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Abstract: The purpose of this study was to examine two biomass district heating plants 

operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and 

financial feasibility and of their environmental benefits. The former biomass district heating 

plant supplies only public users (Comunità Montana della Lunigiana, CML: administrative 

body that coordinates the municipalities located in mountain areas), the latter supplies both 

public and private users (Municipality of San Romano in Garfagnana). Ex-post investment 

analysis was performed to check both the consistency of results with the forecasts made in 

the stage of the project design and on the factors, which may have reduced or jeopardized 

the estimated economic performance of the investment (ex-ante assessment). The results of 

the study point out appreciable results only in the case of biomass district heating plants 

involving private users and fuelled by biomasses sourced from third parties. In this case, 

the factors that most influence ex-post results include the conditions of the woody biomass 

local market (market prices), the policies of energy selling prices to private users and the 

temporal dynamics of private users’ connection. To ensure the consistency of ex-post 

economic outcome with the expected results it is thus important to: (i) have good 

knowledge of the woody local market; (ii) define energy selling prices that should be cheap 

for private users but consistent with energy production costs and (iii) constrain private 
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users beforehand to prevent errors in the plant design and in the preliminary estimate of 

return on investment. Moreover, the results obtained during the monitoring activities could 

help in providing information on the effectiveness of the supporting measures adopted and 

also to orient future choices of policy makers and particularly designers, to identify the 

most efficient configuration of district heating organization for improving energy and 

environmental performances of communities, and to develop a chain model for the 

optimization of energy use in the municipality. 

Keywords: renewable energy; biomass woodchips; economic feasibility; economic 

evaluation; forest energy chain; district heating; environmental effects 

 

1. Introduction 

In Tuscany, funding programs designed to favor the development of agro-forestry biomass-based 

energy chains have been implemented since 2006. 

This has made it possible to build over 100 thermal and cogeneration plants having a power ranging 

from 200 thermal KW to 5.6 thermo-electric MW, with economic and environmental benefits to the 

forestry and the manufacturing sectors linked with the production of renewable technologies. 

This evolutionary trend, partly favored by the European policies in support of renewable energies 

(under Directives 2009/28/EC [1], 2004/8/EC [2], 2001/77/EC [3], etc.), has never been followed by the 

monitoring of the economic and environmental effects caused by those investments. No assessments 

are available at the chain level or on the regional scale. Testing was related only to the construction 

and operation of plants. 

Assessments are instead decisive to test the effectiveness of the supporting measures taken, with a 

view to orienting future choices and identifying the most promising strategies for improving energy 

and environmental performances of communities [4]. 

The study, resulting from a three-year monitoring activity on some biomass district heating plants, 

is designed to check these effects on some local chains, while supplying methodological proposals to 

assess the economic feasibility of the investment and determine energy production costs. 

In this regard, many authors have developed economic analyses on biomass district heating plants 

sometimes with controversial results [5–7]. Despite the high number of studies, no analysis was 

conducted on a major and influential factor for chain development, namely the possibility of having 

significant differences between ex-ante economic feasibility analysis and ex-post investment results. In 

practice, in the design stage (ex-ante) there could be information gaps which may have reduced or 

jeopardized the economic performance (ex-post). The factors that mostly influence this process include the 

conditions of the woody biomass local market (biomass prices); the policies of energy selling prices and 

the temporal dynamics of private users’ connection. 

Poor knowledge of the wood local market, ignorance of the correct procedures of acquisition of users, 

and wrong policies in setting energy selling prices may lead to errors in the sizing of the district 

heating plant and in the estimate of the return on investment. 
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Based on the above, the study makes this comparison, by examining very closely two biomass 

district heating plants operating in Tuscany, with a specific focus on the ex-post analysis of their 

economic and financial feasibility as well as their environmental benefits. More specifically, it considers 

the district heating plant of the Comunità Montana della Lunigiana, which supplies only public users, 

and the district heating plant of Municipality of San Romano in Garfagnana, which supplies both 

public and private users. In the latter case, besides assessing the ex-post economic feasibility of the 

investment, the study has developed a sensitivity analysis of the investment with respect to two 

variables: the wood chip price and the selling energy price applied to private users. 

This has allowed for the economic feasibility of the investment to also be evaluated for different 

market scenarios from the one under analysis, for example in areas with different biomass market 

prices or a diversified price of competitive fuels. 

Moreover, the study proposes an operational accounting approach for the definition of the unit 

production costs of the thermal energy produced in mixed (public-private) plants, in particular in the 

plants that have two heat production lines, respectively: one for heating public utilities, and the other 

for heating private users (dwellings, businesses, etc.). The proposed approach is the full-costing 

method [8–12] to allocate indirect costs between public and private users. In the case of mixed  

(public-private) plants, this evaluation actually enables testing the compatibility between the production 

cost of the energy for private users and the related selling price. 

The results obtained have confirmed large economic feasibility margins of biomass district heating 

plants designed for public facilities. In this case, the indicators of the investment feasibility are always 

extremely positive and in agreement with those defined in the stage of design. In the case of district 

heating plants designed for public facilities and for private users, results are always positive, but not 

actually as performing as in the previous case. In this configuration, the investment efficiency largely 

depends on the energy selling price for users, the purchase price of wood chips and private users’ timing 

of connection. 

2. The Case-Study: Forest Chain of Comunità Montana della Lunigiana and Forest Chain of San 
Romano in Garfagnana 

In Tuscany, there are several configurations of the forest energy chain, based on district heating 

technologies with high efficiency boilers. These chains are based on the recovery of forest residue 

biomasses, their subsequent conversion in wood chips and their use in district heating plants. There are 

multiple configurations of district heating plants: small size plants with private users and private 

operators; small and large size plants with public users and private operators; large size plants owned 

by the State, with a private operator and public and private users; large size plants owned by the State, 

with a public operator and public and private users; and finally, large size plants owned by the State and 

with public operators exclusively for public users. 

