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Abstract 

Theil [12] proposed three instruments to be applied in regression 
analysis with prior stochastic information. Two of them are: a 
quadratic form (known as compatibility test) and a measure of the 
share of sample information on posterior variance. Duly modified, 
they are proposed in the paper to investigate if data come from a linear 
regression model or from a linear latent growth model. We compare a 
covariance matrix due to sample information and a total variance due 
to both sample and prior information following two approaches: (i) by 
difference of two quadratic forms based on the structure of the Theil’s 
compatibility test, (ii) by product of two covariance matrices based on 
a measure of an estimated share of sample information in total 
variability. The first approach depends on approximations to chi-
square distributions which are discussed on the appendix. The second 
one is based on a comparison of empirical cumulative distribution 
functions. A simple algorithm based on the bootstrap is proposed for 
this comparison.  
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1. Introduction

A data set on Tourism in Tuscany (Italy) consists of the Index number 
(base year 2002) of accommodations (the response variable) on 260 
Municipalities from 2003 to 2009. These data have been firstly processed so 
that to obtain homogeneous groups of units. The upper-left panel of Figure: 1 
shows the graph of the data analyzed in the paper, composed of 95 
“homogeneous” municipalities. It can be seen that each unit appears to have 
its own trajectory approximated by linear functions with specific intercept 
and slope that determine the trend. We define the model for the i-th 
municipality  as    yi  = X βi  + ui   where   X  is  a   T × k   matrix  containing 
a column of ones and a column of constant time values; βi is a column vector 

whose components are β0i the intercept component of unit i and β1i the slope 

component for unit i; ui is T × 1 column vector whose uti component is the 

measurement error at the time point t, for individual i. We assume 

( ).,0~ 2
Ti INu σ  The graph of Figure 1 shows that the trajectories are

“high” or “low” suggesting two hypotheses from an economic point of view. 
One is that the growth of the tourism of each municipality at time t might see 
have mean t10 θ+θ  and vary about it according to the overall deviation .tiu  
That is, a regional political economy determines the growth of the tourism of 
single municipalities. Statistically this is modeled with a vector of fixed 

population parameters, θ = [θ0 θ1]'  which captures the regional political 
economy with the constraint βi = θ for each trajectory. We refer to this model 

as (constrained) Linear Regression Model (LRM). 

On the other hand, the graph of Figure 1 shows different steepness across 
municipalities, showing that the unit-specific intercepts i0β  and slopes i1β  
are not fixed but they could vary across units suggesting a growth of the 
tourism influenced not solely by the regional political economy but also by 
specific characteristics of each municipality. This induces us to introduce a 
random component on the vectors iβ  distinguishing the various trajectories. 

Then, we write ,ii v+θ=β  ,...,,1 ni =  [ ]′= iii vvv 10  where iv0  and iv1
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are unobserved random variables that configure individual growth. The base 
hypothesis on random component is ( ),,0~ ΩNvi  Ω is a positive semi 
definite matrix Ω  0( ) , ui ⊥ vi ,  where the symbol ⊥ indicates independence
of random variables. The normality assumptions are introduced for testing 
purposes. We refer to this model as Linear Latent Growth Model (LLGM). 
Then, on the base of our data we ask whether the specificity of the 
municipalities contributes to the growth of the tourism other than the regional 
political economy. Statistically we ask whether it is more appropriate 
modeling data with a linear regression model (Ω = 0)  or a linear latent 

growth model ( ).0Ω  Of course, to discriminate between the two models 

the sign of the matrix Ω plays a crucial role. If Ω is a positive definite matrix, 
we can state that data come from a linear latent growth model. If ,0=Ω  
then data come from a LRM. Unfortunately, Ω is unknown and must be 

estimated. In this case the implications LLGM⇒Ω 0ˆ  and ⇒/Ω 0ˆ

LRM  are not always true. 0( /  is for non positive definiteness and Ω̂  is an 

estimate of Ω). This induced us to investigate alternative approaches not 

involving explicitly .Ω̂  In the work of Theil [12] where the use of prior 
stochastic constraints in regression analysis is discussed, we found some 
“instruments” that properly modified allowed us to tackle the problem. One 
of these “instruments” is the quadratic form associated to the so-called 
Theil’s compatibility test. The other is a scalar measure of the relative 
contribution of sample information in total variability. 

