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Abstract

The molecular mechanisms responsible for increasing iron and neurodegeneration in brain ischemia are an interesting area
of research which could open new therapeutic approaches. Previous evidence has shown that activation of nuclear factor
kappa B (NF-kB) through RelA acetylation on Lys310 is the prerequisite for p50/RelA-mediated apoptosis in cellular and
animal models of brain ischemia. We hypothesized that the increase of iron through a NF-kB-regulated 1B isoform of the
divalent metal transporter-1 (1B/DMT1) might contribute to post-ischemic neuronal damage. Both in mice subjected to
transient middle cerebral artery occlusion (MCAO) and in neuronally differentiated SK-N-SH cells exposed to oxygen-
glucose-deprivation (OGD), 1A/DMT1 was only barely expressed while the 1B/DMT1 without iron-response-element (2IRE)
protein and mRNA were early up-regulated. Either OGD or over-expression of 1B/(2)IRE DMT1 isoform significantly
increased iron uptake, as detected by total reflection X-ray fluorescence, and iron-dependent cell death. Iron chelation by
deferoxamine treatment or (2)IRE DMT1 RNA silencing displayed significant neuroprotection against OGD which
concomitantly decreased intracellular iron levels. We found evidence that 1B/(2)IRE DMT1 was a target gene for RelA
activation and acetylation on Lys310 residue during ischemia. Chromatin immunoprecipitation analysis of the 1B/DMT1
promoter showed there was increased interaction with RelA and acetylation of H3 histone during OGD exposure of cortical
neurons. Over-expression of wild-type RelA increased 1B/DMT1 promoter-luciferase activity, the (2)IRE DMT1 protein, as
well as neuronal death. Expression of the acetylation-resistant RelA-K310R construct, which carried a mutation from lysine
310 to arginine, but not the acetyl-mimic mutant RelA-K310Q, down-regulated the 1B/DMT1 promoter, consequently
offering neuroprotection. Our data showed that 1B/(2)IRE DMT1 expression and intracellular iron influx are early
downstream responses to NF-kB/RelA activation and acetylation during brain ischemia and contribute to the pathogenesis
of stroke-induced neuronal damage.
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Introduction

Cellular iron homeostasis is a finely regulated process that

prevents cellular damage due to iron accumulation and the

formation of free radicals through the Fenton reaction [1]. The

iron concentration in the brain increases with age and is much

higher in the central nervous system of subjects affected by

neurodegenerative diseases [2–5]. An important pathogenic role of

iron has been suggested in Alzheimer’s, Parkinson’s and

Huntington’s diseases, as significant iron accumulation was found

in affected brain regions of patients [6]. The relevance of neuronal

cellular damage by increased iron levels was further addressed by

in vitro and in vivo studies of iron and 6-hydroxydopamine (6-

OHDA)-dependent neurodegeneration, respectively [7]. Increased

iron content, correlated with a reduced number of TH-positive

neurons, was found in the substantia nigra (SN) of rats that had

been overloaded with iron dextran. Significant neuroprotection

was produced by deferoxamine (DFO), an iron chelator capable of

permeating the blood–brain barrier, and more recent chelators in

experimental models of Parkinson’s and Alzheimer’s diseases [8–

12], brain ischemia-reperfusion [13,14] and hemorrhage [15].

Iron could be transported into mammalian cells as transferrin

(Tf)-bound iron (TBI) via Tf receptor (TfR) mediated endocytosis

or through the non-transferrin-bound iron (NTBI) pathway via

divalent metal transporter-1 (DMT1). The role of TfR-mediated

iron transport in neurodegeneration and ischemia is still contro-

versial. TBI, TBI-binding sites and TfR expression are poorly

correlated with the final steady-state distribution of iron [16].

Moreover, the number of TBI-binding sites decreased in

dopaminergic neurons of the SN of PD patients [17,18],

suggesting that the NTBI pathway is preferentially involved in

the iron accumulation of PD brains. Conversely, both TfR and
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DMT1 were recently shown to increase in the ischemic cortex of

rats subjected to middle cerebral artery occlusion (MCAO) [13]. A

significant consensus has emerged about the involvement of the

NTBI pathway in neurodegenerative diseases, with iron accumu-

lation mediated by DMT1 in specific brain areas [19]. DMT1 is

highly expressed in mammalian neuronal cells [20–22,6] and is

present at a relevant concentration in the basal ganglia, caudate-

putamen and substantia nigra pars reticulata [23].

The mammalian DMT1 gene family (SLC11A2; Nramp2) is

composed of integral membrane proteins with 10–12 putative

membrane-spanning domains [24] subjected to alternative splic-

ing. The 59 alternative splicing of exons 1A and 1B produces the

1A and 1B DMT1 mRNA isoforms, with 1A/DMT1 predomi-

nantly expressed in kidney and duodenum and 1B/DMT1

ubiquitously expressed in the peripheral organs and brain [25].

The 39 splicing generates two isoforms with or without the iron

responsive element (IRE) motif in the 39UTR, named (+)IRE or

(2)IRE isoforms, respectively. These variants give rise to four

DMT1 isoforms, all of which are active in ferrous iron transport.

The two (+)IRE isoforms are post-transcriptionally regulated by

the IRE/Iron Regulatory Protein (IRP) system which stabilize

them in the absence of iron, while (2)IRE splice variants are not

susceptible to iron regulation [25,26,27]. Further complexity is

added by the post-translational glycosylation of DMT1, which

produces two different glycosylated molecular components: the

immature, partially glycosylated, endo H-sensitive form and the

mature, fully glycosylated, PNGaseF-sensitive component, with

molecular masses of 60 and 90 kDa, respectively [28].

A broad up-regulation of DMT1 expression was found in the

substantia nigra of PD cases as well as in animal models of PD

[29,30]. However, the specific expression of (2)IRE DMT1 in

neuromelanin-positive dopaminergic neurons suggested that the

(2)IRE isoform is more involved in mediating abnormal increases

in iron and neuronal cell loss. In line with this hypothesis, both

MPP(+) treatment in dopaminergic MES23.5 cells [10] and L-

DOPA treatment in primary cortical neurons produced an

increase of (2)IRE DMT1 expression and increased iron content

with consequent cell death. These effects were counteracted by the

specific silencing of the (2) IRE isoform [31]. More recently, the

role of DMT1 was highlighted as being responsible for the

elevated iron content in an ischemic model of MCAO [13].

