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ABSTRACT. The paper discuss the sensitivity to the presence of aithiethe portfolio optimization
procedure based on the expected shortfall as a measur&.dk rigbust approach based on the forward
search is then suggested which seems to give quite goods.esul

1 INTRODUCTION

The main objective of portfolio selection is the constraotof portfolios that maximize ex-
pected returns at a certain level of risk. In the classicatkdaitz mean-variance efficient
frontier problem, estimates of the expected returns anatvariance matrix of the assets
are used to calculate the optimal allocation weights (Markny 1959). The drawbacks of
the classical mean-variance approach have been widelysdisd (Michaud, 1989). It is well
known that asset returns are not normal and, therefore, ganrand the variance alone do
not fully describe the characteristics of the joint assstriiution. As a consequence, espe-
cially in cases of strong nonnormality, the classical mearnance approach will not be a
satisfactory portfolio allocation model. Indeed, it is stimes considered useless because it
can lead to financially irrelevant optimal portfolios (Axder and Baptista, 2002). Among
the reasons of this drawback a relevant role is played byrtfieeince of extreme returns
(Huanget al,, 2008). A sensitivity analysis of the mean-variance mottgjether with a ro-
bust alternative, has been carried out by Grossi and La{2@1i1).

Another criticism which is commonly made to the Markowitzlie use of the histori-
cal standard deviation as a measure of risk. Several altezmaeasures of risk have been
proposed (e.g., value of risk and expected shortfall, addled conditional value at risk) and
optimizers based on these measures have been implementa(Bler and Uryasev, 2002).
Some of these measures are more appropriate than classimtility (the return standard de-
viation) for long-tailed return models and are more reiligtan the classical normal model.
In addition, the computation of optimal portfolios basedthase measures does not even
require the return covariance matrix.

In this paper we discuss the problem of statistical robusstrod optimization methods
based on Spectral Risk Measures and show that the latteparebust, meaning that a few
extreme assets prices or returns can lead to “sub-optinmatfqtios. We then introduce a
robust estimator based on the forward search (Atkiretaal.,, 2004) of input parameters in
the maximization procedure and show that it is far more staishn the classical version
based on maximum likelihood estimator (MLE).



2 PORTFOLIO SELECTION WITH DIFFERENT MEASURES OF RISK

To introduce the general problem, let us suppose to INvisky assets, whose observed
prices forT periods arepy,t =1,...,T,i=1,....N and letx = (x1,...,xn)" be the vector
of portfolio weights. The assets returns are given by a matr= (y1,...,yn), Wherey, =
(Vits---»Yits- -, Yir)" andyie = In(pit/ pi—1) ~ (Pit/Pi—1) — 1 with expected returns given by
aN x 1 vectorpandN x N expected covariance matiXx The expected return and variance
of the portfolio can be written gg = X'pt andcr% = XXX, respectively.

For a given level of risk tolerancg the classical mean-variance optimization problem
can be formulated as

min (X=x—yXp) 1)

subject to the constraints> 0 (meaning that all the weights are strictly non negative) an
X1y = 1, wherety is aN x 1 vector of ones. The constraint of no short-selljirg- 0) is very
frequently imposed as many funds and institutional inuaséme not allowed to sell stocks
short. We will make use of the no short-selling constrainbtighout the paper. When this
constraint is removed, it is easily proved that, using thgraage method, for any> 0, the
maximization problem has an analytical solution. If we graltl increasey from zero and
for each instance solve the optimization problem, we endalgutating each portfolio along
the efficient frontier. Loosely, the efficient frontier issthine connecting the upper boundary
of the set of feasible portfolios that have the maximum refar a given level of risk.