Let re-propose the Linear latent growth model as a Theil’s mixed model. 
By substitution of the latent part into the measurement part, we get 

( )Tiii IXXNXy 2,0~, σ+′Ωεε+θ= (1)

and 

( ) ,1,0~, ⎟
⎠
⎞⎜

⎝
⎛ωω+θ=θ−+θ= VnNbb (2)

where ( ) ( ),,~1 VNyXXXb ii θ′′= −  ( ) Ω+′σ= −12 XXV  and ∑ == n
i ibnb 1

1
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( ) ,1 yXXX ′′= −  with y  a mean vector whose tth element,  ( )∑ == n
i itt yny 1 ,1

is the mean of the observations at time t. We can look at (2) as to a stochastic 
prior information compatible with model (1). This way to define a stochastic 
prior information which is of sample origin can be traced back, for example, 
in the works of Lee and Griffiths [8] and Buse [2]. From model (1)-(2), we 
can define the following quadratic form 

( ) ( )bbVbbn
n

ii −′−
−

−1
1 (3)

which has a structure similar to the compatibility test proposed by Theil 

and, if data come from a LLGM  it is a χ2 with k degrees of freedom. The 
sampling nature of prior information and the presence of Ω which is 
unknown make this quadratic form useless for inferential purposes and of 
uncertain interpretation if it is used as a compatibility test in the sense given 
by Theil. 

If θ=βi  for each unit ( ),0=Ω  we face a set of linear regression 

models, ii uXy +θ=  and ,∗ω+θ=b .,0~
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σω∗ TInN  In this case,

the quadratic form (3) is given by 

( ) ( )bbXXbbn
n

ii −
σ

′′−
− 21 (4)

which is a 2χ  with k degrees of freedom if data come from a LRM. 

As a first approach to investigate whether data come from a LRM (the 
null hypothesis, )0H  or from a LLGM (the alternative hypothesis, )1H  we 

propose a sample discriminating function based on the difference of 
estimated quadratic forms (3) and (4). To this end observe that the variance 
covariance matrix V can be seen as composed of two components: 

( ) 12 −′σ XX  which is the variance of ib  if data come from a LRM ( )0=Ω
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and Ω which is the variance of ib  if data come from prior information 

( ).02 =σ  Then, we propose to estimate V of the quadratic form (3) with      

the sample variance covariance matrix of ,ib  .bS  This estimate has been 

proposed by several authors see for example Swamy [11], Judge et al. [7] and 
Hsiao and Pesaran [5]. By definition bS  can contain implicitly information 

on Ω without estimating it. If data come from a LRM, bS  is a consistent 

estimate of ( ) ,12 −′σ XX  if data come from an LLGM bS  is a consistent 

estimate V. As to 2σ  of the quadratic form (4) we adopt the estimator given 

by Swamy [11], ∑ == n
i isns 1

22 ,1  with =2
is  ( ) ( ) .kT

XbyXby iiii
−

−′−  

In Section 2, we discuss the definition and the application of the sample 
discriminating function based on the difference of the estimated quadratic 
forms (3) and (4). To compare in homogeneous way the two quadratic forms, 
they are approximated by chi-square distributions which are discussed in the 
appendix. 

