

UNIVERSITÀ DEGLI STUDI DI FIRENZE
Dipartimento di Ingegneria dell’Informazione

Dottorato di Ricerca in
Ingegneria Informatica, Sistemi e Telecomunicazioni

ING-INF/05 Ingegneria Informatica

Agile processes and formal
methods in railway systems

Giorgio Oronzo Spagnolo

Ph.D. Coordinator

Prof. Luigi Chisci

Advisors

Prof. Alessandro Fantechi

Dott.ssa Stefania Gnesi

Ciclo XXVIII - 2012-2015

Contents

Introduction iii

1 Product Families and Agile methodologies 1
1.1 Communications-based Train Control Systems 3
1.2 Method Overview . 5
1.3 Domain Analysis . 7

1.3.1 Functionality Identification 7
1.3.1.1 IEEE 1474.1-2004 8
1.3.1.2 IEC 62290 . 8
1.3.1.3 Functionalies 8

1.3.2 Architecture Identification 10
1.4 Product Family Definition . 12

1.4.1 Feature Modelling . 13
1.4.2 A Global Feature Diagram for CBTC 13

1.5 Product Features Definition . 15
1.5.1 Product Architecture Modelling 16
1.5.2 Product Scenario Modelling 17
1.5.3 Requirements Definition 19

1.6 System Requirements Definition 21
1.6.1 PSS Definition . 22
1.6.2 SYS-RS Definition . 24

1.6.2.1 Prototyping 30
1.6.3 Traceability . 32

1.7 Experience Report . 34
1.7.1 Lessons Learnt . 37

CONTENTS i

2 Natural Language Processing approaches 41
2.1 NLP approach to Product Family Definition 42

2.1.1 Overview . 43
2.1.2 The NLP Approach . 46

2.1.2.1 Identification of Terms 47
2.1.2.2 Contrastive Analysis 49
2.1.2.3 Commonality Candidates Identification 50
2.1.2.4 Variability Candidates Identification 50

2.1.3 CMT and FDE . 50
2.1.3.1 Commonality Mining Tool 52
2.1.3.2 How CMT Works 52
2.1.3.3 Feature Diagram Editor 55
2.1.3.4 Tool Download 57

2.2 NLP approach to Measuring Completeness 60
2.2.1 Defining and Measuring Completeness 62
2.2.2 Motivation . 64
2.2.3 Metrics for Backward Functional Completeness 65
2.2.4 Identification of Relevant Terms 66
2.2.5 Identification of Relevant Relations 68
2.2.6 A Word-game to Support Requirements Definition 69
2.2.7 Pilot Test . 73
2.2.8 Quantitative Evaluation 74
2.2.9 Qualitative Evaluation 76

3 Development of a sub-component within Formal Methods 78
3.1 Formal Methods in ATS . 79
3.2 An Abstract Model of the System 80
3.3 The basic cases of deadlock . 82
3.4 From basic to composite sections 85
3.5 A verifiable formal model of the system 88
3.6 Partitioning the Full Model . 95

Conclusions 97

Bibliography 101

CONTENTS ii

Introduction
A business subject who decides to enter an established technological market

is required to accurately analyse the products of the different competitors. In

the case of cheap mass products (e.g., mobiles, laptops), the new company

can actually purchase the products and evaluate their features in order to

compare them. In the case of expensive, large-scale, and often customized,

products (e.g., security systems, intelligent transport systems), the company

has to rely on the existing public documentation about the products, since the

cost required to purchase the actual products would be prohibitive. In this

work, we consider the case of Communications-Based Train Control (CBTC)

systems.

Communications-based Train Control (CBTC) is the most recent techno-

logical frontier for signalling and train control in the metro market [1, 2].

CBTC systems offer flexible degrees of automation, from enforcing control

over dangerous operations acted by the driver, to the complete replacement of

the driver role with an automatic pilot and an automatic on-board monitoring

system. Depending on the specific installation, different degrees of automation

might be required. Furthermore, companies shall be able to provide complete

CBTC systems, but also subsets of systems. The aim is to satisfy the needs of

green-field installations, and address the concerns of the operators who wish

to renew only a part of an already installed system. In this sense, the product

line engineering technology provides a natural tool to address the need for

INTRODUCTION iii

modularity required by a market of this type [3, 4].

Software systems in the safety domain are becoming increasingly crucial

and complex. Safety-critical systems are those where any failure is likely to

result in the loss of human life or the damage to the environment. Tradi-

tionally, the development of safety-critical systems is approached following a

rigorous method such as the V-model[5, 6]. Such a process is characterised

by emphasis on design and the production of documentation (typically for use

by safety engineers or certifying authorities) in each step of the development

process. To develop safety-critical systems, organisations are often required

to adopt such processes, but their adoption can make it difficult to manage

requirements volatility, introduce new and emerging technologies, and can lead

to substantial costs in producing and maintaining documentation. Needless to

say, agile methods are very attractive to software engineers and project man-

agers working in the safety domain, while posing difficulties and challenges to

safety engineers working in this domain.

It has been observed in literature that combination of agile and formal

methods can bring best features of both the worlds [7] which can lead towards

a better software development solution. In [8], authors present an evaluation

of agile manifesto and agile development principles to show how formal and

agile approaches can be integrated and identify the challenges and issues in

doing so. The study [9] focuses on a case study in which an agile approach

was implemented successfully in a regulated environment. They concluded

that the agile process as it has been adopted and augmented has worked very

well in that regulated environment. In [10], authors suggest that agile soft-

ware development can use light weight formal analysis techniques effectively

to bring potential difference in creating systems, with formally verified tech-

niques, on time and within budget. In [11], authors argues that the lightweight

and iterative approach taken in agile methods can improve the development

of safety-critical systems. The authors don’t argument that agile methods are

directly applicable to developing safety-critical systems that require certific-

ation. Jonsson et al. made an analysis of agile practices in the context of

software development for the European railway regulated by EN 50128 stand-

INTRODUCTION iv

ard [12]. They concluded that agile practices support some of the objectives

and requirements of EN 50128 but most practices must be tailored to fit in a

regulated development environment.

In this context this dissertation present the development a safety critical

system, with limited knowledge of the domain, in a context with multiple com-

petitors. The safety critical system shall be developed according to standards

(process and product standards). At the same time, there is a limited know-

ledge of the domain. Hence, agile methods fit the need of having an in-depth

view of the problem, in limited time, and with limited knowledge.

This dissertation is based on the experience acquired inside the project

namely “Train Control Enhancement via Information Technology” (TRACE-

IT) funded by Tuscany Region. The project concerns the specification and

development of a Communications-based Train Control (CBTC) platform, and

sees the participation of the DINFO of the University of Florence, of the Formal

Methods and Tools Laboratory of the “Institute of Information Science and

Technologies” (ISTI), an institute of the “Italian National Research Council”

(CNR) and E.C.M. s.p.a., an industrial partners.

Chapter 1, after an overview concerning CBTC operational principles,

presents the overview of the approach and describes the experience to develop a

prototype for a CBTC subsystem, starting from the Product families definition

and the following agile development. Chapter 2 presents how to use natural

language processing techniques both to support the feature model definition

process and to improve completeness of the requirements with respect to the

input documents. Chapter 3 presents how to develop sound solutions based on

formal methods to address the problem of deadlock avoidance in our CBTC

subsystem prototype.

INTRODUCTION v

Chapter

1
Product Families and Agile

methodologies

Entering the CBTC market with a novel product requires such a product to be

compliant with the existing standards. Two international standards provide

general requirements for CBTC systems. The first is IEEE 1474.1-2004 [2],

while the second is IEC 62290 [13, 14]. The IEEE standard treats the CBTC

system as a composition of sub-systems. Instead, the IEC standard look at the

CBTC system as a whole, and considers the different Grades of Automation

(GoA) that a CBTC system can achieve. In general, the standards differ in

terminology and structure. Therefore, a product satisfying the former is not

ensured to accomplish also the requirements of the latter.

Railway and metro systems developed for Europe shall be also compliant

with the CENELEC standards [5, 15, 6]. This is a set of norms and methods

to be used while implementing a product having a determined safety-critical

nature. Besides product-level standard, a CBTC product is therefore required

to satisfy also process-level standards (i.e., the CENELEC norms).

The challenges related to the introduction of a novel CBTC system are not

PRODUCT FAMILIES AND AGILE METHODOLOGIES 1

limited to the adherence to the standards. Indeed, also the competitiveness of

the product plays a crucial role. To be competitive with the solutions of other

vendors, a novel CBTC product shall take into account the existing similar

products and installations. The CBTC market is currently governed by seven

main vendors, namely Bombardier [16], Alstom [17], Thales [18], Invensys Rail

Group [19], Ansaldo STS [20], Siemens [21], and GE Transportation [22]. Each

vendor provides its own solution, and different technologies and architectures

are employed.

In this chapter an experience is presented, where domain analysis has been

used to derive a global CBTC model, from which specific product requirements

for novel CBTC systems can be derived. The global model is built upon the

integration of the guidelines of the product-level standards, and is driven by

the architectural choices of the different vendors. The model is represented

in the form of a feature diagram [23, 24, 25], following the principles of the

product-line engineering technology. From the global feature diagram, we

derive the actual product requirements. To this end, we draw graphical formal

models of the product architecture, together with scenario models in the form

of simplified sequence diagrams. Architecture and scenario models are used to

define and enrich the natural language requirements of the actual product.

After the definition of the product requirements, we define requirements

for the individual systems that compose the CBTC product. To this end, we

employ scenario-based requirements elicitation [26], aided with rapid prototyp-

ing [27]. A constrained natural language and natural language processing tech-

niques [28] are used to evaluate and enhance the quality of the system require-

ments. The approach is oriented to satisfy the guidelines of the CENELEC

standards for system requirements. A transition from the constrained natural

language to a formal representation of the requirements is also foreseen.

Examples are presented throughout the chapter to explain the approach,

and to show the results of the current implementation of the proposed meth-

odology.

In Sect. 1.1, the CBTC operational principles are presented. In Sect. 1.2,

an overview of the approach is given. In Sect. 1.3, an analysis of the standards

PRODUCT FAMILIES AND AGILE METHODOLOGIES 2

Communications-based Train Control Systems

and of the architectures of the CBTC vendors is presented. In Sect. 1.4, the

global CBTC model is described. In Sect. 1.5, the architecture and scenario

models are derived, together with the requirements for the actual product. In

Sect. 1.6, the approach for the definition of the requirements for the individual

systems that compose the CBTC product is presented. Sect. 1.7 describes the

current experience with the implementation of the method.

1.1 Communications-based Train Control Systems

CBTC systems [1, 2] are novel signalling and control platforms tailored for

metro. These systems provide a continuous automatic train protection as well

as improved performance, system availability and operational flexibility of the

train.

The conventional metro signalling/control systems that do not use a CBTC

approach are exclusively based on track circuits and on wayside signals. Track

circuits are used to detect the presence of trains. Wayside signals are used

to ensure safe routes and to provide information to the trains. Therefore,

the position of the train is based on the accuracy of the track circuit, and the

information provided to the train is limited to the one provided by the wayside

signals. These systems are normally referred as fixed block systems, since the

distance between trains is computed based on fixed-length sections (i.e., the

length of a track circuit - see upper part of Figure 1.1).

CBTC overcomes these problems through a continuous wayside-to-train

and train-to-wayside data communication. In this way, train position detec-

tion is provided by the onboard equipment with a high precision. Further-

more, much more control and status information can be provided to the train.

Currently, most of CBTC systems implement this communication using radio

transmission [29].

The fundamental characteristic of CBTC is to ensure a reduction of the

distance between two trains running in the same direction (this distance is

normally called headway). This is possible thanks to the moving block prin-

PRODUCT FAMILIES AND AGILE METHODOLOGIES 3

Communications-based Train Control Systems

Moving Block

Braking Curve

Braking Curve

Fixed Block

End of MA
(Based on the position of the

preceding train)

End of MA
(= End of Track Circuit)

Figure 1.1: Fixed block vs moving block

ciple: the minimum distance between successive trains is no longer calculated

based on fixed sections, as occurs in presence of track circuits, but according

to the rear of the preceding train with the addition of a safety distance as a

margin. This distance is the limit distance (MA, Movement Authority) that

cannot be shortened by a running train (see lower part of Figure 1.1).

The control system is aware at any time of the exact train position and

speed. This knowledge allows the onboard ATP (Automatic Train Protection)

system to compute a dynamic braking curve to ensure safe separation of trains,

which guarantees that the speed limit is not exceeded. The ATP system en-

sures that the MA is not shortened by the train, in addition to the continuous

protection of the train in every aspect.

From the architectural point of view, CBTC systems are characterized by

a division in two parts: onboard equipment and wayside equipment. The first

is installed on the train and the latter is located at a station or along the line.

CBTC systems also allow automatic train control functions by implement-

ing both the ATO (Automatic Train Operation) and the ATS (Automatic

Train Supervision) functionalities. The ATO enables driverless operation, en-

suring the fully automatic management of the train in combination with ATP.

The ATS offers functions related to the supervision and management of the

train traffic, such as adjustment of schedules, determination of speed restric-

tions within certain areas and train routing.

A CBTC system might include also one or more interlocking (noted in the

following as IXL). The IXL monitors the status of the objects in the railway

PRODUCT FAMILIES AND AGILE METHODOLOGIES 4

Method Overview

yard (e.g., switches, track circuits) and, when routing is required by the ATS,

allows or denies the routing of trains in accordance to the railway safety and

operational regulations.

1.2 Method Overview

Architectures

Functionalities
Requirements

Standards

Vendors
Documents

Product
Architecture

Feature
Model

Scenarios

Architecture
Identification

Functionality
Identification

Feature
Modelling

Product
Architecture

Modelling

Product
Scenario

Modelling

Domain Analysis Product Family Definition

Product Requirements Definition

Product
Requirements

System
Requirements

(SYS-RS)

PSS
Definition

PSS SYS-RS
Definition

System Requirements Definition

Figure 1.2: Overview of the product requirements definition process adopted

In this work an approach has been defined to identify a global model of

CBTC and derive the product requirements for a novel CBTC system. The

method starts from the available international requirements standards – IEEE

1474.1-2004 [2] and IEC 62290 [13, 14] – and from the public documents

provided by the current CBTC vendors. Three main phases have been iden-

tified to move from these heterogeneous natural language description of the

expected CBTC features to the actual CBTC product requirements. Further-

more, one additional phase is required to define the requirements of the single

systems that compose the CBTC product.

Figure 1.2 summarizes the approach followed. Activities are depicted as

circles and artifacts are depicted as rectangles with a wave on the bottom side.

First, domain analysis is performed (Sect. 1.3). During this phase, the

requirements standards are analysed together with the documents of the dif-

PRODUCT FAMILIES AND AGILE METHODOLOGIES 5

Method Overview

ferent vendors. The former are used to identify the functionalities expected

from a standard-compliant CBTC system (Functionality Identification), while

the latter are used to identify the system architectures adopted by the vendors

(Architecture Identification). Requirements standards are also employed in the

Architecture Identification task to provide a common vocabulary to describe

the architectures.

In the second phase, a product family for CBTC systems is defined (Sect.

1.4). The architectures identified in the previous phase are evaluated, and a

feature model is derived to hierarchically capture all the different architectural

options available in the market (Feature Modelling).

The third phase drives the definition of the actual product features (Sect.

1.5). From the feature model that represents the product family, a product

instance is chosen. A detailed architecture is defined for such a product in-

stance, taking into account the functionalities extracted from the standards

(Product Architecture Modelling). Then, scenarios are derived to analyse the

different behavioural aspects of the product (Product Scenario Modelling).

The final product requirements are the results of the adaptation of the

standard CBTC requirements to the desired product. This adaptation is

provided according to (1) the functionalities extracted from the standards,

(2) the product architecture, and (3) the product scenarios.

In the fourth phase requirements are defined for the individual sub-systems

that compose the overall CBTC product (Sect. 1.6). This phase is oriented

to accomplish the process-level requirements prescribed by the CENELEC

norms [5, 15, 6]. First, a Preliminary System Specification (PSS) document

is defined, which is based on the functionalities extracted from the product

standards and on the chosen product architecture (PSS Definition). Then,

an approach based on prototyping is employed to define the System Require-

ments Specification (SYS-RS) document, which collects the requirements for

the system (SYS-RS Definition).

Currently, most of the tasks of the approach are based on engineering activ-

ities with limited automation. Such activities have been mainly performed

PRODUCT FAMILIES AND AGILE METHODOLOGIES 6

Domain Analysis

using Microsoft Word1 and Microsoft Excel2 documents. Microsoft Visio3 was

employed whenever graphical diagrams were required (i.e., during Architec-

ture Identification, Feature Modelling, Product Architecture Modelling and

Product Scenario Modelling). Furthermore, Microsoft Visual Studio4 was used

to implement a prototype system during the System Requirements Definition

phase.

Other internal tools, developed by ISTI-CNR, have been also employed in

the process. NLP tools for term identification have been experimentally used

to identify the features from the Vendors Documents [30], while the QuARS

tool [28] was used to detect ambiguities in the SYS-RS document. When

appropriate, alternative software packages, and possible tool choices to improve

the robustness of the approach, are referred throughout the chapter.

1.3 Domain Analysis

The Domain Analysis phase is composed of two sub-phases, namely Func-

tionality Identification and Architecture Identification. In the first phase, the

available CBTC standards are analysed, and a list of functionalities for CBTC

systems is provided. In the second phase, the publicly available documents of

the selected vendors are inspected to identify the CBTC architectures available

in the market.

1.3.1 Functionality Identification

In this phase, functionalities are identified for a generic CBTC system by evalu-

ating the available international standards. Currently, the reference standards

are IEEE 1474.1-2004 [2] and IEC 62290 [13, 14], which are briefly summarized

below.

1http://office.microsoft.com/en-us/word/
2http://office.microsoft.com/en-us/excel/
3http://office.microsoft.com/en-us/visio/
4http://www.microsoft.com/visualstudio/eng/visual-studio-2013

PRODUCT FAMILIES AND AGILE METHODOLOGIES 7

http://office.microsoft.com/en-us/word/
http://office.microsoft.com/en-us/excel/
http://office.microsoft.com/en-us/visio/
http://www.microsoft.com/visualstudio/eng/visual-studio-2013

Domain Analysis

1.3.1.1 IEEE 1474.1-2004

The IEEE 1474.1-2004 has been defined by the Communications-based Train

Control Working Group of IEEE (Institute of Electrical and Electronic En-

gineers) and approved in 2004. Such standard concerns the functional and

performance requirements that a CBTC system shall implement. The require-

ments concern the functions of Automatic Train Protection (ATP), Automatic

Train Operation (ATO) and Automatic Train Supervision (ATS), implemen-

ted by the wayside and onboard CBTC system. The ATO and ATS functions

are considered optional by the standard. In addition to these requirements, the

standard also establishes the headway criteria, system safety criteria and sys-

tem availability criteria applicable to different transit applications, including

the Automated People Movers (APM).

1.3.1.2 IEC 62290

The IEC 62290 is a standard defined by the IEC (International Electrotechnical

Commission) come into effect in 2007. This standard brings the fundamental

concepts, the general requirements and a description of the functional require-

ments that the command and control systems in the field of urban guided

transport, like the CBTC, shall possess. In reference to the fundamental con-

cepts, the standard establishes four levels or Grades of Automation (GoA-1 to

4). The increasing GoA corresponds to increasing responsibility of the com-

mand and control system w.r.t. the operational staff. For example, a GoA-1

system simply enforces brakes when the driver violates the braking curve. A

GoA-4 system does not have a driver, nor yet an onboard human supervisor.

1.3.1.3 Functionalies

The standards have been evaluated to derive a complete set of CBTC function-

alities. The approach adopted is as follows. First, the functionalities that the

IEEE 1474.1-2004 standard specifies have been extracted. Such functionalities

have been divided between ATP, ATO and ATS according to the anticipated

PRODUCT FAMILIES AND AGILE METHODOLOGIES 8

Domain Analysis

classification provided by the same standard. Starting from this first group

of functionalities, the activity continued with the analysis of the IEC 62290

standard, for identifying possible additional functionalities in comparison to

those already extracted. Each functionality is traced to the paragraph of the

corresponding standard from which it has been originally derived. We have

derived 67 functionalities in total (see Sect 1.7 for further details), which have

been validated by our industrial partner.

Example functionalities, which are useful to understand the examples re-

ported in the rest of the chapter, are reported below together with the related

subsystem and the reference to the standard documents.

Train Location Determination. (ATP onboard - IEEE 6.1.1) This function-

ality determines the position of the train;

Safe Train Separation. (ATP onboard - IEEE 6.1.2) This functionality uses

the location information of the train to compute the braking curve and

ensure safe separation of trains;

Movement Authority Determination. (ATP wayside - IEC 5.1.4.1) This func-

tionality computes the MA message to be sent to the train based on the

position of the other trains and on the railway status;

Route Interlocking Controller. (ATP wayside - IEEE 6.1.11) This function-

ality controls an external IXL and performs the route requests and locks.

IXL systems are normally based on fixed block principles. This function

is able to bypass the interlocking inputs concerning the position of the

trains coming from the track circuits. In this way, the functionality is

also able to ensure the increased performance guaranteed by the moving

block principles;

Train Routing. (ATS - IEEE 6.3.4) This functionality allows setting the route

for the train in accordance with the train service data, predefined routing

rules and possible restrictions to the movement of the train;

PRODUCT FAMILIES AND AGILE METHODOLOGIES 9

Domain Analysis

Train Identification and Tracking. (ATS - IEEE 6.3.3) This functionality

monitors the position and the identity of the trains.

ATS User Interface. (ATS - IEEE 6.3.2) This functionality implements the

graphical user interfaces to display the status of the metro system, and

to allow the operator to perform supervision of the overall system.

1.3.2 Architecture Identification

In this phase, different possible architectures for a CBTC system are identi-

fied by evaluating the available information about the CBTC products on the

market.

