organic reagents. This project is part of a collaboration with 

the group of Prof. H. Grützmacher at ETHZ, Zürich, Switzerland. 

Chapter 4 deals with the preparation of ruthenium phosphide 

nanoparticles using white phosphorus as P-source. Catalytic tests of 

hydrogenation of unsaturated organic substrates in the presence of 

ruthenium phosphide nanoparticles are in progress. This work is part of a 

collaboration with the group of Dr. N. Mézailles at CNRS, Toulouse, 

France. 

Both collaborations, with ETHZ and CNRS are in the frame of SusPhos, 

an European Training Network on Sustainable Phosphorus Chemistry 

(02/2013-01/2017 Marie Curie ITN SusPhos, Grant Agreement No. 

317404). http://www.susphos.eu 
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Chapter 2 

 

XtalFluor-E, the key to ruthenium-
coordinated fluorophosphines from 

phosphorous oxyacids 
 

2.1. Overview 

This chapter describes the study of the transformation of phosphorous 

oxyacids, such as PhPO(OH)H, H3PO3, H3PO2, into the corresponding 

fluorophosphines mediated by [CpRu(PPh3)2Cl] under mild reaction 

conditions using a soft deoxyfluorinating agent. The reaction is selective, 

proceeds with high yields and can be extended to a wide range of 

phosphorous oxyacids once coordinated to the ruthenium fragment 

{CpRu(PPh3)2} + as their hydroxyphosphine tautomer. Deoxyfluorination 

of phenylphosphinic acid was also mediated by [CpRRu(CH3CN)3]PF6, 

where CpR: Cp = C5H5, Cp* = C5Me5, and {η6-(p-cymene)Ru(µ-Cl)Cl}2. 
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2.2 Introduction 

Phosphorus halides, especially chlorides, are of great interest in many 

genres of organic and inorganic chemistry, and represent the key-materials 

for the manufacturing of several organophosphorus compounds.1 Among 

P-halides, fluorophosphines, PRxFy (R = organyl group; x+y = 3)have been 

less considered as ligands towards transition-metals in spite their dual 

function being good σ-donating and strong π-accepting ligands at the same 

time thus showing great ability to stabilize transition metals in several 

oxidation states, including the lowest ones.2 Up to now, the development 

of new methods and reagents for the synthesis of fluorophosphines is 

scarcely explored.3 Due to their instability with respect to the redox 

disproportionation,4 a very few applications in catalysis, such as 

hydroformylation,5 have been described. Tri-fluorophosphine complexes 

of different metals (Pt, Ni) were prepared more than sixty years ago by 

Chatt6 and Wilkinson,7 respectively and, afterwards, analogous complexes 

of different platinum group metals by Nixon,8 starting from the suitable 

metal precursor in the presence of high temperature and high pressure of 

gaseous PF3. Trying to avoid the use of highly toxic PF3, fluorophosphines 

have been prepared starting from different chlorophosphines by chlorine-

fluorine exchange, using a fluorinating agent, such as NEt3·HF,9 SbF3,10 

NaF11 or triorganotin(IV) fluorides.12 Conversion of phosphorous oxyacids 

to the corresponding fluorinated phosphines using α-fluoroenamines or 

cyanuric fluoride as reagents,13 as shown in Scheme 2.1., is a very efficient 

and almost quantitative method, but these liquid reagents are corrosive, 

toxic and very sensitive to hydrolysis. 
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Scheme 2.1. Fluorinating agents used for delivering fluoride to phosphorous 
oxyacids. 

 

Facing the feasibility to form hydroxyphosphine ruthenium complexes of 

the general formula, [CpRu(PPh3)2{PHx(HO)y}] + (x+y = 3; x = 0, 1, 2), by 

coordination of hydroxyphosphines, such as P(OH)3, PH(OH)2 and 

PH2(OH)to {CpRu(PPh3)2} +, via ruthenium-promoted tautomerization of 

the corresponding phosphorous oxyacids (H3PO3, H3PO2 and H3PO),14,15 a 

great interest on the preparation of fluorophosphines by selective 

fluorination of the P-OH functional group was originated. To the best of 

our knowledge, the deoxofluorination reaction has been traditionally used 

to convert organic substrates such as alcohols, ketones or carboxylic acids 

into their fluorinated derivatives. Fuming liquid alternatives to the highly 

toxic gas, SF4, were synthesized, such as DAST,16 and Deoxo-Fluor, (bis(2-

methoxyethyl)aminosulfur trifluoride),17 see Scheme 2.2. These 

compounds are commonly used as deoxyfluorinating agents for organic 

substrates, even if they are difficult to handle in humid environments and 

violently reactive in contact with water, that easily convert alcohol into 

alkyl fluorides, ketones into gem-difluorides and carboxylic acids to acid 

fluorides. Markovskii et al.18 synthesized safer and more cost-efficient 

dialkylaminodifluorosulfinium tetrafluoroborate salts [(R2NSF2]BF4 (R = 

ethyl or morpholine), commercialized as XtalFluor-E and XtalFluor-M, 

respectively by reaction of DAST with BF3·Et2O. These salts are stable 
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solids, and easily manageable which led to their successful application for 

the deoxofluorination of oxo-substrates.19 

 

 

 

Scheme 2.2. Deoxofluorinating agents. 

 

 

2.3 Direct deoxofluorination of P-oxyacids 
 

XtalFluor-E, DAST and Deoxo-Fluor reagents, shown in Scheme 2.2. have 

been used for deoxofluorinating organic substrates, as alcohols, carboxylic 

acids, ketones or acyl chlorides. We envisaged to extend this reaction to 

phosphorus oxyacids aiming to obtain by a one pot procedure the 

corresponding fluorophosphines. 

In a first attempt we tried the deoxofluorination of three different 

phosphorous oxyacids, H3PO2, H3PO3 and PhP(O)(OH)(H), using one or 

two equivalents of XtalFluor-E in acetonitrile at room temperature. As a 

result, no reaction was observed with H3PO2, whereas H3PO3 gave 

unexpectedly the anion PF6
- (31P NMR septuplet at -146.2 ppm, 1JPF = 706 

Hz) as the only phosphorus containing species. However when phenyl 

phosphinic acid was reacted with XtalFluor-E the corresponding 

difluorophosphine oxide was obtained in quantitative yield (Scheme 2.3.), 

and its identity confirmed by NMR and ESI-MS.20 
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Scheme 2.3. 

 

Attempts to reduce the difluorophosphine oxide to the corresponding 

phosphine, by DIBAL (DIBAL = di-isobutyl-aluminium hydride) or by the 

more basic nBu3P led to decomposition of the fluorophosphine oxide, 

which was not further studied. 

 

2.4.          Synthesis          and           characterization           of  
[CpRu(PPh3)2(PF2R)]X 
 
The capability of the organometallic fragment [CpRu(PPh3)2]+ to stabilize 

phosphorous oxyacids in the form of their corresponding 

hydroxyphosphine tautomers is known from literature.15 We coordinated 

the oxyacids reported in Scheme 2.4 to [CpRu(PPh3)2]+ obtaining the 

following derivatives [CpRu(PPh3)2{HP(OH)2}]OTf ( 25OH), 

[CpRu(PPh3)2{P(OH)3}]OTf ( 26OH), [CpRu(PPh3)2{P(OH)3}]PF6 (26OH’ ) 

and [CpRu(PPh3)2{PhP(OH)2}]OTf ( 27OH) where OTf = OSO2CF3 

 

P

O

OHH
HO

PF6

P

O

HPh
HO

CH3CN, RT, 7 h

N SF2

P

FPh
F

P

O

OHH
H

CH3CN, RT

2 equiv.
XtalFluor-E

no reactivity

O

CH3CN, RT

2 equiv.
XtalFluor-E

2 equiv.
XtalFluor-E
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(Scheme 2.4.). 25OH and 26OH are known compounds,17a while 27OH was 

prepared following the same synthetic procedure as reported for the former 

complexes. 

 

 

 

Scheme 2.4. Synthesis of the Ru-coordinated fluorophosphines. 

 

The molecular structure of 27OH was confirmed by a single crystal X-ray 

structure analysis, showing the [CpRu(PPh3)2{PhP(OH)2}] + cation and one 

triflate anion in the asymmetric unit. The ORTEP-diagram of 27OH as 

shown in Figure 2.1., exhibits hydrogen bond interactions between both 

OH units of the coordinated hydroxyphosphine and two of the triflate 

oxygen atoms.  

 

 

 
Figure 2.1. ORTEP-diagram of 27OH with 30% probability ellipsoids. Hydrogen 
atoms, except for O(1) and O(2) are omitted for clarity. Selected bond length (Å) 
and angles (°): Ru(1)-P(1), 2.3670(7); Ru(1)-P(2), 2.3408(7); Ru(1)-P(3), 
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2.2745(7); Ru-centroid(Cp), 1.8959; O(3)-H(O1), 2.0401; O(4)-H(O2), 2.0177; 
P(1)-Ru(1)-P(2), 98.20(2); P(1)-Ru(1)-P(3), 97.74(2); P(2)-Ru(1)-P(3), 96.37(2). 

 

Compound 26OH’ having PF6 as counteranion, was quantitatively 

deoxofluorinated upon reaction with an equimolar amount of XtalFluor-E, 

and the corresponding fluorophosphine complex [CpRu(PPh3)2{PF3}]PF6 

(26F’) was isolated. On the other hand, the deoxofluorination of 26OH 

having CF3SO3 as counteranion needs a three times excess of XtalFluor-E 

to be completed. In the absence of further experimental evidences for the 

counter anion effect on the deoxyfluorination we speculate that hydrogen 

bond interactions in solution between the triflate anion and the hydroxyl 

groups of the coordinated P(OH)3, as observed for 27OH in the solid state, 

may hamper the accessibility of hydroxyl groups by the fluoride. 

The deoxyfluorination of P(OH)3 to PF3, once coordinated to the metal, 

represents an easy and safe method to prepare ruthenium complexes with 

PF3 ligand, circumventing the usage of PF3 which is a very toxic and 

hazardous gas. For comparison, it is worth noticing that the generation of 

PF3 on laboratory scale usually involves the reaction of PCl3 with HF gas,21 

SbF3,22 AsF3
23 or ZnF2.24 Alternatively, it can be synthesized by the 

dropwise addition of PBr3 to excess powdered SbF3.25 

The fluoro derivatives were isolated and fully characterized in solution by 

multinuclear NMR, see Table 2.1. below for 31P and 19F. 
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Complex  δ(19F) δ(31P) 
1J(PF) 

Hz 

2J(PP) 
Hz 

3J(PF) 
Hz 

[CpRu(PPh3)2(HPF2)]+ 1F 4.6 225.1 1088 57 8 

[CpRu(PPh3)2(PF3)]+ 2F 4.5 144.8 1302 72 - 

[CpRu(PPh3)2(PhPF2)]+ 3F -34.2 227.4 1087 56 7 

 

Table 2.1. 19F and 31P chemical shifts and relative coupling constants in CD2Cl2 
solution at 25°C of the fluorophosphine complexes.  

 

Particularly diagnostic it is the direct coupling constant 1JPF where we 

observe a large variation in the values, going from 1087 Hz to 1300 Hz, 

and agrees well with the values already known in literature for similar 

ruthenium complexes25,26 bearing difluorophosphine and 

trifluorophosphine ligands. The variation of 1J(31P–19F) with the number of 

fluorine atoms on P is indeed remarkable: 1JPF is 1302 Hz in 2F bearing PF3 

ligand, while there is a progressive lowering of the value going down to 

1087 Hz in 3F, bearing a difluorophosphine. Considering that 1J(31P–19F) 

is, as absolute value, 1403 Hz in the free gaseous PF3, the decrease of the 

coupling constant observed in our complexes may account for a reduction 

of the phosphorus-fluorine bond order. In detail, the σ- and π-components 

for the dative bond of PF3 toward a transition metal, operate in the same 

synergic way observed for carbon monoxide, therefore the π-component is 

expected to be favoured in trifluorophosphine complexes, in comparison to 

complexes bearing the ligands PhPF2, HPF2, because of the presence of 

three highly electronegative fluorine atoms.25 Examining the Ru-P distance 

in the crystal structure of Ru-PF3 complexes,25 it is interesting to see that 

this distance is very much shorter (2.184 Å) than the Ru-PPh3 distance 

(average 2.34 Å), which is consistent with the stronger π-bonding ability 

of PF3 in comparison to triphenylphosphine. Likewise, the variation in 
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chemical shifts in 31P and 19F NMR is relatively big going from PF3 to 

PhPF2 ligand there is a variation of ca. 80 and 63 ppm, respectively as 

shown in Table 2.1. 

Any attempt to de-coordinate the fluorophosphine ligand from the 

ruthenium centre by reaction of 27F with a more basic phosphine such as 

PTA (1,3,5-triaza-7-phosphaadamantane) or CO pressure, failed. This 

experimental result is in agreement with theoretical27,1b and experimental 

studies based on photoelectron spectroscopy,28 and 13C NMR spectroscopy 

carried out on a series of LNi(CO)3 complexes)29 (L = trihalophosphine 

ligands), which showed the π-acceptor properties of PF3 to be similar to CO 

and its basicity (σ donor) resembles that of PEt3. 
 