As said previously a second purpose of Theil’s paper was to propose          
a measure for the relative contribution of sample information on total 
variability. This measure is given by the trace (divided by the rank of V) of 

the product ( ) .112 −−′σ VXX  This quantity which is based on the product of 

variance-covariance matrices, ranges between zero and one when data come 
from a LLGM, ( ),0Ω  it is equal to one when data come from a LRM 

( ).0=Ω  This characteristic allowed us to discriminate between a LLGM and 

a LRM. The share of sample information on total variance is proposed in 

Section 3 where an estimated measure based on bS  and 2s  is discussed. In 

Section 4 this quantity is used to test the hypothesis 0H  by comparing two 

empirical cumulative distribution functions (ecdf) one defined under the null 
hypothesis, the other under the alternative. A simple algorithm based on 
bootstrap is proposed for the comparison. 
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2. A Comparison between Chi-square Approximations 

We refer to the upper-left panel of Figure 1 which shows the graph of the 
index number (base year 2002) of accommodations on 95 “homogeneous” 
Municipalities of Tuscany (Italy) from 2003 to 2009. As previously observed 
there is a considerable variability in the response variable both within each 
municipality and between municipalities. We ask whether it is more 
appropriate modeling data with a linear regression model or a linear latent 
growth model. 

 

Figure 1. Comparison between chi-square approximations. 

As suggested by several authors (for example Swamy [11]), an exact      
F-test can be derived from the residual sums of squares of the restricted 
( )iH i ∀θ=β:0  and unrestricted versions of the model (coefficient vectors 

are truly different across units). Under the null hypothesis, it is immediate          

to show that the average-trajectory ,,~
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σθ TInXNy  the ith trajectory 

( )Ti IXNy 2,~ σθ  and .1,0~ 2 ⎟
⎠
⎞⎜

⎝
⎛ σ−− Ti In

nNyy  Then, 
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( ) ( )
( )

( ) ( ) .,~
1

12
2 XXXXPk

nn
yyPyy ii ′′=χ

−σ

−′− −  

Replacing 2σ  with the usual unbiased estimate we get the standard F-test, 

 ( )
( )

( ) ( )
( ) ( ).,~1 kTkFyPIy

yyPyy
nk

kTn
ii

ii −
−′

−′−
−
−  (5) 

The bottom-left panel of Figure 1 shows the histogram of the test statistic (5) 
and the density of the F-Fisher under the null hypothesis applied to data on 
tourism. The computed p-value is approximately zero emphasizing a strong 
evidence against the null Hypothesis. However, the evidence against the null 
hypothesis does not allow to state that data come from a linear latent growth 
model. 

In an attempt to get a decision in favor of the alternative hypothesis, 

introduce the quadratic form ( ) ( ),1

1
bbSbbn

nR i
b

ii −
λ

′−
−

=λ
−

 ,...,,1 ni =  

.0>λ  λiR  is the Theil’ compatibility test with the matrix ( ) Ω+′ −12 XXs  

replaced by the sample covariance matrix re-scaled by λ. We shall see later 
that the purpose of re-scaling bS  with λ is to obtain a better approximating 

distribution of the quadratic form. 

bS  is both a consistent estimate of ( ) 12 −′σ XX  if 0H  is true, and a 

consistent estimate of ( ) Ω+′σ −12 XX  if 1H  is true. Then, bS  reflects the 

variability of the coefficients due to the sample information under 0H  and 

the variability due to both sample and prior information under .1H  

The distribution of λiR  is unknown. Some authors (for example 

(Johnson and Wichern [6]) propose to approximate iR  with a ( )k2χ  without 

re-scaling the quadratic form ( ).1=λ  However, a value of 1≠λ  gives a 

better chi-square approximation. In the appendix the algorithm used to 
determine λ is described. The algorithm works by maximizing a constrained 
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log-likelihood function, estimating the degrees of freedom (df) by the data. 
Various simulations show that df is centered around k which is the degrees of 
freedom suggested by Johnson and Wichern [6] to approximate the chi-

square distribution. Then, we assume ( ),~ 2 dfRi χ
λ

 ni ...,,1=  under both 

hypotheses. The symbol ~  is for “approximately distributed as”. Also the 

approximation ( )kRi 2~ χ
λ

 could be used. 