We refer to two district heating plants, which differ both in the forest energy chain and in the technical 

plant configuration. The two chains examined in this paper, Comunità Montana della Lunigiana 

(CML) and Municipality of San Romano in Garfagnana, are located in central Italy, in a mountainous 

area of the Tuscan Apennines (Figure 1). 
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Figure 1. The forest energy chain examined (on the right), and a zoom on the district 

heating plants operating in Tuscany (red dots). For more information [13]. 

 

The aim of the study was to compare ex-post and ex-ante economic feasibility and identify the 

reason for the possible gap. The second step was to find the strengths and weaknesses of organizational 

options and suggest adjustments based on observations for improving energy efficiency and  

socio-economic performance [14]. 

The forest chain of CML is based on the production of wood chips sourced from the State forests. 

The district heating plant is managed by CML and provides the service to three public utilities (Figure 2). 

Figure 2. Forest chain of Comunità Montana della Lunigiana. 

 

In the forest chain of Municipality of San Romano Garfagnana wood chips are sourced from local 

forestry companies and local sawmill and supplied to a district heating system for public facilities and 

private citizens (Figure 3). 
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Figure 3. Forest chain of San Romano in Garfagnana. 

 

The first chain uses wood chips, resulting from environmental improvement activities, such as 

thinning and pruning, in forests located at distances from 5 to 50 km from the district heating plant. 

The logs are piled up within a logistic platform [15,16] located 2 km from the heating plant. The 

storage of logs for the entire summer season reduces the Moisture Content (MC) from the initial  

45%–50% to 25%–30% (Figure 2). Chipping is performed by a sub-contractor in early September; the 

wood chips produced are directly stored in a warehouse in the logistic platform (Figure 2). The district 

heating plant has a power of 220 kW and is able to supply heat to MCL offices, a kindergarten and the 

headquarters of Public Assistance, with a total production capacity of 6300 cubic meters. The plant is 

only switched on during winter, and the annual average energy efficiency of the plant is approximately 

65% (Table 1). 

Table 1. Main data of the district heating plant of Comunità Montana della Lunigiana. 

Thermal Power Plant 220 kW 
Number of public users connected to the 
district heating network 

3 (6300 m3) 

Wood chip consumption 
(CM 24%) 

72 t/year 
Number of private users connected to the 
district heating network 

0 

Thermal energy produced 176 MW/h·year Annual Energy efficiency  65% 

In the second chain, the wood chips come from different suppliers: tree protection felling of the 

coastal pine forest of Pisa; thinning and clean-up of riverbeds of the Garfagnana area; and wood waste 

provided by a sawmill (Figure 3). The plant is directly managed by the local Municipal Administration 

which uses the heat produced to warm public facilities: the town hall, the library, the nursery school, 

the kindergarten, the primary school, plus private households (Figure 3). Private users connected to the 

network in different time frames: 40 users in the first year, 51 in the third and 80 in the fourth. In this 

case, the plant consists of two boilers of 500 and 320 kW power, which work in winter and summer, 

for the production of domestic hot water. The average annual consumption of wood chips was 624 t f.m. 

(up to 30% moisture content) with 51 users, but in the 2012/2013 winter it reached 860 t f.m. (with 80 

users) (Table 2). The energy efficiency, on an annual basis, exceeded 77%. 
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Table 2. Main data of the district heating plant of San Romano in Garfagnana. 

Thermal Power Plant 820 kW 
Number of public users connected to 
the district heating network 

5 

Wood chip consumption  
(CM 38.7%) 

868 t f.m./year 
Number of private users connected to 
the district heating network 

80 

Thermal energy produced 1.934 MW/h·year Annual Energy efficiency  77% 

The Municipality (manager) sells the energy to private consumers at 45 €/MWh plus 10% VAT (Value 

Added Tax), to which the tax credit must be added. The tax credit is equal to 25.82 €/MWh, in accordance 

with Italian Law 448/98 art. 8c. 10 letter F [17], as amended by Law 354/00 art. 4 par. 4(b) [18]. Overall, 

the sale of 1 MWh generates €70.82 of revenue. 

3. Evaluation of the Economic Performance 

The evaluation of the economic performance was carried out following strict accounting-financial 

guidelines that are helpful in supporting management decisions for Public Administrations: thus, only 

explicit costs were taken into account [5,14,19–22]. In the present case of ex-post economic evaluations, 

costs included the actual charges paid by the investor. 

The method consisted of: 

(1) Defining the cost flows for the biomass district heating plant (fuelled by wood chips) and the 

fossil district heating plant (fuelled by diesel); 

(2) Discounting the two cost flows: Net Present Cost biomass-fired (NPCR) and Net Present Cost 

diesel-fired (NPCF) [23]; 

(3) Comparing two NPCs. 

The economic performance indicators are: 

 the difference between the two NPCs (ΔNPC) 

The equation is: ∆ܰܲܥ = ∑ = ிܥܲܰ − ோܥܲܰ ೃ(ଵା)௧ୀ − ∑ ಷ(ଵା)௧ୀ  (1)

where: ܥ௧ோ = total annual costs borne at year n-th for the biomass-fired plant (R); ܥ௧ி = total annual 

costs borne at year n-th for the diesel-fired plant (F); n = duration of the investment; r = interest rate, 

or discount rate. 

 The internal rate of return (IRR) is a rate of return used to measure and compare the 

profitability of investments (e.g.,: IRR as compared to the mortgage loan interest rate, or to the 

interest rate of alternative investments); 

 The pay-back period (PBP) is the number of years required to recover the funds spent in the 

investment on biomass heating system; 

 The price of Break Even Point (Pbep) for wood chips is the maximum price that the heating plant 

managers are able to pay to the harvesting enterprises and that covers the total production costs. 
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In the case of the district heating plant of Municipality of San Romano in Garfagnana, the district 

heating plant has two production lines (Figure 4): 

(1) The energy for public facilities; 

(2) The energy for sale to private users. 

In order to check the adequacy of the energy selling price to private users, it has been necessary to 

estimate energy production costs, by allocating direct and indirect costs to each production line.  

