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Nonparametric Regression for Spherical Data
Marco Di MARZIO, Agnese PANZERA, and Charles C. TAYLOR

We develop nonparametric smoothing for regression when both the predictor and the response variables are defined on a sphere of whatever
dimension. A local polynomial fitting approach is pursued, which retains all the advantages in terms of rate optimality, interpretability, and
ease of implementation widely observed in the standard setting. Our estimates have a multi-output nature, meaning that each coordinate is
separately estimated, within a scheme of a regression with a linear response. The main properties include linearity and rotational equivariance.
This research has been motivated by the fact that very few models describe this kind of regression. Such current methods are surely not
widely employable since they have a parametric nature, and also require the same dimensionality for prediction and response spaces, along
with nonrandom design. Our approach does not suffer these limitations. Real-data case studies and simulation experiments are used to
illustrate the effectiveness of the method.

KEY WORDS: Confidence sets; Constrained least squares; Geomagnetic field; Local smoothing; Spherical kernels; Tangent normal
decomposition; Wind direction.

1. INTRODUCTION

Locations on the surface of a sphere constitute the classical
case for spherical data; they are ubiquitous in Earth and plan-
etary sciences. Consider the distribution of volcanoes on the
Earth surface, or cosmic microwave background and cosmic
ray data distributed on the celestial sphere. In general, the space
of all directions in Rd , d ≥ 2, can be identified with the unit
sphere Sd−1 := {x ∈ Rd : ||x|| = 1}. Previously studied direc-
tional data include directions of winds, marine currents, Earth’s
main magnetic field, and rocket nozzle internal combustion flow.
Genome sequence representations, text analysis and clustering,
morphometrics, and computer vision are fields of recent interest
for spherical data; see Hamsici and Martinez (2007).

Dependence when the variables have a spherical nature arises
in various fields. In geology, the dependence of one tectonic
plate relative to another was studied by Chang et al. (2000); in
crystallography, it is of interest to relate an axis of a crystal to an
axis of a standard coordinate system (Mackenzie 1957); and in
the orientation of a satellite, it is necessary to study dependence
between directions of stars and directions in a terrestrial co-
ordinate system (Wahba 1965). Many applications of machine
vision require the comparison of directions as detected by two
different sensors. An application of spherical regression in qual-
ity assurance was given by Chapman, Chen, and Kim (1995).
These authors aimed to statistically assess the spatial integrity of
geometric objects described through computer-aided design and
coordinate measuring machine data. Spherical regression was
used in calibration experiments for an electromagnetic motion-
tracking system, with the aim of tracking the orientation and
position of a sensor moving in three-dimensional space in which
the observed orientation is modeled as a rotationally perturbed
version of the true one; see Shin, Takahara, and Murdoch (2007).
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A unique family of models for pale spherical–spherical re-
gression is available; see Chang (1986). Here, two spherical
variates, both lying on Sd−1, are related by a rotation. The aim
is to estimate and test the unknown rotation matrix. The design
variates are fixed, and, to assure uniqueness and consistency of
the estimators, must include d mutually orthogonal design direc-
tions. Additionally, these models assume circular symmetry for
their conditional distributions. In particular, with the constraint
that these latter are von Mises–Fisher with constant concen-
tration, a maximum likelihood estimator of the rotation matrix
has been derived in a closed form. For the same model, Rivest
(1989) discussed asymptotic theory defined by divergence of
concentration of data for a fixed sample size. Given the vari-
ety of fields of applications, in various cases additional ad hoc
hypotheses have been formulated, specific to the scientific con-
text. For example, see the adaptation of the model studied by
Chang et al. (2000) for addressing the plate tectonic problem.
For the particular case of an ordinary sphere, Downs (2003)
implemented spherical parametric regression through link func-
tions based on Möbius transformations. All statistical results
and calculation have been formulated in the real domain by the
use of a stereographic projection.

In this article, we introduce local polynomial fitting of spher-
ical data. The proposed smoothing is multi-output fashioned in
the sense that each coordinate of the response variable—which
lies on a sphere—is separately treated. Therefore, up to an
asymptotically vanishing normalization task, we decompose the
main task into d distinct regression problems, where the predic-
tor lies on a sphere, and the response is linear. As a formal
justification for this strategy, we prove that the joint estimator,
which takes into account the correlation structure, has the same
asymptotic efficiency as the one using the separate approach
under reasonably mild hypotheses. An advantage of this multi-
output scheme is that the prediction and response domains do
not need to have the same dimensionality.

Because of its centrality in our case, a discussion of the lit-
erature on spherical–linear regression is needed. Many papers
study regression where a spherical variable predicts a linear
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one, the end very often being simple interpolation. Most of
them come from nonstatistical fields, and the emphasis lies in
the application.

A widely used technology is spherical harmonics (see, for
a statistical perspective, Abrial et al. 2008), which, how-
ever, do not allow reconstruction of efficiently high-resolution
signals due to their nonlocal features. On the other hand,
spherical splines are a nonparametric interpolation method
which initially required equispaced design. However, spheri-
cal Bernstein–Bézier splines, introduced by Alfed, Neamtu, and
Schumaker (1996), do not require equispacing. A major prob-
lem of these latter, however, is that they are not able to repro-
duce polynomials which have degree smaller or equal to the
degree of the space in which they are defined. Furthermore,
splines are typically difficult to generalize to higher dimension.
An alternate and interesting nonparametric method is regression
via needlets proposed by Monnier (2011). Here, the approach
has a clearly statistical nature. Unfortunately, strong limitations
are due to the assumptions requiring a uniform random design
and Gaussian noise. Cao et al. (2013) proposed a regularized
least-squares algorithm whose output is a finite sum of spheri-
cal harmonics. They do not say how to set the tuning parameter.

By comparison with the above methods, our sphere–linear
theory would appear competitive, both for providing a new
method which is undoubtedly simple and general and for featur-
ing a statistical approach as well. Simplicity comes from strong
intuitive content, ease of implementation, and explicit formu-
lations. Generality follows from not having serious restrictions
concerning: the function to be estimated, the nature of the noise,
and the type—random or fixed—of the design.

Finally, some work has been made for the case when a predic-
tor is defined on a Riemannian manifold and the response is lin-
ear. Specifically, Pelletier (2006) defined a Nadaraya–Watson-
like estimate for this setting in a fully theoretical fashion. Our
local constant fit cannot be regarded as a particular case of it
since the analysis is extrinsic in nature, for being carried out
on tangent spaces via exponential mapping. Also, the kernels,
whose argument is a generic distance, are not centered at the
observations.

Local polynomial fitting also exists for unknown manifold-
scalar regression (Bickel and Li 2007; Zhu et al. 2009; Cheng
and Wu 2014), and Euclidean-unknown manifold regression
(Aswani, Bickel, and Tomlin 2011). In principle, these ap-
proaches have the potential to be applied to our setup. Although
they might be disadvantaged, they are adaptive to the unknown
manifold, while the methods in this article are not. However,
major differences from our model are that: (a) their resulting
estimators have the common feature of not being constructed
directly on the manifold, but on tangent spaces, or on the (em-
bedding) Euclidean space; (b) a strong motivation for their use
is that the manifold should be much lower dimensional than
the embedding space; (c) such methods do not address the case
where both the predictor and the response are defined on a
manifold different from the Euclidean space; (d) the case of k
predictors lying on k distinct manifolds is not treated, whereas
the way in which our estimators generalize to this scenario is
discussed in Remark 3.1.

In Section 2, we state a series expansion for func-
tions defined on the sphere. In Section 3, we formulate

our estimators—including the local constant and local linear
fits—for a linear response, which are also used as an intermedi-
ate step for the spherical response case. Data-driven bandwidth
selection transfers from standard theory to our context with-
out big surprises, however some insights on cross-validation
selectors are briefly given in Section 4. Section 5, based on
the previous theory, formulates a result for the case when the
response lies on a sphere of whatever dimension. We define
both the above-mentioned separate and joint estimators, along
with their properties. In Section 6, we prove that our regres-
sion estimators satisfy the fundamental property of rotational
equivariance, which is a kind of robustness to the choice of the
coordinate system which implies that the operations of smooth-
ing and rotation are commutative. We next include, in Sections
7 and 8, simulation experiments for the case of sphere–linear
regression and sphere–sphere regression, respectively. Finally,
in Section 9 we analyze two real datasets. In both, the predictor
lies on the ordinary sphere. While in the first example we have a
sphere as the response space, in the second one we have a circle.
In the second case study, we also construct confidence intervals
based on our estimators.

2. PRELIMINARIES

The fact that we will use raw, nontransformed data involves
formalizing local smoothing using function expansions and
weights that are specific to the sphere. An alternate strategy for
the case of Riemannian manifolds prescribes ordinary smooth-
ing on projected data. For example, if the design space was S2,
we could project data onto a suitable tangent plane. In these
cases, distortion may arise if the data are spread over a large
portion of the sphere and, further, the fitted path is not invariant
under changes in the coordinate system. That is, the operations
of rotating and smoothing the data are not commutative. Jupp
and Kent (1987) provided a detailed critique of various strategies
which use Euclidean smoothing for spherical data.

