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FOREWORD 
 

This PhD thesis is divided in seven sections: introduction, aim of the thesis, 

methods, results, discussion and conclusions, selected bibliography and 

annexes. 

The annexes include all the related material that has been published to 

international scientific journals before and during the PhD course. 
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1 
 
 

“Assumptions can be dangerous, especially in science. They usually start as the most 

plausible or comfortable interpretation of the available facts. But when their truth 

cannot be immediately tested and their flaws are not obvious, assumptions often 

graduate to articles of faith, and new observations are forced to fit them. Eventually, if 

the volume of troublesome information becomes unsustainable, the orthodoxy must 

collapse.” 

John S. Mattick 

 

AMYOTROPHIC LATERAL SCLEROSIS 

 

Amyotrophic Lateral Sclerosis (ALS) is an untreatable, fatal disease characterized by 

neurodegeneration involving primarily motor neurons in the motor cortex, brain 

stem and spinal cord (Maciotta et al., 2013). Increasing evidence indicates that non-

neuronal neighbouring cells contribute to pathogenesis and disease progression, 

although motor neurons are selectively affected by degeneration and death (Ilieva et 

al., 2009).  

Motor neuron degeneration results in progressive weakness of voluntary skeletal 

muscles of bulb, thorax, abdomen and limbs (Robberecht and Philips, 2013). 

Dysfunction of upper motor neurons (UMN) in the motor cortex leads to hyper-

reflexia, extensor plantar response and increased muscle tone while dysfunction of 

lower motor neurons (LMN) in the brainstem and spinal cord triggers generalized 

weakness, hypo-reflexia, muscle atrophy, muscle cramps and fasciculation (Rowland 

and Shneider, 2001).  

Limb involvement occurs more often than bulbar, which accounts for about 25% of 

ALS cases at clinical first examination. Limb symptoms in the majority of cases will 
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occur within 1-2 years. During the course of the disease, most cases become 

generalized with a combination of both LMN and UMN signs affecting spinal and 

brainstem regions. Patients with bulbar onset have typically slurred speech and 

difficulty in swallowing and the condition is designated progressive bulbar palsy 

(PBP) (Wijesekera and Leigh, 2009). 

Mild cognitive impairment has been described in 50% of cases, with a subset of 

patients (about 15%) showing characteristics of frontotemporal dementia (FTD), 

frontotemporal lobar degeneration (FTLD) and progressive social behavioural 

and/or language dysfunction (Ling et al., 2013). The disease has a consistent 

phenotypic heterogeneity and according to newer theories ALS could not be 

considered a single disorder since different disorders might share a common final 

phenotype (Simon et al., 2014). Moreover, several ALS-related genetic alterations are 

also common in FTD so that the two disorders have been considered as part of a 

continuum of the neurodegeneration process (Paez-Colasante et al., 2015).   

ALS patients’ death, due mainly to respiratory failure, occurs 2-4 years after onset, 

however a small group of patients may have disease duration of 10 years or even 

more.  

No objective test is capable of providing the diagnosis of ALS that remains essentially 

a clinical diagnosis based on clinical features, electrodiagnostic testing, and exclusion 

of conditions that can simulate ALS. The clinical diagnosis of ALS may be categorized 

into various levels of certainty by clinical and laboratory assessment based on El 

Escorial criteria (Brooks et al., 2000). The development of novel molecular tests to be 

employed in diagnosis and prognosis of disease is urgently needed to reduce the 

diagnostic delay and to evaluate the disease progression, in order to have the 

possibility of finding new therapeutic treatment for ALS (Hardiman et al., 2011). 

EPIDEMIOLOGY 

According to a recent critical review of the epidemiologic literature on ALS, in the 

European population the median (IQR) incidence rate (/100,000 population) was 

2.08 (1.47–2.43), corresponding to an estimated 15,355 (10,852–17,938) cases and 

the median (IQR) prevalence (/100,000 population) was 5.40 (4.06–7.89), or 39,863 
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(29,971–58,244) prevalent cases (Burgos et al., 2013). Four European population 

based registers showed an increase in the incidence of ALS after the age of 40, with a 

peak in the late sixties or early seventies, followed by a rapid decline. The lifetime 

risk of developing ALS has been estimated at 1:350 for males and 1:400 for females 

(Logroscino et al., 2008; Smith et al., 2013). Negative prognostic indicators, arising 

from population-based studies, include site of disease onset, older age of onset and 

progression rate of respiratory, bulbar and lower limb symptoms (Chiò A et al., 

2009). 

The majority of cases (90%) are classified as sporadic ALS (SALS), as they are not 

associated with a documented family history. In retrospective epidemiological studies 

in about 10% of patients the disease is reported to be inherited and referred to as 

familial ALS (FALS), most frequently with a Mendelian inheritance that have an 

autosomal dominant trait with high penetrance, although pedigrees with incomplete 

penetrance or recessive inheritance have been also reported (Rothstein, 2009).   

The mean age of onset for SALS is 56 years and for FALS is 46 years. Age of onset in 

FALS shows a Gaussian distribution, while SALS is characterized by an age-dependant 

incidence (Wijesekera and Leigh, 2009). The term juvenile ALS is used for patients 

with onset of disease prior to 25 (Ben Hamida et al., 1990). 

The SALS and FALS are clinically indistinguishable suggesting that common 

pathogenesis mechanisms and pathways in the development of disease exist. The 

precise cause of the selective death of motor neurons remains currently elusive even 

if the presence of various inclusion bodies in degenerating neurones and surrounding 

reactive astrocytes is an established hallmark of ALS (Barbeito et al., 2004). In 

particular, the ubiquitinated inclusions are the most specific type of inclusions and 

most commonly present in ALS. They have been found in LMNs of the spinal cord and 

brainstem (Matsumoto et al., 1993) and in UMNs (Sasaki and Maruyama, 1994). 

These inclusions usually form when an increase in protein misfolding exceeds the 

protein degradation capacity and thereby they alter the cellular proteostasis (Kaniuk 

and Brumell, 2010). The progresses in understanding the mechanisms underlying the 

FALS may shed light on the pathogenic mechanisms of ALS since the majority of 
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mutated genes in FALS are linked to formation of cellular aggregates (Bruijn et al., 

2004).  

ENVIRONMENTAL FACTORS 

Over the years a multitude of environmental exposure and lifestyle risk factors have 

been proposed as potential causes of ALS. The possible environmental factors 

evaluated include the intense physical activity, football, cigarette smoking, manual 

work, armed services and deployment, exposure to lead/solvents, pesticides and 

chemicals, heavy metal, electric shock, geographical clustering and cyanotoxins (Al-

Chalabi and Hardiman, 2013).  