This necessitated “the full cost method”—an analytical approach used in operational  

accounting [8,9,11,12,24–26]. This approach has enabled the assessment of the unit production costs 

of thermal energy in mixed plants. 

The full cost analysis is based on the classification of costs into: 

• Direct costs, i.e., those directly linked to the achievement of the product (example: fuels); 

• Indirect costs, i.e., the costs associated with the production inputs used jointly for both products 

(example: depreciation costs of the materials, administrative costs, maintenance, etc.). 

As a result, it was possible to define the cost elements for the two production lines. The most 

appropriate procedure for allocating the indirect costs was to ascribe them based on the amount of 

energy product, assuming that the amount of inputs is proportional to the quantity of energy produced 

by each production line (Figure 4). 

The evaluation has also considered the fact that private users were not all yet connected when the 

plant was ready to start, but they connected at different times. For this reason, the changes in costs that 

have occurred at different times, according to the level of productivity in different periods, have also 

been considered: 40 users connected in the first year, 51 in the third year and 80 from the fourth year 

(2012/2013 winter) (Figure 4). 

Figure 4. Energy used by each production line in San Romano in Garfagnana district 

heating plant. 

 
  

Heating plant
100% energy

Energy for Public 
facilities

Energy for sale to
private users

63.2%
(748 MWh/yr)

36.8%
(436 MWh/yr)

First scenario
2009/2010

(40 private users)

68.6%
(955 MWh/yr)

31.4%
(436 MWh/yr)

Second scenario
2011/2012

(51 private users)

77.5%
(1,498 MWh/yr)

22.5%
(436 MWh/yr)

Third scenario
2012/2013

(80 private users)

/year) /year)

/year)

/year)/year)

/year)



Energies 2014, 7 5906 

 

 

Economic Results 

District Heating Plant of Comunità Montana della Lunigiana 

The investment amounted to €142,999, fully covered by the CML. It was co-financed by the 

Tuscany Region on the basis of a voluntary agreement for the sector for €36,000 (Table 3). 

Table 3. The main characterizing parameters of district heating plant of Comunità 

Montana della Lunigiana. 

Life time 15 years Average moisture content 24% 

Applied discount rate 2.25% Gross energy content of wood chips 3.75 MWh/t f.m. 

Production cost of wood chips 
43.50 €/t (only 
explicit costs) 

Efficiency of the plant  64.94% 

Average annual consumption 
of wood chips 

72 t f.m./year 
Average energy content of wood 
chips 

271 MWh/year 

• The first result emerging from the monitoring activities is the considerable impact of costs 

associated to the consumption of electricity (2059 €/year), representing more than 65% of the 

costs borne for the supply of wood chips (3147 €/year). 

• The other important economic aspect is the high efficiency of the investment. In this case, the 

comparative approach between the two alternative investments (ΔNPC) estimated a present 

value of €237,203 (in terms of savings). It corresponds to an IRR of over 74% for the assumed 

15-year life of the plant in a payback period of just two years (Table 4). 

The wood chips BEP (Break Even Poin) price reaches 303 €/t f.m., confirming the very high 

efficiency of the investment compared to the production costs in the forestry sector (about 76 €/t f.m. 

in the territory of Lunigiana—Source CML). 

Therefore, it is an extremely efficient investment, since in a 7-year activity it enables the Public 

Administration to save €106,620, considering the regional co-financing. 

Table 4. Financial efficiency indicators for the investment of Comunità Montana della Lunigiana. 

Financial efficiency indicators 
Considering “only energy for public facilities” 

Without initial funding With 25% regional funding

Payback time (in years) 4 2 
∆NPC (€) 198,933 237,203 

Internal rate of return (%) 32% 74% 
BEP price of woodchips (€/t·f.m.) 262 303 

Average savings per year * (€/year) 15,773 18,808 

* For the same energy output. 

The results are in accordance with the ex-ante evaluation. In that case the difference in Net Present 

Cost was €206,784 (in terms of savings) and IRR was 54%, but the ex-ante evaluation did not consider 

electric power consumption. 
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District Heating Plant of San Romano in Garfagnana Municipality 

The investment made by the Municipality of San Romano in Garfagnana was equal to €684,450.  

It was partly co-financed by Tuscany Region within the Extraordinary Investment Program (2005) and 

POR-Creo call for a total amount of €254,000 (Table 5). 

Table 5. The main characterizing parameters of the district heating plant of Municipality of 

San Romano in Garfagnana. 

Life time 15 years 
Energy produced in the 
2011/2012 winter season 

1,391 MWh/year 

Applied discount rate 2.25% 
Energy produced in the 
2012/2013 winter season 

1,934 MWh/year 

Weighted interest rate on 20-year 
mortgage payments with the 
Deposit and Loan Bank (*) 

4.803% 
Efficiency of the plant for 
2010/2011 

77.06% 

Purchase price of wood chips 56.5 euro + VAT 
Selling price of thermal 
energy 

70.28 €/MWh 
(including tax credit, 
net of VAT) (**) 

Annual consumption of wood 
chips for 2009/2010 and 
2010/2011 

532 t f.m./year 
Energy sold in 2009/2010 and 
2010/2011 

748 MWh 

Annual consumption of wood 
chips for 2011/2012 

624 t f.m./year Energy sold in 2011/2012 955 MWh 

Annual consumption of wood 
chips for 2012/2013 

868 t f.m./year Energy sold in 2012/2013 1,498 MWh 

Average moisture content of  
wood chips 

38.7% 
Thermal energy consumed by 
public facilities 

436 MWh/year 

Gross energy of wood chips M38 
for 2009/2010 and 2010/2011 

1,559 MWh/year 
Turnover from energy sales 
for 2009/2010 and 2010/2011 

56,100 €/year 

Gross energy of wood chips M38 
for 2011/2012 

1,828 MWh/year 
Turnover from energy sales 
for 2011/2012 

71,625 €/year 

Gross energy of wood chips M38 
for 2012/2013 

2,544 MWh/year 
Turnover from energy sales 
for 2012/2013 winter 

112,350 €/year 

(*) Interest repayments on 20-year mortgage recalculated on the 15-year life time; (**) Tax credit €25.82 €/MWh 

(in accordance with L. No. 448/98 art. 8 c. 10 [17], letter F, as amended by L. 354/00 art. 4 c. 4bis [18]). 

