

DOTTORATO DI RICERCA IN

INFORMATICA, SISTEMI E TELECOMUNICAZIONI

TELEMATICA E SOCIETA' DELL'INFORMAZIONE

CICLO XXVIII

COORDINATORE Prof. Nesi Paolo

Automatic Train Operation System for light rail and metro using
a model-driven approach and Social Network Monitoring to

quantify public attention on services and events

Settore Scientifico Disciplinare ING-INF/05

 Dottorando Tutori

 Dott. Menabeni Simone Prof. Nesi Paolo

_______________________________ _________________________
 (firma) (firma)

 Prof. Fantechi Alessandro

 (firma)

Coordinatore

Prof. Chisci Luigi

(firma)

Anni 2012/2015

Table of contents

Preface .. 6

Part 1... 8

1 Introduction to Railway Signalling Systems .. 8

1.1 Railway Signalling Systems technology.. 8

1.1.1 ERTMS/ETCS standard .. 11

1.1.2 Braking Model and Speed Profiles ... 15

1.2 CBTC Overview ... 16

1.2.1 Domain Analysis and existing technologies ... 17

1.2.2 Reference Standards .. 18

2 ATO System Analysis ... 21

2.1 Main challenges ... 21

2.2 ATO Preliminary System Specification ... 22

2.3 ATO System Requirements Specification... 26

2.3.1 ATO-ATS Communication Protocol... 30

2.3.2 ATO-TRAIN Communication Protocol ... 30

2.3.3 ATO-ATC Communication Protocol .. 30

2.4 Initialization Phase ... 31

2.4.1 Procedure Start of Mission ... 33

3 ATO System Modelling ... 43

3.1 Model Based Systems Engineering .. 43

3.2 IBM Rational Rhapsody .. 44

3.3 Package Init Design .. 46

4 Model Verification and Testing .. 55

4.1 Adopted Methodology ... 56

4.2 Critical aspects of the model ... 57

4.3 Model Testing .. 58

4.4 Integration Testing ... 59

Part 2... 60

1 Introduction to Social Media Monitoring ... 60

1.1 Social Media Monitoring .. 60

1.2 Twitter .. 65

2 Twitter Vigilance Analisys ... 67

2.1 Requirements ... 68

2.2 Twitter API ... 69

2.3 Main challenges ... 82

3 Twitter Vigilance Design ... 84

3.1 Backend .. 84

3.1.1 Requirements ... 85

3.1.2 Backend Architecture ... 86

3.1.3 DB structure .. 86

3.1.4 Crawler .. 98

3.1.5 Scheduler .. 100

3.1.6 Other Scripts ... 104

3.2 Dashboard .. 105

3.2.1 Requirements ... 105

3.2.2 Frontend Architecture .. 107

4 Testing and Validation .. 123

Conclusions ... 127

Bibliography .. 129

Table of Figures .. 133

List of Tables ... 135

6

Preface

The research activities during the entire course of PhD was carried out at the DISIT

laboratory (Distributed Data Intelligence and Technologies) of DINFO (Department of

Information Engineering) of the University of Florence. The research activity is essentially

divided into 2 parts and concerns two arguments:

 Analysis and Modelling of Automatic Train Operation Systems

 Social Network Monitoring

The first part of the research was conducted within the project TRACE-IT in collaboration

with ECM, with the Department of Industrial Engineering of the University of Florence and

the Institute of Science and Technology of the CNR Pisa. Inside the lab DISIT, the activity was

carried out together with other two PhD students, Giacomo Martelli and Mariano DiClaudio,

responsible respectively for designing communication protocols and the management

system for train running.

The research project deals with the study, design, development and testing of systems of

protection of the train running (Automatic Train Protection, or ATC Automatic Train Control,

ATC) of railway vehicles that use leading edge technologies and are applicable both in the

context of interoperable European Rail System and in applications of light rail and metro. In

particular, the research has focused on protection systems and automatic drive of train in

the field of light rail and subway called CBTC (Communication Based Train Control).

Starting from the study of standards and products already on the market carried out during

the first year of the course has decided to model and implement an ATO (Automatic Train

Operation) able to be at the forefront over existing systems. To achieve this has decided to

create a system compatible with an ATC system compliant to ERTMS / ETCS standard. In

particular, the ATO system is designed to interface with the ERTMS / ETCS Level 2: to meet

this requirement, the system must implement both the behaviour of the driver interacting

with the DMI (Driver Machine Interface) either the behaviour of the DMI itself. In addition to

these requirements the ATO must comply with other specifications such as the initialization

of the entire system on board the train, the automatic adjustment of the running of the

train, the opening and closing of the doors, etc.

My research has focused on the analysis, modelling, implementation, and testing of the

initialization phase of the onboard system.

Preface

7

In the second part of the research activity, has designed and built a platform for scanning

Social Network: for the purpose are used the Twitter API to create a database of messages.

This platform is developed by DISIT Lab of the University of Florence and allows to monitor

Twitter channels and slow and explosive events on Twitter. The simplest channels include

the tweets corresponding to a single user, to a single hashtag, or a single keyword. Channels

more complex provide dozens of complex queries and combined between keywords, users,

hashtags, etc. For the events the platform monitors tweets per day / hour or per day / week

depending on whether the event is explosive or slow. So we can compute metrics on tweets

and retweets relating to a certain event or channel. In addition to the main process for the

recovery of the messages will be realized a number of secondary processes useful to the

realization of a dashboard for displaying the results of the scan and for the analysis of the

messages retrieved. This project is the result of a collaboration between UNIFI DISIT

laboratory, CNR IBIMET and LAMMA to investigate and build specific metrics and a

dashboard reliable to monitor the tweets that refer to the weather. The study has helped to

develop the Twitter Vigilance platform.

The analysis of social networks has become the main source of news, comments, opinions

on any subject. The analysis shows that there are already several instruments, paid or not,

which analyze and extract information from various social channels. Twitter Vigilance was

designed as a platform for the search of messages on Twitter and for the analysis of such

messages both from a numerical point of view (to highlight the daily peaks), both from a

semantic point of view (to identify what refer spikes of tweets).

Twitter Monitoring through specific channels offers the opportunity to gain some

understanding of the perception of the people on environmental issues and on other issues.

Twitter Monitoring also has useful ideas to government officials on reliable sources of

information shared via Twitter and tips on how to improve communication to citizens on

these issues.

The thesis is divided into 2 parts which reflect the topics of the research activities carried out

within the PhD. The first part concerns the analysis, modeling and validation of the

initialization phase of an ATO system for light rail and metro and is divided into four

chapters: Chapter 1 is the introduction and includes state of the art on railway signaling,

Chapter 2 describes the analysis of the ATO system that identifies the main issues of the

project and in particular of the initialization of the onboard system, Chapter 3 describes the

modelling activity of the initialization phase and Chapter 4 presents the validation and

testing of the designed system. The second part concerns the analysis, design and validation

of a platform for Social Network Monitoring and is divided into four chapters: Chapter 1 is

the introduction and includes state of the art the social network monitoring with a focus on

Twitter, Chapter 2 describes the analysis of the problem by identifying the main critical

issues due mainly to the Twitter API, Chapter 3 describes the design of the Twitter Vigilance

platform (architecture, database structure and statechart of individual processes) and

Chapter 4 presents the validation of the developed system.

8

Part 1

1 Introduction to Railway Signalling Systems

1.1 Railway Signalling Systems technology

Signalling is one of the most important parts of the railway system. The signalling adoption

derives from the need to ensure safety in train movement and in railway traffic control in

order to prevent trains from colliding. Over the years the signalling technology had a

considerable development starting from hand signals to the most modern systems for trains

separation [1].

In signalling railway a key concept not changed over the years exists: Trains cannot collide

with each other if they are not permitted to occupy the same section of track at the same

time [2]. On this concept all railway safety systems have been implemented, including the

most advanced systems nowadays used.

From 1850 the railway lines have been divided into sections called block sections (or blocks)

and only one train was permitted in each block at a time (in most cases this rule is still valid

nowdays). At the beginning, men at specific intervals along the rail lines with a stopwatch

signalled that a train was going to pass with hand signals.

By 1900 mechanical semaphores were placed along the rail lines in order to help the staff.

With the invention of the telegraph and then of the telephone, the staff could send a

message (first a certain number of rings on a bell, then a telephone call) to confirm that a

train had passed and that a specific block was finally clear. About in 1930 the first optical

signals were introduced and the whole system was called phone block system. From the

1930s, the semiautomatic block was introduced with hand signals replaced by fixed

mechanical signals. In this type of signaling one block (or protected section) usually was

adopted along the railway line between neighboring stations. So only one train could occupy

the section at a given time and the departure of a train from one station was possible only

when the section was free.

Both the train departure and arrival required the assistance of duty officers: at depart

station the officer received special blocking signal from the neighbour station duty offices

Part 1 - Introduction to Railway Signalling Systems

9

while at arrival station the officer ensured that the line was free and pressed a special

button to send arrival signal to the neighbour station [3].

Nowadays, railway signalling is based on automatic blocks where manual intervention is not

required. The railway line is still composed of a series of block sections of a certain length

and, depending on typology of blocks, we can have fixed-block and moving-block signaling

systems. These systems are normally made up of two parts, a wayside equipment and an

onboard equipment. The main task of the wayside equipment consists in communicate to

the train (to onboard equipment) the distance that can be covered in safety. This distance is

generally called Movement Authority (MA) and is used by the onboard equipment to

compute the speed curve (normally called braking curve). This curve must be respected by

the train in order to be able to stop before reaching the end of the MA [4].

Figure 1: Fixed-block signaling system

In a fixed-block system (Figure 1) the length of block sections is fixed and is established when

the system is deployed. So in these systems each block length defines the Movement

Authority that is therefore fixed. This information is received by the onboard equipment at

the beginning of each block in order to compute the braking curve according to this distance.

The train will operate the emergency brake before reaching the beginning of the next block

if it is occupied by another train.

Two equipments are primarily used to detect the presence or transit of the train in a

particular section: track circuit and axle counter or a combination of two.

Track circuits are electrical circuits separated by isolating joints made of electromagnetic

devices also used to inform signallers and to control relevant signals. The transit of a train on

the track triggers the electrical contact between the two rails, so the circuit is closed.

Consequently a relay is characterized by zero current and the block signal is set at danger or

occupied. In railway systems one of the major priorities is the railway safety, so fail-safe

operation is crucial. In this case the track circuit is designed to indicate the presence of a

train when failures occur. Nevertheless reliability and quality of railway services are

Part 1 - Introduction to Railway Signalling Systems

10

essential, so false occupancy readings are disruptive to railway operations and are to be

minimized.

The jointless track circuits are a track circuit typology and are obtained turning to alternating

current circuits. In this case the blocks can be separated by an inductive shunt connected

across the rails, avoiding the need for insulated joints. In non-electrified area alternating

current track circuits use different frequencies, combinations of frequencies or modulated

frequencies.

The Axle Counters are equipments placed at the start and the end of each block section. This

equipment uses two electronic wheel sensor systems to detect all the axles of rolling stock

travelling on a track and their direction of travel, using two electronic wheel sensor systems.

The result for the axles counted in are then compared with the result for those counted out

supplying the status of the track section (if it is free or occupied).

Figure 2: Safety distance between trains in fixed block and moving block signalling systems

To reduce the minimum headway between consecutive trains in order to further improve

the line capacity the Moving block system has been conceived, where each block section has

a length not established a priori. Unlike fixed-block systems, the train receive a prolonged

MA up to the rear of the vehicle in front (Figure 2) or any obstacle that prevented the MA

from being set to its maximum length. So the clear (safe) distance ahead of each train must

be calculated continuously and the appropriate speed, braking, or acceleration rate must be

sent to each train. This requires continuous two-way communication with each train, and

precise knowledge of a train's location, speed, and length, and of fixed details of the line—

curves, grades, interlockings, and stations. For this reason moving-block signaling systems

are also called transmission-based or communication-based signaling systems.

Without track circuits to determine block occupancy, a moving-block signaling system must

employ an independent technique to accurately locate the position of the front of a train,

Part 1 - Introduction to Railway Signalling Systems

11

and then use look-up tables to calculate its end position from the length associated with that

particular train's identification. The technique used is based on the position information

capture through active and passive markers (transponders) along the tracks, and train-borne

tachometers and speedometers. These are interrogated by a radio signal from each train

and return a discrete location code. Satellite-based systems cannot be used because they

will not work in tunnels. In such a system it is therefore necessary to use computer located

on each train, at a central control office, dispersed along the wayside, or a combination of

these. The most common arrangement is a combination of on-board and central control

office locations.

Nowadays a moving-block signaling system includes a train control systems, or more

properly Automatic Train Control (ATC) to increase the railway safety. Automatic train

control usually encompasses three subsystems: Automatic Train Protection (ATP),

Automatic Train Operation (ATO) and Automatic Train Supervision (ATS). Automatic Train

Protection is the basic separation of trains and ensures that the MA is always respected by

train. The respect of the MA implies, also, that the speed limit is not exceeded by the train.

To guarantee this, the ATC computes a dynamic braking curve based on train data such as

train position and speed. The ATO adds speed control and often automatic train

management. The automatic train operation functionalities are various, such as: regulation

of train speed within limits imposed by the ATC sub system ensuring passenger comfort as

established by operating policy, energy consumption management and optimization,

automated coupling & decoupling, train movement control with regard to speed,

acceleration, deceleration, and jerk and others. These features allow the automatic control

of train movement without drivers ensured by the onboard Automatic Train Operation

(ATO) system in combination with ATC. The supervision and management of train traffic

is provided by Automatic Train Supervision. ATS can integrate also other functionalities,

including train depot management, train wakeup/sleep, integrated maintenance,

incident report/replay and train routing. Automatic train protection and automatic train

control maintain the fail-safe principles of signaling and are referred to as vital or safety

critical systems. Automatic train supervision cannot override the safety features of these

two systems, and so it is not a vital system.

The ATC is combined with Interlocking systems (IXL) which are a set of signal apparatus

placed on the track in order to ensure a safe journey and avoid all risks of conflict between

train paths. This is performed through an arrangement of track devices such as junctions ,

derails and crossings.

1.1.1 ERTMS/ETCS standard

Nowdays with ATC/ATC denomination we refer to all the automated systems that protect

the driver and then the train from possible overspeed or exceed of stop signals. Over the

years the various European countries have realized different ATP/ATC systems that have

Part 1 - Introduction to Railway Signalling Systems

12

been developed according to the own national requirements and technical standards, and

operated according to the own operating rules.

Figure 3: European ATC/ATC systems before ERTMS/ETCS

This has led to the spreading of incompatible train protection and control systems impeding

the cross-border operation of European railway traffic. There were also other technical

differences among the European countries relating to rail gauge, electricity voltage, rolling

stock design, etc. For example, in Italy the BACC system based on conventional coded track

circuits employed at two different carrier frequencies, was used. The goal was to manage

two train classes, those operating either above or below 180 km/h [5].

Establishing common rules for the free movement of train in all European countries became

essential with the advent of European integration and with this remarkable diversity of

European ATC systems.

Following the decision taken by the European Transport minister in December 1989, the EU

embarked upon a project to analyze the problems relating to signalling and train control

[6][7]. At the end of 1990, the ERRI (European Institute of Railway Research) began to think

to develop a common interoperable ATC/ATC system, which could be adopted in all

European countries. Implementing a common interoperable platform for railways and

signalling systems to ensure the interoperability of the European rail network's was the final

goal of the International standard programme ERTMS. The main objectives of

interoperability are based on the need to simplify, improve and develop international

railway transport services, contribute towards gradually creating an open and competitive

domestic market for the supply of railway systems and construction, renewal, restructuring

and operative services, and establish standardised European procedures for assessing

Part 1 - Introduction to Railway Signalling Systems

13

conformity with interoperability requirements [1]. To define the TSI (Technical Specification

for Interoperability) a group of railway experts called ERTMS Group was created, consisting

originally of DB, FS and SNCF, but later joined by other railway European companies. To

finalize the TSI in the summer of 1998 the UNISIG union was formed, comprising the

European Signaling companies Alcatel, Alstom, Ansaldo Signal, Bombardier, Invensys Rail

and Siemens. The standardized, interoperable command and control ATC/ATC system was

called ERTMS/ETCS, or simply ETCS. In Europe this command-control and signalling system

was gradually introduced under the ERTMS/ETCS (or simply ETCS) denomination. Thanks to

this system, from the beginning of the 21s century interoperability of the European rail

network is going to be guaranteed.

ETCS is divided into different functional levels as established by the set of specifications

Baseline 3 (SRS 3.3.0) [8]. The definition of the levels depends on how the railroad is

equipped and on the way through information is transmitted to the train. Furthermore a

train fitted with complete ERTMS/ETCS equipment and functionality can operate on any

ETCS route without any technical restrictions.

The four levels identified by standard are the following:

 Level 0 = level corresponding to an ETCS vehicle running on a non-ETCS route. In this

case the trackside signals must be still observed and the trainborne equipment has

the only task of monitoring the train speed.

 Level 1 = the ERTMS/ETCS system is superimposed to the traditional signalling

equipment. In this case the traditional trackside occupancy controlling devices (track

circuits) detect the train position and are linked with the interlocking. Eurobalises

are usually used to transmit from track to trains fixed or variable data as the

permission to cross one or more block sections (Movement Authority). With these

data the on-board equipment continuously monitors and calculates the maximum

speed and the braking curve. Optionally, Euroloops or radio infill units may be used.

Figure 4: Level 1

Part 1 - Introduction to Railway Signalling Systems

14

 Level 2 = the ERTMS/ETCS system uses a GSM-R radio channel to allow a continuous

exchange of data between the trackside equipment (Radio Block Centre (RBC)) and

the trains. Train movements are monitored continually by the RBC that generates the

correct movement authorities for the different trains in the section. MA are then

transmitted to the trains together with speed information and route data. Most of

the signals are displayed in the trainborne cab making the lineside signals no longer

strictly necessary. The on-board equipment continuously monitors the transferred

data and the maximum allowed speed. The trains report their position to the Radio

Block Centre via the GSM-R communication channel and use the Eurobalises as

passive positioning beacons or electronic milestones. Between two positioning

beacons the train determines its position via sensors. The positioning beacons are

used in this case as reference points for correcting distance measurement errors. For

the train integrity, supervision the traditional signalling devises (track circuits) are still

kept.

Figure 5: Level 2

 Level 3 = ETCS Level 3 provides an implementation of full radio-based train spacing.

So the line-side signals as well as the trackside occupancy checking devices are no

longer required. The location of trains is determined by the train-side odometry and

reported to the trackside Radio Block Centre via GSM-R radio transmission. The

movement authority is then given on the information relating to the position of the

train, based on the actual distance of a train from the next. Nevertheless this level is

currently under development.

Part 1 - Introduction to Railway Signalling Systems

15

Figure 6: Level 3

The continuous exchange of data between an ERTMS L2 fitted train and the trackside sub

system is ensured by the GSM-R mobile communications. This mobile radio system, that is

used exclusively in the railway sector, allows a constant contact between the crew and the

ground (service communications and emergency management) for the exchange of data

between trackside and on-board systems, by estabilishing a circuit-switched connection.

Other communications standard have been considered by the UNISIG union. For example,

the wireless and connection-oriented approach is often considered as the bottleneck of the

signalling system, which considerably limits the possible number of voice and data

connections in each cell of the network at the same time and it can cause a deadlock of the

system, if the number of users will rapidly increase (e.g. accidents, freight depots, lines with

a high and dynamic volume of traffic).

Today Spain (3800km), France (2000km), Germany (1600km) and Italy (1000km) are

currently the most equipped states. In parallell to European adoption, other countries

(China, Taiwan, South Korea, India, Algeria, Libya, Saudi Arabia, Mexico, New Zealand or

Australia) have launched major ERTMS investment programs.

1.1.2 Braking Model and Speed Profiles

The ERTMS/ETCS train control system includes an Automatic Train Protection (ATP)

subsystem based on the concept of braking model. The latter is a mathematical model that,

knowing the current speed of a vehicle, the target distance and the characteristics of the

braking system, is able to predict the trend of the speed related to space. So once this model

is known it is possible to determine instant by instant the maximum speed at which the train

can travel so that it can stop safely before the dangerous point, that may be represented by

a stop signal. The maximum speed of the train must take into account two types of

constraints that define two specific curves. The first one called ServiceSpeedProfile considers

the sequence of stations where the train will arrive respecting the fixed time. The second

Part 1 - Introduction to Railway Signalling Systems

16

one called SignalingSpeedProfile instead refers to the presence of curves, turnouts and

possible temporary interruptions along the railway line.

Figure 7: Service Speed Profile and Signaling Speed Profile

Figure 7 shows an example of the two curves just described, that regulate the performance

of the train. It is possible to observe how in this case the MA (Movement Authority) does not

match with the target distance, and then the limit to which the train will have to refer is that

defined by the signaling speed profile. In fact in order to ensure safe conditions the speed of

the train will always be less than that defined by the most restrictive of the two profiles.

To ensure that the onboard system can calculate the allowed speed, it must receive from the

trackside equipment the following information:

 Movement Authority (MA), the space that the train is authorized to travel in safe

condition.

 Speed limit profiles, namely the limitations of the signaling static and/or dynamic.

At the same time the trackside system has to know by the onboard equipment the following

information:

 The current position of the train along the line and the travel direction.

 The status of the railway line downstream of the location of the train.

1.2 CBTC Overview

The Communications-Based Train Control (CBTC) systems are novel signalling and control

systems in urban context for light rail (e.g., tramway), heavy rail (e.g., metro) and APM

Part 1 - Introduction to Railway Signalling Systems

17

(Automated People Mover, e.g., Airport metros)[9] [10]. These systems give operators

precise control in the movement of their trains, allowing more trains to run on the line at

higher frequencies and speeds in total safety — with or without drivers. The goal is to

improve capacity, efficiency, reliability, safety and operational flexibility of the train, and to

reduce operating costs.

1.2.1 Domain Analysis and existing technologies

The traditional systems that do not use a CBTC approach are normally referred as fixed block

systems, since the railway is divided into sections of track, which are separated by signals [2]

. A train is not allowed to enter a given track section (block) before the preceding train has

cleared it. The presence of trains is detected by the track circuits. Therefore, the position of

the train is based on the accuracy of the track circuit, and the information provided to the

train is limited to the one provided by the wayside signals.

The CBTC systems, also referred as moving block systems, don't require the use of track

circuits because the train position is provided by the onboard equipment with a high

precision. Furthermore, much more control and status information can be provided to the

train exploiting a continuous wayside-to-train and train-to-wayside data communication. In

this way the CBTC is aware at any time about the exact train position and speed. Currently,

most of CBTC systems implements this communication using radio transmission.

Thanks to the moving block principle, CBTC is able to reduce the distance between two trains

running in the same direction (this distance is normally called headway). In this case the

minimum distance between successive trains is no longer calculated based on fixed sections,

as occurs in presence of track circuits, but according to the rear of the preceding train with

the addition of a safety distance as a margin. This distance is the limit distance (Movement

Authority (MA)) that cannot be overcome by a running train. In this way a safe operation of

trains is ensured.

The CBTC uses the onboard Automatic Train Control (ATC) system to ensure that the MA is

always respected by train, in addition to ensure a continuous protection of the train in every

aspect. The respect of the MA implies, also, that the speed limit is not exceeded by the train.

To guarantee this, the ATC computes a dynamic braking curve based on train data such as

train position and speed.

The automatic control of train movement without drivers is ensured by the onboard

Automatic Train Operation (ATO) system in combination with ATC. This automatic control

allows to lead the train from one station (or predetermined operational stopping point) to

the next, respecting the required speeds of the track and the operating conditions ensuring

safe operation [11]. Other ATO functionalities:

 control train movement with regard to speed, acceleration, deceleration, and jerk;

Part 1 - Introduction to Railway Signalling Systems

18

 regulation of train speed within limits imposed by the ATC subsystem, ensuring

passenger comfort as established by operating policy;

 management of programmed stops;

 management of Platform/Train doors;

 skip programmed stops;

 management of overshoot ad undershoot;

 automated coupling & decoupling;

 energy consumption management and optimization.

From the architectural point of view the CBTC system is constituted by an onboard

equipment and a wayside equipment. The first is installed on the train and forms the on-

board subsystem (BSS). The second equipment is located at a station or along the line and

forms the trackside subsystem (TSS).

1.2.2 Reference Standards

Currently, the different CBTC products are governed by IEEE 1474.1-2004 and IEC 62290

[12][13]. These implementations are offered on the market by different vendors such as

Bombardier, Alstom, Thales, Invensys Rail Group, Ansaldo STS, and Siemens.