Because iR  conforms to both hypotheses, the set of observations 

λλλ ni RRR ...,,...,,1  is not able to give enough information to 

discriminate about the two populations. 

We propose to compare the re-scaled iR  with the re-scaled quadratic 

form 

( ) ( ) nibb
s

XXbbn
nQ

ii
i ...,,1,0,1 2 =>ξξ−⎟

⎠
⎞

⎜
⎝
⎛ ′′−

−
=

ξ
 

which is defined under the null hypothesis and can be traced back in the 
work of Swamy [11] where it was defined with .1=ξ  In small samples, the 

exact or approximate distribution of iQ  is not of practical importance because 

it depends on 2σ  whose value is usually unknown. However, specifying an 
appropriate value of ξ could justify the use of an approximate chi-square 

distribution. In the appendix, we propose 2
1

−
−=ξ df

df
n

n  with =df  

( ).kTn −  Therefore, under the null hypothesis, we assume ( ),~ 2 kQi χ
ξ

 

....,,1 ni =  Under the alternative hypothesis, a chi-square approximation to 

ξ
iQ  is difficult to justify because the unknown eigenvalues of the matrix Ω in 

the metric XX ′  are involved other than .2σ  In this case the approximation is 

affected both by the relative sizes of the eigenvalues and by their variability 
if an estimate is used. In this case, we leave unknown the distribution. 
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The following table summarizes the result. 

Approximation of re-scaled  

iR  iQ  
   

( )df2χ  ( )k2χ  0H  is True 

1H  is True ( )df2χ  NOT ( )k2χ  
 

Therefore, we propose to compare two set of observations, =Q  

{ }ξξξ ni QQQ ...,,...,,1  and { }λλλ= ni RRRR ...,,...,,1  through the 

following sample discriminating function (Anderson [1]), 

 ( ) ( ) nibbS
s
XXbbn

nD i
b

ii ...,,1,1

1

2 =−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ

−
ξ

′′−
−

=
−

 (6) 

to classify into 1H  if (6) is large and into 0H  if (6) is small. 

The top-middle and the top-right panels of Figure 1 show the histograms 
of R and Q respectively and relative chi-square approximations (continuous 
lines). A visual comparison of the two graphs suggests an evidence in favor 
of the alternative hypothesis in confirmation of the comments on the F-test. 

If 0H  were true, then the difference λ−ξ ii RQ  should reflect a 

random variability. Under ξiQH ,1  is (stochastically) greater than .λiR  

Even though Q and R are not a set of independent random variables (only 
1−n  are independent) we apply the Kolmogorov-Smirnov test trying to 

determine if the two “samples” are “the same”. The test applied to the data 
shows a p-value approximately equal to zero emphasizing that they differ 
significantly. The qq-plot of Figure 1 and a comparison between the two 
“samples” Q and R through the empirical cumulative distribution functions 
(ecdf) emphasizes this aspect. 

3. Estimated Share of Sample Information in Total Variability 

Given the identity [ ( ) ][ ( ) ] ,11212
kIXXsXXs =Ω+′Ω+′ −−−  by applying 
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the trace operator and dividing by k, we get 

 ( ) [ ( ) ] 112121 −−− Ω+′′=θ XXsXXtrskS  (7) 

and SP θ−=θ 1  which are taken as a measure of the shares of sample      

and prior information, respectively, in the total variance. This way of 
measuring the shares have been firstly proposed by Theil [12] which 
discussed “reasonable” requirements they satisfy. 

In large samples 22 σ=splim  and Sθ  ranges from 0 to 1. A value of 

1<θS  implies 0Ω  and denotes the presence of randomness on the 

coefficients. The closer Sθ  is to 1 the less is the influence of randomness of 

the coefficients on the data. When ,1=θS  0=Ω  and data are generated by 

a model with no random coefficients. If ,02 =σ  0=θS  and data come 

from prior information. 