Hypoxia induces transcription factors HIF-1a and NF-kB,

which, in response to various stimuli, have been found to

differentially activate the 59 regulatory regions of 1A–1B/DMT1

[32–36]. NF-kB was found to specifically regulate the expression

of both (2)IRE and (+)IRE 1B/DMT1 isoforms in neuronal cells

exposed to sodium-nitro-prusside [37,38] and the (2)IRE DMT1

isoform in MES23.5 cells exposed to MPP+ [39]. The only

indirect evidence for NF-kB-mediated DMT1 regulation in brain

ischemia comes from a study showing that tanshinone IIA, a

natural compound reported to inhibit NF-kB activity [40], can

downregulate DMT1 expression, iron elevation and brain infarct

volume in mice exposed to MCAO [13]. However, a clear-cut

demonstration of DMT1 regulation by NF-kB and its role in post-

ischemic brain damage is still lacking.

We recently demonstrated that post-ischemic neurodegenera-

tion relies on the activation of the NF-kB p50/RelA dimer [41,42]

and requires specific RelA acetylation on the Lys310 residue. The

acetylation status of RelA is maintained by the coordinated activity

of epigenetic regulators such as the CREB binding protein (CBP),

endowed with histone acetyl transferase activity, and sirtuin 1, a

NAD–dependent histone deacetylase [43,44]. The specific RelA-

Lys310 acetylation discriminates neuroprotective activation of

p50/RelA during brief preconditioning ischemia from p50/RelA

neurotoxic activation induced by prolonged ischemia. We

speculated that 1B/(2)IRE DMT1 might be an early target gene

for acetylated RelA-Lys310 in the pro-apoptotic cascade activated

by ischemic injury. To test this hypothesis, we investigated the

expression pattern of DMT1 isoforms during the early phase of

neuronal ischemia and its relationship with the acetylation status

of RelA and with cell survival. Our study provides new evidence

that inhibition of 1B/(2)IRE DMT1 expression, per se or through

RelA-Lys310 hypo-acetylation, might be a potential therapeutic

approach to counteract post-ischemic neurodegeneration in stroke

patients.

Materials and Methods

Cell culture
SK-N-SH cell culture. The human SK-N-SH neuroblastoma

cell line was purchased from American Type Culture Collection.

Cells were grown as previously reported in the presence of 50 mM

retinoic acid (Sigma) for 10–12 days to induce mitotic arrest and

differentiation into a neuronal-like phenotype [45].

Primary cultures of mouse cortical neurons. Cortical

neurons were prepared from 15-day embryonic mice (C57Bl/6

dams, Charles River) and cultured for 10 days as previously

described [42,46].

Cerebral ischemia models
Transient middle cerebral artery occlusion

(tMCAO). All animal procedures were approved and carried

out in accordance with the guidelines of Institutional Animal Care

and Use Committee at University of Brescia, School of Medicine

(N.07/2010), Italian Ministry of Health (n. 145/2008 – B. 30/09/

2008) and the European Communities Council Directive (86/

609/EEC). C57Bl/6 male mice (Harlan, Milan, Italy) were

exposed to transient (20 min) MCAO as previously described

[47]. Examination of infarct volume was performed in brains

frozen in liquid nitrogen to avoid post-mortem changes. To

prepare nuclear and cytosolic extracts, mice were killed by

decapitation 4 hours after MCAO (n = 3).

Total RNA was extracted after exposure to 1 hour MCAO

followed by 1 hour reoxygenation in cortices ipsylateral and

contralateral to the ischemic lesion to perform expression analysis

of DMT-1 mRNA isoforms by real-time polymerase chain

reaction (qRT-PCR) assay (n = 3).

OGD. Primary cortical neurons at 11 DIV were exposed to

Oxygen-Glucose-Deprivation (OGD) as previously described [42],

for 3 hours. Cellular lysates were prepared at the end of OGD for

the Luciferase reporter gene assay. SK-N-SH neuronal cells were

exposed to 4 hours OGD for analysis of DMT1 in nuclear and

cytosolic extracts. Total cellular RNA was extracted for the

analysis of 59-spliced mRNA isoforms. The cells were also grown

on glass-coverslip and immunostained for (2)IRE DMT1. Total

cellular lysates were analyzed for atomic iron content. SK-N-SH

cells were also exposed to 8 hours-OGD and replaced in fresh

DMEM without serum for 15 hours reoxygenation, with or

without deferoxamine 50,100 mM. The same OGD protocol was

performed at 40 hours expression of human (2)IRE DMT1

siRNA. Neuronal injury was then evaluated by measuring the

amount of LDH released (Promega, Madison, WI, USA).

Western blot analyses
Nuclear and cytosolic protein extracts were prepared for the

Immunoblot analyses from differentiated SK-N-SH as previously

described [42]. The following antibodies were used: anti-pan

DMT1, anti-C23 nucleolin, anti-b-actin, anti-GAPDH (Santa

DMT1 in Brain Ischemia and NF-kB/RelA Acetylation

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e38019



Cruz Biotechnology, Santa Cruz, CA, USA), anti DMT1(2)IRE

(Alpha Diagnostic International) and anti-human Transferrin

receptor (Zymed). Normalization of protein expression was

performed by densitometry analysis by Gel Pro.3 analysis software.

Immunostaining
SK-N-SH cells were grown on poly-Lys coated cover glasses at

the density of 26105 cells/2 cm2 in 24 wells petri dishes and

differentiated as described. After 10 days, the cells were subjected

to OGD for 4 hours, then fixed in paraformaldehyde in

phosphate-buffered saline and incubated with Triton X-100

(0.2% in phosphate-buffered saline) containing 10% hydrogen

peroxide for 15 min. Cells were blocked with Triton X-100 (0.2%

in phosphate-buffered saline) containing 2%BSA, 5% goat serum,

for 1 hour at room temperature and incubated for 2 hours at

room temperature with polyclonal antibodies against (2)IRE

DMT1 (ADI, 1:50) or pan DMT1 (Santacruz, 1:50). Biotinylated

goat anti-rabbit immunoglobulins (1:500, DAKO) and an ABC kit

(DAKO) were used for detection following the manufacturer’s

instructions.