Several implementations of CBTC systems are offered by different vendors.

In our work, we focused on the systems proposed by Bombardier [16], Al-

stom [17], Thales [18], Invensys Rail Group [19], Ansaldo STS [20], Siemens [21],

and GE Transportation [22].

ATP Wayside
Simple

ATS
Router

IXL
Pure

ATP
Onboard

(a) Centralized Control

ATP Wayside
IXL

ATS
Simple

ATP
Onboard

(b) Built-in IXL

ATP Wayside
Controller

ATS
Simple

IXL
Controllable

ATP
Onboard

(c) Controllable IXL

Figure 1.3: Architectures extracted

The major subsystems identified in the evaluated CBTC systems are ATP,

ATS, ATO and IXL. The adopted terminology is the one provided by the

CBTC standards, since the vendors use slightly different terms to refer to the

same components. There are also other additional subsystems, which include,

PRODUCT FAMILIES AND AGILE METHODOLOGIES 10

Domain Analysis

e.g., the fire emergency system, the passenger information system, and the

closed-circuit television.

The possible CBTC architectures have been identified by analyzing the

relationship between the different subsystems. As examples, we focus on the

relationships among ATP, ATS and IXL. The most relevant configurations

identified for these systems are summarized below.

Centralized Control. (Figure 1.3a) In this configuration, the ATS controls

both the ATP and the IXL. The ATS is called ATS Router since it has

a direct interface with the IXL to perform routing. The wayside ATP

is called Wayside ATP Simple since it has no direct interface with the

IXL, and the communication among these two subsystems is managed

through the ATS. Furthermore, the wayside ATP communicates with

the onboard ATP, as in all the other configurations.

Built-in IXL. (Figure 1.3b) In this configuration there is no external IXL,

since the ATP encapsulates also the functions of the IXL (ATP Wayside

IXL). We call the ATS of this configuration ATS Simple since it has no

direct interface with an IXL.

Controllable IXL. (Figure 1.3c) The wayside ATP has a control interface (ATP

Wayside Controller) with an external IXL, and acts as intermediary

between the ATS Simple and the IXL. We call the IXL of this configura-

tion IXL Controllable since, unlike the IXL Pure of the first configura-

tion, allows the ATP Wayside Controller to bypass some of its controls

to achieve improved performances. It is worth noting that this solution

would not be possible with an ATS controlling the IXL. Indeed, the ATS

is normally not meant as a safety-related system, while the ATP and the

IXL are safety-critical platforms.

Configurations 1.3a and 1.3b are both used by Bombardier. The second ar-

chitecture is described in the Bombardier documentation as CITYFLO 650

with built-in IXL. Though architecture 1.3a is not explicitely described, the

Bombardier documentation states that, when available, the IXL works as a

PRODUCT FAMILIES AND AGILE METHODOLOGIES 11

Product Family Definition

backup system in case of ATP failure. Therefore, we can argue that the IXL

control resides in the ATS and not in the ATP.

Architecture 1.3c has been derived evaluating the Alstom system. The

IXL employed by Alstom is provided by the same supplier of the Bombardier

IXL, but Alstom does not use this IXL as a backup system. Therefore, we can

argue that the ATP is in charge of controlling the IXL, as in architecture 1.3c.

Though this type of architecture really complicates the safety-case, it is the

only way to achieve the benefits of the moving block principles in an area that

is controlled by an IXL.

1.4 Product Family Definition

The development of industrial software systems may often profit from the ad-

option of a development process based on the so-called product families or

product line approach [4, 3]. This development cycle aims at lowering the de-

velopment costs by sharing an overall reference architecture for all products.

Each product can employ a subset of the characteristics of the reference archi-

tecture in order to, e.g., serve different client or jurisdictions.

The production process in product lines is hence organized with the pur-

pose of maximizing the commonalities of the product line and minimizing the

cost of variations [31]. A description of a product family (PF) is usually com-

posed of two parts. The first part, called constant, describes aspects common

to all products of the family. The second part, called variable, represents

those aspects, called variabilities, that will be used to differentiate a product

from another. Variability modelling defines which features or components of

a system are optional, alternative, or mandatory.

The product family engineering paradigm is composed of two processes:

domain engineering and application engineering. Domain engineering is the

process in which the commonality and the variability of the product family are

identified and modelled. Application engineering is the process in which the

applications of the product family are built by reusing domain artefact and

PRODUCT FAMILIES AND AGILE METHODOLOGIES 12

Product Family Definition

exploiting the product family variability [31].

1.4.1 Feature Modelling

The modelling of variability has been extensively studied in the literature,

with particular focus on feature modelling [23, 24, 25]. Feature modelling is

an important technique for modelling the product family during the domain

engineering.

The product family is represented in the form of a feature model. A feature

model is a hierarchical set of features, and relationships among features. A

formal semantics is defined for these models, and each feature model can be

characterized by a propositional logic formula [24, 32].

Relationships between a parent feature and its child features (or subfea-

tures) are categorized as: AND - all subfeatures must be selected; alternative

- only one subfeature can be selected; OR - one or more can be selected; man-

datory - features that are required; optional - features that are optional; a

require b, if the presence of a requires the presence of b ; a exclude b, if the

presence of a excludes the presence of b and vice-versa.

A feature diagram is a graphical representation of a feature model [23]. It is

a tree where primitive features are leaves and compound features are internal

nodes. Common graphical notations are depicted in Figure 1.4.

Figure 1.4: Feature diagram notations

1.4.2 A Global Feature Diagram for CBTC

A global feature model for CBTC has been defined by integrating the differ-

ent architectural choices identified during the architecture identification task

PRODUCT FAMILIES AND AGILE METHODOLOGIES 13

Product Family Definition

ATP
Onboard

CBTC

ATP IXL ATS

IXL
Controllable

ATP
Wayside

IXL
Pure

ATP
Simple

ATP
IXL

ATS
Router

ATS
Simple

ATP
Controller

Figure 1.5: Simplified excerpt of the CBTC global feature diagram

(Sect. 1.3.2). We show the model for the GoA-1 level, according to the IEC

62290 terminology [13]. In other terms, such a model assumes the presence of

a driver on board (i.e., there is no ATO system).

An informal bottom-up approach has been followed to pass from the ar-

chitectures to the global feature diagram. First, all the identified components

have been considered as leaves of the diagram. Then, internal nodes and

hierarchy are provided for those components that occurred with different vari-

ants in the architectures. Finally, constraints are provided by inspecting the

different architectures: if a component always occurs together with another

component, a require constraint is defined.

A simplified excerpt of the global feature diagram associated to our model

is given in Figure 1.5. The diagram includes the architectural components

(which in our diagram become features) already identified in Sect. 1.3.2.

The require constraint requires a product to include IXL Pure and ATS

Router whenever the product includes ATP Simple. Indeed, the control in-

terface with the IXL has to be implemented by the ATS if the ATP does not

include it, as in the case of ATP Simple. Also IXL Controllable is required

whenever the ATP Controller is used. In this case, a proper controllable in-

terface of the IXL is required to let the ATP system control its functionalities.

The ATP Onboard is required by any product of this family. On the other

hand, the features IXL Pure and IXL Controllable cannot cohabit in any

product of this family. The same observation holds for ATS Router and ATP

PRODUCT FAMILIES AND AGILE METHODOLOGIES 14

Product Features Definition

Simple. Indeed, only one type of IXL and one type of ATS is allowed in a

product.

It is worth noting that the feature diagram allows new configurations that were

not identified in the domain analysis phase performed. These configurations

represent new possible products. For example, an ATP IXL can - optionally -

cohabit with an IXL of any type. In this case, the additional IXL works as a

backup system.

The propositional logic formula associated to the excerpt is the conjunction

of the formula of the ATP sub-tree with the formulas associated to the IXL and

ATS sub-trees, and with the require constraints. For example, the formula

associated to the IXL sub-tree is:

(CBTC∧true)∧(IXL⇒ CBTC)∧((IXL Controllable⇔ (IXL∧¬IXL Pure))∧
(IXL Pure⇒ (IXL ∧ ¬IXL Controllable)))

Similar formulas can be written for the other sub-trees and for the require con-

straints. Tools such as Splot [33], can be used to verify the consistency of the

feature model, and check for the presence of dead features (i. e., features that

cannot be instantiated in any product), or inconsistent relationships among

features.

1.5 Product Features Definition

The provided feature model represents a global model for CBTC at the GoA-

1 level. From this global model we choose a product instance, which in our

example case corresponds to the Controllable IXL architecture of Figure 1.3c.

Then, we model the detailed architecture of the product according to the func-

tionalities extracted from the standards in the domain analysis phase. The

architecture represents a static view of our product in the form of a block

diagram. In order to assess the architecture, we provide realistic scenarios

using architecture-level sequence diagrams. This phase can be regarded as the

application engineering process of the product family engineering paradigm.

Architecture and scenarios are employed to derive requirements for the actual

PRODUCT FAMILIES AND AGILE METHODOLOGIES 15

Product Features Definition

ATP
Onboard

CBTC

ATP IXL ATS

IXL
Controllable

ATP
Wayside

IXL
Pure

ATP
Simple

ATP
IXL

ATS
Router

ATS
Simple

ATP
Controller

Figure 1.6: Selection of features for our example product

product.

1.5.1 Product Architecture Modelling

The graphical formalism adopted to model the product architecture is a block

diagram with a limited number of operators. We have designed this simple

language according to [34, 35]. Companies tend to be skeptical about the

benefit given by the adoption of complex and rigid languages during the early

stages of the development. Instead, they are more keen to accept a lightweight

formalism that allows them to represent architectures intuitively and with a

limited effort.

The diagrams are composed of blocks and arrows. Blocks can be of two

types: system blocks, which represent individual hardware/software systems,

or functionality blocks, which represent hardware/software functionalities in-

side a system. Two types of arrows are also provided: usage arrows, allowed

between any block, and message arrows, allowed solely between functionalities

belonging to different systems. If a usage arrow is directed from a block to

another, this implies that the former uses a service of the latter. If a message

arrow is directed from a functionality to another, this implies that the former

sends a message – the label of the arrow – to the latter.

PRODUCT FAMILIES AND AGILE METHODOLOGIES 16

Product Features Definition

We describe the usage of this formalism with an example. Given the global

CBTC model, we first select the features that we wish to implement in our

final product. For example, Figure 1.6 highlights in pink (grey if printed in

B/W) the features that are selected for a CBTC system that uses a controllable

interlocking (see Figure 1.3c).

An excerpt of the detailed architecture for the selected product is depicted

in Figure 1.7. It is worth noting that the functionality blocks used are part of

the functionalities identified during the domain analysis phase. The selection

and apportionment of such functionalities is manually performed by the person

who defines the detailed architecture.

The Train Location Determination functionality belonging to the on-

board ATP sends the train location information to the ATP wayside system.

The Movement Authority (MA) Determination functionality forwards this

information to the ATS for train supervision, and uses this information to

compute the MA. The MA is sent to the ATP Onboard – to enforce train

separation – and to the ATS User Interface, which visualizes the MA. The

Train Routing functionality of the ATS requires the routes to the wayside

ATP, which controls the routing by means of the Route Interlocking Con-

troller functionality connected to the IXL. We recall that the Route Inter-

locking Controller functionality is used to modify the interlocking inputs

concerning the location of the trains – normally based on fixed block principles

– to achieve the increased performance of the moving block paradigm.

1.5.2 Product Scenario Modelling

The architecture provided during the previous activity has been defined ac-

cording to the functionalities extracted from the standards. Nevertheless, some

connections among functionalities, or some message exchange, might be miss-

ing from the model, since the architecture has not been evaluated against

actual scenarios. In order to refine the architecture, and provide coherent

requirements for the product, graphical scenarios are defined.

The graphical formalism adopted to model the scenarios at the architec-

PRODUCT FAMILIES AND AGILE METHODOLOGIES 17

Product Features Definition

IXL
Controllable

ATSATP WaysideATP Onboard

Train Location
Determination

Train Routing

Route Interlocking
Controller

Safe Train
Separation

Movement
Authority

Determination

Train
Location

MA

Train Identification
and Tracking

Route

Train Location

System blocks Functionality blocks

Message Usage arrowsMessage arrows

ATS
User Interface

MA

Figure 1.7: Architecture example for a CBTC system

tural level is a modified version of the UML sequence diagrams. Lifelines are

associated to systems, while blocks along the lifelines are associated to the

functionalities of the system. The arrows among different blocks indicate mes-

sage communication or service requests. In case of message communication,

the arrow is dashed. In case of service requests the arrow is solid. We argue

that the proposed notation can be regarded as a high-level sequence diagram

notation. Indeed, it is simpler than UML sequence diagrams, but it has the

proper level of abstraction for the system definition phase, while UML sequence

diagrams are more suitable for the software design phase. Furthermore, fuc-

tionalities are displayed along the lifelines of the systems: this is normally not

possible with UML sequence diagrams.

Figure 1.8 reports a scenario for a train that moves from a station to another

according to a route defined by the ATS.

In the operational center, the ATS sends the Route information to the

wayside ATP. The wayside ATP requests the IXL to move the switches in the

proper position, and to lock the resources (the setRoute service request). Once

the route has been locked by the IXL (LockEvent), the wayside ATP sends

the Movement Authority to the onboard ATP for a first train (ATP Onboard

(T1)) and to the ATS, which displays the MA. The onboard ATP allows the

train departure, so the driver can start the train movement. While moving, the

PRODUCT FAMILIES AND AGILE METHODOLOGIES 18

Product Features Definition

onboard system updates its position and sends the Train Location informa-

tion to the wayside ATP. This system uses such information to compute new

MAs for the current and preceding trains (represented by ATP Onboard (T2)).

Furthermore, the wayside ATP forwards the Train Location information to

the ATS for identification and tracking.

It is worth noting that, in this representation, we have added the setroute

service request and the LockEvent message, which were not defined in the block

diagram. The explicit request, and the corresponding response, are an example

of refinement enabled by the usage of scenarios: the relationship among the

Route Interlocking Controller functionality and the IXL Controllable

system has been clarified by means of the sequence diagram.

ATP
Onboard (T1)

ATP
Wayside

IXL
Controllable

ATS

Train Routing
Route

Interlocking
Controller

Safe Train
Separation

Route setRoute

Train Location
DeterminationTrain

Identification
and Tracking

Train Location

Train
Location

Movement AuthorityMovement Authority
Determination

Movement Authority
Determination

ATS
User Interface

MA

ATP
Onboard (T2)

LockEvent

Movement Authority Safe Train
Separation

Safe Train
Separation

Movement Authority

Figure 1.8: Example sequence diagram: a train moves from one station to

another

1.5.3 Requirements Definition

The information provided throughout the process are used to define the re-

quirements of the final product. In particular, the requirements of one of the

PRODUCT FAMILIES AND AGILE METHODOLOGIES 19

Product Features Definition

standards are used as a reference for the definition of the actual product re-

quirements. In our case, we take the IEEE 1474.1-2004 standard as a reference.

The requirements are tailored according to the functionalities extracted

from the standards, and evaluating the product architecture and the scenarios.

For example, consider the following requirement referred to the ATP system:

6.1.11 – Route Interlocking. A CBTC system shall provide route interlocking functions

equivalent to conventional interlocking practice to prevent train collisions and derailments.

[...]

Where an auxiliary wayside system is specified by the authority having jurisdiction, inter-

locking functions may be provided by separate interlocking equipment [...].

In our example product, the interlocking is an auxiliary wayside system, ex-

ternal to the ATP. Therefore the Derived (D) requirement for our product

is:

6.1.11(D) – Route Interlocking. Interlocking functions shall be provided by separate inter-

locking equipment [...].

Additional requirements on the actual behaviour can be derived from the ar-

chitecture and the example scenario, as in the following:

6.1.11(D − 1) – Route Interlocking Controller. When a route is requested from the ATS,

The ATP system shall require route setting (setRoute) to the interlocking to lock the

interlocking resources. [...]

The behaviour expected from this requirement is clarified by the scenario,

which is also attached to the requirement in the final specification. At this

stage, we did not find general patterns for passing from the standard require-

ments to the product requirements. Indeed, the definition of the requirements

is a manual process, where each requirement of the standard is reviewed and

properly extended/reduced according to the results of the previous phases.

Consider now a vendor that wishes to accomplish also the IEC 62290 stand-

ard with his product. The product is already defined according to IEEE

1474.1-2004 following the presented approach. In this case, we argue that

the compliance with the IEC 62290 standard can be demonstrated by reason-

ing at functional level. Indeed, the functions identified in the domain analysis

PRODUCT FAMILIES AND AGILE METHODOLOGIES 20

System Requirements Definition

phase integrate the content of both standards, and traceability with the ori-

ginal functional requirements of IEC 62290 is therefore made easier.

1.6 System Requirements Definition

The development of railway and metro signalling platforms in Europe shall

comply with the CENELEC standards [6, 5, 15]. These are a set of norms and

methods to be used while implementing a product having a determined safety-

critical nature. If a company wishes to achieve a CENELEC certification for its

CBTC product, the development of the product shall follow the guidelines and

the prescriptions of the norms. In principle, the company can decide to treat

the CBTC product as a single system, and provide certification for the system

as a whole. Nevertheless, once the company has to sell a product variant, the

certification process shall be entirely performed also for the variant, paying

undesirable costs in terms of budget and time.

Therefore, it is useful to develop each sub-system as an independent unit,

and follow the CENELEC regulations for the development of such sub-system.

Once each sub-system has got certification evidence according to the regula-

tions, the certification of the whole CBTC product is made easier, since it can

be focused solely on the integration aspects. Furthermore, if the customer re-

quires only a specific sub-system (e.g., the ATP or the ATS system) to renew

a part of its installation, the sub-system can be purchased without additional

certification costs. The first documents typically edited for the development of

a system in a CENELEC-compliant process are the Preliminary System Spe-

cification (PSS) and the System Requirements Specification (SYS-RS). The

former is a document that summarizes the interfaces of the system, and the

functionalities that are expected from the system. The latter is a document

that precisely specifies the expected system behaviour, as well as the safety,

performance, architectural and environmental constraints. Both documents

are normally written in natural language.

In our approach we suggest to derive the PSS directly from the detailed

PRODUCT FAMILIES AND AGILE METHODOLOGIES 21

System Requirements Definition

architecture. Moreover, we apply scenario-based requirements elicitation [26],

aided with rapid prototyping [27] to produce the SYS-RS document. Moreover,

our method expects the SYS-SRS document to be produced in a constrained

natural language.

1.6.1 PSS Definition

The approach for the definition of the PSS is as follows. First, we select

from the product architecture the sub-system to be developed. We choose,

for example, the ATS Simple introduced in Sect. 1.3.2 and employed in the

example of Sect. 1.5. The information provided by the detailed architecture

diagram for the ATS is the same information required by the PSS document.

The message arrows are the interfaces, while the functionality blocks are the

expected functionalities. Therefore, the definition of such a document comes

straightforwardly from the detailed architecture diagram.

ID Type Data From To

E.01 WLAN Train Location ATP ATS

E.02 WLAN Route ATS ATP

E.03 TD MA ATS Operator

Table 1.1: Excerpt of the interfaces of the ATS sub-system

In Table 1.1, we give an excerpt of the PSS of the ATS sub-system con-

cerning the interfaces with the other sub-systems or actors.

We notice that the table includes also the type of interface. Indeed, design

decisions concerning the types of interfaces and the types of the devices shall

be provided in the current phase. In particular, we see that the Movement

Authority (MA) is displayed to the user through the Train Describer (TD),

which is a screen that displays the metro layout and the information concerning

the position and the MAs of the trains.

While the functionalities are extracted from the detailed architecture dia-

gram, the natural language details concerning such functionalities can be dir-

PRODUCT FAMILIES AND AGILE METHODOLOGIES 22

System Requirements Definition

ectly extracted from the Domain Analysis Phase (see Sect. 1.3.1). However,

in some cases, the details provided might not be sufficient to precisely specify

the functionalites of the system. Moreover, the PSS document shall take into

account the design decisions taken. For example, the ATS User Interface ex-

tracted from the standards does not give details concerning the devices for the

visualization of the information concerning the metro status. In these cases,

sub-functionality partitioning is required. Below, we give an excerpt of PSS

of the ATS concerning the partitioning of the ATS User Interface (in our PSS

document, functionality F4), with focus on the sub-functionality F4.1 related

to the already mentioned Train Describer.

F4: ATS User Interface (IEEE 6.3.2) This function implements the visual-

ization of all the information that are required for the monitoring and the

management of the CBTC system. [continue...]

• F4.1. Management of the Train Describer: This function provides real-

time information concerning the status of the metro network. It is a view

of the system containing:

– a scaled representation of the metro layout;

– the position of the trains in real-time. Each train is identified by a

unique number;

– information concerning the busy routes and the free routes, high-

lighted in different colors;

– information concerning the Movement Authority (MA) of each train.

• F4.2. Management of the Train Graph [continue...]

• F4.3. Provide interface to the operation control centre HMI (IEC 6.2.2.5.1))

[continue...]

• F4.4. Provide interface to the decentralized HMI (IEC 6.2.2.5.2) [con-

tinue...]

We notice that, for those functionalities that have been extracted from the

CBTC standards, the reference to the original standard is reported in the PSS.

PRODUCT FAMILIES AND AGILE METHODOLOGIES 23

System Requirements Definition

For the additional functionalities required by the design decisions, and there-

fore not strictly related to the standards, the reference cannot be provided.

Nevertheless, we have experienced that the number of such functionalities is

quite limited. Furthermore, in most of the cases, these additional function-

alities are sub-functionalities of those expressed in the standards, as in the

presented example.

1.6.2 SYS-RS Definition

The System Requirements Specification (SYS-RS) is the main reference docu-

ment, which is used in the subsequent process phases for both the development

and the system verification. Requirements in the SYS-RS document are nor-

mally partitioned into technological, interface, functional, performance, RAM

- Reliability, Availability, Maintainability - and safety requirements. Here, we

focus on the definition of interface and functional requirements. Requirements

are normally written in natural language, and, following the CENELEC norms,

they shall be complete, clear, precise, unequivocal, feasible, verifiable, testable

and maintainable [5]. Here, we focus on the first five attributes.