Table 6 shows the economic results under the real-user dynamics of: 

• 40 private users connected to the plant in the first and the second year; 

• 51 users connected in the third year; 

• 80 users connected from the fourth year (2012/2013 winter). 

Within this configuration, the “payback period” of the investment is 8 years, the discounted savings 

will be equal to €331,166 and the IRR will reach 14.9%, which is higher than the cost of money 

(4.308%) obtained from the Cassa Depositi e Prestiti (CDP), an Italian bank for public investors. The 

BEP price of wood chips will reach €97.9 (Table 6). 
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Table 6. Financial efficiency indicators for the investment of Municipality of San Romano 

in Garfagnana. Overall assessment of the “self-consumption” production line plus the 

“heating energy sale” production line, assuming the connection of 40 users for the first to 

the 2nd years, 51 users for the third year and 80 users in the following years. 

Financial efficiency indicators 

Considering “energy for public facilities and energy for 
sale to private users” (*) 

Without initial funding With 37% regional funding 

Payback time (in years) >16 8 
∆NPC (€) −40,055 331,166 
Internal Rate of Return (%) NC 14.9% 
BEP price for woodchips (€/t f.m.) 57.8 97.9 
Average savings per year * (€/year) −3176 26,258 
BEP price of Energy (€/MWh) 77.50 54.30 
Average production cost of energy  
ex-ante (€/MWh) 

147.12 

Average production cost of energy  
ex-post (€/MWh) 

65.84 53.04 

(*) These evaluations do not consider the same quantity of energy delivered ex-ante and ex-post. In the  

ex-post situation, the consumption by users is 37% higher (Table 4). In this case, the appropriate reference 

parameter is the average production cost of energy. 

Under these conditions, the sum of the average annual savings achieved by the public sector and  

the annual net profit derived from the sale of energy to the 80 private users is 26,258 €/year (Table 6). 

The BEP price of the heat sold is 54.3 €/MWh (including tax credit). 

The results are not exactly in line with the ex-ante evaluation. In such case the difference in Net 

Present Cost was 490,543 € (in savings), PBP (pay-back period) was 6 years and IRR 23.03%. 

However, the ex-ante evaluation considered equal energy production ex-ante and ex-post. Moreover, in 

the ex-ante evaluation the estimate of electric energy costs was much lower, and it was assumed that all 

80 private users connected to the network since the first year. 

In this case, the traditional economic performance indicators are not appropriate because the evaluation 

was carried out with respect to the real incurred energy consumption. In the ex-post configuration a 

37% higher production is obtained as compared to the ex-ante conditions (Table 4). 

The above data show that the traditional indicators (∆NPC, IRR, etc.) underestimate the investment 

efficiency (Table 6). Table 6 shows the calculated average cost of energy production prior and after the 

provision of the production facility. 

Table 6 clearly indicates that the cost of energy production is much lower in the ex-post than in  

the ex-ante situation, even in the absence of public funding. More specifically, the cost of energy 

production reaches 65.84 €/MWh, with a cost reduction exceeding 55%. The investment is clearly 

highly effective even in the absence of funding. 

The evaluation of the investment efficiency for private houses has been performed for the single 

user. The results show a variability that is the result of the mix of technologies installed in each 

dwelling (e.g., fireplace, wood stove, LPG (Liquefied petroleum gas) boiler, etc.). 
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The key variable is the quantity of energy absorbed annually by the network and by each user.  

In particular, it has been found that the users with the best economic performance are those that use 

large amounts of heat from the district heating network [21]. In these cases, the average costs of the 

thermal energy used in the household varies between 50 and 70 €/MWh in relation to the mix of 

energy consumption. However, in case of substantial use of traditional fuels (firewood), the average 

costs are between 70 €/MWh and 100 €/MWh. 

The costs are much lower than in the previous configuration, where the consumption of fossil fuels 

led to an average cost between 95 €/MWh and 140 €/MWh. 

However, in the case of San Romano in Garfagnana, it would have been appropriate to connect  

all the users in a shorter time frame and to sell the thermal energy at a higher price (e.g., 70 €/MWh 

excluding tax credit, rather than at the currently practiced one, namely 45 €/MWh excluding tax credit). 

The high margins of competitiveness compared with the energy mix previously consumed by individual 

users (from 95 to 140 €/MWh) would have been still maintained. 

4. Sensitivity Analysis of San Romano District Heating Plant Investment 

Sensitivity analysis is useful when attempting to determine the impact that the actual outcome of a 

particular variable will have if it deviates from expectations. By creating a given set of scenarios, the 

analyst can determine how changes in one variable will impact the target variable [27]. 

In this case, the evaluation was not a predictive one but an ex-post investment analysis. Input costs 

are objectively borne in the phases of implementation and operation of the plant. There are no random 

variables that might change the economic-financial dynamics of the investment; there is neither risk 

variability, nor uncertainty about future cash flows. The physical connection of the district heating 

plant network with customers does not involve any variability in the number of customers or in the 

quantities of sold energy, as well as in the returns of production factors (fuels, labor, etc.). 

The sensitivity analysis (e.g., Montecarlo) is used for the evaluation of complex investments, 

mostly characterized by high invested capital and high uncertainty about future cash flows (and 

subsequent high risk) [28–30]. We have not the need to define probability functions with respect to 

variables, such as sold energy, production costs, etc. 

However, in the framework of decision support systems, it is very useful to have a picture of the 

investment sensitivity with respect to variables that cannot always be controlled by the manager of the 

district heating plant, namely the selling price of wood chips and the policies of energy selling price. 

The first parameter is largely influenced by the territorial context (availability of biomass, number 

of harvest enterprises, presence of wood industries, etc.); the second parameter is instead guided by 

local political strategies aimed at maximizing the local consensus and at making biomass energy 

highly cost effective as compared to fossil-based energy (LPG, gas/diesel oil, kerosene, etc.), because 

all private users decide whether or not to get connected to the district heating plant, based on the 

opportunity cost of the competitive fuel. 