For the moment unfortunately, no conclusive data are available and further studies 

are needed to define exogenous risk factors for ALS (Sutedja et al., 2009). An 

understanding of the environmental contribution to motor neuron disease is 

essential since this is the only easily modifiable component of risk, even in those 

patients with a strong family history or an identified genetic cause (Al-Chalabi and 

Hardiman, 2013). Interestingly, environmental exposures can result in heritable 

changes to genes, without altering the DNA sequence. This phenomenon is defined 

epigenetic and represents the most important point of convergence between genetic 

predisposition and environmental exposures (Paez-Colasante et al., 2015). 

GENETIC COMPONENTS  

The majority of ALS cases are sporadic but, more than twenty-five ALS-related genes 

and several additional chromosomal loci have been identified, providing fundamental 

insights into potential pathogenic disease mechanisms. At the moment, only for a 

subset of the ALS-major genes including open reading frame C9orf72, Superoxide 

dismutase-1 (SOD1), transactive response DNA-binding protein 43 (TARDBP), and 

fused in sarcoma translocated in liposarcoma (FUS) there is a wide consensus about 

causal role of disease. However, the exact pathogenic mechanisms of mutated forms 

have to be more clearly elucidated. The alterations on DNA sequences of these genes 

are currently analysed for genetic testing of both sporadic and familial cases, which 

are tested for VCP and ANG gene mutations in a subsequent step of diagnosis 

(Marangi and Traynor, 2015; Chiò et al., 2014).   
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The SOD1 gene encodes for an enzyme composed of 153 amino acids involved in free 

radical scavenging and it is the first ALS-related gene described in 1983. More than 

150 different mutations in SOD1 gene have been reported to be pathogenic in about 

20% of FALS cases and in 7% of sporadic patients. The thirty-year studies have only 

excluded the initial hypothesis that the SOD1 mutations resulted in an enzyme unable 

to neutralize reactive oxygen species. Currently hypotheses for the mechanism of 

SOD1 toxicity is that mutations cause a destabilization of secondary protein structure 

and promote protein oligomerization and aggregation. Several hypotheses have been 

proposed regarding the pathogenicity of SOD1 aggregates, including the perturbation 

of mitochondrial function, the alteration of axonal transport, the aberrant binding of 

apoptosis regulators, and the glutamate exocitotoxicity. Various lines of evidence 

suggest that the presence of SOD1 aggregates affects the capability of the cell to 

preserve the protein homeostasis (Battistini et al., 2012). 

The most common genetic cause of ALS and FTD is linked to chromosome region 

9p21 and this locus contains the open reading frame C9orf72, which encodes for the 

homonymous protein (C9orf72) founded in many regions of the brain, at the 

cytoplasmic level of the presynaptic terminal of neurons (Renton et al., 2011). The 

C9orf72 gene contains in the first intron a hexanucleotide repetition (GGGGCC) and its 

massive expansion is considered the pathological genetic hallmark of ALS and FTD. 

The massive hexanucleotide-repeat expansion is pathological over 30 repetitions, 

which can reach hundreds of copies in patients as well as in presintomatic carriers, is 

the most frequent genetic alteration inherited as autosomal dominant trait in 23-47% 

of FALS and 4-21% of SALS (Millecamps et al., 2012). The mechanism through which 

the C9orf72 triggers diseases is not completely clarified even if several evidences 

support the pathogenic hypothesis of alteration in RNA metabolism (Renton et al., 

2011). Indeed, in the brain and spinal cord of ALS patients has shown the presence of 

accumulations, organized into distinct foci of mutated mRNA (DeJesus-Hernandetz et 

al., 2011) and of simple peptide resulting from unconventional translation of the 

repeated transcripts. These peptides affect transcription and translation by 

interfering with both mRNA splicing and ribosomal RNA biogenesis (Kwon et al., 

2014). These hypotheses might suggest that hexanucleotide-repeat expansion leads 
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to neurodegeneration via gain of function mechanisms rather than loss of function 

(Sareen et al., 2013).   

A direct involvement into RNA processing pathways has been reported for TARDBP, 

coding for TDP-43 protein and for FUS, which encodes for RNA-binding protein 

FUS/TLS (FUS/TLS). Both TDP-43 and FUS/TLS belong to the heterogeneous nuclear 

ribonucleoprotein (hnRNP) family; they are located into the cell nucleus and 

cytoplasm and they are involved in gene transcription and post-transcriptional 

modification of the newly synthesized RNA  (Robberecht and Philips, 2013). 

Mutations in genes coding for TDP-43 and FUS/TLS have been reported in about 1-

5% of familial ALS cases and in a variable percentage of sporadic patients 

(Robberecht and Philips, 2013). The association between mutant TDP-43, FUS/TLS 

and RNA molecules lead to abnormal phosphorylation, ubiquitination and then to 

aggregation of the translational complexes into stress granules. Both these mutated 

proteins generate neuronal inclusions and dystrophic neurites, as well as glial 

cytoplasmic inclusions (Volontè et al., 2015). Notably, TDP-43 stress granules have 

been also reported in several non-mutated ALS patients corroborating the hypothesis 

that disruption of RNA processing proceeds independently from TARDBP mutations 

(Neumann et al., 2006). These intracellular aggregates mainly contain mRNA-binding 

proteins with several molecules of small RNAs as microRNAs (miRNAs) that are 

directly involved in the mRNAs translational repression. Moreover, both TDP-43 and 

FUS/TLS are directly implicated in miRNA biogenesis (Kawahara and Mieda-Sato, 

2012). 

The alteration of RNA processing pathways is a common pathway for several other 

ALS-related genes and it represents a central point of this thesis (Ferraiulo et al., 

2011). Various mutations have been reported in the gene coding for the Angiogenin 

(ANG) which belongs to the pancreatic ribonuclease superfamily (Greenway et al., 

2006), in the gene for senataxin (SETX), which contains a classical seven-motif 

domain characteristic for RNA/DNA helicases (Chen et al., 2004; van Blitterswijk and 

Landers, 2010), in the gene for TATA-binding protein associated factor 15 (TAF15), a 

protein involved in the initiation of transcription by RNA polymerase II (Couthouis et 

al., 2011) and in Ewing sarcoma breakpoint region 1 (EWSR1) which is a putative 

RNA binding protein (Couthouis et al., 2012). 
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EPIGENETIC IN ALS PATHOGENESIS 

Besides the genetic variations and environmental exposures, which are two aspects 

considered essentials in the research of pathogenic mechanisms of ALS up to now, it 

is also important to take into consideration a third element, which is known as 

epigenetic (Al-Chalabi et al., 2013).  