Semi-quantitative RT-PCR and real time PCR
Total RNA was isolated with RNAeasy kit (Qiagen) from

cultured cell. The first strand of cDNA was obtained by reverse

transcription from 2 mg of total RNA with 0,5 mg of oligodT(23)

primers (SIGMA) with the Superscript II RT (Invitrogen)

according to the manufacturer’s instructions, in the presence of

the ribonuclease inhibitor RNasin (Promega). 10% of the reaction

was used for PCR amplification by Taq DNA Polymerase

(Genespin), performed at 94uC for 30 sec, 52uC for 40 sec, and

72uC for 40 sec for 20–35 cycles for b actin or DMT1 primers,

respectively. The obtained cDNA was normalized against b actin

by real-time PCR for every sample. The hDMT1 59 spliced

isoforms were amplified with the following primers: 1B/DMT1

For: 59 GTTGCGGAGCTGGTAAGAATC 39; 1B/DMT1 Rev:

59 GGAGATCTTCTCATTAAAGTAAG 39; 1A/DMT1For: 59

GGAGCTGGCATTGGGAAAGTC 39; 1A/DMT1Rev: 59

GGAGATCTTCTCATTAAAGTAAG 39, and human b actin

For: 59CTTCTACAATGAGCTGCGTG 39; b actin Rev:

59GAGGATCTTCATGAGGTAGTC 39 in order to obtain the

expected amplicon size of 222 bp. for 1B/DMT1, 290 bp. for 1A/

DMT1, 320 bp. for b actin. The PCR products were resolved on

ethidium bromide-stained gels and quantified by the NIH ImageJ

software for densitometry. DMT1 mRNA levels were determined

in triplicate in three independent experiments of 4 hours OGD

versus control in SK-N-SH differentiated neuronal cells. In

addition, 1A/DMT1 was amplified by RT-PCR from the

immortalized human urothelial cell line URO-TSA, as a positive

control, and normalized against b actin.

One microgram of total RNA extracted after exposure to

1 hour MCAO followed by 1 hour reoxygenation was retro-

transcribed using iScript kit (Bio-Rad Laboratories, Hercules, CA)

and amplified by real time PCR with the following mouse DMT1

isoforms specific primers: 1A/DMT1 For: 59

AGGCTGCGCTGCTCTGAAAAGC 39 and Rev: 59 ATAA-

GAAAGCCAGGCCCCGTG 39; 1B/DMT1 For: 59 CAAT-

CACGGGAGGGCAGGAG 39 and Rev: 59 CAATCACGG-

GAGGGCAGGAG 39; (+)IRE DMT1 For: 59

GAAAGTCCTGCTGAGCGAAG 39, and Rev: 59 TTGAGCA-

CAGCCTAAGCTACAT 39; (2)IRE DMT1 For: 59 CGCCCA-

GATTTTACACAGTG 39 and Rev: 59

TTGGAGTGTCGGTGCTTAAA 39, which generated ampli-

cons of 350 bp and 385 bp for 1A- and 1B-DMT1, respectively,

and 324 bp for both (2)/(+)IRE isoforms. Normalization was

performed against b actin: For: 59 GACGACATGGAGAA-

GATCTG 39 and Rev: 59 TGAAGCTGTAGCCACGCTC 39

which generated a 150 bp amplicon. Incorporation of SYBR

Green dye into PCR products was monitored in real-time with a

BIORAD iCycler detection system, allowing determination of the

threshold cycle (CT) at which exponential amplification of PCR

products begins. Each reaction was performed in triplicate. The

DCT values for PCR products were used to calculate the amount

of mRNA amplified in each reaction.

Atomic Iron Levels
Total extracts from neuronally differentiated SK-N-SH cells

were analysed for Total Reflection X-ray Fluorescence, using

Gallium as a reference standard at the concentration of 1 mg/ml.

TXRF measurement was performed using a Bruker S2 total-

reflection X-ray fluorescence spectrometer (Bruker, Germany).

Data from three independent experiments were analyzed for total

iron content.

Transfection with small interfering RNAs
Double-stranded small interfering RNAs (siRNA) corresponding

to homologous sequences of human (2)IRE DMT1 gene were

designed with 39-hydroxyl and two base overhangs on each strand

(Qiagen). The two following gene-specific sequences were

successfully used: (2)IRE DMT1 siRNA1: 59- UCCGUGCUG-

CAUUGUAACUCA-39, and (2)IRE DMT1 siRNA2: 59-AGG-

CATTGCCAAAGAGCTTTA-39. As a negative control (non-

siRNA) was used the validated ALLstar Negative control (Qiagen).

The buffered siRNAs were dissolved in RNAse free water to a final

concentration of 20 mM. Cell transfection was carried out using

HiPerfect Transfection Reagent (Qiagen) as follows: for 10 cm2

dishes, 4 mg of (2)IRE DMT1 siRNA or non-siRNA were

incubated with 12 ml HiPerfect Transfection Reagent for 15 min

at room temperature, according to the manufacturer’s instruc-

tions. The transfection complex was added to SK-N-SH cells in

1 ml DMEM without serum and antibiotics. It was replaced with

complete DMEM 24 hours later. Time-course studies were

performed to assess the selective silencing of (2)IRE DMT1

protein in nuclear extracts. The OGD experiments were

performed 40 and 30 hours after transfection for DMT1 siRNA1

and siRNA2, respectively.

Chromatin Immunoprecipitation assay
Chromatin immunoprecipitation (ChIP) assays were performed

using a ChIP assay kit (#9003S, Cell Signaling Technology,

Massachusetts, USA). Briefly, primary coltures of mouse cortical

neurons, exposed to 3 hours OGD followed by 2 hours reox-

ygenation, were cross-linked with 1% formaldehyde for 10 min-

utes at 37uC, the reaction was then stopped with a glycine solution

was added for 5 minutes at room temperature. The cells were

washed with ice-cold PBS, pooled, pelleted, and incubated on ice

for 10 minutes in lysis buffer supplemented with 100 mM

phenylmethylsulfonyl fluoride (PMSF), dithiothreitol (DTT), and

a protease cocktail inhibitor mix. Nuclei were pelleted and

resuspended in buffer supplemented with DTT, digested by

micrococcal nuclease, and homogenized on ice. After centrifuga-

tion, sheared chromatin was incubated with anti-acetyl Histone

H3 (Lys9/18) (#07-593, Upstate-Millipore, Massachusetts, USA),

anti-RelA (#sc-372, Santa Cruz Biotechnology, Santa Cruz, CA,

USA), or anti-IgG, as negative control, overnight at 4uC. Then,

magnetic-coupled protein G beads were added and the chromatin

was incubated for 2 hours in rotation. An aliquot of chromatin not

incubated with antibodies was used as the input control sample.

Antibody-bound protein/DNA complexes were washed, eluted,
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treated with proteinase and subjected to Real-time polymerase

chain reaction (qRT-PCR) analyses. Immunoprecipitated DNA

(4 ml) was amplified in 25-ml reaction mixture containing SYBR

Green master mix (12,5 ml BIORAD). The primer specific for the

mouse 1B/DMT1 promoter were as follows: For: 59 ATGGGCG-

GAGCCTCCGTTCC 39, and Rev: 59 TCCATATCCCAG-

GAGCCAGC 39, which generated a 130 bp amplicon. Incorpo-

ration of SYBR Green dye into PCR products was monitored in

real-time with a BIORAD iCycler detection system, allowing

determination of the threshold cycle (CT) at which exponential

amplification of PCR products begins. Each reaction was

performed in triplicate. The CT values for PCR products were

used to calculate the amount of chromatin immunoprecipitated in

each reaction. Relative enrichment over the no-antibody INPUT

and IgG negative control was first determined for each sample.

