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Abstract

Background: DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient
specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the
authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic
(Neandertal) and early modern (Cro-Magnoid) Europeans.

Methodology/Principal Findings: We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old
Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample
since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge
reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern
sequences.

Conclusions/Significance:: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which
radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across
28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are
known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early
modern Europeans.
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Introduction

The anatomically-archaic Europeans, the Neandertal people,

are documented in the fossil record from approximately 300,000

to 30,000 years ago. Around 45,000 years ago, anatomically-

modern humans of the Cro-Magnoid type expanded in

Europe from the Southeast. Neandertals coexisted with them for

between 1,000 to 10,000 thousand years, depending on the region

[1], but eventually their skeletons disappeared from the fossil

record. Individuals of intermediate morphology have not been

observed. With the possible exception of one 25,000 years old

child [2], all known specimens in the relevant time interval can be

classified without ambiguity either as Neandertals or Cro-

Magnoids.

The interpretation of these findings is not straightforward.

Under the so-called Out-of-Africa model, Neandertals are

considered to be extinct, and modern Europeans are regarded as

descending exclusively from Cro-Magnoids who replaced Nean-

dertals in the course of their expansion from Africa [3].

Conversely, recent versions of the alternative, multiregional

model, propose that Neandertals gave a limited, but non-

negligible, contribution to the gene pool of modern Europeans

by admixing with Cro-Magnoids (e.g. [4–6]). Analyses of

morphological traits [7], ancient Neandertal DNA [8,9], and

modern DNA diversity [10–12] are generally regarded as

supporting a recent African origin of modern humans [13],

without substantial Neandertal contribution, if any at all. In

particular, mtDNA sequences from all studied Neandertals fall out

of the range of modern variation and show no particular

relationship with modern European sequences [9,14]. However,

it is clearly impossible to rule out any degree of reproductive

interaction between the two groups. As a consequence, the

possibility has been raised that admixture did occur, but the early

Europeans of modern anatomy were not too different genetically
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from Neandertals, or else that most Neandertal haplotypes were

lost through a process of lineage sorting, i.e. by genetic drift [5].

To clarify the evolutionary relationships between the two

anatomically-distinct groups that coexisted in Upper Paleolithic

Europe, data on DNA variation in Cro-Magnoids are of course

extremely important. At present, only two Cro-Magnoid sequences,

both from Paglicci in Southern Italy, have been published. Both of

them fall within the range of modern mtDNA variation, thus

differing sharply from all known Neandertal sequences, and both

belong to fossil specimens from which Neandertal-specific primers

failed to amplify mtDNA [15]. Serre et al. [16] confirmed that Cro-

Magnoid mtDNAs could not be amplified using Neandertal-specific

primers, but argued that the Paglicci sequences, as well as all ancient

sequence that appear modern, cannot be considered reliable because

contamination of ancient samples by modern DNA can be proved,

but absence of contamination cannot.

Undetected contamination is doubtless a serious problem in

ancient human DNA study, as shown by the presence of modern

human DNA in samples that should not naturally contain it [16–

20]. However, the fact that such contamination can and does

occur does not imply that it cannot be recognized [21].

Presumably, modern DNA tends to permeate in the pulp cavity

of the teeth through dentinal tubules, and in the bone through the

Haversian system [22], although possibly not reaching the

osteocytes [18,19]. The main causes of contamination are the

direct handling and washing of the specimens, most likely in the

phase immediately after excavation [22,23].

In this study we had the unique opportunity to characterize

genetically a Cro-Magnoid individual, Paglicci 23, whose

tafonomic history is perfectly known. As a consequence, we could

monitor all possible contaminations from the individuals who

manipulated the sample. In this way, testing for contamination

meant comparing the sequence obtained from the Paglicci 23

bones with the sequences of all modern people who touched them,

and not with generic and hard-to define modern sequences. We

showed that: (i) the mitochondrial sequence inferred from the

analysis of the Paglicci 23 mtDNA hypervariable region I (HVR I)

cannot possibly be due to contamination by anybody who

manipulated the sample ever since its discovery in 2003, and (2)

this 28,000 years old sequence is still common in Europe, and is

the Cambridge reference sequence (CRS).