 

2.5.           Synthesis          and          characterization           of  
[CpRRu(CH3CN)3-x(PhPF2)x]PF6 
 

 

We tried mono-cationic ruthenium precursors of the general formula 

[CpRRu(CH3CN)3]PF6 where (R = H, CH3).30,31 These species are 

characterized by three coordinating acetonitrile molecules, which can be 

easily replaced by a stronger coordinating ligand. Attempts to coordinate 

H3PO2 and H3PO3 to the ruthenium center failed, even after a prolonged 

heating and only the starting material was recovered. Unlike H3PO2 and 

H3PO3, phenylphosphinic acid displaced coordinated acetonitrile and after 

optimization of the reaction conditions two new, analytically pure 

complexes of the formula [CpRu(CH3CN)2{PhP(OH)2}]PF6 (28OH) and 

[(C5Me5)Ru(CH3CN){PhP(OH)2} 2]PF6 (29OH) were isolated. (Scheme 

2.5.) 
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Interestingly, in the case of [CpRu(CH3CN)3]PF6 only one 

phenylphosphinic acid coordinates to ruthenium, while substituting Cp 

with C5Me5 it is formed exclusively the derivative bearing two molecules 

of phenylphosphinic acid as ligands. The reason for this latter different 

reactivity might be due to electronic effects. 
 

 

 
 

Scheme 2.5. Coordination of phenylphosphinic acid to [CpRRu(CH3CN)3]PF6 

and subsequent deoxofluorination. 

 

The reaction of 28OH and 29OH with a three-fold excess of fluorinating 

reagent gave the corresponding complexes 28F and 29F, respectively, 

bearing the fluorinated phosphine (Scheme 2.5). The deoxofluorination of 

28OH and 29OH occurred with completely different kinetics, since the 

former compound 28OH underwent a very sluggish reaction (i.e. reaction 

time of 18 h for complete conversion), while 29OH  reacted rapidly (15 min) 

in the presence of di-isopropylamine (DIPEA). 
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The diphosphine complex 29F displays symmetrical second order 31P and 
19F spectra, see Figures 2.2. and 2.3., respectively. The two fluorine atoms 

at each phosphorus atom in 29F are diastereotopic, forming together with 

the two phosphorus atoms a AA’BB’XX’ (A, B: 19F, X: 31P) spin system. 

In fact in the 19F NMR spectrum we observed two distinct multiplets at δ = 

-53.9 and δ = -49.3 ppm.  

 

 

Figure 2.2. 31P{1H} NMR of 29F in MeOD with inset enlarging the signal at 
224.8 ppm. 

 

 

Figure 2.3. 19F{1H} NMR of 29Fwith inset enlarging the low field multiplets. 

 

Actually, we found out that this in-equivalence is common for transition 

metal complexes bearing two fluorophosphines,32 which show two 
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isochronous phosphorus nuclei at ambient temperature as in our case. On 

this regard, Heuer et al.33 described these symmetrical higher order spin 

systems, invoking a virtual coupling between 31P and 19F nuclei, and 

reported the absolute value of the direct coupling constant J(PF) as the sum 

of two coupling constants |1JPF + 3JPF|. 

 

2.6            Synthesis            and         characterization           of  
[η6-(p-cym)RuCl2(PhPF2)] 
 

The dimer {η6-(p-cymene)Ru(µ-Cl)Cl}2 is known to form mononuclear 

complexes by cleavage of the chloride bridges in the presence of a two-

electron donor ligand. For instance, trihalophosphine ligands such as PF3 

were successfully coordinated to the moiety {η6-(p-cymene)RuCl2}.27 We 

observed that upon reaction of the former dimer34 {η6-(p-cymene)Ru(µ-

Cl)Cl} 2 with phenylphosphinic acid, the desired mononuclear species [η6-

(p-cymene)RuCl2{PhP(OH)2}] ( 30OH) was isolated (Scheme 2.6.). The 

coordination of phenylphosphinic acid to ruthenium in the form of the 

corresponding tautomer, PhP(OH)2 was proved by a single crystal X-ray 

structure analysis, an ORTEP-plot of which is shown in Figure 2.6. 

 
 

 

 

Scheme 2.6. Preparation of complexes 30OH and 30F. 



Chapter 2 

52 
 

 

 

 
Figure 2.6. ORTEP-diagram of 30OH with 30% probability ellipsoids. Hydrogen 
atoms, except for O(1) and O(2), are omitted for clarity. Selected bond length (Å) 
and angles (°): Ru(1)-P(1), 2.2969(9); Ru(1)-Cl(1), 2.4245(8); Ru(1)-Cl(2), 
2.4275(9); Ru(1)-centroid(Cp), 1.7045; P(1)-Ru(1)-Cl(1), 87.27(3); P(1)-Ru(1)-
Cl(2), 82.78(3). 

 

H3PO2 and H3PO3 did not react with {η6-(p-cymene)Ru(µ-Cl)Cl}2 even 

after a prolonged reaction time of 48 hours, which is the consequence of 

the electron poor metal center not capable of stabilizing. In fact, within the 

Ru-precursors employed, only [CpRu(PPh3)2]OTf was suitable to 

coordinate and stabilize the tautomers of hypophosphorous and 

phosphorous acid.15 The deoxofluorination of 30OH was carried out first in 

dichloromethane with six times excess of fluorinating agent (i.e. XtalFluor-

E) under reflux for several hours. With these experimental conditions, a 

mixture of fluorinated Ru-species was obtained, according to 31P NMR 

monitoring. By changing the reaction medium to acetonitrile and using a 

six-fold excess of fluorinating reagent, the desired derivative [η6-(p-

cymene)RuCl2{PhPF2}] ( 30F) was obtained after 18 hours at room 
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temperature, as the only phosphorus containing species in high yield. 

(Scheme 2.6.) 

 

2.7 Conclusions 

In this chapter, a new way to synthesize a fluorophosphine ligand, using 

the commercial salt XtalFluor-E® as the fluorine source was studied, thus 

avoiding the use of highly toxic and unstable fluorinating agents. 

Phosphorous oxyacids as phosphinic, phenyl phosphinic and phosphonic 

acids, are the starting materials of choice and the procedure of 

deoxofluorination here applied for the first time to phosphorous oxyacids, 

represents an efficient and mild methodology for their transformation into 

the corresponding fluorophosphines, once coordinated to ruthenium as 

their tautomer counterpart, i.e. hydroxyphosphanes. 

A series of half-sandwich Ru(II) complexes bearing the desired 

fluorophosphine ligands were prepared and fully characterized by 

multinuclear NMR. Their synthesis was not trivial, since the working 

conditions, as solvent, amount of XtalFluor-E®, reaction time and 

temperature, had to be tuned each time to get complete selectivity in the 

desired product. A dramatic change in 1J(P-F) has been observed either 

changing the ancillary ligand or substituting one atom of fluorine by an 

hydrogen or a phenyl ring, suggesting that subtle electronic and steric 

effects are operating. 
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2.8 Experimental Section 

2.8.1 Chemicals 

All reactions and manipulations were carried out under nitrogen using 

standard Schlenk glassware and techniques. Dichloromethane was purified 

by distillation over CaH2. THF was purified by distillation over sodium 

wire and benzophenone. Diethyl ether and n-pentane were purified by 

passing them over two columns filled with molecular sieves (4Å) 

(LabMaster MBRAUN MD SPS). n-Hexane, H3PO3, H3PO2 in water 

solution 50% w/w, PhP(O)(OH)H and diethylaminodiflurosulfinium 

tetrafluoroborate salt (commercial name XtalFluor-E) were used as 

purchased from Aldrich. Dichloromethane-d2 (Aldrich) was pre-treated 

with three freeze-thaw pump cycles before use and kept under an inert 

atmosphere. Literature methods were used for the preparation of the 

following compounds: [CpRu(PPh3)2{HP(OH)2}]CF3SO3 (25OH) 

[CpRu(PPh3)2{P(OH)3}]CF3SO3 (26OH), [CpRu(PPh3)2{P(OH)3}]PF6 

(26OH’ ),15a [CpRu(CH3CN)3]PF6,30 [Cp*Ru(CH3CN)3]PF6,31 and [{η6-(p-

cymene)Ru(µ-Cl)Cl}2].34a 

 

2.8.2 Characterization methods 

Nuclear Magnetic Resonance spectroscopy (NMR) 

Solution multinuclear NMR spectra were recorded on a Bruker Avance 300 

and 400 MHz spectrometer. 1H chemical shifts are referenced to 

tetramethylsilane (TMS), 31P chemical shifts are referenced to 85% H3PO4, 
13C chemical shifts are referenced to tetramethylsilane, 19F chemical shifts 

are referenced to CFCl3 (376.5 MHz). 
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ElectroSpray Ionization-Mass spectrometry (ESI-MS) 

ESI-MS spectrum were recorded by direct introduction of the samples at 5 

µl/min flow rate in an LTQ-Orbitrap high-resolution mass spectrometer 

(Thermo, San Jose, CA, USA), equipped with a conventional ESI source. 

The working conditions comprised the following: spray voltage 4 kV, 

capillary voltage 3 V, capillary temperature 220 °C, tube lens 120 V. The 

sheath and auxiliary gases were set, respectively, at 10 (arbitrary units) and 

3 (arbitrary units). For acquisition, Xcalibur 2.0. software (Thermo) and IT 

analyser were used. 

 

InfraRed spectroscopy (IR) 

IR spectra were recorded with a Perkin Elmer spectrometer in KBr disks.  

 

X-ray diffraction 

Diffraction data were collected with an Oxford Diffraction CCD 

diffractometer, using Mo-Kα radiation (λ = 0.71069 Å) and corrected for 

Lorentz and polarization effects. Absorption corrections were performed 

using the XABS2 program.35a All the structures were solved by direct 

methods using SHELXS-9739b and refined by full-matrix least-squared 

methods against F2 using the WINGX39c software package. All non-

hydrogen atoms were refined anisotropically, whereas hydrogen atoms 

were added at calculated positions and refined applying a riding model with 

isotropic U values depending on the Ueq.of the adjacent carbon atom. 

 

 

 

 



Chapter 2 

56 
 

2.8.3 Procedures 

Synthesis of {[CpRu(PPh3)2{PhP(OH)2}]CF3SO3} (27OH) 

To a suspension of [CpRu(PPh3)2Cl] (250.0 mg, 0.344 mmol) and 

AgCF3SO3 (90.1 mg, 0.350mmol) in a mixture of CH2Cl2 (15 ml) and THF 

(7 ml) was added phenylphosphinic acid (49.0 mg, 0.344 mmol). The 

resulting slurry was stirred at room temperature for 2 hours. The 

precipitated AgCl was filtered off and yellow microcrystals of 

[CpRu(PPh3)2{PhP(OH)2}]CF3SO3 were obtained by adding 20 ml of Et2O 

and bubbling nitrogen gas for ca 30 minutes to evaporate the solvent. Yield: 

84%. Crystals suitable for X-ray analysis were obtained by layering 

Petroleum Ether (30 ml) over the CH2Cl2/THF solution. 1HNMR (400 

MHz, CD2Cl2, 298 K): δ = 8.3 (br. s, 2H, PhP(OH)2) = 7.7-6.6 (m, 35H, 

Ph), 4.3 (m, 5H, C5H5) ppm. 31P{1H} NMR (162 MHz, CD2Cl2, 295 K): δ 

= 147.6 (t, 2JPAPB = 56 Hz, 1P, PA), 42.2 (d, 2JPAPB = 56 Hz, 2P, PB) ppm. 

13C{1H} NMR (100.6 MHz, CD2Cl2, 295 K): δ = 133.9 (s, CHar), 130.1 (s, 

CHar), 129.9 (s, CHar), 129.0 (d, 1JCP = 12 Hz, Cq), 127.9 (m, Cq), 87.3 (s, 

C5H5) ppm. IR (KBr, cm-1): ν = 3058 (broad, OH), 1223 (s, CF3SO3) 887, 

847 (s, P-OH). 

 

Synthesis of {[CpRu(PPh3)2(HPF2)]CF3SO3} (25F) 

[CpRu(PPh3)2{HP(OH)2}]CF3SO3 (250.0 mg, 0.276 mmol) and 

[Et2NSF2]BF4 (126.2 mg, 0.552 mmol, 2 eq) were charged in a schlenk tube 

and dissolved in CH2Cl2 (15 ml). The resulting suspension was stirred at 

room temperature overnight and finally cooled down (ca -78°C). A white 

crystalline compound precipitated out from the solution and the yellow 

supernatant was cannulated into a 50 ml schlenk flask and 

{[CpRu(PPh3)2(HPF2)]CF3SO3} was obtained as a yellow microcrystalline 
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solid by cooling the solution down (ca. 0°C) and adding 50 ml of Et2O. 