In small samples because of the presence of the estimate ,2s  the above 
relationships are not exact but valid with probability close to one. 

The typical behavior of (7) (and )Pθ  obtained by simulation, is shown in 

the left panel of Figure 2 where the x-axis represents the population standard 
deviation ranging from 1 to 300 and the y-axis represents the shares. The 
matrix Ω is assumed known and fixed. Data are generated with a LLGM. 

 

Figure 2. Behavior of the share of sample information on total variance. 
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In applications, one needs to replace Sθ  with an estimate because Ω is 

unknown. We propose to estimate the shares in total variability as =θS
ˆ  

( ) 1121 −−′ bSXXtrsk  and .ˆ1ˆ
SP θ−=θ  The right panel of Figure 2 shows the 

plot of the estimates Sθ̂  and Pθ̂  from which it emerges the large variability 

of the shares when Ω is unknown. This variability has consequences on the 

interpretability of .ˆ
Sθ  When 2σ  increases Sθ̂  is no more in the interval 

( )1,0  but can assume values greater than 1 with consequences on the sign of 

the matrix .Ω̂  More precisely, 0ˆ1ˆ Ω⇒/≥θS  and 1ˆ <θS  does not imply 

that Ω̂  is a positive definite matrix. Therefore, we are not able to associate 

directly the sign of the matrix Ω̂  to the data generating model. In other 

terms, the implications LLGMS ⇒Ω⇒<θ 0ˆ1ˆ  and 0ˆ1ˆ /Ω⇒≥θS  

LRM⇒  are not always true. This is especially true when Sθ̂  is close to 1. 

In this case it can happen that either data come from a LLGM but the sample 
information is large dominating prior information, or data come from a linear 
regression model without randomness on the coefficients. Therefore, the 

index Sθ̂  is not able to help to discriminate between a linear latent growth 

model and a linear regression model. Instead we propose the compare the 

empirical cumulative distribution function of Sθ̂  under 0H  and .1H  This 

approach will be discussed in next section. 

4. A Comparison between ecdf 

Let investigate by simulation the distribution of Sθ̂  under the hypothesis 

that data come from a LRM. The top-left and top-right panels of Figure 3 

show the box-plots of the simulated Sθ̂  for different values of σ and 

different values of β. In this investigation it emerges a “stability” of the 
empirical distributions changing the parameters of the simulation procedure. 



Marco Barnabani 12 

A visual inspection induces us to look at the box-plots as describing data 
coming from a common unknown distribution. To support this statement we 
tested the null hypothesis of a common unknown distribution through the K-
sample Anderson-Darling test statistic (Scholz and Stephens [9]), obtaining 
strong evidences in favor of the claim. 

This fact allows us to construct the empirical distribution function of Sθ̂  

by re-sampling from a standard normal distribution taking it as an estimate  
of the common unknown distribution under the null hypothesis. We call 

prototype Sθ̂  the estimate whose distribution is obtained by re-sampling 

from a standardized normal distribution without any hypothesis on β and .2σ  

The histogram and the empirical cumulative distribution function of the 

prototype Sθ̂  are shown in the bottom panels of Figure 3. 

This availability offers the possibility to compare the empirical 

cumulative distribution functions of the observed Sθ̂  with the prototype Sθ̂  

so that a (probabilistic) decision on the data generating process can be done. 
More precisely, we propose to compare the empirical cumulative distribution 

function of the prototype Sθ̂  (which can be considered as “fixed”) with the 

empirical cumulative distribution function of the observed Sθ̂  which depends 

on the data. If the two ecdf are close to one another then we state that data 

come from a LRM. Otherwise if the ecdf of the observed Sθ̂  is stochastically 

greater than the prototype Sθ̂  the hypothesis 1H  is accepted. 