Relative factor recruitment in OGD was then normalized to the

control for each antibody.

Reporter gene assay
In order to evaluate mouse 1B/DMT1 promoter activity during

OGD, cortical neurons were transfected at 10 DIV using LF 2000

Reagent with 0.2 mg/well of the DMT1-pGL3 plasmid, kindly

provided by J.A.Roth [38], and 0.8 mg/well of RelA, RelA-

K310R or RelA-K310Q mutant constructs or empty expression

vector pSG5 as negative control, as previously described [46]. To

normalize the transfection efficiency, 0.02 mg/well Renilla lucifer-

ase control plasmid (Promega) was used. After 24 hours, neurons

were exposed to 3 hour OGD as described above. Cells were then

harvested and firefly and Renilla luciferase were measured by using

Dual Luciferase Reporter Assay (Promega).

Expression plasmids, transfection and treatments
The wild-type RelA plasmid, kindly provided by P.Jalinot [48],

was used as template for the substitution of Lys 310 to Arginine or

Glutamine in the mutant constructs RelA-K310R, as already

described [42], and RelA-K310Q, respectively. The divalent metal

transporter(2)IRE cDNA was obtained by PCR amplification

from the (2)IRE DMT1 pDEST30 construct, kindly provided by

M.Garrick [49] (FOR: 59-CACTATAGATCTATGGTGTTG-

GATCCTAAAGAAAAGATGCCA-39; REV: 59-CGAATTA-

GATCTTCATCTGGACACCACTGAGTCAGCATCC-39)

and ligated into the BglII cloning site of pSG5 expression vector

(Agilent Technologies, Stratagene products Division, La Jolla, CA,

USA). After isolation of the sense clone by restriction analysis, the

open reading frame was completely sequenced and the derived

plasmid named 1B/(2)IRE DMT1 -pSG5. Transfection of

differentiated SK-N-SH cells was carried out according to the

manufacturer’s instructions with Lipofectamine 2000 Reagent

(LF2000, Invitrogen Corporation, Carlsbad, CA, USA). The day

before transfection cultures were changed to normal growth

medium containing serum and without antibiotics. Cells were

transfected with expression plasmids encoding wild-type RelA,

RelA-K310R or RelA-K310Q for 24 hours, before undergoing

the OGD experiments, as previously described [42]. Treatment

with Deferoxamine (DFO), dissolved in PBS, was performed at the

concentration of 100 mM during OGD and overnight recovery.

Cells transfected with pSG5 or 1B/(2)IRE DMT1-pSG5 were

then incubated for 1 hour in Hepes buffer at pH 6.0, after washes

at pH 7,4, with or without 100 mM ferrous iron, freshly prepared

in water and kept on ice [49]. LDH release was determined as

neurotoxicity index.

Statistics
All results were calculated as the means 6 se. The unpaired

student’s t test was applied to analyze differences between the

groups. All differences were considered statistically significant at

the P value,0,05. Statistical analyses were performed using Graph

Pad Prism software (version 4.0).

Results

1B/(2)IRE DMT1 is up-regulated during OGD exposure in
neuronally differentiated SK-N-SH cells and in the cortex
of a mouse model of tMCAO

We examined DMT1 expression in neuronally differentiated

human neuroblastoma SK-N-SH cells exposed to OGD, already

characterised as a cell-based model of brain ischemia [42], to

establish the OGD-dependent modulation of DMT1.

We first investigated whether DMT1 alternative transcripts

were up-regulated at the early phase of ischemic damage in

neuronal cells. We performed semi-quantitative RT-PCR of the 59

alternative 1A and 1B/DMT1 mRNAs. We found a significant

increase of 1B/DMT1 mRNA at 4 h of OGD with respect to

control cells (Fig. 1A) (*, p,0,05). However, 1A/DMT1 mRNA

was not detectably expressed in the same samples ( Fig. 1B, left

panel), in agreement with previous evidence of a highly restricted

expression pattern for 1A/DMT1 in the kidney and duodenum

[25]. 1A/DMT1 mRNA was amplified in the immortalised

human urothelial cell line Uro-TSA, which was used as a control

template (Fig. 1B, right panel).

We then investigated DMT1 protein levels during the early

OGD phase in neuronal cells. The analysis was performed by

western blots of cytoplasmic and nuclear extracts of SK-N-SH cells

with a DMT1 antibody directed against epitopes common to the 4

isoforms (pan-DMT1). DMT1 protein was significantly up-

regulated in both the nuclear compartment (***p,0,001) and in

the cytosolic fraction (**p,0,01) by almost 50% in neurons

exposed to 4 h of OGD, compared to control neurons. The pan-

DMT1 antibody reactivity (Fig. 1C and D) revealed that both

DMT1 components, with molecular masses of 60 and 90 kDa,

were up-regulated in the nuclear extracts. These components are

known to correspond to 1B/(2)IRE DMT1 [50,51]. Only the

predominant 90 kDa component was up-regulated in the cytosolic

fractions, where 1B/(+/2)IRE DMT1 could co-localise [50,51].

The increase of the (2)IRE DMT1 isoform, which is unresponsive

to post-transcriptional regulation by intracellular iron levels

through the IRE-IRP system, was confirmed by immunocyto-

chemistry in SK-N-SH cells after 4 h of OGD. Fig. 1E clearly

showed up-regulation of (2)IRE DMT1 in both nuclear and

cytosolic cellular compartments after 4 hours of OGD. When

staining was performed using the pan-DMT1 antibody, which did

not discriminate between (+)IRE and (2)IRE isoforms, only a

minor reactivity was detected (not shown), supporting the

predominant up-regulation of (2)IRE isoforms during the early

OGD phase.

Data indicated that 1B/(2)IRE DMT1 expression increased at

both the mRNA and the protein levels during the early post-

ischemic phase. These results were supported by experiments in

brains of mice subjected to 20 min MCAO, a condition causing a

cortical infarct of 30628 mm3 in mice evaluated three days after

ischemic injury [43]. Examination of mRNA and protein in the

ischemic cortical tissue confirmed a relevant DMT1 induction.

Real time PCR of cortices exposed to MCAO and 1 hour

reperfusion, showed increased expression of the DMT1isoforms

1B- and (2)IRE, when compared to relative contralateral cortices

(Fig. 2A). Expression of 1A/DMT1 as well as (+)IRE DMT1 were
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much lower and unresponsive to the ischemic insult. Western blot

analysis of brain extracts with the pan-DMT1 antibody confirmed

a significant up-regulation of (2)IRE DMT1 in both nuclear and

cytosolic compartments of ischemic cortices, respect to the relative

contralateral hemispheres (Fig. 2B and C).