Results and Discussion

The fragmentised remains (tibia, skulls, jaw and maxilla) of a

Cro-Magnon individual, named Paglicci 23, were excavated by

F.M in 2003 from the Paglicci cave, Southern Italy. Radiocarbon

tests dated the layer to 28.100 (+/2350) years ago [24]. Because of

its fragmentary nature, the sample was neither restored nor

studied from the morpho-anatomical point of view. Therefore, no

contamination could possibly be introduced at these stages by

direct handling and washing. The remains were deposited in the

storage room at controlled temperature in the Department of

Archaeology, University of Pisa. In 2005 three splinters, a piece of

tibia (Figure 1) and two pieces of skull, were moved to the ancient

DNA laboratory at the University of Florence. In the course of the

whole process, from excavation of the remains to genetic typing,

only seven persons had any contacts with the sample, namely six of

us (F.M, S.V, A.M., E.Pi., M.L., and D.C.) and Carles Lalueza-

Fox (hereafter: C.L.) who replicated the sequence at the University

Pompeu Fabra, Barcelona.

The degree of racemization of three amino acids, aspartic acid,

alanine, and leucine, provides indirect evidence as for the presence in

an ancient sample of amplifiable DNA. In particular, DNA is

expected to be too degraded for amplification when the D/L for Asp

is greater than 0.08 [25]. As a preliminary test of macromolecule

preservation, we measured the stereoisomeric D/L ratio for these

amino acids. The observed values, all of them compatible with good

preservation of biological macromolecules in the sample, were D/L

Asp 0.0479, D/L Glu 0.0104 D/L, Ala 0.0092. The global amino

acid content was 42,589 parts per million, and endogenous DNA

was successfully ampified from Pleistocene remains when this value

was higher than 30,000 parts per million [16].

Quantitative PCR showed a relatively large amount of mtDNA

molecules in the Paglicci 23 fossil, approximately 2300. Contam-

ination, usually detected when different sequences are observed in

different cloned products, is considered unlikely if the number of

PCR template molecules is .1,000 [26]. We thus proceeded in the

analysis by initially sequencing a total of 144 clones (Table S1),

respectively 64, 32 and 48 for the three regions in which the HVR

I was divided. Reproducible mtDNA sequences corresponding to

positions 16024–16383 of the published reference sequence CRS

[27] were obtained in the Florence laboratory from the tibia and

from a skull fragment of Paglicci 23. No contamination was

observed in the extractions and PCR blanks. Amplification of long

DNA fragments, unusual for ancient DNA, was not observed. The

analysis was repeated in Barcelona, using a tibia fragment; the

consensus sequence obtained from 8 clones covering the region

between nt 16245 to nt 16349 was identical to that obtained in

Florence. On the contrary, no PCR product was observed when

we attempted to amplify the DNA extracts using two pairs of

Neandertal-specific primers.

As is common in studies of ancient DNA, when comparing

sequences across clones we observed single nucleotide substitutions

occurring in one or a few clones (Table S1), on average 3.9 every

1,000 bp. In addition, a C to T change was observed in 27 out of

56 clones at nt 16274. In principle, differences of this kind across

clones may be due to three factors, namely: (1) sequence

heterogeneity due to the presence of exogenous, contaminating

DNA, (2) post-mortem DNA damage, and (3) Taq-polymerase

Figure 1. Tibia fragment of the Paglicci 23 specimen. DNA was
extracted from this fragment and from skull splinters, and all extracts
yielded the same HVR I sequence.
doi:10.1371/journal.pone.0002700.g001
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errors or cloning artefacts. We tested separately for the possible

effects of the first two factors upon our specimen.

To track down any possible modern contaminations, the

mtDNAs of the seven authors who to any extent manipulated

the sample were genotyped. All these sequences (Table 1) differ

from the Paglicci 239s consensus mtDNA sequence. However, two

of (F.M and C.L) have a T at nt 16274. Therefore, variation across

clones at that site might have meant that either investigator left his

DNA on the sample, although C.L. had no contacts with the

material at the stage at which clones F2.1 through F2.13 and F3.1

through F3.15 were genotyped.