Yield: 86%. ESI-MS: 761.1 [M]+. 1H NMR (400.13 MHz, CD2Cl2, 298 K): 

δ = 8.7 (dt, 1JH-PA= 465 Hz, 2JH-F = 63 Hz, 1H, HPF2), 7.6-6.7 (m, 30H, 

CHar), 4.9 (s, 5H, C5H5) ppm. 31P{1H} NMR (161.9 MHz, CD2Cl2, 295 K): 

δ = 225.1(tt, 1JPAF = 1088 Hz, 2JPAPB = 57 Hz, 1P, PA), 40.2 (dt, 2JPAPB = 57 

Hz, 3JPF = 8 Hz, 2P, PB) ppm. 31P NMR (161.9 MHz, CD2Cl2, 295 K): δ = 

225.1 (ttd, 1JH-PA = 465 Hz, 1P, PA) 40.2 (dt, 2JPAPB = 57 Hz, 3JPF = 8 Hz, 

2P, PB) ppm. 19F NMR (376.5 MHz, CD2Cl2, 295 K): δ = 4.6 (d, 1JPAF = 

1088 Hz, PF2), -78.9 (s, CF3SO3
-) ppm. 13C{1H} NMR (100.6 MHz, 

CD2Cl2, 295 K): δ = 133.1 (t, 2JCP = 5 Hz, CHar), 131.2 (m, Cq), 128.8 (s, 

CHar), 128.9 (t, 3JCP = 5 Hz, CHar), 89.3 (s, C5H5) ppm. IR (KBr, cm-1): ν = 

2464 (w, P-H), 1275 (s, CF3SO3), 819 (s, P-F). 

 

Synthesis of {[CpRu(PPh3)2(PF3)]CF3SO3} (26F) 

[CpRu(PPh3)2{P(OH)3}]CF3SO3 (250.0 mg, 0.271 mmol) and 

[Et2N=SF2]BF4 (497.0 mg, 2.168 mmol, 8 eq) were charged in a schlenk 

tube (100 ml) and dissolved in CH2Cl2 (15 ml). The resulting suspension 

was stirred at room temperature overnight and finally cooled down (ca -

78°C). A white crystalline compound precipitated out of the solution, 

presumably a salt by-product of the reaction. The yellow surnatant was 

cannulated into a 50 ml schlenk flask and {[CpRu(PPh3)2(PF3)]CF3SO3} 

was obtained as yellow microcrystals by adding 20 ml of  Et2O and 

bubbling nitrogen gas for ca 30 minutes. [CpRu(PPh3)2(PF3)]CF3SO3 is air 

stable in solution for a long time. Yield: 94 %. ESI-MS: 779.1 [M]+. 
1HNMR (400.0 MHz, CD2Cl2, 298 K): δ = 7.6-6.8 (m, 30H, CHar), 4.9 (m, 

5H, C5H5) ppm. 31P{1H} NMR (161.9 MHz, CD2Cl2, 295 K): δ = 144.8 (qt, 
1JPAF = 1302 Hz, 2JPAPB = 72 Hz, 1P, PA), 37.3 (d, 2JPAPB = 72 Hz, 2PB) 
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ppm. 19F NMR (376.5 MHz, CD2Cl2, 295 K): δ = 4.5 (d, 1JPF = 1302 Hz, 

PF3), -78.7 (s, CF3SO3
-) ppm. 13C{1H} NMR (100.6 MHz, CD2Cl2, 295 K): 

δ =134.3 (m, Cq), 133.1 (t, 2JCP = 5 Hz, CHar), 131.3 (m, CHar), 128.9 (t, 

3JCP = 5 Hz, CHar), 89.4 (s, C5H5) ppm. IR (KBr, cm-1): ν = 1263 (s, 

CF3SO3), 864 (s, P-F). 

 

Synthesis of {[CpRu(PPh3)2(PF3)]PF6} (26F’) 

[CpRu(PPh3)2{P(OH)3}]PF6 (250.0 mg, 0.272 mmol) and [Et2N=SF2]BF4 

(187.2 mg, 0.817 mmol, 3 eq) were charged in a schlenk tube and dissolved 

in CH2Cl2 (15 ml). The resulting suspension was stirred at room 

temperature overnight and finally cooled down (ca -78°C). A white 

crystalline compound precipitated out of the solution, presumably a salt by-

product of the reaction. The yellow surnatant was cannulated into a 50 ml 

schlenk flask and {[CpRu(PPh3)2(PF3)]PF6} was obtained as yellow 

microcrystals by adding 20 ml of Et2O and bubbling nitrogen gas for ca 30 

minutes.[CpRu(PPh3)2(PF3)]PF6 is air stable in solution for a long time. 

Yield: 93% 

 

Synthesis of {[CpRu(PPh3)2(PhPF2)]CF3SO3} (27F) 

[CpRu(PPh3)2{PhP(OH)2}]CF3SO3 (250.0 mg, 0.255 mmol) and 

[Et2NSF2]BF4 (233.6 mg, 1.02 mmol, 4 eq) were charged in a schlenk tube 

(100 ml) and dissolved in CH2Cl2 (20 ml). The resulting suspension was 

stirred at room temperature for overnight and finally cooled down (ca -

78°C) for 2 hours. A white crystalline compound precipitated and the 

yellow solution was cannulated into a 50 ml schlenk flask. The solution 

was concentrated to 10 ml by evaporating the solvent under reduced 

pressure. {[CpRu(PPh3)2(PhPF2)]CF3SO3} was obtained as yellow 
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microcrystalline solid by adding 50 ml Et2O. Yield: 90%. ESI-MS: 837.1 

[M] +. 1H NMR (400.13 MHz, CD2Cl2, 298 K):  δ = 7.7-6.5 (m, 45H, Ph), 

4.9 (s, 5H, C5H5) ppm. 31P{1H} NMR (161.97 MHz, CD2Cl2, 295 K): δ = 

220.8 (tt, 1JPAF = 1087 Hz, 2JPAPB = 56 Hz, 1P, PA, PF2), 38.6 (dt, 2JPAPB = 

56 Hz, 3JPF = 7 Hz, 2P, PB) ppm. 19F NMR (376.5 MHz, CD2Cl2, 295 K): 

δ = -34.2 (d, 1JPAF = 1087 Hz, PF2), -79.0 (s, CF3SO3
-) ppm. 13C{1H} NMR 

(100.6 MHz, CD2Cl2, 295 K): δ = 133.8 (t, 2JCP = 5 Hz, CHar), 131.5 (s, 

CHar), 129.1 (t, 3JCP = 5 Hz, CHar), 127.7 (dt, 1JCP = 14 Hz, 2JCF = 3 Hz, 

Cq), 89.7 (s, C5H5) ppm. IR (KBr, cm-1): ν = 1263 (s, CF3SO3), 801 (s, P-

F). 

 

Synthesis of {[Cp*Ru(CH3CN)3]PF6}  

The compound was prepared by a modification of the published 

procedure.3 

To a solution of [Cp*RuCl2]2 (350.0 mg, 1.139 mmol) in acetonitrile (10 

ml) was added zinc dust (149.0 mg, 2.279 mmol). After stirring 1 hour at 

room temperature, dry KPF6 (318.0 mg, 1.608 mmol) was added. The 

mixture was stirred for 16 hours at room temperature, afterwards the 

solvent was evaporated to dryness. To the solid residue was added CH2Cl2 

(20 ml) and the surnatant was cannulated into a schlenk tube and 

evaporated to dryness affording a brown-yellow solid. Yield: 78 %. 
1HNMR (400.0 MHz, CD2Cl2, 298 K): δ = 2.4 (br. s, 9H, CH3CN), 2.3 (s, 

15H, Cp*) ppm. 31P{1H} NMR (161.9 MHz, CD2Cl2, 298 K): δ = - 144.8 

(sept, 1P, PF6, 1JPF = 702 Hz) ppm. 
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Synthesis of {[CpRu(CH3CN)2{PhP(OH)2}]PF6} (28OH) 

[CpRu(CH3CN)3]PF6 (300.1 mg, 0.691mmol) and PhP(O)(H)(OH) (98.1 

mg, 0.691 mmol) were charged in a schlenk tube (100 ml) and dissolved in 

CH3CN (60 ml). The resulting yellow solution was stirred at room 

temperature for three days. The solution was concentrated to dryness under 

reduced pressure and the solid residue was washed three times, each with 

15 mL of pentane. A mustard solid was obtained and dried under vacuum. 

Yield: 74%. ESI-MS (acetonitrile): m/z = 390.9 [M]+. 1H NMR (400.1 

MHz, CD2Cl2, 298 K): δ = 7.8-7.5 (m, 5H, Ph), 4.6 (s, 5H, Cp), 2.3 (s, 6H, 

CH3CN). 31P{1H} NMR (161.9 MHz, CD2Cl2, 298 K): δ = 151.3 (s, 1P), -

143.7 (sept, PF6, 1JPF = 702 Hz). 13C{1H} NMR (100.6 MHz, CD2Cl2, 295 

K): δ = 142.1 (d, 1JPC = 64 Hz,Cq), 130.9 (d, 2JCP = 2 Hz, CHar), 129.2 (d, 
2JCP = 13 Hz, CHar), 128.7 (d, 3JCP = 10 Hz, CHar), 127.3 (s, CH3CN), 77.6 

(d, 2JCP = 3 Hz, C5H5), 4.1 (s, CH3CN). IR (KBr, cm-1): ν = 2263 (w, CN), 

1113, (broad, P(OH)2), 836 (s, P-F, PF6). 

 

Synthesis of {[Cp*Ru(CH3CN){PhP(OH)2}2]PF6}  (29OH) 

[Cp*Ru(CH3CN)3]PF6 (100.0 mg, 0.198 mmol, 1 eq) and PhP(O)(H)(OH) 

(28.1 mg, 0.198 mmol, 1 eq) were charged in a schlenk tube (50 ml) and 

dissolved in CH3CN (20 ml). The resulting solution was stirred at 40°C for 

24 hours. The solution was concentrated to a small volume and were added 

in the order, 1 ml of toluene and 50 ml of pentane to precipitate the final 

product. [Cp*Ru(CH3CN){PhP(OH)2} 2]PF6 was obtained as yellow-brown 

solid after filtration under nitrogen and was dried in vacuum. Yield: 52%. 

ESI-MS (acetonitrile): m/z = 562.1 [M]+; [M] + - [PhP(OH)2]: 419.8. 
1HNMR (300.1 MHz, CD3OD), 295 K): δ = 7.8 (m, 4H, Har), 7.5 (m, 6H, 

Har), 2.5 (s, 3H, CH3CN), 1.4 (s, 15H, C5Me5) ppm. 31P{1H} NMR (121.5 
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MHz, CD3OD, 295 K): δ = 153.5 (s, 1P), -144.5 (sept, 1JPF = 708 Hz, PF6) 

ppm. 13C{1H} NMR (75.5 MHz, CD3OD, 295 K): δ = 142.8 (t, 1JCP = 30 

Hz, Cq), 131.4 (s, CHar), 130.8 (t, 2JCP = 6 Hz, CHar), 129.0 (t, 3JCP = 5 Hz, 

CHar), 127.0 (s, CH3CN), 94.4 (s, C5Me5), 9.5 (s, C5Me5) 3.6 (s, CH3CN) 

ppm. IR (KBr, cm-1): ν = 2962 (s, OH), 2267 (w, CN), 836 (s, P-F, PF6). 

The reaction was repeated using a ratio complex/ligand 1:2 as follows: 

[Cp*Ru(CH3CN)3]PF6 (350.0 mg, 0.6925 mmol, 1 eq) and PhP(O)(H)(OH) 

(196.8 mg, 1.385 mmol, 2 eq) were charged in a schlenk tube and dissolved 

in CH3CN (30 ml).The resulting solution was stirred at 40°C for 24 hours. 

The solution was concentrated to dryness, the solid residue was rinsed with 

pentane, than dichloromethane and diethyl ether (ratio 2:1) were added to 

precipitate the pure product. [Cp*Ru(CH3CN){PhP(OH)2} 2]PF6 was 

obtained as yellow solid after filtration under nitrogen and was dried in 

vacuum. Yield: 71%. 

The NMR data are the same as above. 

 

Synthesis of {[CpRu(CH3CN)2(PhPF2)]PF6}  (28F) 

[CpRu(CH3CN)2{PhP(OH)2}]PF6 (100.0 mg, 0.187 mmol) and XtalFluor-

E (128.3 mg, 0.560 mmol, 3 eq) were charged in a schlenk tube and 

dissolved in CH2Cl2 (30 ml). The resulting solution was stirred at room 

temperature for 18 hours and afterwards the reaction mixture was kept in 

the freezer at -30°C overnight. A white crystalline compound precipitated 

out and the yellow solution was cannulated into a schlenk flask. The 

solution was concentrated to a small volume and 50 ml of diethyl ether 

were added. The desired complex precipitated out of the solution as brown-

yellow solid. Yield: 68 %. ESI-MS (acetonitrile): m/z = 394.7 [M]+. 1H 

NMR (300.1 MHz, CD2Cl2, 298 K): δ = 7.8-7.6 (m, 5H, Ph), 4.9 (s, 5H, 
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C5H5), 2.3 (s, 6H, CH3CN) ppm. 31P{1H} NMR (121.5 MHz, CD2Cl2, 295 

K): δ = 224.9 (t, 1JPF = 1148 Hz,PF2), -144.4 (sept, 1JPF = 711 Hz, PF6) ppm. 
19F NMR (376.5 MHz, CD2Cl2, 295 K): δ = -52.1 (d, 1JFP = 1147 Hz, 

PhPF2), -72.6 (d, 1JFP = 711 Hz, PF6) ppm. 13C{1H} NMR (75.5 MHz, 

CD2Cl2, 295 K): δ =134.0 (d, 2JCP = 2 Hz, CHar), 129.8 (dt, 1JCP = 18 Hz, 
2JCF = 4 Hz, Cq), 129.5 (s, CHar), 129.3(s, CHar), 128.7 (s, CH3CN), 79.9 

(d, 2JCP = 2 Hz, C5H5), 4.3 (s, CH3CN) ppm. IR (KBr, cm-1): ν = 2228 (w, 

CN), 839 (br. s, P-F, PF2, PF6). 