1B/(2)IRE DMT1 over-expression induces intracellular
iron uptake and promotes iron-dependent cell death

To investigate the capability of 1B/(2)IRE DMT1 to uptake

ferrous iron in our cell model, we ectopically expressed this

isoform in differentiated human neuroblastoma cells. Cells

transfected with the 1B/(2)IRE DMT1-pSG5 expression plasmid

had increased levels of the DMT1 protein (Fig. 3A) (*p,0,01 vs

pSG5 control). When compared to control cells, the 1B/(2)IRE

DMT1 over-expressing cells exposed for 1 h to 100 mM ferrous

iron elicited a higher iron uptake. This was shown by t-XRF

analysis of the cellular iron content (Fig. 3B) (**p,0,005 vs pSG5

ferrous iron treatment). Moreover, the increase of iron uptake was

associated with a significant increase of cell death (Fig. 3C)

(***p,0,0005 vs pSG5 ferrous iron treatment).

Endogenous expression of 1B/(2)IRE DMT1 during OGD
promotes iron accumulation and cell death

To investigate the relevance of iron uptake in OGD-mediated

cell death, we measured iron levels by t-XRF in cells exposed to

8 hours OGD. The intracellular iron level appeared to be

increased in cellular extracts of differentiated human neuroblas-

toma cells exposed to 4 hours (data not shown) or 8 hours OGD

Figure 1. 1B/(2)IRE DMT1 isoform is up-regulated in neuronal ischemia. (A) Semi-quantitative RT-PCR of the expression of 1B/DMT1
(222 bp) or b actin (312 bp) in neuronal SK-N-SH cells exposed to 4 hours of OGD. Data from densitometric analyses are expressed after normalisation
of the cDNA in qRT-PCR for b actin. The 1B/DMT1 alternative transcript was significantly induced after 4 hours of OGD, with respect to controls. Bars
are means 6 s.e.m. of three separate experiments. *p,0.05 vs. relative control value. (B) Semi-quantitative RT-PCR of 1A/DMT1 (291 bp) in neuronal
SK-N-SH exposed to 4 hours of OGD. The 1A/DMT1 transcript was undetectable in neuronal SK-N-SH both in control or OGD-treated cells. As a
positive control, 1A/DMT1 transcript was amplified by semi-quantitative RT-PCR from the immortalised human urothelial cell line, URO-TSA. The
results were analysed against b-actin (312 bp) as an internal control. These data were evaluated in at least three separate experiments. (C)
Representative immunoblot of pan-DMT1 reactivity of nuclear and cytosolic extracts of differentiated human SK-N-SH cells exposed to 4 hours of
OGD. The reactivity of pan-DMT1 significantly increased after OGD in the nuclear fractions, where only the 1B/(2)IRE DMT1 isoform is localised, and in
the cytosolic extracts. (D) Densitometric analysis of pan-DMT1 reactivity was expressed as a ratio to relative nucleolin and b actin levels. Data are
means 6 s.e.m. of three separate experiments run in duplicate, ***p,0,001 and **p,0,01 vs. relative control values. (E) Neuronal SK-N-SH cells were
exposed to 4 hours of OGD, fixed and immunostained for (2)IRE DMT1. The OGD-induced (2)IRE DMT1 reactivity was significantly enhanced after
4 hours of OGD, both in the nucleus and in the cell body.
doi:10.1371/journal.pone.0038019.g001
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(Fig. 3D). The co-exposure to 100 mM DFO totally abolished the

iron uptake (Fig. 3E) (*p,0,05 vs.control; #p,0,05 vs. control

OGD). Moreover, cell death occurring in cultures exposed to

8 hours OGD and 15 hours of re-oxygenation, also appeared to

be dependent on iron uptake as it was prevented by contextual

application of 100 mM DFO (Fig. 3E) (###p,0.0001 vs. control;

***p,0.0001 vs. control OGD ).

We then investigated the effect of (2)IRE DMT1 silencing in

OGD-treated neuronal cells. DMT1 protein expression was

strongly reduced both in the nuclear fraction, where only the

1B/(2)IRE isoform is present, and in the cytosolic compartment

of cells treated with either the (2)IRE DMT1 siRNA1 or siRNA2

(Fig. 4A–D). (2)IRE DMT1 knockdown significantly decreased

intracellular iron levels in cultures treated with both siRNAs

compared to non-siRNA treated cells (Fig. 4E) (*p,0,05 vs non-

siRNA control). Furthermore, in the siRNA-treated cultures cell

death induced by 8 hours of OGD and 15 hours of reoxygenation

dramatically decreased (### p,0,005 siRNA1 vs. non-siRNA

OGD; *p,0,05 siRNA2 vs. non-siRNA OGD ) (Fig. 4F). These

findings demonstrate that both reduced intracellular iron accu-

mulation and upstream down-regulation of (2)IRE DMT1

expression can reduce OGD-mediated neuronal cell loss.

OGD induced RelA binding and H3 histone acetylation
on 1B/DMT1 promoter: effect of acetylated RelA at
Lys310 on 1B/DMT1 transactivation

Since DMT1 has been proposed to be a NF-kB target gene

[37,38], we investigated the relationship between its expression

and NF-kB activation during OGD. To establish the effect of

OGD on endogenous NF-kB/RelA interaction with 1B-DMT1

promoter and the associated histone acetylation, chromatin

immunoprecipitation analysis was performed using anti-RelA

and anti-acetylated histone H3 (H3K9/18ac) antibodies. Results

illustrated in Fig. 5A show that RelA binding to the NF-kB cis-

acting element on 1B-DMT1 promoter increased in cortical

neurons exposed to 3 hours OGD and 2 hours reoxygenation.

Concomitantly, the acetylation of H3 histone associated to 1B/

DMT1 promoter increased, in line with the increased expression

of 1B/DMT1 during OGD.

Similar experimental conditions were used to analyse the NF-

kB-dependent activation of a mouse 1B/DMT1 promoter-

luciferase construct (m1B/DMT1-pGL3) [38]. Experiments were

performed in mouse cortical neurons co-expressing plasmids

coding for wild-type RelA or RelA carrying a mutation from

lysine 310 to arginine (RelA-K310R) or the acetyl-mimic mutant

with glutamine substitution of Lysine310 (RelA-K310Q). Since

arginine has the same polar side chain and charge as lysine but

cannot be acetylated, RelA-K310R can be used as a molecular

determinant of hypo-acetylated RelA, while the glutamine residue,

with uncharged, polar side chain can reproduce lysine 310

acetylation [52]. We found that OGD significantly induced 1B/

DMT1 promoter activity in cells over-expressing the wild-type

RelA and the RelA-K310Q, but not in cells expressing the RelA-

K310R mutant plasmid (*, p,0,05 vs. relative control;

#,p,0,01vs. RelA OGD) (Fig. 5B). These results highlight that

NF-kB-mediated 1B/DMT1 transcription during OGD is depen-

dent on Lys310 acetylation of RelA.