Post-mortem DNA damage generally occurs in the form of

double-strand breaks, or other modifications severe enough to

prevent enzymatic replication of the DNA molecule. Had this

happen, we would have been unable to amplify the DNA.

However, hydrolytic deamination and depurination may also

occur, resulting in apparent changes of the nucleotide sequence.

Although post-mortem damages of this kind are unlikely to

severely bias the results when the initial template molecules exceed

1000 [26] as is the case for Paglicci 23, to correct for such possible

post-mortem damages, a third DNA extract was treated with

Uracyl-N-Glycosidase (UNG) [17], and independently rese-

quenced. The 35 sequences thus obtained (clones F 4.1 through

F4.20, and F5.1 through F 5.15) contain no nucleotide

substitutions with respect to the CRS, including nt 16274 (Table

S1). As a consequence, we concluded that the sequence obtained

from the Paglicci 23 specimen is the CRS, and that heterogeneity

across clones at nt 16274 reflects DNA damage due to

deamination of the original cytosine and successive amplification

of the damaged DNA fragment(s). The rate of nucleotide

misincorporation suggests that the DNA templates were indeed

damaged (3.9 substitutions every 1,000 bp within the HVRI), but

after UNG treatment at least 82% of the clones showed the same

consensus nucleotide at each position (Table S1).

The relationship between the Paglicci 23 sequence, the available

Cro-Magnon and Neandertal sequences, and all the sequences from

the seven individuals who manipulated the Cro-Magnons specimen,

are summarized in Figure 2. The backbone of the network is based

on the 31bp region for which we had complete overlap among all

sequences, and was estimated by a statistical parsimony method [28],

as implemented in the software TCS [29]. A sub-network was also

reconstructed for a set of eight individuals relevant to this study using

the entire fragment of 360 bp.

Previous genetic data on Cro-Magnoids [15], although generated

under the most stringent available criteria, were considered

problematic by some authors [16,30], because the mtDNA

sequences obtained correspond to sequences also observed in

modern individuals. For most ancient human samples, rigorous

application of this criterion would render the study of Cro-Magnoid

DNA practically impossible, because it is impossible to rule out any

contamination from generic unknown individuals. However, it is

possible to test for the occurrence in the extract of known potential

contaminating sequences; for the Paglicci 23 fossil we had this

opportunity, and we found that none of these modern sequences is

equal to the sequence obtained from the fossil extracts. Since we used

different sets of overlapping primers pairs to amplify the fragment

included between nucleotide 16024 and 16383, it seems highly

unlikely that the sequence obtained was a chimera artefact.

Therefore, at this stage it is safe to conclude that at least one Cro-

Magnoid mtDNA sequence, for which contamination can be ruled

out with a high degree of confidence, falls well within the range of

modern human variation. This does not prove, but at least indirectly

suggests, that the previously published Cro-Magnoid sequences [15],

both documented in the modern human gene pool, may be genuine

[31]. At any rate, the finding of the Cambridge Reference Sequence

in Paglicci 23 shows that one of today’s mtDNA variants has been

present in Europe for at least 28,000 years, and that modern and

archaic anatomical features appear associated with mtDNA

sequences that can be classified, respectively, as modern and non-

modern. Because no HVR I sequence similar to the Neandertals’ has

been described in more than 4800 Europeans studied so far [32],

models whereby Neandertals were part of the genealogy of current

Europeans are at odds with the data, at least as far as maternal

inheritance is concerned. In our opinion, the burden of the proof is

now on those who maintain that Neandertals might have

contributed to the modern gene pool.

So far, the study of ancient nuclear DNA in humans has been

severely limited by the difficulty to ascertain whether the DNA

sequences obtained are really endogenous to the specimen. This

study shows that it is possible to test for DNA authenticity, provided

the people who manipulate the sample from the moment of

excavation are carefully recorded and their DNAs typed. Therefore,

Paglicci 23 (as well as other remains studied under comparable

conditions in the future) promises to be a valuable source of

information on DNA diversity in the past, and can pave the ground

for a more exhaustive understanding of human evolutionary history.