In the present paper, we replace, as risk indicator, vilatilith the Expected Shortfall
(or Conditional VaR, CVaR) of the portfolio. Remind that te&pected Shortfall oV of
ordera € (0,1) is

ES(V) = 2 [ VaR,(V)du )

where VaR (V) = —inf{v : P(V <v) > u} is the Value-at-Risk o¥ of orderu. Uryasevet
al. (2000) proved a very useful result for the computation of ES:

e the function
1
Gu(zV) =2+ aE[(—z—V)*] (3)

is jointly convex in(z,V) (z€ R andV is in a space of random variables) for amy
e In particular

(zX) — z+ %]E[(—z— XY)*t]

is jointly convex in(z,x)
o the expected shortfall is computed through

ESu(V) = minGa(z V)

and VaR, (V) = z* is the solution of the minimization problem.



The problem 1 becomes

MinkESy(XY) — yX = mingz {z+ a E[(—z— XY) "] — Y}
S =1 @
X >0, Vi

In the numerical optimization program, the trick of intr@ihg dummy variables is used.
Note that we have built the estimated frontier, as the prol{#) is not analytically solvable
in general, so that no true frontier can be exactly computéddurse a true frontier exists,
in principle).

3  SENSITIVITY ANALYSIS OF PORTFOLIO OPTIMIZATION

In this section, it would be useful to analyze how the CVaRfiscted by the presence of
outliers. It would be a preliminary step to the applicatidrtlee spectral risk measures in
asset allocation problems. At this step of the analysis thenobust version of the CVAR
is used to study the influence of units on portfolio weightsclefficient frontiers should
be analyzed on non-contaminated and contaminated datisgleome values of the risk
aversion parameter.
A deeply studied problem of portfolio allocation (Broadl®93) is given byY Gaussian

with off-diagonal elementg;; = 0.3 and components given by

Hy = (0.006,0.01,0.014,0.018,0.022)’ (5)

oy = (0.085,0.08,0.095,0.09,0.1)’ (6)

We will consider such parameters.

In Figure 1 the “true” efficient frontier (bold line) obtaid¢hrough a Gaussian optimiza-
tion is compared with efficient frontiers (thinner lines}igsted on data simulated from a
Gaussian distribution with mean vectay in (5) and covariance matrix obtained from the
variance vectooy in (6) and constant correlatign; = 0.3. As it can be seen the range of the
estimated frontiers in both axes are approximately as asdbe domains of the true frontier.

Figure 2 has been drawn similarly to Figure 1, but the estohéitontiers has been ob-
tained from contaminated data. Contamination of simuldtstd has been carried out intro-
ducing outliers at random positions according to the foltmpyscheme. Lety be a discrete
random set of indices belongingfd, . .., T} which gives the positions of theoutliers andR
a multivariate Gaussian distribution with vector of meamgad to zero and covariance matrix
6 x I. The parameted gives the magnitude of the contamination apés a p sized identity
matrix. Finally the contaminated data-setfjs=Y;, for t ¢ U and¥; = R fott € U, where
Yt ~ N(, %), and the vectop and matrixz, reported above, are taken from Broadie (1993).
Notice that the scale of the axes in the two Figures are the skmnthe case of contaminated
data the estimated frontiers are more scattered aroundubdrbntier and the domain of
estimated frontiers has been inflated by the presence aérith the data.

This simulation experiment proves that a robust estimairosedure of optimal portfolio
weights is needed.
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Figure 1. True efficient frontier for the covariance matrix of Broadqi993) (bold line) compared
with efficient frontiers estimated on simulated data (thimes). Data are simulated from a Gaussian
distribution with Broadie’s mean vector and covariancerimat
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Figure 2. True efficient frontier for the covariance matrix of Broadqi993) (bold line) compared
with efficient frontiers estimated on simulated contanedadata (thin lines). Data are simulated from a
Gaussian distribution with Broadie’s mean vector and damae matrix and contaminated with additive
outliers at random positions.

4 ROBUST PORTFOLIO OPTIMIZATION

The last step is to compute forward-search robust weightsdioh observation. The portfolio
optimization procedure will then be applied to a transfadmeeighted matrix of returns.
Finally, the robust efficient frontier will be compared witie non-robust frontier.