Table 7 shows the sensitivity analysis of ∆NPC, Payback time, Internal Rate of Return and average 

savings per year with respect to the wood chip price and the selling energy price for private users. 
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Table 7. Sensitivity analysis for financial efficiency indicators as related to some scenarios 

of energy selling price and wood chip price—Municipality of San Romano in Garfagnana. 

Red cell scenario is similar to the real-world scenario. Scenario with 40, 51 and 80 users. 

ΔNPC (€) 

With 37% regional funding  Without initial funding 

Wood chip price €/t f.m. Wood chip price €/t f.m. 

40 60 80 100 40 60 80 100 

Selling price of 
energy €/Mwh 
(including tax 
credit) 

70 456,482 271,117 85,752 −99,613 85,260 −100,105 −285,469 −470,834
90 776,386 591,021 405,656 220,291 405,164 219,799 34,434 −150,930

110 1,096,289 910,924 725,560 540,195 725,068 539,703 354,338 168,973 
130 1,416,193 1,230,828 1,045,463 860,099 1,044,972 859,607 674,242 488,877 

Payback time (years) 

Selling price of 
energy €/Mwh 
(including tax 
credit) 

70 6 8 12 >16 13 >16 >16 >16 
90 5 6 7 9 9 11 15 >16 

110 5 5 5 6 7 8 10 12 
130 4 4 5 5 6 7 8 9 

Internal rate of return (%) 

Selling price of 
energy €/Mwh 
(including tax 
credit) 

70 18.22% 13.16% 6.54% NC 4.33% - NC NC 
90 25.19% 21.35% 16.93% 11.56% 10.31% 7.11% 3.13% NC 

110 30.94% 27.72% 24.18% 20.21% 14.88% 12.35% 9.49% 6.11% 
130 35.92% 33.11% 30.08% 26.79% 18.70% 16.55% 14.21% 11.60% 

Average savings per year (€/year) 

Selling price of 
energy €/Mwh 
(including tax 
credit) 

70 36,194 21,496 6,799 −7,898 6,760 −7,937 −22,634 −37,332 
90 61,558 46,861 32,164 17,467 32,125 17,428 2730 −11,967 

110 86,923 72,226 57,529 42,831 57,490 42,792 28,095 13,398 
130 112,288 97,591 82,893 68,196 82,854 68,157 53,460 38,762 

Hence there are 16 scenarios in the absence of funding and 16 scenarios in the presence of funding. 

The red cells highlight the scenario that is closest to the real-world. This is a scenario with quite low 

performances, although it is not evaluated for the same energy ex-ante ex-post. A moderate increase in 

the price of wood chips could lead to shift the assessment towards grey-colored scenarios, with low or 

even negative financial efficiency rates. 

In order to ensure a greater stability of the investment it would be enough to slightly increase  

the selling price of energy from the current 70.28 €/Mwh to 90 €/Mwh (about 65 € for families, net of 

the tax credit). This price is, however, very cheap for private users but it would better secure the 

investment from the risk of any rise in price of wood chips. However, with these prices the investment 

would be sustainable even in the absence of Regional funding. 

Table 8 instead illustrates the evaluation of the investment sensitivity as related to a change in the 

timing of private users’ connections. The actual scenario involving the connection of 40, 51 and 80 

users over 4 years is compared with the optimal scenario implying the connection of 80 users since the 

first year. The results in Table 8 show that the parameter of connection timing has a positive effect on 

efficiency indicators that, however, is not as high as the above price changes. This aspect needs to be 

supported together with an appropriate definition of energy selling prices. 
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Table 8. Comparison of financial efficiency indicators for two scenarios relating to different 

timing of connections to the district heating plant of Municipality of San Romano in 

Garfagnana. Real-world scenario (connection of 40, 51 and 80 users in 4 years), optimal 

scenario with the connection of 80 users since the first year. 

Scenario of users’ 

connection  

With 37% regional funding (%) Without initial funding 

Payback 

time 

(years) 

∆NPC 

(€) 

Internal 

rate of 

return 

(%) 

Average 

savings 

per year 

(€/yr) 

BEP price 

of energy 

(€/MWh) 

Paybac

k time 

(years) 

∆NPC 

(€) 

Internal 

rate of 

return 

(%) 

Average 

savings 

per year 

(€/year) 

BEP 

price of 

energy 

(€/MWh)

Real scenario 40 to 

50 to 80 
8 331,166 14.90% 26,258 54.30 >16 −40,055 - −3,176 77.50 

Optimal scenario 

immediately 80 
7 338,927 16.40% 27,449 51.30 >16 −32,295 - −2,584 73.90 

5. Economic Feasibility of the Forest Energy Chain 

For Tuscan forest harvesting enterprises, the development of this new “production line” requires 

investments in product processing (new machinery for the processing of wood chips), logistics and the 

organization of specific sites for different product lines (full tree system, skidding in two times, etc.). 

As a consequence, the start-up of the “wood chip” production line is strictly related to appropriate 

guarantees on the economic feasibility of the investment and to the stability of wood chip market price. 

A useful indicator to verify the investment’s risk relative to the market conditions (market price 

level of wood chips for thermal plants and cogeneration power plants) is constituted by two safety 

margins with respect to the price of wood chips (Figure 5). These safety margins link investments and 

production costs with the local prices of wood chips. 

They correlate the production costs of the harvesting enterprise (c) with the market price of wood 

chips, and the Price of Break Even Point for energy production plants (Pbep) with the market price of 

wood chips. 

Figure 5 shows the two indicators: Sm1 is an indicator of the investment’s risk for the harvesting 

enterprise relative to the market conditions. It indicates, in percent values, the maximum decrease  

in the market price of wood chips that can ensure that wood chip production costs are covered. For 

instance, when the customer of a new thermal plant contacts a forest enterprise asking for the supply of 

wood chips at a given price, the forest entrepreneur may assess the feasibility of the investment in new 

wood chipper relative to safety margins Sm1. 