In our approach, we employ a scenario-based iterative approach aided with

prototyping for requirements definition. Such an approach enforces require-

ments completeness and feasibility. Furthermore, requirements are written in

a constrained natural language. This choice enforces the production of clear

and precise requirements. Requirements are also analysed through the QuARS

tool for natural language ambiguity detection [28], in order to produce unequi-

vocal requirements.

Figure 1.9 illustrates the approach. First, functionalities are selected from

the PSS. For each functionality, we elicit one or more behavioural scenarios in

the form of natural language stories. From each scenario we derive require-

ments in a constrained natural language. Such requirements are analysed by

means of the QuARS tool. Once all the functionalities have been evaluated

and the scenarios have been written, the requirements are implemented in an

executable prototype. The executable prototype is used to derive new pos-

PRODUCT FAMILIES AND AGILE METHODOLOGIES 24

System Requirements Definition

Functionality

PSS

Prototype
Definition

Requirements
Definition

Scenario
Definition

QuARS
Analysis

CNL

SYS-RS

Figure 1.9: Approach for the definition of the SYS-RS

sible scenarios, and therefore new requirements. The approach iterates until

no additional scenario is foreseen.

Scenario Definition The approach is as follows. First, we derive natural lan-

guage scenarios starting from the functionality listed in the PSS document.

Scenarios are written in the form of bullet-list stories. This approach enables

the elicitation of possible system usages, while we employ natural language -

and not, e.g., sequence diagrams - in order to involve the largest amount of

stakeholders in the scenario definition. Indeed, we argue that a restricted UML

language, such as the one presented in Sect. 1.5.2, is normally understandable

by all the stakeholders, but cannot be profitably used by all of them to design

scenarios during the requirements elicitation phase. With natural language

scenarios, we can ask the largest amount of stakeholders to write the scenarios

and explore possible system’s usage.

The format of the scenario shall follow a few simple rules. Each scenario

shall have an identifier, a title in natural language, a source functionality, and

a list of actions that describe the scenario. In Table 1.2, we report one of the

scenarios that have been derived from the functionality F4.1. Management of

PRODUCT FAMILIES AND AGILE METHODOLOGIES 25

System Requirements Definition

the Train Describer.

ID: 001 TITLE: Visualization of the Movement Authority

SOURCE: F4.1 Management of the Train Describer

1. The ATS receives a message from the ATP

2. The ATS unpacks the message and recognizes that it is a

message of type Movement Authority - MA

3. The ATS realizes that the MA contained in the message is

associated to the train numbered T

4. The ATS visualizes the length of the MA through the user

panel in the point of the railway yard where the train numbered

T is currently placed

Table 1.2: Example scenario derived from the functionality F4.1 Management

of the Train Describer

Requirements Definition From each scenario, we derive a set of natural language

requirements in a constrained natural language. Several types of constrained

natural languages (CNL) have been proposed in the literature (see [36, 37] for

some examples, and [38] for a list of domain specific CNLs). However, all such

languages had limited use in practice, since they often appear as too complex

to handle, and too complex to be read.

In our approach, we use a constrained natural language that is inspired to

the language succesfully employed in the MODCONTROL project [39]. The

format is based upon four simple formats that shall be employed to write

requirements. The formats are reported below:

FORMAT1. The system [shall|should] be able to

< capability >.

This format is employed in case of requirements that involve mandatory

(shall) or optional (should) functionalities, which are unconditional and in-

dependent from the actions of the operators. Requirements of this type are

PRODUCT FAMILIES AND AGILE METHODOLOGIES 26

System Requirements Definition

normally associated to interface functions, internal procedures, or procedures

that manage internal data structures.

FORMAT2. The system [shall|should] allow the

< operator > to < action >.

This format is employed in case of requirements that involve mandatory

(shall) or optional (should) functionalities, which are unconditional and de-

pendent from the actions of the operators. A requirement of this type is “The

system shall allow the supervising operator to select the train to stop at the

next station”.

FORMAT3. The system [shall|should] < action >,

[when|after|before|if] < condition >

{, [when|after|before|if] < condition >}.
This format is employed in case of requirements that involve mandatory

(shall) or optional (should) system actions that depend on one or more con-

ditions. All conditions are considered in a logical AND relationship. If we

want to express logical OR among conditions, it is recommended to add a new

requirement.

FORMAT4. [FORMAT1|FORMAT2|FORMAT3],

< procedure >.

The format is a combination of one of the previous formats with a pro-

cedure. This format is employed in case of requirements that involve func-

tionalities that have an associated procedure, or that are performed through

a well-defined interface device. The format shall be used when it is useful to

explain how the system is expected to perform a certain action.

The fields < capability >, < action >, < condition > and < procedure >

are free-form sentences, with the only constraint of containing one verb max-

imum.

Below, we report the requirements that have been derived from the scen-

ario of the previous paragraph, together with the format of the requirement

(FORM-N = FORMAT N).

1. The system shall be able to receive messages from the ATP system

(FORM-1);

PRODUCT FAMILIES AND AGILE METHODOLOGIES 27

System Requirements Definition

2. The system shall parse the message, when the system receives a message

(FORM-3);

3. The system shall identify the type of the message, after the system has

parsed the message (FORM-3);

4. The system shall identify the fields of the message, after the system has

identified the type of the message (FORM-3);

5. The system shall display the length of the Movement Authority (MA)

of a train T, when the system receives a message of type MA with field

TRAIN ID = T (FORM-3);

6. The system shall display the length of the MA of a train T, through the

Train Describer (FORM-4);

7. The system shall display the length of the MA associated to a train T,

in the point of the railway yard where the train T is currently placed

(FORM-4);

In this example, we do not have requirements of FORMAT 2, since the

Train Describer does not allow interaction with the operator.

After the definition of the requirements, these are partitioned into func-

tional and interface requirements. For example, requirement 1, 6 and 7 will

be part of the interface requirements. All the other requirements can be con-

sidered functional requirements.

We argue that the proposed constrained natural language has several ad-

vantages in the considered domain. It is easy to use, since the formats can be

easily remembered. It is sufficiently strict to highlight the relevant capabilit-

ies, actions, conditions and procedures. Therefore, it enables the production

of precise requirements. Furthermore, it naturally produces short sentences,

since only one verb is admitted in the free-form fields, and this enables the

production of clear requirements.

Requirements shall be unequivocal, according to the CENELEC norms. In

order to enforce this quality attribute, we employ the QuARS tool for require-

PRODUCT FAMILIES AND AGILE METHODOLOGIES 28

System Requirements Definition

ments analysis. The tool detects potential natural language ambiguities in the

requirements by searching for typically ambiguous expressions. For example,

the terms “clear”, “easy”, “adequate” indicate vagueness, the expression “as

< adjective > as possible” indicate subjectivity, and demonstrative adjectives

(“this”, “that”) or personal pronouns (“it”, “they”) often reveal the presence

of an implicit - and therefore possibly ambiguous - subject in the sentence.

Requirements such as “The system shall handle incoming messages as rapidly

as possible” or “The system shall display the position of a train, if it is active”

(is “it” referred to the position of the train or to the system?), are identified

as ambiguous by QuARS. Such requirements shall be rephrased, modified,

or removed after the QuARS analysis. To have a complete view of all the

types of ambiguities that the tool identifies, please refer to [28]. The current

capabilities of QuARS - as well as the capability of similar tools, such as Re-

quirements Assistant5 - do not go beyond the so-called lexical and syntactic

ambiguities. Works are currently ongoing to discover semantic and pragmatic

ambiguities [40].

We have experienced that the proposed language is sufficiently flexible to

allow the expression of all the interface and functional requirements required

by our context. The other types of requirements (i.e., technological, perform-

ance, RAM, safety), normally included in the SYS-RS, may require differ-

ent formats - they often include numerical constraints - and other derivation

strategies (e.g., quantitative models of the system).

Furthermore, we argue that the presented CNL is a starting point towards

a formal representation of the requirements. For example, requirements 2 can

be represented with the following SOCL formula [41]:

AG([reveived msg($m)](AX{parse msg begin(%m)}true)).

The formula states that, whenever a message m is received ([reveived msg($m)]),

the parsing procedure for the message m shall start at the next (operator X)

system execution step. We notice that the formula includes a parameter (i.e.,

the message m). Currently, the only tool that supports the SOCL logic with

5http://www.requirementsassistant.nl

PRODUCT FAMILIES AND AGILE METHODOLOGIES 29

http://www.requirementsassistant.nl

System Requirements Definition

parametric formulas is UMC [42], which is also available on-line6. Other exper-

iences have been presented in the literature that aim at transforming natural

language requirements into formal specifications (e.g., [43, 44]). We argue that

the definition of a CNL such as the one presented, can be a proper intermediate

step to achieve this goal. Indeed, having a reduced amount of formats can help

identifying those fragments that can be transformed into logic formulas - and

verified through model checking - and those that do not have a corresponding

logic representation - and need to be verified through model/code inspection

or testing.

1.6.2.1 Prototyping

The scenarios can be regarded as a starting point for requirements elicitation,

but they are not sufficient to enforce the completeness of the requirements,

required by the norms. Several possible system usage and features might be

missing. Therefore, in order to enforce requirements completeness, the require-

ments that are derived from the scenarios are implemented in a prototype. The

prototype might be implemented either in a programming language, or with

formal/semi-formal modelling. The relevant aspect is that the prototype shall

be executable. Interaction with the prototype helps deriving new possible usage

scenarios to elicit new requirements. The prototype enables the identification

of scenarios that can hardly be foreseen if one focuses solely on one function-

ality, as we do when we derive the first set of scenarios. Indeed, exercising

the prototype highlights issues related to the interaction among functionalit-

ies. Moreover, the prototype helps discovering issues that are related to the

implementation, and that shall be considered in the requirements.

For example, consider the requirements of the previous paragraph. The

prototype implements such requirements, as well as all the other requirements

derived from the other scenarios. To have an executable prototype that is

capable of executing the scenario, we implement the following components:

• a stub function that emulates the communication part of the ATP, and

6http://fmt.isti.cnr.it/umc/V4.1/umc.html

PRODUCT FAMILIES AND AGILE METHODOLOGIES 30

http://fmt.isti.cnr.it/umc/V4.1/umc.html

System Requirements Definition

sends the message to the ATS prototype;

• a communication interface that receives the ATP messages;

• a graphical user interface that represents the Train Describer.

We execute the original scenario on the prototype, to assess that the provided

requirements are sufficient to perform the scenario. Furthermore, we apply

some variations to the scenario, exercising the prototype with different, manu-

ally defined, input data. For example, we start sending more than one message

with the same content, and we see that a policy is required to handle duplicate

messages. Then, we try to send two messages associated to the same train T,

where the MA are inconsistent (i.e., they are positioned into different parts

of the layout). A policy is required to handle also this situation, since, by

default, the graphical user interface of the prototype will show the same MA

in different parts of the railway yard. We write down natural language scen-

arios for these cases, and we derive additional requirements. The additional

requirements, in this case, are:

• The system shall discard the message received from the ATP, when the

system receives a duplicate message (FORM-2);

• The system shall be able to detect inconsistent MAs (FORM-1);

Furthermore, we require to change requirement 5 of the example as follows:

• The system shall display the length of the Movement Authority (MA)

of a train T, when the system receives a message of type MA with field

TRAIN ID = T, if the system did not detect inconsistent MAs (FORM-

3).

The concepts of duplicate message and inconsistent MA are defined in the

definition section of the SYS-RS, expressed in free-textual form:

• duplicate message: a message that has all the fields equal to the previous

message.

PRODUCT FAMILIES AND AGILE METHODOLOGIES 31

System Requirements Definition

• inconsistent MAs : an MA is inconsistent with the previous MA, if they

are associated to the same train T, if the former starts at M distance,

the latter starts at L distance, and L−M > τ .

τ is the tolerance, which is a configuration parameter for the system.

The new requirements are implemented in the prototype. Now, the proto-

type can be exercised again with new scenarios - which are made possible by

the extension of the prototype - and new requirements might be issued. In our

context, one may require a more fine-grained function that takes into account

the train speed to identify inconsistent MAs.

The choice of stopping the iteration of scenarios-requirements-implementation

is up to the team. In our experience, two to three iterations are sufficient to

achieve a degree of completeness of the requirements that can be acceptable

for the team.

Furthermore, since all the requirements are implemented in the prototype,

the approach naturally enables the production of feasible requirements, as

required by the norms.

We argue that a proper way to organize the scenarios shall also be foreseen,

in order to guide their navigation, and reason about the interaction among

them. We are currently working in this direction.

1.6.3 Traceability

The CENELEC norms ask for traceability among development artifacts. More-

over, we are here interested also in providing traceability links with respect to

the CBTC standards.

Figure 1.10 depicts the traceability links enforced by our approach. The

Functionalities extracted from the standards are traced back to the source

standard. The PSS document is built upon these functionalities and has a dir-

ect traceability link to them. The scenarios are derived from the functionalities

of the PSS, and the source field of each scenario provides the traceability link.

Each requirement in the SYS-RS is derived from the scenarios, and therefore

each requirement can be traced to the PSS through the scenarios. Traceability

PRODUCT FAMILIES AND AGILE METHODOLOGIES 32

System Requirements Definition

CBTC
Standards

Functionality

PSS

Scenarios

SYS-RS

Product
Requirements

Figure 1.10: Traceability links among artifacts in the system definition phase

(solid line=explicit link, dashed line= manual link)

links are also reviewed to assess that the additional information added in the

SYS-RS - e.g., an additional interface -, is also reported in the PSS. Since

many of the steps of the presented process are manual, the validation of the

traceability links is important to assess the mutual consistence and quality of

the different artifacts.

The link between the Product Requirements and the PSS/SYS-RS is not

explicit, and traceability among the artifacts shall be manually performed.

However, manual tracing is supported by the link between the Functionalities

and the CBTC Standards. Furthermore, manual tracing can help discovering

aspects of the CBTC standards - from which the Product Requirements are

derived - that have been overseen in the definition of the PSS/SYS-RS. Such

manual activity can be regarded as a validation of the compliance of the system

documents w.r.t. the CBTC standards.

PRODUCT FAMILIES AND AGILE METHODOLOGIES 33

Experience Report

1.7 Experience Report

The approach presented in this chapter has been defined and experimented

in the context of the Trace-IT project, focused on the definition of innov-

ative solutions for intelligent transport systems. The examples reported in

the chapter are adapted from the deliverables of the project. The project in-

volves two research groups coming from academia (4 people from ISTI-CNR,

and 3 people from the University of Florence), and one group coming from a

medium-sized railway signalling company (2 people).

The research groups from academia cover the role of technology experts,

thanks to the previous experience on product line modelling, and on require-

ments definition and analysis. The company covers the role of domain expert.

The research groups have implemented the process described in the chapter,

while the company has monitored the activities and has given recommenda-

tions and guidelines concerning the domain-related aspects.

The approach has been implemented as follows. The research groups have

first analysed the CBTC standards, deriving 67 functionalities (47 from the

IEEE standard and 20 from the IEC standard). Table 1.3 summarizes the

number of functionalities associated to each sub-system.

Source ATP W. ATP O. ATS ATO

IEEE 15 10 18 4

IEC 2 7 10 1

Total 17 17 28 5

Table 1.3: Number of functionalities of the standards associated to each sub-

system (ATP W. = ATP Wayside, ATP O. = ATP Onboard).

Then, the documents of the vendors have been evaluated and a global

feature model was derived, as described in Sect. 1.4. A product instance has

been chosen from the diagram. It was taken into account that the company

already developed both a CENELEC compliant ATP system, and a CENELEC

compliant IXL system (in its IXL pure form). The architecture of the product

PRODUCT FAMILIES AND AGILE METHODOLOGIES 34

Experience Report

instance is depicted in Figure 1.11.

ATP Wayside
Simple

ATS
Router

IXL
Pure

ATP
Onboard

ATO

Figure 1.11: Architecture of the chosen product instance

The CBTC system is as follows. The ATS Router has a communication link

with the IXL Pure, and requests routes to such system. The IXL is connected

to the ATP Simple, since the latter creates MA based on the information

concerning the status of the routes that comes from the IXL Pure. We notice

that the chosen architecture includes also an ATO system. The ATS Router

has a communication link with this system, that is used to send missions

(i.e., speed profiles and station stops) to the ATO system. The ATP Onboard is

connected to the ATO system. Indeed, the ATO can be regarded as a virtual

train driver that shall be controlled by the ATP.

We notice that, regardless of the presence of the ATO system, the presented

architecture is completely new with respect to the architectures of the com-

petitors. Indeed, none of the other architectures has a control link between

the IXL and the ATP Wayside system. Therefore, we have practically seen

that the presented approach actually enables the definition of new product

architectures that were not available in the market.

System requirements have been defined for the CBTC system according to

the approach described in Sect. 1.5. For confidentiality reasons, the examples

reported in this section of the chapter do not refer to the actual system re-

quirements for the CBTC product used in the project. However, we argue that

such examples are sufficient to clarify the approach. After the definition of the

CBTC product requirements, the two research groups operated independently

PRODUCT FAMILIES AND AGILE METHODOLOGIES 35

Experience Report

for the development of the CENELEC documents of the ATO (University of

Florence group) and for the CENELEC documents of the ATS (ISTI-CNR

group). Before the definition of the PSS and the SYS-RS documents, the two

groups participated to the definition of the communication protocol between

the ATS and the ATO. A communication protocol was required in order to

have a clear interface among the systems, to let the two groups work inde-

pendently.

The ATO group decided to implement a prototype with a semi-formal

approach, using IBM Rhapsody7 as development platform, but without imple-

menting the iterative process described in the current chapter, and without

applying the constrained natural language proposed. Instead the group de-

cided first to write down the requirements in a free-form natural language,

and, afterwards, to produce a semi-formal executable model.

The ATS group followed the process described in Sect. 1.6, and implemen-

ted the prototype using the C++ language upon the .NET8 platform with

Microsoft Visual Studio. The choice of following two different approaches was

driven by the need to assess the validity of the proposed approach w.r.t. a

similar environment where the approach was not applied.

The prototype was developed following the guidelines of the SCRUM de-

velopment framework [45]. According to the framework, the group performed

daily meetings (10 minutes each meeting), where a subset of the requirements

was selected and implemented in the prototype.

The ATS group produced 47 scenarios and a SYS-RS composed of 182

requirements and 27 definitions. Two iterations of the approach have been

performed to produce the current specification. The part related to the train

scheduling functionality, which is part of the ATS, is currently not considered

in the specification, since the group decided to perform a separate study for

the optimization of the train scheduling.

The current ATO specification includes 51 requirements. Both the ATO

and the ATS specifications have been evaluated with the QuARS tool for

7http://www-03.ibm.com/software/products/us/en/ratirhapfami/
8http://www.microsoft.com/net

PRODUCT FAMILIES AND AGILE METHODOLOGIES 36

http://www-03.ibm.com/software/products/us/en/ratirhapfami/
http://www.microsoft.com/net

Experience Report

requirements analysis. The defect rate of the ATS requirements resulted 9%

at the first iteration of the approach, and was reduced to 0% in the second

iteration. The defect rate of the ATO requirements was 5%. In both cases,

the main reasons of the defects was the presence of vague expressions, such as

“appropriate”, “imminent” and “shortly before”.

1.7.1 Lessons Learnt

Below, we list some lessons that have been learnt during the current experience.

Effort Required During the Domain Analysis Phase The domain analysis phase

has been the most time consuming activity, since the documents of the vendors

use different terminology. Guessing common and variant features required a

large amount of human inspection. The standards gave support in giving a

common language for interpreting the documents and also for the definition of

the global feature diagram. Nevertheless, we argue that the domain analysis

would benefit from the usage of automated approaches for the identification of

common and variant features. We are currently experimenting with a natural

language processing approach based on contrastive analysis for the identifica-

tion of domain-specific terms and the identification of commonality and vari-

ability candidates. The current results with the approach, presented in [30],

are rather promising. With the automated method we have been able to find

19 commonality candidates, and 6 out of 19 have been considered as common

features. Furthermore, we have found 372 variability candidates, and 174 out

of 372 have been considered variant features. We argue that the approach

would have greatly helped in guiding the inspection of the publicly available

documents of the vendors.

Expressiveness of the Feature Diagram The global feature diagram has been

found to be a powerful tool also to guide the understanding of the brochures of

new vendors. Indeed, the CBTC provided by GE Transportation was not eval-

uated in the initial domain analysis phase, since brochures for such a product

PRODUCT FAMILIES AND AGILE METHODOLOGIES 37

Experience Report

were not available yet. Therefore, we have discovered that the feature diagram

is not solely a mean to produce new products, but provides also a reference

framework to understand products coming from new competitors, as well as a

common language to interpret such products.

Semi-Formal vs Informal An aspect that has been highly appreciated by our

industrial partner is the choice of the modelling languages. The feature model

by itself provides an abstract view of the product family that is easily under-

stood by the stakeholders [46]. On the other hand, the block diagram notation

and the sequence diagrams defined allow focusing on the essential concepts,

even employing a limited number of operators. The project participants had

previous industrial experiences with SysML and Simulink/Stateflow [35, 34].

Nevertheless, they have observed that such languages were too complex to be

useful in this analysis phase.

Concerning the definition of the system requirements, the usage of the C++

prototype resulted more effective than the semi-formal Rhapsody in enabling

the communication with the industrial partner. Indeed, we argue that – during

the requirements elicitation phase – it is relevant to have a prototype that is

easy to use, and rather close to the expected system. A semi-formal model is

probably a better choice when the requirements have been clearly defined, and

when the final target is code generation rather than requirements elicitation.