Figure 4 shows the behavior of the two ecdf when the weight of           
the sample information on the total variability increases. This is done by 

simulation holding Ω fixed and increasing .2σ  
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Figure 3. Distribution function of prototype .ˆ
Sθ  

From top to bottom, the ecdf of the simulated Sθ̂  approaches more and 

more to the (“fixed”) prototype .ˆ
Sθ  Looking at Figure 4, a comment on the 

bottom panels is necessary. The bottom-left panel is simulated via a linear 
latent growth model with .180=σ  In this case, the weight of the sample 
information on the total variance is close to 1 and the influence of prior 
information are practically zero. The bottom-right panel is simulated via a 

LRM and prior information are zero. Both show 1~ˆ −θS  and the empirical 

cumulative distribution functions of the observed and prototype Sθ̂  are not 
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distinguishable. In this case, any decision on the data generating model is 
difficult and a LRM could be used in applications assuming non influential 
prior information. 

 

Figure 4. Simulations of observed and prototype .ˆ
Sθ  

To quantify the uncertainty due to the comparison of the ecdf, we use the 
Kolmogorov-Smirnov test and the two sample Anderson-Darling test. The 
test applied to the simulated data of Figure 4 gives a p-value approximately 
equal to zero in the first four panels while in the last two panels the p-value is 
approximately the same, at about 22 confirming the difficulty to choose the 
model in this case. 
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Working with observed data, the two empirical cumulative distribution 
functions can be computed as follows: 

Step 1. Re-sample n times from a standardized normal distribution. 

Step 2. Construct the ecdf of prototype .ˆ
Sθ  

Step 3. Apply a bootstrap approach to get the ecdf of the observed .ˆ
Sθ  

Step 4. Compare the two ecdf. 

This algorithm has been applied to the data on the Tourism. Figure 5 
shows the result. The two ecdf are strongly different and the observed ecdf of 

Sθ̂  is stochastically greater than the ecdf of prototype .ˆ
Sθ  We can state that 

data come from a linear latent growth model. Of course we applied the 
Kolmogorov-Smirnov test which gives a p-value equal to zero. 

 

Figure 5. Comparison between ecdf of observed and prototype .ˆ
Sθ  

5. Conclusions 

The paper has discussed two approaches derived from two proposals of 
Theil [12] to discriminate between a LRM (the null hypothesis, )0H  and a 

LLGM (the alternative hypothesis, .)1H  

The two approaches are a comparison between quadratic forms 
approximated by chi-square distributions and a comparison between 
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empirical cumulative distribution functions of a measure of the share of the 
sample information on total variability defined under 0H  and .1H  In the 

first approach, a crucial role is played by the approximated chi-square 
distributions which are discussed and justified in the appendix where an 
algorithm to obtain the approximations is described. In the second approach, 
a bootstrap procedure is used to obtain the empirical cumulative distribution 

of the observed Sθ̂  and it is compared with the ecdf of Sθ̂  under .0H  Our 

study has shown that if data come from a LRM the distribution of Sθ̂  does 

not depend on the parameters of the population and can be considered as 
“fixed”. Finally a simple algorithm used to compare the two ecdf is proposed. 

Appendix: Chi-square Approximations to Quadratic Forms 

Let ( ) ( )AHNbMb n ⊗− ,0~  where ⎟
⎠
⎞⎜

⎝
⎛ ′−= nnnn nIH 111  is the centering 

matrix, [ ]′′′′= ni bbbb .1. ...,,...,,  the 1×nk  vector of estimates and ( ) =bM  

[ ]′′′ bb ...,,  is the 1×nk  mean vector, ∑ == n
i ibnb 1 .1  Consider the quadratic 

form ( ) ( ) ( )bb
s

XXbbQ iii −
′′−= 2  and investigate the distribution with two 

different definitions of A. 