Figure 5. Safety margins in relation to the market price of wood chips for the harvesting 

enterprises and for biomass energy plants. 
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Sm2 is instead an indicator of the investment’s risk for the owner/manager of the energy plant 

relative to the market conditions. It indicates, in percent values, the maximum increase in the market 

price of wood chips which can guarantee production costs lower or equal to the revenue obtained from 

the sale of the thermal or thermo-electric energy. For example, when the customer has to assess 

whether to implement or not a new thermal plant, he/she can test the investment’s feasibility through a 

market survey on chip local prices (Pm) and by comparing these results with the price of break-even 

point (Pbep) of wood chip at the plant. The greater the difference, the higher the investment’s safety 

against possible changes of the market price. 

It is evident that the greater the safety margins of the two enterprises in the chain, the greater the 

guarantees against any (downward or upward) possible variation of wood chip market prices. 

By proposing a simulation for the chain of the district heating plant of CML considering that 

• The production cost of wood chips is about 76 €/t f.m. (source: Forestry Area CML); 

• The price of break-even point of wood chips for the above system is equal to 303 €/t f.m.; 

• The current market price for wood chips is in the range of 60–70 €/t f.m. 

It is clear that the safety margin Sm1 is equal to approximately −6%, while Sm2 is approximately 321%. 

In Italy, the current sources of woody biomass are represented almost exclusively by: 

• Pruning and thinning; 

• Cuts for the starting of high forest; 

• Plant protection pruning; 

• Cleanups of riverbeds. 

These interventions have traditionally a negative stumpage value, but they might be economically 

viable, if supported by grants (for example the measure 122 of the Rural Development Plan 2007–2013). 

Thanks to the contribution of the Rural Development Plan, woody biomass is therefore available and 

forest-cutting cost is very low, even close to zero. Thus, the margin Sm1 is not currently negative, as it 

is part of the production costs covered by the above funding. 

The managers of district heating systems currently have wide safety margins for the investment, 

whereas the harvesting company does not have any benefit in harvest activities in the case of joint 

production (firewood/timber sawmill and wood waste), in the absence of public funding. An increase 

of market prices for wood chips close to 80–90 € could therefore encourage the interest of harvesting 

enterprises to make cuts for joint productions, while still guaranteeing wide margins for the manager of 

the district heating system (237% ≤ Sm2 ≤ 270%). 

In the case of the chain of the Municipality of San Romano in Garfagnana, the margin Sm1 for the 

harvesting company is variable, since the production costs of suppliers may vary from 35 to 40 €/t f.m. 

for the material resulting from the maintenance of riparian buffer strips, thinning and phytosanitary 

cutting (considering pruning, tree felling, setting and skidding covered by the Rural Development Plan 

funding), to 90 €/t f.m. for full tree system production in small size plots [31]. Compared to the local 

market prices of wood chips (56.5 € + VAT), Sm1 can vary from 29% to 47% for the material resulting 

from forest maintenance to −65% for the material resulting from full tree system forest production. 

Considering that the Pbep of chips is equal to 97.9 €/t f.m., the manager of the district heating system has a 

positive Sm2 margin, which is approximately equal to 70% of the market price. 
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In both cases, the level of risk (risk-return ratio) of the investment, related to the variation of market 

conditions (price changes), is quite low. Indicators point out a greater level of risk for forest operators 

but high margins for the managers of energy plants. Therefore, an increase in price of solid biomasses 

would not have significant effects on the risks of plant managers, but would enable integrating into 

supply new biomasses resulting not only from forest maintenance cuts (riparian buffer strips, thinning  

and phytosanitary cutting), but also from clear cutting for woodchip production. However, the same 

result could be achieved through the structural investments on forest operators, i.e., by funding new 

more productive and efficient hauling systems for the orographic conditions of Tuscan territories  

(e.g., cableways). 

6. Evaluation of the Local Socio-Economic Effects 

The district heating systems fuelled by solid biomass are traditionally built in mountain areas, 

because of the proximity of forest resources and the economic contributions for investments made in 

these disadvantaged areas (tax credits, grants, etc.). The locations of district heating plants are characterized 

by the conspicuous use of fossil fuels, such as diesel and LPG, but also of firewood. It is interesting  

to note that Tuscany is the largest firewood consumer at the national level, reaching approximately  

1.4 million cubic meters per year [32–34]. 

To assess the effects caused by the introduction of a wood chip–fired district heating system on the 

local community, it is essential to examine the dynamics of energy consumption before and after the 

establishment of the district heating plants [35]. 

In the case of the plant of Comunità Montana della Lunigiana, there was a total replacement of 

fossil fuel (diesel) with renewable fuel (wood chips) (Table 9). 

Table 9. Dynamics of fuel consumption for the heating of buildings connected to the 

district plant of Comunità Montana della Lunigiana. 

Energy consumption for heating Ex-ante Ex-post 
% Variation  

ex-ante/ex-post Sector Fuels 
Energy 

MWh/year
% 

Energy 
MWh/year 

% 

Public 

Fossil energies 
Diesel 100.00 100% - - −100% 
LPG - - - - - 

Renewable 
energies 

Wood chips - - 176.00 100% +100% 
Firewood - - - - - 

Pellets - - - - - 

Total 100.00 100% 176.00 100% +76% 

Based on the analysis of the past and present consumption, as metered at the public facility, some 

variations in energy use were recorded. In particular, the users of the three facilities (CML headquarters, 

schools and public assistance operational centers) have perceived a warmer and more comfortable 

environment, as the current energy used for heating is about 76% higher than in the previous scenario 

(with the use of fossil fuels) (Table 9). 
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The positive effects on the local forest-wood sector are limited to the involvement of a harvesting 

enterprise in transport and chipping activities, because the current forestry activities (pruning, felling and 

skidding) are the same that were carried out previously [36]. 