Given x ∈ Sd−1, consider the tangent–normal decomposition
for a vector X ∈ Sd−1, that is,

X = x cos(θ ) + ξ sin(θ ), (1)

where θ ∈ (0, π ) denotes the angle between x and X , and ξ is a
vector orthogonal to x. Now, setting �x := {ξ ∈ Sd−1 : ξ⊥x},
for a real-valued function g defined on Sd−1 we have∫

Sd−1
g(u)ωd−1(du) =

∫ π

0
sind−2(θ )dθ

∫
�x

g (cos(θ )x

+ sin(θ )ξ ) ωd−2(dξ ) (2)

where, for each integer d ≥ 1, ωd (du) denotes the area ele-
ment of Sd , and the total mass of the measure ωd (·), inter-
preted as the surface area of unit sphere, is ωd := ωd (Sd ) =
2π (d+1)/2/�((d + 1)/2). Additionally, given a function g :
Sd−1 → R, let ḡ(x) := g(x/||x||) be the zero-degree homo-
geneous extension of g to Rd \ {0}. Provided that ḡ has p con-
tinuous derivatives in a neighborhood of x, we are able to write
the pth order Taylor series expansion of g at X belonging to a
neighborhood of x on the basis of decomposition (1):

g(X) = g(x) +
p∑

s=1

θs

s!
ξ ′Ds

ḡ(x)ξ⊗(s−1) + O(θp+1), (3)
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where Ds
ḡ(x) is the matrix of the sth-order derivatives of ḡ at x,

and, for a vector u, u′ denotes its transpose and u⊗s stands for
its sth Kroneckerian power. The above expansion is easily inter-
pretable considering that first-order McLaurin series expansion
of sin(θ ) and cos(θ ) give X − x ≈ θξ .

3. SPHERICAL–LINEAR REGRESSION

Given a random vector (X, Y ) taking values in Sd−1 × R,
assume that the conditional expectation and variance of Y at
x ∈ Sd−1, respectively, denoted as m(x) and s2(x), are both
finite. For a set of independent copies {(X i , Yi), i = 1, . . . , n},
we suppose the model

Yi = m(X i) + s(X i)εi, i = 1, . . . , n,

where the εis are iid real-valued random variables with zero
mean, unit variance, and independent of the X i’s. Using the
decomposition X i = x cos(θi) + ξ i sin(θi), assume that the re-
gression m is smooth enough to be approximated through ex-
pansion (3). Similarly to the Euclidean approach, we define a
pth degree local polynomial estimator of m(x) as the solution
for β0 of this weighted least-squares problem

arg min
{β0,β1,...,βp}

1

n

n∑
i=1

⎧⎨⎩Yi −β0−
p∑

j=1

θ
j
i

j !
ξ ′

iβj ξ
⊗(j−1)
i

⎫⎬⎭
2

Kκ (cos(θi)).

(4)

The weight (or kernel) Kκ is a unimodal density defined
on Sd−1 with rotational symmetry about its mean direction
μ = (0, . . . , 0, 1), and concentration parameter κ ∈ (0,∞) such
that limκ→∞

∫
W

Kκ (x′μ)ωd−1(dx) = 0, for any W ⊂ Sd−1 \
{μ}. Kernels of this form were used by Hall, Watson, and
Cabrera (1987) for density estimation on the sphere. In our con-
text, they implemented the locality of the method, emphasizing
observations which are closer to the estimation point. For given
sample data, the local feature of the estimate increases with the
magnitude of κ , meaning that finer local structures arise in cor-
respondence of an increase in concentration. Observe that here
κ is typically not a scale factor, and this will affect most of our
technical treatment. Importantly, in the subsequent asymptotic
theory we will always implicitly assume that κ increases with n,
whereas the bandwidth of Euclidean weights needs to decrease
to obtain concentration. Finally, note that whatever the dimen-
sion is, spherical kernels are always equipped with a scalar
smoothing parameter. This constitutes a remarkable difference
with the Euclidean setting, where, for the case of an Rd -valued
predictor, we have the possibility to select up to d(d + 1)/2
distinct smoothing parameters.

Remark 3.1. The case of multiple predictors requires expan-
sions over product spaces along with product kernels to be em-
ployed in problem (4). Clearly, if some predictors are linear this
scheme still holds. A case study for this latter setting, due to
Jeon and Taylor (2012), models wind power in terms of wind
speed, say X, and wind direction, say θ . The estimator is based
on the kernel regression idea. However, to circumvent the task
of addressing angular variables, they build somewhat artificial
covariates given by X sin θ and X cos θ , with a potential covari-
ance issue. A natural alternative could be constructed by our

regression scheme with a natural weight given by the product
between a spherical kernel (defined on S1) and a Euclidean one.

Finally, we present some key quantities that are function of
spherical kernels. For j ∈ N, let

bj (κ) : = ωd−2

∫ π

0
Kκ (cos(θ ))θj sind−2(θ )dθ and

νj (κ) : = ωd−2

∫ π

0
K2

κ (cos(θ ))θj sind−2(θ )dθ.

Clearly bj (κ) is reminiscent of the jth moment of a Euclidean
kernel, and ν0(κ) recalls its roughness. We will see that quantities
b2(κ) and ν0(κ) reflect, in turn, the asymptotic bias and variance
of our smoothers.

3.1 Local Constant Estimator

Setting p = 0 in (4) leads to a local constant fit, that is,

m̂(x; 0) =
∑n

i=1 Kκ (cos(θi))Yi∑n
i=1 Kκ (cos(θi))

. (5)

For the above estimator, denoting the design density as f , we
get

Theorem 3.1. Given the random sample {(X i , Yi), i =
1, . . . , n}, taking values in Sd−1 × R, if

(i) f (x) > 0, f , s2 and all entries of Df̄ , Dm̄, and D2
m̄ are

continuous at x ∈ Sd−1,
(ii) Kκ is such that, for each j ∈ Z+, lim

κ→∞(1 − cj (κ))/(1 −
c1(κ)) = j , where cj (κ) := ωd−2

∫ π

0 Kκ (cos(θ )) cos(θ )j

sind−2(θ )dθ ,
(iii) lim

n→∞b2(κ) = 0,

(iv) lim
n→∞n−1ν0(κ) = 0,

then, for x ∈ Sd−1

E[m̂(x; 0) | X1, . . . , Xn] − m(x)

= b2(κ)

2(d − 1)

{
tr
(D2

m̄(x)
) +

2D′
f̄

(x)Dm̄(x)

f (x)

}
+ op (b2(κ)) ,

(6)

where tr(A) stands for the trace of the matrix A, and

var[m̂(x; 0) | X1, . . . , Xn] = s2(x)ν0(κ)

nf (x)
+ op

(
ν0(κ)

n

)
. (7)

Moreover, it holds that{
m̂(x; 0) − m(x)

ψ1/2(x)

}
d→ N (τ (x; 0), 1),

where τ (x; 0) and ψ(x) are the leading terms of the right-hand
side in (6) and (7), respectively.

Proof. See the Appendix. �
After stating that, differently from the standard case, higher

order terms in expansions involved in asymptotic bias and vari-
ance calculations do not necessarily decrease with their order,
in the following remark we will explain the idea behind all the
approximations appearing in our asymptotic theory.

Remark 3.2. First, consider that only small values of θ will
be relevant for our calculations because, if κ increases with n,
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then the kernel concentrates around its mean direction. Now,
since for θ approaching to 0, θj ∼ 2j/2{1 − cos(θ )}j/2, j ∈ N,
a simple approximation requiring a big enough κ and even j is

bj (κ) ∼ 2j/2

{
1 +

j/2∑
s=1

(−1)s
(

j/2

s

)
cs(κ)

}
. (8)

Also consider that in the expansion of convolutions we will
encounter, the quantity bj (κ) turns out to be multiplied by∫
�x

ξξ ′⊗(j−1)ωd−2(dξ ), which is null for odd j. Now approxi-
mation (8) makes apparent that assumption (ii) of Theorem 3.1
implies that even-order terms vanish faster than the second one.
This reproduces a Euclidean-like scenario, where terms of even
order j > 2 are o(h2), and odd terms vanish by the symmetry of
the kernel, and assures that leading terms can be identified and
used for approximations.

An optimal smoothing degree would minimize the conditional
asymptotic mean-squared error of m̂(x; 0), say AMSE[m̂(x; 0) |
X1, . . . , Xn], which is the sum of the leading terms of the con-
ditional squared bias and conditional variance. Note that the
dependence of conditional bias and variance on the smooth-
ing factor cannot be generalized with respect to the kernel,
because it is not a scale family. For the important case of a
Langevin kernel, which can be regarded as the spherical coun-
terpart of the Gaussian kernel, and, on Sd−1, is defined by
κd/2−1{(2π )d/2Id/2−1(κ)}−1e(κ cos(θ)), where Iu(·) stands for the
modified Bessel function of the first kind and order u, it holds
that for κ big enough, and j ∈ Z+

bj (κ) ∼ 2j/2� ((d + j − 1)/2)

κj/2� ((d − 1)/2)
, and ν0(κ) ∼ κ (d−1)/2

2d−1π (d−1)/2
.

(9)

Hence, this kernel satisfies condition (ii) in Theorem 3.1,
whereas assumptions (iii) and (iv) imply that, as n diverges,
κ → ∞ and n−1κ (d−1)/2 → 0, respectively. Therefore, when
the Langevin kernel is used

AMSE[m̂(x; 0) | X1, . . . , Xn]

= 1

4κ2

{
tr
(D2

m̄(x)
) +

2D′
f̄

(x)Dm̄(x)

f (x)

}2

+ κ (d−1)/2s2(x)

2d−1π (d−1)/2nf (x)
,

and, thus, the value of κ minimizing AMSE[m̂(x; 0) |
X1, . . . , Xn] is

{
2d−1π (d−1)/2nf (x){tr(D2

m̄(x)) + 2D′
f̄

(x)Dm̄(x)f (x)−1}2

(d − 1)s2(x)

}2/(d+3)

,

and m̂(x; 0) enjoys the convergence rate n−4/(3+d), which is the
same as the Nadaraya–Watson one when a second-order kernel
is used and m has domain in Rd−1.

3.2 Local Linear Estimator

Let Y := [Y1 . . . Yn]′, W := diag[Kκ (cos(θ1)), . . . , Kκ

(cos(θn))], β := [β0 β ′
1]′, and set

X :=

⎡⎢⎢⎣
1 θ1ξ

′
1

...
...

1 θnξ
′
n

⎤⎥⎥⎦.