The IEEE 1474.1-2004 has been defined by the Communications-based Train Control

Working Group of Institute of Electrical and Electronic Engineers (IEEE) and approved in

2004. Such standard defines the functional and performance requirements that a CBTC

system shall implement. The functional requirements describe the functionalities of

components of CBTC system identified in Automatic Train Protection (ATP), Automatic Train

Operation (ATO) and Automatic Train Supervision (ATS). The ATO and ATS functions are

considered optional by the standard. The performance requirements describe how well the

functionalities are to be executed or achieved, or how well they are to be accomplished. In

addition to these requirements, this standard also establishes the headway criteria, the

system safety criteria and the system availability criteria applicable to different transit

applications, including the Automated People Movers (APM).

The IEC 62290 is a standard defined by the International Electrotechnical Commission (IEC)

gone into effect in 2007. This standard includes the fundamental concepts, the general

requirements and a description of the functional requirements that the command and

control systems in the field of urban guided transport, like the CBTC, shall possess. For these

systems the standard establishes four levels of automation called Grades of Automation

(GoA1 to Go4). The definition of Grades of Automation arises from apportioning

responsibility for given basic functions of train operation between operations staff and

system. For example, a GoA1 system simply enforces brakes when the driver violates the

Part 1 - Introduction to Railway Signalling Systems

19

dynamic braking curve. A GoA4 system ensures fully unattended operations without

operations staff.

Figure 8: GoA Levels

CBTC technology includes complex hardware and software systems that interact tightly with

human users and are constrained by a number of national/international regulations and

standards. Therefore the CBTC are critical systems with regard to the safety and reliability

since a failure can lead to catastrophic consequences ranging from loss of profit to human

lives. For this reason these systems must be certified according to the strict international

guidelines and, in the field of railway signalling software systems, these guidelines are

represented for software by CENELEC EN50128.

The CENELEC EN 50128 Standard, “Railway Applications: Software for Railway Control and

Protection Systems” is part of a group of related Standards: the EN 50129 and the EN 50126

[14][15][16]. The latter ensures that the embedded software is suitable for use in safety-

critical settings, while the EN 50129 provides guidelines for the electronics systems used for

signaling. The EN 50126 and the EN 50129 are focused on the safety functions allocated to

software, whereas the EN 50128 specifies the methods which need to be used in order to

develop software which meets the demands for safety. The key element of this latter norm

is the concept of software safety integrity levels (SILs). SIL defines the robustness degree in

terms of protection level that the system must have against the failures both random type

that systematic type. There are four safety integrity levels (from SIL1 to SIL4): S4 is

associated with the highest level of integrity, while S1 is associated with the lowest. The SIL0

value is used for indicate that there are NO safety requirements.

The light rail metro systems are very similar to the conventional rail, but with some

important differences:

 are closed systems;

Part 1 - Introduction to Railway Signalling Systems

20

 are constituted by a geographically limited track and without communication with

other tracks, on which pass only the rolling stocks which are part of the system;

 have very different track layouts compared with conventional rail, namely much less

complex from the point of view of the interconnections between the tracks in the

stations but with winding routes and stops very close each others that do not allow

to reach speeds comparable to those of conventional trains;

 the tracks are often underground and don't allow the use of communication

infrastructures like GSM-R, but require communicators of small size/power arranged

along the line in large numbers and to brief intervals.

The CBTC signaling system presents some aspects that derive by the ERTMS/ETCS standard

and appropriately contextualized in urban applications.

Despite the differences relating to the characteristics of the track, as described above, the

CBTC system has similar needs to those of a conventional rail and can include an ATC similar

to that provided by the ERTMS/ETCS project, simplifying and/or refining some aspects.

However, any changes must always ensure the safety properties: feature and availability

comparable to those initials.

21

2 ATO System Analysis

The development of railway and metro signalling platforms in Europe shall comply with the

CENELEC standards [14][15][16]. These are a set of norms and methods to be used while

implementing a product having a determined safety-critical nature. If a company wishes to

achieve a CENELEC certification for its CBTC product, the development of the product shall

follow the guidelines and the prescriptions of the norms. In principle, the company can

decide to treat the CBTC product as a single system, and provide certification for the system

as a whole. Nevertheless, once the company has to sell a product variant, the certification

process shall be entirely performed also for the variant, paying undesirable costs in terms of

budget and time. Therefore, it is useful to develop each sub-system as an independent unit,

and follow the CENELEC regulations for the development of such sub-system. Once each

sub-system has got certification evidence according to the regulations, the certification of

the whole CBTC product is made easier, since it can be focused solely on the integration

aspects. Furthermore, if the customer requires only a specific sub-system (e.g., the ATC or

the ATO system) to renew a part of its installation, the subsystem can be purchased without

additional certification costs. The first documents typically edited for the development of a

system in a CENELEC-compliant process are the Preliminary System Specification (PSS) and

the System Requirements Specification (SYS-RS). The former is a document that summarizes

the interfaces of the system, and the functionalities that are expected from the system: PSS

is basically a drawing defining the system at block diagram level. SYS-RS is a document that

precisely specifies the expected system behaviour, as well as the safety, performance,

architectural and environmental constraints. Both documents are normally written in natural

language. In our approach we suggest to derive the PSS directly from the detailed

architecture [17].

To complete the analysis phase of the ATO system, it has been necessary to define the

communication protocols. These allow to interface the ATO system with the onboard

systems and with those on the ground. With the definition of the protocols documents,

which define the technologies to be used for each link and the structures of the exchanged

messages, it is possible to design the ATO system independently of the others.

2.1 Main challenges

Our goal is to study a protection and control system based on the CBTC technology in order

to derive the onboard Automatic Train Operation (ATO) subsystem, exploiting some of the

technologies of the ERTMS/ETCS project, and a wireless communication infrastructure that

outperforms GSM-R limits. The development of the Automatic Train Operation (ATO) system

is been influenced by the following aspects:

Part 1 - ATO System Analysis

22

 adherence to reference standards of Communications-Based Train Control

technology: IEEE 1474.1-2004, IEC 62290;

 compliance with CENELEC safety standards EN 50128, 50126, 50129 in order to

obtain a software which meets the demands for safety;

 compliance with ERTMS/ETCS Baseline 3 (BL3) for the use of ERTMS/ETCS

technologies;

 the system is part of an overall system characterized by an open and distributed

architecture. This makes maintenance easier, and it also allows each sub-system to

be upgraded without affecting the overall system;

 the exploitation of open standard wired and wireless network technologies provides

numerous benefits ranging from the use of universally accepted protocols (Ethernet

and TCP/IP) to the use of a well developed architecture and documented standards.

The use of an open standard data communication system offers a stable future

migration path as any of its distinct elements can be independently

modified/upgraded as technology advances;

 the use of specific technologies to record and monitor all operations/events which

happen when the system is active.

2.2 ATO Preliminary System Specification

It shows the internal subsystems and important interfaces to neighbouring systems. PSS can

be organized into Generic Product, Generic Application and Specific Application as described

in the Safety Approval Process.

The ATO System Design document has been realized starting from the analysis of the IEC

62290 and IEEE 1474.1-2004 standards and from the analysis of solutions on the rail market

[18]. Regarding the analysis of the market, we have analyzed the solutions proposed by

major signaling systems vendors: Bombardier, Alstom, Thales, Invensys Rail Group, Ansaldo

STS, Siemens and GE Transportation.

The requirements standards have been analysed to identify the functionalities expected

from a standard-compliant CBTC system (Functionality Identification), while the publicly

available documents of the selected vendors are inspected to identify the CBTC architectures

available in the market (Architecture Identification). Requirements standards are also

employed in the Architecture Identification task to provide a common vocabulary to

describe the architectures.

The main features of the ATO system that have been identified are 6: Change driving modes,

Automatic speed regulation, Platform berthing control, Door control, Fault recording and

reporting to ATS, Train initialization.

Part 1 - ATO System Analysis

23

 Change driving modes: this basic function is intended to change driving modes of the

train during train services between different automatic modes and from and to

different manual modes for operational or fall back reasons.

 Automatic speed regulation: the starting, stopping, and speed regulation of the train

as it travels along the track shall be automatically controlled by an ATO system so

that the speed, acceleration, deceleration, and jerk rates are within specified

passenger comfort limits (as defined by the authority having jurisdiction) and the

train speed is below the overspeed limits imposed by ATC.

 Platform berthing control: an ATO system shall be capable of implementing any

platform berthing control modes.

 Door control: an ATO system shall be capable of automatically controlling train doors

(and platform edge doors, where fitted) during passenger boarding and discharging.

 Fault recording and reporting to ATS: failures and out-of-tolerance conditions

detected by, or input to, ATO that can impact the on-time performance of the transit

system or result in some other loss of specific functionality may be automatically

indicated on the ATS user interface display. Any alarms shall be categorized and

prioritized into critical and noncritical alarms and logged.

 Train initialization: ATO must have the capability to initialize all the onboard systems.

In particular, it must be able to complete the initialization procedure of ATC.

Different possible architectures for a CBTC system are identified by evaluating the available

information about the CBTC products on the market. Several implementations of CBTC

systems are offered by different vendors. The major subsystems identified in the evaluated

CBTC systems are ATC, ATS, ATO and IXL. The adopted terminology is the one provided by

the CBTC standards, since the vendors use slightly different terms to refer to the same

components. There are also other additional subsystems, which include, e.g., the fire

emergency system, the passenger information system, and the closed-circuit television.

At the end of the first phase of analysis, we identified the operating context of the ATO

system in order to define the interfaces with the external environment and the messages to

be exchanged. In Figure 9 you can see the diagram that represents the operating context

identified.

Part 1 - ATO System Analysis

24

ATOAirgap ATS
Mission data

Fault Reporting

Alerts

 Command and

Control Unit

Traction

control

Brake

Control

Train Doors

Control Unit

Opening/closing

Train Doors

Train Doors Status

ATC

Speed

Profile

Odometric

Data

Platform Doors

Control Unit

Boa

Information

Opening/closing

Platform Doors

Platform Doors Status

Passenger

Emergency

Handles

P.E.H

 activation command

Initialization Data
Starting

Authorization

Train Wake Up

Maintenance

Operator

Maintenance

and configuration

AS Designer

Design and

Configuration

 of devices

Figure 9: ATO Operating Context

The ATO system must be interfaced with the following entities:

 ATC: train protection system conforming to level 2 of the ERTMS / ETCS;

 Airgap ATS: WLAN connection between the ATO and Supervision System ATS;

 Passenger Emergency Handles: handle operable by the passengers on board the

train for emergency braking;

 Command and Control Unit: device that manages the braking and the traction of the

train;

 Train Doors Control Unit: Device for train doors opening and closing;

 Platform Doors Control Unit: Device for platform doors opening and closing;

 AS Designer: human figure that deals with the design and conFiguretion of the ATO

system equipment;

 Maintenance Operator: human figure that takes care of the maintenance/

conFiguretion/ SW installation/ ATO system diagnostics.

With regard to the information exchanged between the ATO and external entities, these

have been identified on the basis of the functionality associated with the ATO: for example,

for automatic speed regulation the ATO needs to know the speed and current position of

train (odometry data), the stops to perform (mission data), the speed profile, and at the

Part 1 - ATO System Analysis

25

same time must send traction and braking commands. For each flow of information the

communication medium to be used has also been identified. For communication with the

ATS , it was decided to use the WLAN because it is the most widely used technology by the

vendors. The same communication medium is used for the exchange of information

between the wayside and onboard subsystems of ATO. For communication with the entities

on board the train (ATC , Command and Control Unit, Train Doors Control Unit) has been

chosen to use the MVB (Multifunction Vehicle Bus) which is the current standard for

communications within rail vehicles.

Once identified the operating environment, we defined a general structure of the internal

architecture of the ATO application. In Figure 10 you can see the outline architecture

realized.

ATS

Command and

Control Unit

Train Doors

Control Unit

ATC

Platform Doors

Control Unit

Passenger

Emergency Handle

AGEN

SSB-ATO

TOOL

CONFIG

PAP

SST-ATO

I1

I5

E2

E14

E3

E10

E11

E12

E7

E5

E13

I8

E15

E1

E4

E6

I9

I3

E8

E16

E9

I7
I4

I2

I6

Maintenance

Operator
E17

AS DesignerE18

I10

Figure 10: ATO Generic Application Architecture

The following entities define the Generic Application Architecture:

Part 1 - ATO System Analysis

26

 SSB-ATO: onboard subsystem of ATO system that handles the automatic train

management;

 SST-ATO: wayside subsystem of the ATO system that deals with the management of

platform screen doors and tags;

 PAP: procedures for the installation and commissioning of the ATO system. Contains

the rules for the design of the system. It interfaces with both the ATO and with SSB-

SST-ATO;

 TOOL: set of hardware and software tools for maintenance / conFiguretion /

installation / ATO system diagnostics;

 CONFIG: represents the configuration file for the ATO system.

2.3 ATO System Requirements Specification

For defining the requirements document for ATO system [19], we have used the information

obtained from the analysis of standards, those derived from the analysis of the market

solutions and design concepts contained in the ATO System Design document. Starting from

the functionality associated with the ATO and from the information exchanged with external

entities were extracted requirements for a railway automatic driving system.

The requirements were divided into 7 groups: technological requirements, mechanical

requirements, interface requirements, functional requirements, performance requirements,

RAM requirements and safety requirements. Requirements are normally written in natural

language, and, following the CENELEC norms, they shall be complete, clear, precise,

unequivocal, feasible, verifiable, testable and maintainable.

In our approach, the format of requirements is based upon four simple formats that shall be

employed to write requirements. The formats are reported below:

 FORMAT1. The system [shall|should] be able to < capability >. This format is

employed in case of requirements that involve mandatory (shall) or optional

(should) functionalities, which are unconditional and independent from the

actions of the operators. Requirements of this type are normally associated to

interface functions, internal procedures, or procedures that manage internal data

structures.

 FORMAT2. The system [shall|should] allow the < operator > to < action >. This

format is employed in case of requirements that involve mandatory (shall) or

optional (should) functionalities, which are unconditional and dependent from

the actions of the operators.

 FORMAT3. The system [shall|should] < action >, [when|after|before|if] <

condition > {[when|after|before|if] < condition >}. This format is employed in

case of requirements that involve mandatory (shall) or optional (should) system

actions that depend on one or more conditions. All conditions are considered in a

Part 1 - ATO System Analysis

27

logical AND relationship. If we want to express logical OR among conditions, it is

recommended to add a new requirement.

 FORMAT4. [FORMAT1|FORMAT2|FORMAT3], < procedure >. The format is a

combination of one of the previous formats with a procedure. This format is

employed in case of requirements that involve functionalities that have an

associated procedure, or that are performed through a well-defined interface

device. The format shall be used when it is useful to explain how the system is

expected to perform a certain action.

The fields < capability >, < action >, < condition > and < procedure > are free-form sentences,

with the only constraint of containing one verb maximum.

Before defining requirements we have defined the operating environment in which the ATO

system will have to work in order to define the limits of temperature, humidity and altitude

that the hardware will have to comply in accordance with EN 50155 and EN 50125-1.

Each requirement is identified by a unique code made up as follows: ATO_SYS_nnnn (nnnn

is a sequential number unique for ATO system and the assignment is done in steps of 10 to

allow subsequent insertions). Furthermore, the requirements possess a qualifier whose

meaning is shown in Table 1.

Qualifier Meaning

S Requirement covers issues of safety integrity. S
implies E (a safety requirement is essential)

E The requirement is to be considered essential for the
operation of subsystem

D Requirement is given for future developments

O Optional

U Requirement is instable because some details are still
being finalized

X Requirement is eliminated but is retained in the
document and is specified the reason for cancellation

V Requirement is to be considered as an
implementative constraint. V implies E (an
implementative constraint is essential).

Table 1: Requirement Qualifiers

Technological requirements describe the technologies required for the installation of a

component: for ATO, there are no special requirements except that the equipment must

conform to the standards EN 50155 and must comply with the environmental conditions

described above.

Part 1 - ATO System Analysis

28

Mechanical requirements describe the mechanical components of a system: for ATO, a

selector must be present for manually changing the level of automation on board the train,

and tags near the stations to facilitate a more precise stop of the train.

Interface requirements define how communications between ATO and external entities

must be managed: in particular they define the messages exchanged between the ATO

system and external entities described in the System Design document and the information

the ATO system needs to perform its tasks (doors status, signaling constraint, mission

profile, TRN, etc..). For example, ATO_SYS_2010, ATO_SYS_2070 and ATO_SYS_2090

represent the two types of requirements that are part of this section. The former expresses

how the ATO system should behave in communications with ATC, the latter two describe

data that must be included in the mission profile that ATS must send to ATO:

 ATO_SYS_2010 [E] ATO system shall interface with the ATC through the virtual

 Driver Machine Interface (DMI) during the initialization of

 train.

 ATO_SYS_2070 [E} ATO system shall receive a Mission Profile as specified in the

 document [Ref 2] and containing at least the following data:

a) length of each section in which mission is divided;

b) service speed for every section in which mission is divided;

c) stopping points where the train has to stop;

d) the departure time from each scheduled stop;

e) side of door opening for each scheduled stop. The values of

this data should indicate whether this is valid only for the

doors of the train or even for those of platform, denoting

the presence or absence of the latter.

f) how long the train and platform doors (if any) must stay

open.

 ATO_SYS_2090 [E] The ATO system should be able to acquire the status of the

train doors and platform doors (if present) from each doors control

unit mounted on the train and on the ground.

Functional requirements describe functionalities of a software system in terms of services

that the system must provide, of response to specific types of input and of behaviour in

particular situations: they describe the interactions between the system and its environment

independently of its implementation (the environment includes the user and any other

external system). They are the largest part of the requirements document since they define

what the system should do and should not do. To get the definition of this type of

requirements we started from the description that the standards give of the features that

have been associated with the ATO system. In particular, functional requirements describe

the actions to complete the initialization procedure of the ATC system, how to process the

mission profile received by the ATS, how to calculate the speed profile of the service and the

Part 1 - ATO System Analysis

29

signaling and how to adjust the speed based on all these data. Some examples of functional

requirements of the ATO system are the following:

 ATO_SYS_3040 [E] The ATO system must enter and/or confirm the Driver ID, Level

 ERTMS/ETCS Train Date when requested by ATCC.

 ATO_SYS_3100 [E] The ATO system must always accept a new Mission Profile if the

 system is operating at its nominal conditions.

 ATO_SYS_3120 [E] The ATO system must determine the service profile based on the

 Mission Profile received.

 ATO_SYS_3170 [E] When the train stops at a station, the ATO system will have to

 close the train doors and the platform doors (if any) after the

opening time imposed by the Mission Profile is elapsed.

 ATO_SYS_3200 [E] The ATO system should automatically control the train based on

the service profile and the signaling profile by regulating traction and

service brake, and communicating with the Command and Control Unit.

 ATO_SYS_3260 [E] The ATO system must ensure that the train speed is less than the

alert speed margin, defined in ATO_SYS_4070, for each point of the track.

Performance requirements include the requirements that relate to the number of terminals

supported, the number of users who have competitive access to the system and the amount

and type of information that can be manipulated at the same time. In the case of ATO,

performance requirements describe the speed limits that must not be exceeded, the

maximum values of acceleration and jerk and accuracy of measured train location for

programmed station stop purposes. Some examples are:

 ATO_SYS_4020 [E] The ATO system must stop the train at the station with a

maximum error of ± 30 cm if there are no platform screen doors.

 ATO_SYS_4040 [E] The ATO system must generate a service speed profile such that

the maximum acceleration of the train is between +a and -a, where a is

a parameter of the system conFiguretion.

 ATO_SYS_4060 [E] The ATO system must ensure that the train speed is not superior

to the most restrictive condition between the service profile and the

signalling profile.

RAM requirements identify three key characteristics in the field of maintenance of a system

or apparatus. RAM is an acronym for Reliability, Availability, Maintainability. Reliability of a

system is the probability that the system operates in predetermined ways, such as by

operating specifications, for a given period of time, according to the specific operating

conditions; Availability of a system is the probability that the system, at a given instant, is

capable of performing predetermined functions, such as by operating specifications, under

the operating conditions prescribed, assuming that have been assured the necessary

maintenance interventions; Maintainability is the property of a system to be maintained,

Part 1 - ATO System Analysis

30

defined as the probability that an action of active maintenance can be performed during a

given time interval, in the given conditions, through the use of prescribed procedures and

facilities.

Security requirements define the security features of the system. In the case of the ATO, the

only identified requirement was that each alarm/emergency that occurs on the train must

be recorded and notified to the ATS.

2.3.1 ATO-ATS Communication Protocol

ATS-ATO communication protocol ensures the interaction and exchange of information

between ATS and ATO. The ATS-ATO communication network is composed of several

distributed nodes (ATO) and centralized entity (ATS), which supervises the movement of

trains. The communication that is obtained through this protocol must respect certain

fundamental characteristics: the first is that communication must be bidirectional to allow

sending and receiving of data by both entities, the second is that the information exchanged

does not nedd to be on time (sending and receiving of information does not necessarily have

to respect tight deadlines) [20].

2.3.2 ATO-TRAIN Communication Protocol

The ATO-TRAIN communication protocol is necessary to allow the ATO to communicate with

the train interface. This was necessary because in a train with driver, interaction takes place

through levers and buttons but with an automatic guidance system these can not be used.

For this reason it was necessary to define a communication protocol able to transfer

commands from the ATO at the train interface (traction, braking, doors) and return the train

status. The ATO-Train protocol is defined to allow the exchange of information between the

automatic driving system and the TRAIN interface. ATO needs to send to TRAIN interface

commands that would be implemented manually in presence of the driver: commands for

activation of the ATC protection system and of the desk, braking / traction controls and

commands for train doors' opening/closing. Similarly, the TRAIN interface shall send to ATO

all the information needed to identify the status of the train: informations that must be

reported are the activation status of ATC and of desk, the braking / traction level applied and

the status of each port of the train.

2.3.3 ATO-ATC Communication Protocol

Communication with ATC requires the use of UDP protocol: this protocol is the same as that

used for communications between ATC and DMI to display information on the screen

according to ERTMS standard. The ATO must replace both the driver responding to the

Part 1 - ATO System Analysis

31

requests of ATC and the DMI behaving like a virtual DMI. The communication protocol

between ATC and ATO is substantially different from the one between ATS and ATO due to

the different protocol used (UDP instead of TCP) but also from the point of view of the

communication itself. In ATS-ATO communication there is no predefined messages sequence

(messages are sent when needed), instead in the communication with ATC the ATO can send

a message only in response to one sent by ATC. Messages sent by ATC have a timing of 100

ms and the ATO must reply before next message sent by ATC, otherwise it is considered

inactive.

2.4 Initialization Phase

As previously mentioned, one of the basic requirements of the system that will be

implemented is the integration with the standard ETCS level 2. Integration of the CBTC

system with an ETCS system will create a system for metropolitan edge that meets the

highest levels of safety and innovation currently present worldwide. The integration of an

ETCS level 2 requires that the ATO undertakes all the functions that would be performed by

the driver: these include the initialization phase that must be completed in order to start the

on board system.

ATOAirgap ATS
Mission data

Fault Reporting

Alerts

 Command and

Control Unit

Traction

control

Brake

Control

Train Doors

Control Unit

Opening/closing

Train Doors

Train Doors Status

ATC

Speed

Profile

Odometric

Data

Platform Doors

Control Unit

Boa

Information

Opening/closing

Platform Doors

Platform Doors Status

Passenger

Emergency

Handles

P.E.H

 activation command

Initialization Data
Starting

Authorization

Train Wake Up

Maintenance

Operator

Maintenance

and configuration

AS Designer

Design and

Configuration

 of devices

Figure 11: CBTC System Architecture

Part 1 - ATO System Analysis

32

As it can be seen from the figure, for the initialization phase ATO must exchange data with

both ATS and ATC (which implements an ETCS system). Communication with ATS includes

the command WakeUp to awake the ATO and the data of the mission needed to complete

the procedure Start of Mission and to program the stops to be carried out. ATS-ATO

communication protocol is defined in the document [20].

Communication with ATC involves an exchange of information vital to the management of

train: ATO obtains the necessary data for the train running (current speed, distance traveled,

speed profile to follow to meet the criteria of safety, etc.) from ATC, at the same time ATO

must submit the requested information during the procedure Start of Mission to ATC,

essential for starting and configuring the ATC system. In fact, the ATO must totally replace

the driver but also the DMI, that is the interface device between the driver and the ATC. This

feature of the ATO is due to the fact that the communication between ATC and ATO must

comply with the communication protocol described in the document [21].