Epigenetics, from ἐπιγέννησις, could be defined as the study of heritable changes in 

gene expression which are not due to changes in DNA sequence but to structural 

adaptation of chromosomal regions or prolonged altered activity states (Eccleston et 

al., 2007; Bird, 2007). This definition includes two distinct points of view of 

epigenetic; the first one considers the methylation and histone modifications as the 

sole mechanisms able to maintain the epigenome excluding transcriptional effects of 

RNA interference (Riggs et al., 1996). The second one is more global and it includes 

the environmental factors as external elements, which play a key role during the 

development of diseases able to define the pathologic phenotype (Bird, 2007).  

The epigenetic mechanisms regulate gene expression and are critical for determining 

and maintaining cell fate during development. Indeed, every cell of the organism 

contains the same DNA and epigenetic mechanisms generate the differences by 

programming the cell to transcribe specific tissue genes. For instance, during the 

neuronal development, the cells express specific genes necessary to dendritogenesis 

and axon growing (neuronal-specific genes) which are inaccessible to transcription in 

muscle or liver cells by epigenetic marks. 

The behaviour, stress, diet, ageing and toxin exposures are just a few examples of the 

received and maintained environmental stimulus by DNA, chromatin remodelling and 

non-coding RNAs. The epigenetic mechanisms are the real potential convergence 

between genetic predisposition and environmental exposures that could explain how 

gene–gene and gene–environmental interactions are mediated. Moreover, the 

reversibility of epigenetic mechanisms is a pivotal characteristic that may play a 

central role for the future development of a therapy for ALS (Paez-Colasante et al., 

2015).  
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The discovery that several ALS genes are linked to RNA biology suggests that, besides 

the genetic and the environmental factors, the epigenetic mechanisms play a crucial 

role in the development and course of ALS (Al-Chalabi et al., 2013). Indeed, DNA 

methylation, histone remodelling, modifications in RNA metabolism, which are the 

main epigenetic mechanisms have been described as deregulated both in animal 

models and in ALS patients (Paez-Colasante et al., 2015). 
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Fig. 1. Chromatin structure components and general description of epigenetic mechanisms  

 
 
 

The picture reports in the left side the typical structure of mitotic chromosome with several mitotically 

retained TF Foci where the enzymatic activity is high. The smallest element of chromatin is the 

nucleosome, which is composed of eight units of histone proteins with 146bp of DNA twisted. On the 

right side there is a description of basic epigenetic mechanisms. The main epigenetic mechanisms 

operating on the nucleosome are DNA methylation, consisting in chemical modifications of DNA by 

addition or removal of methyl groups to the CpG island, and histone modifications consisting in 

acetylation/de-acetylation and methylation/de-methylation of histone protein. Histone acetylation or 

methylation can unwind the DNA, making it accessible to transcription of genes, which are usually 

inaccessible. Non-coding RNA molecules like microRNAs (miRNAs) are also involved in the regulation 

of the histone modifying enzymes activity as much as the nucleosome modifications can regulate the 

expression of miRNA genes (figure from “A Short Introduction to 

Epigenetics” from www.episona.com). 

. 
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PATHOGENIC HYPOTHESES 

The pathogenesis of ALS is not clear, and the exact mechanisms, which lead to motor 

neurons death, are currently unknown. However, several recent findings from genetic 

of ALS, for instance, the identification of TDP-43 and FUS mutations and, particularly, 

the hexanucleotide expansion on C9orf72 provided notable information to change our 

thinking of the disease pathogenesis. Moreover, the subsequent studies, conducted in 

order to get a better insight of ALS mechanisms associated with genetic alterations, 

induced researchers to consider the disease as proteinopathy or ribonucleopathy 

(Robberecht and Philips, 2013). 

In the case of protheinopathy, the motor neuron damage is considered a consequence 

of abnormal protein formations and their oligomeric complexes that disturb the 

normal protein homeostasis resulting in cellular stress (Saxena and Caroni, 2011). 

The altered proteostasis networks have been related to the formation of protein 

aggregations of mutant SOD1, valosin-containing protein (VCP), ubiquilin 2 

(UBQLN2), charged multivesicular body protein 2b (CHMP2B), optineurin (OPTN) 

and, potentially TDP43 and FUS (Robberecht and Philips, 2013).  

In the case of ribonucleopathy, the neuron injuries are considered related to 

aggregates of RNA molecules and RNA-binding proteins that alter the cellular 

mechanisms involving in RNA metabolism (Robberecht and Philips, 2013). In both 

cases, beyond the origins of these dysfunctions that could be multifactorial, through 

loss of function and gain of function mechanisms, the subsequent changes determine 

progressive cellular failures in protein degradation mechanisms and alterations of 

RNA processing, leading to aggregate and toxic RNA species formations. 

Various cellular function interferences were described after these events at nucleus, 

cytoplasm and axonal level.  

In nucleus disturbance of normal RNA metabolism from splicing alterations to RNA 

biogenesis has been widely described.  

In cytoplasm of neurons several interferences with normal organelle activities have 

been reported such as proteasomal or autophagic protein degradation, endoplasmic 
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reticulum (ER) stress and Golgi and mitochondrial dysfunctions. The damages at 

mitochondrial levels determine morphology and functions alterations, and 

membrane permeability dysfunctions that lead to elevated calcium levels and 

decrease the activity of respiratory chain complexes I and IV implicating defective 

energy metabolism. The augmented concentration of calcium in the cell induces the 

activity of several enzymes that generate toxic Reactive Oxygen Species (ROS) 

(Ferraiuolo et al., 2011). The ROS cause stable oxidative damage to major cellular 

components such as proteins, DNA, lipids, and cell membranes (Bogdanov et al., 

2000; Girotti, 1998; Shaw et al., 1995). High levels of ROS have been detected in the 

cerebrospinal fluid and in the spinal cord of SALS patients (Tohgi et al., 1999).  

At the axonal level, protein and RNA aggregations and the subsequent impairment of 

axonal transport represent another widely studied pathogenic hypothesis for the ALS. 

Both the protein and RNA/RNA-binding proteins aggregates, which have been 

frequently found in spinal motor neurons of all types FALS and SALS patients, disturb 

normal protein homeostasis inducing cellular stress (Bendotti et al., 2012). These 

aggregates usually contain several different ubiquitinated proteins with a well-known 

intrinsic tendency to aggregate (SOD1, TDP43, FUS, and OPTN). Interestingly, FUS 

and TDP43 ALS-associated mutations enhance the rate of aggregation of these 

proteins (Johnson et al., 2009; Sun et al., 2011). Protein and RNA/RNA-binding 

proteins aggregates result particularly toxic for motor neurons since they could trap 

proteins with important cellular functions and could cause the cytoskeletal 

disarrangement and axonal transport dysfunction with consequent mechanical 

impedance. 