Then, the loss in problem (4), for p = 1, can be rewritten
as ||W 1/2(Y − Xβ)||2, and its minimization over β admits a
unique solution if and only if X′W X is nonsingular. Unfor-
tunately, in our setting the Euclidean condition for invertibil-
ity, that is, that at least p + 1 weights are positive at the esti-
mation point, is not sufficient. In fact, our least squares solu-
tion will not be unique since ξ i⊥x, for i ∈ {1, . . . , n}, and so
X Q1 = 0n, where Q1 = [0 x′]′, and, for a positive integer u,
0u stands for a u × 1 zero vector. Letting A := X′W X, denote
by R(A′) and N (A) the space spanned by the columns of A′

and the null space of A respectively, with R(A′)⊥N (A). We see
that N (A) is determined by the vector Q1. The weighted least
squares solution is determined by the set {A+X′W Y + y, y ∈
N (A)} = {A+X′W Y + c Q1, c ∈ R}, where A+ denotes the
Moore–Penrose pseudoinverse of A. However, since x ′Dm̄(x) =
0, we have a further requirement for the solution to satisfy
Q′

1β = 0. Hence, we obtain a unique solution belonging to
R(A′), that is, β̂ = A+X′W Y .

We now obtain an explicit form of this solution, using con-
strained least squares, to derive its properties. Define a local
linear estimator for m at x as the first entry of the solution for
β of

min
β

||W 1/2(Y − Xβ)||2 subject to Q′
1β = 0. (10)

Now, let Q2 be a (d + 1) × d matrix such that Q′
2 Q1 = 0d ,

and the matrix [ Q1 Q2] is nonsingular. Then, letting Q :=
[ Q1 Q2]′, Ai := X Qi( Q′

i Qi)−1, i ∈ {1, 2}, and z := Q′
2β, we

have

Xβ = (X Q−1)( Qβ) = [A1 A2]

[
Q′

1β

z

]
= A2 z. (11)

Then, problem (10) reduces to minz ||W 1/2(Y − A2 z)||2, which
gives ẑ = (A′

2W A2)−1 A′
2W Y , and

m̂(x; 1) := e′
1 Q2( Q′

2 Q2)−1 ẑ = e′
1 Q2( Q′

2X′W X Q2)−1

× Q′
2X′W Y , (12)

where e1 := [1 0′
d ]′. Note that to estimate m we constrain its

derivatives, and this could appear somewhat artificial, given that
m is separately estimated from its derivatives in local polyno-
mial fitting. In principle, various settings of Q2 are possible in
Q2( Q′

2 Q2)−1 ẑ. We see this also by noting that the solution for
m̂(x; 1) uses only the first element of β, and this will not be
affected by alternative choices of generalized inverse, since the
first element of Q1 is zero. The same conclusion can be alge-
braically obtained observing that, since for a nonsingular ma-
trix A, A−1 = A+, and for a full-rank factorization A = FG,
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A+ = G+ F+, it results

Q2( Q′
2 Q2)−1 ẑ = Q2(W 1/2X Q2)+W 1/2Y

= Q2 Q+
2 A+X′W Y ,

where Q2 Q+
2 defines the orthogonal projector onto the space

of the vectors orthogonal to Q1, that is, onto R(A′), and
A+X′W Y ∈ R(A′) . Hence, from now on, we set, without loss
of generality, Q2 := [x Id − xx′]′, where, for a positive inte-
ger u, Iu stands for the identity matrix of order u.

Linearity is easily seen. By the choice of Q2, using the
orthogonality between x and the ξ is, we have X Q2 = [x +
θ1ξ 1 . . . x + θnξn]′, and then estimator (12) can be written as∑n

i=1 WiYi , where

Wi = x′

⎧⎨⎩
n∑

j=1

Kκ (cos(θj ))(x + θj ξ j )(x′ + θj ξ
′
j )

⎫⎬⎭
−1

× (x + θiξ i)Kκ (cos(θi)).

Now, for estimator (12) we obtain the following.

Theorem 3.2. Let {(X i , Yi), i = 1, . . . , n} be a random sam-
ple taking values in Sd−1 × R. If assumptions (i)–(iv) of Theo-
rem 3.1 hold then, for x ∈ Sd−1

E[m̂(x; 1) | X1, . . . , Xn] − m(x)

= b2(κ)tr(D2
m̄(x))

2(d − 1)
+ op(b2(κ)), (13)

var[m̂(x; 1) | X1, . . . , Xn]

= ν0(κ)s2(x)

nf (x)
+ op

(
ν0(κ)

n

)
. (14)

Additionally, it holds that{
m̂(x; 1) − m(x)

ψ1/2(x)

}
d→ N (τ (x; 1), 1),

where τ (x; 1) and ψ(x) stand for the leading terms of the right-
hand side in (13) and (14), respectively.

Proof. See the Appendix. �

The accuracy quantities in Theorem 3.2 have the same struc-
ture as the Euclidean ones, and consequently: (a) the bias of
the local linear fit improves on the local-constant one for being
both design adaptive (it does not depend on the design density),
and unaffected by boundary bias (it does not depend on the
first derivative); (b) for the Langevin kernel the optimal conver-
gence rate is n−4/(3+d) (to see this use Theorem 3.2 along with
approximations (9)); (c) high minimax efficiency among linear
smoothers as defined by Fan (1993).

For the special case when the predictor is defined on the
circle, a distinct nonparametric regression was proposed by Di
Marzio, Panzera, and Taylor (2009). They used a Taylor series-
like expansion which is different from our tangential–normal
one. Consequently, their estimator does not have the same ex-
pression as ours in formula (12), and is only generalizable to
the torus case, not to the sphere. The two estimators, however,
have the same rates of convergence of both asymptotic bias and
variance.

The solution for β1 of problem (10) leads to a local estimator
for partial derivatives Dm̄(x), that is,

D̂m̄(x) := e′
2 Q2( Q′

2X′W X Q2)−1 Q′
2X′W Y , (15)

where e2 := [0′
d Id ]′. Hence, under the assumptions of Theo-

rem 3.2, and assuming that all entries of D3
m̄ are continuous at

x, similar arguments as those used in the proof of Theorem 3.2
yield, for  ∈ {1, . . . , d},
AMSE

[D̂()
m̄ (x) | X1, . . . , Xn

]
=
{

(d−1)2b4(κ)t ()
2 (x)−b2

2(κ)t ()
1 (x)

2(d − 1)b2(κ)f (x)
+ (d − 1)b4(κ)t ()

3 (x)

3!b2(κ)

}2

+ {1 − (x())2}ν2(κ)(d − 1)s2(x)

nb2
2(κ)f (x)

,

where a() stands for the th entry of the vector a, and

t1(x) := tr
(D2

m̄(x)
)Df̄ (x),

t2(x) :=
∫

�x

ξξ ′D2
m̄(x)ξξ ′Df̄ (x)ωd−2(dξ ),

t3(x) :=
∫

�x

ξξ ′D3
m̄(x)ξξ ′ωd−2(dξ ).

Hence, for the case of a Langevin kernel, using approxima-
tion (9), along with the asymptotic approximation ν2(κ) ∼
k(d−3)/2(d − 1){π (d−1)/22d}−1, we see that the value of κ min-
imizing AMSE[D̂()

m̄ (x) | X1, . . . , Xn] attains the optimal rate
of n−2/(5+d), which is the same as that achieved when a local
linear estimator, with a second-order kernel, is used to estimate
the derivative of a regression function with domain in Rd−1.

3.3 Data From Mixing Processes

When the sampled data are generated by stationary mixing
processes, under suitable conditions, the rate of convergence of
our estimators is the same as in the iid case as stated in the
following.

Theorem 3.3. Let {(X i , Yi), i = 1, . . . , n} be a random se-
quence from the stationary process {(X i , Yi), i ∈ Z+}. Under
assumptions (i)–(iv) of Theorem 3.1, and assuming that

(i) for λ ≥ 2, γd ∈ R+, and any integer d > 1,∫ π

0 ωd−2|Kκ (cos(θ ))|λsind−2(θ )dθ = O(κγd (λ−1));
(ii) for real constants C1 and C2, and all  > 1, the joint den-

sity of X1 and X, say gX1,X
, satisfies gX1,X

(u, v) ≤
C1, and E[Y 2

1 + Y 2
 |X1, X] ≤ C2;

(iii) the process (X i , Yi), is either α-mixing with∑
 a[α()]1−2/λ < ∞ and E[|Yi |λ | X i] ≤ C3 < ∞

for λ > 2, a > 1 − 2/λ, or ρ-mixing with
∑

 ρ() <

∞;

then, at x ∈ Sd−1, the asymptotic bias of m̂(x; p), p ∈ {0, 1}, is
the same as the iid case, and

var[m̂(x; p) | X1, . . . , Xn] = ν0(κ)s2(x)

nf (x)
+ o

(
κγd

n

)
.

Proof. See the Appendix. �

This result, when Yi = X ()
i+1, allows the use of our estimators

in autoregression estimation.
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4. CROSS-VALIDATION SMOOTHING

Implementing cross-validation for smoothing selection is
straightforward. Letting m̂(−i) denote the estimator using the
sample with (X i , Yi) left out, then κ can be set to minimize
CV(κ) := 1/n

∑n
i=1{Yi − m̂(−i)(Xi ; p)}2, where p ∈ {0, 1}. In

our case, we have the same as in the Euclidean setting, that is:

E[CV(κ)] =
∫

Sd−1
{m̂(x; p) − m(x)}2f (x)dx

+
∫

Sd−1
s2(x)f (x)dx,

consequently, minimizing CV(κ) is expected to be equivalent to
minimizing the L2 risk.

Concerning asymptotic properties, Härdle and Marron (1985,
Theorem 1) proved that cross-validation is asymptotically opti-
mal with respect to various L2 norms. Their proof applies also
in our case, provided that their assumption (A.1) is replaced by
κ > Cnδ , where C and δ are positive constants.

5. SPHERICAL–SPHERICAL REGRESSION

Let (X, Y ) be a Sd−1 × Sq−1-valued random vector, and let
Y () be the th Cartesian coordinate of Y . Setting m(x) :=
E[Y () | X = x], the dependence of Y on X could be modeled
by the function m : Sd−1 → Sq−1 minimizing the risk E[||Y −
m(X)||2 | X] subject to ||m(X)|| = 1, which, at X = x, is given
by

m(x) := [m1(x) . . . mq(x)]′||[m1(x) . . . mq(x)]||−1.