ATC
DMI

(ATC)

ATO

Driver

ATS

Figure 12: Components involved in Initialization

As mentioned earlier, the ATO must supervise all those operations that would be made by

the human operator, including the switching on of all on-board systems. The initialization of

the systems on board the train takes place in two well defined cases: the first time in which

the system is switched on and after a standby phase. This functionality can be divided into

two phases of which only the first presents differences between the two cases. When the

system is turned on for the first time the steps to take are as follows:

1. Initially all communication protocols (to ATC, ATS, interface of the train) must be

started and the ATO must "present" itself to ATS and waits for a signal by the ATS

itself.

Part 1 - ATO System Analysis

33

Figure 13: Preliminary operation of Initialization phase

2. When ATO receives the signal "Wake Up" by the ATS must activate the ATC system,

activate a desk and carry out the procedure Start of Mission.

After these two phases the onboard system is ready to move the train and to complete its

"mission".

When the train is located in storage at the end of service, the onboard system is asleep in a

standby phase in which most of the systems are turned off and only the communication with

ATS remains active to allow the reception of the command of "awakening "of the system.

Compared to the first case described previously, there are fewer operations required to

activate the onboard system: the communication with the ATS is already active and is not

necessary that ATO "presents" itself, then only the communication protocols with ATC and

the interface of the train must be switched on.

2.4.1 Procedure Start of Mission

Procedure Start of Mission is described in Chapter 5 of Subset 026 of ETCS standard [8]. The

procedure Start of Mission is started by the driver once the train is awake or once a mission

is ended. At the beginning of the Start of Mission procedure, the data required may be in

one of three states:

a) “valid” (the stored value is known to be correct)

b) “Invalid” (the stored value may be wrong)

c) “Unknown” (NO stored value available)

Part 1 - ATO System Analysis

34

This refers to the following data: Driver ID, ERTMS/ETCS level, RBC ID/phone number, Train

Data, Train Running Number, Train Position (see 3.6.1.3).

Procedure

The following is the table of requirements for “Start of Mission” procedure. Figure 14 show

the flowchart of SoM procedure. The ID numbers in the table are used for the

representation of the procedure in form of a flow chart.

ID # Requirements

S0 The Start of Mission procedure shall be engaged when the ERTMS/ETCS on-

board equipment is in Stand-By mode with a desk open and NO communication

session is established or is being established.

S1 Depending on the status of the Driver-ID, the ERTMS/ETCS on-board equipment

shall request the driver to enter the Driver-ID (if the Driver-ID is unknown) or

shall request the driver to revalidate or re-enter the Driver-ID (if the Driver-ID is

invalid).

The ERTMS/ETCS on-board equipment shall offer the driver the possibility to

enter/re-validate (depending on the status) the Train running number.

The ERTMS/ETCS on-board equipment shall also offer the driver the possibility to

set/remove a Virtual Balise Cover.

Once the Driver-ID is entered or revalidated (E1) (possibly further to the Train

running number entry/revalidation and/or to Virtual Balise Cover

setting/removal), the process shall go to D2

D2 If both the stored position and the stored level are valid, the process shall go to

D3

If the stored position or the stored level is “invalid” or “unknown”, the process

shall go to S2

D3 If the stored level is 2 or 3, the process shall go to D7

If the stored level is 0,1 or NTC, the process shall go to S10

D7 If at least one Mobile Terminal is registered to a Radio Network, the process shall

go to A31

If NO Mobile Terminal is registered to a Radio Network, the process shall go to

A29

Part 1 - ATO System Analysis

35

ID # Requirements

S2 If the status of the Level data is "unknown", the ERTMS/ETCS on-board

equipment shall request the driver to enter it.

If the status of the Level data is "invalid", the ERTMS/ETCS on-board equipment

shall request the driver to re-validate or re-enter the ERTMS/ETCS level.

If the entered / re-validated level is 2 or 3, the process shall go to S3

If the entered / re-validated level is 0, 1 or one of proposed NTC level(s) (see

3.18.4.2 for the levels the driver is allowed to select), the process shall go to S10

S3 The ERTMS/ETCS on-board equipment shall offer the possibility to the driver to

re-enter the Radio Network ID. If the driver elects to do so, the on-board

equipment shall acquire an alphanumeric list of available and allowed networks,

based on a request to the Mobile Terminal(s) and:

 If this list is empty (E3) the process shall go to A29

 If the driver selects a new Radio Network ID from the proposed list, the

registration of the Mobile Terminal(s) to this new Radio Network shall be

ordered and the status of the RBC-ID/phone number shall be immediately

set to “unknown”.

If at least one Mobile Terminal is registered to a Radio Network, the ERTMS/ETCS

on-board equipment shall offer the following options to the driver for the RBC-

ID/phone number:

 Only if the status of the RBC-ID/phone number is “invalid": order the

ERTMS/ETCS on-board equipment to use the last stored RBC-ID/phone

number

 Order the ERTMS/ETCS on-board equipment to use the EIRENE short

number (trackside call routing function)

 Enter the RBC-ID/phone number (if its status is "unknown"), or

revalidate/re-enter it (if its status is “invalid”).

Once the driver has selected the first or second option or once data is validated

(E5), the process shall go to A31

Part 1 - ATO System Analysis

36

ID # Requirements

A29 The ERTMS/ETCS on-board equipment shall inform the driver that the Radio

Network registration has failed

This condition leads to S10 (the driver has to unlock the situation to continue e.g.

selection of new level)

S10 The ERTMS/ETCS on-board equipment shall offer the possibility to the driver to

select SH, NL, or to select Train Data Entry.

 If the driver selects SH (E12), the process shall continue in the same way as

the procedure “Shunting initiated by the driver”.

If, in level 2 or 3, the RBC rejects the request for Shunting (E13), the process

shall go back to S10.

 If the driver selects NL (E10) then the ERTMS/ETCS on-board equipment shall

immediately switch to Non Leading mode (refer to SRS chapter 4, transition

between modes: transition [46]). The mission starts in NL mode (if level is 2

or 3, the ERTMS/ETCS on-board equipment also reports the change of mode

to the RBC).

 If the driver selects Train Data Entry (E11), the process shall go to S12

 Following E10, E12, if the position is still invalid, the ERTMS/ETCS on-board

shall delete the train position data (new status: “unknown”)

S12 The ERTMS/ETCS on-board equipment shall request the driver to

enter/revalidate the Train Data that requires driver validation

 .

Once Train Data is stored and validated (E16), the process shall go to D12

D12 If Train running number is valid, the process shall go to D10

If Train running number is “unknown” or “invalid”, the process shall go to S13

S13 If the status of the Train running number is "unknown" or “invalid”, the

ERTMS/ETCS on-board equipment shall request the driver to enter/re-validate

the Train running number now.

Once Train running number is entered/re-validated (E18), the process shall go to

D10.

Part 1 - ATO System Analysis

37

ID # Requirements

D10 When the validated level is 2/3, the process shall go to D11

When the validated level is 0,1 or NTC, the process shall go to S20

D11 When the session is open, the process shall go to S11, otherwise it shall go to S10

S11 The ERTMS/ETCS on-board equipment shall send Train Data to the RBC.

When the RBC acknowledges Train Data (E14), then the ERTMS/ETCS onboard

equipment shall go to the step S20.

S20 The ERTMS/ETCS on-board equipment shall offer the possibility to the driver to

select “Start”

a) When the validated level is NTC and the driver selects "start"

(E20), the process shall go to S22

b) When the validated level is 0 and the driver selects "start" (E21),

the process shall go to S23

c) When the validated level is 1 and the driver selects "start" (E22),

the process shall go to S24

d) When the validated level is 2 or 3 and the driver selects "start"

(E24), the process shall go to S21

S21 The ERTMS/ETCS on-board equipment shall send an MA request to the RBC and

wait.

If an SR authorisation is received from RBC (E26), the process shall go to S24

If an MA allowing OS/LS/SH is received from RBC (E27), the process shall go to

S25

If an MA allowing FS is received from RBC (E29), the mission starts in Full

Supervision mode (refer to SRS chapter 4, transitions between modes: transition

from SB to FS)

Part 1 - ATO System Analysis

38

ID # Requirements

S22 The ERTMS/ETCS on-board equipment shall request an acknowledgement from

the driver for running under supervision of the selected National System. When

the driver acknowledges (E30) , the mission starts in SN mode (refer to SRS

chapter 4, transitions between modes).

Following E30, if the position is still invalid, the ERTMS/ETCS on-board shall

delete the train position data (new status: “unknown”)

S23 The ERTMS/ETCS on-board equipment shall require an acknowledgement from

the driver for running in Unfitted mode. When the driver acknowledges (E31),

the mission starts in Unfitted mode (refer to SRS chapter 4, transitions between

modes: transition from SB to UN)

Following E31, if the position is still invalid, the ERTMS/ETCS on-board shall

delete the train position data (new status: “unknown”)”

S24 The ERTMS/ETCS on-board equipment shall require an acknowledgement from

the driver for running in Staff Responsible mode. When the driver acknowledges

(E32), the mission starts in SR mode (refer to SRS chapter 4, transitions between

modes: transition from SB to SR)

Following E32, if the position is still invalid, the ERTMS/ETCS on-board shall

delete the train position data (new status: “unknown”)”

S25 The ERTMS/ETCS on-board equipment shall require an acknowledgement from

the driver for running in On Sight/Limited Supervision/Shunting mode. When the

driver acknowledges (E33), the mission starts in On Sight/Limited

Supervision/Shunting mode (refer to SRS chapter 4, transitions between modes:

transition from SB to OS, LS or SH)

A31 The ERTMS/ETCS on-board equipment shall open the session with the RBC.

D31 If the opening of the session is successful, the process shall go to D32

If the opening of the session has failed, the process shall go to A32

Part 1 - ATO System Analysis

39

ID # Requirements

A32 The driver shall be informed when the on-board equipment fails to open a radio

session.

Opening of a radio session has failed if

 NO connection to the RBC can be established (see section 3.5.3.7) OR

 The ERTMS/ETCS on-board equipment, based on the system conFiguretion

reported by the RBC, decides that compatibility is not ensured and

terminates the communication session

This condition leads to S10 (The driver has to unlock the situation to continue

e.g. selection of new level).

D32 If the stored position is valid, the process shall go to A33

If the stored position is invalid, the process shall go to A34

A33 If the train position data stored in the on-board equipment is of status “valid”,

the train position, marked as “valid” shall be transmitted to the RBC via the "SoM

position report" message.

This condition leads to S10.

A34 If the train position data stored in the on-board equipment is of status “invalid”

or "unknown", the train position, marked as “invalid” or "unknown" shall be

transmitted to the RBC via the "SoM position report" message.

The process shall then go to D33

D33 When the position report marked as "invalid" is received by the RBC, this latter

shall check whether it can validate this position report.

If the position report can be validated by the RBC, the process shall go to A35

Otherwise, if the position report was marked "unknown", or the "invalid"

position report cannot be validated by the RBC, the process shall go to D22

Note: How the RBC is able to validate the position report is a national issue, out

of the scope for this specification

Part 1 - ATO System Analysis

40

ID # Requirements

A35 The RBC shall inform the ERTMS/ETCS onboard equipment that the reported

position is valid.

When this message is received by the ERTMS/ETCS on-board equipment, the

status of the position shall be set to "valid"

The process shall go to S10.

D22 If the reported train position is "unknown", or the RBC is not able to confirm a

reported "invalid" position, the RBC shall nevertheless decide whether it accepts

the train or not.

If yes, the process shall go to A23

If NO, the process shall go to A38

Note: How the RBC assumes responsibility for the train is a national issue, out of

the scope for this specification

A23 The RBC shall inform the ERTMS/ETCS on-board equipment that it accepts the

train although the on-board has NO "valid" position information.

A24 When the ERTMS/ETCS on-board equipment is informed that the train is

accepted without valid position data, it shall delete the train position data (new

status: “unknown”)

This condition leads to S10.

A38 The RBC shall inform the ERTMS/ETCS on-board equipment that it rejects the

train

A39 When the ERTMS/ETCS on-board equipment is informed that the train is

rejected, it shall delete the train position data (new status: “unknown”) and shall

terminate the session with the RBC.

The process shall then go to A40

A40 The ERTMS/ETCS on-board equipment shall inform the driver that the train is

rejected

This condition leads to S10 (the driver has to unlock the situation to continue e.g.

selection of new level).

Table 2: Start of Mission procedure

Part 1 - ATO System Analysis

41

The SoM procedure shall end as soon as at least one of the following conditions is fulfilled:

• Transition to any mode other than SB

• The desk is closed

E14

Train data ack by RBC

No

E12

Driver selects

SH

S22

SN mode

proposed to Driver

SN mode

S23

UN mode

proposed to Driver

UN mode

S24

SR mode

proposed to Driver

SR mode

E20

Driver selects

"Start"

and Level is NTC

E21

Driver selects

"Start"

and Level is 0

E22

Driver selects

"Start"

and Level is 1

S25

OS/LS/SH mode

proposed to Driver

OS/LS/SH mode FS mode

E27

OS/LS/SH MA

received from RBC

E24

Driver selects

"Start"

and Level is 2/3

E29

FS MA

received from RBC

E26

SR mode

authorised by RBC

S0

Mode is SB and desk open and no communication session is established or is being established

S1

The on-board requests the driver to enter/re-validate Driver-ID, offers the driver the possibility to enter/re-

validate the Train running number and offers the driver the possibility to set/remove a Virtual Balise Cover

E1

Driver has entered/re-validated Driver-ID

2/3

D2

Stored position &

stored level

 are "valid"

A31

Onboard contacts RBC

D31

Session with

RBC can be

opened

D32

Stored position

is "valid"

No

A34

Onboard reports "invalid or

unknown" position to RBC

D33

RBC is able

to confirm

position

No

D22

RBC accepts

train

No

Yes

A32

Onboard informs Driver

A33

Onboard reports

"valid" position to RBC

A35

RBC reports to Onboard

"valid" position

A38

RBC reports to Onboard

"train rejected"

A23

RBC reports to Onboard

"train accepted"

A39

Onboard terminates session

and deletes

stored position data

A24

Onboard deletes stored

position data

A40

Onboard informs Driver

S3

Onboard offers Driver possibility to re-enter

Radio Network ID &

only if registered to a Radio Network, requests Driver to

 - use last stored RBC-ID/Phone Number (if any) or

 - use EIRENE short number or

 - to enter/re-enter RBC-ID + Phone Number

D11

Session is opened

S11

Onboard sends train data to RBC

and wait for ack

2/3

Yes

0/1/NTC

See procedure

"Shunting initiated

by Driver"

E13

SH

refused

by RBC

S10

Waiting for Driver selection

E11

Driver selects

Train Data Entry

No

0/1/NTC

NL mode

E33

Driver ack

E32

Driver ack

E31

Driver ack

E30

Driver ack

S21

Send MA request to RBC and wait

S20

Waiting for Driver selection of "Start"

No

Yes

Yes

Yes

Yes

S13

Onboard requests

Driver to enter

Train running number
No

E18

Train running number

is entered/re-validated

E16

Train data is validated

S12

Onboard requests

Driver to enter/re-

validate Train data

D12

Train running

number is

"valid"

D10

Level

D3

Level
Yes

S2

Onboard requests Driver to enter/re-validate level

0/1/NTC

E5

E10

Driver selects

NL

A29

Onboard informs Driver

E3

D7

Mobile Terminal

registered

Yes

No

2/3

Figure 14: Flowchart for Start of Mission Procedure

Part 1 - ATO System Analysis

42

In our case we do not need all steps defined by the Start of Mission procedure but have

been taken into account only the states in which must be included information essential to

ETCS. In particular, the data to be inserted / confirmed are the following:

• Insertion / confirmation of data

– Driver ID (confirmation of a default value, in case of GoA4)

– Level (confirmation of level 2 -pre-set value)

– Train Date (confirmation of default settings)

• Insertion of the Train Running Number

– This is the "operating number " (must be supplied by ATS)

• (ATC-RBC communications - waiting for ACK by RBC)

• RBC ACK -> Request of the command "Start"

– The START command must be sent to the ATC system

• ATC sends request for MA to RBC

– After receiving the MA by RBC, the ATC system enters in FULL SUPERVISION

and train can begin the mission.

43

3 ATO System Modelling

Within TRACE-IT project, in order to develop the on-board component of a CBTC- ATC

system, we have decided to adopt a model-based/model driven approach, usually referred

as "Model-Based Systems Engineering" - MBSE.

3.1 Model Based Systems Engineering

Model Drive Approach is a software development methodology that aims to enhance the

connection between the system model and its final realization, increasing the coherence

among the analysis and the implementation phase. This approach is more related to specific

domain concepts and behavioral aspects [22] rather than algorithms or concepts of

computation. Model is the central element in this approach, thus you can represent and

specify a system at various level of granularity such as the operational, functional, and

technical aspects. Modeling the system helps to manage its complexity, since each model

and diagram provides an abstracted view and definition of the system (or part of it).

Moreover MDA always keeps the model updated and related to the final system during all

the phases of software development process, and even when the system is complete and

maintained.

The model-driven development is characterized by the strong use of graphical notations that

overshadow the writing lines of code. In this regard the principal languages of reference are

UML (currently version 2.0) and SysML, which are able to simplify the complexity of a system

making it easily understandable to the different actors involved in the its development.

The MDA, even different from classic programming paradigms adopted in software

development, introduces great advantages in software system design and development,

increasing also the compatibility between the various components. In fact you can describe

system's behavior in a very detailed way, with a granularity almost comparable to that of a

classic programming languages. This entails:

 the possibility to generate part or all the code required by the system after

entering a sufficient amount of information to describe the model in a complete

manner, keeping the consistency between system model and the implemented

source code.

 the possibility to execute the model from a functional point of view, ie simulate

the system's behavior (desired or not).

 the possibility to apply validation and verification techniques that allow to check

the correctness of the system.

Part 1 - ATO System Modelling

44

 the possibility to automatically extract the code documentation; this allows the

designers to concentrate on the logic and the overall architecture of project.

Today, there are some technologies and tools that enable us to develop code without

writing code, take for instance Artisan Studio, Stateflow or Eclipse Modeling Framework.

According to the features described above, in this project we have used as a development

tool IBM Rational Rhapsody (versions Designer for Systems Engineers and Developer for

C++).

3.2 IBM Rational Rhapsody

IBM Rational Rhapsody Designer for Systems Engineers is an MBSE (Model-Based System

Engineering) environment that allows to build and manage models on which to base the

implementation of a system, and the operations of verification and validation of the same in

the early stage of development. This solution supports major reference standards, Unified

Modeling Language (UML) and Systems Modeling Language (SysML), with all their

formalisms and the main features [23].

Rational Rhapsody Designer for System Engineers helps design teams to manage

development challenges of complex products. In addition, it introduces a number of

advantages for development teams, supporting several useful features for project

management of medium to large complexity, such as:

 Design and requirements traceability - uses SysML and UML in order to facilitate

requirements analysis, to execute business studies and to design behavioural and

structural systems aspects.

 Graphical development - to graphically represent the system using industry standards

as SysML and UML, or Domain Specific Languages (DSL) as AUTOSAR.

 Management of models and simulations - allows to validate in advance the

behavioural aspects that characterize a model.

 Code Generation - allows the automatic generation of code in different programming

languages, starting from the model and taking into account the behaviour shown into

the statecharts.

 Documents generation - uses several tools ranging from simple report RTF generator

to fully customizable tools, as Rational Publishing Engine or Rational Rhapsody

ReporterPLUS.

 Collaboration of teams - helps teams to collaborate in order to manage the

development complexity in coherent projects in different environments.

 Life cycle and additional software support - integrates with other IBM Rational

products to support the whole development of life cycle of software systems.

Moreover, it is possible to extend Rational Rhapsody Designer for System Engineers

features with optional additional software.

Part 1 - ATO System Modelling

45

One of the main features that led us to choose the Model Driven Development approach

and the Rational Rhapsody tool is certainly the automatic code generation from the model.

The IBM development environment allows you to organize the various components (such as

packages, use cases, classes and all UML diagrams) that compose the model of the system in

a hierarchical structure, and provides the ability to partition a system into small subsystems.

Then, the tool is able to operate an automatic preliminary check on the created model in

order to find potential problems before the code generation (this operation can also be

started manually with predefined or custom controls). At the end Rational Rhapsody

generates code, for the whole project configuration or only for selected classes, starting

from the UML Model. The inputs for code generator are the model and the various

properties for setting the code generation. While, the outputs of the code generator are the

source files in a destination programming language: the specifications files, the

implementation files and makefile.

Another important feature concerns the project documents generation. Rational Rhapsody

has the internal reporting tool in order to create reports for inner use, for example as

reference for debugging a model. A report can be configured with information concerning

only selected items or all the elements of an active component, using standard or custom

templates. The application Rational Rhapsody ReporterPLUS can creates Microsoft Word,

Microsoft PowerPoint, HTML, RTF documents, or text reports from Rational Rhapsody

templates. The produced file can be saved and then shown in any program able to read the

format of the report. Rational Rhapsody ReporterPLUS creates documents exploiting the

following techniques:

 extraction of text and diagrams from a model created in IBM Rational Rhapsody.

 addition of text and diagrams from the model and images to the document.

 addition of boilerplate text specified in the Rational Rhapsody ReporterPLUS

template to the document.

 Formatting the document according to the formatting commands in the Rational

Rhapsody ReporterPLUS template, as well as the specifications in a Word template

(.dot file), a PowerPoint template (.pot file), or an HTML style sheet (.css file). Using a

.dot, .pot, or .css file is optional. HTML tags to format HTML documents can also be

used.

Rational Rhapsody is also equipped with a testing environment which is based on three main

components: Automatic Test Architecture Generation, Automatic Test Case Execution and

Automatic Test Case Generation. Rhapsody ATG is a test case generation tool using standard

Unified Modeling Language (UML) design notations. Using ATG, you can automatically

generate test suites and perform test execution applications developed.

Part 1 - ATO System Modelling

46

3.3 Package Init Design

This package containes the software subsystem for:

 the initialization phase of train allowing it to start its mission;

 the initialization of all other components of ATO system.

The mission specifies the service profile that allows the train to make the stops in pre-

established stations. The train initialization includes the following operations: activation of

ATC/ATC subsystem, activation of desk and execution of procedure Start of Mission provided

by ERTMS / ETCS standard (the reference regulations of this procedure is the subset-v330

026-5). All these operations are sequentially performed in the order with which they have

previously been listed. This package includes an only class which is identified by block

Initialization_Manager, which has the task of managing the initialization phase of train in all

its intermediate steps.

Figure 15: Init block definition diagram

As shown in the diagram in Figure 15, the block interacts with others classes of packages

ATSprotocol, ATCprotocol and LogPkg. Use of ATSprotocol allows Initialization_Manager to

exchange messages with ATS subsystem; in the same way the communication with ATC/ATC

subsystem is managed by Initialization_Manager through ATCprotocol. The message

exchange between ATO and ATS is governed by ATS-ATO communication protocol [20],

bdd [Package] Init [Init Manager Diagram]

Init::Initialization_Manager
«Block»

Values

Operations

iATPactSerialComm
«standardPort»

ATSprotocol::ATSSender
«Block»

Values

Operations

1 11 1

LogPkg::Log
«Block»

Values

Operations

1

1

1

11

ATPprotocol::ATPSender
«Block»

Values

Operations

iUDPclientUDPsend
«standardPort»

1 11

1

ATPprotocol::ATPListener
«Block»

Values

Operations

iUDPserverUDPlisten
«standardPort»

1

1

1

ATSprotocol::ATSListener
«Block»

Values

Operations

iTCPserverTCPlisten
«standardPort»

1

1

1

1

Running::Gestore_Marcia
«Block»

Values

Operations

Part 1 - ATO System Modelling

47

while the communication between ATO and ATP/ATC is governed by DMI ETCS-CPU32

protocol [21]. Finally, LogPkg is used to recording all events/operations relative to the class

Initialization_Manager. This class manages the initialization phase of train in all its

intermediate steps. So Initialization_Manager executes, as a first step, the activation of

ATP/ATC subsystem, then the activation of desk, and finally the procedure Start of Mission

defined by subset-v330 026-5 of ERTMS / ETCS standard [8]. At the end of the latter,

Initialization_Manager is able to confirm the operating mode with which the train will start

its mission. The procedure Start of Mission includes a number of steps executed according

to the flowchart shown in Figure 5. These steps are realized through interaction between the

driver and the DMI (driver machine interface) in an ERTMS/ETCS level 2 system. So, the ATO

subsystem will replace the driver in order to perform what requested by the procedure. To

achieve this, Initialization_Manager implements a "virtual DMI” plus a “virtual Driver". The

involved subsystems are ATO and ATC, which are interested by a message exchange

complying with DMI ETCS-CPU32 protocol. Messages coming from ATC/ATC are managed by

Initialization_Manager in a specific state in order to create the appropriate response

message. The latter communicates to ATP/ATC the status of shown screen. A message

coming from ATC, implying a variation of screen to be displayed, leads

Initialization_Manager in a new state; if instead the screen is the same of that commanded

by the previous message we have a transition to a new sub-state within current state.