 

Synthesis of {[Cp*Ru(CH3CN)(PhPF2)2]PF6}  (29F) 

[Cp*Ru(CH3CN){PhP(OH)2} 2]PF6 (190.0 mg, 0.2689 mmol) and 

XtalFluor-E (184.8 mg, 0.868 mmol, 3 eq) were charged in a schlenk tube 

(50 ml). In another schlenk and dissolved in CH2Cl2 (14 ml). The resulting 

solution was stirred at room temperature for 15 min. The solution was dried 

by evaporating the solvent under reduced pressure. Afterwards the reaction 

mixture was kept at -78°C for 2 hours. A white crystalline compound 

precipitated out and the brownish solution was cannulated into a schlenk 

flask. The solution was dried and the remaining oil was washed with diethyl 

ether and pentane several times until a brownish solid was obtained. Yield: 

63%. ESI-MS (acetonitrile): m/z = 390.9 [M]+. 1H NMR (300.1 MHz, 

CD3OD, 298 K): δ = 7.9-7.5 (m, 10H, Ph), 2.4 (s, 3H, CH3CN), 1.3 (s, 15H, 

CH3) ppm. 31P{1H} NMR (121.5 MHz, CD3OD, 295 K): δ = 225.9 (second 

order multiplet, |1JPF + 3JPF| = 1184 Hz, 2P), -141.4 (spt, 1JPF = 708 Hz, 1P, 

PF6) ppm. 19F NMR (376.5 MHz, CD3OD, 295 K): δ = -49.3 (dm, |1JPF + 
3JPF| = 1185 Hz, PhPFA), -53.9 (dm, |1JPF + 3JPF| = 1184 Hz, PhPFB), -73.9 

(d, 1JFP = 708 Hz, PF6) ppm. 13C{1H} NMR (75.5 MHz, CD3OD, 295 K): 

δ = 135.1 (s, CH3CN), 133.5 (d, 4JCP = 3 Hz, CHar), 132.4 (d, 3JCP = 10 Hz, 
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CHar), 130.4 (d, 2JCP = 11 Hz, CHar), 129.6 (d, 1JCP = 15 Hz, Cq), 128.9 (s, 

CH3CN), 100.3 (s, C5Me5), 9.8 (s, C5Me5), 3.5 (s, CH3CN) ppm. 
1H NMR (400.1 MHz, (CD3)2CO, 298 K): δ = 7.8-7.7 (m, 10H, Ph), 2.5 (s, 

3H, CH3CN), 1.8 (s, 15H, CH3) ppm. 31P{1H} NMR (161.9 MHz, 

(CD3)2CO, 295 K): δ = 227.5 (second order multiplet, |1JPF + 3JPF| = 1184 

Hz, 2P), -144.4 (spt, 1JPF = 707 Hz, 1P, PF6) ppm. 19F NMR (376.5 MHz, 

(CD3)2CO, 295 K): δ = -48.3 (dm, |1JPF + 3JPF| = 1184 Hz, PhPFA), -53.4 

(dm, |1JPF + 3JPF| = 1184 Hz, PhPFB), -72.4 (1JFP = 708 Hz, PF6) ppm. 
13C{1H} NMR (100.6 MHz, (CD3)2CO, 253 K): δ = 135.5 (dt, 1JCP = 50 

Hz, 2JCF = 14 Hz, Cq), 135.0 (s, CHar), 131.1 (s,CHar), 130.1 (s, CHar), 129.6 

(s, CH3CN), 99.5 (s, C5Me5), 9.6 (s, C5Me5) 4.2 (s, CH3CN) ppm. IR (KBr, 

cm-1): ν = 2229 (w, CN), 814 (s, P-F, PF2), 843 (s, P-F, PF6). 

 

Synthesis of [(η6-p-cymene)RuCl2{PhP(OH)2}] (30OH) 

To a suspension of [(η6-p-cymene)RuCl2]2 (250.0 mg, 0.816 mmol) in THF 

(50 ml) was added phenylphosphinic acid (232.0 mg, 1.6326 mmol) as a 

solid. The solution was refluxed for 5 hours, afterwards the reaction 

mixture was cooled down to room temperature and concentrated to small 

volumeby evaporating the solvent under reduced pressure. [(η6-p-

cymene)RuCl2{PhP(OH)2}] was obtained as an orange solid by adding 50 

ml of pentane. Yield: 78%. Crystals suitable for X-ray analysis were 

obtained by cooling down to 4°C a solution of the complex in 

dichloromethane and allowing a slow diffusion of pentane. 1H NMR (300.0 

MHz, CD2Cl2, 295 K): δ = 7.9 (m, 1H, CHar), 7.7 (m, 4H, CHar), 5.2 (s, 4H, 

CHar, p-cymene), 2.6 (sept, 3JHH = 7 Hz, 1H, CH(CH3)2), 2.0 (s, 3H, CH3), 

1.1 (d, 3JHH = 7 Hz, 6H, CH(CH3)2) ppm. 31P{1H} NMR (121.5 MHz, 

CD2Cl2, 295 K): δ = 147.6 (s) ppm. 13C{1H} NMR (75.5 MHz, CD2Cl2, 



Chapter 2 

64 
 

295 K): δ = 136.9 (d, 1JCP = 88 Hz, Cq), 132.1 (s, CHar), 130.3 (d, 2JCP = 12 

Hz, CHar), 128.8 (d, 3JCP = 12 Hz, CHar), 105.6 (s, Cq), 98.1 (s, Cq), 90.0 

(d, 2JCP = 6 Hz, CHp-cym), 88.2 (d, 2JCP = 6 Hz, CHp-cym), 30.3 (s, CH(CH3)2), 

21.5 (s, CH(CH3)2), 18.3 (s, CH3-ring) ppm. IR (KBr, cm-1): ν = 3065 

(broad, OH), 858 (s, P-OH). 

 

Synthesis of [(η6-p-cymene)RuCl2(PhPF2)] (30F) 

[(η6-p-cymene)RuCl2{PhP(OH)2}] (100.0 mg, 0.223 mmol) and 

[Et2NSF2]BF4 (467.2 mg, 1.338 mmol, 6 eq) were charged in a schlenk tube 

and dissolved in CH3CN (40ml). The solution was stirred at room 

temperature for 18 hours. The solution was dried by evaporating the solvent 

under reduced pressure. The solid residue was re-dissolved in 

dichloromethane and cooled down (ca -78°C) to allow the precipitation of 

excess of fluorinating agent. After filtration under nitrogen, pentane was 

added to the filtrate and the desired product precipitated out from the 

solution. The brown solid was recovered by filtration under inert 

atmosphere. Yield: 80%. ESI-MS: m/z = 457.83 [M+ - Cl + CH3CN]; 

417.08 [M+ - CH3CN]. 1HNMR (300.0 MHz, CD2Cl2, 295 K): δ = 7.9 - 7.7 

(m, 5H, CHar), 5.6 (d, 3JHH = 6 Hz, 2H, CHar, p-cymene), 5.5 (d, 3JHH = 6 

Hz, 2H, CHar, p-cymene), 3.8 (sept, 3JHH = 6 Hz, 1H, CH(CH3)2), 2.5 (s, 

3H, CH3), 1.3 (d, 3JHH = 6 Hz, 6H, CH(CH3)2) ppm. 31P{1H} NMR (121.5 

MHz, CD2Cl2, 295 K): δ = 215.1 (t, 1JPF = 1156 Hz, PF2) ppm. 19F NMR 

(376.5 MHz, CD2Cl2, 295 K): δ = -58.6 (1JFP = 1159 Hz, PhPF2) ppm. 
13C{1H} NMR (75.5 MHz, CD2Cl2, 295 K): δ = 135.2 (br.s, CHar), 130.0 

(d, 2JCP = 12 Hz, CHar), 129.4 (dt, 1JCP = 16 Hz, 2JCF = 4 Hz, Cq), 127.1 (d, 
3JCP = 12 Hz, CHar), 102.2 (s, Cq), 97.6 (s, Cq), 79.3 (s, CHp-cym), 78.4 (s, 
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CHp-cym), 31.8 (s, CH(CH3)2), 22.2 (s, CH(CH3)2), 20.8 (s, CH3-ring) ppm. 

IR (KBr, cm-1): ν = 801 (s, P-F). 
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Chapter 3 

 

Activation of P4 mediated by ruthenium(II) 
complexes 

 

3.1 Overview 

This chapter describes the coordination chemistry of white phosphorus 

towards a 16 electron ruthenium(II) organometallic complex 

[Cp*RuPCy3X], where Cp* = C5Me5, X = Cl, Br, I. The different 

electronegativity and ionic radius in the series of halogens changes the 

reactivity with white phosphorus. Migration of the halogen from 

ruthenium to the P4 moiety was observed, in the case of chloride and 

bromide, obtaining bimetallic complexes bearing the unexpected and 

unprecedented P4X2 (X = Cl, Br) moiety as bridging ligand. In the case of 

iodide, a completely different structure is proposed, containing the not yet 

previously reported P4I ligand as a bridging moiety between two Ru(II) 

centers. 
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3.2 Activation of P4 by ruthenium(II) complexes: State-of-
the-art 

In view of the continuous search for new sustainable routes to activate 

white phosphorus avoiding the traditional pathway in which chlorine is 

involved, the study on the coordination chemistry of the P4 molecule 

towards a great variety of metal fragments has been achieved. Despite the 

first transition metal complex bearing white phosphorus as ligand was 

prepared long ago, in 2000 the first ruthenium complex 

[{(PPh3)2ClRu}(µ-Cl3){Ru(PPh3)2(η1-P4)}] ( 31) was isolated.1 It was 

prepared by reacting [Ru(PPh3)3Cl2] with white phosphorus in toluene at 

room temperature. In complex 31 an intact P4 molecule was coordinated 

to the metal center causing the displacement of one triphenylphosphine, 

as shown in Scheme 3.1. The resulting unstable and neutral binuclear 

complex exhibits the octahedral geometry for each of the two metal atoms 

while the η1-P4 ligand is coordinated to one ruthenium atom. 

 

 

Scheme 3.1. Synthesis of [{(PPh3)2ClRu}(µ-Cl3){Ru(PPh3)2(η1-P4)}] 

 

Since then, a short list of ruthenium complexes bearing white phosphorus 

were studied. Peruzzini and coworkers2 reported the preparation of the 

mononuclear ruthenium complexes [HRuL2(η1-P4)] (L = dppm 32a, dppe 

32b) obtained by treatment of a mixture 1:1 of [RuH2L2] (L = dppm, 

dppe) and HBF4·Et2O in CH2Cl2 with P4 in THF, see Scheme 3.2. 
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Scheme 3.2. Synthetic route for the preparation of 32. 

 

As reported in Scheme 1.13. in the first chapter, reaction of white 

phosphorus with mononuclear ruthenium complexes containing 

cyclopentadienyl2 or pentamethylcyclopentadienyl3 ligands and 

phosphanes led to the coordination of the intact tetrahedro−η1-P4 

molecule. Another example of this class of compounds is represented by 

the water-soluble complexes [CpRu(TPPMS)2(η1-P4)]X (X = BF4 33a, 

PF6 33b) by treatment of [CpRu(TPPMS)2Cl] [TPPMS = PPh2(m-

SO3C6H4
+Na-)] with P4, in the presence of a chloride scavenger such as 

silver triflate, see Scheme 3.3.4 

 
 

Scheme 3.3. Synthetic pathway for the formation of [CpRu(TPPMS)2(η1-P4)]X. 
 

Bimetallic ruthenium complexes containing P4 as ligand were also 

prepared. Thus, treatment of [CpRu(PPh3)2(η1-P4)]+ (11a+) with 1 

equivalent of [CpRu(PPh3)2]+ fragment or, as alternative pathway, the 

 

 



Chapter 3 
 

73 
 

direct reaction of [CpRu(PPh3)2Cl] with half equivalent of P4 in the 

presence of AgOTf afforded the homobimetallic complex 

[{CpRu(PPh3)2} 2(µ,η1:1-P4)](OTf)2 (34)5 as shown in Scheme 3.4. 