Given the random sample {(X i , Y i), i = 1, . . . , n}, we assume
the model

Y i = m(X i) + εi , i = 1, . . . , n,

where the errors εi := [ε(1)
i . . . ε

(q)
i ]′, conditioned on the X i’s,

are independent with E[εi | X i] = 0q and var[εi | X i] = ˚(X i),
where ˚(X i) stands for the matrix of order q having
s2
 (X i) := var[ε()

i | X i] < ∞, as (, )th entry and s,j (X i) :=
cov[ε()

i , ε
(j)
i | X i] < ∞ as (, j )th for (, j ) ∈ {1, . . . , q} ×

{1, . . . , q}, and  = j . The above model can be also written
as q separate (but correlated) regression models, that is,

Y
()
i = m(X i) + ε

()
i ,  = 1, . . . , q, i = 1, . . . , n.

5.1 Local Constant Estimation

If θi is the angle between x and X i , a local constant estimator
of m(x), say m̂(x; 0), is

arg min
β0

n∑
i=1

||Y i − β0||2Kκ (cos(θi)),

subject to ||β0|| = 1.

Specifically, letting m̂(x; 0) := {∑n
i=1 Kκ (cos(θi))}−1∑n

i=1 Kκ (cos(θi))Y
()
i , we have

m̂(x; 0) = ||[m̂1(x; 0) . . . m̂q(x; 0)]||−1[m̂1(x; 0) . . . m̂q(x; 0)]′.
(16)

This estimator implements the idea of separately smoothing each
component of Y with a common smoothing parameter, although
selecting different levels of smoothing is straightforward. In

the next section, the possibility to incorporate the correlation
structure between the Y ()s into our local estimators will be
discussed for the local linear fit.

For d = q = 2, the smoother arctan(m̂2/m̂1), which estimates
dependence between two angles, can be compared with the
circular–circular regression smoother of Di Marzio, Panzera,
and Taylor (2013). Their approach is simpler for working in only
one dimension, additionally, it does not exhibit singularity issues
and features the same rates for bias and variance. However, it
has a different structure from ours and is not generalizable to
the sphere case for the same reasons seen in the link to previous
work discussed in Section 3.2.

Let 1u be a u × 1 vector of ones. We have

Theorem 5.1. Given the random sample {(X i , Y i), i =
1, . . . , n}, taking values in Sd−1 × Sq−1, if assumption (i), with
m (all entries of ˚ respectively) in place of m (s2, resp.), and
assumptions (ii)–(iv) of Theorem 3.1 hold, then, for estimator
(16) at x ∈ Sd−1

E[m̂(x; 0) | X1, . . . , Xn] − m(x)

= b2(κ)

2(d − 1)

⎡⎢⎢⎣
tr
(D2

m̄1
(x)

) + 2f (x)−1D′
f̄

(x)Dm̄1 (x)
...

tr
(D2

m̄q
(x)

) + 2f (x)−1D′
f̄

(x)Dm̄q
(x)

⎤⎥⎥⎦
+ op(b2(κ)1q),

var[m̂(x; 0) | X1, . . . , Xn] = ν0(κ)

nf (x)
˚(x) + op

(
ν0(κ)

n
Iq

)
.

Proof. See the Appendix. �

The accuracy of (16) could be measured by the function

L[m̂(x; 0)] := E[2(1 − m̂(x; 0)′m(x)) | X1, . . . , Xn], (17)

where, since ||m̂(x; 0)|| = ||m(x)|| = 1, m̂(x; 0)′m(x) is the co-
sine of the angle between m̂(x; 0) and m(x). This loss cor-
responds to E[||m̂(x; 0)m(x)||2 | X1, . . . , Xn], and can then
be decomposed into the sum of E[||m̂(x; 0) − E[m̂(x; 0)]||2 |
X1, . . . , Xn] and ||E[m̂(x; 0) | X1, . . . , Xn] − m(x)||2, and re-
garded as the spherical counterpart of the conditional mean-
squared error, since its summands are the conditional spher-
ical variance and the conditional squared bias of m̂(x; 0),
respectively.

Recalling approximations (9), from Theorem 5.1 it results
that for estimator (16) with the Langevin kernel, the value of κ

which minimizes the asymptotic version of (17) is{
2d−1π (d−1)/2nf (x)

∑q
=1 J 2

 (x)

(d − 1)
∑q

=1 s2
 (x)

}2/(d+3)

,

where J(x) := tr(D2
m̄

(x)) + 2D′
f̄

(x)Dm̄
(x)f −1(x),  ∈ {1,

. . . , q}. Note that the rate achieved by using κ which minimizes
the leading term of loss (17) depends only on the dimension (d)
of the input space.

5.2 Local Linear Estimator

Let A ⊗ B denote the Kronecker product between matrices
A and B, and let Ã := Iq ⊗ A. Due to decomposition (3), a
local linear estimator of m(x) could be based on this first-order
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expansion

m(X i) ≈ m(x) + θi ξ̃ i
′
Dm̄(x), (18)

where m̄(x) := [m̄1(x) . . . m̄q(x)]′, and Dm̄(x) := [D′
m̄1

(x) . . .

D′
m̄q

(x)]′. Now, let B := [B′
1 . . . B′

q]′, with B := [β()
0 β

′()
1 ]′,

 ∈ {1, . . . , q}, and set Y := [Y ′(1) . . . Y ′(q)]′, with Y () being
the n × 1 vector having Y

()
i as ith entry. Then, by the same

arguments used for estimator (12) as applied to each entry of
m(x), a local linear version of (16) could be defined as the
solution for [β(1)

0 . . . β
(q)
0 ]′ of

min
B

||W̃ 1/2(Y − X̃B)||2 subject to Q̃1
′B = 0q, (19)

which, with the additional constraint ||[β(1)
0 . . . β

(q)
0 ]|| = 1, leads

to

m̂(x; 1) = ||[m̂1(x; 1) . . . m̂q(x; 1)]||−1[m̂1(x; 1) . . . m̂q(x; 1)]′,
(20)

where m̂(x; 1) := e′
1 Q2( Q′

2X′W X Q2)−1 Q′
2X′W Y (). As a

matter of interpretation, if we see the sphere as a manifold, we
observe that this estimator and the next one interestingly com-
bine elements of both intrinsic and extrinsic analyses. While
its mean structure belongs to an extrinsic scheme, the local ap-
proximation on which they are based has an intrinsic nature,
for using expansion (18), which is equipped with a geodesic
distance. For such an estimator, we obtain the following.

Theorem 5.2. Given the random sample {(X i , Y i), i =
1, . . . , n} taking values in Sd−1 × Sq−1, if assumption (i), with
m (all entries of ˚ respectively) in place of m (s2, resp.), and
assumptions (ii)–(iv) of Theorem 3.1 hold, then, for estimator
(20)

E[m̂(x; 1) | X1, . . . Xn] − m(x)

= b2(κ)

2(d − 1)

⎡⎢⎢⎣
tr
(D2

m̄1
(x)

)
...

tr
(D2

m̄q
(x)

)
⎤⎥⎥⎦ + op(b2(κ)1q),

var[m̂(x; 1) | X1, . . . , Xn]

= ν0(κ)

nf (x)
˚(x) + op

(
ν0(κ)

n
Iq

)
.

Proof. See the Appendix. �

Now, for  ∈ {1, . . . , q}, j ∈ {1, . . . , q}, and  = j , denote
by S, the diagonal matrix of order n having s2

 (X i) as (i, i)th
entry, and by S,j the diagonal matrix of order n having s,j (X i)
as (i, i)th entry. Furthermore, let V denote a block matrix with
(i, j )th entry Si,j , (i, j ) ∈ {1, . . . , q} × {1, . . . , q}. In what fol-
lows, we will treat V as known. When V is unknown we could
replace it by a consistent estimate. Then, to take into account the
correlation structure between the components of Y , we could
define our estimator as the solution for [β(1)

0 · · · β(q)
0 ]′ of the

problem

min
B

||V −1/2W̃ 1/2(Y − X̃B)||2 subject to Q̃1
′B = 0q . (21)

However, starting from (21), the resulting estimator is defined
as

m̂∗(x; 1) := ‖ẽ1
′ Q̃2( Q̃

′
2X̃′W̃ V −1X̃ Q̃2)−1 Q̃

′
2X̃′W̃ V −1Y‖−1

× ẽ1
′ Q̃2( Q̃

′
2X̃′W̃ V −1X̃ Q̃2)−1 Q̃

′
2X̃′W̃ V −1Y ,

(22)

and, we get:

Theorem 5.3. Let {(X i , Y i), i = 1, . . . , n} be a random sam-
ple taking values in Sd−1 × Sq−1. If assumption (i), with m in
place of m, and assumptions (ii)–(iv) of Theorem 3.1 hold, and
for each (, j ) ∈ {1, . . . , q} × {1, . . . , q}, the matrices S,j s are
nonsingular, and the gradients of the extensions to Rd of their
entries exist in a neighborhood of x, then, the asymptotic condi-
tional bias and variance of estimator (22) are the same of those
obtained by componentwise smoothing of the Y i’s.

Proof. See the Appendix. �

Observe that this theorem could be adapted also for use in the
multivariate Euclidean setting, whereas the univariate one has
been inspected by Welsh and Yeeb (2006).

6. ROTATIONAL EQUIVARIANCE

An important property when dealing with spherical data is
rotational equivariance, which is the analog of equivariance
under ordinary translation of linear data. Here, we treat this
from a spherical-linear perspective, the extension to the case
with a spherical response being trivial.