Other neurodegenerative mechanisms associated with ALS are the activation of 

neuroinflammation and excitotoxicity. These mechanisms involve non-neuronal cells 

including microglial cells, astrocytes and oligodendrocytes. 

Although motor neurons are the main impaired cells in ALS pathogenesis, extensive 

evidences suggest that non-neuronal cells and inflammatory dysfunction play a 

pivotal role to the disease progression. Glial cells, oligodendrocytes, astrocytes and 

microglia play an important role in the ALS pathology onset and disease progression 

(Lee et al., 2012; Ilieva et al., 2009), initiating the process known as 
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neuroinflammation. Indeed, if in the one hand this process if protects the neurons 

through the modulation of the helpful inflammatory response slowing disease 

progression (Beers et al., 2011) on the other hand the constant inflammation activity 

becomes toxic for the neural tissue.  

The first theory proposed for motor neurons degeneration in ALS based on the 

evidence that increased levels of glutamate were observed in the cerebrospinal fluid 

of patients was glutamate excitotoxicity (Rothstein et al., 1992). Excitotoxicity is the 

neuronal injury caused by the excess of glutamate, which induces the stimulation of 

the postsynaptic glutamate receptors. The augmented stimulation leads to a massive 

calcium influx in the cell that increases the nitric oxide formation and subsequent 

neuronal death (Shaw, 2005). An association between motor neurons degeneration in 

ALS and the loss of function of the astroglial glutamate transporter EAAT2 has been 

described as secondary effect rather than a primary one in ALS onset (Bendotti et al., 

2001). All these cellular physiologic dysfunctions are summarized in Fig 1.  

Although essential issues remain unsolved the progresse in our understanding of 

mechanisms leading to the selective motor neuron death in ALS has been substantial. 

Even if mutant proteins associated with FALS are expressed ubiquitously, the reason 

why the motor neurons are more susceptible to the their pathogenic effects is 

unsolved. Which are the factors that cause the vulnerability of motor neurons in 

SALS? When does the disease biologically start in human beings? Why do mutant 

proteins, which are present in individuals’ life from the beginning of their existence, 

cause a disease after several decades? And why is ALS fatal within a couple of years? 

These are all aspects that have to be necessarily clarified. Moreover, better insights 

about the biology of motor neuron degeneration in ALS could open a window toward 

new treatments that make a substantial difference for patients (Robberecht and 

Philips, 2013). 
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Fig. 2. Overview of events involved in the pathogenesis of Amyotrophic Lateral Sclerosis 

 

 
In the picture the main primary pathogenic changes occurring in ALS are reported and for each one the 

ALS-liked mutated genes are listed.  

Theorizing ALS as a proteinopathy, alteration of proteasomal/autophagic protein degradation has been 

observed in association with the formation of protein aggregates of mutated superoxide dismutase 1 

(Sod1), valosin-containing protein (VCP), ubiquilin 2 (UBQLN2), charged multivesicular body protein 

2b (CHMP2B), optineurin (OPTN) and, potentially, TAR DNA-binding protein 43 (TDP43) and RNA-

binding protein FUS (FUS).  

Theorizing ALS as ribonucleopathy, disturbance of normal RNA metabolism and processing that 

produces erroneously assembled proteins and toxic RNA species have been observed in association 

with mutated TARDBP and FUS and expanded C9orf72. Some ALS-causing mutant proteins may act 

more downstream in this model, e.g. profilin 1 and neurofilament heavy chain (NFH) through a direct 

effect on the cytoskeleton and D-amino-acid oxidase may affect excitotoxicity. Axonal attraction 

systems and repellent systems appear to modify the processes of axonal retraction and denervation 

(figure from Robberecht and Philips, 2013). 
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2 

MIRNAS: NEUROLOGICAL FUNCTIONS AND BIOGENESIS 

  

One of the most shocking insights from the “Human Genome Project (HGP)” was that, 

even though the biggest part of human genome is transcribed into RNA molecules, 

only 2% of the 3,234.83 Mb is translated into proteins. The consistent part of non-

coding RNAs (ncRNA) is often defined the “dark matter of cells” and it appears to be 

biologically active in regulation of gene expression. The microRNA (miRNA) 

molecules constitute the most important class of nc-RNA (Goodall et al., 2013). 

The recent discovery and characterization of miRNAs changed completely the dogma 

of molecular biology, introducing an additional and critical level of gene regulation 

defining a new epigenetic mechanism (Clancy, 2008). MiRNAs are short ncRNA of 18-

25 nucleotides (nt) in length, central to the epigenetic processes, playing an 

important role as endogenous regulators of gene expression. Interestingly, the same 

miRNA may regulate hundreds of target mRNAs and thus may affect gene expression 

networks.  

The number of miRNAs that have been reported in animals, plants and viruses until 

now is almost 16,000. More than 1,000 different miRNA molecules belong to humans 

and at least 20-30% of all protein-coding genes are likely controlled by miRNAs. For 

this reason, miRNAs can be considered as fine epigenetic regulators of mRNA 

transcription (Volontè et al., 2015). 

In mammals, the central nervous system is a rich source of miRNAs that are essential 

during the brain development and in the regulation of physiology of brain. Indeed, 

miRNAs play a pivotal role in several brain functions such as morphogenesis, 

neurogenesis, neuronal differentiation, dendritic spine generation, synaptic 

formation and plasticity (Kosik, 2006).  Furthermore, profound changes in miRNA 

expression at the brain level were observed in several pathological conditions both 

during acute and chronic illnesses (Volontè et al., 2015).  
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In particular, the dysfunction of miRNA expression in neurodegenerative diseases is 

increasing recognized in Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s 

diseases (HD), multiple sclerosis (MS), Rett syndrome, Fragile X and Tourette’s 

syndromes as well as in neuropsychiatric disorders, epileptic seizures, traumatic 

spinal cord and brain injuries, brain cancer and ischemia, so much so that the number 

of miRNA-researches in ALS is increasing (Volontè et al., 2015). 

Emerging evidence reveals that miRNA deregulation is deeply involved in ALS 

pathogenesis (Goodall et al., 2013) and many recent research efforts have 

investigated the function and the effects of miRNAs deregulation to motor neuron 

death (Droppelmann et al., 2014). 

MIRNAS BIOGENESIS 

The biogenesis of miRNAs takes place in nucleus (first step) and subsequently in 

cytoplasm (second step). A canonical and a non-canonical pathway were described in 

miRNA production. However, in this thesis only the canonical miRNA pathway has 

been taken into consideration. 