A survey was conducted among all private households connected to the district heating plant of  

San Romano in Garfagnana to identify the types of available heating system and their corresponding 

energy consumption. As shown in Table 10, the private users connected to the district heating plant are 

still using other home heating systems. Only through a direct survey it would have been possible to 

define the previous and current energy mix of individual users. 

Table 10. Dynamics of fuel consumption for the heating of buildings connected to the 

district plant of Municipality of San Romano in Garfagnana. 

Energy consumption for heating Ex-ante Ex-post 
Variation %  

ex-ante/ex-post Sector Fuels 
Energy 

MWh/year
% 

Energy 
MWh/year

% 

Public 

Fossil energies 
Diesel 51.04 26% 0 0% −100% 
LPG 149.02 74% 0 0% −100% 

Renewable 
energies 

Wood chips - - 436.10 100% - 

Total 200.06 100% 436.10 100% 118% 

Private 

Fossil energies 
Diesel 296.43 20% - 0% −100% 
LPG 395.62 27% - 0% −100% 

Renewable 
energies 

Wood chips  % 1.498.00 82% 
Firewood 713.84 49% 315.28 17% −56% 

Pellets 42.70 3% 15.51 1% −64% 

Total 1448.59 100% 1828.79 100% 26% 

Total energy consumption 1648.65 - 2264.89 - 37% 

District heating energy consumption - - 1934.10 - - 

The results shown in Table 10 point out that the energy consumption of public utilities (two 

schools, one kindergarten, a library and City Hall) has also increased significantly from about  

200 MWh/year to more than 430 MWh/year (by about 118%). Consequently, the thermal comfort of 

the users of these public facilities has increased considerably. 

The same trend is also evident for private users with a 26% increase of the thermal energy consumption 

from 1448 MWh/year to 1828.79 MWh/year in the current situation. 

As to private users, there is a shift from fossil fuels and a drastic reduction in the consumption  

of traditional renewable fuels (firewood and pellets). Firewood decreases from 713.84 MWh/year to 

315.28 MWh/year, with a 56% reduction, while pellets decline from 42.70 MWh/year to 15.51 MWh/year. 

In quantitative terms, the consumption of firewood has decreased from 432.71 t f.m./year to  

199.06 t f.m./year, with a 54% reduction, while the consumption of pellets has decreased from  

9.26 t/year to 3.26 t/year. The quantities of firewood are affected by the different efficiencies of the 

technologies used by users (fireplace, stove, fireplace heat, etc.). 

Given that many users were self-supplying firewood, the amount purchased on the local  

market decreased from 295.73 t f.m./year to 124.30 t f.m./year, with an annual expenditure which has 
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dropped from 27,650 € to 11,691 €. The amount of self-supplied firewood was 140 t f.m./year, now it 

is 74.76 t f.m./year. 

Firewood sales declined at a local level to approximately 15,958 €/year, while the turnover for the 

assortment of wood chips increased to about 53,946 €/year. 

7. Evaluation of the Environmental Effects 

In mountainous areas, where the use of firewood for domestic heating is a well-established practice, 

the introduction of highly efficient district heating systems results in a positive environmental effect, 

due to a more efficient use of biomass technology [37]. This is obviously true for heating systems, 

which also involve private households, traditionally linked to the use of wood fuel for domestic 

heating (Table 10). 

At San Romano in Garfagnana, firewood was used by technologies that allowed an average 

efficiency of 60%, while biomass is currently used with an efficiency of over 77%. In this case, the 

increased efficiency of the technologies used for heating allowed an annual saving of biomass equal to 

over 240 t f.m./year. The overall efficiency derives from the weighted sum of the efficiencies of the 

technologies used by end users (fireplace, stove, fireplace heat, etc.). 

The analysis of Table 10 also shows an environmental effect in terms of forest management. More 

specifically, the decline in demand for firewood (−233 t f.m./year) by the 80 private households 

connected to the district heating plant of San Romano in Garfagnana caused a 2-ha reduction of the 

forest areas annually subject to felling. On the other hand, there was a recovery of residual biomass 

(over 860 t f.m./year) from the forest maintenance activities. 

From an environmental point of view, reducing greenhouse gases emissions, such as CO2, CH4, 

N2O, etc., thanks to the production of biomass-fired plants, is of paramount importance. Knowing the 

amount of energy production and, above all, the quantities of different fuels used in the thermo-chemical 

process, it is possible to calculate the balance of emissions in tons of CO2 equivalent per type of user, 

by comparing ex-ante and ex-post emissions (i.e., after the construction of district heating plants). 

Assessments of emissions refer to the entire production cycle of different fuels used. The greenhouse 

gas emissions generated during each stage of the production process are then also estimated for: 

• Extraction; 

• Processing; 

• Storage; 

• Energy conversion of fuel for production machinery. 

The same production of plant biomass requires the use of fossil fuels and of the so-called grey 

emissions (Tables 11 and 12). 

At the plant of Fivizzano, the annual reduction of greenhouse gas emissions reaches 52.3 tons, 

corresponding to an over 92% reduction in emissions, while at the plant of San Romano in Garfagnana, 

the annual reduction exceeds 222 tons of CO2 equivalent, corresponding to about 80% reduction. 

The average emissions for private users, expressed in tons of CO2 equivalent, decrease from  

2.75 t/year to 0.55 t/year. 
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Table 11. Dynamics of greenhouse gas emissions in CO2 eq. for the CML plant (Fivizzano). 

Type of users 
ex-ante CO2 eq. 

(t/year) 
ex-post CO2 
eq. (t/year) 

Annual reduction 
CO2 eq. (t/year) 

Ex-ante/ex-post reduction 
CO2 eq. (t/15 years) 

Public users 56.70 4.40 −52.30 −784.50 

Table 12. Dynamics of greenhouse gas emissions in CO2 eq. for the plant of Municipality 

of San Romano in Garfagnana. 