 
 

Scheme 3.4. The two synthetic routes for the synthesis of 
[{CpRu(PPh3)2} 2(µ,η1:1-P4)](OTf)2. 

 

An intriguing point is the reactivity toward water of cyclopentadienyl 

complexes once P4 is coordinated to the metal fragment, in comparison to 

the high stability of free white phosphorus in water. Hydrolysis of 

mononuclear ruthenium complexes leads to the formation of complexes 

bearing, not only phosphine ligand [CpRuL2(PH3)]+ (L = PPh3 35a+, ½ 

dppe 35b+, TPPMS 35c+), but also hydroxy phosphine ligands, 

[CpRuL2{PH(OH)2}] + (L = PPh3 36a+, ½ dppe 36b+, TPPMS 36c+) and 

[CpRuL2{P(OH)3}] + (L = PPh3 37a+, ½ dppe 37b+, TPPMS 37c+) and free 

phosphorus oxyacids as by-products.2,6,7 Also studies of the reactivity of 

the bimetallic complex 34 with an excess of water in different ratio were 

reported.8,9,10
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3.3 Activation and functionalization of white phosphorus by 
[Cp*Ru(PCy 3)X] (X = Cl, Br, I)  

3.3.1 Synthesis and characterization of 
[{Cp *Ru(PCy3)}(µ2,η2:4P4Cl2){RuCp*}]  

Being white phosphorus a mild nucleophile, not such a strong σ-donor 

ligand as alkyl or aryl-phosphine,11 a highly reactive 16-electron complex 

as [Cp*Ru(PCy3)Cl]12 was chosen to explore its activation. The bulky 

ligand PCy3, was intentionally chosen since it allows a certain stability to 

the complex, which is coordinatively unsaturated. The deep blue coloured 

16-electron complex [Cp*Ru(PCy3)Cl], may indeed easily prepared in 

situ by reaction of PCy3 with the cubane-like tetramer [Cp*RuCl]4. This 

latter was generated in THF solution by reduction of the dimer 

[Cp*RuCl(µ-Cl)]2 with lithium triethyl borohydride. In situ reaction of 

the ruthenium [Cp*Ru(PCy3)Cl] complex with white phosphorus gave 

afforded a new unexpected product. (see Scheme 3.5.) In principle, the 

formation of a mononuclear ruthenium complex bearing P4 coordinated 

eta-1 to the metal, i.e. [Cp*Ru(PCy3)Cl(η1-P4)] would be expected. In 

spite the electronic deficiency at ruthenium should also favour the 

formation of an η2-coordinated isomer, i.e. [Cp*Ru(PCy3)Cl(η2-P4)] 

resulting from the formal oxidative addition of one P-P bond to the 

unsaturated Ru(II) metal. Actually, 31P NMR inspection of the reaction 

mixture showed no traces of such compounds, whose NMR pattern is 

easily predictable on the basis of literature data of already existing for η1-

P4 or η2-P4 ruthenium complexes.2,3,4 
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Scheme 3.5. Full synthesis of [{Cp*Ru(PCy3)}(µ 2,η2:4P4Cl2){RuCp*}] 

 

This reaction was briefly reported by Akbayeva13 and incorrectly 

characterized, based only on NMR studies, suggesting a mononuclear 

complex containing a η2-coordinated P4, [Cp*RuPCy3(η2-P4)]. A 

definitive evidence of the unusual structure of complex 38 was provided 

by single crystal X-ray diffraction, whose crystals were grown by Ph.D. 

student Mark Bispinghoff at ETHZ (Zurich, Switzerland) in the frame of 

a bilateral collaboration sponsored by the ITN–Marie Curie network 

SusPhos. Red crystals of 38 were obtained from a saturated solution in 



Chapter 3 
 

76 
 

DME at low temperature (-30 ºC). The crystallographic analysis showed 

the presence of an unexpected bimetallic complex 

[{Cp *Ru(PCy3)}(µ 2,η2:4P4Cl2){RuCp*}] ( 38) featuring an unprecedented 

bridging P4Cl2 ligand. Halogen migration from the metal to the activated 

P4 moiety had taken place forming two symmetrical P-Cl bonds. This 

ligand may be considered as a P4Cl22- butadienyl-like moiety, whose bond 

lengths are in equilibria due to the delocalization of the π-electrons on the 

structure. P-P bond lengths are in the range 2.16 - 2.17 Å, except for 

(Cl)P1-P4(Cl) whose value is larger (2.52 Å), as shown in Figure 3.1., 

causing a sort of trapezoidal distortion of the ligand structure owing to the 

charge repulsive effect of the lone electron pairs. The complex is highly 

symmetric, with a mirror plane passing through the two metal centers, the 

phosphorus corresponding to the unique tricyclohexylphosphine and the 

P4Cl2 plane. 

 

Figure 3.1. X-ray crystal structure of [{Cp*Ru(PCy3)}(µ 2,η2:4P4Cl2){RuCp*}] 

Selected bond length (Å) and angles (°): Ru(1)-P(1), 2.2930(5); Ru(1)-P(4), 
2.2876(5); Ru(1)-P(5), 2.3919(5); Ru(1)-centroid(Cp), 1.926; Ru(2)-P(1), 
2.3508(5); Ru(2)-P(2), 2.4261(5); Ru(2)-P(3), 2.4498(5); Ru(2)-P(4), 2.3289(5); 
Ru(2)-centroid(Cp), 1.872; P(1)-Cl(1), 2.1186(7); P(4)-Cl(2), 2.1113(7); P(1)-
P(2), 2.1635(7); P(1)-P(4), 2.5165(7); P(2)-P(3), 2.1563(8); P(3)-P(4), 

Ru1 Cl

P1

P4

P3

P2

P5 Cl Ru2
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2.1707(8); P(1)-Ru(1)-P(5), 98.404(18); P(4)-Ru(1)-P(5), 99.641(17); Ru(1)-
P(1)-Cl(1), 122.31(3); Ru(1)-P(4)-Cl(2), 123.00(3). 

 
31P{1H} NMR of 38 in THF-d8 is shown in Figure 3.2. The complex 

exhibits a dynamic behaviour at room temperature, featuring two group of 

signals of identical intensity. The broad doublet centered at 251 ppm (w½ 

= 325 Hz, 1J = 400 Hz), highly deshielded in comparison to the known 
31P-NMR resonances of P4 moiety bound to ruthenium14 is assigned to the 

chlorine-substituted phosphorus atoms (P1 and P4) while the very broad 

signal around -70 ppm (w½ = 3000 Hz) is attributed to the remaining P2 

and P3 atoms. Finally the narrower triplet centered at 43 ppm (2J = 37 Hz) 

is ascribed to the residual PCy3 coordinated to the ruthenium center 

bounded to the chlorinated edge of the 1,4-dichlorobutadienyde unit. 

 

 

Figure 3.2. 31P{1H} NMR spectrum of 38 measured at room temperature in 
THF-d8; 203 MHz. 

 

To investigate and understand the fluxional behaviour of the molecule, 

variable temperature 31P{1H} NMR studies were performed within the 

temperature window of THF-d8, see Figure 3.3. 
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Figure 3.3. Variable temperature 31P{1H} NMR spectrum of 
[{Cp *Ru(PCy3)}(µ 2,η2:4P4Cl2){RuCp*}] in THF-d8. 

 
The low-limiting spectrum is easily obtained at – 40 °C when five 

chemically inequivalent phosphorus atoms corresponding to a ABMXY 

(M = PCy3) spin system are observed. The high field resonances (P1 and 

P4) may be described as a slightly perturbed second order AB multiplet 

featuring a sixteen line pattern consisting of two doublets of doublets of 

doublets. In contrast, the low field multiplets (P2 and P3) appears as a 

pair of doublets of doublets being negligible the 3J coupling to the PCy3 

ligand. The latter maintains its triplet structure along all the investigated 

temperature thus pointing out that no dissociation of the ancillary 

phosphine takes place in solution. Increasing the temperature, P1 and P4 

go through coalescence at about 0 °C, while the collapse of the P2 and P3 

low-field multiplet occurs at about 20 °C. At higher temperature both 

multiplets simplify and at 52 °C, the highest investigated temperature, the 

spectrum consists of a doublet of doublets for P1 and P4 and a broad 

doublet for P2 and P3. This behaviour suggests both phosphorus atoms 
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pairs become equivalents, thus featuring the NMR appearance proper of 

an A2MX2 spin system. Attempts to achieve the fast-exchange spectrum 

at higher temperature brought to extensive decomposition. 

Although the potentially highly reactive complex 38 was not yet targeted 

for studying its reactivity in a systematic way, we did perform only a few 

hydrolysis experiments with excess of water leading only to extensive 

decomposition and giving an intractable material as the final product. 

 

3.3.2 Synthesis and characterization of 

[{Cp *Ru(PCy3)}(µ2,η2:4P4Br2){RuCp*}]  

Intrigued by the results obtained with the reaction of white phosphorus 

with [Cp*Ru(PCy3)Cl], we decided to investigate the analogue ruthenium 

complexes, having as halogen ligand either bromide or iodide instead of 

chloride. 

Reduction of the dimer [Cp*RuBr(µ-Br)]2 with LiEt3BH gave the 

tetramer [Cp*RuBr]4 (39) using the same procedure as for the preparation 

of [Cp*RuCl]4.15 Addition of PCy3 (PCy3:Ru = 1:1) gave a  deep blue 

suspension of [Cp*RuPCy3Br] (40) from which the corresponding 

bromide complex [{Cp*Ru(PCy3)}(µ 2,η2:4P4Br2){RuCp*}] ( 41)  could be 

easily obtained after addition of half equivalent of white phosphorus and 

work-up as for the chloride analogue 38. The reaction leading to 41 is 

shown in Scheme 3.6. 
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Scheme 3.6. Synthesis of the bromide derivative 
[{Cp *Ru(PCy3)}(µ 2,η2:4P4Br2){RuCp*}]. 

 

The assignment to 41 of the same solution structure of the cognate 

chloride species is a consequence of the strict similarity between the 
31P{1H} NMR spectra of the two compounds, which also share an 

identical fluxionality with the temperature. The sharp singlet at 10 ppm is 

due to free PCy3 meaning that one of the two organometallic fragments 

lost the phosphine ligand and, therefore, it coordinates the P4 moiety in 

tetra-hapto fashion. Also, the bromide derivative shows dynamic 

behaviour at room temperature, showing a broad doublet around 261 ppm 

(w½ = 255 Hz, 1J = 387 Hz), attributed to the two bromine-substituted 

phosphorus atoms and a very broad singlet around -58 ppm (w½ = 1300 
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Hz) whose resonance concurs with the other two phosphorus atoms. 

Besides, a triplet at 40 ppm (2J = 37 Hz) corresponds to PCy3.  

 

Figure 3.5. 31P{1H} NMR spectrum of [{Cp*Ru(PCy3)}(µ 2,η2:4P4Br2){RuCp*}] 
measured at room temperature in THF-d8, 121 MHz. 

Impurities are marked with * . 
 

The dynamic behaviour of 41 was also examined by variable temperature 
31P{1H} NMR spectroscopy in in THF-d8, see Figure 3.6. 

 

Figure 3.6. Variable temperature 31P{1H} NMR spectra of 
[{Cp *Ru(PCy3)}(µ 2,η2:4P4Br2){RuCp*}] in THF-d8, 121 MHz. 
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Complex 41 shows an identical behaviour as for the P4Cl2 complex 38 at -

40 ºC compatible with a ABMXY spin system. At 0 ºC P1 and P4 go 

through coalescence, whereas P2 and P3 coalesce into a broad bump at 

about 20°C. Unfortunately, but similarly to 38, both signals disappear at 

higher temperature, showing only an uninformative singlet at 32 ppm, 

indicating the decomposition of the complex.  

It should be noticed that the compound 41 is more air and moisture 

sensitive than 38 and its synthesis and manipulation requests strictly 

anhydrous and oxygen-free conditions. Thus, its synthesis was carried out 

in drybox. In keeping with the extremely high instability of the bromide 

derivative, the reaction does not tolerate Schlenck-type synthetic 

procedure. Under such circumstances, when less strict anaerobic and dry 

conditions were used, 41 is not produced, rather a mixture of two 

different complexes was obtained, in 3:2 (A:B) ratio, as it was shown by 

inspection of the solution by 31P NMR spectroscopy (see Figure 3.7.). 

Several efforts to separate and isolate either of the two complexes from 

the reaction solution were carried out without success. 
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Figure 3.7. 31P{1H} NMR(red) and 31P NMR (blue) of the mixture of Br-

derivatives. A corresponds to 42a and B corresponds to 42b in experimental 
part. Impurities are signed with a *. 

 

Although on the basis of solution 31P{1H} NMR spectroscopy only it is 

hard to propose a putative structure for the two complexes, some 

considerations can nonetheless be made. First, the strong similarities of 

the splitting patterns featuring the 31P{1H} NMR spectra, suggests that the 

two compounds are likely isomeric species. Even more significant is the 

observation that the 31P NMR spectrum, i.e. obtained by turning off the 
1H decoupler of the spectrometer during the acquisition of the spectrum, 

see Figure 3.7., indicates the presence of a PH phosphorus atom in both 

complexes featuring the resonance at 63 and 81 ppm, respectively. The 
1JP-H coupling constants, 423 and 392 Hz, respectively, are typical of P-H 

bonds. This observation could indicate the occurrence of the P4Br2 

dianionic ligand functionalization due to the presence of adventitious 

water on the reaction system hydrolysing the complex 41. Further studies 
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are in progress to characterize the solution structure of such pair of 

isomers. 