Acetylation of RelA on Lys310 regulated DMT1 in
neuroblastoma cells exposed to OGD

We already showed that the vulnerability of neuronally

differentiated SK-N-SH cells to OGD depends on NF-kB/RelA

activation and acetylation at Lys310 [42,43]. The cultures were

transiently transfected with expression plasmids coding for wild-

type RelA, the hypo-acetylated mutant RelA-K310R or the hyper-

acetylated RelA-K310Q mutant. As previously reported [43],

expression of RelA did not modify per se the cell survival, but

Figure 2. 1B/(2)IRE DMT1 is up-regulated in ischemic cortices
of mice exposed to tMCAO. (A) Gene expression analysis of the
differentially spliced DMT1 isoforms by qRT-PCR in ischemic brain
cortices of mice exposed to 1 hour transient MCAO followed by 1 hour
reoxygenation compared with contralateral hemispheres (n = 3 per
group). 1B/DMT1 and (2)IRE isoforms were significantly induced after
MCAO. Values are expressed as fold change relative to 1A/DMT1
amplified in control (contralateral) hemisphere after normalization
against b-actin cycles. Error bars represent DCT means6s.e.m of two
independent experiments performed in triplicate, *p,0,05, **p,0,01.
(B) Representative image of pan-DMT1 immunoreactivity in nuclear and
cytosolic extracts from brain cortices of mice exposed to 20 min of
transient MCAO or from contralateral hemisphere (n = 3 per group).
Nuclear extracts were prepared 4 h after the end of the experimental
condition. The pan-DMT1 reactivity increased in brain extracts of mice
exposed to MCAO, both in the nuclear and in the cytosolic fractions. (C)
Densitometric analysis of pan-DMT1 reactivity. Values are expressed as
ratios relative to b-actin levels. Error bars represent means 6 s.e.m. of
three separate experiments, ***p,0.007 vs. corresponding control
values.
doi:10.1371/journal.pone.0038019.g002
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greatly enhanced the cell vulnerability to OGD when compared to

cells expressing the pSG5 empty vector. A similar cell death

enhancement was produced by the hyper-acetylated RelA-K310Q

mutant (Table 1). Conversely, the susceptibility of cultured cells to

OGD was abolished by the expression of the RelA-K310R, as

summarised in Table 1. Twenty-four hours after transfection, 1B/

(2)IRE DMT1 up-regulation was examined by immunoblot

analysis of nuclear extracts in cells exposed to OGD for 4 hours.

The nuclear translocation of RelA and its acetylation on Lys310

were also verified by immunoblot analysis for all of the constructs

tested (data not shown). In the cells over-expressing wild-type

RelA, OGD promoted a significant up-regulation of both the 60

and 90 kDa components of nuclear DMT1, known to correspond

to the 1B/(2)IRE isoform (Fig. 6A and B), as well as in cells over-

expressing RelA-K310Q mutant (data not shown) (***p,0,0001

vs relative control). On the contrary, expression of RelA-K310R

down-regulated the immature, partially glycosylated, 60 kDa

DMT1 isoform to a level lower than basal value and failed to

up-regulate the fully glycosylated 90 kDa DMT1 component

(Fig. 6A and B). This presumably is a result of the rapid metabolic

response of the endo H sensible-component [28], here associated

with the regulated expression.

In the same experimental conditions, Transferrin Receptor, the

other major receptor responsible for intracellular iron transport

known to be induced during the late phase of post-ischemic

reperfusion in the liver [53], was not involved in the early phase of

OGD (data not shown) and RelA activation. Immunoblot analysis

of the cytosolic extracts of neuronal cells transfected with wild-type

RelA or RelA-K310R showed no change in the relative TfR

component (Fig. 6C and D). Thus, the NTBI pathway through

DMT1 seems to play a major role in the model of ischemia-

associated neurodegeneration.

Figure 3. 1B/(2)IRE DMT1 up-regulation enhances iron uptake and iron-dependent cell death. (A) Over-expression experiments were
performed in differentiated SK-N-SH cells transfected for 24 hours with 1B-DMT1(2)IRE-pSG5 construct or pSG5 empty vector. Total cellular extracts
were then analyzed for panDMT1 immunoreactivity after transfection and showed significant up-regulation of protein content. Densitometric
analysis of pan-DMT1 immunoblots is expressed as ratio relative to GAPDH levels. Bars are the mean of three separate experiments. *p,0,01 vs pSG5
transfected cells. (B) The iron uptake induced by 1 hour exposure to 100 mM ferrous iron was higher in 1B/(2)IRE DMT1-pSG5 expressing cells than in
pSG5 transfected cells. Total cell extracts were analyzed for atomic iron absorption (t-XRF). Atomic iron levels were expressed against gallium values,
as an internal standard, and normalized to total protein concentration. Data, representing the mean6s.e.m. (percentage of control) of three
independent experiments performed in triplicate.**p,0.001 vs. FeII treated pSG5. (C) The neurotoxicity elicited by 100 mM ferrous iron was higher in
SK-N-SH cells over-expressing 1B/(2)IRE DMT1-pSG5 than in pSG5 expressing cells. Evaluation of neuronal injury was determined by LDH release
assay. Data represent the mean6s.e.m. of three independent experiments performed in triplicate. ***p,0,0005 vs. FeII pSG5. (D)The total iron level
significantly increased in neuronal SK-N-SH cells after 8 hours exposure to OGD. Data are means 6 s.e.m. (percentage of control) of three
independent experiments performed in triplicate. *p,0.05 vs. Control, #p,0,05 vs control OGD. (E) Cell survival was measured in neuronal SK-N-SH
cells exposed to 8 hours of OGD followed by 15 hours of reoxygenation. Treatment with 100 mM DFO was performed during OGD and reoxygenation
phase. Iron chelation with DFO significantly prevented OGD and reoxygenation-dependent cell death. Bars are mean6s.e.m. of three separate
experiments, performed in triplicate. ###p,0.0003 vs. control; ***p,0.0001 vs. OGD in untreated cells.
doi:10.1371/journal.pone.0038019.g003
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Discussion

Iron has a conserved role in evolution as a finely coordinated

iron and oxygen equilibrium is essential for aerobic cellular life.