Number of Requirements We have seen that the number of requirements pro-

duced with the presented approach is more than three times larger than the

number of requirements produced without employing the approach (182 vs

51 requirements). Therefore, we can argue that the scenario-based strategy

greatly helps in eliciting requirements. Since we did not implement the sys-

tem yet, we cannot actually demonstrate that the completeness of the ATS

requirements is higher w.r.t. the completeness of the ATO requirements. How-

ever, we can reasonably say that a higher number of requirements – expressed

with the same level of detail – will cover a larger number of functions in the

system-to-be.

PRODUCT FAMILIES AND AGILE METHODOLOGIES 38

Experience Report

Constrained Natural Language The requirements of the ATO were not written

in a CNL. Nevertheless, when we analysed them with QuARS, we saw that the

number of defects was lower, if compared with the defects found in the ATS

requirements (written in CNL). Therefore, we can argue that the presented

CNL does not reduce the number of ambiguous expressions. Instead, further

appropriate analysis – such as the one performed with QuARS – is required.

Nevertheless, the requirements produced with CNL appeared much clearer and

precise, compared to the ones produced without constraints. Therefore, the

CNL will be employed also in the subsequent phases of the project.

The adoption of the CNL for the definition of the system requirements was

not straightforward. Though the proposed language is quite simple, it is still a

constrained language, and it was initially perceived as a useless hamper to the

creativity required during requirements elicitation. However, after one week

of practicing, the team acquired confidence with the language, and we have

been able to experience its benefits. For example, the team was more keen

to write definitions before writing the requirements. Since the language is

constrained and inherently produces short sentences, definitions are indirectly

encouraged: once a definition is given for a term, one can use the term easily

within the CNL. The usage of definitions further reduces the ambiguity of the

requirements.

Requirements Quality When we first defined our approach, we did not focus on

the production of verifiable and maintainable requirements. Nevertheless, we

noticed that these two quality attributes indirectly occurred in the produced

requirements. Indeed, QuARS helps identifying and reducing the number of

vague terms. We have seen that vague terms are the main source of de-

fects in our specifications. We argue that the absence of vague terms enables

the production of requirements that can be functionally and - most of all -

quantitatively verifiable. Furthermore, maintainability of the requirements is

eased by the scenario-based approach followed. Requirements are maintain-

able when the corresponding document is well-structured [47]. The structure

of the requirements document and the order of the requirements is guided by

PRODUCT FAMILIES AND AGILE METHODOLOGIES 39

Experience Report

the scenarios: requirements are normally in the same section of the document

when they are derived from the same scenario. We have seen that, when

modifications to the requirements are needed, they normally correspond to

modifications to the existing scenarios or to new scenarios to handle. There-

fore, it is easy to identify those requirements that have to be changed, or the

part of the requirements document where it is preferable to place the new

requirements. To further improve the structural quality of the specification,

we plan to apply approaches based on sequential clustering that are currently

under development [48].

PRODUCT FAMILIES AND AGILE METHODOLOGIES 40

Chapter

2
Natural Language Processing

approaches

Natural Language Processing (NLP) began in the 1940s as the intersection

of artificial intelligence and linguistics analysis. NLP is the computerized ap-

proach to analyzing sentences in a natural language that is based on both a set

of theories and technologies [49]. The advances in natural language processing

provide ample opportunities for the documents in a natural language to be

analyzed and mined, thus creating numerous new and valuable applications.

This chapter presents a set of Natural Language Processing approaches to ex-

tract information from the documents, both to semi-automate the process to

define a product family (Section 2.1) and to measure and improve the back-

ward functional completeness (Section 2.2) of natural language requirements

documents. These approaches are used to improve the product requirements

definition process adopted in the previous Section 1.2.

NATURAL LANGUAGE PROCESSING APPROACHES 41

NLP approach to Product Family Definition

2.1 NLP approach to Product Family Definition

In the previous Chapter a set of publicly available documents (brochures) has

been used to derive a global model, from which specific product requirements

for novel systems belonging to the same product line have been derived. The

goal of the model was to support the analysis of available Communications-

based Train Control Systems (CBTC) products, which are integrated plat-

forms to control the movement of trains within a station and across different

stations (see Section 1.1). The model was represented in the form of a feature

diagram [23], following the principles of the product line engineering techno-

logy. The bottleneck found in the experience was the large amount of human

inspection required to identify the common components, as well as the archi-

tectural differences, between the solutions proposed by the different vendors.

The identification of these commonalities and variabilities has enabled the

definition of mandatory and optional features in the global feature diagram.

In order to reduce the time required to extract commonalities and variabilities

from the brochures of the different vendors, in [30] we suggested to adopt an

automated Natural Language Processing (NLP) approach named contrastive

analysis to identify domain-specific terms (single and multi-word) from tex-

tual documents [50]. The proposed method takes the brochures of the different

vendors as input, and identifies the linguistic expressions in the documents that

can be considered as terms. In this context, a term is defined as a conceptually

independent expression. The domain-specific terms that are common among

all the brochures are considered as commonality candidates. On the other

hand, those domain-specific terms that appear solely in a subset of the bro-

chures are considered as variability candidates. Starting from the experiences

presented in previous chapter and [30], two graphical tools have implemented

that (1) support the extraction of commonalities and variabilities from nat-

ural language (NL) documents, and (2) allow to graphically design a feature

model based on the extracted commonalities and variabilities. The first goal is

addressed by the Commonality Mining Tool (CMT), while the second goal is

addressed by the Feature Diagram Editor (FDE). Though the definition of the

NATURAL LANGUAGE PROCESSING APPROACHES 42

NLP approach to Product Family Definition

two tools is based on an experience focused on brochures, we advocate that

the tools can be used whenever the feature model has to be defined starting

from any type of NL documents, including NL requirements. Both the tools

are freely available at https://github.com/isti-fmt-nlp/tool-NLPtoFP.

The section is organised as follows. In Subsect. 2.1.1, we list the main charac-

teristics of the two tools, and their architecture. In Subsect. 2.1.2, we describe

the NLP approach based on contrastive analysis to identify commonality and

variability candidates. In Subsect. 2.1.3, we describe the details of the two

tools.

2.1.1 Overview

Commonality Mining Tool (CMT) allows commonalities and variabilities from

NL brochures of existing products to be extracted. The main functionalities

of CMT are:

1. Terminology Extraction: given a set of documents belonging to different

vendors, the tool allows the automatic extraction of the domain-specific

terms, namely the specific words related to the domain of the product,

from each document;

2. Commonality Candidates Extraction: the tool automatically identifies

of the commonality candidates among the domain-specific terms. These

are the domain-specific terms appearing in all the documents;

3. Variability Candidates Extraction: the tool automatically identifies the

variability candidates among the domain-specific terms. These are the

domain-specific terms that appear only in a sub-set of the documents;

4. Documents Surfing: the user can verify the quality of the selected can-

didates, by searching the occurrences of candidates in the original docu-

ments through the Graphical User Interface (GUI) of CMT;

NATURAL LANGUAGE PROCESSING APPROACHES 43

https://github.com/isti-fmt-nlp/tool-NLPtoFP

NLP approach to Product Family Definition

5. Commonality/Variability Selection: among the candidates, the user can

select the commonalities and variabilities for the construction of a feature

model, manually adding others if needed.

Feature Diagram Editor (FDE) is a tool to define a feature model through

the construction of its graphic representation, namely the feature diagram.

The main functionalities of FDE are:

1. Feature Diagram Generation: the tool automatically defines an initial

feature diagram with a set of features selected by the user, based on the

commonalities and variabilities produced by CMT;

2. Feature Diagram Editing: the user can create, edit and save a feature

diagram through a graphical interface based on Drag&Drop operations.

3. Feature Diagram to Documents Surfing: the user is guided in surfing

the input documents – the same used by CMT – to search for occurrences

of features;

4. SPLOT Import: the user can import the description of a feature model

from the XML format generated by the online tool SPLOT1 [51] (*.sxfm

format). The feature model is automatically rendered in a feature dia-

gram;

5. SPLOT Export: the user can export the feature model in the SPLOT

format and in *.png image format.

The architecture of the two tools and their interaction is shown in Fig. 2.1.

The user interacts with CMT through an intuitive GUI (CMT GUI). From the

GUI, the user can load the natural language Brochures of different vendors

and can perform terminology extraction, commonality/variability candidates

extraction, document surfing and commonality/variability selection.

The internal engine of CMT (Commonality/Variability Analyser) interacts

with an external tool named T2K [52]. The tool is in charge of performing

1http://www.splot-research.org

NATURAL LANGUAGE PROCESSING APPROACHES 44

http://www.splot-research.org

NLP approach to Product Family Definition

Brochures

Commonality	
 Mining	

Tool

Commonality/
Variability
Analyser

Feature	
 Diagram	
 Editor

SXFM
XML

PNG
CMT Data-

model

import/export

export

T2K
Domain-­‐specific	

Terms

CMT GUI FDE GUI

CMT
Project

FDE
Project

User User

Figure 2.1: Architecture and interactions of CMT and FDE

NATURAL LANGUAGE PROCESSING APPROACHES 45

NLP approach to Product Family Definition

the terminology extraction, and other NL analysis of the text included in the

brochures. CMT allows to store the analysis in a CMT Project, which can be

saved and loaded by the user.

From CMT, the user can launch FDE. In this case, FDE takes as input

the commonalities and variabilities extracted by CMT and stored in the CMT

Project. Moreover, a textual version of the original documents is also passed

to FDE. The user can interact with the GUI of the tool (FDE GUI) to edit

the diagram, surf the documents from the features represented in the diagram,

or import/export the feature model in the SPLOT format (SXFM XML).

Moreover, the user can save and load a feature diagram in a FDE Project,

which includes an XML version of the diagram. FDE can also be executed by

the user as a standalone application. In this case, an empty FDE Project is

created and the user can start editing the diagram from scratch.

2.1.2 The NLP Approach

The method employed by CMT, and supported by T2K [52], is based on a

novel natural language processing approach, named contrastive analysis [50],

for the extraction of domain-specific terms from natural language documents.

In this context, a term is a conceptually independent linguistic unit, which can

be composed by a single word or by multiple words. For example, “Automatic

Train Protection” is a term, while “Protection” is not a term, since in the

textual documents considered in the study reported in [30] it often appears

coupled with the same words (i.e., “train”, “mission”), and therefore it cannot

be considered as conceptually independent.

The contrastive analysis technology aims at detecting those terms in a

document that are specific for the domain of the document under considera-

tion [50, 53]. Roughly, contrastive analysis considers the terms extracted from

domain-generic documents (e.g., newspapers), and the terms extracted from

the domain-specific document to be analysed. If a term in the domain-specific

document highly occurs also in the domain-generic documents, such a term is

considered as domain-generic. On the other hand, if the term is not frequent

NATURAL LANGUAGE PROCESSING APPROACHES 46

NLP approach to Product Family Definition

in the domain-generic documents, the term is considered as domain-specific.

In our work, the documents from which we want to extract domain-specific

terms are the brochures of different vendors. A brochure is a promotional doc-

ument that describes the product to possible customers. Here, the reasonable

assumption is that both commonalities and variabilities can be found among

the domain-specific terms of the brochures. The proposed method is summar-

ized in Fig.1.2. First, conceptually independent expressions (i.e., terms) are

identified (Identification of Terms). Then, Contrastive Analysis is applied

to select the terms that are domain-specific. From these terms, commonality

and variability candidates are extracted (Commonality/Variability Candid-

ates Identification). In the tools presented in section 2.1.3, the former task is

supported by T2K, while the second task is in supported by the Commonal-

ity/Variability Analyser component of CMT.

Brochures

Commonality1
Candidates

Variability1
Candidates

Domain6specific1
Terms

Automa;c1Extrac;on1of1
Domain6specific1Terms

Identification
of Terms

Contrastive
Analysis

Commonality
Candidates

Identification

Variability
Candidates

Identification

Figure 2.2: Overview of the approach

2.1.2.1 Identification of Terms

Each vendor might have more than one brochure. We collect the brochures of

the same vendor i in a single document Di. Therefore, given n vendors, we

have D1 . . . Dn documents. From each one of these documents we identify a

ranked list of terms. To this end, we perform the following steps.

POS Tagging: first, Part of Speech (POS) Tagging is performed with an

english version of the tool described in [53]. With POS Tagging, each word is

NATURAL LANGUAGE PROCESSING APPROACHES 47

NLP approach to Product Family Definition

associated with its grammatical category (noun, verb, adjective, etc.).

Linguistic Filters: after POS tagging, we select all those words or groups

of words (referred in the following as multi-words) that follow a set of specific

POS patterns (i.e., sequences of POS), that we consider relevant in our con-

text. For example, we will not be interested in those multi-words that end

with a preposition, while we are interested in multi-words with a format like

<adjective, noun, noun> (such as “Automatic Train Protection”).

C-NC Value: terms are finally identified and ranked by computing a“term-

hood”metric, called C-NC value [50]. This metric establishes how much a word

or a multi-word is likely to be conceptually independent from the context in

which it appears. The computation of the metric is rather complex, and the

explanation of such computation is beyond the scope of this section. The in-

terested reader can refer to [50] for further details. Here we give an idea of the

spirit of the metric. Roughly, a word/multi-word is conceptually dependent if

it often occurs with the same words (i.e., it is nested). Instead a word/multi-

word is conceptually independent if it occurs in different context (i.e., it is

normally accompanied with different words). Hence, a higher C-NC rank is

assigned to those words/multi-word that are conceptually independent, while

lower values are assigned to words/multi-words that require additional words

to be meaningful in the context in which they are uttered.

After this analysis, for each Di, we have a ranked list of words/multi-words

that can be considered terms, together with their ranking according to the C-

NC metric, and their frequency (i.e., number of occurrences) in Di. The more

a word/multi-word is likely to be a term, the higher the ranking. From the list

we select the k terms that received the higher ranking. The value of k shall

be empirically selected. A higher value guarantees that more domain-specific

terms are included in the list. On the other hand, higher values for k might

also introduce noisy items, since also words/multi-words with low rank might

be included.

NATURAL LANGUAGE PROCESSING APPROACHES 48

NLP approach to Product Family Definition

2.1.2.2 Contrastive Analysis

The previous step leads to a ranked list of k terms where all the terms might be

domain-generic or domain-specific. With the contrastive analysis step, terms

are re-ranked according to their domain-specificity. To this end, the proposed

approach takes as input: 1) the ranked list of terms extracted from the docu-

ment Di; 2) a second list of terms extracted with the same method described in

Sect. 2.1.2.1 from a set of documents that we will name the contrastive corpora.

The contrastive corpora is a set of documents containing domain-generic ter-

minology. In particular, we have considered the Penn Treebank corpus, which

collects articles from the Wall Street Journal. The reasonable assumption here

is that a term that frequently occurs in the Wall Street Journal is not likely to

be a domain-specific term of the metro domain. The new rank Ri(t) for a term

t extracted from a document Di is computed according to the function [50]:

Ri(t) = (log(fi(t)) · (
fi(t) ·Nc

Fc(t)
)

where fi(t) is the frequency of the term t extracted from Di, Fc(t) is the

sum of the frequencies of t in the contrastive corpora, and Nc is the sum of

the frequencies of all the terms extracted from Di in the contrastive corpora.

Roughly, if a term is less frequent in the contrastive corpora, it is considered

as a domain-specific term, and it is ranked higher. If two terms are equally

frequent in the contrastive corpora, but one of them is more frequent in Di,

it is considered as a term that characterizes the domain more than the other,

and, again, it is ranked higher.

After this analysis, for each Di, we have a list of terms, together with their

ranking according to the function R, and their frequency in Di. The more a

term is likely to be domain-specific, the higher the ranking. From each list,

we select the l terms that received the higher ranking. The choice of l shall

be performed empirically: higher values of l tend to include terms that are

not domain-specific, while lower values tend to exclude terms that might be

relevant in the subsequent phases.

NATURAL LANGUAGE PROCESSING APPROACHES 49

NLP approach to Product Family Definition

2.1.2.3 Commonality Candidates Identification

The commonality candidates are the domain-specific terms that are common

to all the documents. Indeed, if a term is domain-specific and appears in all

the documents of the different vendors, it is likely to be a common feature of all

the products. More formally, if C1 . . . Cn are the sets of domain-specific terms

for D1 . . . Dn respectively, then the set of commonality candidates is defined

as: C = {C1∩C2....∩Cn}. Ranking is provided also for the set of commonality

candidates. The ranking value is provided by computing the average rank of

each term.

2.1.2.4 Variability Candidates Identification

The variability candidates are identified as those terms which are domain-

specific, and therefore appear in some of the Ci sets, but are not part of the

commonalities. We assume that, if a domain-specific term appears in some

of the documents of the different vendors, but not in all of them, it is likely

to be a variant feature, characterizing only a sub-set of the products. More

formally, we define the variability candidates as V = {C1 ∪ C2 . . . ∪ Cn} \ C.

Also in this case, the ranking value is provided by computing the average rank

of each term.

The sets C and V are domain-specific terms of the documents. In order to

assess that they actually include commonalities or variabilities, a human op-

erator shall assess the actual relevance of each candidate.

2.1.3 CMT and FDE

In this section we describe the functionalities of the Commonality Mining

Tool (CMT) and of the Feature Diagram Editor (FDE). The former employs

the approach explained in the previous section to extract commonality and

variability candidates, with the support of the tool T2K for domain-specific

term extraction (also referred as “terminology extraction” in the following).

The latter is used to build a feature diagram.

NATURAL LANGUAGE PROCESSING APPROACHES 50

NLP approach to Product Family Definition

Figure 2.3: Commonality Mining Tool - The user can surf the original docu-

ments to check occurrences of the features in the text. The checked candidates

(right panel) are the features that will be passed to FDE.

NATURAL LANGUAGE PROCESSING APPROACHES 51

NLP approach to Product Family Definition

2.1.3.1 Commonality Mining Tool

The Commonality Mining Tool (CMT) provides the extraction of feature can-

didates starting from the information contained in NL documents that describe

similar products. Moreover, among the feature candidates, the tool extracts

common and variant feature candidates, to be later evaluated by a human

operator (referred in the following as the user).

The idea is to start from a set of NL documents, in pdf/txt format, and ex-

tract the set of domain specific terms from these documents. To this end, CMT

relies on T2K (Text-To-Knowledge) tool [52], which is specifically targeted to

identify domain-specific terms.

Once fed with NL documents as input, T2K will provide a set of files

containing:

• the NL documents, in txt format;

• the separation into sentences;

• the terminology extraction (i.e., the list of domain-specific terms ranked

by relevance);

• the annotation of the text according to the grammar analysis (POS Tag-

ging).

These files will be used to extract the commonality candidates (i.e. domain-

specific terms that appear in each document) and variability candidates (all

other domain-specific terms). Moreover, the separation into sentences, and

the documents in *.txt format will be used to support the identification of

relations among the different domain-specific terms extracted.

2.1.3.2 How CMT Works

A screen-shot of the visual interface provided by CMT is shown in Fig. 2.3.

The internal process followed by CMT can be summarised in the following

phases.

NATURAL LANGUAGE PROCESSING APPROACHES 52

NLP approach to Product Family Definition

Project Set-up In this phase, the user creates a CMT Project and loads the

NL brochures in *.txt/*.pdf format. The tool assumes that for each vendor,

a single document is loaded. Therefore, the user is in charge of merging the

different NL documents (through copy/paste or supported by external tools)

into a single document. The tool will create a folder for each vendor, which

will be used to store the different analysis performed later on.

Terminology Extraction In this phase all the NL documents are given as input

to CMT, each of them associated to a different folder. For each folder the tool

reads the domain-specific terms as they have been processed by T2K. Then,

it identifies and stores the position of these terms in the source document(s),

and stores the separation into sentences, to be used in the Color by Cluster

phase of the process described in the following paragraphs.

Extraction of Candidates This phase provides the extraction of commonality and

variability candidates as follows. Let D1 . . . Dn is the set of NL documents and

Ti the set of relevant terms extracted from the document Di.

Commonality candidates are computed as:

Commonality Candidates =
n⋂

i=1

Ti

Variability candidates are computed as:

V ariability Candidates =
n⋃

i=1

Ti−
n⋂

i=1

Ti

Color by Cluster In this phase, colors are assigned to the feature candidates

(commonalities and variabilities) to ease the job of the user in understanding

the relations among the different features, when such features will be visually

shown in FDE. The idea is to assign the same color to variabilities that have

a textual relation in the original documents. Features associated to domain-

specific terms that occur in neighbouring sentences are considered to have a

textual relation. Instead, all commonalities will be associated to the same

color (black, in the default configuration).

NATURAL LANGUAGE PROCESSING APPROACHES 53

NLP approach to Product Family Definition

To assign colors that highlight relations among variabilities, the position

of all the domain specific terms is identified in all the input documents. Such

occurrences are used to group the terms in a fixed number of clusters. A

cluster identifies a set of terms that have a relation. Here, we use the generic

term “relation”, without specifying the type of relation, since the relations

that we highlight are based solely on the distance of terms within the text.

The user will be then in charge of establishing the actual type of relation

that occurs among the colored terms: such relation can be a hierarchical one

(parent/child feature), a AND/OR relation, or a constraint such as exclude or

require. Moreover, such relation can also not exist, since the color highlights

relations based on distance in the text, which could not match with semantics

relations in the final feature model.

The clustering algorithm adopted to assign colors to clusters is loosely

based on K-Nearest Neighbours [54]. A color identifier is assigned to each

cluster, which will be associated to all of its terms. The colors will be used

by FDE to visualize features that belong to the same cluster. Without going

into the details of the algorithm, the reader should imagine that, if two terms

are frequently occurring in sentences that are close one to the other, then the

terms will be associated to the same color.

The colors associated to each term can be visualised by the user through

CMT, but the user will be able to modify the different colors assigned by

the algorithm only through FDE. The coloring feature shall be regarded as a

recommendation of the tool-suite to the user, who will be free to change colors

and add new colored features in FDE. Within this work-flow, we do not enforce

strict consistency between the colors of the final feature model, and the colors

originally generated. Indeed, the goal here is just to suggest relations among

features in the text, and not to constrain the activity of the user in designing

the feature model.