 

3.3.3 Activation of P4 with [Cp*Ru(PCy 3)I] 

The not yet reported 16-electron complex [Cp*Ru(PCy3)I] (43) was 

prepared by reacting under inert atmosphere the freshly generated and 

unstable tetramer [Cp*RuI]4,16 with four equivalents of tricyclohexyl 

phosphine. The solution immediately changed from a dark brown to deep 

blue colour while the 31P NMR spectrum of the solution showed a singlet 

at 47 ppm very close to the signal exhibited by the related complexes 

[Cp*RuPCy3X] (X = Cl, Br). Further addition of half equivalent of solid 

white phosphorus to the stirred solution of 43 led to the separation of 44 

as a brownish precipitate. (see Scheme 3.7.) 
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Scheme 3.7. Activation of P4 with the iodide derivative. 

 

In the absence of good quality crystals of 44 which have not yet been 

grown in spite of numerous attempts, we could anticipate, since the 

synthetic procedure used to prepare 44 was the same as for the 38 (X = 

Cl) and 41 (X = Br), that the presence of iodide does not affect the 

reactivity with white phosphorus, thus confidently assigning to the iodo-



Chapter 3 
 

86 
 

derivative the formula [{Cp*Ru(PCy3)}(µ 2,η2:4P4I2){RuCp*}]. However, 

while the elemental analysis on the isolated product is consistent with this 

molecular formula, running the 31P NMR spectrum of the isolated dark 

brown product, disclosed a pattern completely different from that 

exhibited by both 38 and 41 (see Figure 3.8.) suggesting that a dramatic 

change in the reaction pathway have taken place. 

 

Figure 3.8. 31P{1H}NMR spectrum of 44 in THF-d8  at room temperature. 

 

The 31P{1H} NMR spectrum does not show any second order feature and 

consists of  five signals, each of them accounting for one P atom. The 

doublet at 37.6 ppm is diagnostic and stands for one tricyclohexyl 

phosphine ligand, meaning that the other PCy3 has been lost during the 

reaction with P4. Therefore, in the final bimetallic complex a [Cp*Ru] 

unit is free from PCy3 and should be multiply coordinated (eta-3 or eta-4) 

to a tetraphosphorus unit derived from white phosphorus. Moreover, 

being the signal at δ = 37.6 ppm a doublet, eta-1 coordination of the P4 

fragment to ruthenium is reasonably assumed. Product 44 lacks of any 

symmetry element concerning the P4 moiety, so that all the four P atoms 

are magnetically in-equivalent and a putative structure may be drawn only 

from the analysis of the coupling constants and chemical shifts of the 31P 
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NMR network. Remarkable is the broad triplet of triplets at very low 

field, δ = 621 ppm (w½ = 64 Hz, 1J = 330 Hz, 2J = 31 Hz), which 

indicates the presence of a very deshielded P atom likely compatible with 

a metal-phosphinidene unit. In line with this assumption, a perusal of the 

literature points out  that the chemical shifts for phoshinidenes of group 8 

metal complexes vary between 300 and 1000 ppm.17 For instance, the 

terminal phosphinidene ruthenium complexes [(η6-p-

cymene)Ru(PR3)(PMes*)] (R = Cy 45, Ph 46) show chemical shifts 

around 840 ppm for the Ru=PMes* ligand.18 Further inspection of the 31P 

NMR spectrum shows the close proximity of two doublets of doublets at 

390 and 370 ppm, which points to a similar chemical environment for 

these two phosphorus atoms. Finally, a broad triplet of doublets (w½ = 33 

Hz, 1J = 240 Hz, 2J = 20 Hz) around -65 ppm may be tentatively assigned 

to a P atom bearing a iodide, by analogy to the complex 

[CpRu(PPh3)2(PI2H)]+ prepared by us,19 where the PI2H ligand resonates 

at -70 ppm. Alternatively, the iodide ligand could be coordinated to the 

Cp*Ru moiety bounded to the highly deshielded phosphinidene-like 

atom. (see bottom structure in Scheme 3.7.) 

31P{1H} NMR studies at low temperature were also performed, as shown 

in Figure 3.9. While the signal at 621 ppm remains unaltered likely due 

to the rigidity of the Ru=P double bond, the other three signals undergo a 

dynamic process and broaden as soon as the temperature goes down 

although the low exchange regime is not attained within the temperature 

window of THF. In contrast, extensive decomposition of 44 took place on 

increasing the temperature already to 40 °C. 
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Figure 3.9. 31P{1H}NMR spectrum of 44 in THF-d8 at variable temperature. 

 

High resolution ESI-MS analysis of 44 in the negative ion mode showed 

the presence of a iodide, m/z = 126.9, whereas the positive ion mode 

confirmed the presence of a bimetallic complex containing a water 

molecule (m/z {[(Cp*RuPCy3)(P4I)(RuCp*)]+ + [H2O]} = 1023.1), 

probably due to adventitious water. This unexpected experimental 

evidence strongly supports the presence of a monocationic complex with 

an iodide as counteranion. Although we realize that 31P NMR 

spectroscopy alone is not sufficient to elucidate the structure of the 

dioidide derivative 44 in solution, two plausible structures for 44 may be 

drawn and are shown in Scheme 3.7., based on the NMR studies. 

 

3.4. Conclusions 

The activation of white phosphorus mediated by the coordinatively 

unsaturated 16 e- ruthenium complexes [Cp*Ru(PCy3)X] (X = Cl, Br, I) 
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led to completely unexpected results. New neutral bimetallic Ru 

complexes containing the unprecedented dianionic [P4X2]2- ligand were 

isolated in the case of X = chloride and bromide. They show fluxional 

behaviour at room temperature probably due to the opening-closing of the 

bridges P1-P4 and P2-P3 of the tetraphosphorus moiety. On the other 

hand, the bulkness of the iodide atom and its weaker bonding capacity to 

phosphorus, caused the easy elimination of one iodide atom from the 

bimetallic Ru2P4 moiety and its stabilization as the mononegative 

counteranion of the monoiodinated [(Cp*RuPCy3)(P4I)(RuCp*)]+ cation. 

Two possible structures have been proposed for the cation of 44 on the 

basis of elemental analysis, 31P NMR and ESI-MS studies. 

 

 

3.5 Experimental Section 

3.5.1 Chemicals 

All reactions and manipulations were carried out under nitrogen using the 

drybox or standard Schlenk glassware and techniques. Dichloromethane 

was purified by distillation over CaH2. THF was purified by distillation 

over sodium wire and benzophenone. MeOH was purified by distillation 

over Mg and I2. Acetonitrile, diethyl ether and pentane were purified by 

passing them over two columns filled with molecular sieves (LabMaster 

MBRAUN MD SPS). Ethanol was used without purification. Deuterated 

solvents (Aldrich) were pre-treated with three freeze-thaw pump cycles 

before use, and kept over molecular sieves under an inert atmosphere.  

The following complexes [Cp*RuCl]4,16,20 [Cp*RuBr2]2
21 and 

[Cp*RuI]4
16 were prepared according to literature. 
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3.5.2 Characterization methods 

NMR spectroscopy 

Solution multinuclear NMR spectra were recorded on a Bruker Avance 

250, 300, 400and 500 MHz spectrometer. 1H chemical and 13C shifts are 

referenced to tetramethylsilane (TMS), 31P chemical shifts are referenced 

to 85% H3PO4. 

 

ESI-Mass spectrometry 

ESI-MS spectrum were recorded by direct introduction of the samples at 

5 µl/min flow rate in an LTQ-Orbitrap high-resolution mass spectrometer 

(Thermo, San Jose, CA, USA), equipped with a conventional ESI source. 

The working conditions comprised the following: spray voltage 4 kV, 

capillary voltage 3 V, capillary temperature 220 °C, tube lens 120 V. The 

sheath and auxiliary gases were set, respectively, at 10 (arbitrary units) 

and 3 (arbitrary units). For acquisition, Xcalibur 2.0. software (Thermo) 

and IT analyser were used. 

 

Single crystal X-ray diffraction 

Diffraction data were collected with a Bruker Smart ApexII diffractometer, 

using Mo-Kα radiation (λ = 0.71073Å) and corrected for Lorentz and 

polarization effects. All the structures were solved by direct methods 

using SHELXT22 and refined by full-matrix least-squared methods 

against F2 using the OLEX223 software package. All non-hydrogen atoms 

were refined anisotropically, whereas hydrogen atoms were added at 

calculated positions and refined applying a riding model with isotropic U 

values depending on the Ueq. of the  adjacent carbon atom. 
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Elemental analysis 

Elemental analysis were performed by using a Thermo FlashEA 1112 

series CHNS-O elemental analyser with an accepted tolerance of ± 0.4 

units. 

 

3.5.3 Procedures 

Synthesis of [Cp*Ru(PCy3)(µ2,η2:4P4Cl2)RuCp*] (38) 

A dark blue suspension of [Cp*RuCl]4 (3.50 g, 3.22 mmol, 1 eq) and PCy3 

(3.61 g, 12.9 mmol, 4 eq) in n-hexane (25 mL) was stirred for 1 hour at 

room temperature and P4 (0.80 g, 6.44 mmol, 1/2 eq) was added as a 

solid. The dark brown suspension was stirred at room temperature for 20 

h. The product was collected by filtration under nitrogen, washed with n-

hexane (3x10 mL) and dried under vacuum to leave a light brown 

powder. Yield: 84 %. Single crystals suitable for X-ray diffraction were 

obtained from a saturated DME solution at –30 °C. 1H NMR (CD2Cl2, 

300 MHz, 293 K): δ = 1.92 (s, 30H, CH3), 1.90 – 1.20 (m, 33H, PCy3) 

ppm. 31P{1H} NMR (THF-d8, 203 MHz, 293 K): δ = 250.8 (br d, w½ = 

325 Hz, 1JPP = 400 Hz, 2P, P1-P4), 43.3 (t, 37 Hz, 1P, PPCy3), –68.8 (br s, 

w½ = 3000 Hz, 2P, P2-P3) ppm. 31P{1H} NMR (THF-d8, 203 MHz, 233 

K): δ = 253.8 (ddd, 1JPP = 427 Hz, 1JPP = 137 Hz, 2JPP = 32 Hz, 1P, P1), 

246.8 (ddd, 1JPP = 429 Hz, 1JPP = 137 Hz, 2JPP = 34 Hz, 1P, P4), 43.3 (t, 
2JPP = 32 Hz,2JPP = 34 Hz, 1P, PPCy3), –62.5 (dd, 1JPP = 429 Hz, 2JPP = 378 

Hz, 1P, P3), –80.1 (dd, 1JPP = 427 Hz, 1JPP = 378 Hz, 1P, P2) ppm. 
31P{1H} NMR (THF-d8, 101 MHz, 325 K): δ = 252.3 (dd, 1JPP = 420 Hz, 
2JPP = 37 Hz, 2P, P1-P4), 43.3 (t, 2JPP = 37 Hz, 1P, PPCy3), –64.2 (br. d, 1JPP 

= 420 Hz, 2P, P2-P3) ppm. 
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Synthesis of [Cp*RuBr]4  (39) 

The procedure followed for the synthesis of 39 is analogue to that used 

for [Cp*RuCl]4. 

A solution of LiEt3BH 1M in THF (5.6 mL, 5.049 mmol) was added drop 

by drop to a suspension of [Cp*RuBr2]2 (2.0 g, 5.049 mmol) in 4 ml of 

THF. The reaction was stirred for 1 hour at room temperature. The light 

brownish solid was precipitated and the reddish brown solution was 

removed by syringe. The solid was then washed with 1 mL of cold THF 

and dried under vacuum. Yield: 60%. 1H NMR (300 MHz, C6D6, 293 K): 

δ = 1.70 (s, CH3, Cp*) ppm. 

 

Synthesis of [Cp*Ru(PCy3)Br] (40) 

To a brown suspension of [Cp*RuBr]4 (300.0 mg, 0.234 mmol) in 10 ml 

of n-pentane, tricyclohexyl phosphine (267.0 mg, 0.936 mmol, 4 eq) was 

added. The solution became immediately deep blue. The mixture was 

stirred for 1 hour at room temperature. A small aliquot was taken for 

NMR characterization.1H NMR (300 MHz, C6D6, 298 K): δ = 1.87 (m, 

6H, CH2 p-, PCy3), 1.68 (m, 12H, CH2 m-, PCy3), 1.46 (m, 18H, CH, PCy3 

+ Cp*), 1.18 (m, 12H, CH, CH2 o-, PCy3) ppm. 31P{1H} NMR (121 MHz, 

C6D6, 295 K): δ = 41.9 (s) ppm. 13C NMR (75.5 MHz, C6D6, 298 K) = 

74.6 (Cp*), 34.6 (d, 1JCP = 16 Hz, CH), 30.9 (CH2 m-) 28.2 (d, 2JCP = 8 Hz, 

CH2 o-), 26.8 (CH2 p-), 11.6 (CH, CH3) ppm. 