Figure 16: Statechart of Initialization_Manager

stm [Block] Gestore_I nizializzazione

[statechart_6]
Presentation_to_ATS

Reactions

tosendPresentatio...

Waiting

/ /ATPEMachine->GEN(ev...

Preliminary_operations

Open_com

/ /if(count...

evCPU32NonAttiva

I nsert_releevCPU32Attiva

Reset

evBancoNonAttivo

Waiting_Initial

Wake_Up/ std::cout <<

"WakeUp received!\n";

std::cout << " Initializ ing

ATP...\ n" ;

itsLog->writeLog(" \tGEST_

I NIT: \tWakeUp

received!\n") ;

GestoreMarcia->GEN(evSta

rt);

statica =

FindW indowEx(hWnd,

NULL, TEXT("button") ,

TEXT("Marcia")) ;

HWND init =

FindW indowEx(statica,

NULL, TEXT(" static") ,

TEXT("I n Esecuzione")) ;

EnableWindow(init, true) ;

statica =

FindW indowEx(hWnd,

NULL, TEXT("button") ,

TEXT("I niz ializzazione"))

;

init =

FindW indowEx(statica,

NULL, TEXT(" static") ,

TEXT("I n Esecuzione")) ;

EnableWindow(init, true) ;

bar =

FindW indowEx(statica,

NULL, 0, TEXT(" Init"));

SendMessage(bar,

PBM_STEPI T, 0, 0);

SendMessage(statusBar,

WM_SETTEXT, 0,

(LPARAM)"WakeUp

ricevuto");

evBancoAttivoSwitchOff_reletm(300)

MAIN_Response_state
receivedMSGMAI N

evCPU32NonAttiva

evCPU32Attiva

Reset

evBancoNonAttivo

Wake_Up/ std::cout <<

"WakeUp received!\n";

std::cout << " Initializ ing

ATP...\ n" ;

itsLog->writeLog(" \tGEST_

I NIT: \tWakeUp

received!\n") ;

GestoreMarcia->GEN(evSta

rt);

statica =

FindW indowEx(hWnd,

NULL, TEXT("button") ,

TEXT("Marcia")) ;

HWND init =

FindW indowEx(statica,

NULL, TEXT(" static") ,

TEXT("I n Esecuzione")) ;

EnableWindow(init, true) ;

statica =

FindW indowEx(hWnd,

NULL, TEXT("button") ,

TEXT("I niz ializzazione"))

;

init =

FindW indowEx(statica,

NULL, TEXT(" static") ,

TEXT("I n Esecuzione")) ;

EnableWindow(init, true) ;

bar =

FindW indowEx(statica,

NULL, 0, TEXT(" Init"));

SendMessage(bar,

PBM_STEPI T, 0, 0);

SendMessage(statusBar,

WM_SETTEXT, 0,

(LPARAM)"WakeUp

ricevuto");

evBancoAttivotm(300)

receivedMSGMAI N

Smessage(tosendPresentation) to ATSMManager
ATSSenderConnected/ s

td::cout << "Sending

Presentation message

to ATS...\ n" ;

itsLog->writeLog(" \tG

EST_I NI T: \tSending

Presentation message

to ATS...\ n");

ATSSenderConnected/ s

td::cout << "Sending

Presentation message

to ATS...\ n" ;

itsLog->writeLog(" \tG

EST_I NI T: \tSending

Presentation message

to ATS...\ n");

I dle/ Init();
I nit_complete/System_start() ;I nit_complete/System_start() ;

Management_DriverID

DRV_Response_state1

Reactions

length = 0; rec...

Waiting_DRV_Response_state

receivedMSGDRV/received=params->message;

receivedMSGDRV// /bar = FindW indowEx(statica, NULL, 0, TEXT(" Init"));

SendMessage(bar, PBM_STEPI T, 0, 0) ;

std::cout << "ATP activated!\n";

received=params->message;

receivedMSGDRV/received=params->message;

receivedMSGDRV// /bar = FindW indowEx(statica, NULL, 0, TEXT(" Init"));

SendMessage(bar, PBM_STEPI T, 0, 0) ;

std::cout << "ATP activated!\n";

received=params->message;

Waiting_EnterData

Waiting_EnterData_state1 Waiting_EnterData_state2

receivedMSGMAI N/received=params->message;receivedMSGMAI N/received=params->message;

Management_TrainData

Management_TrainData1

Waiting_TRDATA_Response_state1

TRDATA_Response_axle_load

receivedMSGTRDATA/ received=params->message;

Management_TrainData2

TRDATA_Responde_length

Waiting_TRDATA_Response_state2

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

Management_TrainData3

TRDATA_Response_speed

Waiting_TRDATA_Response_state3

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

Management_TrainData4

TRDATA_Response_pBrake

Waiting_TRDATA_Response_state4

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

Management_TrainData5

TRDATA_Response_category

Waiting_TRDATA_Response_state5

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

Management_TrainData6

TRDATA_Complete

Waiting_TRDATA_Response_state6

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

receivedMSGTRDATA/ SendMessage(bar, PBM_STEPIT, 0, 0) ;

received=params->message;

receivedMSGTRDATA/ received=params->message;next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

receivedMSGTRDATA/ received=params->message;

next_step/ SendMessage(bar, PBM_STEPI T, 0, 0) ;

receivedMSGTRDATA/ received=params->message;

receivedMSGTRDATA/ SendMessage(bar, PBM_STEPIT, 0, 0) ;

received=params->message;

Waiting_start_enabled

Waiting_start_enabled1 Waiting_start_enabled2
receivedMSGMAI N/received=params->message;receivedMSGMAI N/received=params->message;

Management_Level

LVL_Response_state

Waiting_LVL_Response_state

receivedMSGDRVLVL/ received=params->message;

receivedMSGDRVLVL/ SendMessage(bar, PBM_STEPIT, 0, 0) ;

received=params->message;

receivedMSGDRVLVL/ received=params->message;

receivedMSGDRVLVL/ SendMessage(bar, PBM_STEPIT, 0, 0) ;

received=params->message;

receivedMSGRBCCONT/SendMessage(bar, PBM_STEPI T, 0, 0) ;

received=params->message;

Management_RBCCont

Waiting_RBCCONT_Response_state

RBCCONT_Response_state1

length = 0; ...receivedMSGRBCCONT/received=params->message;

receivedMSGMAI N/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

receivedMSGRBCCONT/SendMessage(bar, PBM_STEPI T, 0, 0) ;

received=params->message;

receivedMSGRBCCONT/received=params->message;

receivedMSGMAI N/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

Management_TrainDataVal

Waiting_TRDATAVAL_Response_state

TRDATAVAL_Response_state1
receivedMSGTRDATAVAL/received=params->message;

receivedMSGTRDATAVAL/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

receivedMSGTRDATAVAL/received=params->message;

receivedMSGTRDATAVAL/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

receivedMSGTRNN/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

Management_TRNN

Waiting_TRNN_Response_state TRNN_Response_state1

receivedMSGTRNN/received=params->message;

receivedMSGMAI N/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

receivedMSGTRNN/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

receivedMSGTRNN/received=params->message;

receivedMSGMAI N/SendMessage(bar, PBM_STEPI T, 0, 0);

received=params->message;

Ready

Waiting_Ready

Waiting_SR_Mode

receivedMSGDEF/received=params->message;

Ready_state5

receivedMSGRBCCONT/received=params->message;

Ready_state6receivedMSGTRDATAVAL/received=params->message;Ready_state2receivedMSGDRV/received=params->message;

Ready_state3

receivedMSGDRVLVL/ received=params->message;

Ready_state7

receivedMSGTRDATA/ received=params->message;

Ready_state4

receivedMSGMAI N/received=params->message;

Ready_state8

receivedMSGTRNN/received=params->message;

receivedMSGDEF/SendMessage(bar, PBM_STEPI T, 0, 0) ;

received=params->message;

HWND init = FindWindowEx(statica, NULL, TEXT("static"), TEXT("I n Esecuzione")) ;

EnableWindow(init, false);

HWND fine = FindWindowEx(statica, NULL, TEXT("static"), TEXT("SoM completata")) ;

ShowWindow(fine, SW_SHOW) ;

receivedMSGDEF/SendMessage(bar, PBM_STEPI T, 0, 0) ;

received=params->message;

HWND init = FindWindowEx(statica, NULL, TEXT("static"), TEXT("I n Esecuzione")) ;

EnableWindow(init, false);

HWND fine = FindWindowEx(statica, NULL, TEXT("static"), TEXT("SoM completata")) ;

ShowWindow(fine, SW_SHOW) ;

receivedMSGDEF/received=params->message;

receivedMSGRBCCONT/received=params->message;

receivedMSGTRDATAVAL/received=params->message;receivedMSGDRV/received=params->message;

receivedMSGDRVLVL/ received=params->message;receivedMSGTRDATA/ received=params->message;

receivedMSGMAI N/received=params->message;receivedMSGTRNN/received=params->message;

receivedMSGI DLE/ received=params->message;

Management_Idle

I DLE_Response_state

Waiting_Response_state

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

/ HANDLE hCon = GetStdHandle(STD_OUTPUT_HANDLE) ;

SetConsoleTextAttribute(hCon,10) ;

printf ("PROCEDURE ERROR\n") ;

SetConsoleTextAttribute(hCon,7);

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

/ HANDLE hCon = GetStdHandle(STD_OUTPUT_HANDLE) ;

SetConsoleTextAttribute(hCon,10) ;

printf ("PROCEDURE ERROR\n") ;

SetConsoleTextAttribute(hCon,7);

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

receivedMSGI DLE/ received=params->message;

Terminated_procedure

Wait_for_Temination

Reactions

std::cout << "Setting syste...

Terminated_procedure

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg
SleepMsg

Terminated_procedure

Terminated_procedure

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg

SleepMsg
SleepMsg

tm(Init_Wait

)

I nit_error

tm(Init_Wait

)

tm(2000)/ std::cout << "System is in sleeping mode!" << std::endl;

itsLog->writeLog(" \tGEST_IN IT: \ tSystem is in sleeping mode!\ n") ;

itsLog->closeLog() ;

Sleeping

tm(2000)/ std::cout << "System is in sleeping mode!" << std::endl;

itsLog->writeLog(" \tGEST_IN IT: \ tSystem is in sleeping mode!\ n") ;

itsLog->closeLog() ;

Wake_Up/ System_restart() ;

/ /Sleep(5000);

Wake_Up/ System_restart() ;

/ /Sleep(5000);

Part 1 - ATO System Modelling

48

Therefore the reception of a message sent by ATP/ATC is considered as an external event

that triggers a specific transition and modifies the current state (or sub-state) of

Initialization_Manager.

The associate statechart to this class is shown in Figure 16. This diagram allows us to define

the behaviour of Initialization_Manager specifying the possible states reached during its life

cycle, and the reaction to external events in terms of changes in state and/or actions carried

out. The states reached by Initialization_Manager are the following:

 Idle: previous state to initialization of all other components of ATO system.

Preliminary operation is reading the configuration file (ato.config) in order to set the

following parameters: ATS IP address (ATSaddress), ATS TCP port (ATSport), TCP

listening port (TCPlisten), ATC IP address (ATCaddress), ATC UDP port (ATCport), UDP

listening port (UDPlisten), Driver ID, ERTMS/ETCS level (level), axle load (Axle_Load),

train category (Cat_Train), max train speed (Speed_Train), train length

(Length_Train), brake percentage (PBrake_Train), Train Running Number (TRNN) and

serial port (SERIALport).

Figure 17: Sub-states of Preliminary operations state

 Presentation to ATS: start of the message exchange between ATO and ATS.

Initialization_Manager sends to ATS a presentation message containing number port

on which will take place communication ATS-ATO.

 Preliminary operations: Initialization_Manager executes the following operations:

o activation of ATC/ATC subsystem through relay;

o activation of desk through relay;

o response to first type of message exchanged by ATO e ATC.

Part 1 - ATO System Modelling

49

Figure 18: Sub-states of Preliminary_operations state

 Management_DriverID: Initialization_Manager executes the first step of procedure

Start of Mission. This step consists in Driver ID entry with value extracted from

configuration file.

Figure 19: Sub-states of Management_DriverID state

 Management_Level: Initialization_Manager executes the next step of procedure Start

of Mission. This step consists in ERTMS/ETCS level entry with value extracted from

configuration file.

Preliminary_operations

Open_com

Reactions

evCPU32NonAttiva

Insert_releevCPU32Attiva

Reset

evBancoNonAttivo

Waiting_Initial

evBancoAttivoSwitchOff_reletm(300)

MAIN_Response_state
receivedMSGMAIN

Management_DriverID

DRV_Response_state1

Reactions

length = 0; re...

Waiting_DRV_Response_state

receivedMSGDRV/received=params->message;

Part 1 - ATO System Modelling

50

Figure 20: Sub-states of Management_Level state

 Management_RBCCont: Initialization_Manager executes the next step of procedure

Start of Mission. This step consists in opening the session with RBC (Radio Block

Centre). To do this, Initialization_Manager makes contact with last stored RBC-

ID/Phone Number.

Figure 21: Sub-states of Management_RBCCont state

 Waiting_EnterData: waiting state in which Initialization_Manager selects the Train

Data Entry option in order to enter or revalidate the train data in the next step of

procedure Start of Mission.

Management_Level

LVL_Response_state

Waiting_LVL_Response_state

receivedMSGDRVLVL/received=params->message;

Management_RBCCont

Waiting_RBCCONT_Response_state

RBCCONT_Response_state1

ReactionsreceivedMSGRBCCONT/received=params->message;

Part 1 - ATO System Modelling

51

Figure 22: Sub-states of Waiting_EnterData state

 Management_TrainData: Initialization_Manager executes the next step of procedure

Start of Mission. This step consists in train data entry with values extracted from

configuration file.

As shown in Figure 23, train data are sequentially entered by Initialization_Manager

with this sequential order:

1. axle load (Axle_Load)

2. train length (Length_Train)

3. max train speed (Speed_Train)

4. brake percentage (PBrake_Train)

5. train category (Cat_Train)

Figure 23: Sub-states of Management_TrainData state

Waiting_EnterData

Waiting_EnterData_state1 Waiting_EnterData_state2

receivedMSGMAIN/received=params->message;

Management_TrainData

Management_TrainData1

Waiting_TRDATA_Response_state1

TRDATA_Response_axle_load

receivedMSGTRDATA/received=params->message;

Management_TrainData2

TRDATA_Responde_length

Waiting_TRDATA_Response_state2

receivedMSGTRDATA/received=params->message;

next_step/SendMessage(bar, PBM_STEPIT, 0, 0);

Management_TrainData3

TRDATA_Response_speed

Waiting_TRDATA_Response_state3

receivedMSGTRDATA/received=params->message;

next_step/SendMessage(bar, PBM_STEPIT, 0, 0);

Management_TrainData4

TRDATA_Response_pBrake

Waiting_TRDATA_Response_state4

receivedMSGTRDATA/received=params->message;

next_step/SendMessage(bar, PBM_STEPIT, 0, 0);

Management_TrainData5

TRDATA_Response_category

Waiting_TRDATA_Response_state5

receivedMSGTRDATA/received=params->message;

next_step/SendMessage(bar, PBM_STEPIT, 0, 0);

Management_TrainData6

TRDATA_Complete

Waiting_TRDATA_Response_state6

receivedMSGTRDATA/received=params->message;

next_step/SendMessage(bar, PBM_STEPIT, 0, 0);

Part 1 - ATO System Modelling

52

 Management_TrainDataVal: state in which Initialization_Manager validates train data

previously entered.

Figure 24: Sub-states of Management_TrainDataVal state

 Management_TRNN: Initialization_Manager executes the next step of procedure

Start of Mission. This step consists in Train Running Number entry with value

extracted from configuration file.

Figure 25: Sub-states of Management_TRNN state

 Waiting_start_enabled: Initialization_Manager executes the next step of procedure

Start of Mission. This step consists in select the "Start" option enabled by ATC /ATC

subsystem.

Management_TrainDataVal

Waiting_TRDATAVAL_Response_state

TRDATAVAL_Response_state1
receivedMSGTRDATAVAL/received=params->message;

receivedMSGIDLE/received=params->message;

Management_TRNN

Waiting_TRNN_Response_state TRNN_Response_state1

receivedMSGTRNN/received=params->message;

Part 1 - ATO System Modelling

53

Figure 26: Sub-states of Waiting_start_eneabled state

 Ready: Initialization_Manager executes the last step of procedure Start of Mission.

This step consists in confirm the operating mode with which train will start its

mission. Possible operating modes are those provided by ERTMS / ETCS standard.

Figure 27: Sub-states of Ready state

 Management_Idle: state reached by Initialization_Manager for faults or errors

occurring during the procedure Start of Mission. Examples of possible faults or errors:

o ATC doesn't receive from ATO the response message within 300 ms;

o ATC doesn't receive from ATO the reply message due to loss of connection

between ATC and ATO;

o ATC receives from ATO a corrupt response message or with a sequence

number different from expected number.

Waiting_start_enabled

Waiting_start_enabled1 Waiting_start_enabled2
receivedMSGMAIN/received=params->message;

Ready

Waiting_Ready

Waiting_SR_Mode

receivedMSGDEF/received=params->message;

Ready_state5

receivedMSGRBCCONT/received=params->message;

Ready_state6receivedMSGTRDATAVAL/received=params->message;Ready_state2receivedMSGDRV/received=params->message;

Ready_state3

receivedMSGDRVLVL/received=params->message;

Ready_state7

receivedMSGTRDATA/received=params->message;

Ready_state4

receivedMSGMAIN/received=params->message;

Ready_state8

receivedMSGTRNN/received=params->message;

Part 1 - ATO System Modelling

54

Figure 28: Sub-states of Management_Idle state

 Wait_for_Temination: state in which Initialization_Manager is waiting to go into

sleeping mode or switch to Gestore_Marcia the control of ATO system.

Figure 29: Wait_for_Termination state

 Sleeping: state in which all subsystems of ATO are in sleeping mode with the

exception of ATS components.

If option is not enabled in the screen, Initialization_Manager creates an automatic reply

message in which neither of options is selected.

Management_Idle

IDLE_Response_state

Waiting_Response_state

receivedMSGIDLE/received=params->message;

/HANDLE hCon = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleTextAttribute(hCon,10);
printf ("PROCEDURE ERROR\n");
SetConsoleTextAttribute(hCon,7);

Wait_for_Temination

Reactions

std::cout << "Setting syst...

55

4 Model Verification and Testing

The requirements that must be fulfilled during embedded software development are

complex in comparison to standard software. Embedded systems interact with real-life

environment and often involve large projects so the software is difficult to update once the

product is deployed. Particularly in railway sector these systems are also called safety-critical

systems where a failure can lead to catastrophic consequences (injured, loss of life and

serious environmental damage). In terms of software development, increased complexity of

products, shortened development cycles, and higher customer expectations of quality

implicate the extreme importance of software testing.

Software Testing is an important component of software Quality Assurance, and today many

software organizations are spending up to 40% of their resources on testing. This activity is

very important for the software development, since testing is one of the last possibilities to

evaluate the software product before its deployment to the final user.

Testing, validation, verification and also QA activities are especially important in the domain

of embedded systems, such as aerospace or railway, due to the usually high dependability

requirements (e.g., safety, reliability, and security). The aim of validation is to confirm that

the developed product meets the user needs and requirements. Verification ensures that it

is consistent, complete, and correct at the different steps of the life cycle. Testing is an

activity with the aim to detect faults and can be used both for verification and for validation.

A further important aspect is the application of QA for the certification of products,

especially in safety-critical domains.

Software Testing can be considered one of the most expensive activities in the software

development process and the optimization of resources is certainly one of the factors to

consider. We need to consider some criteria regarding the testing coverage and test cases

generation:

 Testing Coverage Criteria: it allows the identification of the percentage of the

software that has been evaluated by a set of test cases

 Test Cases Generation Criteria: rules and guidelines used to generate a set of test

cases “T” suitable to assess the quality of software. In functional testing this set is

used to evaluate the adhesion of the software product to the requirements

specification.

Today most organizations try to automate the testing activities to reduce the costs in

support of these activities. But considering the complexity of all these activities, not all can

be automated easily with the exception of the test execution. This assumes that the test

Part 1 - Model Verification and Testing

56

cases are already manually defined and written (or captured via a tool) and can be executed

in an automated test execution environment in terms of scheduling, logging of results

(success or failure), capturing of details of the failing environment, and so on. Automation of

test case design (and hence test case creation) is another matter. In order to automate

functional test case design, we need a formal description of the specifications of the

software behaviour, resulting in a model of the software behaviour.

Into this context, Model-based Testing (MBT) appears to be a feasible approach to control

the software quality. Indeed, MBT is based on the specification model that describes the

behaviour of software system under test using software artifacts. This model allows to

automatically generate test case and can be also used as the oracle to check whether the

system behaves correctly. To apply this approach, some kind of formalism (such as

mathematical notations provided by Formal methods, finite state machines, UML diagrams,

etc.) and tools are required for design the specification model.

4.1 Adopted Methodology

In this work we have adopted a Model-Based Testing (MBT) approach to exploit the model

of ATO system during the test authoring phase. We want to verify if the ATO system

behaviour shown by the model is compliant with ATO System specification, defined during

the analysis phase. Specifically, the verification has been focused on the functional

behaviour compared to functional requirements defined in the ATO System Requirements

Specification (SRS) [19] through the execution of functional testing. A testing process

provides several steps that are summarized in the following workflow:

Figure 30: Testing Methodogy Workflow

 MODELLING: This step involves the modelling of ATO System using IBM Rational

Rhapsody tool. The result is the ATO system model which describe the system

Part 1 - Model Verification and Testing

57

behaviour through SySML constructs. The created model, which has been illustrated

in detail in Figure 30, represents the software System Under Test (SUT).

 TEST SUITE GENERATION: For test case generation a first approach was to use the

ATG tool provided by the Rhapsody suite [23]. In this way we can use the system

model as input to ATG and obtain automatically test cases in output. However we

haven't achieved good results. The ATG tool has proved insufficient to test the model

exhaustively; in fact, some function blocks nested within states of the various

statecharts have been not considered, thus leaving hidden some logical or functional

errors. For this reason the instrument ATG is useful to generate test cases for simple

models, but in the case of complex models is better to adopt other methodologies

with the aim of achieving full coverage of the system (necessary condition in a safety-

critical environment for railway transport). Our solution was been to build a "test

environment", i.e. a model (with its own statechart) of the other components

external to ATO, able to provide input and/or events needed to simulate the

behaviour of ATO system components involved in a specified test case. Each test case

verifies one or more specific functional requirements which can include several

components of ATO system.

 TEST EXECUTION: Each test case was executed by the simulation of the realized ATO

system model. The simulation is a method that allows to simulate an object or set of

objects which form a model, in order to highlight a sequence of states activation

within the realized statechart, through a series of inputs/events, sent by external

entities involved in this context. IBM Rhapsody tool allows to understand what the

system is doing and to detect its behaviour through the animation of the statecharts

in execution. During test execution, the sequence of operations performed by the

various components, and significant values were recorded in a special log file.

 ANALYSIS RESULTS: Verification can be difficult to accomplish because the system

response must be determined and then compared to an expected response and/or

verify that we are in the correct 'state' in our system. The degree that verification is

used and the means for performing verification will vary widely with application type

and test objectives.

In particular, work is focused on the generation and execution of test cases related to the

initialization of the train.

4.2 Critical aspects of the model

From the analysis of the problem we have identified any critical aspects of the model due to

the requirements from the performance of the procedure SoM and the communication

protocol DMI-CPU32. Below are the critical issues identified that need to be tested:

 Correct answer to the message from ATC

Part 1 - Model Verification and Testing

58

 the block Initialization_Manager has successfully performed the SOM procedure if

the ATC simulator sends to ATO the right message sequence.

 the block Initialization_Manager properly handles an error in case the order of

received messages was uncorrected; the system goes into the state

Management_Idle and the SOM procedure is aborted.

 ATO replies to every message from ATC within 300 ms.

First of all we have analyzed the critical issues due to the communication protocol and the

proper response to incoming messages is the main issue that needs to be treated. It might

seem a task that should be carried out by the protocol but in reality if the

Inizialization_Manager can not distinguish the type of message that has come and make the

right answer, the communication can not be done properly. The other issue due to the

communication protocol is the timing of responses. In fact communication DMI-CPU32

provides that if the ATC does not receive a response from DMI within 100ms try to postpone

the message and if not receive further response considers the device inoperative and enter

in IDLE state. So Initialization_Manager must be able to compose the replies within this time.