(i) ( ) ,12 −′σ= XXA  

For large n, 22 σ→s  and .nn IH →  In this case, ( ).~ 2 kQi χ  Let    

see iQ  as a Gamma distribution with shape parameter 2k=α  and scale 

parameter .2=δ  

In small sample, the distribution of iQ  is unknown and an approximation 

is needed. To this end let write iQ  as ( ) ( ) ( )bb
s

PPbbQ iii −
′′−= 2  where P 

is a non singular matrix such that ( ) .1 IPXXP =′′ −  Then, 2s
yyQ ii

i
′

=  with 
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.1,0~ 2 ⎟
⎠
⎞⎜

⎝
⎛ σ− In

nNyi  This implies that ( )∑ = χk
j ji wQ 1

2 1~  with =jw  

.1
2

2

sn
n σ−  That is, given ,2s  iQ  is distributed as a linear combination of 

independent chi-square variates, each with one degree of freedom. 

The exact distribution of a linear combination of independent chi-square 
variates is difficult to obtain in general and various approximations to its 
distribution have been proposed (Solomon and Stephens [10]). 

Two relatively simple ones are widely used in practice and have been 
implemented in popular softwares. They work by assuming that iQ  is 

approximately distributed as a 2χ  just like each of the variables in the       

linear combination. One approximation known as mean correction, works         

by rescaling the quadratic form by referring to iQ1−ξ  in such a way that 

( ) ( ( )) .21 kkEQE i =χ=ξ−  In our case because the weights of the linear 

combination, ,jw  do not depend on the index j, we have ~iQ  

( ).1 2
2

2
k

sn
n χσ−  Then, 2

21
sn

n σ−  can be seen as a correction such that 

.1 2

2
kQs

n
nE i =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

σ−
 

The other approximation is based on a more sophisticated correction 
where both the scale and the degrees of freedom are adjusted by matching the 
first two moments of the quadratic form with those of a chi-square 
distribution (Yuan and Bentler [13]). 

The performance of the two approximations depends on the corrections 
made which, in turn, depend on unknown quantities. When these corrections 
can be consistently estimated the approximations are valid asymptotically. In 
small sample it is not clear how to proceed in estimating the corrections and 
how to approximate and evaluate the performance of the quadratic form. 
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In our case, 2

21
sn

n σ−  is a random variable involving an unknown 

parameter, .2σ  To approximate the distribution of iQ  we proceed as follows. 

Write .12ˆ,2Gamma~ 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ−=δ=α
sn

nkQi  We propose to replace 

δ̂  with ( ).δ̂E  Then, ( ( ))δ=δ=α ˆ,2Gamma~ EkQi  where the symbol ~  

is for “approximately distributed as”. Observe that 
dfs2

2σ  is an inverse-

( ).2 dfχ  This implies that ( ) .2
12ˆ

−
−=δ df

df
n

nE  Then, 

( )2,2Gamma2
1~ =δ=α

−
− kdf

df
n

nQi  

letting ,2
1

−
−=ξ df

df
n

n  the approximation used is ( ).~ 2 kQi χ
ξ

 Of course 

if n is large 1→ξ  and iQ  is an exact 2χ  distribution as seen above. 

Observe that in small samples ξξξ ni QQQ ...,,...,,1  is no more a set 

of independent random variables. Only 1−n  are independent. 

(ii) ( ) Ω+′σ= −12 , XXA  

Carrying out as in the previous section, there exists a non singular 

matrix, P such that ( ) IPXXP =′′ −1  and ,DPP =′Ω  then the distribution 

of the quadratic form ( ) ( ) ( )bb
s

XXbbQ iii −
′′−= 2  is a linear combination 

of chi-square variates with weights 2

2
1

s

d
n

nw j
j

+σ−=  where jd  are the 

eigenvalues of Ω in the metric ( ).XX ′  In this case, if ( ) ,12 Ω+′σ= −XXA  

an approximate chi-square distribution of iQ  is difficult to accept given the 
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presence of the unknown eigenvalues of Ω. In this case, we leave the 
distribution unknown. 