Feature Selection During this phase, the user visualises the commonality and

variability candidates, checks their occurrences in the input documents, and

selects those that seem to be appropriate for the construction of the feature

NATURAL LANGUAGE PROCESSING APPROACHES 54

NLP approach to Product Family Definition

diagram. The user can also manually add other features that s/he thinks

necessary. In this phase the user can surf the original documents, by searching

the occurrence of a candidate within the text. For example, in Fig. 2.3, the

user is looking at one occurrence of the commonality candidate named “ATS”

in one of the original documents. The checked candidates in the right panel

of the figure are those that the user has selected as actual commonalities

that will be sent to FDE. When the user presses the “Select Commonalities”

button at the bottom-right of Fig. 2.3, the checked candidates becomes visible

in the “Selected Commonalities” tab (activated by clicking on the top-right

button of Fig. 2.3). Similar panels and approaches are provided for variability

candidates.

CMT allows searching only one term at a time, and one occurrence of term

at a time, to enable accurate inspection of the documents. The search of term

occurrences is designed to “remember” the last searched term. In this way,

the user can return to such term if, after other searches, there is the need

to consider again that term. This functionality is important for the usability

of the tool, in order to help discarding the unnecessary terms, and to enable

reasoning on the extracted terms by looking at their textual context.

Diagram Generation Now the user can run FDE to begin the construction of

the feature diagram. If launched by CMT, the commonalities and variabilities

selected by the user will be passed to FDE, together with their colors – as as-

signed by CMT – and their positions and occurrences in the input documents.

The tool FDE builds an initial diagram with a root with the same name of

the project created with CMT. The selected features are shown as children of

such root.

2.1.3.3 Feature Diagram Editor

The Feature Diagram Editor aims to define a feature model through the con-

struction of its graphic representation, namely the feature diagram. The fea-

ture diagram notations are used by Feature Diagram Editor and it’s presented

NATURAL LANGUAGE PROCESSING APPROACHES 55

NLP approach to Product Family Definition

in Section 1.4.1. A user can start interacting with FDE according to three

workflow starting points:

• from CMT: in this case the selected features will be given in input,

together with their colors and the information about their position in

the original texts;

• as a standalone application: in this case, the user can edit the diagram

from scratch without relying on previously extracted features;

• importing an SXFM files: an SXFM file is an .xml file generated with

the tool SPLOT [51]. In this case, FDE will automatically generate the

Feature Diagram corresponding to the feature model defined in such file.

Basic Operations FDE is used mainly by means of Drag&Drop operations.

Fig. 2.4 shows the interface of the tool2 (ignore at this stage the “Search Fea-

ture” label in the figure). FDE has a palette on the left with the graphical

symbols already reported in section 1.4.1 Fig. 1.4 (AND decomposition can be

performed by combining the mandatory/optional connectors). The user can

select one of the symbols from the palette and drag it to the central dashboard,

to build or update the feature diagram. With this user-friendly approach, new

features can be introduced, as well as connections among features.

Some functionalities of FDE are activated by means of a pop-up menu that

can be opened by right clicking on a feature. Among them, the change of the

name of the feature, or the opening of a window to search occurrences of the

feature in the original documents.

Finally, saving, loading, import and export operations can be accessed

through the menu bar of the tool (under the “Files” menu). Here, it is worth

noting that, when saved, the visual diagram is mapped to a formal model

expressed in XML. When exported in the *.sxfm format, such model can also

2The colors of the feature diagram in the figure have been adjusted by the user. Indeed,

right after importing the features from CMT, all the commonalities are normally colored in

black.

NATURAL LANGUAGE PROCESSING APPROACHES 56

NLP approach to Product Family Definition

be read by the SPLOT tool [51], which allows performing additional analysis

on the product family associated to the model.

Surfing the Documents The workflow of FDE highly depends on the user pref-

erences and needs. However, here it is useful to describe how the user can

surf the original documents of the different vendors starting from the visual

representation of the feature diagram.

As shown in Fig. 2.4, the user can select a group of features, and right

click to search them in the original texts. In Fig. 2.4, the user has selected

a group of two features, named “CBTC System” and “ATS” (a component of

the CBTC system). When the user presses “Search Feature”, FDE opens the

window shown in Fig. 2.5. From such window the user can see the occurrences

of the selected features in the original documents.

It is worth noting that the colors displayed in this window have a different

meaning with respect to those generated by CMT, and shown in the feature

diagram. Here, the colors serve to understand whether the feature was extrac-

ted from the text as a commonality, a variability or was an additional feature

not previously extracted from the text, as shown in the legend at the top-left

of Fig. 2.5.

2.1.3.4 Tool Download

CMT and FDE have been developed in Java, to ensure their portability. The

source code can be freely downloaded from https://github.com/isti-fmt-nlp/

tool-NLPtoFP, together with some illustrative examples.

After downloading the tools, which are embedded in a single project, the

user can import them as a Maven project3 within the Eclipse4 platform. Both

tools are under LGPL license. FDE can be executed as-is. Instead, termino-

logy extraction through CMT is performed remotely.

In our experience, manual inspection of the brochures and identification of

all the common and variable components of the different architectures of the

3https://maven.apache.org
4http://www.eclipse.org

NATURAL LANGUAGE PROCESSING APPROACHES 57

https://github.com/isti-fmt-nlp/tool-NLPtoFP
https://github.com/isti-fmt-nlp/tool-NLPtoFP
https://maven.apache.org
http://www.eclipse.org

NLP approach to Product Family Definition

Figure 2.4: Feature Diagram Editor - The tool allows building a feature dia-

gram through Drag & Drop operations, by using the palette on the left and

dragging the graphical elements to the central dashboard.

Figure 2.5: Feature Diagram Editor - The tool allows to inspect the original

documents, according to the features selected in the feature diagram.

NATURAL LANGUAGE PROCESSING APPROACHES 58

NLP approach to Product Family Definition

vendors has been a time consuming task. Furthermore, during the definition

of the model, we might have overseen some relevant details of the different

solutions. These omissions might radically affect the feature model, and, con-

sequently, invalidate the overall market analysis. The NLP-based approach

presented in this section addresses these issues, by providing an automatic

support for the selection of the commonalities and the variabilities, which can

be exploited to define the global feature model.

NATURAL LANGUAGE PROCESSING APPROACHES 59

NLP approach to Measuring Completeness

2.2 NLP approach to Measuring Completeness

The starting point of a requirements definition process is very rarely a blank

paper. More often, several input documents are placed on the desk of the

requirements engineer, from legacy system documentation to reference stand-

ards, from transcripts of meetings with the customers to preliminary specific-

ations. The content of these documents has to be taken into account when

writing the requirements [55, 56], since it settles the background on which the

future system can start to take its form. Such input documents are normally

written in natural language (NL), and suitable natural language processing

(NLP) tools can help identifying all the information that is relevant for the

requirements. NLP approaches have been proposed in the past to identify

significant abstractions that can aid the requirements process (e.g., [57, 58]).

However, none of the existing approaches considers the completeness of the

requirements with respect to the existing documentation. A requirements doc-

ument that does not include the relevant information of the input documents

- i.e., it is incomplete - could bring to several problems: if the missing inform-

ation resides in the transcripts of meetings with the customers, the product

might not address the customer’s expectations; if some information is overseen

from the reference standards, the resulting product might not comply to the

norms; when concepts from legacy documentation and preliminary specifica-

tions are not taken into account, re-work on the product or on the process

artifacts is hard to avoid.

Incomplete requirements specifications are often the cause of development

costs overruns, project failures and even safety-critical accidents. To avoid

these problems, the completeness of a requirements specification can be en-

forced by proper elicitation methods [59], by prototyping or by scenarios. All

such methods aims at improving the completeness of the requirements with

respect to the system-to-be, somehow foreseeing a possible implementation of

the system to identify unexplored aspects. Instead, in this paper, we wish to

focus on the completeness of the requirements w.r.t. the input documents of

the requirements definition process, such as preliminary specifications, tran-

NATURAL LANGUAGE PROCESSING APPROACHES 60

NLP approach to Measuring Completeness

scripts of meetings, and reference standards.

In this section, we propose a NLP-based approach to measure and improve

the completeness of a requirements specification with respect to the input

documents of the requirements definition process.

A requirements document is complete with respect to the input documents

if all the relevant concepts and interactions among concepts expressed in the

input documents are also treated in the requirements. We refer to this type of

completeness as backward functional completeness.

In order to measure such completeness, we provide two metrics that take

into account the relevant terms and relevant relations among terms of the in-

put documents. Furthermore, we provide a NLP approach to automatically

extract such terms and relations. A prototype tool named Completeness

Assistant for Requirements (CAR) has been developed, which suggests

relevant information during the requirements definition phase, and automat-

ically computes the degree of completeness of the requirements specification

produced.

In particular the completeness of a requirements specification for the SYS-

RS definition used in previous Section 1.6 in particular in Figure 1.9.

We evaluate the effectiveness of the approach with a pilot test, which is

also used as a reference example in the remainder of the section. The pilot test

concerns the definition of the requirements for an Automatic Train Supervision

(ATS) component of a Communications-based Train Control system (CBTC).

CBTC systems are introduced in chapter 1. These systems provide automatic

train protection, train monitoring, and automated train driving. The ATS

component of a CBTC is a centralized system that monitors and regulates the

movement of the trains. The system automatically routes trains, and sends

them speed profiles that shall be followed while moving through the railway

network. It is normally equipped with a user interface where the ATS operator

can view the position of all the trains, their schedule, and other information.

From the pilot test, we find that the CAR tool actually helps in improving

the completeness of the requirements specification with respect to the input

documents – in our case, the ATS reference standard. The tool suggests re-

NATURAL LANGUAGE PROCESSING APPROACHES 61

NLP approach to Measuring Completeness

lations about concepts that do not appear evident while reading the input

document, and facilitates the identification of specific/alternative behaviours

of the ATS system.

2.2.1 Defining and Measuring Completeness

In general, a requirements specification is complete if all the necessary require-

ments are included [60]. Several works have been presented in the literature

to define and to measure the completeness of a requirements specification. In

this paragraph, we review some definitions, which give a framework to under-

stand the concept of backward functional completeness provided by the current

section.

Completeness. A largely agreed definition of completeness of a requirements

specification can be found in Boehm [61]. The definition states that a com-

plete specification shall exhibit five properties: 1) No To-be-determined (TBD)

items 2) No nonexistent references 3) No missing specification items (e.g., miss-

ing interface specifications) 4) No missing functions 5) No missing products

(i.e., part of the actual software that are not mentioned in the specification).

Internal/External Completeness The definition is further conceptualized by

Zowghi and Gervasi [62]. The first two properties defined by Bohem [61] are

associated to internal completeness, and the second three properties to external

completeness. Internal completeness can be measured by considering solely

the information included in the specification. Instead, measuring external

completeness requires additional information provided by domain experts, for

example in the form of a domain model.

Feasible Semantic Completeness A more formal definition of external com-

pleteness - referred as semantic completeness - is given in Lindland et al. [63].

They look at the requirements specification as a conceptual model M , and they

state that M has achieved semantic completeness if it contains all the state-

ments about the domainD that are correct and relevant (i.e., D\M = ∅). They

observe that total semantic completeness cannot be achieved in practice, and

they define the concept of feasible semantic completeness as D \M = S 6= ∅.

NATURAL LANGUAGE PROCESSING APPROACHES 62

NLP approach to Measuring Completeness

The set S is composed of correct and relevant statements, but there is no

statement in S such as the benefit of including it in the specification exceeds

the drawback of including it.

Functional Completeness A further refinement of the concept, which goes

toward the definition of a completeness measure, is provided by España et

al. [64]. In line with the observations of Zowghi and Gervasi [62], the authors

argue that, in order to compute the feasible semantic completeness, a refer-

ence model Mr shall be defined to conceptualize the domain D. By focusing

on functional requirements, they consider the subset FM r ⊂ Mr, which is

a model of the functional requirements. Such a model is composed of func-

tional encapsulations Fr, roughly“functions”, and linked communications LCr,

roughly “messages”. More formally, Fr = FMr ∪ LCr.

A functional requirements specification FM shall be compared against this

reference model FMr to evaluate its completeness. Therefore, the specification

FM shall be regarded as a composition of functional encapsulations F and

linked communications LC (i.e., FM = F ∪ LC). The introduced concepts

are used to define two aspects of functional completeness :

• functional encapsulation completeness: all functional requirements spe-

cified in the reference model have been specified in the model (i.e.,

Fr \ F = ∅).

• linked communication completeness: all linked communications specified

in the reference model have been specified in the model (i.e., LCr \LC =

∅).

In order to provide metrics associated to these aspects, the authors define the

degree of functional encapsulation completeness as degFEC = |F |/|Fr|, and

the degree of linked communication completeness as degLCC = |LC|/|LCr|.
In practice, computing these metrics requires the definition of a reference model

for the functional requirements in terms of functions and linked communica-

tions.

NATURAL LANGUAGE PROCESSING APPROACHES 63

NLP approach to Measuring Completeness

2.2.2 Motivation

Besides the one applied by España et al. [64], several other measures for func-

tional requirements completeness have been proposed in the literature (e.g.,

[65, 66, 67, 68, 69]). Nevertheless, the majority of such metrics deal with func-

tional completeness defined with respect to the future implementation of the

system5. Indeed, domain models [64], ontologies [69], identification of com-

ponents [68], identification of system states [66], or expert analysis [65] are

required to compute this kind of completeness. In other terms, domain ex-

perts are called to foresee a possible implementation of the system, possibly

through a reference functional model FMr. According to this vision, we refer

to this kind of completeness as forward functional completeness. Instead, in

our work we wish to focus on the completeness of the requirements with respect

to the available input documents of the requirements definition process. The

input documents might be transcripts of meeting with customers, preliminary

specifications, reference implementation standards, or any other information

specifically regarding the system under development. We refer to the com-

pleteness of a functional requirements specification with respect to the input

documents as backward functional completeness.

Backward functional completeness is achieved by a functional require-

ments specification when (1) all the relevant concepts expressed in the input

documents are treated in the requirements specification; (2) all the relevant

interactions among concepts expressed in the input documents are treated in

the requirements specification.

Consider for example the input document of our pilot test [2]. The docu-

ment contains the sentence “An ATS system shall have the capability to auto-

matically track, maintain records of, and display on the ATS user interface the

locations, [...], the train schedule and [...]”. Besides the other content, such a

sentence tells that the ATS user interface is supposed to display the schedule of

the trains. Therefore, the requirement specification is expected to include the

concepts of “ATS user interface” and “train schedule”. Furthermore, require-

5One exception is [67], where completeness is evaluated against higher-level requirements

NATURAL LANGUAGE PROCESSING APPROACHES 64

NLP approach to Measuring Completeness

ments shall be provided that define the interaction among the two concepts

(i.e., the fact that the ATS user interface shall display the train schedule).

Achieving backward functional completeness ensures that no relevant in-

formation contained in the input documents is left out from the specification.

Measuring this type of completeness can give higher confidence on the quality

of the specification. Therefore, a metric is required to measure this kind of

completeness. Furthermore, we are also interested in establishing whether a

positive correlation holds between such completeness and the completeness of

the specification with respect to the system to be (i.e., the forward functional

completeness).

Bearing these observations in mind, we define three research questions,

which are addressed by the current section: RQ1. How to measure the back-

ward functional completeness of a requirements specification document? RQ2.

How to improve the backward functional completeness of a requirements spe-

cification document? RQ3. Does the backward functional completeness help

in improving the forward functional completeness of the specification?

The first question is answered by computing two completeness metrics that

consider the number of relevant terms that are used in the input documents,

and the number of relevant relations among terms (Sect. 2.2.3). Roughly, a

document is more complete than another if more relevant terms and more rel-

evant relations are included in the document. The second question is answered

through a prototype tool that suggests relevant terms to be included in the

requirements, and that considers the relations among terms (Sect. 2.2.6). The

third question is answered through a pilot test, where we have evaluated the

forward functional completeness of the requirements produced with the pro-

posed tool, and without the proposed tool (Sect. 2.2.7).

2.2.3 Metrics for Backward Functional Completeness

Measuring the backward functional completeness of a requirements specifica-

tion requires the definition of specific metrics (Research Question 1). Here,

we define two metrics. The first one, named degree of concept completeness,

NATURAL LANGUAGE PROCESSING APPROACHES 65

NLP approach to Measuring Completeness

measures how many relevant concepts that are expressed in the input docu-

ments are treated also in the specification. The second one, named degree of

interaction completeness, measures how many relevant interactions that are

expressed in the input documents are treated also in the specification.

More formally, we define the two metrics as follows. Let T be the set of

relevant concepts expressed in the input documents, and let Q ⊆ T be the set

of such concepts expressed in the requirements specification. We define the

degree of concept completeness of a requirements document D with respect to

a set of input documents I as degCC(D, I) = |Q|/|T |.
Now, let U be the set of relevant interactions among concepts expressed in

the input documents, and let R ⊆ U be the set of relevant interactions among

concepts expressed in the requirements specification. We define the degree of

interaction completeness of a requirements document D with respect to a set

of input documents I as degIC(D, I) = |R|/|U |.

Given a requirements document and the corresponding input documents,

we would like to compute the two metrics in an automated manner.

We argue that the relevant concepts expressed in the input documents

can be approximated with the relevant terms included in such documents.

Furthermore, relevant interactions among concepts can be approximated with

the relevant relations among terms. Therefore, we define a NLP approach to

automatically identify relevant terms and relations among terms in the input

documents.

2.2.4 Identification of Relevant Terms

The proposed method for the identification of relevant terms is based on a

novel natural language processing approach, named contrastive analysis [50],

for the extraction of domain-specific terms from natural language documents.

In this context, a term is a conceptually independent linguistic unit, which can

be composed by a single word or by multiple words. For example, consider the

document that we have used in our pilot test [2]. In such document, “Auto-

matic Train Supervision” is a term, while “Supervision” is not a term, since in

NATURAL LANGUAGE PROCESSING APPROACHES 66

NLP approach to Measuring Completeness

the textual documents considered in our study it often appears coupled with

the same words (i.e., “train”, “route”), and therefore it cannot be considered

as conceptually independent.

The contrastive analysis technology aims at detecting those terms in a

document that are specific for the domain of the document under considera-

tion [50, 53]. Roughly, contrastive analysis considers the terms extracted from

domain-generic documents (e.g., newspapers), and the terms extracted from

the domain-specific document to be analysed. If a term in the domain-specific

document highly occurs also in the domain-generic documents, such a term is

considered as domain-generic. On the other hand, if the term is not frequent

in the domain-generic documents, the term is considered as domain-specific.

In our work, the documents from which we want to extract domain-specific

terms are the input documents of the requirements definition phase. The pro-

posed method requires two steps. First, conceptually independent expressions

(i.e., terms) are identified (Identification of Terms). Then, Contrastive Ana-

lysis is applied to select the terms that are domain-specific. Identification of

Terms and Contrastive Analysis are introduced in Section 2.1.2.

Consider again our pilot test. After the contrastive analysis, a term such as

“train” – which is highly frequent in the document (57 occurrences), but is also

frequent in the contrastive corpora – is ranked lower than“ATS user interface”.

Indeed, this term has 8 occurrences in the document, but is uncommon in the

contrastive corpora.

After the contrastive analysis, we have a list of terms, together with their

ranking according the function TRank (TRank = Ri see Section 2.1.2.2), and

their frequency in I. The more a term is likely to be domain-specific, the

higher the ranking. From the list, we select the terms that received the higher

ranking. The choice shall be made according to a domain relevance threshold

τ . If TRank(t) ≥ τ the term will be selected as relevant. The value of τ

is defined over normalized values, where the rank of each term is divided by

the maximum value of TRank. The selection of τ shall be performed by a

domain expert after reviewing the lists of terms extracted. Normally, a value

of τ = 0.99 allows selecting most of the relevant terms.

NATURAL LANGUAGE PROCESSING APPROACHES 67

NLP approach to Measuring Completeness

Assuming that the set of selected terms T̄ provides an approximation of the

relevant concepts of the input documents T , we can approximate the degree

of concept completeness as degCC(D, I) ≈ |Q̄|/|T̄ |, where T̄ = {t ⊂ I :

TRank(t) ≥ τ}, and Q̄ = D ∩ T̄ . For example, in our case study, we have

|T̄ | = 67 relevant terms extracted from the input documents (see Table 2.1 for

examples). In the first experiment, the requirements produced by subject A

included |Q̄| = 46 of such terms. Therefore degCC(D, I) ≈ 68.7%.

2.2.5 Identification of Relevant Relations

In order to identify relevant relations among terms, we first select all the

terms t extracted in the previous step, regardless of their ranking. Then,

we search for possible relations among such terms. We state that there is

a relation u = (tj, th) between two terms tj, th if such terms appear in the

same sentence or in neighboring sentences. In our case, we select the previous

and the following sentence. In order to give a rank to such relation, we use

the Log-likelihood metric for binomial distributions as defined in [70]. The

explanation of such metric is beyond the scope of this section. Here, we give

an idea of the spirit of the metric. Roughly, a relation holds between two terms

if such terms frequently appear together. Moreover, the relation is stronger

if the two terms do not often occur with other terms. In other words, there

is a sort of exclusive relation among the two terms. For each couple of terms

tj, th occurring in neighboring sentences of the input document I, we associate

a rank according to the Log-likelihood metric, which represents the degree of

their relation u = (tj, th):

RRank(u) = Log-likelihood(tj, th)

In our pilot test, the term “re-routing of trains” has a relation with “movement

of trains” and with “ATS user interface”. However, the relation is stronger

(i.e., more exclusive) with the former (RRank = 14.88 vs RRank = 8.85),

since the latter often occurs with other terms. Indeed, the ATS user interface

is required to show several information, besides those concerning re-routing of

NATURAL LANGUAGE PROCESSING APPROACHES 68

NLP approach to Measuring Completeness

the trains.