The last critical issues identified concerns the procedure Start of Mission: in fact this involves

a certain sequence of messages and replies with the inclusion of data or even confirmation

of already stored data. The sequence in this case does not have so many variations so can

be considered static in the sense that can be used a single trace for testing the model.

4.3 Model Testing

In this work i have checked the Start of Mission (SoM) procedure, ensuring the proper

execution of all required intermediate steps as reported in [8]. In this way the consistency of

the system behaviour with respect to functional requirements ATO_SYS_3030 to

ATO_SYS_3100 was verified. To test the SOM procedure we have modeled two blocks

corresponding to external systems ATS and ATC. The first establishes the communication

ATS-ATO and sends the wake-up message. The second one establishes the communication

ATC-ATO and is responsible for sending messages related to different views that the virtual

DMI must show during the SOM procedure. To accomplish this, the block ATC simulator

reads the sequence of messages to be sent by a specific text file.

 Test to check that between the receipt of the message and sending the response the

elapsed time is less than 100 ms

 Test to check that for every message received the correct answer was produced

 Tests to verify that the procedure was carried out in the correct order

In total we have defined some test cases that have allowed us to test the system in a

comprehensive manner.

Part 1 - Model Verification and Testing

59

 Some test cases made use of traces detected by the real system

 Some test cases made use of modified tracks with incorrect sequence of messages

 Some test cases made use of modified tracks with incorrect messages

 At the first execution, some tests have failed highlighting the presence of some errors in the

model. All tests have detected that replies are sent to ATC with correct timing.

The error that compromise the correct execution of the tests is due to a problem of the

composition of a particular type of message. The problem is related to an incorrect sequence

of decoding / encoding of the message content due to misinterpretation of the bit sequence.

Merely correcting the direction of reading the contents the problem was solved.

Following this the model was modified in order to eliminate anomalies and then tested

again, running the tests defined above for the second time.

The results obtained after the second run have been significantly better than the first, in fact

all tests were successful and we have reached 100% coverage in terms of states.

4.4 Integration Testing

The system ATO has been integrated with other on-board systems (ATC and interface of the

train) and also put into communication with external systems (ATS). Tests were made to test

the operation of the procedure Start of Mission with all real systems.

The main error that was detected refers to the sequence of messages to make it clear to ATC

that has been pressed a button. The protocol DMI-CPU32 states that the pressure of a

button is detected when there is a succession of messages with the value relative to the

button that varies from low to high and back to low. In our model, this sequence of

messages was sent too quickly: in practice the 3 necessary messages were sent one after the

other. To repair the problem was necessary to slow down the sequence by sending multiple

copies of the same message before changing the signal value. So the sequence from low-

high-low becomes:

 10 low

 10 high

 10 low

In this way ATC is able to detect the change of state of the button and to draw up in time the

pressure of the button.

Solved this problem was possible to conclude the initialization procedure of ATO and then

test the operation of the other components of the ATO itself. In the end it was possible to

simulate the circulation of four trains simultaneously on a test track.

60

Part 2

1 Introduction to Social Media Monitoring

In this second part, will be presented the design and construction of a platform for crawling

Social Network: in particular will be presented the use of the Twitter API and how they can

be used to create a database of messages. In addition to the main process for the recovery

of the messages we will be presented a number of secondary processes useful to the

realization of a dashboard for displaying the results of the crawling and for the analysis of

the messages retrieved.

1.1 Social Media Monitoring

The World Wide Web has become an active publishing system and is a rich source of

information, thanks to contributions of hundreds of millions of Web users. The growths of

online Social Networks in scale and amount of information are immense in recent years. Part

of this public expression is carried out on social networking and social sharing sites (Twitter,

Facebook, Youtube, etc.), part of it on independent Web sites powered by content

management systems (CMSs, including blogs, wikis, news sites with comment systems, Web

forums). Content published on this range of Web applications includes information that is

newsworthy today or valuable to tomorrow's historians[24].

The analyses of the structure of online social networks have thus drawn much research

interests[25]. Before the analyses, the information and the characteristics of the structure

have to be obtained. However, the complexity of today's web technologies imposes

challenges for collecting the data. The increasing popularity of online social networks (OSNs)

has gathered hundreds of millions of users. OSNs have become a platform for people to

easily communicate and share information, particularly with the sophisticate smartphones.

Since the structures of OSNs will be able to reflect the reallife society in certain extend, the

structure and the information shared in OSNs are of interests for different communities. For

instance, sociologists regard OSNs as a venue for collecting relationship data and study

online human behaviours. Marketers, in contrast, seek to exploit information about how

messages spread so as to design viral marketing strategies. For network engineers,

Part 2 - Introduction to Social Media Monitoring

61

understanding OSNs improves the design of interconnected systems so as to provide better

user experience. In order to analyze the structure of an OSN, information regarding the

network structure is needed.

The depth and quality of data that can be harvested from Social Media Monitoring tools has

evolved significantly in the last years. In [26] has been evaluated the performance of some

tools across the following general criteria: Query Set Up, Data Quality, Ease of Data

Management, and User Interface & User Exeperience. Results of that comparison are the

foolowing:

 Alterian: Identify common themes among ostensibly disparate conversation

 Brandwatch: Hands on raw data management

 MutualMind: Threaded Facebook discussions

 Radian6: Sophisticated built-in engagement tool; robust dashboard

 Synthesio: Extremely flexible tool all around

What emerged were two distinct categories under which the tools might be classified:

 Real Time Monitoring and Community Management: tools that fall under this

category seem best suited for monitoring and managing social media communities

on a day-to-day basis. This tools are characterized by easily customizable dashboards

to make the data a bit more digestible and by the ability to connect various social

media accounts.

 Research & Analysis: these tools make the analysis of vast quantities of conversation

data more manageable, and are generally better suited to monitoring social media

performance over the long term. Access to historical data also makes these tools

ideal for the development and evaluation of social media strategies.

Social media is especially important for research into computational social science that

investigates questions using quantitative techniques (e.g., computational statistics, machine

learning and complexity) and so-called big data for data mining and simulation

modelling[27]. Social media scraping and analytics provides a rich source of academic

research challenges for social scientists, computer scientists and funding bodies. Challenges

include:

• Scraping—although social media data is accessible through APIs, due to the

commercial value of the data, most of the major sources such as Facebook and

Google are making it increasingly difficult for academics to obtain comprehensive

access to their 'raw' data; very few social data sources provide affordable data

offerings to academia and researchers.

• Data cleansing—cleaning unstructured textual data (e.g., normalizing text), especially

high-frequency streamed real-time data, still presents numerous problems and

research challenges.

Part 2 - Introduction to Social Media Monitoring

62

• Holistic data sources—researchers are increasingly bringing together and combining

novel data sources: social media data, real-time market & customer data and

geospatial data for analysis.

• Data protection—once you have created a 'big data' resource, the data needs to be

secured, ownership and IP issues resolved (i.e., storing scraped data is against most

of the publishers' terms of service), and users provided with different levels of

access; otherwise, users may attempt to 'suck' all the valuable data from the

database.

• Data analytics—sophisticated analysis of social media data for opinion mining (e.g.,

sentiment analysis) still raises a myriad of challenges due to foreign languages,

foreign words, slang, spelling errors and the natural evolving of language.

• Analytics dashboards—many social media platforms require users to write APIs to

access feeds or program analytics models in a programming language, such as Java.

While reasonable for computer scientists, these skills are typically beyond most

(social science) researchers. Non-programming interfaces are required for giving

what might be referred to as 'deep' access to 'raw' data, for example, configuring

APIs, merging social media feeds, combining holistic sources and developing

analytical models.

• Data visualization—visual representation of data whereby information that has been

abstracted in some schematic form with the goal of communicating information

clearly and effectively through graphical means. Given the magnitude of the data

involved, visualization is becoming increasingly important.

The analysis of social networks has had a significant development, especially for commercial

applications in marketing and advertising campaigns. In fact there are many tools that offer

paid services for semantic and sentiment analysis to companies that want to evaluate the

perception of its brand by users, the trend of a particular advertising campaign and all that

can be extracted by the enormous mass data that social networks provide. The analysis tools

can be divided into two categories: those that offer only the technology to retrieve

information leaving the user the task of analyzing and those that offer a complete service.

In the first group we can insert 80legs [28] that provides a web crawling directly from the

website or through the API. 80legs gives the ability to customize crawl by providing a set of

options that specific how crawl will run. These options are:

1. A list of URLs which tell 80legs where to start the crawl

2. A list of criteria to explain to 80legs what data to scrape from each crawled URL, as

well as what URLs to crawl next

3. Other options to control the crawl, such as the number of total URLs to crawl.

Another tool that allows the retrieval of information from the web is Visual Web Ripper [29]

that contains a wealth of advanced features that enables user to harvest data from even the

Part 2 - Introduction to Social Media Monitoring

63

most difficult websites. Visual Web Ripper can be configured to download complete content

structures, such as product catalogs. HeliumScraper [30] can also be inserted in the first

group because is a web scraping tool that can be trained to extract specific information from

web sites. The results can be exported in a variety of formats. PromptCloud [31] is a

classic web crawling model where is taken the list of sites that user would like crawled and

do vertical-specific crawls. It's possible to provide PromptCloud with a list of keywords that

gets fed into crawler. The crawler then continuously looks for matching tweets to that list of

keywords as tweets gets published. All these tweets are later converted into a structured

format with other associated information. In paper [32] authors propose one such tool

called Intention Insider which has been developed at HP Labs in close collaboration with

business units and a few selected customers. The tool can ingest content from online forums

or from uploaded files and quickly sift through very large amounts of comments to extract

intention information. This information is loaded into a data warehouse to be correlated

with other structured data and queried to produce interactive reports and dynamic

visualizations that facilitate its exploration at detailed and aggregate levels.

The second group of tools is much wider because the market requires a comprehensive

toolset that directly provide the test results. These include Openamplify [33] that is an

Natural Language Processing (NLP) analytic engine that processes text to extract valuable

knowledge from social media conversations. This tool gives a picture of brand's health or

campaign's performance. OpenAmplify analyzes any provided text, structured or

unstructured, without the need for training or special vocabularies, returns a set of "signals",

each of which describes a specific aspects of the text's meaning, sentiment, intent, style, or

other characteristics and delivers the signals ranked and organized in useful ways.

Clarabridge Intelligence Platform [34] gets a complete view of customers' experience. The

Clarabridge Intelligence Platform harnesses all available sources of consumer feedback,

including multiple survey types, contact center agent notes, social media, chat, voice, email,

warranty notes, and much more. The Clarabridge Intelligence Platform's core functionality

includes text analytics, context-sensitive sentiment analysis, linguistic categorization, and

emotion detection. Clarabridge Social seamlessly gathers and accurately analyzes any online

customer data, whether structured or unstructured, from any social media source and any

online review site. Clarabridge Social connects to all popular sites including Facebook,

Twitter, Trip Advisor, and Bookings.com, and integrates with social media management

software such as Sysomos, Radian6, and many more for a comprehensive view. Brandwatch

Analytics [35] is a web-based social media monitoring platform designed to allow users to

get the most out of the social media data important to their business. It is focused on

Customer Experience. Its main use cases are: Brand/reputation management, Finding

influences/advocates, Market research, Campaign, Crisis management, Community

management, PR, Customer Services, SEO and Lead generation. Channels feature allows to

track any public Facebook page or Twitter account without the need for admin rights.

Opinion Crawl [36] allows Companies and agencies to order in-depth reports monitoring

online image of an entity - a company, a product, or an individual. The crawlers process large

Part 2 - Introduction to Social Media Monitoring

64

amounts of various Web sources - blogs, news sites, forums. The reports are produced on an

ongoing basis and emailed to the client. The reports are broken by day/week/month, and

contain current and trend charts, key concepts associated with the topic, and references to

source documents. Sentiment API allows client applications to assess sentiment on a Web

page or a piece of text, e.g. a blog comment. Social Report [37] is a social network analytics

solution that allows to track social network accounts just the same way it's possible to track

the performance of websites. Social Report tracks and monitors social network accounts and

gives user tools to manage marketing initiatives. Social Report offers powerful insights into

social accounts: membership trends, activity and engagement, thoughts and feelings of

members, their interests, their geographical distribution, education levels, gender,

employment, and countless other metrics. Mozenda [38] is a web scraping service used by

many well known brands. The Agent Builder supports the creation of agents that collect

specific information from web sites. These are created in a Windows environment and

submitted to the service where they are executed. The Web Console allows agents to be run

and scheduled and export and publish the results of a search. Beevolve [39] monitors brand

mentions, schedules and launch social media posts and measure resulting sales and

engagement for those posts.

Meltwater's [40] online intelligence platform analyzes digital documents daily to extract

precise, timely business insights that help executives understand their markets, engage their

customers, and master the new social business environment. Meltwater PR solutions help

public relations and marketing communications professionals build brands and drive growth

by effectively engaging media influencers. Meltwater social media marketing solutions

combine deep social media monitoring with efficient social engagement to help creating

more effective marketing campaigns across large social communities. Viralheat's [41]

sentiment analysis tool allows user to understand the sentiment of online mentions for

business, brands, and products. Identifies the sentiment of social mentions across multiple

social platforms and pulled detailed analysis of what users are saying about a product or

service. This tool allows view sentiment of social posts in real-time and pull sentiment

analytics from Facebook, Twitter, Instagram, and Tumblr. SAS Sentiment Analysis [42]

automatically rates and classifies opinions expressed in electronic text. It collects text inputs

from websites, social media outlets and internal file systems, and then puts them in a unified

format to assess relevance to predefined topics. Reports identify trends or emotional

changes, and an interactive workbench allows subject-matter experts to refine sentiment

models. Dataminr [43] transforms real-time data from Twitter and other public sources into

actionable signals, identifying the most relevant information in real-time for clients in

Finance, the Public Sector, News, Security and Crisis Management. In partnership with

Twitter, Dataminr developed and launched Dataminr for News, which alerts journalists to

breaking news in advance of traditional sources and is now used by hundreds of news

organizations globally. Most recently, Dataminr launched a product for security and crisis

management watch centers that warns the world's largest corporations to emerging threats

and crises, ensuring that a corporation's physical assets and employees are protected. Tracx

Part 2 - Introduction to Social Media Monitoring

65

[44] is a company with a SaaS platform for sophisticated brand marketers who want to do

more than monitor their social media presence, but actually manage it. The company

provides an end-to-end solution that indexes the entire social web and delivers the most

relevant, high impact audiences and conversations by capturing a 360 degree view of activity

around a brand. ROIALTY [45] is the digital loyalty platform (web, social, mobile) that allows

a brand to develop the potential of 'engagement' in social media & digital communities by

increasing their involvement through Gamification & rewarding. It gives a boost to

awareness, conversions and purchases on the e-commerce and retail channels monitoring

the full range of interaction metrics needed to measure the ROI (Return On Investment) of

each digital campaign. ROIALTY rewards authenticated users connecting their social profiles

and offers them some targeted 'missions', based on their socio-demographics, preferences

and interests. Each mission engages the user in content creation & publishing on blogs and

social media or in promotion of product/service initiatives through likes and sharing as well

as participating in surveys.

1.2 Twitter

Twitter is a social network that deals with free microblogging, devised by the american Jack

Dorsey and developed by Obvious Corporation in San Francisco [46]. The service offered to

members is the inclusion of messages, called 'tweets', consisting of a maximum of 140

characters.

Since its creation and networking in March 2006, Twitter has taken a prominent role within

the set of social networks on the Web, reaching more than 250 million active users [47], that

found in the service a quick way to interact with the rest of the world.

In addition to simple text, within the tweet you can enter keywords, called hashtags

(preceded by a "#"), and links to other sites, usually abbreviated URL services via shorting.

Messages posted by members are by default rendered visible to anyone, whether registered

or not in the service, while you can make your tweets private so that they can only be read

by authorized persons [48]. The inclusion of the messages is made possible not only through

the social network site, but also by a number of external applications and, limited to a few

countries, via SMS. The ability to send messages via different devices and applications, is one

of the strengths of the social network.

Subscribers to the service have the opportunity to follow other registered users: they

assume in this case the name of 'followers' and have the ability to view in their own "home

page" messages posted by those users. Is also possible to follow lists of users, in other words

lists created by other subscribers in which is included a variable number of users. Another

important factor for the service is the ability to respond to messages from any other

registered user, thus creating conversations online. A member can forward the message to

another user who is following, so that it is visible to all their followers. This is called retweet

and is reported in messages prefixing characters RT to the original text.

Part 2 - Introduction to Social Media Monitoring

66

It is should be noted that the conversations and personal status, calculated on a sample of

tweets harvested from social networks, almost reach 90% of the total posts, while 37.55% of

the total is made up of messages in response to other tweets. As for spam messages and

self-promotion (ie tweet purposes only advertising placed by companies) they are limited to

9.6%. From these statistics it is possible to deduce how Twitter has become one of the most

effective means to share experiences and how users can use it for communicating with each

other, getting closer to the original idea of Jack Dorsey to create a service similar to SMS, but

applied to groups of people and available on the web.

Since the beginning, the study of Twitter has proved of huge interest, being a social network

popular, dynamic and where users, through their tweets, help to keep the public informed of

what is happening around them. In 140 characters of a message are told life experiences

both personal and about the world that surrounds users, while the ability to include links to

other sites, as well as images and videos, are additional methods to disseminate what is

most important in web.

67

2 Twitter Vigilance Analisys

The analysis of social networks has become the leading source of news, comments, opinions

on any subject. As was pointed out in Chapter 1, there are already various tools, paid or not,

which analyze and extract information from various social channels. Twitter Vigilance was

designed as a platform for the search of messages on Twitter and for the analysis of such

messages both from a numerical point of view (to highlight the daily peaks) and from a

semantic point of view (for identify what refers peaks of tweets).

The idea of creating a platform for the monitoring of social networks is created within a

collaboration between UNIFI DISIT lab, LAMMA and CNR IBINET. The main purpose is to

investigate and to build specific and reliable metrics dashboard to monitor weather related

Twitters. Since this study was the project of Twitter Vigilance Platform to provide a tool to

study the content of the social network that was shared and adapted to different contexts,

such as for monitoring city services, critical events and conditions, user behaviour, city

response to events, etc.. Indeed, the tool that will be made will also be used in other

projects related to smart cities.

Specifically, the main objective of the collaboration mentioned above is to analyze whether

can be used the information flow of Twitter as a good social indicator of certain weather

events, such as severe weather alerts or heat waves. Therefore in the design of Twitter

Vigilance Platform has been introduced the concept of "thematic channel" in which research

is collected concerning a certain topic, as can be weather alert or particular events as Expo.

A tool of this kind can not be separated from the management of users and the distinction of

roles: basically will be split functionality between the User and the Administrator. A user

must be able to create its channels and view only his own, but may be able to include in its

channels every search included in the system even if inserted by another user. The

administrator must be able to manage all channels of all users as well as monitor all system

activity.

Since the platform is designed to be an analytics tool, a key part of the system is displaying

the results of statistics and analyzes performed on messages within the channels. To achieve

this purpose it was decided to create a dashboard that can show to the user, through graphs

and charts, information that may be useful to explore its analysis.

In the next few paragraphs will be initially highlighted the main requirements of the platform

and then highlighted the main issues to be addressed.

Part 2 - Twitter Vigilance Analisys

68

2.1 Requirements

This section contains the requirements of the platform Twitter Vigilance. The whole project

is based on the concept of channel: this is the key idea that led to the design and creation of

the Twitter Vigilance platform. The idea is to allow the user to create thematic channels in

which enclose the research that the system must perform. Obviously the individual channel

is associated with the user who creates it and then there could be more channels with the

same name but associated with different users. This thing can not happen with the research:

research must be unique within the system but can be associated with multiple channels.

This difference comes from the fact that research with the Twitter API, if carried out with the

same parameters, produce the same results. Below there are given the high-level

requirements identified for the platform:

1. The system must issue queries to Twitter to retrieve all messages of interest.

2. The system must be based on the concept of thematic channel

a. To a channel must be associated one or more searches

3. The system must be able to follow explosives and slow events

4. The system must be multi-user

5. The system must provide a dashboard for viewing analysis results.

First requirement is perhaps the most important and the one that involves the major design

difficulties: these are mainly due to the limitations and characteristics of the APIs provided

by Twitter. In the next section we will describe the main Twitter API to access the message

flow.

Second requirement is an innovation compared to the tools that can be found on the market

of Social Media Monitoring. Indeed none of those who were tested can group search within

a thematic channel: most are single theme or allow you to enter search without a specific

grouping. This requirement does not directly involve retrieving messages from Twitter, since

this is based on searches, but has a positive side in the analysis because statistics will be

calculated on the entire body of messages that is contained in a channel as well as for each

single search. In fact queries to Twitter are not based on the channel but on the search: why

even if a search is connected to multiple channels, the system must perform a single query

into Twitter.

The third requirement expresses the concept that the system has to adapt to the change in

speed of the individual channels in relation to the occurrence of events that can experience

an increased number of recoverable messages.

The fourth requirement enforces that the system has an authentication system allowing to

distinguish between a user and another and between the various types of users.

The fifth requirement is more an interface requirement but is a fundamental requirement to

characterize the platform on which the display of the analysis results is essential otherwise it

Part 2 - Twitter Vigilance Analisys

69

would not be a platform for the analysis of social networks but simply a platform for

message retrieval.

2.2 Twitter API

As outlined above, the first target of the platform is to recover from Twitter all the messages

that correspond to the Search that has been set in the system. In order to access messages,

Twitter provides some API with different characteristics.

There are two types of APIs delivered by Twitter: REST API and Streaming API. Since version

1.1 of Twitter API is necessary to log in with OAuth for all requests, including search and

streaming. Both API returns data in JSON format. Each API returns the same data, even when

their JSON structures aren't. Regardless of the API used to search twitter messages, main

effort is to built a valid query to Twitter databases. The query can have operators that

modify its behaviour exactly like searches performed in Twitter website. The available

operators are described in the following table:

Operator Finds tweets…

watching now containing both “watching” and “now”. This is the
default operator.

“happy hour” containing the exact phrase “happy hour”.

love OR hate containing either “love” or “hate” (or both).

beer -root containing “beer” but not “root”.

#haiku containing the hashtag “haiku”.

from:alexiskold sent from person “alexiskold”.

to:techcrunch sent to person “techcrunch”.

@mashable referencing person “mashable”.

superhero since:2015-07-19 containing “superhero” and sent since date
“2015-07-19” (year-month-day).

ftw until:2015-07-19 containing “ftw” and sent before the date “2015-
07-19”.

movie -scary :) containing “movie”, but not “scary”, and with a
positive attitude.

flight :(containing “flight” and with a negative attitude.

traffic ? containing “traffic” and asking a question.

hilarious filter:links containing “hilarious” and linking to URL.

news source:twitterfeed containing “news” and entered via TwitterFeed
Table 3: Operators for Twitter query

The REST APIs provide programmatic access to read and write Twitter data, author a new

Tweet, read author profile and follower data, and more. The REST API identifies Twitter

applications and users using OAuth; responses are available in JSON. Twitter Search APIs are

part of Twitter's v1.1 REST API. It allows queries against the indices of recent or popular

Tweets and behaves similarily to, but not exactly like the Search feature available in Twitter

mobile or web clients, such as Twitter.com search. Search API allows a separate rate limited

bucket of requests for each user. Rate limits are divided into 15 minutes intervals and all

Part 2 - Twitter Vigilance Analisys

70

endpoints require authentication. "GET search/tweets" is the API that returns a collection of

relevant Tweets matching a specified query. The resource URL is:

"https://api.twitter.com/1.1/search/tweets.json". Parameters that can be passed to "GET

search/tweets" are:

 q (required): a UTF-8, URL-encoded search query of 500 characters maximum,

including operators. Queries may additionally be limited by complexity. Example

Values: @noradio

 geocode (optional): returns tweets by users located within a given radius of the given

latitude/longitude. The location is preferentially taking from the Geotagging API, but

will fall back to their Twitter profile. The parameter value is specified by

“latitude,longitude,radius”, where radius units must be specified as either “mi”

(miles) or “km” (kilometers). Note that you cannot use the near operator via the API

to geocode arbitrary locations; however you can use this geocode parameter to

search near geocodes directly. A maximum of 1,000 distinct “sub-regions” will be

considered when using the radius modifier. Example Values: 37.781157,-

122.398720,1mi

 lang (optional): restricts tweets to the given language, given by an ISO 639-1 code.

Language detection is best-effort. Example Values: eu

 locale (optional): specify the language of the query you are sending (onlyja is

currently effective). This is intended for language-specific consumers and the default

should work in the majority of cases. Example Values: ja

 result_type (optional): specifies what type of search results you would prefer to

receive. The current default is “mixed.” Valid values include:

o mixed: Include both popular and real time results in the response.

o recent: return only the most recent results in the response

o popular: return only the most popular results in the response.