Type of users 
ex-ante CO2 
eq. (t/year) 

ex-post CO2 
eq. (t/year) 

Annual reduction 
CO2 eq. (t/year) 

Ex-ante/ex-post reduction 
CO2 eq. (t/15 years) 

Public users 57.65 10.90 −46.75 −701.25 
Private users 219.95 44.00 −175.95 −2639.25 

Overall balance 277.60 54.90 −222.70 −3340.50 

8. Conclusions 

The study illustrates the results of a three-year monitoring activity conducted on two common types 

of biomass district heating plants, operating in Tuscany [38]. They include a plant supplying public 

facilities, implemented and run by a public body, and a plant supplying public facilities and 80  

private dwellings. 

The study has developed ex-post investment analyses to check on whether results have been 

consistent with ex-ante evaluations. This was targeted to identify the factors that may have reduced or 

jeopardized the estimated economic performances. 

The results of the study point out significant differences, notably for the district heating plants that 

also involve private users. In the case of the Municipality of San Romano in Garfagnana, where the 

plant is owned and run by the State, where users are both public and private and biomass is sourced 

from forest enterprises and sawmills, the ex-ante analysis does not match the ex-post investment 

evaluation. The occurrence of some information gaps in the design phase has actually affected the 

economic performances of the investment. 

In particular, the sensitivity analysis has shown that the most influential factors include the 

conditions of the wood biomass local market (market price of wood chips), the accurate definition of 

the thermal energy selling price and the temporal dynamics of private users’ connection to the network. 

The latter parameter is also closely related to another aspect: the poor knowledge of demographic 

conditions and the real size of secondary residences. 

Looking at the results of the sensitivity analysis relative to 31 possible scenarios, besides the reference 

scenario, it emerges that to ensure greater stability of the investment it would be enough to slightly 

increase the energy selling price from the current 70.28 €/Mwh to 90 €/Mwh (corresponding to about 

65 €, net of the tax credit). This price would be extremely cheap for private users, but it would better 

protect the investment from the risk of wood chip price increases. In case of a wood chip price increase 

beyond 80 euro/t f.m., the investment would become quite risky. 

Moreover, in the case of the district heating plant of Municipality of San Romano in Garfagnana, 

the traditional economic performance indicators are not suitable, because in the ex-post configuration, 

there is a 37% extra energy production as compared to the ex-ante conditions. In particular, if you 

consider the traditional parameters, the discounted savings will be equal to €331,166 and the IRR will 
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be 14.9%, while the “payback period” of the investment is 8 years. However, if you compare the ex-ante 

and ex-post average production cost of energy, you observe a 64% reduction from 147.12 €/MWh to 

53.04 €/MWh, with a very significant saving. 

On the other hand, in the case of the plant of Comunità Montana della Lunigiana that is owned and 

run by the State and the biomass supply is provided by the public body, ex-post evaluations are very 

close to ex-ante analyses, although they had a different equivalent energy value. 

The results show that in the case of CML plant, the comparative approach between the two alternative 

investments (ΔNPC) shows a current value of €237,203 (in savings). It corresponds to an IRR of over 

74% for the assumed 15-year life of the plant in a payback period of just two years. The ex-ante 

evaluation was close to it. 

With regard to the local economic effects, the connection of private households to district heating 

networks in rural areas causes a strong reduction in the heating expenditure for the local community 

(ranging from −64% to −22% for the public facilities of San Romano in Garfagnana) and a reduction 

of the firewood local market in favor of the wood chip market. The market for wood chips, however, 

experienced a substantial increase. Given that the current sources of wood chips consist solely of 

material resulting from forestry activities financed by various measures of the Rural Development 

Plan, the structuring of the forest energy chains will certainly have amplifying effects for the policies 

aiming at the improvement of the forest component initiated by the RDP. These interventions are those 

that make a tangible improvement in the forestry component not only in terms of quality of trees, but also 

for public safety, by improving the stability of slopes, reducing landslide risk and limiting fire risk. 

Consequently, the structuring of forest energy chains, which involve private users, causes an 

increase in the maintenance and improvement of forestry interventions—which have typically a negative 

stumpage value—realized by large forest companies. It also induces a reduction in the operations for 

the production of firewood—that have typically a positive stumpage value—carried out by small 

family companies with limited equipment. 

In order to guarantee a stable and balanced development of the sector and of the relevant chains,  

it is necessary to verify beforehand the existence of possible trade-offs that can arise in the local 

economy. By doing so, the biomass production and its energy utilization at local level can become a 

tool for territorial development, preservation of rural areas and improvement of the community quality 

of life. These activities favor the development of positive economic start-up businesses linked with 

forest activities. 
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Glossary 

kW Kilowatt (to measure the power of heating district plants) 

kWh Kilowatt hour (to measure energy production from heating district plants) 

MWh Megawatt hour (1000 kWh) 

MC Moisture Content (%) is a gravimetric water content and is expressed by the 

difference between the mass of the original sample W and the mass of dried sample 

D, divided by the mass of the original sample W 

t f.m. tons of fresh matter (up to 30% MC) 

ΔNPC difference between fossil fuel-fired Net Present Cost (NPCF) and biomass-fired 

plant Net Present Cost (NPCR) (in euro) 

N duration of the investment (in years) 
R
tC  total annual costs borne in the year n-th for the biomass-fired plant (R) 
F
tC  total annual costs borne in the year n-th for the fossil fuel-fired plant (F) 

R interest rate, or discount rate (%) 

IRR internal rate of return (%) 

PBP pay-back period (in years) 

Pbep price of Break Even Point for wood chips (in euro/t f.m.) 

Pm market price of wood chips (in euro) 

C production costs of the harvesting company 

Sm1 safety margins 1: maximum decrease in the market price of wood chips Pm that can 

guarantee the coverage of the production costs for the harvesting company (%) 

Sm2 safety margins 2: maximum increase in the market price of wood chips Pm which 

can guarantee the coverage of the production costs of the energy production firm 

(thermal or electric or thermo-electric) (as %) 

CO2 eq. CO2 equivalent: it is the unit of measurement that allows weighing together the 

emissions of different greenhouse gases. It is a measure of the potential greenhouse 

effect of each gas. For example, the greenhouse effect of 1 ton of CH4 gas is equal to 

that of 21 tons of CO2, i.e., it is 21 t CO2 eq. 
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