Materials and Methods

DNA extraction
All DNA-preparation and extraction methods followed strictly

specific ancient DNA requirements [33]. DNA was extracted in

Table 1. Mitochondrial HVR1 variation in the seven
researchers that have been in physical contact with the
samples.

Researcher Task HVR1 haplotype

F.M Excavation 16069 T, 16126 C, 16278 T, 16294 T, 16366 T

S.V Laboratory analysis 16311 C

A.M Laboratory analysis 16274 A 16311 C

M.L Laboratory analysis 16261 T, 16311 C

E.Pi Laboratory analysis 16096 A, 16126 C, 16145 A, 16189 C,
16231C, 16260 T, 16261 T,

C.L. Laboratory analysis 16126 C, 16294 T, 16296 T, 16304 C

D.C. Laboratory analysis 16193 T, 16278 T

doi:10.1371/journal.pone.0002700.t001

Figure 2. Genetic relationships among the Paglicci 23 and
other relevant mtDNA sequences. The network summarizes
mtDNA HVR I variation in 13 Neandertals (Nea1 to Nea13) , three Cro-
Magnons (CrM1 to CrM3), and seven modern humans who manipulated
the Cro-Magnons specimens (six authors of this paper and Carles
Laueza-Fox, designated by their initials).
doi:10.1371/journal.pone.0002700.g002
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two laboratories, in Florence and Barcelona, in facilities

exclusively dedicated to ancient DNA work. All DNA extractions

and PCR set up were carried out in physically separated spaces

from those in which PCR cyclings and post-PCR analysis was

conducted. Full-body suits, disposable masks and gloves were worn

throughout and were changed frequently, and pipettors were UV-

irradiated in between use. All DNA extractions and PCR reactions

included negative controls, and all steps of the analysis were

replicated at least twice in each laboratory. To test for preservation of

other macromolecules as an indirect evidence for DNA survival [26]

we estimated the degree of aminoacid racemization, in each sample,

using approximately 5 mg of tibia and skull, powdered following the

procedures described in [25]. We quantified the amount of target

DNA by Real Time (RT) PCR. PCR products were cloned, 152

clones were sequenced, and the sequences thus obtained were

aligned and compared across clones. After extraction, UNG

treatment were performed on a third skull fragment in order to

verify whether C to T changes (nt 16294 ) observed in some clones

represented postmortem damage or contamination [17].
To prevent contamination from prior handling, the outer layer

of bones was removed with a rotary tool, and the fragments were

briefly soaked in 10% bleach. Both samples were then irradiated (1

hour under UV light) and powdered. DNA was extracted by

means of a silica-based protocol [15]. At least two independent

extracts were obtained from each remain. Multiple negative

controls were included in each extraction.

UNG treatment
Uracil bases caused by the hydrolytic deamination of cytosines

were excised by treating 10 ml of DNA extracted from both

samples with 1U of Uracil-N-Glycosylase (UNG) for 30 min at

37uC. UNG reduces sequence artefacts caused by this common

form of post-mortem damage, resulting in apparent C to T/G to A

mutations and subsequent errors in the sequence results [17]. After

this treatment, the extract was subjected to the same PCR Cloning

and sequencing conditions as described above.

Quantification of DNA Molecules
Real-time PCR amplification was performed using BrilliantH

SYBRH Green QPCR Master Mix (Stratagene) in MX3000P

(Stratagene), using 0.5mM of appropriate primers (forward primer

located at H 16107 and reverse primer located at L 16261.

Thermal cycling conditions were 95uC for 10 min, 40 cycles at

95uC for 30 s, 53uC for 1 min and 72uC for 30 s, followed by

SYBRH Green dissociation curve steep. Ten-fold serial dilutions of

the purified and quantified standard were included in the

experiment to create the standard curve in order to know the

number of initial DNA molecules in the samples

Amplification of mt DNA
Two ml of DNA extracted from the bone were amplified with

this profile: 94uC for 10 min (Taq polymerase activation), followed

by 50 cycles of PCR (denaturation , 94uC for 45 sec, annealing,

53uC for 1 min and extension, 72uC for 1 min) and final step at

72uC for 10 min. The 50 ml reaction mix contained 2 U of

AmpliTaq Gold (Applied Biosystems), 200 mM of each dNTP and

1 mM of each primer. The 360 bp long HVR-I was subdivided in

three overlapping fragments using the following primer pairs:

L15995/H16132; L16107/H16261; L16247/H16402. Each ex-

tract was amplified at least twice. Since overlapping primers were

used throughout the PCR amplifications, it is highly unlikely that

we amplified a nuclear insertion rather than the organellar

mtDNA. Reactions conditions in replay analysis were described in

[34], except for the sequences primers that we report as follows:

59ACTATCACACATCAACTGC 39; 59ATGGGGACGAGAA-

GGGATTT 39.