At nucleus level the first premature miRNA molecules are mainly synthesized by the 

RNA polymerase II (pol II) and partly by RNA polymerase III (pol III). These long 

primary miRNA transcripts (pri-miRNAs) are produced from genes of miRNA 

localized in intergenic, intronic and exonic regions. Several transcription factors and 

epigenetic regulators control specifically the gene expression of particular miRNA 

clusters. The p53, MYC and MYOD1 are examples of transcription factors that 

transactivate the gene expression of miR-34, miR-17 and miR-1 clusters respectively; 

while MYC, ZEB1, and ZEB2 regulate negatively the transcription of miR-15 and miR-

200 clusters respectively. The DNA methylation and histone modification also 

contribute to miRNA gene expression (Ha and Kim, 2014). 

The pri-miRNA molecules are substrates of the microprocessor, which is a protein 

complex containing the ribonuclease III Drosha and DGCR8. The microprocessor 

complex produces the stem loop precursor miRNAs (pre-miRNAs), which is a 

molecule of 70 nt in length (Gregory et al., 2004). The phosphorilation, acetylation 

and deacetylation of Drosha and DGCR8 have been recently observed as regulatory 
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post-transcriptional modifications taking part to the miRNA biogenesis. Moreover, 

several RNA-binding proteins were described as auxiliary factors controlling Drosha 

processing. The TDP-43 and FUS with p68, p72, KH-type splicing regulatory protein 

(KSRP) are only few examples of RNA-binding proteins interacting with Drosha and 

providing the stabilization and regulation of Drosha processing. Interestingly, several 

specific miRNAs were described as regulatory molecules of Drosha activity since they 

cooperate with RNA-binding proteins. The KSRP binds the terminal loop of let-7, 

miR21 and miR16 facilitating Drosha mediated-processing. On the contrary LIN28 

binding the terminal loop of let-7 inhibits Drosha and Dicer mediated processing. 

Finally ADAR1 and ADAR2 editing from inosine to adenosine of certain miRNAs, like 

miR-142, interferes with Drosha processing (Ha and Kim, 2014). 

The Exportin5 ships the pre-miRNA molecules to the cytoplasm. This protein is 

encoded by the XPO5 gene and is part of a large family of karyopherins that mediate 

the transport of double-stranded RNA binding proteins from nucleus to cytoplasm 

(Brownawell and Macara, 2002). Thus, the pre-miRNAs are cleaved into 22 nt double 

stranded mature miRNAs (ds-miRNAs) by endoribonuclease Dicer that interacts 

directly with TDP-43. Several post-transcriptional modifications on TDP-43 influence 

the ability of this RNA-binding protein to regulate Dicer processing. Interestingly, it 

has been recently observed that let-7 is able to bind the mRNA of Dicer determining a 

negative feedback loop between Dicer and let-7 itself (Tokumaru et al., 2008).  

Next, the ds-miRNAs are assembled into Argonaut protein (AGO), the most important 

component of RNA-induced silencing complexes (RISC) (Lieberman et al., 2003; 

Newman and Hammond, 2010). Four isoforms of AGO able to incorporate miRNA 

duplexes with preferences for these with central mismatches exist in humans 

(nucleotide from 8-11). From each single precursor, only one of the duplex strands 

will be functionally activated into AGO that directly provides double strand 

separation and guide/passenger strand’s selection (Matranga et al., 2005). The rules 

for selection of guide strands from ds-miRNAs takes into consideration the 

thermodynamic instability of 5’terminus and the presence of a U at nucleotide in 

position 1 (Ha and Kim, 2014). 
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The single strand of miRNA guides the RISC complex in searching for miRNA 

response elements (MREs) mainly localized into the 3’-untranslated region (3’UTR) of 

the target mRNA to control gene expression. The AGO protein catalyses target mRNA 

cleavage and the following degradation of miRNAs, although translational repression 

is the most prevalent mechanism of action for miRNAs in humans (Liu et al., 2004).  

Via base pairs recognition, miRNAs generated by both canonical and non-canonical 

pathways, negatively regulate the mRNA targets translation in two different ways 

depending on the grade of complementarity between MREs and mRNAs: the complete 

complementarity represses the translation, whereas the partial complementarity 

blocks the translation (Iorio and Croce, 2012). 

Recently, the advanced RNA sequencing techniques have lead to the discovery that 

many miRNAs are generated via alternative mechanisms, bypassing the usual 

Drosha/Dicer two-step processing (Miyoshi et al., 2010). In the non-canonical 

pathway, better known as mirtron pathway, miRNAs biogenesis does not require 

either Drosha or Dicer processing and pre-miRNAs are directly loaded onto AGO2. 

The non-canonical pathway is usually associated with miRNAs or miRNA-like small 

RNAs assembly (Paez-Colasante et al., 2015). 

A different expression of miRNAs between tissues or body fluids from patients and 

controls and from several experimental models has been observed in the majority of 

neurodegenerative diseases. Although the implications of miRNAs deregulation have 

not been completely elucidated in neurodegeneration, the dysfunction of miRNA 

biogenesis components examined in various experimental models of ALS and motor 

neurons has been reported to have severe consequences (Paez-Colasante et al., 

2015).  
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Fig. 3. Principal events in miRNA biogenesis 

 

 

 
 
 
 
 
 
 
 
 
In the picture the canonical pathway of miRNA biogenesis is reported. Primary miRNA transcripts (pri-

miRs) are transcribed from miRNA genes by RNA polymerase II. Pri-miRs are subsequently cleaved by 

DROSHA with Drosha complex and 70-nt stem loop precursor miRNAs (pre-miRNAs) are 

generated. After pre-miRNAs are exported from the nucleus to the cytoplasm by Exportin5, DICER1 

processes them and generates 22-nt mature molecules of miRNAs. The double-strand mature miRNAs 

(ds-miRNAs) is separated and the guide strand is subsequently loaded into the RISC complex, which 

contains the AGO family protein as a core component.  

In the nucleus miRNA molecules regulate gene transcription interacting with transcriptional factors at 

gene promoter level. In the cytoplasm, mature miRNAs with RISC complex repress the mRNA 

translation binding the target mRNA, via base pairs recognition. Several miRNAs are also secreted to 

extracellular space in free form or packaged into lipid vesicles called exosomes, which seem involved 

in cell-to-cell communication (figure from Schwarzenbach et al., 2014). 
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3 

DEREGULATED MIRNAS IN ALS  

 

MIRNAS AND ALS-RELATED GENES 

To better understand the function of miRNAs in motor neurons survival several 

studies were performed by disrupting the main components of miRNA apparatus. The 

essential role of miRNAs in motor neuron degeneration was uncovered by the 

depletion of Dicer1 in experimental model that triggered the loss of the capacity to 

produce mature miRNAs. The Dicer1 knockdown animal model employed in the 

study (MNDicermut) developed progressive locomotors defects and denervation 

muscle atrophy (Haramati et al., 2010).  