Example Values: mixed, recent, popular

 count (optional): the number of tweets to return per page, up to a maximum of 100.

Defaults to 15. This was formerly the “rpp” parameter in the old Search API. Example

Values: 100

 until (optional): returns tweets created before the given date. Date should be

formatted as YYYY-MM-DD. Keep in mind that the search index has a 7-day limit. In

other words, NO tweets will be found for a date older than one week. Example

Values: 2015-07-19

 since_id (optional): returns results with an ID greater than (that is, more recent than)

the specified ID. There are limits to the number of Tweets which can be accessed

through the API. If the limit of Tweets has occured since the since_id, the since_id

will be forced to the oldest ID available. Example Values: 12345

 max_id (optional): returns results with an ID less than (that is, older than) or equal to

the specified ID. Example Values: 54321

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Part 2 - Twitter Vigilance Analisys

71

 include_entities (optional): the entities node will be disincluded when set to false.

Example Values: false

 callback (optional): if supplied, the response will use the JSONP format with a

callback of the given name. The usefulness of this parameter is somewhat diminished

by the requirement of authentication for requests to this endpoint. Example

Values: processTweets

Example Request:

"GET https://api.twitter.com/1.1/search/tweets.json?q=%23freebandnames

&since_id=24012619984051000&max_id=250126199840518145&result_type=mixed&count

=4"

In the following figure is presented an example result of query on Twitter using Search API.

{
 "statuses": [
 {
 "coordinates": null,
 "favorited": false,
 "truncated": false,
 "created_at": "Mon Sep 24 03:35:21 +0000 2012",
 "id_str": "250075927172759552",
 "entities": {
 "urls": [

],
 "hashtags": [
 {
 "text": "freebandnames",
 "indices": [
 20,
 34
]
 }
],
 "user_mentions": [

]
 },
 "in_reply_to_user_id_str": null,
 "contributors": null,
 "text": "Aggressive Ponytail #freebandnames",
 "metadata": {
 "iso_language_code": "en",
 "result_type": "recent"
 },
 "retweet_count": 0,
 "in_reply_to_status_id_str": null,
 "id": 250075927172759552,
 "geo": null,
 "retweeted": false,
 "in_reply_to_user_id": null,

Part 2 - Twitter Vigilance Analisys

72

 "place": null,
 "user": {
 "profile_sidebar_fill_color": "DDEEF6",
 "profile_sidebar_border_color": "C0DEED",
 "profile_background_tile": false,
 "name": "Sean Cummings",
 "profile_image_url":"http://a0.twimg.com/profile_images/2359746665/1v6zfgqo8g0d3mk7ii5s_normal.jp
eg",
 "created_at": "Mon Apr 26 06:01:55 +0000 2010",
 "location": "LA, CA",
 "follow_request_sent": null,
 "profile_link_color": "0084B4",
 "is_translator": false,
 "id_str": "137238150",
 "entities": {
 "url": {
 "urls": [
 {
 "expanded_url": null,
 "url": "",
 "indices": [
 0,
 0
]
 }
]
 },
 "description": {
 "urls": [

]
 }
 },
 "default_profile": true,
 "contributors_enabled": false,
 "favourites_count": 0,
 "url": null,
 "profile_image_url_https":"https://si0.twimg.com/profile_images/2359746665/1v6zfgqo8g0d3mk7ii5s_no
rmal.jpeg",
 "utc_offset": -28800,
 "id": 137238150,
 "profile_use_background_image": true,
 "listed_count": 2,
 "profile_text_color": "333333",
 "lang": "en",
 "followers_count": 70,
 "protected": false,
 "notifications": null,
 "profile_background_image_url_https":"https://si0.twimg.com/images/themes/theme1/bg.png",
 "profile_background_color": "C0DEED",
 "verified": false,
 "geo_enabled": true,
 "time_zone": "Pacific Time (US & Canada)",
 "description": "Born 330 Live 310",
 "default_profile_image": false,
 "profile_background_image_url":"http://a0.twimg.com/images/themes/theme1/bg.png",
 "statuses_count": 579,

Part 2 - Twitter Vigilance Analisys

73

 "friends_count": 110,
 "following": null,
 "show_all_inline_media": false,
 "screen_name": "sean_cummings"
 },
 "in_reply_to_screen_name": null,
 "source": "<a>Twitter for Mac",
 "in_reply_to_status_id": null
 }
],
 "search_metadata": {
 "max_id": 250126199840518145,
 "since_id": 24012619984051000,
 "refresh_url": "?since_id=250126199840518145&q=%23freebandnames&result_type=mixed&include_entiti
es=1",
 "next_results": "?max_id=249279667666817023&q=%23freebandnames&count=4&include_entities=1&resu
lt_type=mixed",
 "count": 4,
 "completed_in": 0.035,
 "since_id_str": "24012619984051000",
 "query": "%23freebandnames",
 "max_id_str": "250126199840518145"
 }
}

Figure 31: JSON example

There are four main “objects” that is possible to encounter in the API results: Tweets, Users,

Entities and Places. Main fields that can be included in JSON response are described in the

following table.

Field Type Description

annotations Object
Unused. Future/beta home for status

annotations.

contributors
Collection of

Contributors

Nullable. An collection of brief user objects

(usually only one) indicating users who

contributed to the authorship of the tweet,

on behalf of the official tweet

author. Discussion. Example:

https://dev.twitter.com/overview/api/tweets#obj-contributors
http://groups.google.com/group/twitter-development-talk/browse_thread/thread/6a16efa375532182/

Part 2 - Twitter Vigilance Analisys

74

Field Type Description

coordinates Coordinates

Nullable. Represents the geographic location

of this Tweet as reported by the user or

client application. The inner coordinates

array is formatted as geoJSON(longitude

first, then latitude).

Example:

created_at String

UTC time when this Tweet was created.

Example:

current_user_retweet Object

Perspectival. Only surfaces on methods

supporting

the include_my_retweetparameter, when

set to true. Details the Tweet ID of the user's

own retweet (if existent) of this Tweet.

Example:

https://dev.twitter.com/overview/api/tweets#obj-coordinates
http://www.geojson.org/

Part 2 - Twitter Vigilance Analisys

75

Field Type Description

entities Entities

Entities which have been parsed out of the

text of the Tweet. Additionally seeEntities in

Twitter Objects. Example:

favorite_count Integer

Nullable. Indicates approximately how many

times this Tweet has been “favorited” by

Twitter users.

Example:

favorited Boolean

Nullable. Perspectival. Indicates whether this

Tweet has been favorited by the

authenticating user. Example:

filter_level String

Indicates the maximum value of
the filter_levelparameter which may be used
and still stream this Tweet. So a value
of mediumwill be streamed on none, low,
and medium streams. Example:

geo Object
Deprecated. Nullable. Use the “coordinates”

field instead. Discussion

https://dev.twitter.com/overview/api/entities
https://dev.twitter.com/overview/api/entities-in-twitter-objects
https://dev.twitter.com/overview/api/entities-in-twitter-objects
https://dev.twitter.com/rest/reference/post/favorites/create
https://dev.twitter.com/streaming/overview/request-parameters#filter_level
http://groups.google.com/group/twitter-development-talk/browse_thread/thread/9e4ea75178174908

Part 2 - Twitter Vigilance Analisys

76

Field Type Description

id Int64

The integer representation of the unique

identifier for this Tweet. This number is

greater than 53 bits and some programming

languages may have difficulty/silent defects

in interpreting it. Using a signed 64 bit

integer for storing this identifier is safe.

Use id_str for fetching the identifier to stay

on the safe side. Example:

id_str String

The string representation of the unique

identifier for this Tweet. Implementations

should use this rather than the large integer

in id.Discussion. Example:

in_reply_to_screen_name String

Nullable. If the represented Tweet is a reply,

this field will contain the screen name of the

original Tweet's author. Example:

in_reply_to_status_id Int64

Nullable. If the represented Tweet is a reply,

this field will contain the integer

representation of the original Tweet's ID.

Example:

in_reply_to_status_id_str String

Nullable. If the represented Tweet is a reply,

this field will contain the string

representation of the original Tweet's ID.

Example:

in_reply_to_user_id Int64 Nullable. If the represented Tweet is a reply,

http://groups.google.com/group/twitter-development-talk/browse_thread/thread/6a16efa375532182/

Part 2 - Twitter Vigilance Analisys

77

Field Type Description

this field will contain the integer

representation of the original Tweet's

author ID. This will not necessarily always be

the user directly mentioned in the Tweet.

Example:

in_reply_to_user_id_str String

Nullable. If the represented Tweet is a reply,

this field will contain the string

representation of the original Tweet's

author ID. This will not necessarily always be

the user directly mentioned in the Tweet.

Example:

lang String

Nullable. When present, indicates a BCP

47 language identifier corresponding to the

machine-detected language of the Tweet

text, or “und” if NO language could be

detected. Example:

place Places

Nullable. When present, indicates that the

tweet is associated (but not necessarily

originating from) a Place. Example:

http://tools.ietf.org/html/bcp47
http://tools.ietf.org/html/bcp47
https://dev.twitter.com/overview/api/places
https://dev.twitter.com/overview/api/places

Part 2 - Twitter Vigilance Analisys

78

Field Type Description

possibly_sensitive Boolean

Nullable. This field only surfaces when a

tweet contains a link. The meaning of the

field doesn't pertain to the tweet content

itself, but instead it is an indicator that the

URL contained in the tweet may contain

content or media identified as sensitive

content. Example:

quoted_status_id Int64
This field only surfaces when the Tweet is a

quote Tweet. This field contains the integer

Part 2 - Twitter Vigilance Analisys

79

Field Type Description

value Tweet ID of the quoted Tweet.

Example:

quoted_status_id_str String

This field only surfaces when the Tweet is a

quote Tweet. This is the string

representation Tweet ID of the quoted

Tweet. Example:

quoted_status Tweet

This field only surfaces when the Tweet is a

quote Tweet. This attribute contains the

Tweet object of the original Tweet that was

quoted.

scopes Object

A set of key-value pairs indicating the

intended contextual delivery of the

containing Tweet. Currently used by

Twitter's Promoted Products. Example:

retweet_count Int

Number of times this Tweet has been

retweeted. This field is NO longer capped at

99 and will not turn into a String for “100+”.

Example:

retweeted Boolean

Perspectival. Indicates whether this Tweet

has been retweeted by the authenticating

user. Example:

retweeted_status Tweet

Users can amplify the broadcast of tweets

authored by other users byretweeting.

Retweets can be distinguished from typical

Tweets by the existence of

https://dev.twitter.com/overview/api/tweets
https://dev.twitter.com/overview/api/tweets
https://dev.twitter.com/rest/reference/post/statuses/retweet/%3Aid

Part 2 - Twitter Vigilance Analisys

80

Field Type Description

a retweeted_status attribute. This attribute

contains a representation of

theoriginal Tweet that was retweeted. Note

that retweets of retweets do not show

representations of the intermediary

retweet, but only the original tweet. (Users

can also unretweet a retweet they created

by deleting their retweet.)

source String

Utility used to post the Tweet, as an HTML-

formatted string. Tweets from the Twitter

website have a source value of web.

Example:

text String

The actual UTF-8 text of the status update.

See twitter-text for details on what is

currently considered valid characters.

Example:

truncated Boolean

Indicates whether the value of

the text parameter was truncated, for

example, as a result of a retweet exceeding

the 140 character Tweet length. Truncated

text will end in ellipsis, like this ... Since

Twitter now rejects long Tweets vs

truncating them, the large majority of

Tweets will have this set to false.

Note that while native retweets may have

https://dev.twitter.com/rest/reference/post/statuses/destroy/%3Aid
https://github.com/twitter/twitter-text/blob/master/rb/lib/twitter-text/regex.rb

Part 2 - Twitter Vigilance Analisys

81

Field Type Description

their toplevel text property shortened, the

original text will be available under

the retweeted_status object and

the truncatedparameter will be set to the

value of the original status (in most

cases, false). Example:

user Users

The user who posted this Tweet.

Perspectival attributes embedded within

this object are unreliable.

withheld_copyright Boolean

When present and set to “true”, it indicates

that this piece of content has been withheld

due to a DMCA complaint. Example:

withheld_in_countries Array of String

When present, indicates a list of

uppercase two-letter country codes this

content is withheld from. Twitter supports

the following non-country values for this

field:

o “XX” - Content is withheld in all countries

o “XY” - Content is withheld due to a DMCA
request. Example:

withheld_scope String

When present, indicates whether the
content being withheld is the “status” or a
“user.” Example:

Table 4: JSON fields

https://dev.twitter.com/overview/api/users
http://en.wikipedia.org/wiki/Digital_Millennium_Copyright_Act
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Part 2 - Twitter Vigilance Analisys

82

The Streaming APIs give developers low latency access to Twitter's global stream of Tweet

data. Connecting to the streaming API requires keeping a persistent HTTP connection open.

Twitter offers several streaming endpoints, each customized to certain use cases:

 Public streams: streams of the public data flowing through Twitter. Suitable for

following specific users or topics, and data mining.

 User streams: single-user streams, containing roughly all of the data corresponding

with a single user's view of Twitter.

 Site streams: the multi-user version of user streams. Site streams are intended for

servers which must connect to Twitter on behalf of many users.

Twitter only allows to make a single streaming API OAuth connection for each twitter

account that the app owns. An application can use a single connection to the streaming API,

although users who access to application have separate accounts. "GET statuses/sample"

API returns a small random sample of all public statuses. The Tweets returned by the default

access level are the same, so if two different clients connect to this endpoint, they will see

the same Tweets. Resource URL is: "https://stream.twitter.com/1.1/statuses/sample.json".

2.3 Main challenges

As highlighted by the platform requirements, the most critical are given by retrieving

messages from Twitter. These are due to some limitations of the API that have led to very

specific design choices to circumvent these limitations and have an efficient process of

retrieving messages.

The first obvious limitation that involves both types of APIs is given by the corpus of

messages that Twitter makes available for retrieval through the APIs. The Search API is not

complete index of all tweets, but instead an index of recent Tweets. At the moment That

index includes between 6-9 days of Tweets. Total rate limits of Streaming API is not

documented. The documentation say up to 1% of the full firehose of tweets. So none of the

two types of APIs allows you to recover the entire corpus of messages that is present on

Twitter.

REST API v1.1's rate limiting model allows for a wider ranger of requests through per-

method request limits. There are two initial buckets available for GET requests: 15 calls

every 15 minutes, and 180 calls every 15 minutes. Search will be rate limited at 180 queries

per 15 minute. Streaming API doesn't have these limitations because once applications

establish a connection to a streaming endpoint, they are delivered a feed of Tweets, without

needing to worry about polling or REST API rate limits.

Another limitation is the need for authentication that have the APIs: There are 2 types of

authentication per-user and application-only. Rate limiting in version 1.1 of the API is

primarily considered on a per-user basis — or more accurately described, per access token in

Part 2 - Twitter Vigilance Analisys

83

your control. If a method allows for 15 requests per rate limit window, then it allows you to

make 15 requests per window per leveraged access token. When using application-only

authentication, rate limits are determined globally for the entire application. If a method

allows for 15 requests per rate limit window, then it allows you to make 15 requests per

window — on behalf of your application. This limit is considered completely separately from

per-user limits. Search API provides both authentication per-user and application-only: the

per-user authentication can have multiple accounts associated with an application, each of

which has a limit of 180 requests / 15-minute window, the application-only authentication

allows for one account per application with a limit of 450 requests / 15-min window.

Streaming API lacks these types of account, but has a limitation on the number of

connections per account. Each account may create only one standing connection to the

public endpoints, and connecting to a public stream more than once with the same account

credentials will cause the oldest connection to be disconnected.

For what concerns total flow of tweets, the Search API returns up to 100 tweets per search

and allows 720 requests per hour, giving a max of 72,000 tweets per hour. If each user who

logs into an app asks to make search requests, then is possible to get up to 72,000 tweets

per hour for every user. Streaming API has maxed out at around 3,000 tweets a minute, this

delivers a maximum flow of 180,000 tweets an hour.

An important goal is to create a system that can adapt to the number of posts made

available by twitter and that is able to retrieve them all. This is based on the speed of the

channel is identified by the number of posts "new" retrieved via the API. In the case of the

Search API if each request are recovered 100 new posts, it means that at that time there are

many posts available and that probably not everyone is recovered but there may be losses.

The objective must therefore be to reduce the interval between a request and the next in

order to minimize the losses (saturations).

A final critical point is due to the dynamism of social networks: in fact there is some

information that relates to the individual message depending on how many users interact

with the message itself. When the message is retrieved, this brings the information

representing the state of the message at that moment. This information, however, may

change thereafter and must be retrieved in order to update the status of the message to the

latest version.

84

3 Twitter Vigilance Design

To achieve the overall objectives set out in paragraph 2.1, has been designed a platform to

address the concerns set out in the previous chapter efficiently and to provide analysis tools

clear and self explanatory.

The platform is divided into 2 parts: a backend for retrieving messages and a frontend for

setting up the channels by the user and for displaying the results. In this thesis will be

presented both backend and frontend: in backend are present a process for recovering of

the tweets and others processes for the calculation of graphics and performance of the

system, frontend is an implementation of a dashboard to present some statistics on

downloaded messages by means graphs and tables.

In the following paragraphs are presented the projects of the processes that are part of the

backend of the platform and the design of the dashboard.

3.1 Backend

For the design of the backend of Twitter Vigilance platform were taken into account all the

aspects listed above that restrict the use of the Twitter API. In particular, it was chosen to

use the Search API as they offer a greater chance of filtering query results, given the number

of parameters that provide. As for limiting the number of messages downloaded, which

might suggest the choice of the Streaming API, it is avoidable by increasing the number of

accounts associated with the application. With multiple accounts it's possible also to

increase the number of requests that can be made. To manage a multi account, has been

designed an architecture in which there is a central process that schedules the execution of

individual search and a number of independent processes equal to the number of accounts

that deal with perform searches in Twitter and store the results in the database. In this

version of the platform have been used 5 accounts. In order to update the data of retrieved

messages have created a separate process that once a day requires to Twitter data of

messages stored in the database.

In the next few paragraphs will be presented requirements and architecture of the processes

which are part of the backend.

Part 2 - Twitter Vigilance Design

85

3.1.1 Requirements

1. The system must use the Twitter Search API for researching Twitter based on the
keywords set by users.

2. The system must store the results in a table in a relational DB.
3. The system should be divided into two subsystems:

a. a central process
b. various processes independent from each other and from the central process

4. The core process must start the processes to perform searches on Twitter
5. The core process must assign a ranking and a deadline to the various investigations

based on the number of new messages downloaded.
a. according to the average number of new messages downloaded in the last

two executions is assigned a ranking
i. based on ranking is calculated the new deadline of the search.

6. Each process needs to use a different account to the Twitter Search API.
7. Each process queries the database to take charge of the first search key whose

deadline has expired.
8. Each process has to build the application to be submitted to Twitter using the Search

API.
9. Every process must store the results obtained from the Search in the database.
10. The independent processes must access the DB exclusively so that the same search

key is not taken over by two processes simultaneously.
11. The core process must monitor the number of requests made by each independent

process, not to exceed the limit of 180 requests every 15 minutes.
a. If a process reaches retirement requests, pauses.
b. When the limit is reset, the process is reactivated.
c. The main process must make a reduction of the research by selecting a subset

that is minimal: research whose results are contained in the other are not
taken into account, this reduces the number of requests to Twitter without
any loss of data.

12. The system must include a sub-process that update messages for the recovery of the

number of "retweet" and "favorite".

13. The system must include a sub-process to retrieve "father" tweets.

14. The system must include sub-processes to compute data for graphics and tables.

a. Number of tweets for each Channel

b. Number of tweets for each Search

c. Number of retweets for each Channel

d. Number of retweets for each Search

e. Number of users for each Channel

f. Number of users for each Search

15. The system must store messages distinguishing between those direct and retweets.

16. The new research is created with the status set to "disactive".

17. A search must be activated only when it is associated with at least one active

channel, otherwise the search is "disactive".

Part 2 - Twitter Vigilance Design

86

3.1.2 Backend Architecture

The main components of this architecture are the Scheduler and the Crawler.

The Scheduler is the core process of the entire system and it is a single process that is

responsible for initiating the Crawler, updating the rankings associated with research based

on the number of new tweets in the database in the last two versions of search and update

the deadline of performing searches based on ranking assigned previously. The Crawler is

responsible for the process to take charge of the research, to forward the requests to

Twitter with the search parameters taking charge and store the downloaded messages in the

database. Crawler can be instantiated multiple processes and each must have a Twitter

account. Both processes read and write to the database, and conflicts are avoided by locking

mechanisms of the tables and a mutex.

Figure 32: Crawling system architecture

3.1.3 DB structure

The Twitter Vigilance platform uses 23 tables: account_twitter, adjectives_on_channel,

ax_request_twitter, ax_twitter, ax_twitter_geocode, channel, chart_eventi_canali,

chart_twitter, chart_twitter_canali, chart_twitter_retweet, chart_twitter_retweet_canali,

chart_user, chart_user_canali, hashtags, hashtags_on_channel, keywords_on_channel,

mentions, mentions_on_channel, process_list, retweet_count, users, variable,

verbs_on_channel. Those used in the process of retrieving messages from Twitter are just 7:

account_twitter, ax_request_twitter, ax_twitter, hashtags, mentions, process_list, variable.

The others are used for data analysis.

Part 2 - Twitter Vigilance Design

87

Figure 33: Database architecture

Part 2 - Twitter Vigilance Design

88

account_twitter

The table contains the keys to be used to connect with the Twitter API. The "status" field

indicates whether the account is used by a process, or if it is available.

Column Type Null Default Description

id int(11) NO

oauth_access_token longtext NO
Credentials for access to

Twitter

oauth_access_token_secret longtext NO
Credentials for access to

Twitter

consumer_key longtext NO
Credentials for access to

Twitter

consumer_secret longtext NO
Credentials for access to

Twitter

status varchar(128) NO available
It indicates whether the
account is already in use by
some process

Table 5: account_twitter table

ax_request_twitter

The table "ax_request twitter" contains parameters of each request to the Twitter API. Also

there are the fields necessary to schedule requests to Twitter (process, last_exec,

crawling_status, new_deadline, second_last_result, last_result)

Column Type Null Default Description

ID_request int(10) NO Identifier of requests

status_req int(10) YES NULL
Indicates whether the
application is active (1) or not
(0)

text_req varchar(255) NO
The text of the research

including the symbols

weight_req int(10) YES NULL
Numeric indication of the

priority of the request

lan_req varchar(128) NO
Language to be used as a
parameter in the query

process bigint(32) NO
ID of the process that
handles the request

last_exec datetime NO
Date and time of the

execution of the request

crawling_status varchar(128) NO completed
Call status (waiting,
processing, completed)

new_deadline int(128) NO 0
Timestamp indicating when
will the next run

second_last_result int(11) NO
Number of tweets inserted in

the second last run

Part 2 - Twitter Vigilance Design

89

last_result int(11) NO
Number of tweets inserted in

the last run

Table 6: ax_request_twitter table

ax_twitter

The table "ax_twitter" contains the data of each tweet into the system. The tweets are

unique thanks to the unique constraint on the field "twitterId".

Column Type Null Default Description

id int(10) NO

Index will be automatically

incremented and assigned to

each tweet inserted

date datetime NO

Date and Time when the

tweet was inserted or

updated in the table

message longtext YES NULL
The message body in the

tweet

ID_request int(10) NO

ID of the request as indicated

in the table "ax_request

twitter"

hashtag varchar(512) NO
Hashtags text set by

administrator

hashtagsOnTwitter varchar(512) NO
List of hashtags contained in

every tweet

publicationTime datetime NO
Date and Time when the

tweet was published

twitterUser varchar(255) NO
Name of the user who sent

the tweet

twitterId varchar(512) NO ID of the tweet

userId varchar(521) NO ID of user

geo_lat decimal(10,5) YES NULL
Geographic location of tweet,

latitude

geo_long decimal(10,5) YES NULL
Geographic location of tweet,

longitude

locationUser varchar(255) YES NULL
Indicating the country of

origin of User

place varchar(255) YES NULL
Place associated with the

content of the tweet

time_zone varchar(255) YES NULL
Time zone associated with

the tweet

retweetCount int(4) YES NULL

It indicates the number of

times that the tweet was

forwarded

Part 2 - Twitter Vigilance Design

90

favoriteCount int(4) YES NULL

It indicates how many times

the tweet has been marked

as favorite

lang varchar(10) NO
Indicates the language of

message

mentions text NO
It indicates users mentioned

in the message

links text NO

Indicates the link contained

in the message both in the

shortened version and in the

extended

retweet tinyint(1) NO
Indicating whether the

message is a retweet or NO

originalTweet varchar(512) NO

If the message is a retweet,

indicates the ID of the

original message

Table 7: ax_twitter page

ax_twitter_geocode

The table "ax twitter geocode" shows the geolocation of each tweet.