After this analysis, we have a list of relations, together with their ranking

according to the function RRank. From the list, we select the terms that

received the higher ranking. The choice shall be made according to a rela-

tion degree threshold ρ. If RRank(u) ≥ ρ, the relation will be selected as

relevant. The selection of ρ shall be performed by a domain expert after re-

viewing the lists of relations extracted with the proposed method. Normally,

a Log-likelihood above 10.83 is recommended to select only relevant relations.

However, lower thresholds can be chosen, if more relations are required.

Assuming that the set of selected relations Ū provides an approximation of

the relevant interactions U in the input documents, we can approximate the

degree of interaction completeness as degIC(D, I) ≈ |R̄|/|Ū |, where Ū = {u ∈
T̄× T̄ : RRank(u) ≥ ρ}, and Q̄ = (D×D)∩Ū . For example, in our case study,

we have |Ū | = 316 relations extracted from the input documents (see Table 2.2

for examples). In the first experiment, the requirements produced by subject

A included |R̄| = 54 of such relations. Therefore degIC(D, I) ≈ 17.1%.

2.2.6 A Word-game to Support Requirements Definition

We would like to provide means to improve the backward functional complete-

ness of a requirements specification (Research Question 2). We argue that the

backward functional completeness of a requirements specification is normally

hampered by two problems: (1) missing concepts: the person who writes the

requirements might forget to consider relevant concepts of the problem, either

because she postpones their analysis, or because they are unclear and hard to

specify, or because the input documents include too many concepts to consider

them all; (2) missing concept interaction: when one writes a requirement, she

might be concentrated on the specific function that she is defining, and oversee

possible interactions among elements.

We have implemented a prototype tool named Completeness Assistant

for Requirements (CAR), which addresses these problems by automatic-

ally suggesting possible relevant terms and possible relevant relations among

NATURAL LANGUAGE PROCESSING APPROACHES 69

NLP approach to Measuring Completeness

terms to be used in the requirements. The relevant terms and relations are

extracted from the input documents (e.g., transcripts of meeting with the

customers, reference standards, preliminary requirements) according to the

approach explained in Sect. 2.2.3. Therefore, the tool starts with a set T̄ of

relevant terms, and a set Ū of relevant relations. Furthermore, the degree of

concept completeness and the degree of interaction completeness is computed

at run-time while the requirements manager writes down the requirements.

Fig. 2.6 shows the interface of CAR. The figure is used as a reference

example to explain the working principles of the tool. The example, adap-

ted from our pilot test, concerns the definition of the requirements for an

Automatic Train Supervision (ATS) system. An ATS system is indroduced in

chapter 1. The input document, in the example, is a reference international

standard [2], which is used as a starting point to write the requirements for

the ATS system. In general, the tool can work with any kind of natural lan-

guage input document, such as interviews, transcripts of meetings with the

customers, etc.

The tool is a sort of word-game. The main steps of the game are summar-

ized below:

1. The tool suggests to write a requirements with three terms. The first

term (conductor , in Fig. 2.6) is extracted from the set of relevant

terms, while the other two terms (control , train doors) are extracted

from the set of relevant relations. The three terms are also highlighted

in the original document, which is loaded to the bottom frame of the

interface. In the current version of the tool, the extraction is random.

Nevertheless, smarter approaches can be devised that choose the terms

by taking into account their relevance, their position, or the previously

written requirement.

2. The user writes a requirement, possibly using the three terms suggested.

An example requirement that employs the three terms is “The ATS sys-

tem shall notify the inhibition of control of the train doors to the train

conductor”. Then, the user adds the requirement to the central panel by

NATURAL LANGUAGE PROCESSING APPROACHES 70

NLP approach to Measuring Completeness

Figure 2.6: User interface of the tool.

pressing the button Add. It is worth noting that a requirement like the

one presented above could not be deduced by simply reading the text of

the input document. It is actually an additional behaviour inspired by

the suggested terms. Indeed, a relation between the “conductor” and the

“train doors” was not specified in the original input document, as one

can see from the fragment displayed in Fig. 2.6.

3. The system checks if the user used any relevant term or relevant rela-

tions, and consequently increases the degree of Concept Completeness

and the degree of Interaction Completeness. These values are computed

as |Q̄|/|T̄ | and |R̄|/|Ū |, respectively, as explained in Sect. 2.2.4 and 2.2.5.

NATURAL LANGUAGE PROCESSING APPROACHES 71

NLP approach to Measuring Completeness

When relevant concepts are found within the requirement, these are ad-

ded to the set Q̄. When relevant relations are found, these are added to

the set R̄. The current values of the metrics are shown below the panel

that lists the requirements.

4. The system automatically suggest other terms to be used in the following

requirement.

If a relevant term or relation is suggested twice, and the user does not

employ it in the requirement, such term/relation is marked as not relevant.

Therefore, the completeness scores are adjusted consequently (i.e., |T̄ | or |Ū |
are decreased).

In some cases, the user might not be interested in writing a requirement

that includes all the suggested terms. In other cases, the user might want to

focus on the suggested terms/relations to write more than one requirement.

With the normal behaviour of the tool, new terms/relations would be automat-

ically suggested in these cases after pressing the button Add. As explained, if

such terms/relations are not used, they are marked as not relevant, and will

not be presented anymore among the suggestions. Therefore, we added the

Suspend Terms and Suspend Relations buttons, to suspend the automated

suggestion of terms and relations, and prevent the tool from marking them as

not relevant.

If new relations among terms are reported in a requirement, these new re-

lations shall be added to the relevant relations Ū . In our case, the relations

between “conductor” and the other two terms are added to Ū . Similarly, if

some terms are used that were not identified as relevant in the initial analysis,

such terms shall be stored among the relevant terms T̄ . These situations do

not influence the computation of the backward completeness (also |Q̄| and |R̄|
increase like |T̄ | and |Ū |). Nevertheless, we argue that storing and reviewing

the new concepts and relations can help understanding if the requirements

specification provides additional information with respect to the input docu-

ments.

NATURAL LANGUAGE PROCESSING APPROACHES 72

NLP approach to Measuring Completeness

2.2.7 Pilot Test

We have performed a pilot test to assess the effectiveness of the proposed

approach, and to evaluate the correlation between the backward functional

completeness and the forward functional completeness (Research Question 3)

of a requirements specification.

In the pilot test, referred as subject A and subject B, were required to

write requirements for an ATS system, according to the generic requirements

provided by the standard IEEE Std 1474.1-2004 [2].

The requirements have been written with the support of the tool, and

without the support of the tool. The goal was to compare the degree of back-

ward functional completeness and the degree of forward functional complete-

ness achieved in the two cases.

More specifically, the pilot test required four steps, which are described

below.

1. Input document reading: the chapter concerning the ATS of the IEEE

Std 1474.1-2004 [2] - about 5 pages long - was used as input document for the

requirements definition task. Subject A and B were asked to read the input

document to have a first understanding of the general needs of the system.

2. Tool set-up: from the input document, 67 relevant terms and 316 relevant

relations have been automatically extracted. To this end, a threshold of 99%

and a threshold of 10 were chosen as domain relevance threshold τ , and relation

degree threshold ρ, respectively. In Table 2.1 and 2.2, we provide representative

examples of relevant terms and relevant relations extracted from the document.

These terms and relations have been fed into the tool to support the definition

of the requirements.

3. Requirements definition Phase 1: subject A and B were asked to write the

requirements. Subject A operated with the support of the tool, and subject B

operated without the tool. The requirements definition lasted one hour.

4. Requirements definition Phase 2: subject A and B were asked again to

write the requirements. Subject B operated with the tool, and subject A op-

erated without the tool until they produced the same amount of requirements

NATURAL LANGUAGE PROCESSING APPROACHES 73

NLP approach to Measuring Completeness

produced in the previous step (i.e., if a subject produced n requirements in

Phase 1, he should have produced n requirements also in the Phase 2). Given

a subject, this choice allows comparing the completeness scores achieved in

the two phases on the same amount of requirements.

The subjects chosen for the test were involved in the definition of the

principles of CAR, while the approach for term/relation extraction was defined

and implemented by the second subject only. Therefore, we argue that the

expectations of the two test subjects on the success of the solution had a

limited influence on the result of the test. Indeed, they did not know which

types of terms/relations would be considered relevant by the tool, and could

not influence the test by avoiding the usage of relevant terms/relations when

the tool was not used. This is especially true for Subject B, who performed

his first experiment without the tool. But it is also true for Subject A, since

during the first experiment he viewed only a limited part of the terms/relations

extracted by the tool (i.e., the suggested terms/relations).

Term TRank (%) Freqency

CBTC 100.0 44

ATS 99.99999+0.99769×10−6 43

ATS system 99.99999+ 0.8456× 10−6 19

ATS user interface 99.99999+0.29614×10−6 8

train location 99.99999+ 0.1231× 10−6 7

train 99.99999+ 0.1185× 10−6 57

conductor 99.99997+0.73215×10−6 8

station 99.99979+0.57378×10−6 12

Table 2.1: Examples of relevant terms

2.2.8 Quantitative Evaluation

We evaluated the results of the test by computing the backward functional

completeness of the produced requirements for the two subjects. Then, we

computed the forward functional completeness according to the metrics provided

by España et al. [64]. The degree of functional encapsulation completeness

degFEC, and the degree of linked communication completeness degLCC re-

quire the definition of a reference model for the system. In our case, we have

NATURAL LANGUAGE PROCESSING APPROACHES 74

NLP approach to Measuring Completeness

Relation RRank Freqency

(conductor, ATS system) 35.1402383629 6

(ATS user interface, position of trains) 17.9938334306 2

(station, train at station) 16.1777267317 2

(speed regulation function, service brake rates) 14.8834871304 1

(train fault reporting, train health data) 14.8834871304 1

(re-routing of trains, movement of trains) 14.8834871304 1

(equipment, supplier) 13.1023727742 2

(ATS user interface, movement authorities) 12.4872415276 2

(station departure time, train service) 12.1108984081 1

Table 2.2: Examples of relevant relations

employed a preliminary system specification where functions and linked com-

munications were listed. The reference model defines 21 functions and 10 linked

communications for the ATS system. The document was edited in the context

of the Trace-IT project (see). It is worth noting that the reference model was

provided before the definition of the method presented in this section. Table

2.3 summarizes the results of the test.

Subject
Num.

Reqs
Tool degCC degIC degFEC degLCC

A 36
Yes 68.7% 17.1% 47.6% 40%

No 52.3% 12.8% 61.9% 50%

B 21
Yes 67.2% 24.5% 47.6% 50%

No 58.2% 11.6% 33.3 % 50%

Table 2.3: Results of the pilot tests

Backward functional completeness. We see that, for both subjects, the backward

functional completeness, estimated with degCC and degIC, is higher when the

tool is employed (∆degCC = 12.7% and ∆degIC = 8.6% in average). There-

fore, in our pilot test, the usage of the tool actually helped in improving the

backward functional completeness of the requirements specification. Further-

NATURAL LANGUAGE PROCESSING APPROACHES 75

NLP approach to Measuring Completeness

more, we argue that if a larger amount of input documents would be employed,

the benefit given by the usage of the tool would be even more evident. The

CAR tool helps in the navigation of the input documents. Without tool sup-

port, coherent navigation would be hardly practicable in the case of many

documents. Moreover, with a larger amount of information, the statistics that

bring to the set of relevant terms/relations would be more accurate, and the

consequent suggestions given by the tool would be more meaningful.

Forward Functional Completeness. Conflicting results have been found concern-

ing the effectiveness of the approach with respect to forward functional com-

pleteness, estimated through degFEC and degLCC. Indeed, we see that sub-

ject A achieved a lower value for both metrics when using the tool with respect

to the values obtained when the tool was not employed (∆degFEC = −14.3%,

∆degLCC = −10%). Instead, subject B achieved a higher value for degFEC

when using the tool (∆degFEC = 14.3%), while equivalent values for degLCC

were obtained in Phase 1 and 2. Therefore, from our test, we cannot identify

a positive correlation between the degree of backward functional completeness

and the degree of forward functional completeness. Instead, we argue that the

results obtained might be related to the order that was followed by the two

subjects in performing the tasks. Subject A performed the experiment with

CAR before writing the requirements without the tool, while for subject B was

the other way around. Both subjects achieved a higher degree of completeness

during Phase 2. Basically, a higher degree of completeness was obtained when

the subjects acquired a higher confidence with the topic of the requirements,

since they already defined requirements for the system in Phase 1.

2.2.9 Qualitative Evaluation

We have performed a qualitative analysis of the produced requirements to un-

derstand which were the main differences between the requirements produced

with CAR and those produced without the tool. Interesting results have been

found. We have identified two main differences: 1) requirements produced

NATURAL LANGUAGE PROCESSING APPROACHES 76

NLP approach to Measuring Completeness

with CAR tend to be more specific, while requirements produced without the

tool are more high-level; 2) requirements produced with CAR tend to identify

alternative behaviors of the system. Representative examples of requirements

produced without the support of the tool by subject A are:

• R1. The ATS system shall send the desired speed profile to the trains

• R2. The ATS system shall have the capability to define temporary speed re-

strictions for the trains

• R3. The ATS system shall implement the functionality of train routing

These requirements are quite generic, and do not add too much content com-

pared to the input document. Instead, more specific requirements are produced

with the tool. For example, the following requirement was produced when

the tool suggested the term “emergency brake application” and the relations

<“response”, “wet rail”>:

• R4. The ATS system shall adjust the speed profile of the trains in response to

wet rail conditions in order to avoid emergency brake application.

Such requirement can be regarded as a specialization of R1 and R2, since

it explains the specific condition (i.e., the wet rail) that requires temporary

speed restrictions. The following requirement is an example of an alternative

behavior identified with the support of the tool. In this case, the relations

suggested was <“re-routing”, “service disruptions”>:

• R5. The ATS system shall be capable of supporting re-routing of trains in

response to service disruptions.

This requirement shows an alternative behavior (i.e., re-routing) of the routing

functionality identified by requirement R3. According to this preliminary ana-

lysis, we argue that the proposed tool can play a complementary role during

requirements definition. Indeed, it can be used as a support tool to identify spe-

cific cases, and alternative behaviors that tend to be overseen in requirements

definition approaches based solely on the analysis of the input documents.

NATURAL LANGUAGE PROCESSING APPROACHES 77

Chapter

3
Development of a sub-component

within Formal Methods

In CBTC platforms, a prominent role is played by the Automatic Train Super-

vision (ATS) system, which automatically dispatches and routes trains within

the metro network. In absence of delays, the ATS coordinates the movements

of the trains by adhering to the planned timetable. In presence of delays,

the ATS has to provide proper scheduling choices to guarantee a continuous

service and ensure that each train reaches its destination. In particular, this

implies that the ATS shall necessarily avoid the occurrence of deadlock situ-

ations, i.e., situations where a group of trains block each other, preventing

in this way the completion of their missions. After studying this scenario of

the ATS system, we have decided to apply the Formal Methods to manage

degraded modes operation, in the development of an ATS system. This choice

stems from the need to manage situations that would have great impact on the

operation of the railway system, with the risk of blocking the railway network,

even if guaranteeing safety.

Formal methods have been widely and successfully used in the railway con-

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 78

Formal Methods in ATS

text [71], but usually they are applied only to their safety critical components.

This Chapter present the approach used in the design of the scheduling

kernel of an Automatic Train Supervision (ATS) system. A formal model of

the railway layout and of the expected service has been used to identify all

the possible critical sections of the railway layout in which a deadlock might

occur. For each critical section, the prevention of the occurrence of deadlocks

is achieved by constraining the set of trains allowed to occupy these sections at

the same time. The identification of the critical sections and the verification

of the correctness of the logic used by the ATS is carried out by exploiting

a model checking verification framework locally developed at ISTI-CNR and

based on the tool UMC [72].

3.1 Formal Methods in ATS

This chapter presents the experience in the design of the scheduling kernel

of an ATS system. A prototype of the ATS system has been implemented,

which operates on a simple but not trivial metro layout with realistic train

missions. To address the problem of deadlock avoidance in our ATS prototype,

we have decided to develop sound solutions based on formal methods. In

a short preliminary work [73], we have outlined a model-checking approach

for the problem of deadlock avoidance. Such an approach included several

manual steps, and did not consider the presence of false positives (i.e., cases in

which a train is unnecessarily disallowed to proceed). Furthermore, the current

strategy exploits the usage of model checking also to address the problem of

false positives.

The ATS that we have designed prevents the occurrence of deadlocks by

performing a set of runtime checks just before allowing a train to move further.

The set of checks to be performed is retrieved from statically generated con-

figuration data that are validated by means of model checking. Our approach

to produce valid configuration data starts with the automatic identification of

a set of basic cases of deadlocks. This goal is achieved by statically analysing

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 79

An Abstract Model of the System

the missions of all the trains, and providing a set of preliminary constraints

that can be used to address the basic cases of deadlocks. Then, we build a

formal model of the scheduling kernel of the ATS that includes the constraints

associated to the basic cases of deadlock. We use such a formal model to verify

the absence of complex cases of deadlocks, and to assess the absence of false

positive cases. To this end, we apply model checking by means of the UMC

(UML Model Checker) tool, which is a verification environment working on

UML-like state machines [72]. When complex cases of deadlock are found, the

formal model is updated with additional checks to address such cases. The

validation process iterates until the ATS configuration data are proven to avoid

all possible cases of deadlocks. The verification of the configuration data for

the full railway yard is performed by decomposing it into multiple regions to

be analysed separately, and by proving that the adopted decomposition allows

extending the results to the full layout.

The chapter is structured as follows. In Sect. 3.2, we illustrate an abstract

model of the ATS, together with the metro layout and the missions of our ATS

prototype. In Sect. 3.3, the basic cases of deadlocks are described, and the

approach to identify and automatically avoid such cases is outlined. Sect. 3.4

explains how complex cases of deadlocks can occur, and introduces the problem

of false positives. Sect. 3.5 describes the formal model provided for the ATS

and the approach adopted to verify the absence of deadlocks and false positives.

In Sect. 3.6, we describe how we have partitioned the full layout.

3.2 An Abstract Model of the System

The abstract behavior of the kernel of the ATS system can be seen as a state

machine. This state machine has a local status recording the current progress

of the train missions and makes the possible scheduling choices among the

trains which are allowed to proceed.

Train movements can be observed and modeled at different levels of abstrac-

tions. In Figure 3.1 we show two levels of abstraction of the train movement,

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 80

An Abstract Model of the System

BCA01
Piazza Università

I

II

BCA02
3 4

5

6

(a) Itinerary level view

I

Piazza Università

BCA501 BCA502

14020 14012

14302

14022 1430114021 1401014011

II

(b) Track circuit level view

Figure 3.1: The itinerary and track circuit level view of a station

namely the itinerary level view and the track circuit level view. An itinerary is

constituted by the sequence of track circuits (i.e., independent line segments)

that must be traversed for arriving to a station platform from an external entry

point, or for leaving from a station platform towards an external exit point.

The itinerary are composed in this way to preserve resources. Track circuits

are not visible at the itinerary level view, which is our level of observation of

the system for the deadlock-avoidance problem. We assume that the train is

contained in a single track circuit. Instead, at the interlocking management

level, we would be interested in the more detailed track circuit level view, be-

cause we have to deal with the setting of signals and commutation of switches

for the preparation of the requested itineraries. Notice that it is the task of the

interlocking system (IXL) to ensure the safety of the system by preparing and

allocating a requested itinerary to a specific train. At the ATS level it is just

a performance issue the need to avoid the issuing of requests which would be

denied be the IXL, or to avoid sequences of safe (in the sense risk free) train

movements but which would disrupt the overall service because of deadlocks.

yellow

blue >>

yellow >>

blue

red >>

green >>

green

red

Vicolo Corto

Via Accademia
BCA01

I

II

Piazza Università

I

II

BCA02
Via Verdi

I

II

BCA03
Piazza Dante

I

II

III

BCA05BCA04

I

II

I I

II

Vicolo Stretto

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IVViale Monterosa

5

7

8

10

11

12

15

16

1718

20

22

23

24

25

26
2728

29

3031

32

139641 3

2

31

25

23

201613

12

109

8

76

2728

29

30

32

5

43

2

1

26

24

2217

15

1811

Figure 3.2: The yard layout and the missions for the trains of the green, red,

yellow and blue lines

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 81

The basic cases of deadlock

In our case, the overall map of the railway yard which describes the vari-

ous interconnected station platforms and station exit/entry points (itinerary

endpoints) is shown in Figure 3.2. Given our map, the mission of a train

can be seen as a sequence of itinerary endpoints. In particular, the service is

constituted by eight trains which cyclically start their missions at the extreme

points of the layout, traverse the whole layout in one direction and then return

to their original departure point. The missions of the eight trains providing

the green/red/yellow/blue line services shown in Figure 3.2, are represented

by the data in Table 3.1.

Green1: [1,3,4,6,7,9,10,13,15,20,23,22,17,18,11,9,8,6,5,3,1]

Green2: [23,22,17,18,11,9,8,6,5,3,1,3,4,6,7,9,10,13,15,20,23]

Red1: [2,3,4,6,7,8,9,10,13,15,20,24,22,17,18,11,9,8,6,5,3,2]

Red2: [24,22,17,18,11,9,8,6,5,3,2,3,4,6,7,8,9,10,13,15,20,24]

Yellow1:[31,30,28,27,11,13,16,20,25,22,18,12,27,29,30,31]

Yellow2:[25,22,18,12,27,29,30,31,30,28,27,11,13,16,20,25]

Blue1: [32,30,28,27,11,13,16,20,26,22,18,12,27,29,30,32]

Blue2: [26,22,18,12,27,29,30,32,30,28,27,11,13,16,20,26]

Table 3.1: The data for the missions

In absence of deadlock avoidance checks, in our abstract model, trains are

allowed to move from one point to the next under the unique condition that the

destination point is not assigned to another train. This transition is modeled

as an atomic transition, and only one train can move at each step. We are

interested in evaluating the traffic under any possible condition of train delays.