 

Synthesis of [Cp*Ru(PCy3)(µ2,η2:4P4Br2)RuCp*] (41) 

Solid P4 (58.03 mg, 0.468 mmol, 1/2 eq) was added to the previous 

solution of 40 and the reaction mixture was stirred for 16 h at room 

temperature. Afterwards a dark brown solid precipitated and the surnatant 
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was taken off with a syringe. The brownish solid was washed with 3x1 

mL of pentane and dried under vacuum. Yield: 70%. 1H-NMR (THF-d8, 

300 MHz, 293 K): δ = 1.90 (s, 30 H, CH3), 1.84–1.26 (m, 33 H, PCy3) 

ppm. 31P{1H} NMR (THF-d8, 121 MHz, 293 K): δ = 261.0 (br. d, w½ = 

255 Hz, 1JPP = 387 Hz, 2P, P1-P4), 39.9 (t, 37 Hz, 1P, PPCy3), –58.0 (br s, 

w½ = 1300 Hz, 2P, P2-P3) ppm. 31P{1H} NMR (THF-d8, 121 MHz, 233 

K): δ = 253.8 (ddd, 1JPP = 415 Hz, 1JPP = 160 Hz, 2JPP = 35 Hz, 1P, P1), 

246.8 (ddd, 1JPP = 417 Hz, 1JPP = 160 Hz, 2JPP = 34 Hz, 1P, P4), 39.9 (t, 
2JPP = 35 Hz, 1P, PPCy3), –54.1 (dd, 1JPP = 417 Hz, 1JPP = 383 Hz, 1P, P3) –

72.4 (dd, 1JPP = 415 Hz, 1JPP = 378 Hz, 1P, P2) ppm. 

Identical conditions of solvent, temperature and time were carried out 

under vacuum line using schlenck techniques obtaining a mixture of 

complexes. 

42a: 31P NMR (162 MHz, THF-d8, 293 K): δ = 138.1 (m, 1P, PA), 65.1 

(dm, 1JPP = 200 Hz, 1JPH = 423 H, 1P, PB), 41.1 (ddd, 2JPP = 49 Hz, 3JPP = 

13 Hz, 3JPP = 5 Hz, 1P, PCy3), -36.2 (ddd, 1JPP = 319 Hz, 1JPP = 227 Hz, 
2JPP = 10 Hz, 1P, PC), -97.7 (ddd, 1JPP = 319 Hz, 1JPP = 137 Hz, 3JPP = 5 

Hz, 1P, PD) ppm.  

42b: 31P NMR (162 MHz, THF-d8, 293 K): δ = 135.9 (m, 2P, PA), 82.0 

(dm, 1JPP = 239 Hz, 1JPH = 392 Hz, 1P, PB), 40.0 (d, 2JPP = 40 Hz, 1P, 

PCy3), -36.6 (ddd, 1JPP = 319 Hz, 1JPP = 227 Hz, 1JPP = 10 Hz, 1P, PC) 

ppm.  

 

Synthesis of [Cp*Ru(PCy3)I] (43) 

To a suspension of [Cp*RuI]4 (700.0 mg, 0.482 mmol) in 8 ml of n-

pentane, tricyclohexyl phosphine (540.5 mg, 1.927 mmol, 4 eq) was 
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added. The solution becomes immediately deep blue. The mixture was 

stirred for 1 hour at room temperature. A small aliquot was taken for 

NMR characterization. 1H NMR (300 MHz, C6D6, 293K): δ = 1.87 (m, 

6H, CH2 p-, PCy3), 1.67 (m, 12H, CH2 m-, PCy3), 1.49 (m, 3H, CH, PCy3), 

1.49 (s, 15H, Cp*), 1.21 (m, 12H, CH, CH2 o-, PCy3) ppm. 31P{1H} NMR 

(121 MHz, THF-d8, 293K): δ = 46.3 (s) ppm. 13C NMR (75.5 MHz, THF-

d8, 293K): δ = 74.7 (Cp*), 35.0 (pseudo quartet, 1JCP = 18 Hz, CH), 30.7 

(CH2 m-) 27.9 (d, 2JCP = 9 Hz, CH2 o-), 26.8 (CH2 p-), 11.9 (CH, CH3) ppm. 

 

Synthesis of [{Cp*Ru(PCy3)}(µ,η1,η3-P4I)(RuCp*)]I  (or 
[{Cp*RuI(PCy 3)}(µ,η1,η3-P4)(RuCp*)]I  (44)  

Solid P4 (119.4 mg, 0.964 mmol, 1/2 eq) was added to a solution of 43 

prepared as described above. After two minutes the colour changes from 

blue to brown. The reaction mixture was stirred for 16 hours at room 

temperature. Afterwards, a dark brown solid was formed and left to settle 

down. The surnatant was removed by syringe and the brown product was 

washed with 3x1 mL of n-pentane and 3x2 mL of ethanol and dried under 

vacuum. Yield: 52%. 1H NMR (400 MHz, THF-d8, 293 K): δ = 1.89-1.74 

(m, 33 H, Cp* + CH2 m-, p- PCy3), 1.31 (m, 15H, CH, CH2 o-, PCy3) ppm. 
31P{1H} NMR (162 MHz, THF-d8, 293K): δ = 620.9 (br. tt, 1JPP = 333 

Hz, 2JPP = 31 Hz, 1P, PA), 389.8 (ddd, 1JPP = 333 Hz, 1JPP = 237 Hz. 2JPP = 

44 Hz, 1P, PB), 373.9 (ddd, 1JPP = 333 Hz, 2JPP = 44 Hz, 1JPP = 247 Hz, 

1P, PC), 37.7 (d, 2JPP = 31 Hz, 1P, PCy3), -94.4 (br. td, 1JPP = 240 Hz, 1JPP 

= 18 Hz, 1P, PD) ppm. ESI-MS (acetonitrile): m/z = 1023.1 [M+H2O]+. 

Elemental analysis: calcd.: C, 40.36; H, 5.62. Found: C, 37.47; H, 5.42. 
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Chapter 4 

 

Synthesis, characterization and preliminary 
catalytic studies of white phosphorus-based 
ruthenium phosphide “RuP” nanoparticles 

 

4.1 Overview 

In this chapter the synthesis and characterization of ruthenium phosphide 

nanoparticles will be described. The novelty introduced is the use of 

white phosphorus as phosphorus source to react with previously prepared 

ruthenium nanoparticles. Preliminary results of the catalytic activity of 

ruthenium phosphide nanoparticles on the hydrogenation of 

phenylacetylene will be discussed. 
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4.2 Introduction 

Metal phosphide nanoparticles are envisioned as suitable for a wide 

variety of applications, such as catalysis, transistors, solar cells, electronic 

and electrochemical devices or batteries.1 In particular, metal phosphides 

used as catalysts show excellent activity for a specific class of reactions.1 

A variety of methods for their synthesis have been developed, including 

solvothermal reactions, high temperature annealing of organometallic and 

solid-state precursors, and the co-reaction of organometallic reagents with 

phosphines.2 PH3, P(SiMe3)3, tris-n-octylphosphine or white phosphorus 

are some examples of the variety of phosphorus sources used for the 

formation of metal phosphide nanoparticles. Several parameters, such as 

stoichiometry of the reagents, temperature and nature of the phosphorus 

precursor are the key points to control the composition, shape, size and 

crystallinity of the metal phosphide nanoparticles which eventually will 

determine their applicability.3 

Until now, only two solid state methods have been described for the 

synthesis of ruthenium phosphide nanoparticles: (a) reduction of 

pyrophosphates using H2
4
 and (b) thermal decomposition of 

hypophosphites,5 see Scheme 4.1. Noticeably, only two stoichiometries, 

i.e. RuP and Ru2P, respectively, have been achieved. 

 

 

Scheme 4.1. Solid state synthesis of ruthenium phosphide nanoparticles. 
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In 2008, a novel method based on the use of white phosphorus as ‘P’-

source was developed by Mézailles et al.6 to synthesize nickel phosphide 

nanoparticles (Ni2P). The method encompasses the reaction of elemental 

phosphorus with Ni(0) complexes as Ni(acac)2 or Ni(COD)2 (acac = 

acetylacetonate, COD = 1,5-cyclooctadiene) or preformed Ni(0) 

nanoparticles. Since then, the synthesis of a broad variety of metal 

phosphide nanoparticles, such as FeP, Cu3P, Pd5P2,7 InP, Zn3P2,8 or 

Au2P3
9 has been performed in solution using white phosphorus. The 

discovery of the catalytic activity of metal phosphides nanoparticles in the 

1990s led to a great interest for hydrogenation and hydrotreating 

reactions.10 Despite large amount of studies on catalytic reactions 

catalysed by Ru(0) nanoparticles, as hydrogenation reactions,11 carbon 

monoxide oxidation,12 dehydrogenation of ammonia borane (NH3BH3) 

and hydrazine borane (N2H4BH3),13 only very few examples of catalytic 

activity of ruthenium phosphide nanoparticles have been described. 

Bussell and co-workers studied the hydrodeoxygenation of furan5 and the 

hydrodesulfurization of dibenzothiophene,14 see Scheme 4.2., using silica 

supported ruthenium phosphides (Ru2P and RuP). 

 
 

O

+ H2 C4Hy + H2O
Ru2P/SiO2

or RuP/SiO2

S

H2

Ru2P/SiO2

or RuP/SiO2

+

 

 

Scheme 4.2. Hydrodeoxygenation of furan (a) and hydrodesulfurization of 
benzothiophene (b). 
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Li et al.15 prepared ruthenium phosphide nanoparticles by thermal 

decomposition of ruthenium chloride and hypophosphite followed by 

impregnation on MCM-41 support and exhibited higher catalytic activity 

than Ru/MCM-41 catalyst on the hydrodesulfurization (HDS) of 

dibenzothiophene and hydrodenitrogenation (HDN) of quinoline. 

Moreover, RuP nanoparticles were used as electrocatalysts in the oxygen 

reduction process in acid conditions, being known that RuP has high 

stability in acid solutions and higher electronic conductivity compared to 

Ru carbides and nitrides.16 

Our aim has been the synthesis of ruthenium phosphide nanoparticles 

through a new route, i.e. using white phosphorus as ‘P’-source. 

Afterwards, RuP nanoparticles have been tested in the form of colloidal 

dispersion, as unsupported nanostructured catalysts, in the hydrogenation 

of unsaturated organic substrates. This represents the exploitation of a 

new application for this material, being known RuP and Ru2P as catalysts 

only for hydrotreating processes.10 

 

4.3 Synthesis and characterization of RuP NPs 

The original procedure by Mézailles17 to prepare Ni2P nanoparticles 

consists first in the thermal decomposition of Ni(acac)2 in the presence of 

oleylamine as reductant and tris-n-octylphosphine as stabilising agent to 

get Ni(0) nanoparticles and afterwards treatment with P4
6 to afford the 

desired Ni2P as shown in Scheme 4.3. 
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Scheme 4.3. Synthesis of Ni2P NPs. 

 

We tried the same conditions to prepare Ru phosphide nanoparticles. 

Attempts to reduce Ru(acac)3 at 220 ºC, with different amount of 

oleylamine in the presence or absence of TOP as ligand, were 

accomplished without success. Therefore, we prepared ruthenium 

nanoparticles according to Can and Metin.18 A mixture of Ru(acac)3, 

oleylamine and dibenzylether was first kept at 120 ºC for one hour, then, 

it was quickly heated up to 300°C and kept at this temperature for an 

additional hour, see Scheme 4.4. After work-up, pure Ru(0) nanoparticles 

were isolated. 

 

 

Scheme 4.4. Synthetic route to RuP nanoparticles. 

 

Figure 4.1. PXRD spectrum of Ru(0) NPs confirming the identity and the 

purity of the material. 
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Figure 4.1. XRD spectrum of Ru(0) NPs. 

 

Aimed at preparing RuP, we reacted a solution of previously synthesised 

Ru(0) NPs with the required amount of P4 in order to have a molar ratio 

Ru:P equal to 1. As shown in Scheme 4.4., to a mixture of Ru(0) NPs in 

oleylamine, ¼ P4 solution in toluene was added. The solvent was then 

removed under vacuum and the mixture was quickly heated up to 220 ºC 

and kept at this temperature for 2 hours. 

The isolated black powder was analyzed by PXRD, see Figure 4.2. 

Although the peaks are very broad, due to the small size of RuP 

nanoparticles, we could confirm their identity and their purity. The 

observations of the peak at 2θ = 21º and the most intense diffraction 

peaks at 2θ = 42º and 2θ = 46º corroborates the presence of the RuP 

phase, confirming the complete consumption of the precursor, Ru(0) NPs 

and the absence of any by-product, as for instance Ru2P.12 
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Figure 4.2. PXRD spectrum of RuP nanoparticles. 