Column Type Null Default Description

id_tweet int(10) NO
Index associated with the

index ID of table ax_twitter

geo_lat decimal(10,7) NO

Geographic location of this

Tweet obtained from an

external service of

geolocation based on the

"place" field of table

ax_twitter, latitude

geo_lon decimal(10,7) NO

Geographic location of this

Tweet obtained from an

external service of

geolocation based on "place"

field of table ax_twitter,

longitude

message text NO
The message body of the

tweet

twitterUser text NO
Name of the user who sent

the tweet

Table 8: ax_twitter_geocode table

Part 2 - Twitter Vigilance Design

91

canale

The table "canale" contains the associations between channels and searches. Each line

represents the association between a channel, a research and the user that created the

channel. This structure enables to maintain the uniqueness of the channels associated with a

user. This does not prevent to have channels with the same name and same searches but

linked to different users. There are also a field to share the channel with a user other than

the owner and a field to define the status of the channel.

Column Type Null Default Description

id int(10) NO
ID of the association

Channel-Search

name varchar(128) NO Indicates the Channel name

id_ricerca int(10) NO

Indicates the identifier of the

Search associated with the

Channel (refers to field

ID_request of the table

"ax_request_twitter")

userID int(11) NO

ID of the user who added the

channel (refer to ID field of

the table "users")

shareToUser int(11) NO
id of user to share channel

(typically a guest user)

status tinyint(1) NO 1
Channel status (active,
disactive)

Table 9: canale table

chart_eventi_canali

It contains the labels that a user can apply to graphics to highlight a particular event.

Column Type Null Default Description

id int(11) NO

evento text NO event text to be displayed

descrizione varchar(255) YES NULL description of the event

canale text NO
channel to which the event is

associated

data date NO the event date

platformUser text NO user who added the event

visibility tinyint(1) NO
visibility of the event (public

or private)

Table 10: chart_eventi_canali table

Part 2 - Twitter Vigilance Design

92

chart_twitter

Tables "chart twitter", "chart_twitter_canali", "chart twitter retweet" and

"chart_twitter_retweet_canali" are used to store data necessary to render charts. In this

way the updating of data can take place in the background with a separate process in such a

way as not to affect the display speed of the graphs.

Column Type Null Default Description

id int(11) NO
the row identifier

(auto_increment)

request text NO search text

count int(11) NO
number of messages relevant

to search on a certain day

data date NO
date to which refers the

count of messages

twitterUser text NO
number of distinct users that

have posted the messages

Table 11: chart_twitter table

chart_twitter_canali

Column Type Null Default Description

id int(11) NO
the row identifier

(auto_increment)

canale text NO channel name

count int(11) NO

number of messages related

to the channel on a certain

day

data date NO
date to which refers the

count of messages

twitterUser text NO
number of distinct users that

have posted the messages

lastUpdate datetime NO
last update of channel

statistics

Table 12: chart_twitter_canali table

chart_twitter_retweet

Column Type Null Default Description

id int(11) NO
the row identifier

(auto_increment)

request text NO search text

count int(11) NO
number of messages relevant

to search on a certain day

Part 2 - Twitter Vigilance Design

93

data date NO
date to which refers the

count of messages

twitterUser text NO
number of distinct users that

have posted the messages

Table 13: chart_twitter_retweet table

chart_twitter_retweet_canali

Column Type Null Default Description

id int(11) NO
the row identifier

(auto_increment)

canale text NO channel name

count int(11) NO

number of retweets related

to the channel on a certain

day

data date NO
date to which refers the

count of messages

twitterUser text NO
number of distinct users that

have posted the messages

lastUpdate datetime NO
number of messages relevant

to channel on a certain day

Table 14: chart_twitter_retweet_canali table

chart_user

Tables "chart user", "chart user channels" are used for storing data necessary to display

charts of users. Again this is done in the background and the data are retrieved for displaying

of graphs and tables.

Column Type Null Default Description

id int(11) NO
the row identifier

(auto_increment)

request text NO search text

count int(11) NO

number of distinct users who

have written at least a

message that matches the

search criteria

Table 15: chart_user table

chart_user_canali

Column Type Null Default Description

id int(11) NO the row identifier

Part 2 - Twitter Vigilance Design

94

(auto_increment)

canale text NO channel name

count int(11) NO

number of distinct users who

have written at least one

message in the channel

Table 16: chart_user_canali table

crawling_stat

Tables "crawling_stat" and "crawling_stat_day" are used to store statistics on the process of

crawling. Both tables have the same fields but the first contains the total values of the

statistics and the second stores the statistics for a single day. Both are used to evaluate the

efficiency of the system.

Column Type Null Default Description

id int(11) NO

channel varchar(128) NO
channel to which are

referred the statistics

tweet_db int(11) NO
Tweet number in the

database

tweet_orig int(11) NO

Number of fathers tweets

associated with retweets in

the database

missingFather int(11) NO
Number of missing fathers

tweet

fatherCoverage float(11,2) NO Coverage of fathers Tweet

retweet_db int(11) NO
Retweet number in the

database

retweet_orig int(11) NO
Retweet number declared by

Twitter

retweetCoverage float(11,2) NO Retweet Coverage

lastUpdate datetime NO
Date and time of the last

statistics update

keyword_number int(11) NO 0
number of search associated

with the channel

keyword_exec int(11) NO 0
Search number really

executed

total_launched int(11) NO 0
Number of search launches

performed

saturation_number int(11) NO 0 Number of saturations

saturation_perc float NO 0
Saturation percentage

compared to the total

Part 2 - Twitter Vigilance Design

95

number of launches

data date NO Day the statistics relate

Table 17: crawling_stat table

crawling_stat_day

Column Type Null Default Description

id int(11) NO

channel varchar(128) NO channel to which are

referred the statistics

tweet_db int(11) NO Tweet number in the

database

tweet_orig int(11) NO Number of fathers tweets

associated with retweets in

the database

missingFather int(11) NO Number of missing fathers

tweet

fatherCoverage float(11,2) NO Coverage of fathers Tweet

retweet_db int(11) NO Retweet number in the

database

retweet_orig int(11) NO Retweet number declared by

Twitter

retweetCoverage float(11,2) NO Retweet Coverage

lastUpdate datetime NO Date and time of the last

statistics update

keyword_number int(11) NO 0 number of search associated

with the channel

keyword_exec int(11) NO 0 Search number really

executed

total_launched int(11) NO 0 Number of search launches

performed

saturation_number int(11) NO 0 Number of saturations

saturation_perc float NO 0 Saturation percentage

compared to the total

number of launches

data date NO Day the statistics relate

Table 18: crawling_stat_day table

hashtags

It contains hashtags related to individual tweets.

Part 2 - Twitter Vigilance Design

96

Column Type Null Default Description

tweetID varchar(512) NO

ID of the message on Twitter

(refers to the field twitterId

of the table ax_twitter)

hashtag text NO

name of hashtag in the

message identified by

tweetID

Table 19: hashtags table

mentions

It contains the users mentioned in the individual tweets.

Column Type Null Default Description

tweetID varchar(512) NO

ID of the message on Twitter

(refers to the field twitterId

of the table ax_twitter)

mention text NO

name of the user mentioned

in the message identified by

tweetID

Table 20: mentions table

process_list

It contains information on the processes that are running.

Column Type Null Default Description

ID int(11) NO

name varchar(128) NO process name

process_id bigint(32) NO
id of the process within the

server

last_exec datetime NO last execution of the process

status tinyint(1) NO 0
process status (active,
disactive)

lastID int(11) NO

Last id of the table ax_twitter

used (used only by scripts of

charts)

Table 21: process_list table

tweet_retrieve

Table used to keep track of tweets to recover and to avoid requiring the ones that were not

recovered after 3 attempts.

Part 2 - Twitter Vigilance Design

97

Column Type Null Default Description

twitterId varchar(32) NO ID of the tweet

first_attempt tinyint(2) YES 0 outcome of the first attempt

(1 not found, 2 recovered)

second_attempt tinyint(2) YES 0 outcome of the second

attempt (1 not found, 2

recovered)

third_attempt tinyint(2) YES 0 outcome of the third attempt

(1 not found, 2 recovered)

Table 22: tweet_retrieve table

users

The table "users" is used to manage users and to get a "role" to users. Associable roles are 3:

Administrator, User, Viewer. Viewer can display only what the Users or the Administrator

decides to share with him.

Column Type Null Default Description

ID mediumint(9) NO user identification

username varchar(60) YES NULL Specifies the user name

password varchar(60) YES NULL

Specifies the password

encrypted with the MD5

algorithm

ruolo
enum('amministratore',
'utente', 'viewer')

NO

Indicates the role of the

user (User, Administrator,

Viewer)

Table 23: users table

variable

In table "variable" are stored values of the variables used by the process of crawling.

Column Type Null Default Description

cicle_time varchar(128) NO
Waiting time between two

cycles

log_time longtext NO

How long to keep log files in

memory (daily, weekly,

monthly, always)

maxtweet_number
Maximum number of tweets

per request to Twitter

Table 24: variable table

Part 2 - Twitter Vigilance Design

98

3.1.4 Crawler

The Crawler process is an independent thread that has an internal methods to construct the

request and forward it to Twitter. As shown by the diagram in Figure 35 Crawler process

functions are essentially 3:

 Taking charge of the first Search with deadline expired

 Formulation of the request to Twitter

 Posting new messages in the database

Can be instantiated a number of processes equal to the number of Twitter accounts

required: account number is given by the Tweets peak is expected to reach.

Class Diagram

The class is called TwitterThread and derives from the PHP class Thread. The class

TwitterThread has a dependency on the DB class that provides methods to connect to the

database using the PDO class provided by PHP.

The TwitterThread class exposes the methods for extracting the hashtag, and the mention of

the links from the messages and to differentiate from retweet and tweet. The input method

of the thread is run(): inside there is the main loop that remains active until is detected the

closing command of the thread (in this case is the presence of a file named "stop.txt"). The

method responsible for making the request to Twitter and to extract information from the

message to enter them in the database is getTweets(account, text_search, id_req, lang). The

parameters accepted by the function are the Twitter account to be used, the search text, the

id of the research and the language to to search.

Part 2 - Twitter Vigilance Design

99

+stop()

+hasToStop()

#stop

PHP:Thread

+__construct()

+run()

+getTweets()

+getvars()

+replace4byte()

+correct_encoding()

+findHashTags()

+findMentions()

#conf

#maxround

#refreshTime

#logger

#errorLog

#limitLog

#stat

#response

#badstat

#request

#mutex

TwitterCrawler

-__construct()

-Connect()

+CloseConnection()

+getInstance()

-Init()

+bind()

+bindMore()

+query()

+lastInsertId()

+column()

+row()

+single()

+ExceptionLog()

-pdo

-sQuery

-settings

-bConnected

-log

-parameters

#instance

DB

Figure 34: Class Diagram for Crawler process

State Diagram

Crawler processes are independent processes that are running in the background looking for

a search that have the execution deadline expired and the status set to "waiting" in the table

ax_request_twitter. As soon as a process it finds one, it blocks the table by placing a lock so

that other processes can not write to and read from the table until the state of Search has

been changed to "processing": this means that no other process can take in charge the same

search. After this phase, the lock is removed from the table.

The next step of the process is to make the request to Twitter and send it by using the

Search API "https://api.twitter.com/1.1/search/tweets.json". Each request can produce a

maximum of 100 results, the process must include in database only those "new" and save

the number in the table ax_request_twitter in the line corresponding to the search running:

this time is not entered the lock because the search not can be handled by any other process

until it changes its state.

On completion it changes the search status in "completed" and the Crawler process begins

again its execution cycle.

Part 2 - Twitter Vigilance Design

100

Loading configuration parameters

[start]

Looking for first Search with expired deadlineLock the Search table

Taking charge of the Search

Unlock the tableResearch on Twitter via APIs

Writing the results

to the database

[stop]

Monitoring remaining requests

[Requests>0] [Requests=0]

Figure 35: State diagram for TwitterCrawler

3.1.5 Scheduler

The Scheduler is the process that takes care of starting the Crawler processes and living a

priority to the Searches. The process is an independent thread that is always running and

accesses the table "ax_request_twitter" in the database to read the state of Searches and

changing priorities and deadlines based on the number of "new" tweets in the database in

the last two executions of Search.

Class Diagram

The process scheduler is a thread independent. The class is called TwitterScheduler and

derives from the PHP class Thread. The class TwitterScheduler has a dependency on the DB

class that provides methods to connect to the database using the PDO class provided by

PHP.

The method "run" is the entry point of the thread and is responsible for the

activation/deactivation of Crawler processes and containing the cycle that remains active

until is detected the command of "stop" and the thread is finished. Inside the loop are called

the two main methods of the class: minQuery () and updateStatus ().

Function minQuery() is responsible for creating a minimal set of searches among active ones

to reduce the number of requests to Twitter. The criterion of reduction is based on the

interpretation of the operators used: the results of some search may be included in those of

other more "generic" search:

1. all searches composed of a single word (hashtag, mention, free text and sender) are

inserted directly into the subset without additional filtering

Part 2 - Twitter Vigilance Design

101

2. the multiple-word searches are sorted according to the criterion for which, if they

contain a keyword of a search already present in the subset are discarded

By following these rules is possible to reduce the set of searches of 10%: even if it is not a

particularly significant reduction but reduces the number of requests and allows other

applications to have more margin for execution with respect to the limit imposed by Twitter.

Function updateStatus() is responsible for updating the priorities and deadlines associated

with each Search.

+__construct()

+getvars()

+updateStatus()

+minQuery()

-startCrawler()

-stopCrawler()

-hasToStop()

+run()

#conf

#maxround

#refreshTime

#logger

#errorLog

#limitLog

#response

#sql_details

#request

#Threads

#mutex

TwitterScheduler

+stop()

+hasToStop()

#stop

PHP:Thread

-__construct()

-Connect()

+CloseConnection()

+getInstance()

-Init()

+bind()

+bindMore()

+query()

+lastInsertId()

+column()

+row()

+single()

+ExceptionLog()

-pdo

-sQuery

-settings

-bConnected

-log

-parameters

#instance

DB

Figure 36: Class diagram for TwitterScheduler

State Diagram

In Figure 37 is shown the state diagram of the Scheduler process that lists all the actions that

the process needs to complete every execution cycle. As can be seen from the diagram the

first operation which is conducted by the process when is started, is initiating the Crawler

processes: the number of processes to be activated is specified in a configuration file.

Once have started the Crawler processes, system enters in the main loop: initially takes

place the reduction of the set of active searches. This operation is performed at every cycle

because the set of active searches can change over time for both the addition of new search

either for the deactivation / activation of the existing search.

Part 2 - Twitter Vigilance Design

102

The major action by the Scheduler is updating the priorities and deadlines of execution of

the searches. The deadline shall be updated in relation to the priorities calculated based on

the average of the results of the last two runs of the search: the results of the search are the

number of "new" messages in the database. At each cycle are updated only the priorities

and deadlines of the searches whose status is set to "completed": after upgrading, the status

of the search is brought to "waiting" and may be taken over by a Crawler process when the

deadline expires.

Calculating the weights average

Turns on N Crawler Reduction to a minimal set of Search

[start]

Update deadline

[for each Search]

Update ranking

[for each Search]

[for each Search]

[stop]

stop all running crawlers

Figure 37: State diagram for TwitterScheduler

State Diagram for ranking update

In Figure 38 is shown the statechart for updating of the priorities and deadlines of the

searches. The update is carried out for all searches that are set to "completed". As previously

mentioned these depend on the average of the results of the last two executions of the

search. From this average depends updating policy of priorities that have values between 5

and -160:

 if media=100 and is the first run of the Scheduler then the priority is set to 0;

 if media<=20 there are 2 cases:

o if the priority is equal to 5 is left unchanged

o if the priority is different from 5 is increased by 1

 if 20<media<=35 there are 2 cases:

o if the priority > = 0, this is set to 0

o if the priority <0, this is increased by 1

 if 35<media<=60 the priority is left unchanged;

 if 60<media<=75 there are 2 cases:

o if the priority is different from -159 is decreased by 1

o if the priority is equal to -159 is left unchanged

Part 2 - Twitter Vigilance Design

103

 if media>75 there are 3 cases:

o if the priority is greater than -4, this is set to -4

o if the priority is between -4 and -159:

 if media=100 and rank*2>=-159 the priority is set to twice the current

 otherwise the priority is decreased by 1

o if the priority is equal to -159, this is left unchanged

After updating the priority, the execution deadline must be updated on the basis of the new

priority:

1. corresponds to 16 minutes of waiting which is the reset time of the limit of searches

of Twitter

2. values greater than 1 double the waiting time

3. 0 corresponds to 8 minutes

4. negative values reduce the waiting time according to the following condition 8 / (| k

| +1) where k is the ranking in absolute value

So according to this algorithm, the waiting time before the expiration of the new deadline

varies between a maximum of 256 minutes (just over 4 hours) to a minimum of 3 seconds. In

this way the system is able to adapt to variations in the frequency of the messages being

able to follow either slow that explosive events. Moreover for slow events is able to reduce

the number of requests in a consistent way.

Part 2 - Twitter Vigilance Design

104

rank=rank+1

rank=0

rank=rank

[media < 20]

[20 < media <= 35]

[35 < media <= 60 &&

 last_result!=100]

rank=rank-1

[60 < media <= 75 &&

 last_result!=100]

rank=-4

[media > 75 ||

 last_result==100]

[if media = 0 and

 rank=100]

[for each Search

with status=completed]

[rank != 5]

[rank == 5]

[rank < 0]

[rank >= 0]

[rank == -159]

[rank != -159] [rank > -4]

[rank <= -4 &&

 rank != -159]

[rank == -159]

rank=rank*2

[media==100 &&

 rank*2>-159]

Figure 38: State diagram for ranking update (rank is the priority associated with Search, media is the average of the
results of the last 2 execution of Search)

3.1.6 Other Scripts

PHP script to update the tweet in the database

The process for updating the data of the tweet is responsible to retrieve the updated

information about the messages in the database by making new requests to Twitter on the

basis of the ID of the tweet. The API used is:

https://api.twitter.com/1.1/statuses/lookup.json. At this API can be passed up to 100 IDs of

tweets a time. The update is done mainly to update the number of retweets and favorites.

The process must use an account for the Twitter API recovering from the table

"account_twitter" of the DB from the available (status "available"). The only action of writing

that is done in the "ax_twitter" Database is the UPDATE of tweets for which Twitter has

provided an answer. The process writes in the "processlist" table its status: at the start of

process is written the start date and time and the status is changed to "running"; at the end

of the process, the status is updated in "idle". The process is scheduled once a day.

Part 2 - Twitter Vigilance Design

105

PHP script for calculating the number of tweets\retweets per day per channel\search

This script takes care of calculating statistics on the number of tweets and retweets per

channel \ search divided by day: this data is stored in MySQL database tables

(chart_twitter_retweet, chart_twitter_retweet_canali, chart_twitter and

chart_twitter_canali). This serves to make the display of graphics faster. The process writes

in the "processlist" table its status: at the start of process is written the start date and time

and the status is changed to "running"; at the end of the process, the status is updated in

"idle". The process is scheduled once a day.

PHP script for calculating Crawling statistics

This script takes care of calculating statistics for the phase of Crawling: in particular is

calculated the percentage of coverage of father tweets of retweets in the DB and the

number of saturations of search requests. For statistics on the father tweets is scanned the

database to identify the original tweet of retweets that are not present in database. To find

the number of saturations are analyzed log files of the process of crawling. Saturation is

identified when a request to Twitter provides 100 new posts to be included in the database.

The process writes in the "processlist" table its status: at the start of process is written the

start date and time and the status is changed to "running"; at the end of the process, the

status is updated in "idle". The process is scheduled once a day.

PHP script for the recovery of missing father tweets

This script takes care of the request to Twitter the missing fathers tweet: these are the

original tweet of the retweets. To identify tweets to require first are retrieved original

tweets of the retweets in the database and then checks whether these tweets are present or

not in the database. The missing tweets are requested to Twitter: the request is made by

using the ID of the tweet. The API used is: https://api.twitter.com/1.1/statuses/lookup.json.

At this API can be passed up to 100 IDs of tweets a time. The process writes in the

"processlist" table its status: at the start of process is written the start date and time and the

status is changed to "running"; at the end of the process, the status is updated in "idle". The

process is scheduled once a day.

3.2 Dashboard

3.2.1 Requirements

1. The system must have a table for each channel in which are inserted active users on

that channel.

2. The system should allow the user to enter the research to be carried out through a

form.

Part 2 - Twitter Vigilance Design

106

3. The system should display only the channels associated with the user.

4. The form for entering the search must contain:

a. a field for entering the search text (hashtags, keywords or persons)

b. a field for entering the search language

5. Searches can be used for one or more channels.

6. User can create a channel and associate the existing research to that channel. If the

search does not exist the user must enter a new search.

7. Searches should be presented in tabular form with the following fields:

a. ID

b. Status

c. Text

d. Language

8. The name of the channel must not be an empty string or to have the same name

already associated with the user channels.

9. The system must include a form for inserting data for Twitter access. This form must

contain:

a. a field for entering dell'OAuth Access Token

b. a field for entering the Secret Access Token

c. a field for the insertion of the Consumer Key

d. a field for entering the Consumer Key Secret

10. The system should display statistics on retrieved messages through graphics.

11. The system should create two levels of statistics: statistics for administration and

statistics for user.

User Requirements

1. User should only see the channels that are associated with its ID.

2. User must be able to enter new channels.

3. User must be able to edit and delete their own channel.

4. User must be able to enter new Searches.

5. User should not be able to edit or delete searches.

6. User can assign to channel any search already entered into the system by other

users.

7. User must display only messages relating to the Searches associated with its

channels.

8. User must see only charts on its channels.

9. The system shall allow the user to display the trend in terms of number of tweets of

all the channels associated with the user in a specified time interval [time window

displayed is selectable on the graph]

10. The system must report the user in tabular form all the channels he owns and the

searches that compose them.

Part 2 - Twitter Vigilance Design

107

11. For each channel, the system should allow the user to view a page that:

a. presents in tabular form a summary of the Twitter users that appear in

highlighting the research activities within the selected channel.

b. presents the trend in terms of number of tweets of the selected channel in a

specified time interval [time window displayed is selectable on the graph]

c. must provide for a system to highlight some events that took place in the

Timeline to make visible the correlation with the number of tweets collected.

d. must allow the user to display the trend in terms of number of tweets of all

the searches associated with the channel in a specified time interval [time

window displayed is selectable on the graph]

Administrator requirements

1. The administrator will have to see all the channels included in the system.

2. The administrator must be able to enter new channels.

3. The administrator must be able to modify and delete any channel.

4. The administrator must be able to enter new Search.

5. The administrator must view the list of all the Searches entered into the system.

6. The administrator must be able to edit or delete searches.

7. The administrator can assign to any channel research already in the system.

8. The administrator can view the graphs for all channels.

9. The system must make it possible to select to display the trend of all Channels in

terms of number of tweets present in the system in an interval of time [the time

interval displayed on the graph is selectable]

10. The system must represent the number of tweets collected over the entire time

period for channel via histogram. For each channel of the histogram through a

transaction drilldown you can access a sub-histogram that presents the number of

tweets for every Search in Channel.

11. The system shall provide in tabular form a summary of the Twitter users that appear

in the Search highlighting their activities within the channels.

3.2.2 Frontend Architecture

The front end is designed to be used either by the User that the Administrator: to

accomplish that are designed two different architectures for the two types of users.

Moreover has been included a display of some parts of the system also to unauthenticated

users, which is simply a derivation of the display designed for authenticated users. As for the

user side, the front end must allow to manage the channels associated to the User and see

some statistics about the messages downloaded primarily in graphical form. As for the part

of Administrator, the frontend must allow the management and viewing statistics for all

channels and all searches included in the system, checking the status of background

Part 2 - Twitter Vigilance Design

108

processes and viewing statistics on background processes (in particularly for the process that

queries on Twitter).

User Frontend

When you enter the front end by unauthenticated or authenticated user the first page that

appears is the page "Channel Statistics": This page shows the list of "public" channels both in

the form of a graph and in table form (Figure 40). In the column Detail there are two

buttons: the first on the left makes access to the detail page of the selected channel, the

second is disabled and in the future will show the NLP analysis of tweet of the channel.