Therefore we abstract completely away from any notion of time and from the

details of the time schedules. Indeed, if we consider all the possible train

delays, the actually planned times of the time table become not relevant.

3.3 The basic cases of deadlock

A basic deadlock occurs when we have a set of trains (each one occupying a

point of the layout) waiting to move to a next point that is already occupied

by another train of the set. In our railway scenario this means that we have

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 82

The basic cases of deadlock

a basic deadlock when two trains are trying to take the same itinerary in

opposite directions, or when a set of trains are moving around a ring which is

completely saturated by the trains themselves. We consider as another case

of basic deadlock the situation in which two trains are trying to take the same

linear sequence of itineraries in opposite directions.

1 3

2

4

5

6 7

8

9

D

A

B C

Figure 3.3: A sample selection of four basic critical sections from the full

layout

For example, if we look at the top-left side of our yard layout we can easily

recognize four of these zones in which the four Green and Red trains might

create one of these basic deadlocks (see also Figure 3.3):

a) The zone A [1-3] when occupied by Green1 and Green2.

b) The zone B [2-3] when occupied by Red1 and Red2.

c) The zone C [3-4-6-5] when occupied by the four Green and Red trains.

d) The zone D [6-7-9-8] when occupied by the four Green and Red trains.

The first step of our approach to the deadlock free scheduling of trains

consists in statically identifying all those zones of the railway layout in which a

basic deadlock might occur. We call these zones basic critical sections. We have

already seen the two basic kinds of critical sections, namely ring sections and

linear sections, which are associated to the basic forms of deadlocks mentioned

before. Given a set of running trains and their missions, the set of basic

sections of a layout are statically and automatically discovered by comparing

the various missions of all trains. In particular, linear sections are found by

comparing all possible pairs of train missions. For example if we have that:

then (x,y,z) constitutes a basic linear section of the layout. Similarly if we

have for example three trains such that:

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 83

The basic cases of deadlock

x y z
ba

d c

Train1: [..., a, x, y, z, b, ...]
Train2: [..., c, z, y, x, d, ...]

x

z y

Train1: [..., x, y, ...]
Train2: [..., y, z, ...]
Train3: [..., z, x, ...]

then (x,y,z) constitutes a basic ring section of the layout.

The next step of our approach consists in associating one or more counters

to the critical sections in order to monitor at execution time that the access

to them will not result in a deadlock. It is indeed evident that if we allow at

most N-1 trains to occupy a ring section of size N no deadlock can occur on

that ring. Similarly, in the case of linear sections, we could use two counters

(each one counting the trains moving in one direction) and make sure that one

train enters the section only if there are no trains coming from the opposite

side (while still allowing several trains to enter the section from the same side).

When a train is allowed to enter a basic critical section the appropriate counter

is increased; when the train is no longer a risk for deadlocks (e.g. moves to an

exit point of the section) the counter is decreased.

The above policy can be directly encoded in the description of the train

missions by associating to each itinerary endpoint the information on which

operations on the counters associated to the entered/exited sections should be

performed when moving to that endpoint. We call the description of the train

missions extended with this kind of information extended train mission.

Let S be a generic name of a section. In the following we will use the

notation S+ to indicate that a train is reaching an entry point of a ring section

S, (correspondingly increasing its counter), and the notation S- to indicate that

a train is reaching an exit point of section S (correspondingly decreasing its

counter). The notation SR+ (SR-) indicates that a train is reaching the entry

(exit) point of a linear section S from when arriving from its right side. The

notation SL+ (SL-) indicates that a train is reaching the entry (exit) point of

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 84

From basic to composite sections

a linear section S from when arriving from its left side.

The cases of deadlocks over the basic sections shown in Figure 3.3 can

be avoided by extending the missions of the trains of the green and red lines

(originally shown in Table 3.1) in the following way:

Sections :

[A, B, C max 3, D max 3]

Train Missions:

Green1: [(AL+) 1,(AL-,C+) 3,4,(C-,D+) 6,7,(D-) 9,10,13,15,20,23,

22,17,18,11,(D+) 9, 8,(D-,C+) 6,5,(C-,AR+) 3,(AR-) 1]

Green2: [23,22,17,18,11,(D+) 9,8,(D-,C+) 6,5,(C-,AL+,AR+) 3,(AR-) 1,

(AL-,C+) 3,4,(C-,D+) 6,7,(D-) 9,10,13,15,20,23]

Red1: [(BL+) 2,(BL-,C+) 3,4,(C-,D+) 6,7,(D-) 9,10,13,15,20,24,

17,18,11,(D+) 9,8,(D-,C+) 6,5,(C-,BR+) 3,2]

Red2: [24,22,17,18,11,(D+) 9,8,(D-,C+) 6,5,(C-,BL+,BR+) 3,(BR-) 2,

(BL-,C+) 3,4,(C-,D+) 6,7,(D-) 9,10,13,15,20,24]

Given the discovered set of basic sections, the description of the extended

train missions for all running trains can be automatically computed without

effort. By performing such an initial static analysis on the overall service

provided by our eight train missions shown in Figure 3.2 we can find eleven

basic critical sections (see Figure 3.4) and automatically generate the corres-

ponding extended mission descriptions for all trains. All this automatically

generated data about critical sections and extended missions will be further

analyzed and validated before being finally encoded as ATS configuration data

and used by the ATS to perform at runtime the correct train scheduling choices.

3.4 From basic to composite sections

Our set of basic critical sections actually becomes a new kind of resource shared

among the trains. When moving from one section to another, a train may have

to release one section and acquire the next one. Again, this behavior can be

subject to deadlock. Let’s consider the example of regions A, B, C shown in

Figure 3.5.

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 85

From basic to composite sections

31

3

2

5

643

8

96 7

3031

30

32

2728

29

30

11

15

1718

20

22 25

13

11

15

1718

20

22

26

13

11

16

1718

20

22

23

13

11

16

1718

20

22

2413

Figure 3.4: All the basic critical sections of the overall layout

1 4

5

63

2

A

B
C

1 4

5

63

2

A

B C

Figure 3.5: Deadlock situations over the composition of basic critical sections

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 86

From basic to composite sections

In the left case (the right case is just an analogous example), train Green2

cannot exit from critical section C because it is not allowed to enter critical sec-

tion A. Moreover, train Green1 is not allowed to leave critical section A because

it is not allowed to enter critical section C. The deadlock situation that is gener-

ated in the above case is not a new case of deadlock introduced by our deadlock

avoidance mechanism, but just an anticipation of an unavoidable future dead-

lock (of the basic kind) which would occur if we allow one of the two trains to

proceed. To solve these situations, we can introduce two additional composite

critical section E and F respectively over the points [1-3-4-6-5], (section A

plus section C) and [2-3-4-6-5] (section B plus section C), which are allowed

to contain at most three of the trains Green1, Green2, Red1, Red2). These

new sections are shown in Figure 3.6a. The missions of the Green and Red

trains are correspondingly updated to take into consideration also these new

sections.

1

5

63

2

A

B
C

E

F

4

(a) The composite sections E and F

1

5

63

2

A

B
C

E

F

4

Red

Green

Red
Gre

en

(b) A potential deadlock caused by false

positives

Figure 3.6: Composite sections and new deadlock case

It is very important that our mechanism does not give raise to false pos-

itive situations, i.e, situations in which a train is unnecessarily disallowed to

proceed. False positive situations, in fact, not only decrease the efficiency of

the scheduling but also risk to propagate to wider composite sections, creating

even further cases of false positives or deadlocks.

Let us consider the situation shown in Figure 3.6b. The red train in 2 is not

allowed to proceed in point 3 because section E already contains its maximum

of three trains. The same occurs for the green train in point 1 (section F

already has three trains). As a consequence nobody can progress, while, on

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 87

A verifiable formal model of the system

Initial model
(handling basic deadlocks)

Model Checking

New sections, counters,
and updated missions

No more deadlocks or
false positives

New
deadlocks or

false positives

Validated
ATS
Data

Train Missions

Figure 3.7: The ATS configuration data validation process

the contrary, nothing bad would occur if the red train in 2 was allowed to

proceed.

As we build greater composite sections it becomes extremely difficult to

manually analyze the possible effects of the choices. We need a mechanical help

for exhaustively evaluating the consequences of our choices, discover possible

new cases of deadlock involving contiguous or overlapping critical sections,

and completely eliminate potential false positives situations from the newly

introduced composite critical sections. As shown in Figure 3.7, we will rely

on model checking approach for starting a sequence of iterations in which

new problems in terms of deadlocks are found are resolved by creating and

managing new sections in an incremental way.

3.5 A verifiable formal model of the system

The behavior of the abstract state machine describing the system can be rather

easily formalized and verified in many ways and using different tools. We have

chosen to follow a UML-like style of specification and exploit our in-house

UMC framework.

UMC is an abstract, on-the-fly, state-event based, verification environment

working on UML-like state machines [72]. Its development started at ISTI in

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 88

A verifiable formal model of the system

2003 and has been since then used in several research projects. So far UMC is

not really an industrial scale project but more an (open source) experimental

research framework. It is actively maintained and is publicly usable through

its web interface (https://fmt.isti.cnr.it/umc).

In UMC a system is described as a set of communicating UML-like state

machines. In our particular case the system is constituted by a unique state

machine. The structure of a state machine in UMC is defined by a Class

declaration which in general has the following structure:

class <name > is

Signals:

<list of asynchronous signals managed by the objects of the class >

Operations:

<list of synchronous call ops managed by the objects of the class >

Vars:

<list of local vars belonging to the state of the objects of the class >

Behavior:

<list of rules defining the state evolutions of the objects of the class >

end <name >

The Behavior part of a class definition describes the possible evolutions of the

system. This part contains a list of transition rules which have the generic

form:

<SourceState > --> <TargetState > {<EventTrigger >[<Guard >] /<Actions > }

Each rule intuitively states that when the system is in the state SourceState,

the specified EventTrigger is available, and all the Guards are satisfied, then

all the Actions of the transition are executed and the system state passes from

SourceState to TargetState (we refer to the UML2.0 [74] definition for a more

rigorous definition of the run-to-completion step).

In UMC the actual structure of the system is defined by a set of active

object instantiations. A full UMC model is defined by a sequence of Class

and Objects declarations and by a final definition of a set of Abstraction rules.

The overall behavior of a system is in fact formalized as an abstract doubly

labelled transition system (L2TS), and the Abstraction rules allow to define

what we want see as labels of the states and edges of the L2TS. The temporal

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 89

https://fmt.isti.cnr.it/umc

A verifiable formal model of the system

logic supported by UMC (which has the power of full µ-calculus but also

supports the more high level operators of CTL/ACTL) uses this abstract L2TS

as semantic model and allows to specify abstract properties in a way that is

rather independent from the internal implementation details of the system [75].

It is outside the purpose of the chapter to give a comprehensive description

of the UMC framework (we refer to the online documentation for more details).

We believe instead that a detailed description of fragment of the overall system

can give a rather precise idea of how the system is specified. To this purpose,

we take into consideration just the top leftmost region of the railway yard as

show by Figure 3.8, which is traversed only by the four trains of the green and

red lines.

Via Accademia
BCA01I

II

Piazza Università
I

II

BCA02
Via Verdi

I

II

3

2 5 8

1
BCA03

74 6 9

91

92

93

94

Figure 3.8: The top-left region of the full railway yard

Our UMC model is composed of a single class REGION1 and a single object

SYS.

class REGION1 is

...

end REGION1

SYS: REGION1 -- a single active object

Abstractions {

<observation rules>

}

In our case the class REGION1 does not handle any external event, there-

fore the Signals and Operations parts are absent. The Vars part, in our case

contains, for each train, the vector describing its mission, and a counter re-

cording the current progress of the train (an index of the previous vector).

E.g.

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 90

A verifiable formal model of the system

G1M: int[]:= [1,3,4,6,7,9,92,91,9,8,6,5,3,1]; --mission of train Green1

G1P: int := 0; --progress inside mission of train Green1, i.e. index in-

side G1M

Similar mission and progress data are defined for the other trains as G2M,

G2P (train Green2), R1M, R1P (train Red1), R2M, R2P (train Red2).

As we have seen in the previous sections, in this area we have to handle six

critical sections, called A, B, C, D, E, F. For the sake of simplicity, in this case

we handle the linear A and B critical sections as if they were rings of size 2

(which allow at most one train inside them). We use six variables to record the

limits of each section, and other six variables to record the current status of

the various sections, properly initialized with the number of the trains initially

inside them.

MAXSA: int :=1; -- section A: [1,3] (see Figures 3.3, 3.6a and 3.8)

MAXSB: int :=1; -- section B: [2,3]

MAXSC: int :=3; -- section C: [3,4,5,6]

MAXSD: int :=3; -- section D: [6,7,9,8]

MAXSE: int :=3; -- section E: [1,3,4,5,6]

MAXSF: int :=3; -- section F: [2,3,4,5,6]

SA: int :=1; SB: int :=1; SC: int :=0;

SD: int :=0; SE: int :=1; SF: int :=1;

For each train, the set of section updates to be performed at each step

is recorded into another table which has the same size of the train mission.

We show below the table G1C which describes the section operations to be

performed by train Green1 during its progress:

G1C: int[] := -- Section counters updates to be performed by train Green1

--A,B,C,D,E,F

[[1,0,0,0,1,0], --1 [0,0,0,0,0,0], --92-91

[-1,0,1,0,0,1], --1-3 [0,0,0,1,0,0], --11-9

[0,0,0,0,0,0], --3-4 [0,0,0,0,0,0], --9-8

[0,0,-1,1,-1,-1], --4-6 [0,0,1,-1,1,1], --8-6

[0,0,0,0,0,0], --6-7 [0,0,0,0,0,-1], --6-5

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 91

A verifiable formal model of the system

[0,0,0,-1,0,0], --7-9 [1,0,-1,0,0,0], --5-3

[0,0,0,0,0,0], --9-92 [0,0,0,0,0,0]]; --3-1

The element i of the table records the increments or decrements that the train

must apply to the various section counters to proceed from step i to step i+1

of its mission. For example, in order to proceed, at step 1, from endpoint 1

to endpoint 3, train Green1 must apply the updates described in the element

[-1,0,1,0,0,1], i.e., decrement the counter of section A, and increment the

counters for sections C and F.

In the Behavior part of our class definition we will have one transition rule

for each train, which describes the conditions and the effects of the advance-

ment of the train. In our case there is no external event which triggers the

system transitions, therefore they will be controlled only by their guards.

In the case of train Green1, for example, we will have the rule:

01: s1 -> s1

02: { - [(G1P <13) and -- 13 is the length of the mission for green1

03: (G1M[G1P+1] /= R1M[R1P]) and ----

04: (G1M[G1P+1] /= G2M[G2P]) and |

05: (G1M[G1P+1] /= R2M[R2P]) and |

06: (SA + G1C[G1P+1][0] <= MAXSA) and |

07: (SB + G1C[G1P+1][1] <= MAXSB) and | Guard

08: (SC + G1C[G1P+1][2] <= MAXSC) and |

09: (SD + G1C[G1P+1][3] <= MAXSD) and |

10: (SE + G1C[G1P+1][4] <= MAXSE) and |

11: (SF + G1C[G1P+1][5] <= MAXSF)] / ----

12: SA := SA + G1C[G1P+1][0]; ----

13: SB := SB + G1C[G1P+1][1]; |

14: SC := SC + G1C[G1P+1][2]; |

15: SD := SD + G1C[G1P+1][3]; | Actions

16: SE := SE + G1C[G1P+1][4]; |

17: SF := SF + G1C[G1P+1][5]; |

18: G1P := G1P +1; ----

19: }

The above rule states that, if train Green1 has not yet completed its mission

(line 02), and the next endpoint for its mission is not already assigned to

another train (lines 03–05), and for each critical section the update of its

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 92

A verifiable formal model of the system

associated counter does not exceed the stated limits (lines 06–11), then the

train is allowed to proceed: the section counters are updated as requested by

the step (lines 12–17) and the train progress is incremented of one step (line

18). Similarly, it is done for all the other four trains.

Finally, we have to define what we want to observe on the abstract L2TS

associated to the system evolutions. Actually we are just interested to observe

that a certain state is the final one, where all trains have completed all their

steps, therefore returning to the point where they started from.

This can be done assigning a label, e.g. ARRIVED to all the system config-

uration in which the each train is in its final position.

Abstractions {

State SYS.G1P=13 and

SYS.G2P=13 and

SYS.R1P=13 and

SYS.R2P=13 -> ARRIVED

}

The above abstraction rule specifies that the ARRIVED label should be assigned

to a state when the progresses of the four trains reach the value 13 (the last

index of all the train missions).

At this point the L2TS associated to our model will be a directed graph

which will converge to a final state labelled ARRIVED in the case that no

deadlock occurs in the system. This can be easily checked by verifying the

CTL-like formula:

AF ARRIVED

The formula states that all paths (A in the formula) starting from the initial

state of the system eventually will reach (F) a state labelled HOME. If this

property does not hold we observe the generated counterexample and view all

the details of the path which leads to the deadlocked state.

In our case the formula is true. The generated statespace has just 10073

configurations, and UMC explores all of them in a few seconds.

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 93

A verifiable formal model of the system

But are we sure that we have removed all the possible cases of false posit-

ives? One way to verify that is to allow a train to proceed even if its progress

violates the constraints of the critical sections, but marking the reached state

as DEAD. This is easily done in our model by removing the conditions on the

section counters from the guards of the train transitions, and by adding in the

Abstraction part the following observation rules:

State SYS.SA > MAXSA -> DEAD

State SYS.SB > MAXSB -> DEAD

State SYS.SC > MAXSC -> DEAD

State SYS.SD > MAXSD -> DEAD

State SYS.SE > MAXSE -> DEAD

State SYS.SF > MAXSF -> DEAD

In this way we can check the absence of false positives by verifying the

formula:

not EF (DEAD and EF ARRIVED)

Which states that does not exists a path (E) which eventually reaches (F) a

state that labelled DEAD, and from which exists (E) a continuation of the path

which eventually reaches (F) a state in which all trains are in their destination.

Unfortunately the above formula false, and that allows discovering several

other cases of false positives, (like the one shown in Figure 3.9) whose removal

requires a more refined use of the counters (the final version of the code can

be found at http://fmt.isti.cnr.it/umc/examples/traceit/).

If we want to check again the absence of deadlocks in this second kind of

model we can now modelcheck the formula:

A[(EF ARRIVED) U (DEAD or ARRIVED)]

This is a typical branching time formula, which states two things. The

first is that all paths will eventually reach a state labelled as DEAD or ARRIVED.

The second is that for all intermediate states of these paths there is scheduling

choice that allows driving all trains to destination (EF ARRIVED) .

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 94

http://fmt.isti.cnr.it/umc/examples/traceit/

Partitioning the Full Model

In this case the size of the generated statespace is 10493 configurations and

the evaluation time is less than two seconds.

1

5

63

2

A

B
C

E

F

4
RedGreen Red

Gre
en

Figure 3.9: Another case of false positive for section E

3.6 Partitioning the Full Model

Sometimes the scheduling problem might be too complex to be handled by

the model checker. In these cases, it is useful to split the overall layout into

subregions to be analyzed separately. In particular, in the system used as our

case study, we have four trains moving along the red-line and green-line service,

and four other trains moving along the yellow-line and blue-line service. In we

consider all the possible interleavings of eight trains each one performing about

20 steps, we get a system with about 208 configurations. Most model checkers

(and UMC among them) may have difficulties in performing an exhaustive

analysis over a system of this size, therefore it is useful to consider a possible

splitting of the overall layout. In our case we have considered a partitioning

of the system as shown in Figure 3.10. The analysis of region 1 has been

performed following the approach outlined in the previous sections, and has

led to the management of six critical sections.

The analysis of region 3 is similar to the previous one, and leads to the

introduction of further four critical sections. The analysis of region 2 is more

complex, being bigger and with 8 trains inside it. The analysis does not reveals

any new cases of deadlocks or false positives, therefore the critical section

remain the basic sections already discovered with our static analysis (shown

in Figure 3.11). The statespace size of the model for region 2 is 6,820,504

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 95

Partitioning the Full Model

Via Accademia
BCA01I

II

Piazza Università
I

II

BCA02
Via Verdi

I

II

3

2 5

1

BCA03
74 6 9

BCA03 Piazza Dante
I

II

IIIBCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

10

11

12

15

16

1718

20

22

23

24

25

26
27

9

Vicolo Corto BCA05

BCA04

I

II

I I

II

Vicolo Stretto Viale Monterosa

2728

29

3031

32

8

13

Figure 3.10: The three regions partitioning the full layout

configurations and its verification takes a few minutes.

In general, it is not true that the separate analysis of the single regions in

which a layout is partitioned actually reveals all the possible deadlocks of the

full system. For this being true it is necessary that the adopted partitioning

does not cut (hiding it from the analysis) any critical section that overlaps two

regions. Since we know from our static analysis where are positioned the basic

critical sections for the layout, and we know that composite sections can only

extend over contiguous/overapping basic sections, it is sufficient to partition

the system in such a way that each region encloses completely a closed group

of connected basic sections.

BCA03 Piazza Dante
I

II

III
BCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

10

11

12

15

16

1718

20

22

23

24

25

26
27

9 13

Figure 3.11: Four critical sections in region 2

DEVELOPMENT OF A SUB-COMPONENT WITHIN FORMAL METHODS 96

Conclusions
This dissertation is based on the experience acquired inside the project namely

“Train Control Enhancement via Information Technology” (TRACE-IT) fun-

ded by Tuscany Region. The project concerns the specification and develop-

ment of a Communications-based Train Control (CBTC) platform, and sees

the participation of the DINFO of the University of Florence, of the Formal

Methods and Tools Laboratory of the “Institute of Information Science and

Technologies” (ISTI), an institute of the “Italian National Research Council”

(CNR) and E.C.M. s.p.a., an industrial partners.