Definition 6.1. Let Gα denote the matrix of order d which
performs rotations of vectors in Sd−1 about the x-axis by an angle
α ∈ (0, 2π ). Assume that the regression function m : Sd−1 →
R is the target. We say that an estimator m̂ of m is rotationally
equivariant if and only if for whatever location x ∈ Sd−1 we
have m̂(x) = m̂G(Gα x), where m̂ is the estimator using the
sample {(X i , Yi), i = 1, . . . , n}, and m̂G is the estimator using
the sample {(Gα X i , Yi), i = 1, . . . , n}.

This property makes the inference robust with respect to the
coordinate system, since any data rotation produces an estimate
which has a certain relationship with the one based on nonrotated
data. This can be regarded as a data reduction property because
distinct samples constitute an equivalence class.

Rotational equivariance of our estimators is easily seen.
First, consider that rotational symmetry properties of our ker-
nels give straightforwardly rotational equivariance of them.
This gives, in turn, equivariance of local constant estima-
tion. Concerning the local linear estimator, first recall that, by
the choice of Q2 := [

x Id − xx′]′, we have A2 = X Q2 =
[x + θ1ξ 1 . . . x + θnξn]′. Hence performing rotations by the an-
gle α of both the vectors x and ξ i , i ∈ {1, . . . , n}, the matrix
A2 becomes A2G′

α , which leads to

(Gα A′
2W A2G′

α)−1Gα A′
2W Y

= (G′
α)−1(A′

2W A2)−1G−1
α Gα A′

2W Y
= Gα(A′

2W A2)−1 A′
2W Y (23)
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Figure 1. Top row: values of CV-selected smoothing parameters for each of 100 samples (in which x is uniform random over the sphere,
and y is generated from model (24)) for various sample sizes, summarized by a boxplot, with mean values connected by a continuous line, and
corresponding theoretical values connected by a dotted line. Bottom row: corresponding mean-squared prediction error evaluated at the point
(1, 0, 0). Left column: local constant estimator; right column: local linear estimator.

where the last identity holds since G−1
α = G′

α . Moreover, Q2

becomes [Gα x Id − Gα xx′G′
α]′, which leads to

e′
1

[
x′G′

α

Id − Gα xx′G′
α

]
= e′

1 Q2G′
α.

This, along with (23), and using again G′
α = G−1

α yields the
result.

For estimator (15), formula (23) turns out to be premultiplied
by Gα(Id − x′x)G′

α , not giving equivariance.

7. SPHERE–LINEAR REGRESSION SIMULATIONS

In this section, we use simulated data to illustrate the depen-
dence on the sample size, and to compare our methods with
others, in the case of x ∈ S2 and response variable y ∈ R. We
initially investigate the effect of sample size on the smooth-
ing parameter and the resulting mean-squared error. Then, we
briefly describe two other methods that we will use as com-
petitors. Our choice reflects the main and easily implementable
“off-the-shelf” methods: spherical harmonics and splines. Con-
cerning the weight function, in all of our experiments we will
use the Langevin kernel, in the next sections as well.

7.1 Optimal Smoothing and Sample Size

With x = (x1, x2, x3) we consider the model

y = exp(x1 + x2 + x3) + ε, ε ∼ N (0, σ 2) (24)

with σ = 0.25. Since our theoretical results are mostly related
to mean-squared error for prediction at a specific point, we
will estimate y at the point x = (1, 0, 0). For each value of
n ∈ {50, 100, 200, 400}, we take 100 samples in which X is
uniformly distributed over the sphere. For each sample, we use
cross-validation to find the smoothing parameter, and with this
choice of κ we compute the squared error (ŷ − exp(1))2, where
ŷ is the predicted value at (1, 0, 0). The results are shown in
Figure 1 in which we have shown the boxplots of the smooth-
ing parameters, and the squared prediction errors, together with
the sample means, and a fitted line obtained from the theoreti-
cal rates (κ = O(n1/3) and AMSE = O(n−2/3)). It appears that
cross-validation has the potential to agree with such optimal
decays, the well-known instability issue being less problematic
for the local linear fit.

7.2 Other Methods

Kernel ridge regression was recently applied to spherical de-
sign spaces of whatever dimension by Cao et al. (2013). They
used a spherical harmonic kernel given by

K(u, v) = 1

π

5∑
j=1

cos(j cos−1(u′v))

and then estimate coefficients β to minimize || y − Kβ||2 +
λ||β||2 where K is a matrix of order n having K(xi , xj )
as its (i, j )th entry, and λ ≥ 0 is a regularization pa-
rameter. In our implementation, we used the R ridge
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Figure 2. Average mean-squared prediction error as a function of σ for each of four methods, where the explanatory data are uniformly
distributed over the whole sphere (left) and restricted to latitude less than 0.5 rad (right). The functions are evaluated on a regular grid of points,
compared using the average of the mean-squared errors. Lines correspond to spherical harmonic kernel with ridge regression (1), local constant
(2), local linear (3), and splines on the sphere (4).

regression function lm.ridge and selected λ by generalized
cross-validation, although the authors, in fact, do not specify
any strategy for selecting this parameter. After estimating coef-
ficients β = (β1, . . . , βn), we predict y at a new location x by
using ŷ = ∑

K(xi , x)β̂i .
A further method is to use reduced rank splines on

the ordinary sphere (Wahba 1981, 1982; Wood 2003)
in which we have used the R functions described in
smooth.construct.sos.smooth.spec of the mgcv library
(Wood 2013). In our implementation, we used the second deriva-
tive penalty. We experimented with selecting the basis dimen-
sion by leave-one-out cross-validation, but this revealed to be
a costly computational burden for which the results were little
better than the default value of 50, and so the results are re-
ported for this value. Finally recall that, in the standard setting,
splines are close to kernel estimators, these latter being supe-
rior in the minimax sense, as defined by Jennen-Steinmetz and
Gasser (1988).

7.3 Results

We consider two examples for which we will use the model

y = m(x) + ε, ε ∼ N (0, σ 2), (25)

where m(x) = 3 + x2{x2
1 + x2

2}−1/2(cos(1.3)
√

1 − x2
3 + x3 sin

(1.3)) and σ ∈ (0.10, 2.35). In the first example, we take x
to be uniform over the sphere, and in the second example we
restrict the support to those values with the absolute value of the
latitude less than 0.5. For each σ, we take 100 samples of 100
observations as the training set. Although our theory mostly
presents results for mean-squared error for a specific point x
we here consider an average over many points as this is more
akin to the usage of the methods in applications. So for the test
set we use a regular grid of points: 1212 over the full sphere, of
which 580 lie in the limited support. The results are summarized
in Figure 2 where we show the average (over 100 samples) of

the “out-of-sample” mean-squared prediction error—given by
n−1 ∑

i(m(xi) − ŷi)2—for each of the methods.
It can be seen that the spherical harmonic kernel with ridge

regression method is worst in both settings. The spline method
is best for the case when the support of x is the whole sphere, but
this method is not as good as the kernel smoothers for the case
of limited support. Both of the smoothers perform similarly for
the full sphere, but the local linear performs somewhat better in
the case of limited support.

8. SPHERE–SPHERE REGRESSION SIMULATIONS

In this section, we consider the case of x ∈ S2 and response
variable y ∈ S2. The only obvious competitor here is Chang’s
method (Chang et al. 2000), though it is also possible to apply
any spherical–linear methos to each component of the vector,
and then to combine the results. When both variables lie on the
sphere, that is, we have data (xi , yi) ∈ S2 × S2, i ∈ {1, . . . , n},
then it is straightforward to estimate a 3 × 3 rotation matrix A
to minimize

∑n
i=1 || yi − x′

iA||. Let ˇ be the matrix whose ith
row is x′

i , and ´ the matrix whose ith row is y′
i . Then (Chang

1986), the rotation matrix A is estimated by Â = UV ′, where
U and V are determined by the singular value decomposition of
ˇ′´ = U˜V ′, where U , V ∈ SO(3), and ˜ = diag(λ1, λ2, λ3).
This rigid transformation of the data, used by Chang et al.
(2000), is computationally very simple and fast.

8.1 Results

In general, we suppose that, conditioned on X = x, Y has a
von-Mises–Fisher distribution with concentration parameter κ

and mean direction m(x), that is, Y | x ∼ vM(m(x), κ). In the
first case, we choose m to be a rigid rotation of the data, and in
the second case we consider a nonrigid transformation in which

m(x) ∝ (sin(ψ) cos(φ), 2 sin(ψ) cos(φ − 0.3),

3 sin(ψ) cos(φ − 1)), (26)
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Figure 3. For 1212 design points regularly placed on the sphere the estimated concentration parameter ν of the errors in correspondence to
the noise in the observations, as measured by concentration parameter κ . One hundred simulations of 100 observations in the training data. Left:
rigid rotation model; right: nonrigid transformation using model given by regression function (26). Line numbers: (1) rotation matrix; (2) local
linear; (3) local constant.

where (ψ, φ) is the longitude, latitude representation of x, and
m(x) is normalized so that ||m(x)|| = 1. In both rigid and
nonrigid transformations, we consider various values of κ , in
which 100 observations are simulated with X uniformly dis-
tributed on the sphere, and Y is generated according to the
stated model. The observations are used to estimate the required
functions, using cross-validation where appropriate. We then
use the functions to obtain predicted values ŷ at our regular
grid of 1212 values of x, and this is repeated 100 times for
each κ . To summarize the quality of the estimates, we con-
sider θi = cos−1( ŷ′

im(xi)), i = 1, . . . , 1212. These angles are
summarized using the maximum likelihood estimate of the con-
centration parameter when the angles are assumed to have a
von Mises distribution, that is, the solution of ν to the equa-
tion C̄ = coth(ν) − 1/ν where C̄ = n−1 ∑

i cos θi . The average
(over 100 simulations) values of ν are shown in Figure 3 for
both the rigid and nonrigid transformations. It can be seen that
the rotation model performs best for the rigid transformation
(as expected), but performs very poorly for the nonrigid trans-
formation. It should be remembered that large values of ν and
κ (the concentration parameters) indicate smaller errors, so the
overall monotonic pattern is as expected. In this case, the local
linear estimate performs better than the local constant estimate
for all except high levels of noise (corresponding to small con-
centration κ).