 

The prepared RuP nanoparticles are well dispersible in organic solvents, 

especially in THF and are stable in solution under nitrogen for long time 

at T = 4 °C. As solids, they are stable under air for a short time. 

To analyse the morphology of the RuP nanoparticles, a colloidal 

dispersion in THF was drop-casted on a carbon/copper grid and the 

sample was observed by transmission electron microscopy (TEM). As 

shown in Figure 4.3. RuP nanoparticles looked homogeneous both in the 

dimension and in the shape and no aggregates were detected. 
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Figure 4.3. Bright field TEM image of RuP nanoparticles. Scale bar: 100 nm. 

 
The relative size distribution histogram, see Figure 4.4. shows an average 

mean diameter of 2.6 ± 0.4 nm for the prepared ruthenium phosphide 

nanoparticles. 

 

Figure 4.4. Particle size distribution of RuP nanoparticles. 
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X-Ray photoelectron spectroscopy is a technique very surface sensitive 

and allows discerning between elements in different chemical 

environments. We carried out XPS measurements on a sample of RuP 

nanoparticles in order to shed some light about the chemical nature and 

environment of ruthenium, phosphorus and carbon atoms located at the 

surface of the nanoparticles. Figures 4.5., 4.6. and 4.7. display high 

resolution XPS spectra of C, Ru, O and N atoms, respectively. In Figure 

4.5. the very intense peak of C at 284.8 eV typical of organic carbon, well 

agrees with the presence of oleylamine on the nanoparticles surface as 

stabilising agent. The Ru 3d core transition is characterized by a doublet 

due to the spin-orbital coupling, namely the 3d5/2 and 3d3/2 components, 

though the latter is covered by the carbon peak. The component 

responsible for the larger amount of the signal, located at lower values of 

binding energy (B.E. 3d5/2 = 279.5 ± 0.1 eV), is attributable, on the basis 

of literature, either to bulk metallic ruthenium or to ruthenium phosphide. 

The minor peak (B.E. 3d5/2 = 281.0 ± 0.1 eV) may be attributed to 

ruthenium oxide. Indeed, in Figure 4.6. we observe the spectrum of 

oxygen showing two components, the minor peak, at B.E. = 530.4 ± 0.1 

eV, is attributable to oxygen in ruthenium oxide species, whereas the 

major, at B.E. = 532.3 ± 0.1 eV, is characteristic of carboxylate and is 

probably due to the presence of residual acetylacetonate. 
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Figure 4.5. Curve fitting of C and Ru XPS spectra recorded on a dry sample of 

RuP nanoparticles. 

 

In Figure 4.7. the nitrogen spectrum shows a weak signal at BE = 399.0 

eV due to amine group of oleylamine. 

Unfortunately, the signal of phosphorus could not be detected, which is 

not surprising in view of the fact that its sensitivity is nine time less than 

ruthenium, and the peak of ruthenium is in turn low due to the shadowing 

effect played by the carbon atoms of organic oleylamine and/or residual 

acetylacetonate adsorbed on the nanoparticles. In order to remove the 
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surface contaminants, the sample was Ar-sputtered for 30 minutes and 

afterwards XPS was measured again. The spectra, before and after 

sputtering (Figure 4.8), do not present relevant differences demonstrating 

that the presence of carbon-rich compounds can not be only ascribed to 

surface contaminations but it is related to the nature and the structure of 

the nanoparticles. 

 
Figure 4.6. Curve fitting of the oxygen XPS spectra recorded on a dry sample of 

RuP nanoparticles. 
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Figure 4.7. Curve fitting of the nitrogen XPS spectra recorded on a dry sample 

of RuP nanoparticles. 
 

 



Chapter 4 
 

110 
 

 
Figure 4.8. XPS of RuP before (red) and after (green) sputtering. 

 

4.5 Catalytic tests 

As preliminary study, RuP nanoparticles were examined as catalysts in 

the hydrogenation of phenylacetylene, see Scheme 4.5. 
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Scheme 4.5. Catalytic hydrogenation of phenylacetylene. 

 

The results of the catalytic tests are summarised in Table 4.1. The 

catalytic activity of RuP nanoparticles was studied using the same 

conditions reported by Mézailles for the hydrogenation of 

phenylacetylene catalysed by Ni2P NPs (7% mol catalyst in THF at 66 

ºC).19 While with Ni2P nanoparticles, the conversion of phenylacetylene 

is only 70%, with 98% selectivity towards styrene and only 2% for 

ethylbenzene, in the case of RuP, the fully hydrogenated product, i.e.  

ethylbenzene, is formed, with 100% selectivity. Repeating the reaction 

with an increased ratio RuP:phenylacetylene (7:1000 mol), complete 

hydrogenation to ethylbenzene was observed again. 

  

Entry  Cat 
(% mol) 

Temp 
(°C) 

Time 
(h) 

Conv.  
(%) 

Select. 2[a] 
(%) 

TON 
 

TOF 

1 7 66 16 100 100 14.4 0.9 

2 7 66 5 100 100 14.4 2.9 

3 0.7 66 5 100 100 144 28.8 

4 0.7 66 1 95 39 53 53 

 

Table 4.1. General conditions: 10 bar H2, 0.0864 M of substrate in THF, [a] 
measured by GC-MS, TON = mol of desired product/mol of catalyst; TOF = mol 
of desired product/mol of catalyst / time (h-1). 
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4.6 Conclusions 

A new procedure for the synthesis of ruthenium phosphide NPs was 

implemented, involving white phosphorus as “P” source and avoiding 

harsh conditions, as high temperature. The isolated RuP NPs have been 

characterised by powder X-ray diffraction which confirms the identity of 

the compound, the phase purity and the crystallinity. Moreover, TEM 

measurements show the material is highly homogeneous, constituted by 

very small nanoparticles, having an average diameter of 2.6 nm. 

Preliminary tests on hydrogenation of phenylacetylene in mild conditions 

showed very good catalytic activity and selectivity towards the fully 

hydrogenated product, ethylbenzene. Further studies on different 

unsaturated substrates will be carried out in the next months. Moreover, 

synthesis of Ru2P nanoparticles will be also performed and a new series 

of catalytic studies on hydrogenation reactions will be carried out. 

 

4.7 Experimental part 

4.7.1 Chemicals 

All reactions were carried out under argon or nitrogen atmosphere. All the 

solvents used were of analytical grade and were dried and degassed 

before use. THF was purified by distillation under Na/benzophenone. 

RuCl3.xH2O, acetylacetone, benzylether and oleylamine were used 

without further purification. Ru(acac)3 was synthesized according to the 

literature.20 
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4.7.2 Characterization methods 

Transmission electron microscopy 

TEM studies were carried out using a Philips instrument operating at an 

accelerating voltage of 100 kV. Few drops of the palladium colloidal 

suspension, obtained using either toluene or water, were placed on the 

TEM lacey copper/carbon grid or copper/formvar grid respectively, air 

dried and measured.  

 

Powder X-ray diffraction 

PXRD data were collected with an X’Pert PRO diffractometer with Cu-

Kα radiation (λ = 1.5418). 

 

X-ray Photoelectron Spectroscopy 

XPS measurements were performed in an ultra-high vacuum (10-9 mbar) 

system equipped with a VSW HAC 5000 hemispherical electron energy 

analyzer and a non-monochromatized Mg-Kα X-ray source (1253.6 eV). 

The source power was 100 W (10 kV×10 mA) and the spectra were 

acquired in the constant-pass-energy mode at Epas = 44 eV. The overall 

energy resolution was 1.2 eV as a full-width at half maximum (FWHM) 

for the Ag 3d5/2 line of a pure silver reference. The recorded spectra were 

fitted using XPS Peak 4.1 software employing Gauss-Lorentz curves after 

subtraction of a Shirley-type background. The powder sample was 

introduced in the UHV system via a loadlock under inert gas (N2) flux, in 

order to minimize the exposure to air contaminants and kept in the 

introduction chamber for at least 12 hours before the measurements. 
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4.7.3 Procedures 

Synthesis of Ru NPs 

The preparation of Ru(0) nanoparticles from ruthenium(III) 

acetylacetonate was carried out following the procedure by Can and 

Metin with minor modifications.32 

A red suspension of Ru(acac)3 (400 mg, 1.00 mmol) in oleylamine (20 

ml, 60.79 mmol) and dibenzylether (16 mL) was degassed with 3 

vacuum/N2 cycles at 120 ºC. This temperature was maintained for one 

hour. Then, the resulted solution was heated up to 300 °C for one hour. 

The black solution was then cooled down to room temperature, 

isopropanol and acetone (1:1) were added (100 mL) and after 

centrifugation at 10000 rpm per one hour, the nanoparticles were isolated 

and dried under a current of nitrogen. 

 

Synthesis of RuP NPs  

To a degassed solution of Ru(0) nanoparticles (60.0 mg, 0.594 mmol) in 

oleylamine (6.0 mL), a solution of P4 (1.4 mL, 0.149 mmol, 0.11 M, 0.25 

eq) in toluene was added. Toluene was removed under vacuum and the 

solution was quickly heated up to 220 °C and kept at this temperature for 

2 hours. The reaction was cooled down, isopropanol and acetone were 

added (100 mL) and after centrifugation at 10000 rpm per one hour, the 

nanoparticles were isolated and dried under a current of nitrogen. 

 

Catalytic hydrogenations 

In a typical experiment, a 100 mL stainless steel autoclave home-built in 

the mechanical workshop of CNR-ICCOM was equipped with a vial, 

containing a magnetic stirrer, and charged with a suspension of previously 
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prepared RuP nanoparticles in THF under an inert atmosphere. 

Phenylacetylene was added, then the autoclave was sealed and purged 

with hydrogen (3 times), before being pressurized with hydrogen up to 10 

bar. The autoclave was kept stirring at 25 °C or 66 ºC for the required 

time. After that, the autoclave was cautiously depressurized, the solution 

was filtered through alumina to remove the catalyst and the filtrate 

(unreacted substrate and products) was analyzed by GC. 
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Appendix 
Crystal data 

Table 1. Crystallographic data for {[CpRu(PPh3)2{PhP(OH)2}]CF3SO3} 
27OH·CCl2 
Formula C49H42Cl2F3O5P3RuS 
Formula weight 1064.77 
Crystal system Monoclinic 
Space group P21/c 
a (Å) 12.5099(2) 
b (Å) 13.2579(2) 
c (Å) 28.0827(6) 
β (°) 96.283(2) 
V (Å3) 4629.68(14) 
Z 4 
T/K 150(2) 
Dc (g cm-3) 1.528 
Crystal size (mm) 0.30 × 0.25 × 0.20 
µ (mm-1) 0.662 
2Θ range (°) 8.26-57.80 
Total reflections 10671 
Unique reflections (Rint) 10653 (0.04) 
Observed reflections [I > 2σ(I)] 9192 
Parameters 594 
Final R indices [I > 2σ(I)] R1 0.0413, wR2 0.1066 
Max., min., ∆ρ (e Å-3) 1.553, -1.439 
Goodness of fit on F2 1.045 
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Table 2. Crystallographic data for [(η6-p-cymene)RuCl2{PhP(OH)2}] 
30OH 
Formula C16H21Cl2O2PRu 
Formula weight 448.27 
Crystal system Monoclinic 
Space group P21/n 
a (Å) 12.4787(2) 
b (Å) 11.3676(1) 
c (Å) 13.2916(2) 
β (°) 107.962(1) 
V (Å3) 1793.56(4) 
Z 4 
T/K 150(2) 
Dc (g cm-3) 1.660 
Crystal size (mm) 0.20 × 0.20 × 0.10 
µ (mm-1) 10.687 
2Θ range (°) 10.46-144.12 
Total reflections 3481 
Unique reflections (Rint) 3473 
Observed reflections [I > 2σ(I)] 3222 
Parameters 210 
Final R indices [I > 2σ(I)] R1 0.0429, wR2 0.1131 
Max., min., ∆ρ (e Å-3) 0.987, -0.893 
Goodness of fit on F2 1.043 
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Table 3. Crystallographic data for [{Cp*Ru(PCy3)}(µ 2,η2:4P4Cl2)-
{RuCp*}]  38·DME 
Formula C42H72Cl2O2P5Ru 
Formula weight 1036.88 
Crystal system Triclinic 
Space group P-1 
a (Å) 12.7474(2) 
b (Å) 13.3991(2) 
c (Å) 14.5781(3) 
a (°)  70.6590(10) 
β (°) 79.0950(10) 
γ (°)  88.9330(10) 
V (Å3) 2304.44(7) 
Z 2 
T/K 296(2) 
Dc (g cm-3) 1.494 
Crystal size (mm) 0.02 × 0.02 × 0.02 
µ (mm-1) 0.979 
2Θ range (°) 3.01-66.35 
Total reflections 67593 
Unique reflections (Rint) 17466 
Observed reflections [I > 2σ(I)] 14778 
Parameters 490 
Final R indices [I > 2σ(I)] R1 0.0355, wR2 0.0846 
Max., min., ∆ρ (e Å-3) 2.077, -1.155 
Goodness of fit on F2 1.044 
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