Cloning and Sequencing
PCR products were cloned using TOPO TA Cloning Kit

(Invitrogen) according to the manufacturer’s instructions. Screen-

ing of white recombinant colonies was accomplished by PCR,

transferring the colonies into a 30 ml reaction mix (67 mM Tris

HCl [pH 8.8], 2 mM MgCl2, 1 mM of each primer, 0.125 mM of

each dNTP, 0,75 units of Taq Polymerase) containing M13

forward and reverse universal primers. After 5 min at 92u C, 30

cycles of PCR (30 sec at 90uC, 1 min at 50uC, 1 min at 72uC)

were carried out and clones with insert of the expected size were

identified by agarose gel electrophoresis. After purification of these

PCR products with Microcon PCR devices (Amicon), a volume of

1,5 ml was cycle-sequenced following the BigDye Terminator kit

(Applied Biosystems) supplier’s instructions. The sequence was

determined using an Applied BioSystems 3100 DNA sequencer.

‘‘Long’’ amplificate detection
Appropriate molecular behaviour was also tested by amplifica-

tion of longer mtDNA fragments (443 bp and 724 bp), which have

been reported as very unusual for ancient DNA. PCR conditions

were those described for mtDNA analysis above, primers used for

443 bp fragment were L15995 and H16401, while for 724 bp

fragment primers used were L16247 and H00360.

Amplification with Neandertal-specific primers
Amplifications of the Paglicci extracts with two pairs of

Neandertal-specific primers (L16,022-NH16,139 and NL16,263/

264-NH16,400, [14]) were also attempted. 50 ml of DNA were

amplified with the following profile: 94uC for 10 min and 45 cycles

of a denaturation (94uC for 45 sec), annealing (57uC for 1 min for

the first couple and 59uC for 1 min for the second couple) and

extension step (72uC for 1 min). The 50 ml reaction mix contained

2 U of AmpliTaq Gold polymerase and 16 reaction buffer

(Applied Biosystems), 200 mM of each dNTP, 1.5mM MgCl2,

1 mM of each primer.

Extractions amplifications and sequencing of modern
DNA

MtDNA genotypes of all individuals who had any contacts with

the specimen were either known in advance (M.L., D.C. and

C.L.F: [21]), or determined in the Laboratory at Viote Trento

(S.V., E.Pi., A.M., F.M.). Buccal cells were collected by oral

brushes (Sterile Omni Swab or Sterile Foam Tipped Swabs,

Whatman International Ltd., Maidstone, UK) and DNA was

extracted using QIAmp1 DNA Mini Kit (QIAGEN, Hagen,

Germany) according to manufacturer’s instructions. The hyper-

variable region I (HVR1) of the mtDNA was determined by PCR

amplification using the primers L15996 (59CTCCACCATTAG-

CACCCAAAGC 93) and H408 (59 CTGTTAAAAGTGCA-

TACCGCC 93) (Table S1).

Supporting Information

Table S1 Sequences of the clones obtained by amplifying the

HVR I of mtDNA from the Paglicci 23 fossil. A dot indicates

identity with respect to the Cambridge Reference Sequence, as

modified by Ruiz-Pesini et al. [26], a letter indicates a nucleotide

substitution. In the first column, labels designate clones sequenced,

respectively, in the Florence (those beginning with an F) or

Barcelona (those beginning with a B) laboratories. Bold type: clone

Cro-Magnon Mitochondrial DNA
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sequences after UNG treatment. The sequences of the primers are

also reported.

Found at: doi:10.1371/journal.pone.0002700.s001 (0.09 MB

DOC)
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