9. REAL-DATA EXAMPLES

We consider two datasets which have been chosen to illustrate
the applicability of our methods. In both cases, there are well-
established alternative nonstatistical approaches, though there
may be potential for our methods to contribute to these fields.
The first dataset concerns the orientation of Earth’s magnetic
field, as measured from a satellite, and the second concerns
prediction of wind directions at locations on the Earth surface.

In both cases, we used a common smoothing parameter for each
component.

9.1 Geomagnetic Field

Earth’s magnetic field extends from the inner core into the
atmosphere and beyond, and protects the Earth from solar wind
which emanates from the sun. Since about 1980, various satel-
lites have been launched to measure this field, using three-axis
magnetometers to probe the three-dimensional structure. Over
the last few decades, the results from these remote sensors have
been combined to produce ever more accurate world magnetic
models which are used for navigation and heading referencing
systems using the geomagnetic field. One of the first satellites
was NASA’s MAGSAT spacecraft, which orbited the earth ev-
ery 88 min for about 7 months at around 400 km altitude. Data,
available during 2/11/79–6/5/80, are recorded every half second
and can be downloaded from NASA’s National Space Science
Data Center.1

We illustrate our methods using a sample of the available
MAGSAT data. First, from each day we sampled 22 equally
spaced observations, and then a random sample of 1000 was
taken from this combined set. We used the geocentric latitude
and longitude of the spacecraft (but not the time/day of the
observation) as the explanatory (x) variables, and the north,
east, and vertical components of the magnetic field vector were
converted to polar coordinates and used as the response ( y)
variables. The relationships between the four (polar coordinate)
variables are shown in Figure 4.

For the purposes of comparison, we split the 1000 obser-
vations (randomly) into train and test sets. The training set is
used to select smoothing parameters (by cross-validation) and
the test sets are used to provide a measure of performance.

1nssdcftp.gsfc.nasa.gov/spacecraft data/magsat
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Figure 4. Pairwise plots for each combination of the four—latitude and longitude for the response (y) and explanatory (x)—variables of the
magnetic field data. Left column shows longitude–latitude plots for the satellite location (top) and the direction of the magnetic field (bottom).
Other plots (pairs 1–4) show relationships between variables as indicated on the axis labels.

The cross-validation selected smoothing parameter (the same
for each component) was found to be κ = 402.2 for the local
linear estimate, and κ = 75.4 for the local constant estimate.

For target values yi and estimated ones ŷi we measure the
accuracy by considering the angles θi = cos−1( ŷ′

i yi). These an-
gles are summarized as in the simulations above.

In Table 1, we report the concentration parameters for the test
data for the methods we consider: local constant, local linear,
splines on the sphere, spherical harmonic kernel with ridge re-
gression, and a rotation matrix (Chang et al. 2000). It can be seen
that the nonparametric methods easily outperform the inflexible
rotation model, with the local linear estimate performing some-
what better than the others. This is consistent with the results of
the simulations for low noise.

Table 1. Maximum likelihood estimates (ν̂) of concentration
parameters (using a Fisher model) for angular errors based on

estimates of remotely sensed magnetic field orientation. Smoothing
parameters (when required) were chosen using leave-one-out

cross-validation for the training set

Method

Error Local Local Splines on Harmonic Rigid
measure constant linear sphere kernel rotation

ν̂ 703 8,340 3,998 1,062 2.5

9.2 Prediction of Wind Directions

Wind direction modeling is a difficult task. The problem is
that direction at a point has traditionally been predicted through
directional time series, although data registered at a single loca-
tion have the potential to be strongly erratic due to phenomena
like turbulence, microbursts, and gusts. From a statistical point
of view, we say that wind direction data are considerably nonlin-
ear and non-Gaussian. Hirata et al. (2008) thoroughly discussed
this (see also the references therein), and proposed, as a possi-
ble solution, a parametric nonlinear model taking into account
the observations arising from multiple observation points. By
following this reasoning, we think that local smoothing of all di-
rections registered nearby the prediction point could be useful, at
least for predicting surface trends of the directions in a context of
spatial data analysis. Moreover, it is arguable that the erratic fea-
ture of the data would require interval estimates as an additional
tool. This perspective would motivate using our spherical–linear
regression fit, as a generalization of their idea, both for point
and interval estimation, as detailed in the following.

Wind directions are automatically recorded by the U.S.
NOAA’s National Data Buoy Center at many locations every
15 min. Most of these sites are close to the seaboard of the USA,
but several are in the Caribbean, and some are elsewhere around
the world. We have selected a single time point (noon on 15 July
2011) and extracted the wind direction from the annual historical
datasets at each of 422 locations. The locations (which are taken
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Figure 5. Locations of wind direction recording sites, as collated by NDBC, on 15th July 2011, together with a kernel density estimate at
square root scale. Only one contour level is shown for clarity.

as the explanatory variables) are shown in Figure 5, together with
a kernel density estimate of the locations. We consider estima-
tion of the wind direction at each location, using the information
from all the other locations. This sphere–circle regression prob-
lem is approached using both the local constant, and the local lin-
ear fits along with leave-one-out cross-validated smoothing.

At each location we have a predicted wind direction, which
can be compared to the actual wind direction. Fisher et al. (1996)

used pivotal methods to obtain confidence regions for directional
data, but their approach seems hard to adapt in this setting of
conditional estimation. So, an approximate confidence interval
for each prediction is calculated as follows. Using Equations (7)
and (14) we need to estimate f (x), s2(x), and compute ν0(κ)
for the selected κ . We estimate f (x) by spherical kernel density
estimate of Hall, Watson, and Cabrera (1987), with likelihood
cross-validated smoothing. We assume stationarity and isotropy
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Figure 6. Wind predictions for two sample regions (Left: Chesapeake Bay; Right: northern Florida). The circular segments show 95%
confidence intervals, and the arrows show actual wind directions at each location. The larger (radius) segments correspond to the local linear
estimates, and the smaller radius segments correspond to the local constant estimates.
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of the random errors, and use the (leave-one-out) residuals to
estimate s2(x) = s2. Then, we assume a von Mises distribution
for the estimate of the wind direction, in which the concentration
parameter is taken to be 1/var(m̂(x; p), p ∈ {0, 1}). This can then
used to find an interval, (l, u) say, for which

∫ u

l
g(θ )dθ = 1 − α

where g(·) is a von Mises density with mean m̂(x; p), p ∈ {0, 1},
and concentration given by the inverse of the estimated variance.

For each site, we can obtain an interval corresponding to the
prediction. When compared to the actual values, 16 (3.8%) of the
local constant prediction intervals are not contained in the 95%
confidence intervals, and 15 (3.6%) of the local linear estimators
are not contained in their respective confidence intervals. The
width of the intervals ranges from 3.7 to 6.0 (median 5.0) rad
for the local constant estimator, and from 2.6 to 6.0 (median
4.0) for the local linear estimator. It should be noted that a width
of 6.0 is almost consistent with a uniform distribution such that
there is no preferred direction for the estimate; this occurs only
for the isolated observation in the South Pacific (−14,−171).
These widths, together with the greater coverage, indicate that
the local linear estimator appears to be performing better overall.

Figure 6 shows a sample of results for two parts of the Eastern
seaboard of USA. We have noted that the results look reasonable,
even though the confidence intervals are quite wide.

APPENDIX

Proof of Theorem 3.1. Using the fact that n−1
∑

Kκ (cos(θi)) =
f (x) + op(1), and expansion (3) for m(X i), i ∈ {1, . . . , n}, in a neigh-
borhood of x, we have

E[m̂(x; 0) | X1, . . . , Xn]

≈ {f (x) + op(1)}−1n−1{
n∑

i=1

Kκ (cos(θi))

(
m(x) + ξ ′

iDm̄(x) + 1

2
ξ ′

iD2
m̄(x)ξ i

)}
.

Now, because
∫

�x
ξωd−2(dξ ) = 0d ,

∫
�x

ξξ ′ωd−2(dξ ) = ωd−2(d −
1)−1(Id − xx ′), and x ′Df̄ (x) = 0, in virtue of assumptions (i)–(iii),
we get

1

n

n∑
i=1

Kκ (cos(θi))θiξ i

=
∫ π

0
Kκ (cos(θ ))θ sind−2(θ )dθ

×
∫

�x

ξf (x cos(θ ) + ξ sin(θ ))ωd−2(dξ ) + op(1)

=
∫ π

0
Kκ (cos(θ ))θ2 sind−2(θ )dθ

×
∫

�x

ξξ ′Df̄ (x)ωd−2(dξ ) + op(1)

= b2(κ)(d − 1)−1Df̄ (x) + op(1db2(κ)), (A.1)

1

n

n∑
i=1

Kκ (cos(θi))θ
2
i ξ iξ

′
i

=
∫ π

0
Kκ (cos(θ ))θ2 sind−2(θ )dθ

×
∫

�x

ξξ ′f (x cos(θ ) + ξ sin(θ ))ωd−2(dξ ) + op(1)

= b2(κ)(d − 1)−1(Id − xx ′)f (x) + op(Idb2(κ)). (A.2)

The above approximations, in conjunction with the fact that for a func-
tion g defined on Sd , ξ ′D2

ḡ(x)ξ = tr(D2
ḡ(x)ξξ ′), and x ′D2

ḡ(x)x = 0,
yield

E[m̂(x; 0) | X1, . . . , Xn] ≈ {f (x)}−1
{
f (x)m(x) + (d − 1)−1b2(κ)

×[D′
f̄

(x)Dm̄(x) + 1

2
tr(D2

m̄(x))f (x)
]}

.