In this dissertation, results are presented concerning the definition of a

global model for CBTC systems. The model is derived from existing CBTC

implementations and from the guidelines of international standards, and is rep-

resented in the form of a feature model. A methodology has been outlined to

derive product requirements from the global model. Furthermore, an approach

has been presented to derive system requirements in the CENELEC context for

the individual systems that compose the CBTC product. Review of each arti-

fact and validation of each phase is also performed in practice, as required by

the CENELEC process. Nevertheless, the presented approach mainly focuses

on the system definition part of the CENELEC process, and validation as-

pects are only partially discussed in this dissertation. Another relevant aspect

is the possibility to adapt the current approach to the development of Traffic

Management System/European Train Control System (ERTMS/ETCS) sys-

CONCLUSIONS 97

CONCLUSIONS

tems1. This system intends to remove the technical barriers against the inter-

operability regarding the train control command system by creating a single

Europe-wide standard. Challenges related to this adaptation mainly concern

the larger amount of standard documents and implementations associated to

these systems. Therefore, we argue that the product-line engineering part of

our approach, which highly helps in organizing relevant concepts, can be a

proper support to give a reference framework for ERTMS/ETCS systems.

The overall method has been considered highly valuable by our industrial

partner, who acted as external supervisors for the presented work. The most

promising commercial aspect is the value given to (1) the consideration of the

competitor’s choices, and (2) to the adherence to the standards (both CBTC

and CENELEC ones). Though a migration strategy from a CBTC standard

to the other is not fully defined yet, we expect the transition to be simplified

by the consideration of all the available standards during the functionality

identification phase.

To support the feature model definition, we presented an approach for com-

monality and variability mining from domain-specific natural language docu-

ments and we have presented two tools, namely CMT and FDE, which can ease

domain analysis when a company wishes to enter a new market. They are used

to semi-automate the process to define a product family. The two tools are both

in a prototypical academic version, and several improvements are still needed

to make them industrially applicable. Besides the look-and-feel improvements

that are required, we plan to extend FDE with the introduction of minimum

and maximum cardinalities in features and group of features. Moreover, we

also plan to experiment the usage of the tools in real-world scenarios, to mon-

itor how a user builds a feature model starting from NL documents. In our

view, this user-based observation is fundamental to understand how to intro-

duce feature-model synthesis approaches (as, e.g., in Davril et al. [76]) in a

CMT/FDE-based tool-chain.

We also advocate the usage of the proposed tools – in particular CMT –

1Please refer to http://www.uic.org for a complete list of references concerning ERTM-

S/ETCS systems

CONCLUSIONS 98

http://www.uic.org

CONCLUSIONS

for mining common and optional features form NL requirements, and not only

from informal product descriptions. In principle, requirements documents of

similar products can be regarded as the brochures of different vendors, and

processed according to the approach defined in this dissertation. In this case,

the final output would be a feature model, that represents the product line

associated to the requirements.

After, to improve completeness of the requirements we presented the novel

concept of backward functional completeness of a requirements specification

has been defined as the completeness of a specification with respect to the in-

put documents of the requirements definition process. Metrics to measure such

completeness have been provided, as well as a NLP-based tool named CAR to

improve it. Further development of the principles of CAR are currently under

analysis. We would like to give a type to the relations that are extracted from

the input documents. For example, “ATS user interface” and “train schedule”

are related in our input document, and their relation is of type “display”. Fur-

thermore, we would like to explore different approaches for choosing the terms

to be suggested to the user of CAR. Such approaches should also take into ac-

count the structure of the input documents, the structure of the requirements

specification itself, and the requirements previously written by the user. Other

similarity metrics, such as the cosine similarity [77], are currently under ana-

lysis to evaluate the relations among the terms. After improving the principles

of CAR, we plan to assess the tool with both academic and industrial case

studies. In particular, we plan to consider systems of different domains, as well

as different types of input documents, in order to identify possible refinements

and domain-specific optimizations of the approach.

After studying the scenario of the CBTC system, we have decided to extend

the use of the Formal Methods to manage degraded modes operation, in the

development of an ATS system. This choice stems from the need to manage

situations that would have great impact on the operation of the railway system

to avoid the block of the railway network for many hours. The development of

solutions to the problem of deadlock avoidance in train scheduling is a complex

and still open task [78]. Many studies have been carried out on the subject

CONCLUSIONS 99

CONCLUSIONS

since the early ’80s, but most of them are related to normal railway traffic,

and not to the special case of driverless metropolitan systems. Automatic

metro systems indeed may express some original properties, e.g., the difficulty

of changing the station platform on which a train should stop, or the fact that

all trains keep moving continuously, which makes the problem rather different

from the classical railway case. There are many directions in which this work

is going to proceed. For example, we want to see if the model checking / model

refinement cycles for the detection and management of critical sections could

be in some way fully automatized removing the human intervention for the

generation of the final validated ATS configuration data. A further interesting

evolution would be the generation and validation of the critical sections data

directly from the inside of the ATS. This would allow to automatically handle

at run time also the dynamic change of the itinerary of the trains. The current

metro-line oriented approach could be further generalized to a wider railway

oriented setting by taking into consideration the train and platform lengths,

or the possibility of specifying connections and overtakings among trains. At

a first look the handling of these aspects should require only minor updates of

our current approach.

Therefore agile approaches are useful to start developing, but formal meth-

ods are useful afterwards. It is not indispensable to analyse all parts of the

system with formal methods, but only the most critical sub-parts. After identi-

fying the sub-components that need formal methods, such methods can be

applied.

CONCLUSIONS 100

Bibliography
[1] R. D. Pascoe and T. N. Eichorn, “What is Communication-Based Train

Control?,” IEEE Vehicular Technology Magazine, 2009.

[2] Institute of Electrical and Electronics Engineers, “IEEE Standard for
Communications Based Train Control (CBTC) Performance and Func-
tional Requirements,” IEEE Std 1474.1-2004 (Revision of IEEE Std
1474.1-1999), 2004.

[3] P. C. Clements and L. Northrop, Software product lines: practices and
patterns. Boston, MA, USA: Addison-Wesley Longman, Inc., 2001.

[4] A. Fantechi and S. Gnesi, “Formal modeling for product families engin-
eering,” in Proc. of SPLC, pp. 193–202, 2008.

[5] CENELEC, “EN 50128, Railway applications - Communications, sig-
nalling and processing systems - Software for railway control and pro-
tection systems,” 2011.

[6] CENELEC, “EN 50126, Railway applications - the specification and
demonstration of Reliability, Availability, Maintainability and Safety
(RAMS) - part 1: Generic RAMS process,” 2012.

[7] S. Black, P. Boca, J. Bowen, J. Gorman, and M. Hinchey, “Formal Versus
Agile: Survival of the Fittest,” Computer, vol. 42, pp. 37–45, Sept 2009.

[8] P. G. Larsen, J. S. Fitzgerald, and S. Wolff, “Are Formal Methods Ready
for Agility? A Reality Check,” in FM+AM 2010 - Second International
Workshop on Formal Methods and Agile Methods, 17 September 2010,
Pisa (Italy), pp. 13–25, 2010.

BIBLIOGRAPHY 101

[9] B. Fitzgerald, K.-J. Stol, R. O. Sullivan, and D. O. Brien, “Scaling Agile
Methods to Regulated Environments: An Industry Case Study,” in Pro-
ceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, (Piscataway, NJ, USA), pp. 863–872, IEEE Press, 2013.

[10] S. Wolff, “Scrum goes formal: Agile methods for safety-critical systems,”
in Software Engineering: Rigorous and Agile Approaches (FormSERA),
2012 Formal Methods in, pp. 23–29, June 2012.

[11] X. Ge, R. Paige, and J. McDermid, “An iterative approach for develop-
ment of safety-critical software and safety arguments,” in Agile Conference
(AGILE), 2010, pp. 35–43, Aug 2010.

[12] H. Jonsson, S. Larsson, and S. Punnekkat, “Agile Practices in Regu-
lated Railway Software Development,” in Software Reliability Engineer-
ing Workshops (ISSREW), 2012 IEEE 23rd International Symposium on,
pp. 355–360, Nov 2012.

[13] “IEC 62290-1: Railway applications: Urban guided transport manage-
ment and command/control systems. Part 1: System principles and fun-
damental concepts,” 2007.

[14] “IEC 62290-2: Railway applications: Urban guided transport manage-
ment and command/control systems. Part 2: Functional requirements
specification,” 2011.

[15] CENELEC, “EN 50129, Railway applications - Communications, sig-
nalling and processing systems - Safety related electronic systems for sig-
nalling,” 2003.

[16] J. S. Stover, “CITYFLO 650 System Overview.” http://goo.gl/e26SZ,
2006.

[17] Signalling Solutions Limited, “URBALIS Communication Based
Train Control (CBTC) Delivery Performance and Flexibility.”
http://goo.gl/G3hEe, 2009.

[18] Thales Transportation, “Seltrac Brochure.” http://goo.gl/OjhvK, 2009.

[19] Invensys Rail, “SIRIUS Brochure.” http://goo.gl/YFUiL, 2009.

[20] Ansaldo STS, “CBTC Brochure.” http://goo.gl/3Kmb0, 2011.

BIBLIOGRAPHY 102

[21] Siemens Transportation Systems, “Trainguard MT CBTC.”
http://goo.gl/Xi0h0, 2006. The Moving Block Communications
Based Train Control Solution.

[22] GE Transportation,“Tempo CBTC Solution.”http://goo.gl/KshrR, 2012.

[23] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study,” tech.
rep., Carnegie-Mellon University Software Engineering Institute, 1990.

[24] D. S. Batory, “Feature models, grammars, and propositional formulas,” in
Proc. of SPLC, pp. 7–20, 2005.

[25] K. Czarnecki and U. Eisenecker, Generative programming: methods, tools,
and applications. New York, NY, USA: ACM Press/Addison-Wesley,
2000.

[26] A. Sutcliffe, “Scenario-based requirements engineering,” in Proceedings of
the 11th IEEE International Conference on Requirements Engineering,
RE ’03, (Washington, DC, USA), pp. 320–329, IEEE Computer Society,
2003.

[27] H. Gomaa, “The impact of rapid prototyping on specifying user require-
ments,” SIGSOFT Softw. Eng. Notes, vol. 8, pp. 17–27, Apr. 1983.

[28] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “The linguistic approach
to the natural language requirements quality: benefit of the use of an
automatic tool,” in Software Engineering Workshop, 2001. Proceedings.
26th Annual NASA Goddard, pp. 97–105, IEEE, 2001.

[29] E. Kuun, “Open Standards for CBTC and CBTC Radio Based Commu-
nications,” in APTA Rail Rail Transit Conference Proceedings, 2004.

[30] A. Ferrari, G. O. Spagnolo, and F. dell’Orletta, “Mining commonalities
and variabilities from natural language documents,” in SPLC (T. Kishi,
S. Jarzabek, and S. Gnesi, eds.), pp. 116–120, ACM, 2013.

[31] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line En-
gineering: Foundations, Principles and Techniques. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2005.

[32] F. Roos-Frantz, Automated Analysis of Software Product Lines with Or-
thogonal Variability Models: Extending the FaMa Ecosystem. PhD thesis,
University of Seville, 2012.

BIBLIOGRAPHY 103

[33] M. Mendonca, M. Branco, and D. Cowan, “Splot: software product lines
online tools,” in Proceedings of the 24th ACM SIGPLAN conference com-
panion on Object oriented programming systems languages and applica-
tions, pp. 761–762, ACM, 2009.

[34] A. Ferrari, A. Fantechi, G. Magnani, D. Grasso, and M. Tempestini, “The
metrô rio case study,” Sci. Comput. Program., vol. 78, no. 7, pp. 828–842,
2013.

[35] A. Ferrari, A. Fantechi, S. Gnesi, and G. Magnani, “Model-based develop-
ment and formal methods in the railway industry,” IEEE Software, vol. 30,
no. 3, pp. 28–34, 2013.

[36] R. Schwitter, “English as a formal specification language,” in DEXA
Workshops, pp. 228–232, IEEE Computer Society, 2002.

[37] C. Grover, A. Holt, E. Klein, and M. Moens, “Designing a controlled
language for interactive model checking,” in Proceedings of the Third In-
ternational Workshop on Controlled Language Applications, pp. 29–30,
2000.

[38] S. Boyd, D. Zowghi, and A. Farroukh, “Measuring the expressiveness
of a constrained natural language: an empirical study,” in Requirements
Engineering, 2005. Proceedings. 13th IEEE International Conference on,
pp. 339–349, 2005.

[39] A. Bucchiarone, S. Gnesi, A. Fantechi, and G. Trentanni, “An experience
in using a tool for evaluating a large set of natural language requirements,”
in SAC (S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C.
Hung, eds.), pp. 281–286, ACM, 2010.

[40] A. Ferrari and S. Gnesi, “Using collective intelligence to detect pragmatic
ambiguities,” in Requirements Engineering Conference (RE), 2012 20th
IEEE International, pp. 191–200, IEEE, 2012.

[41] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and
F. Tiezzi, “A logical verification methodology for service-oriented com-
puting,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 21, no. 3, p. 16, 2012.

[42] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, “A state/event-
based model-checking approach for the analysis of abstract system prop-
erties,” Science of Computer Programming, vol. 76, no. 2, pp. 119–135,
2011.

BIBLIOGRAPHY 104

[43] R. Nelken and N. Francez, “Automatic translation of natural language
system specifications into temporal logic,” in Computer Aided Verification,
pp. 360–371, Springer, 1996.

[44] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and P. Mor-
eschini, “Assisting requirement formalization by means of natural lan-
guage translation,” Formal Methods in System Design, vol. 4, no. 3,
pp. 243–263, 1994.

[45] K. Schwaber, Agile project management with Scrum. Microsoft Press,
2004.

[46] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel, “Product Line
Analysis: A Practical Introduction,” Tech. Rep. CMU/SEI-2001-TR-001,
Software Engineering Institute, Carnegie Mellon University, 2001.

[47] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, “Automated analysis of
requirement specifications,” in Proc. of ICSE ’97, (New York, NY, USA),
pp. 161–171, ACM, 1997.

[48] A. Ferrari, S. Gnesi, and G. Tolomei, “Using clustering to improve the
structure of natural language requirements documents,” in Requirements
Engineering: Foundation for Software Quality (J. Doerr and A. L. Op-
dahl, eds.), vol. 7830 of Lecture Notes in Computer Science, pp. 34–49,
Springer Berlin Heidelberg, 2013.

[49] G. G. Chowdhury, “Natural language processing,” Annual review of in-
formation science and technology, vol. 37, no. 1, pp. 51–89, 2003.

[50] F. Bonin, F. Dell’Orletta, S. Montemagni, and G. Venturi, “A contrastive
approach to multi-word extraction from domain-specific corpora,” in Proc.
of LREC’10, pp. 19–21, 2010.

[51] M. Mendonca, M. Branco, and D. Cowan, “S.p.l.o.t.: Software product
lines online tools,” in Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA ’09, pp. 761–762, ACM, 2009.

[52] F. Dell’Orletta, G. Venturi, A. Cimino, and S. Montemagni, “T2kˆ2: a
system for automatically extracting and organizing knowledge from texts,”
in Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014), Reykjavik, Iceland, May 26-31,
2014., pp. 2062–2070, 2014.

BIBLIOGRAPHY 105

[53] F. Dell’Orletta, “Ensemble system for part-of-speech tagging,” in Proc. of
Evalita’09, Evaluation of NLP and Speech Tools for Italian, 2009.

[54] S. Tan, “Neighbor-weighted k-nearest neighbor for unbalanced text cor-
pus,” Expert Systems with Applications, vol. 28, no. 4, pp. 667–671, 2005.

[55] P. Rayson, R. Garside, and P. Sawyer, “Recovering legacy requirements,”
in Proc. of REFSQ’99), pp. 49–54, 1999.

[56] K. Pohl, G. Böckle, and F. Van Der Linden, Software product line engin-
eering: foundations, principles, and techniques. Springer, 2005.

[57] L. Goldin and D. M. Berry, “Abstfinder, a prototype natural language
text abstraction finder for use in requirements elicitation,” Autom. Softw.
Eng., vol. 4, no. 4, pp. 375–412, 1997.

[58] V. Ambriola and V. Gervasi, “On the systematic analysis of natural lan-
guage requirements with CIRCE,” Autom. Softw. Eng., vol. 13, no. 1,
pp. 107–167, 2006.

[59] A. M. Hickey and A. M. Davis, “Requirements elicitation and elicitation
technique selection: model for two knowledge-intensive software develop-
ment processes,” in System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, pp. 10–pp, IEEE, 2003.

[60] S. Lauesen, Software Requirements: Styles and Techniques. Addison-
Wesley, 2002.

[61] B. Boehm, “Verifying and validating software requirements and design
specifications,” Software, IEEE, vol. 1, no. 1, pp. 75–88, 1984.

[62] D. Zowghi and V. Gervasi, “The Three Cs of Requirements: Consist-
ency, Completeness, and Correctness,” in Proc. of REFSQ’02, pp. 155–
164, 2002.

[63] O. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in con-
ceptual modeling,” Software, IEEE, vol. 11, no. 2, pp. 42–49, 1994.

[64] S. España, N. Condori-Fernandez, A. Gonzalez, and O. Pastor, “Evalu-
ating the completeness and granularity of functional requirements spe-
cifications: A controlled experiment,” in Proc. of RE ’09, pp. 161–170,
2009.

BIBLIOGRAPHY 106

[65] B. Yadav, Surya, R. Bravoco, Ralph, T. Chatfield, Akemi, and T. M. Ra-
jkumar, “Comparison of analysis techniques for information requirement
determination,” Commun. ACM, vol. 31, pp. 1090–1097, Sept. 1988.

[66] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh,
G. Kincaid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. Theo-
fanos, “Identifying and measuring quality in a software requirements spe-
cification,” in Proc. of SMS’93, pp. 141–152, 1993.

[67] R. J. Costello and D.-B. Liu, “Metrics for requirements engineering,” J.
Syst. Softw., vol. 29, pp. 39–63, Apr. 1995.

[68] I. Menzel, M. Mueller, A. Gross, and J. Dörr, “An experimental compar-
ison regarding the completeness of functional requirements specifications,”
in Proc. of RE ’10, pp. 15–24, 2010.

[69] H. Kaiya and M. Saeki, “Ontology based requirements analysis: light-
weight semantic processing approach,” in Quality Software, 2005. (QSIC
2005). Fifth International Conference on, pp. 223–230, 2005.

[70] T. Dunning, “Accurate methods for the statistics of surprise and coincid-
ence,” Comput. Linguist., vol. 19, pp. 61–74, Mar. 1993.

[71] A. Fantechi, W. Fokkink, and A. Morzenti, “Some Trends in Formal Meth-
ods Applications to Railway Signaling,” in Formal Methods for Industrial
Critical Systems: A Survey of Applications, pp. 61–84, John Wiley &
Sons, 2013.

[72] S. Gnesi and F. Mazzanti, “An abstract, on the fly framework for the
verification of service-oriented systems,” in Rigorous Software Engineering
for Service-Oriented Systems, vol. 6582 of LNCS, pp. 390–407, Springer,
2011.

[73] F. Mazzanti, G. O. Spagnolo, and A. Ferrari, “Designing a deadlock-free
train scheduler: A model checking approach,” in NASA Formal Methods
- 6th International Symposium, NFM 2014, Houston, TX, USA, April 29
- May 1, 2014. Proceedings, pp. 264–269, 2014.

[74] OMG, “Object Management Group, UML Superstructure Specification
http://www.omg.org/spec/UML/2.4.1,” 2006.

BIBLIOGRAPHY 107

BIBLIOGRAPHY

[75] F. ter Beek, M.H.and Mazzanti and S. Gnesi, “CMC-UMC: A Framework
for the Verification of abstract Service-Oriented Properties,” in Proceed-
ings of the 2009 ACM symposium on Applied Computing, pp. 2111–2117,
ACM, 2009.

[76] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and
P. Heymans, “Feature model extraction from large collections of informal
product descriptions,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 290–300, ACM, 2013.

[77] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information
retrieval, vol. 1. Cambridge university press, 2008.

[78] J. Törnquist, “Computer-based decision support for railway traffic
scheduling and dispatching: A review of models and algorithms,” in 5th
Workshop on Algorithmic Methods and Models for Optimization of Rail-
ways, p. 659, 2006.

BIBLIOGRAPHY 108

	Introduction
	Product Families and Agile methodologies
	Communications-based Train Control Systems
	Method Overview
	Domain Analysis
	Functionality Identification
	IEEE 1474.1-2004
	IEC 62290
	Functionalies

	Architecture Identification

	Product Family Definition
	Feature Modelling
	A Global Feature Diagram for CBTC

	Product Features Definition
	Product Architecture Modelling
	Product Scenario Modelling
	Requirements Definition

	System Requirements Definition
	PSS Definition
	SYS-RS Definition
	Prototyping

	Traceability

	Experience Report
	Lessons Learnt

	Natural Language Processing approaches
	NLP approach to Product Family Definition
	Overview
	The NLP Approach
	Identification of Terms
	Contrastive Analysis
	Commonality Candidates Identification
	Variability Candidates Identification

	CMT and FDE
	Commonality Mining Tool
	How CMT Works
	Feature Diagram Editor
	Tool Download

	NLP approach to Measuring Completeness
	Defining and Measuring Completeness
	Motivation
	Metrics for Backward Functional Completeness
	Identification of Relevant Terms
	Identification of Relevant Relations
	A Word-game to Support Requirements Definition
	Pilot Test
	Quantitative Evaluation
	Qualitative Evaluation

	Development of a sub-component within Formal Methods
	Formal Methods in ATS
	An Abstract Model of the System
	The basic cases of deadlock
	From basic to composite sections
	A verifiable formal model of the system
	Partitioning the Full Model

	Conclusions
	Bibliography