Iron was selected in molecular evolution because it is critical for

oxygen transport, electron transfer and, in the central nervous

system, neurotransmitter biosynthesis [1]. A finely regulated iron

Figure 4. (2)IRE-DMT1 silencing decreases intracellular iron levels and prevents OGD neurotoxicity. Silencing experiments were
performed in neuronal SK-N-SH cells transfected for 24 hours with control non-siRNA and (2)IRE DMT1 siRNA1(A) or (2)IRE DMT1 siRNA2 (B). Pan-
DMT1 immunoreactivity was analysed 48 or 30 hours later in nuclear and cytosolic extracts and showed significant fewer (2)IRE DMT1 in siRNA-
treated cells. (C) Densitometric analysis of pan-DMT1 immunoblots relative to nucleolin levels is expressed as the percentage of 60 kDa DMT1 values
in Control non-siRNA treated cells. Bars are the mean6s.e.m. of three separate experiments. ***p,0.0001 and ###p,0.0001 vs. relative bands in
non-siRNA. Densitometric analysis relative to b actin levels is expressed as the percentage of 60 kDa DMT1 values in control non-siRNA treated cells.
Bars are mean6s.e.m. of three separate experiments. **p,0.005 and ###p,0.005 vs. relative non-siRNA controls. (D) Densitometric analysis relative
to b actin levels is expressed as the percentage of 60 kDa DMT1 values in both nuclear and cytosolic extracts of Control non-siRNA treated cells. Bars
are mean6s.e.m. of three separate experiments. *p,0.01 and **p,0.005 vs. relative non-siRNA controls. (E) Iron levels in neuronal SK-N-SH cells
transfected with non-siRNA and (2)IRE DMT1 siRNA1 or (2)IRE DMT1 siRNA2 at the same time of OGD exposure. Total extracts were analyzed for
atomic iron absorption (t-XRF). Data, representing mean6s.e.m. of three independent experiments performed in triplicate, are expressed as the
percentage of non-siRNA control values. *p,0.05 vs. non-siRNA control. (F) Neuroprotection in neuronal SK-N-SH cells transfected for 24 hours with
non-siRNA, (2)IRE DMT1 siRNA1 and (2)IRE DMT1 siRNA2. Cells were exposed to 8 hours of OGD and an additional 15 hours of reoxygenation.
Neuronal injury was found with an LDH release assay. Silencing of (2)IRE DMT1 with both siRNA1 and siRNA2 specific oligonucleotides significantly
prevented OGD-induced cell death. Data, representing mean6s.e.m. of three independent experiments performed in triplicate, are expressed as the
percent of relative control values; ***p,0.001 vs. non-siRNA control; ###p,0,005 DMT1-siRNA1 OGD vs. non-siRNA OGD; *p,0,05 DMT1-siRNA2
OGD vs. non-siRNA OGD .
doi:10.1371/journal.pone.0038019.g004
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homeostasis is crucial for most brain activity and conditions

affecting this equilibrium may cause neurological and cognitive

dysfunction [54,2]. However, despite the recognised importance of

iron delivery to the brain, the mechanisms responsible for cerebral

iron uptake and their regulation in the pathogenesis of ischemia

remains to be established.

This study analyses the role of DMT1, responsible for non

transferrin bound iron transport (NTBI), in cell-base and animal

models of post-ischemic neurodegeneration. Our main finding was

that 1B/(2)IRE DMT1 is a target gene for the Lys310-acetylated

form of RelA during brain ischemia. The neuronal cell death

induced by acetylation of RelA in brain ischemia was prevented by

DMT1 silencing and iron chelation. The involvement of NTBI

iron transport via DMT1 in neurodegenerative diseases has

already been highlighted by studies that showed increased levels of

iron and the DMT1 protein in SN dopaminergic neurons of both

PD patients and PD animal models [29]. These studies showed

that microcytic mice (mk/mk) and a Belgrade rat model carrying a

G185R mutation of DMT1, which impairs iron transport, were

more resistant to MPTP- and 6-hydroxydopamine-induced

neurotoxicity, respectively. This evidence shows that neurotoxin-

induced cell death is influenced by DMT1 iron transport and for

this reason modulation of iron overload through DMT1 could be a

new therapeutic strategy for PD treatment.

More recently, increased DMT1 expression, with consequent

increased iron content in the brain, was shown in a cerebral

ischemia rat model [55]. Pharmacological neuroprotection by

tanshinone IIA, previously reported to be a natural NF-kB

inhibitor [40], was associated with DMT1 down-regulation [13]. A

pivotal role of DMT1 in brain ischemia is evident, as DMT1 is a

proton co-transporter with an optimum ferrous iron uptake at

pH 5.5 [49], and the ischemia-associated extracellular acidosis

may very well contribute to exacerbated iron uptake via DMT1.

Analysis of 1B/ and 1A/DMT1 transcripts in SK-N-SH cells

revealed a selective expression of the 1B/DMT1 isoform that

significantly was up-regulated during OGD exposure. This agrees

with evidence that there is little 1A-DMT1 expression in the brain

and when there is, it is restricted to the kidney and duodenum

[25]. The up-regulation of 1B/(2)IRE DMT1 was evident even at

the protein level during OGD.

Using immunoblot analysis with the pan-DMT1 antibody, we

recognised two components with molecular masses of 60 and

90 kDa corresponding to the partially and fully glycosylated

mature forms of DMT1, respectively [28]. After OGD, we found a

specific increase of the protein in the nuclear compartment, where

only the 1B/(2)IRE DMT1 isoform has been reported to localise

[49,50,51]. A different reactivity was present in the cytosolic

fraction, where both (2)IRE and (+)IRE isoforms could contribute

to the single 90 kDa band detected here. The predominant

contribution of (2)IRE DMT1 in the early phase of OGD was

confirmed by immunocytochemical staining, using an antibody

selective for (2)IRE DMT1 isoform. After 4 hours of OGD, the

up-regulated (2)IRE protein displayed a nuclear and cytosolic

distribution. This does not exclude the involvement of the (+)IRE

isoform in the later phase of OGD. Indeed, immunocytochemistry

with the pan-DMT1 antibody at 4 hours of OGD did not show

the same relevant staining as the (2)IRE antibody, but displayed a

stronger reactivity in the whole cell after 10 hours of OGD, when

(2)IRE reactivity decreased (data not shown).

We then evaluated the changes of DMT1 expression in ischemic

cortices of mice subjected to transient MCAO compared to the

contralateral hemispheres. We found significant up-regulation of

the 1B/(2)IRE DMT1 mRNA, but not of 1A/DMT1 isoform.

Also, (+)IRE DMT1 expression appeared unchanged, possibly as a

consequence of its negative post-transcriptional regulation by iron

increase [25–27]. Along with 1B/(2)IRE DMT1 mRNA expres-

sion, 1B/(2)IRE DMT1 protein level raised in ischemic cortices.

The DMT1 nuclear and cytosolic reactivity seemed to be able to

be superimposed to that observed in the cellular model. This

would suggest that 1B/(2)IRE DMT1 can contribute to the

increase of cerebral iron content observed in mice models of brain

ischemia [13]. Indeed, increases in intracellular iron content and

cell death where detected along with the up-regulation of 1B/

(2)IRE DMT1 in cultures exposed to OGD as well as in cells

over-expressing 1B/(2)IRE DMT1 and exposed to ferrous iron.