Our target is to compute weightg < [0, 1], for each observation in the multiple time
seriesk = (Yar,---,ynt) s t=1,..., T, with the forward search method (Atkinsetal,, 2004).
A similar procedure has been applied in a previous paper bggsand Laurini (2011) to get
a robust version of the covariance matrix in the classicalké\aitz problem. The weights
will then be used to obtain a weighted version of the mafriaf returns such that the most
outlying observations get small weight. For multivariatdad standard methods for outlier
detection are based on the squared Mahalanobis distantteeteth observationd? = (y; —
ﬁ)’i*l(yt — 1), where both mean-vectprand covariance matrix are estimated. One of the
main pitfalls of the classical Mahalanobis distance as dheowaetection tool, is the bias on
the estimation oftandX caused by the presence of multiple outliers. This “maskifer®
of multiple outliers, is overcome by the forward search (#ekinsonet al,, 2004). The goal
of the forward search is the detection of units which areedéht from the main bulk of the
observations, called Clean Data Set (CDS) and to assesffebead these units on inferences
made about the correct model.

Given the best subssim> of sizem > my detected at stem, we can calculate a set of
squared Mahalanobis distances, defined as

d12(m) =M _%)/(i?n)il(yt _%)a t=1....T, (7)

wherej, and3?, are the mean and covariance matrix estimated omsized subset. The
distance introduced in equation (7) is the forward searcéior of the Mahalanobis distance.
In the second step of the forward search, we increase theokie initial CDS selecting
observations with small value of (7) and so are unlikely t@b#iers. Thus, with the forward
search algorithm the data are ordered according to theiedeayj closeness to the CDS, with
observations furthest from it joining the CDS in the laspstef the procedure. Whgnand

> are estimated by MLE on the whole sample, the classical Malohlis distances follow a
scaled beta distribution. But in equation (7) the Mahalasdistances are estimated from a
subset ofm observations which do not include the observation beinigdedn such a case,
the reference null distribution would be (see, Riani et2z009):

& ~ [T/(T = D]IN(m—1)/(m—N)|Fn.7n, (8)

whereN is the number of columns of.

For the computation of the weights we compare the trajemtm‘fdzﬁ during the forward
search with confidence bands from tRalistribution. Formally, for the-th unit at stepm,
we define the squared Euclidean distancergs:= 0 if 7 € [0.Fs), ) = (A —F)?
if dtz(m> > Fs, wheredfm has been defined in (7) arg is the d percentile of theFy 1N
distribution.

Then, for thet-th observation, we have

 Shem T

C T—mp+1 ®)

The final outlyingness indew; for each returry; is then obtained as follows:



Bit
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where6;; = |yi|/MAD(y;) andMAD(y;) is the median absolute deviation from the me-
dian ofy;.

Finally, the main goal of under-weighting the most extrenbseyvations is obtained
through the computation of a weight, in the interf@l1], with the following mapping of
(10): wit = exp(—T%; ). The weights are computed for each observation at the erftedbt-
ward search.

The next step of the procedure is based on building a weightegdx of returnsy*, with
generic elemeng; = yitwﬁ/z. The weighted matrix™* will be finally used as input matrix in
the estimation procedure of optimal portfolio weights.

The efficient frontiers robustly estimated on contaminatath are very similar to those
obtained in Figure 1.

Th = Tg (10)

5 FINAL REMARKS

In this paper a new robust method for estimating optimalfpbeotallocation has been intro-
duced based on the forward search, The results are quitégingOne open issue is the ref-
erence distribution for determining the threshold usedetttge weight for each observation.
Moreover a suitable metric to measure the distance betweatidrs must be introduced.
Grossi and Laurini (2011) suggested a Root Mean Error meggtine distance between
frontiers considering different values of the toleranceapseter, but separately computed for
the return and the volatility of portfolios.
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