Consider now the quadratic form 

( ) ( ) ( ) ( ) ( ) ,
1 1

11 ∑ ∑
= =

−− =−′−=−⊗′−=
n

i

n

i
iibibS RbbSbbbbSIbbQ b  

bS  is an estimate both of ( ) 12 −′σ= XXA  and ( ) Ω+′σ= −12 XXA  

depending on the data generating model. Let justify the approximation of the 
quadratic form used. 

Of course, the exact distribution both of bSQ  and of its components, ,iR  

are difficult to obtain in general. There exists a nonsingular matrix P such 

that PPA ′=−1  and DPPSb ′=−1  where D is a diagonal matrix whose 

diagonal elements, ,jd  kj ...,,1=  are the eigenvalues of .1−
bAS  Replacing 

the matrix ,1−
bS  we get 

( ) ( ) ,1,0~, ⎟
⎠
⎞⎜

⎝
⎛ −′=−′′−= In

nNyDybbDPbbR iyiiii i  

then ( )∑ = χλk
j jiR 1

2 ,1~  ,1
jj dn

n −=λ  is distributed as a linear combination 

of independent chi-square variates, and bSQ  is the sum of dependent 

quadratic forms. 

We propose to approximate iR  as a 2χ  just like each of the variables in 

the linear combination as follows. Let see the distribution of iR  as a linear 

combination of independent gamma variates each with the same shape but 

different estimated scale parameter, ( )∑ = λ=δ=αk
j jiR 1 .2,21Gamma~  

If we replace jλ  with a scalar ,0>λ  then we have ( =αλGamma~iR  

)2,2 =δk  which allows us to define the following approximation 

 ( ) ( ) ( ) ....,,1,~ 2
1

nidfbbSbb i
b

i =χ−
λ

′−
−

 (8) 
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Of course the problem is how to determine the scalar λ so that the above 
2χ  approximation is obtained. To determine λ we propose to proceed          

as follows. Look for (iteratively) a parameter λ so that the likelihood of 
λλλ ni RRR ...,,...,,1  is a gamma distribution with scale parameter 

approximately equal to two and shape parameter freely estimated by the data. 
The scalar λ is linked to the weights jλ  and in turn to the scale parameter         

of the gamma distribution. More precisely, the scale parameter of the 
approximated gamma distribution is inversely related to λ. This inverse 
relationship allows one to jump from λ to the scale parameter and vice-versa 
so that to reach iteratively an (fractional) estimated shape parameter 
compatible with a scale parameter approximately equal to two. This approach 
allows us to use the approximating distribution (8), with λ and df estimated 
through the following simple algorithm: 

5.2,1 ←δ←λ  
while 001.2>δ  or 999.1<δ  do 

for ni →= 1  do 
compute the quadratic form for each unit 

end for 
estimate scale and shape parameter by ML 
if 001.2>δ  then 

increase λ 
end if 
if 999.1<δ  then 

reduce λ 
end if 

end while 

Of course λ and df are random variables and their aim is to absorb the 
randomness contained in the scale parameter which is constrained to be 2 
allowing to obtain an approximating chi-square distribution. Moreover, the 
use of a re-scaled chi square distribution and the algorithm used has also         
the effects of capture and “approximate” the independence of the random 
variables iR  (Chuang and Shih [3]). 
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It is well known that MLE’s shape is upward biased then, actually, in our 
applications, we used the following biased-adjusted estimator proposed by 
Giles and Feng [4]: 

[ ( ( )( ) ( )( )) ]
[ ( )( ) ]

,
12

2~
2

1

21

−αΨα

−αΨα−αΨα
−α=α

n

where ( )( ) ( ) ( ),ii
i α∂αΨ∂=αΨ  2,1=i  and ( )αΨ  is the usual digamma

function. The degrees of freedom are then estimated as .~2α=df
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