Subsequent studies focused on the ALS-associated proteins TDP-43 and FUS. The 

TDP-43 was described as a component of the nuclear microprocessor (Drosha and a 

larger complex of 17 polypeptides including TDP-43 and FUS as well) (Gregory et al., 

2004) and a binding protein of Dicer and AGO. Interestingly, recent studies reported 

that TDP-43 was able to bind a subset of miRNAs in nucleus and cytoplasm 

(Kawahara and Mieda-Sato, 2012). Indeed, the loss of TDP-43 by its depletion 

affected in vitro the production of a specific subset of miRNAs mainly implicated in 

neuromuscular development (Buratti et al., 2010). Finally, it has been recently found 

that mutated TDP-43 aggregates into stress granules at cytoplasm level and 

sequesters the specific clusters of miRNAs inhibiting thus the negative regulatory 

function on nascent mRNAs (Honda et al, 2013).  

The miR132-5p and 3p, miR143-5p and 3p, miR574-5p and 3p, miR558-3p miR663a 

and let-7b constituted the peculiar cluster of TDP-43 binding miRNAs (Kawahara and 

Mieda-Sato 2012; Buratti et al., 2010). This cluster of molecules were further 

analysed in serum and CSF from sporadic ALS patients. The expression levels of five 

out of nine TDP-43 binding miRNAs were altered in the CSF and serum. In particular, 

miR132-5p and 3p, miR143-5p and 3p were significantly deregulated both in serum 
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and in CSF, while miR574-5p and let-7b were reciprocally deregulated in CSF and 

serum (Freischmidt et al., 2013). Interestingly, the majority of miRNAs were 

upregulated in serum samples while miR132-5p and miR558-3p were 2–3 times 

more abundant in CSF, indicating that changes in one type of samples did not 

necessarily reflect miRNA levels in the other samples (Freischmidt et al., 2013). In 

lymphoblast cell lines from familial ALS patients, the levels of TDP-43 deregulated 

miRNAs have been subsequently measured and specific suppression of miR132-

5p/3p, miR143-5p/3p was evident in all patients except for those with SOD1 

mutations. The miR663a was exclusively deregulated in patients with FUS mutations 

while let7-b resulted deregulated both in those with C9orf72 expansion or FUS 

mutations (Freischmidt et al., 2013).  

Similarly to TDP-43, the ALS-associated protein FUS was described as a component of 

the microprocessor (Gregory et al., 2004). The mutated FUS was observed in 

aggregates in the cytoplasmic stress granules of neuronal cells (Kwiatkowski et al., 

2009; Vance et al., 2009). The FUS downregulation was studied in cellular models in 

which a significant reduction of a specific class of molecules involved in various 

neuronal functions from differentiation to synaptogenesis was observed (miR-9, 

miR125-b, miR132 and miR143) (Morlando et al., 2012). 

The global loss of miRNAs networks and specific miRNAs clusters due to biogenesis 

defects leads to consistent progressive cellular failures that were also observed in 

several studies conducted by deregulating clusters or single miRNAs. Progressive 

cellular failures at the axonal and neuromuscular junction levels and an increased in 

the susceptibility to excitotoxicity and neuroinflammation were reported in these 

works and briefly summarized in subsequent paragraphs. 

MIRNA DEREGULATION AND NEUROFILAMENT  

A valid biomarker of the ALS disease has to reflect the status of damaged tissue or 

cells and the most promising molecular biomarker for ALS has currently been 

represented by neurofilaments, which constitute the neuronal cytoskeleton and 

provide the structural support to the axon. Recent studies reported a significant 

increase in NF-L (neurofilaments-light-chain) and pNF-H (phosphorilated-
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neurophilament-heavy-chain) in both serum and CSF from ALS patients (Weydt et al., 

2015; Steinacker et al., 2015). The increase in human biofluid of these intracellular 

proteins reflects the neuronal damage in ALS associated with deregulation of 

neuronal proteins and it seems to be really specific for motor neurons that have 

particularly developed axons. 

A possible explanation of the significant increase in neurofilaments in ALS could be 

found in miR-9 downregulation that was reported in induced pluripotent stem cells 

(iPSC)-derived from neurons of FTD/ALS patients with mutated TDP-43 (Zhang et al., 

2013). In silico analysis revealed that miR-9 has one and nine binding sites (MREs) in 

the 3’UTR of NF-L and NF-H respectively (Haramati et al., 2010). Thus, direct 

inhibition of NF-H gene expression by miR-9 was confirmed in cellular model and, 

even if no luciferase assay was performed to validate the result, it is possible to 

hypothesize that the increase in neurofilaments levels in motor neuron degeneration 

could be linked to the loss of miR-9 (Haramati et al., 2010).  

Interestingly, the most important study of miRNAs deregulation in human spinal 

biopsies from ALS patients identified a set of specific miRNAs that directly controls 

neurofilaments gene expression. An overall downregulation of miRNAs in patients 

compared to controls was reported for miR146a*, 524-5p, 582-3p, b1336 and b2404 

(Campos-Melo et al., 2013). All the miRNAs presented MREs in mRNA of NF-L at the 

3’UTR. In particular, a significant downregulation of miRb-1336 and miRb-2404, that 

usually stabilizes NF-L, was reported. The two-downregulated miRNAs were 

validated and a consequent reduction of translation of NF-L mRNA followed by 

neuromuscular junction pathology was observed (Ishtiaq et al., 2014).  

These results demonstrate that the neurofilaments gene expression is finely 

regulated at posttranscriptional level by a cluster of specific miRNA molecules 

furnishing a direct, not necessary causal link with the increase of neurofilaments 

levels in human biopsies and CSF (Volontè et al., 2015).  

MIRNA DEREGULATION AND INCREASED SUSCEPTIBILITY TO EXCITOTOXICITY  

An intense activity of cell-to-cell communication was observed in the motor neuronal 

microenvironment (Raposo and Stoorvogel, 2013). In particular, the damaged motor 
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neurons release miRNA and mRNA molecules outside the cells in the form of 

intercellular messages after they are packaged into small membrane vesicles called 

exosomes. Experimental evidences reported the presence of specific miRNAs into 

exosomes released by neurons and picked up by astrocytes that modulate the 

glutamate path by internalized RNA molecules (Morel et al., 2013). 