Channel Statistics

Channel Statistics

Search Statistics

Retweet Statistics

Twitter User Statistics

Search parameters

Statistics on single

Channel

Retweet Statistics on

single Channel

Details of the number

of users grouped by

search

Userlist per search

Twitter User Profile

Data analysis

Figure 39: Structure of User Frontend

Part 2 - Twitter Vigilance Design

109

Figure 40: Channel statistics page

The graph shown in Figure 40 shows the number of tweets per day for each channel

associated with the user. For displaying this graph was prepared the table

"chart_twitter_canali" in the database in which are stored the necessary data by a separate

process which will be described later. This table has updated at regular intervals by adding

only the values for the downloaded messages since the last update.

Part 2 - Twitter Vigilance Design

110

Figure 41: Statistics on single Channel page

Details page of the channel, Figure 41, shows two graphs: the top one shows the number of

tweets per day for each search associated with the channel, the second shows the number

of tweets and retweets per day for the entire channel.

For the display of this graph was prepared the table "chart_twitter" in which are stored the

necessary data by a separate process which will be described later. This table has updated at

regular intervals by adding only the values for the downloaded messages since the last

update.

Search Statistics

On this page (Figure 42) you can see a histogram that shows the total number of messages

for each channel.

Part 2 - Twitter Vigilance Design

111

Figure 42: Search statistics page

To display this graph has used table "chart_twitter_canali" performing a sum of the values

for each channel. Clicking on a bin it is possible display another histogram that shows the

total values of the messages of the individual searches that are part of channel, as shown in

Figure 43.

Part 2 - Twitter Vigilance Design

112

Figure 43: Search statistics page: single channel details

To display this graph has used table "chart_twitter" performing a sum of the values for each

Search.

Twitter User Statistics

In this page (Figure 44) there are a histogram and a table representing the same data, ie the

total number of distinct users for each channel.

Part 2 - Twitter Vigilance Design

113

Figure 44: Twitter Users statistics

To display this graph and the table is used the table "chart_user_canali" that stores the total

number of distinct users who have written at least one message that is part of channel.

Clicking on the button in the Details column of the table leads to the detail page of the

channel, Figure 45, where there are two graphs and a table: The table represents the

number of messages related to individual searches for that channel, the histogram shows

the top 10 users with the greatest number of posts on the channel and the pie chart shows

the distribution of users in individual research belonging to the channel.

Part 2 - Twitter Vigilance Design

114

Figure 45: Details of the number of users grouped by search

For displaying histogram of users is used the table "chart_twitter_user_details_canali" that

stores the authors of at least one message belonging to the channel and the number of

posts.

To display the pie chart is used table "chart_user" that stores the total number of distinct

users for each search.

Selecting the bin of a user it's possible to access the profile of the user (Figure 47).

Clicking on the button in the Details column of the table leads to the detail page of the

Search, Figure 46, where is displayed a table: the table represents the list of users who have

written at least one message among those recovered from the Search and the number of

posts written by each user.

Part 2 - Twitter Vigilance Design

115

Figure 46: Details of user grouped by Search

Clicking on Profile button it's possible to access the profile of the user (Figure 47).

Figure 47: User profile

Page represented in Figure 47 diplays the association of a twitter user with the number of

tweets collected for each individual search. For each search outlines the channels to which it

is associated.

Part 2 - Twitter Vigilance Design

116

To view this page is used the table "chart_user_details" in which users are stored authors

divided by research and the number of posts.

Retweets

This page displays a bar chart that shows the number of tweets and retweets for each

channel. To show this chart are used tables chart_twitter_canali and

chart_twitter_retweet_canali.

Figure 48: Retweet statistics page

Clicking on a single bar is shown the details of the research associated with the selected

channel. To view the graph are used tables chart_twitter and chart_twitter_retweet.

Part 2 - Twitter Vigilance Design

117

Figure 49: Retweet statistics for single Channel page

Administrator Frontend

Respect to the User part, some parts remain unchanged while there are others for the

management of the backend of the platform. The pages that are part of the Data Analysis

section are identical to those of the User but instead of representing only channels

associated to the user, in the case of Administrator are present all channels inserted in the

platform.

Even the page "Search parameters" has the same features. As seen in Figure 51 there are

two tables: the first shows the channel list, the second the list of searches. In the case of the

channel table, the user will only display his channels while the Administrator all those

present in the platform. The Search table can be viewed by the Administrator with the ability

to edit and delete. The channel table contains buttons to edit, delete and put in standby

channels.

Part 2 - Twitter Vigilance Design

118

Search Parameters

Channel Statistics

Search Statistics

Retweet Statistics

Crawler Statistics

Search parameters

Statistics on single

Channel

Retweet Statistics on

single Channel

Config Twitter API

Processes Status

Data analysis

LOGS Log Account Limit

Log Update

Messages

Log Crawling Stat

Log Charts

Log User Charts

Log Crawling

Figure 50: Structure of Administrator Frontend

Part 2 - Twitter Vigilance Design

119

Figure 51: Search parameters page

Via the link "Add Channel" opens a section that allows you to enter a new channel (Figure

52): required fields are the name of the channel and the list of the searches to associate

with. There is the possibility to publish the channel sharing it with the "guest" user. Also via

the link "Add Search" leads to a form for entering a new search that is automatically

assigned to the new channel. The input section of a new channel has the same

characteristics as that for editing of the channel.

Part 2 - Twitter Vigilance Design

120

Figure 52: Search parameters page -> add new channel

Figure 53: Add new Search form

In Figure 54 is shown the page with the statistics of crawling: there are two tables, one for

the total summary of the statistics and the daily details. The statistics shown are divided per

channel and include:

 Number of Tweets

 Number of fathers Tweets

 Number of missing fathers Tweets

 Coverage of fathers Tweet

 Number of Retweets

 Number of Retweets declared by Twitter

 Coverage of Retweets

 Number of searches for that channel

Part 2 - Twitter Vigilance Design

121

 Number of searches performed

 Number of requests made to Twitter

 Number of saturations

 Percentage of Saturations

Figure 54: Crawler statistics page

In the page shown in Figure 55 is displayed all active processes on the backend and their

status: in particular displays the job status (Running, Idle), the process ID and the date and

time of the last execution of the process.

Part 2 - Twitter Vigilance Design

122

Figure 55: Processes status page

123

4 Testing and Validation

The main issues that were addressed in this project have already been highlighted in section

2.3. The validation will be performed only on the process of crawling which is the basis of the

entire system because the display part is used merely to provide evidence of the results

obtained. For this type of system validation occurs through the analysis of the execution of

the system. In particular it was analyzed the functioning of the whole platform over the past

6 months. In this time period were collected more than 38 million messages (18 million

retweets and 20 million tweets).

The system architecture that is running provides 5 Crawler processes each associated with a

Twitter account. Each of these processes is monitored taking a log of the number of requests

consumed / remaining.

The system includes 52 channels of which 47 are active and 517 searches of which 451

active. Searches that are not active are due to the fact that they are not associated with any

channel or only to disabled channels. In fact, only the research that belong to at least one

active channel are considered active.

In Table 25 are shown some values summarizing system performances. As you can see the

main parameters are the percentage of coverage of the fathers tweets and the percentage

of saturation. The fathers tweets are the original tweets associated with retweets stored in

the database. Saturations occur when the system is unable to accommodate the growth in

the number of messages that are available to a given search: in fact occur when a request

produces 100 new posts of 100 returned.

The coverage of the fathers tweets provides a qualitative parameter on the system's ability

to recover all the tweets, while the number of saturations indicates whether the system is

able to adapt to changes in the amount of recoverable tweet.

Original

Tweets

in DB

Father

Tweets

Missing

Fathers

Fathers

Coverage (%)

Active

Search

Search

Executed

Search

launched
Saturations

Saturations

(%)

19913684 3800595 53250 98,60 517 433 1580452 41075 2,60
Table 25: Crawling statistics

As shown in Table 25, the coverage ratio of the fathers tweets is excellent and fully respects

what is specified in the requirements. In fact is recovered 99% of the fathers tweets: those

Part 2 - Testing and Validation

124

missing can be counted against the limits of the index of messages provided by Twitter. It

will never be possible to retrieve all messages that are part of Twitter because only a portion

is made available through the API.

The performance in last 6 months are summarized by the number of Tweets downloaded

per day: as shown in Figure 56 there was a peak of more than 830,000 tweets per day and an

average of 300,000 tweets per day in the last 3 months.

Figure 56: Number of Tweets downloaded per day

This threshold can be widely exceeded for the simple reason that the request limit has never

been reached for any of the Crawler processes. As shown in Figure 57, each account has the

same performance of the other and the trend of the account shown in Figure 58 exemplifies

the trend of the other accounts: each Crawler process consumes at most 100 out of 180

requests every 15 minutes.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

27/05/2015 27/06/2015 27/07/2015 27/08/2015 27/09/2015 27/10/2015

Part 2 - Testing and Validation

125

Figure 57: Number of remaining request for each account in a day

Figure 58: Number of remaining request for an account in a day

Analyzing the percentage of saturation, it can be noted that it is very low, about 3% of the

total number of requests made to Twitter. The explanation for this can be given by the delay

of adapting to the variation of speed of the search that even if short but affects on this data.

In fact, for very fast variations of number of recoverable tweet, for example to the

occurrence of a sever weather event, the system reacts already at the first saturation but

may be that before achieving stability may occur some saturations.

0

100

200

300

400

500

600

700

800

900

1000

0

20

40

60

80

100

120

140

160

180

200

Part 2 - Testing and Validation

126

These results can be summarized by saying that the recovery efficiency of the messages is

about 97% and that the recovery efficiency of the tweet fathers is about 99%. Both

measures show good results that we have achieved thanks to the designed architecture and

to the process recovering fathers tweets. Before the design of this architecture, the platform

was based on a process that provided for a single cycle of retrieving of messages: in practice

were not made distinctions between searches but were carried out all in a cycle that was

repeated after a predetermined time. The efficiency of this process was approximately 85%,

with the most active channels that were around 50%. Now the efficiency values of the most

active channel are in the order of 95%, while for the other channels never go below 97%.

127

Conclusions

In this thesis we have been addressed two topics of research that I carried out in the 3-year

of PhD.

The first have concerned the study, modelling and validation of an automatic drive system

for train in metro rail, the second covered the so-called Social Network Monitoring to use

the information flows of Twitter as a way to quantify and model the public attention on

certain topics, mainly weather events.

The first research project has dealed with the study, design, development and testing of a

system of protection of the train running (Automatic Train Protection, or ATC Automatic

Train Control, ATC) of railway vehicles applicable both in the context of interoperable

European rail system that in applications of light rail and metro. In particular, the research

has focused on protection systems and automatic drive of train in the field of light rail and

subway called CBTC (Communication Based Train Control). Starting from the study of

standards and products already on the market was decided to model and implement an ATO

(Automatic Train Operation) able to be at the forefront over existing systems. To achieve this

it was decided to create a system compatible with an ATC system compliant to ERTMS / ETCS

standard. In particular, the ATO system has been designed to interface with the ERTMS /

ETCS Level 2: to meet this requirement, the system has been implemented to include both

the behaviour of the driver interacting with the DMI (Driver Machine Interface) either the

behaviour of the DMI. In addition to these requirements the implemented system comply

with other specifications such as the initialization of the entire system on board the train,

the automatic adjustment of the running of the train, the opening and closing of the doors,

etc. In this thesis was presented the process that led to the realization of the Initialization

Manager of the train onboard systems: this has been made compatible with ETCS level 2

which deals with the protection of the train running. After the modelling phase, has been

exploited the capabilities of IBM Rational Rhapsody tool of automatic code generation to

create the source code of the system deriving directly from the model. The behaviour of the

model was initially tested through simulation by creating traces of evidence which should

simulate messages coming from the ATS and ATC. With these simulations it was possible to

verify compliance with the time constraints imposed by the communication protocol DMI-

CPU32. After completing the simulation tests, to test the actual operation of the system,

various tests were done by integrating the ATO system with the other systems (ATC, ATS, the

train interface, etc.).

In the second part has been designed and built a platform for scanning Social Network: for

the purpose were used the Twitter API to create a database of messages. This project is a

collaboration between UNIFI DISIT laboratory, CNR and LAMMA IBINET to investigate and

Conclusions

128

build specific metrics and a dashboard reliable to monitor the tweets that refer to the

weather. The solution implemented can be used to monitor city services, events and critical

circumstances, user behaviour, the city's response to events, etc. Information flows of

Twitter have been used as a way to quantify and model the public attention on certain

topics. After an initial study of the solutions present on the market, it has been designed an

multiprocess system architecture. The main components of this architecture are the

Scheduler and the Crawler. The Scheduler is the basic process of the whole system and is a

single process that is responsible for starting of Crawler, to update the weights associated to

the searches based on the number of new tweets inserted in the database in the last two

executions of the research and to update the execution deadline of searches based on the

weight assigned previously. The Crawler is responsible for the process to take charge of the

search, to forward the requests to Twitter with the selected search parameters and to store

the downloaded messages in the database. Can be instantiated multiple Crawler processes

and each must be associated with a Twitter account. In addition to the main process for the

recovery of the messages have been realized a number of secondary processes useful to the

realization of a dashboard for displaying the results of the scan and for the analysis of the

messages retrieved. The process for updating the data of the tweet is responsible to recover

from Twitter the latest information about messages present in the database. The process for

calculating the number of tweets\retweets per day per channel\search takes care of

calculating statistics on the number of tweets and retweets divided by channel\search and

day. The process for calculating statistics of crawling takes care of calculating the statistics

for the Crawling phase: in particular, is calculated the percentage of coverage of father

tweets of retweet present in DB and the number of saturations of search. The process for

the recovery of missing fathers tweet is responsible for request to Twitter missing messages.

To verify the performance of the process of crawling were monitored some values that can

reveal the efficiency of the system. The peak of the messages retrieved was 830000 with 5

processes Crawling active. By analyzing the number of requests made by each process can

be seen as it has ever been reached the maximum number. These values give reason to

believe that the maximum limit in the current configuration of the system is much higher

than the limit currently reached. Another parameter that has been analyzed is the number

of saturations of the searches. From what was found from the analysis is possible to say that

only in the presence of particular events, as an emergency weather, you have some

saturations while in most cases saturations not exceed 1% of the total number of requests.

129

Bibliography

[1] M. Palumbo, «Railway Signalling since the birth to ERTMS,» 2013.

[2] «Railway signalling,» [Online]. Available:

http://en.wikipedia.org/wiki/RAilway_signaling.

[3] «RusRail,» [Online]. Available: http://rusrail.net/signaling/stage/.

[4] A. Ferrari, «TECHNICAL REPORT CBTC Preliminary Report,» 2011.

[5] «Railway Technical Web Pages,» [Online]. Available: http://www.railway-

technical.com/atpsurvey.shtml.

[6] M. Palumbo, «The ERTMS/ETCS signalling system An overview on the Standard

European Interoperable signalling and train control system,» 2014.

[7] «ERTMS,» [Online]. Available: http://www.ertms.net/.

[8] European Railway Agency, UNISIG SUBSET-026, ERTMS/ETCS System Requirements

Specification, Issue 3.3.0, 2012.

[9] R. D. Pascoe e T. N. Eichorn, «What is Communication-Based Train Control?,» IEEE

Veicular Technology Magazine, 2009.

[10] Siemens AG, Trainguard MT The scalable automatic train control system for maximum

flexibility in modern mass transit, 2010.

[11] J. Garcìa, Sistemas CBTC y automaticos de ansaldo sts, 2009.

[12] Institute of Electrical And Electronics Engineers, IEEE Std 1474.1-2004, IEEE Standard for

Communications Based Train Control (CBTC) Performance and Funcotional

Requirements, 2004.

[13] International Electrotechnical Commission, IEC 62290-1: Railway applications: Urban

guided transport management and command/control systems. Part1: System principles

and fundamental concepts, 2007.

[14] European Committee for Electrotechnical Standardization, CENELEC EN 50126, Railway

130

applications - The Specification and Demonstration of Reliability, Availability,

Maintainability and Safety (RAMS), 2012.

[15] European Committee for Electrotechnical Standardization, CENELEC EN 50128, Raylway

applications - Communications, signalling and processing systems - Software for railway

control and protection systems, 2011.

[16] European Committe for Electronichal Standardization, CENELEC EN 50129,

Communication, signalling and processing systems - Safety related electronic systems for

signalling, 2003.

[17] A. Ferrari, G. O. Spagnolo, G. Martelli e S. Menabeni, «From Commercial Documents to

System Requirements: an Approach for the Engineering of Novel CBTC Solutions,»

International Journal on Software Tools for Technology Transfer (STTT), 2013.

[18] S. Menabeni, G. Martelli, G. Vettori, M. Ignesti e S. Papini, Applicazione Generica ATO

Specifica Preliminare di Sistema, 2013.

[19] S. Menabeni, G. Martelli, G. Vettori, M. Ignesti e S. Papini, CBTC Sistema ATO Specifica

dei Requisiti di Sistema, 2013.

[20] S. Menabeni e G. Martelli, Applicazione Generica CBTC Protocollo ATS-ATO, 2013.

[21] L. Bellini, «Protocollo di comunicazione DMI ETCS-CPU32,» ECM spa, 2013 [private

communication].

[22] E. Kindler, Model-based software engineering: the challenges of modelling behavior,

New York, 2010.

[23] IBM, IBM Rational Rhapsody - Automatic Test Generation Add On User Guide.

[24] M. Faheem e P. Senellart, «Intelligent and Adaptive Crawling of Web Applications for

Web Archiving,» in 13th International Conference, ICWE Proceedings, Aalborg, Denmark,

2013.

[25] C.-I. Wong, K.-Y. Wong, K.-W. NG, W. Fan e K.-H. Yeung, «Design of a Crawler for Online

Social Networks Analysis,» WSEAS Transactions on Communications, vol. 13, p. 263,

2014.

[26] House of Kaizen, «SOCIAL MEDIA MONITORING TOOL BUYER’S GUIDE».

[27] B. Batrinca e P. C. Treleaven, «Social media analytics: a survey of techniques, tools and

platforms,» AI & SOCIETY, vol. 30, pp. 89-116, 2015.

131

[28] «80legs,» [Online]. Available: http://80legs.com/.

[29] Sequentum, «http://www.visualwebripper.com/Default.aspx,» [Online].

[30] «Helium Scraper,» [Online]. Available:

http://www.heliumscraper.com/en/index.php?p=home.

[31] «Prompt Cloud,» [Online]. Available: http://www.promptcloud.com/.

[32] M. Castellanos, M. Hsu, U. Dayal, R. Ghosh, M. Dekhil, C. Ceja, M. Puchi e P. Ruiz,

«Intention insider: discovering people's intentions in the social channel,» in Proceedings

of the 15th International Conference on Extending Database Technology, Berlin,

Germany, 2012.

[33] «Open Amplify,» [Online]. Available: http://www.openamplify.com/.

[34] «Clarabridge,» [Online]. Available: http://clarabridge.com/.

[35] «BrandWatch,» [Online]. Available: http://www.brandwatch.com/.

[36] «Opinion Crawl,» [Online]. Available: http://www.opinioncrawl.com/.

[37] «Social Report,» [Online]. Available: http://www.socialreport.com/.

[38] «Mozenda,» [Online]. Available: http://www.mozenda.com/.

[39] «beevolve,» [Online]. Available: http://www.beevolve.com/.

[40] «Meltwater,» [Online]. Available: http://www.meltwater.com/.

[41] «Viralheat,» [Online]. Available: https://www.viralheat.com/.

[42] «SAS Sentiment Analysis,» [Online]. Available:

http://www.sas.com/en_us/software/analytics/sentiment-analysis.html.

[43] «Dataminr,» [Online]. Available: https://www.dataminr.com/.

[44] «tracx,» [Online]. Available: http://www.tracx.com/.

[45] «Royalty,» [Online]. Available: http://www.roialty.com/.

[46] A. Talamo, Progettazione e sviluppo di un modulo per l'integrazione di Twitter nel CMS

Drupal e analisi descrittiva del flusso dei Tweets, Firenze, 2015.

[47] «Twopcharts, sito che fornisce statistiche ufficiali su twitter,» [Online]. Available:

132

http://twopcharts.com.

[48] «Supporto Twitter,» [Online]. Available: https://support.twitter.com/articles/119138-

types-of-tweets-and-where-they-appear.

[49] F. Flamini, «Sistemi di controllo per l'Alta Velocità ferroviaria,» Mondo Digitale, pp. 18-

24, 2010.

133

Table of Figures

Figure 1: Fixed-block signaling system ... 9

Figure 2: Safety distance between trains in fixed block and moving block signalling systems 10

Figure 3: European ATC/ATC systems before ERTMS/ETCS ... 12

Figure 4: Level 1 .. 13

Figure 5: Level 2 .. 14

Figure 6: Level 3 .. 15

Figure 7: Service Speed Profile and Signaling Speed Profile .. 16

Figure 8: GoA Levels ... 19

Figure 9: ATO Operating Context ... 24

Figure 10: ATO Generic Application Architecture .. 25

Figure 11: CBTC System Architecture ... 31

Figure 12: Components involved in Initialization ... 32

Figure 13: Preliminary operation of Initialization phase .. 33

Figure 14: Flowchart for Start of Mission Procedure ... 41

Figure 15: Init block definition diagram ... 46

Figure 16: Statechart of Initialization_Manager .. 47

Figure 17: Sub-states of Preliminary operations state ... 48

Figure 18: Sub-states of Preliminary_operations state .. 49

Figure 19: Sub-states of Management_DriverID state ... 49

Figure 20: Sub-states of Management_Level state .. 50

Figure 21: Sub-states of Management_RBCCont state .. 50

Figure 22: Sub-states of Waiting_EnterData state ... 51

Figure 23: Sub-states of Management_TrainData state .. 51

Figure 24: Sub-states of Management_TrainDataVal state ... 52

Figure 25: Sub-states of Management_TRNN state ... 52

Figure 26: Sub-states of Waiting_start_eneabled state ... 53

Figure 27: Sub-states of Ready state .. 53

Figure 28: Sub-states of Management_Idle state .. 54

Figure 29: Wait_for_Termination state .. 54

Figure 30: Testing Methodogy Workflow ... 56

Figure 31: JSON example .. 73

Figure 32: Crawling system architecture .. 86

Figure 33: Database architecture ... 87

Figure 34: Class Diagram for Crawler process .. 99

Figure 35: State diagram for TwitterCrawler.. 100

Figure 36: Class diagram for TwitterScheduler .. 101

Figure 37: State diagram for TwitterScheduler .. 102

Figure 38: State diagram for ranking update (rank is the priority associated with Search,

media is the average of the results of the last 2 execution of Search) 104

134

Figure 39: Structure of User Frontend ... 108

Figure 40: Channel statistics page .. 109

Figure 41: Statistics on single Channel page .. 110

Figure 42: Search statistics page .. 111

Figure 43: Search statistics page: single channel details .. 112

Figure 44: Twitter Users statistics .. 113

Figure 45: Details of the number of users grouped by search ... 114

Figure 46: Details of user grouped by Search ... 115

Figure 47: User profile .. 115

Figure 48: Retweet statistics page .. 116

Figure 49: Retweet statistics for single Channel page ... 117

Figure 50: Structure of Administrator Frontend .. 118

Figure 51: Search parameters page .. 119

Figure 52: Search parameters page -> add new channel ... 120

Figure 53: Add new Search form .. 120

Figure 54: Crawler statistics page ... 121

Figure 55: Processes status page .. 122

Figure 56: Number of Tweets downloaded per day ... 124

Figure 57: Number of remaining request for each account in a day 125

Figure 58: Number of remaining request for an account in a day ... 125

135

List of Tables

Table 1: Requirement Qualifiers ... 27

Table 2: Start of Mission procedure ... 40

Table 3: Operators for Twitter query ... 69

Table 4: JSON fields .. 81

Table 5: account_twitter table ... 88

Table 6: ax_request_twitter table .. 89

Table 7: ax_twitter page ... 90

Table 8: ax_twitter_geocode table... 90

Table 9: canale table ... 91

Table 10: chart_eventi_canali table ... 91

Table 11: chart_twitter table .. 92

Table 12: chart_twitter_canali table .. 92

Table 13: chart_twitter_retweet table ... 93

Table 14: chart_twitter_retweet_canali table ... 93

Table 15: chart_user table .. 93

Table 16: chart_user_canali table .. 94

Table 17: crawling_stat table ... 95

Table 18: crawling_stat_day table.. 95

Table 19: hashtags table ... 96

Table 20: mentions table .. 96

Table 21: process_list table .. 96

Table 22: tweet_retrieve table ... 97

Table 23: users table ... 97

Table 24: variable table .. 97

Table 25: Crawling statistics ... 123