The application of iron chelator DFO during the OGD and

reoxygenation phases, reduced both iron uptake and cell death, in

accordance with previous reports showing the ability of DFO to

suppress neuronal injury in experimental models of brain ischemia

and subarachnoid hemorrhage [14,56–60]. The DFO-induced

reduction of intracellular iron uptake during OGD confirms the

relevant role of iron chelation in the neuroprotection elicited by

DFO. A possible stabilization of HIF-1a protein, regulated via the

Figure 5. RelA activation of 1B/DMT1 promoter. (A) Chromatin Immunoprecipitation assay (ChIP) for mouse1B/DMT1 proximal promoter
region showed increased binding of RelA subunit and acetylation of promoter-associated histone H3(K9/18) in cortical neurons exposed to 3 hours
OGD, followed by 2 hours reoxygenation. Data are normalized against total chromatin DNA used for real time PCR reaction (Input) and IgG negative
control determined for each reaction, respect to control samples. (B) Primary cortical neurons at 10 DIV were co-transfected with a mouse DMT1
luciferase reporter plasmid (m1B/DMT1-pGL3) and wild-type RelA or RelA-K310R or RelA-K310Q plasmids for 24 hours. The relative luciferase activity,
normalized by Renilla luciferase, was measured after 3 hours of OGD. Wild-type RelA over-expression enhanced the OGD-induced DMT1 promoter
activity, as well as the acetyl-mimic RelA-K310Q construct, while RelA-K310R over-expression significantly inhibited it. Bars are means 6 s.e.m of three
experiments run in triplicate. *p,0.05, vs. relative Control; #p,0.05 vs. RelA OGD.
doi:10.1371/journal.pone.0038019.g005
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Fe2+- and O2-dependent enzyme prolyl hydroxylase (PDH), may

contribute to DFO neuroprotection [61].

To interfere with the upstream pathway of intracellular iron

transport, we performed (2)IRE DMT1 silencing. The increase of

intracellular iron levels and cell death after OGD were reduced in

siRNA treated cells, compared to non-siRNA treated controls.

These results further confirm that (2)IRE DMT1 up-regulation

and the subsequent increase of iron influx, greatly contributing to

the development of acute ischemic neurotoxicity. Consistent with

our results, previous findings showed that (2)IRE DMT1 silencing

protected cortical neurons from L-DOPA-mediated cell death

[31]. DMT1-dependent iron uptake and toxicity was specifically

addressed in a recent study of DMT1 over-expression in the

human neuroblastoma SH-SY-5Y stable cell lines, which demon-

strated significant enhancement of iron uptake and associated cell

death [62]. Furthermore, the up-regulation of (2)IRE DMT1, but

not (+)IRE, was shown to induce iron accumulation in MPP+-

treated MES23.5 dopaminergic cells [10,39,63] as a mechanism

downstream to NF-kB activation.

A recent study has demonstrated that during brain ischemia, the

aberrant activation of NF-kB p50/RelA driving the pro-apoptotic

transcription of the Bim gene, relies on both p50/RelA nuclear

translocation and RelA site-specific acetylation on Lys310 residue.

Molecular and pharmacological deacetylation of RelA-Lys310, the

latter mediated by the sirtuin-1 activator resveratrol, represses NF-

kB-dependent activation of the Bim promoter as well as neuronal

cell loss [43]. We therefore hypothesise that 1B/(2)IRE DMT1

up-regulation during OGD may depend on transactivation

mediated by acetyl-RelA Lys310. The over-expression of wild-

type RelA, as well as the acetyl-mimic construct RelA-K310Q,

increased the 1B/DMT1 promoter activity, while expression of

the acetylation-resistant RelA-K310R downregulated both. The

peculiar role of endogenous NF-kB/RelA in the activation of 1B/

DMT1 promoter through its proximal cis-acting element was

established by chromatin immunoprecipitation analysis in cortical

Figure 6. 1B/(2)IRE DMT1 mediates the NTBI iron transport during OGD through Lys310-acetylated RelA. (A) Pan-DMT1
immunoreactivity in nuclear extracts from neuronal SK-N-SH cells transfected with wild-type RelA or RelA-K310R plasmids for 24 hours and further
exposed to 4 hours of OGD. OGD produced a significant up-regulation of (2)IRE DMT1 protein in wild-type RelA overexpressing cells, with basal
levels of DMT1 analogous to the empty vector (pSG5) transfected cells. Expression of RelA-K310R down-regulated the immature, partially
glycosylated 60 kDa DMT1 isoform and failed to up-regulate the fully glycosylated 90 kDa DMT1 component. (B) Densitometric analysis of a
representative pan-DMT1 immunoblots relative to nucleolin levels. Data from densitometric analysis of anti-panDMT1 antibody are expressed as as
ratio relative to Nucleolin levels . Bars are the mean 6 s.e.m. of three separate experiments (***p,0,0001 vs corresponding control value). (C)
Immunoblot with anti-TfR antibody of cytosolic extracts from neuronal SK-N-SH cells transfected with wild-type RelA and RelA-K310R plasmids for
24 hours and exposed to 4 hours of OGD. The TfR protein level was not significantly modified in the early OGD phase in either RelA or RelA-K310R
overexpressing cells. (D) Data from densitometric analysis of anti-TfR antibody immunoblots are expressed as a ratio relative to b-actin levels. Bars are
means 6 s.e.m. of three separate experiments.
doi:10.1371/journal.pone.0038019.g006
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neurons exposed to OGD. The ischemic injury significantly

increased the endogenous NF-kB/RelA binding to the promoter

and the acetylation of the promoter-associated histone H3,

supporting for a mechanism of chromatin regulation responsible

for the RelA-dependent transactivation of 1B/DMT1. The same

mechanisms, however, did not affect the expression of the

transferrin receptor. The TfR was not responsive in early OGD

phases, even after RelA over-expression, agreeing with previous

reports linking TfR activation to the late phase of ischemia and

reperfusion [53].

In conclusion, this study shows that site-specific acetylation of

RelA at Lys310 switches on the NF-kB-mediated transcription of

1B/(2)IRE DMT1 during the early phase of brain ischemia.

Further studies will be addressed to establish whether 1B/(2)IRE

DMT1 may become a druggable target for treatment of post-

ischemic brain injury, likewise the Lys310-acetylated RelA [43].

Interfering with 1B/(2)IRE DMT1 function may be the strategy

of choice to selectively block the iron-dependent onset of

neurodegeneration without perturbing iron uptake mediated by

other mechanisms at the basis of the physiological aerobic

homeostasis.
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