Both in ALS patients and in the spinal cord biopsies from SOD1 mouse model a 

decrease in the levels of glutamate transporter 1 (GLT1) coded by excitatory amino 

acid transporter 2 (EAAT2) gene was described (Robberecth and Philips 2013). This 

reduction of EAAT2 expression has been recently associated with the identification of 

miR124a. This specific miRNA is normally released by neurons into exosomes and 

taken up by astrocytes to reduce the toxic effects of glutamate. Indeed, the EAAT2 

gene expression increased indirectly inside the astrocytes thanks to the miR124a. 

This specific miRNA is likely to down regulate the expression of inhibitors of 

transcription of EAAT2. Moreover, the in vivo injections of synthetic miR124a, into 

spinal cord of SOD1 mouse models, lead to an increase by 30% in the EAAT2 

expression. Thus, as this work described, the upregulation of miR124a is indirectly 

linked to the upregulation of GLT1 resulting in a protection of neurons against the 

toxic effect of glutamate (Morel et al., 2013).  

MIRNA DEREGULATION AND NEUROINFLAMMATION 

Microglial cells are other important cellular components of motor neuronal 

microenvironment.  These cells produce and release higher levels of inflammatory 

cytokines and specific miRNAs including miR29, miR133a, miR155, miR221, miR223 

or miR652, all having a well-known functional role in inflammation (Roy et al., 2015). 

Indeed, in the context of ALS pathogenesis and disease progression a pivotal role is 

played by cells of the immune system resident in the brain such as activated 

microglial cells and T-cells activated.  

A specific miRNA signature was identified in a study that consisted in miRNA 

profiling conducted in CD14+CD16- monocytes from blood samples of ALS patients 

and in microglia and LY6Chi monocytes from mutant SOD1 mice. The cluster of 

deregulated miRNAs reported in the study revealed a unique inflammatory miRNA 
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signature that included miR27a, 155, 146a and miR32-3p for human and murine 

monocytes, and let7, miR15-b, 16, 132, 146a, 155, 451 and miR223 only for murine 

monocytes (Butovsky et al., 2012).  

It is known that in inflammatory response a key role is played by TGF1-β cytokine 

since it appears to block the activation of lymphocytes and monocytes. The miR21 

and 106b, that target TGF1-β, resulted upregulated in blood of ALS patients 

(Butovsky et al., 2012). Similarly, miR155 that promotes macrophage inflammatory 

response and increase pro-inflammatory cytokine levels inhibiting TGF1-β 

production was reported as upregulated (Koval et al., 2013).  

Another study has been recently conducted to characterize the functional 

connections among miRNAs and targets deregulation in the context of ALS-

neuroinflammation. In order to achieve this objective, activated microglia from brain 

tissue of SOD1 mice were employed as in vitro model. The upregulation of miR22, 

miR125b, miR146b and miR365 was reported. Among the deregulated miRNAs, 

enormous interest was raised by miR365 and miR125b since they target IL-6 and the 

signal transducer and activator of transcription 3 (STAT3) respectively. The 

downregulation of the IL-6 and STAT3 pathways favoured proinflammatory signal by 

determining an increase in the tumour necrosis factor (TNF). Interestingly, the 

increasing of TNF supports reciprocally the upregulation of miR125b and establishes 

a kind of vicious cycle that is likely to culminate in abnormal TNF release. This result 

suggests that the deregulation of miR365 and miR125b could directly influence the 

pathologic-inflammatory signature of cytokine in ALS (Parisi et al., 2013).  

MIRNA DEREGULATION AND MUSCLE DENERVATION 

In the perspective to better insight the changes on miRNA profiling in consequence of 

denervation, typical figure of ALS at neuromuscular junction, a comparison between 

normal and denervated tissue from animal model was performed. Moreover, the 

bidirectional signalling between neurons and skeletal muscle fibers was studied and 

the obtained results were confirmed in skeletal muscle biopsies from ALS patients.  

In muscle biopsies from lower limbs of SOD1 mice model and normal adult mice the 

miRNA profiling analysis revealed a significant upregulation of miR206. This is a 
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muscle specific miRNA with a pivotal role in miofibers development and plasticity 

(McCarthy, 2008). Subsequent studies, conducted in a mouse model deficient for 

miR206-/-, revealed that miR206 genetic ablation did not alter the formation of 

neuromuscular synapses during development. However, deficiency of miR206 in the 

SOD1 mice accelerated the disease progression, most probably because the muscular 

miRNA plays a key role in the nerve-muscle communication and for this reason it is 

essential in the re-innervation process arousing after nerve damage. Subsequent 

molecular experiments reported that miR206 was necessary for the correct 

regeneration of neuromuscular synapses after acute nerve injury and mediated its 

effects at least in part through the histone deacetylase 4 (HADAC4) and fibroblast 

growth factor (FGF) signalling pathways (Williams et al., 2009).  

Another study of miRNA expression conducted in human skeletal muscle biopsies and 

comparing ALS patients and healthy controls confirmed a significant increase in 

miR206 and revealed the contemporary upregulation of a miRNAs 23a, 29b and 455. 

Among these, miR23a resulted particularly interesting since it represses the 

translation in a 3’UTR dependent manner of the suppressor of the activity of 

peroxisome-proliferator activated receptor-g co-cactivator (PGC)-1alpha. This 

protein, indeed, has been described as directly involved in mitochondrial biogenesis 

and function as well as in the increment of several miRNAs potentially implicated in 

skeletal muscle and neuromuscular junction regeneration (Russell et al., 2013).  
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Fig. 4 miRNAs and their targets deregulated in ALS  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neuronal damages in ALS have been usually associated with deregulation of neuronal proteostasis, 

release of toxic molecules from glial cells and dysfunctions of neuromuscular junction. In motor 

neurons, the down regulation of NFL has been described in association with the deregulation of five 

miRNA (up-regulated in red, down regulated in blue). To avoid toxic glutamate release, neurons 

secrete vesicles containing miR124a, which is uptakes by astrocytes and indirectly enhances GLT1 

levels. During pathological conditions miR124a and GLT1 down regulation in astrocytes have been 

observed with consequent glutamate toxicity. In addition, in the neuroinflammation context, microglia 

produce higher levels of inflammatory TNFa, trough indirect targeting of increased miR125b and 

miR365. In muscle cells, miR206 has been observed up regulated in response to neuromuscular 

junction damage and acts through HDAC4 suppression to cells regeneration. On the contrary, miR23a 

up-regulation inhibits PGC1alpha with impairment of mitochondrial function in muscle and damage 

escalation (figure from Volontè et al., 2015). 
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4 

MIRNAS AS PERIPHERAL BIOMARKERS  

 

MiRNA molecules are present in human body fluids in a remarkably stable form. 

Recent evidence indicates that miRNAs can reveal changes in the cells and tissue of 

origin. Although blood is the handiest and most easily accessible human body fluid, in 

the case of CNS disorders, miRNAs detected in CSF seem to better reflect brain 

physiological and pathological conditions, representing a more sensitive marker of 

changes than those revealed in blood or other body fluids (Rao et al., 2013).  