Now, using assumptions (i) and (iv), the asymptotic variance can be
calculated starting from

n−1
n∑

i=1

K2
κ (cos(θi))s

2(X i)

=
∫ π

0
K2

κ (cos(θ )) sind−1(θ )dθ

×
∫

�x

s2(x cos(θ ) + ξ sin(θ ))f (x cos(θ )

+ ξ sin(θ ))ωd−2(dξ ) + op(1)

= ν0(κ)f (x)s2(x) + op(ν0(κ)). (A.3)

Finally, the asymptotic distribution of the estimator comes from its
linearity and bias–variance results. �

Proof of Theorem 3.2. Letting M be the n × 1 vector having m(X i)
as its ith entry, we get

E[m̂(x; 1) | X1, . . . , Xn] = e′
1 Q2( Q′

2X
′W X Q2)−1 Q′

2X
′W M,

and, using expansion (3) for m(X i) in a neighborhood of x, i ∈
{1, . . . , n}, we have

M ≈ X

[
m(x)
Dm̄(x)

]
+ 1

2

⎡⎢⎢⎣
θ2

1 ξ ′
1D2

m̄(x)ξ 1

...

θ 2
n ξ ′

nD2
m̄(x)ξ n

⎤⎥⎥⎦,

which leads to

E[m̂(x; 1) | X1, . . . , Xn]

≈ e′
1 Q2( Q′

2X
′W X Q2)−1 Q′

2X
′W X

[
m(x)
Dm̄(x)

]

+ 1

2
e′

1 Q2( Q′
2X

′W X Q2)−1 Q′
2X

′W

⎡⎢⎢⎣
θ2

1 ξ ′
1D2

m(x)ξ 1

...

θ 2
n ξ ′

nD2
m(x)ξ n

⎤⎥⎥⎦. (A.4)

In virtue of (11), the first term in (A.4) is m(x) whereas, recalling
that

Q′
2X

′W X Q2 =
n∑

i=1

Kκ (cos(θi))
{

xx ′ + θiξ i x ′ + θi xξ ′
i + θ2

i ξ iξ
′
i

}
,

approximations given in the proof of Theorem 3.1 for the summands
in the right-hand side of the above equation lead to

n−1 Q′
2X

′W X Q2 ≈ xx′f (x) + (d − 1)−1b2(κ)

× [Df̄ (x)x ′ + xD′
f̄

(x) + f (x)(Id − xx ′)
]
,

(A.5)

(n−1 Q′
2X

′W X Q2)−1 ≈ f (x)−1
[
xx ′ − f (x)−1xD′

f̄
(x) − f (x)−1

× Df̄ (x)x ′ + (d − 1)b2(κ)−1(Id − xx ′)
]
,

and

Q2(n−1 Q′
2X

′W X Q2)−1 Q′
2

≈
[

f (x)−1 −D′
f̄

(x)f (x)−2

−Df̄ (x)f (x)−2 (d − 1) {b2(κ)f (x)}−1 (Id − xx ′)

]
. (A.6)
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Additionally, we see that

X′W

⎡⎢⎢⎣
θ2

1 ξ ′
1D2

m̄(x)ξ 1

...

θ 2
n ξ ′

nD2
m̄(x)ξ n

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
n∑

i=1

Kκ (cos(θi))θ
2
i ξ ′

iD2
m̄(x)ξ i

n∑
i=1

Kκ (cos(θi))θ
3
i ξ i{ξ ′

iD2
m̄(x)ξ i}

⎤⎥⎥⎥⎦,

and, after approximating similarly to before, along with x ′D2
f̄

(x)x = 0,
and assumptions (i)–(iii) we get

n−1X′W

⎡⎢⎣ θ2
1 ξ ′

1D2
m̄(x)ξ 1

...
θ 2
n ξ ′

nD2
m̄(x)ξ n

⎤⎥⎦
=

[
b2(κ)(d − 1)−1f (x)tr

(D2
m̄(x)

) + op(b2(κ))
Op (1db4(κ))

]
, (A.7)

and plugging (A.6) and (A.7) in (13) yields the bias. Concerning the
variance, we have

var[m̂(x; 1) | X1, . . . , Xn] = e′
1 Q2( Q′

2X
′W X Q2)−1 Q′

2X
′W SW X Q2

× ( Q′
2X

′W X Q2)−1 Q′
2e1, (A.8)

where S denotes a diagonal matrix of order n having s2(X i) as (i, i)th
entry. Now, since

n−1X′W SXW

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−1
n∑

i=1

K2
κ (cos(θi))s

2(X i)

n−1
n∑

i=1

K2
κ (cos(θi))θis

2(X i)ξ
′
i

n−1
n∑

i=1

K2
κ (cos(θi))θis

2(X i)ξ i

n−1
n∑

i=1

K2
κ (cos(θi))θ

2
i s2(X i)ξ iξ

′
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.9)

approximations similar to those used above leads to

n−1X′W SXW

≈

⎡⎢⎢⎣
ν0(κ)s2(x)f (x)

ν2(κ){f (x)D′
s̄2 (x) + s2(x)D′

f̄
(x)}

ν2(κ){f (x)Ds̄2 (x) + s2(x)Df̄ (x)}
(d − 1)−1ν2(κ)s2(x)f (x)(Id − xx ′)

⎤⎥⎥⎦, (A.10)

and assumptions (i), (ii), and (iv) of Theorem 3.1, the above approx-
imation, together with (A.6), give the variance. Finally, the linearity
property along with the bias–variance results lead to its asymptotic
distribution. �

Proof of Theorem 3.3. We employ the same idea as in the
proof of Theorem 2 in Masry and Fan (1997). In particular, for
m̂(x; 0), letting wi := {∑n

s=1 Kκ (cos(θi))}−1Kκ (cos(θi)), and Zi :=
wi{Yi − m(X i)}, in virtue of expansion (3) for m(X i) around x, we ob-
tain

∑
i Zi ≈ m̂(x; 0) − ∑

i wi{m(x) + θiξ
′
iDm̄(x) + 1

2 θ 2
i ξ ′

iD2
m̄(x)ξ i}.

Then, the expectation of m̂(x; 0) follows by using the fact that

n−1
∑n

i=1 Kκ (cos(θi))
p→ f (x), along with approximations (A.1) and

(A.2). For the variance, by stationarity,

var

[
1

n

n∑
i=1

Zi

]
= 1

n
var[Z1] + 2

n

n−1∑
=1

(
1 − 

n

)
cov[Z1, Z1+].

Thus, recalling the variance result in Theorem 3.1, and noting that
by assumption (i) with λ = 2, ν0(κ) = O(κγd ) and var[Z1] = O(κγd ).
Now, choose a sequence of integers un satisfying unκ

−γd → 0 as un →

∞, and set

J1 :=
un−1∑
=1

|cov(Z1, Z+1)| and J2 :=
n−1∑
=un

|cov(Z1, Z+1)|.

Hence, reasoning as in Masry and Fan (1997), by assumption (ii), and
the choice of un, we get J1 = o(κγd ). Now, for ρ-mixing processes
we have J2 ≤ var[Z1]

∑∞
=un

ρ() = o(κγd ), while for strongly mix-
ing processes, using the Davydov inequality, along with assumptions
(i)–(iii), we obtain

J2 ≤ 8Dκ2γd (λ−1)/λu−a
n

∞∑
i=un

ia[α(i)]1−2/λ,

with D ∈ R. So un = κγd (1−2/λ)/a yields J2 ≤ o(κγd ). The bias and
variance of m̂(x; 1) similarly follow if

wi = x ′

⎛⎝ n∑
j=1

Kκ (cos(θj )){xx′ + θj xξ ′
j + θj ξ j x ′ + θ2

j ξ j ξ
′
j }
⎞⎠−1

× (x + θiξ i)Kκ (cos(θi)).

�
Proof of Theorem 5.1. First, observe that results of Theorem 3.1

apply for each m̂,  ∈ {1, . . . , q}, and asymptotic bias directly follows

since ||[m̂1 . . . m̂q ]|| p→ 1. For the variance, approximation (A.3) ap-
plies for each entry of var[[m̂1 . . . m̂q ]′] with s2 replaced by s2

 for the
diagonal terms and by sj, for the off-diagonal ones. �

Proof of Theorem 5.2. The bias result is calculated by observing
that the arguments used, in the proof of Theorem 3.2, for the asymptotic
conditional expectation of m̂(x; 1), hold for each m̂,  ∈ {1, . . . , q},
and that ||[m̂1 . . . m̂q ]|| p→ 1. For the variance, we consider just the
proof for the case q = 2. In particular, we have

var [m̂(x; 1) | X1, . . . , Xn] = ẽ′
1 Q̃2( Q̃

′
2X̃

′W̃ X̃ Q̃2)−1 Q̃
′
2X̃

′W̃ VW̃ X̃ Q̃2

× ( Q̃
′
2X̃

′W̃ X̃ Q̃2)−1 Q̃
′
2 ẽ1,

where

V =
[

S1,1 S1,2

S1,2 S2,2

]
.

Furthermore,

n−1X̃′W̃ VW̃ X̃ =
[

V 1,2 V 1,2

V 1,2 V 2,2

]
,

where for (j, ) ∈ {1, 2}, V j, corresponds to the matrix (A.9)
with s2 replaced by s2

 for  = j , and by sj, when j = , and
then can be approximated using (A.10). These approximations,
along the approximation in (A.6) applied to each block of the

matrix Q̃2( Q̃
′
2X̃

′W̃ X̃ Q̃2)−1 Q̃
′
2, and ||[m̂1 . . . m̂q ]|| p→ 1, yield the

variance. �
Proof of Theorem 5.3. For ease of the presentation, we refer to

q = 2. Recalling Q2, we have

E[m̂∗(x; 1) | X1, . . . , Xn]

= ẽ′
1 Q̃2( Q̃

′
2X̃

′W̃ V −1X̃ Q̃2)−1 Q̃
′
2X̃

′W̃ V −1

[
M1

M2

]
,

where, for  ∈ {1, 2}, M := [m(X1) . . . m(Xn)]′. Then, the
expansion [

M1

M2

]
≈ X̃B + 1

2

[
L1

L2

]
,
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where L := [θ2
1 ξ ′

1D2
m̄

(x)ξ 1 . . . θ2
n ξ ′

nD2
m̄

(x)ξ n]′, and similar argu-
ments as those used in the proof of Theorem 3.2, imply that the first
term in the expansion of the conditional expectation is m(x), and

E[m̂∗(x; 1) − m(x) | X1, . . . , Xn]

= 1

2
ẽ′

1 Q̃2(n−1 Q̃
′
2X̃

′W̃ V −1X̃ Q̃2)−1n−1 Q̃
′
2X̃

′W̃ V −1

[
L1

L2

]
.

Now, since

˚(X i) =
[

s2
1 (X i) s1,2(X i)

s1,2(X i) s2
2 (X i)

]
,

setting ς (X i) := s2
2 (X i){s2

1 (X i)s2
2 (X i) − s2

1,2(X i)}−1 , �(X i) := −s1,2

(X i){s2
1 (X i)s2

2 (X i) − s2
1.2(X i)}−1, and ϑ(X i) := s2

1 (X i){s2
1 (X i)s2

2 (X i)
− s2

1,2(X i)}−1, it results

˚−1(X i) =
[

ς (X i) �(X i)

�(X i) ϑ(X i)

]
and V −1 =

[
Uς U�

U� Uϑ

]
,

where, for a function h defined on Sd−1, Uh stands for a diagonal
matrix of order n having h(X i) as its (i, i)th entry, i ∈ {1, . . . , n}.
Then, denoting Ki = Kκ (cos(θi)), we have

Q̃2
′
X̃′W̃ V −1X̃ Q̃2

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

(x + θiξ i)(x ′ + θiξ
′
i)Kiς (X i)

n∑
i=1

(x + θiξ i)(x ′ + θiξ
′
i)Ki�(X i)

n∑
i=1

(x + θiξ i)(x ′ + θiξ
′
i)Ki�(X i)

n∑
i=1

(x + θiξ i)(x ′ + θiξ
′
i)Kiϑ(X i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and, the same approximations as those used in the proof of Theorem
3.2 to derive (A.5), lead to

n−1 Q̃
′
2X̃

′W̃ V −1X̃ Q̃2 ≈
[

Pς P�

P� Pϑ

]
where, for a function h defined on Sd−1,

Ph : = xx′f (x)h(x) + (d − 1)−1b2(κ)
[{h(x)Df̄ (x) + f (x)Dh̄(x)}x′

+ x{h(x)D′
f̄

(x) + f (x)D ′̄
h
(x)} + f (x)h(x)(Id − xx ′)

]
,

and, using the inversion formula for a symmetric block matrix

Q̃2(n−1 Q̃
′
2X̃

′W̃ V −1X̃ Q̃2)−1 Q̃
′
2

≈

⎡⎢⎢⎢⎣
Q2

(
Pς − P� P−1

ϑ P�

)−1
Q′

2

− Q2 P−1
ς P�

(
Pϑ − P� P−1

ς P�

)−1
Q′

2

− Q2

(
Pϑ − P� P−1

ς P�

)−1
P� P−1

ς Q′
2

Q2

(
Pϑ − P� P−1

ς P�

)−1
Q′

2

⎤⎥⎥⎥⎦.

The first block of the above matrix, with x dropped as the argument of
all involved functions, is

Q2

(
Pς − P� P−1

ϑ P�

)−1
Q′

2 = 1

|˚−1|

×

⎡⎢⎢⎢⎢⎢⎢⎣

ϑ/f

−{D′
f̄
ϑ + f (D′

ς̄ ϑ
2 + D ′̄

ϑ
�2 − 2D′

�̄ϑ�)/|˚−1|}
f 2

−{Df̄ ϑ + f (Dς̄ ϑ
2 + Dϑ̄ �2 − 2D�̄ϑ�)/|˚−1|}

f 2

(Id − xx ′)(d − 1)ϑ/(b2(κ)f )

⎤⎥⎥⎥⎥⎥⎥⎦,

while, the lower-right block is

Q2

(
Pϑ − P� P−1

ς P�

)−1
Q′

2 = 1

|˚−1|

×

⎡⎢⎢⎢⎢⎢⎢⎣

ς/f

−{D′
f̄
ς + f (D ′̄

ϑ
ς 2 + D′

ς̄ �
2 − 2D′

�̄ς�)/|˚−1|}
f 2

−{Df̄ ς + f (Dϑ̄ ς 2 + Dς̄ �
2 − 2D�̄ς�)/|˚−1|}

f 2

(Id − xx ′)(d − 1)ς/(b2(κ)f )

⎤⎥⎥⎥⎥⎥⎥⎦,

and for the off-diagonal blocks, we have

Q2 P−1
ς P�(Pϑ − P� P−1

ς P�)−1 Q′
2 = 1

|˚−1|

×

⎡⎢⎢⎢⎢⎢⎢⎣

�/f

−{D′
f̄
� − f (D ′̄

ϑ
ς� + D′

ς̄ ϑ� − D′
�̄ςϑ − D′

�̄�
2)/|˚−1|}

f 2

−{Df̄ � − f (Dϑ̄ ς� + Dς̄ ϑ� − D�̄ςϑ − D�̄�
2)/|˚−1|}

f 2

(Id − xx ′)(d − 1)�/(b2(κ)f )

⎤⎥⎥⎥⎥⎥⎥⎦.

Thus, noting that

1

|˚−1(x)|

[
ϑ(x) −�(x)

−�(x) ς (x)

]
=

[
s2

1 (x) s1,2(x)

s1,2(x) s2
2 (x)

]
,

Ds̄2
1
(x) = −|˚−1(x)|−2(Dς̄ (x)ϑ2(x) + Dϑ̄ (x)�2(x)

− 2D�̄(x)ϑ(x)�(x)),

Ds̄2
2
(x) = −|˚−1(x)|−2(Dϑ̄ (x)ς 2(x) + Dς̄ (x)�2(x)

− 2D�̄(x)ς (x)�(x)),

Ds̄1,2 (x) = |˚−1(x)|−2(Dϑ̄ (x)ς (x)�(x) + Dς̄ (x)ϑ(x)�(x)

− D�̄(x)ς (x)ϑ(x) − D�̄(x)�2(x)),

we obtain

Q̃2(n−1 Q̃′
2X̃′W̃ V−1X̃ Q̃2)−1 Q̃′

2 ≈⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2
1 /f −(D′

f̄
s2
1 − D′

s̄2
1

f )/f 2 s1,2/f −(D′
f̄

s1,2 + D′̄
s1,2

f )/f 2

−(Df̄ s2
1 − D

s̄2
1

f )/f 2 (Id − xx′ )(d − 1)s2
1

b2(κ)f
−(Df̄ s1,2 + Ds̄1,2 f )/f 2 (Id − xx′ )(d − 1)s1,2

b2(κ)f

s1,2/f −(D′
f̄

s1,2 + D′̄
s1,2

f )/f 2 s2
2 /f −(D′

f̄
s2
2 − D′

s̄2
2

f )/f 2

−(Df̄ s1,2 + Ds̄1,2 f )/f 2 (Id − xx′ )(d − 1)s1,2
b2(κ)f

−(Df̄ s2
2 − D

s̄2
2

f )/f 2 (Id − xx′ )(d − 1)s2
2

b2(κ)f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.11)
Additionally, since

X′W V −1

[
L1

L2

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

Kκ (cos(θi))θ
2
i

{
ς (X i)ξ

′
iD2

m̄1
(x)ξ i +�(X i)ξ

′
iD2

m̄2
(x)ξ i

}
n∑

i=1

Kκ (cos(θi))θ
3
i

{
ς (Xi)ξ

′
iD3

m̄1
(x)ξ⊗2

i + �(Xi)ξ
′
iD3

m̄2
(x)ξ⊗2

i

}
n∑

i=1

Kκ (cos(θi))θ
2
i

{
�(X i)ξ

′
iD2

m̄1
(x)ξ i + ϑ(X i)ξ

′
iD2

m̄2
(x)ξ i

}
n∑

i=1

Kκ (cos(θi))θ
3
i

{
�(Xi){ξ ′

iD3
m̄1

(x)ξ⊗2
i +ϑ(Xi)ξ

′
iD3

m̄2
(x)ξ⊗2

i

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

similar approximations as those used in the proof of Theorem 3.2 to
derive (A.7), yield

n−1X′W V −1

[
L1

L2

]

≈

⎡⎢⎢⎢⎣
(d − 1)−1b2(κ)f (x){ς (x)Tr(D2

m̄1
(x)) + �(x)Tr(D2

m̄2
(x))}

Op(b4(κ)1d )
(d − 1)−1b2(κ)f (x){�(x)Tr(D2

m̄1
(x)) + ϑ(x)Tr(D2

m̄2
(x))}

Op(b4(κ)1d )

⎤⎥⎥⎥⎦,
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which, combined with the approximation for Q̃2(n−1 Q̃
′
2X̃

′

W̃ V −1X̃ Q̃2)−1 Q̃
′
2, after a little algebra, gives the bias. For the variance,

we have that

var[m̂∗(x; 1) | X1, . . . , Xn]

= ẽ1 Q̃2( Q̃
′
2X̃

′W̃ V −1X̃ Q̃2)−1 Q̃
′
2X̃

′W̃ V −1W̃ X̃ Q̃2

× ( Q̃
′
2X̃

′W̃ V −1X̃ Q̃2)−1 Q̃
′
2 ẽ1,

with

n−1X̃′W̃ V −1W̃ X̃ =
[

�ς ��

�� �ϑ

]
,

where for a function h defined on Sd−1,

�h := 1

n

[ ∑
K2

κ (cos(θi))h(X i)
∑

K2
κ (cos(θi))θih(X i)ξ ′

i∑
K2

κ (cos(θi))θih(X i)ξ i

∑
K2

κ (cos(θi))θ 2
i h(X i)ξ iξ

′
i

]
.

Finally approximate each entry of the above matrix as in the proof of
Theorem 3.2 and use (A.11). �

[Received December 2012. Revised September 2013.]
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