In the last few years, miRNAs have aroused great interest as potential biomarkers in 

neurological disorders. In the light of the results achieved for various 

neurodegenerative disorders spread from Multiple Sclerosis, Alzheimer's disease and 

Huntington’s diseases (Cloutier et al., 2015), several studies were conducted in blood 

from ALS patients in order to find a specific signature of neurodegeneration and 

different miRNAs were proposed as potential biomarkers of disease. Different 

sources were investigated as blood cells, serum and plasma with different miRNA 

profiling techniques (microarray or qRT-PCR) obtaining not always congruent 

results. 

DIFFERENT APPROACHES FOR IDENTIFICATION OF MIRNA BIOMARKERS 

The most promising approach for identification of miRNA biomarkers is miRNA 

profiling, defined as the measurement of the relative abundance of a group of miRNAs 

detectable in cell-free biofluids (Pritchard et al., 2012). It has become evident that the 

use of a complex set of biomarkers, rather than the use of a single marker, may 

improve the accuracy, specificity and sensitivity of the analysis and contain more 

exhaustive diagnostic information (Keller et al., 2009). Quantitative reverse 

transcription PCR (qRT-PCR), miRNA microarray and RNA sequencing (RNA-seq) are 

the better known and characterized approaches for miRNA profiling (Pritchard et al., 
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2012). In Fig. 5 vantages and disadvantages of the three different approaches are 

reported.  

Several miRNA profiling in biomarker discovery employed the quantitative reverse 

transcription PCR (qRT-PCR) in TaqMan qRT-PCR or in SYBR-green-based qRT-PCR. 

The reverse transcription reaction differs between the approaches, indeed the 

TaqMan assay usually uses stem–loop probes that are specific to the 3’end of the 

miRNA, while in the SYBR-green assay the miRNA molecules are typically 

polyadenylated at the 3’end, and oligo-d(T) is used as a reverse transcription primer. 

For TaqMan assay, amplicons are generated by using miRNA-specific forward primer 

and a reverse primer. The DNA polymerase, proceeding along the template, 

hydrolyses the probe and fluorescent dye is free from the quencher, resulting in 

detectable light emission. A miRNA-specific forward primer and a reverse oligo-d(T) 

primer are employed for SYBR-green assay. The universal reverse primer anneals to 

the 3’portion of the miRNA sequence and the poly(A) tail enables PCR amplification 

with dsDNA-intercalating SYBR green dye as the detector.  
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Fig. 5 Vantages and disadvantages of miRNA-profiling approaches  

 

 

 

 

 

 

 

 

 

 

 

 

 

A. The qRT-PCR technique presents more advantages than disadvantages. In particular, it is an 

established, sensitive and specific method that allows the direct quantification of molecules; it allows 

the amplification starting from a very low quantity of RNA (<ng) and the data analyses are relatively 

rapid and of easy interpretation; the technique is cheaper than the others and both TaqMan and SYBR-

green-based qRT-PCR are available in ‘array’ format. This is particularly important for the miRNA 

profiling studies since it is possible to quantify a specific group of well-known and best-characterized 

miRNA molecules that are deeply described into various biological pathways. The main limitations of 

the technique are that novel miRNAs cannot be identified and the number of samples processed per 

day is not very high. B. MiRNA microarray is an established method, fairly low-cost and high-

throughput. However, it has lower specificity compared to qRT-PCR or RNA sequencing, the difficulty 

to use for absolute quantification and the inability to identify novel miRNAs. C. The RNA sequencing 

(RNA-seq) is the only approach able to detect novel miRNAs with high accuracy in distinguishing 

miRNAs presenting very similar sequences. The main disadvantages of this technique are the 

substantial computational support for data analysis, the inability for absolute quantification and the 

high cost of the instrumentation and reagents compared to the other techniques (modified figure from 

Pritchard et al., 2012).  
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ALS MIRNA BIOMARKERS STUDIES IN BLOOD  

Starting from different populations of blood cells two important studies were 

conducted in order to identify a specific pattern of deregulated miRNAs in ALS. The 

first study (Butovsky et al., 2012) selected a specific population of blood-sorted 

monocytes (CD14+CD16-) to quantify the deregulated miRNAs by qRT-PCR 

previously identified in monocytes cells of ALS-model. The deregulated miRNAs 

selected in SOD1 mice included let-7, miR15b, miR16, miR27a, miR34a, miR132, 

miR146a, miR155, miR223, and miR451. In human cohorts, the 664 miRNAs analysed 

were quantified in 8 samples from ALS patients, 8 from patients with multiple 

sclerosis and 8 from healthy controls. Half of miRNAs that constituted the specific 

signature in SOD1 mice was also observed in ALS. The human miRNAs signature 

included miR27a, miR155, miR146a, and miR532-3p, with miR27a highly 

upregulated in ALS and not expressed in healthy controls and subjects with multiple 

sclerosis. The second study, instead, analysed the miRNA expression profiled by qRT-

PCR in circulating leucocytes from SALS patients. The comparison between patients 

and controls revealed a group of seven miRNAs downregulated (miR451, 1275, 328-

5p, 638, 149 and 665) and miR338-3p upregulated (de Felice et al., 2012). 

Subsequent studies expanded the quantification analysis of miR338-3p (Shioya et al., 

2010) to serum, CSF and brain tissue samples from ALS patients, and the 

upregulation was confirmed in all the examined samples (de Felice et al., 2014). 

MiRNA molecules have the peculiarity of circulating in several body fluids in cell-free 

forms, since they are resistant to RNAse activity, and packaged into micro vesicles. 

Moreover, miRNAs usually reflect the healthy condition of origin tissue. In the light of 

these considerations three recent miRNA profiling studies were performed: two from 

serum and one from plasma samples of ALS patients. The first study compared the 

miRNAs levels in serum samples of FALS patients, asymptomatic mutation carriers 

and healthy controls. A homogenous miRNA signature was found in FALS 

independently from the underlying disease gene. In particular, the pre-manifest ALS 

mutation carriers presented 24 significantly downregulated microRNAs up to at least 

two decades before the supposed time of disease onset and more than 90% of the 

downregulated microRNAs in mutation carriers overlapped with the patients with 

FALS  (Freischmidt et al., 2014). The second study characterized a group of selected 
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circulating miRNAs in 18 serum samples from SALS patients and 16 serum samples 

from controls. Researchers showed that different miRNAs were present among FALS 

and SALS cases and that miRNA signature of sporadic ALS was highly heterogeneous. 

However, two miRNAs, miR1234-3p and miR1825, resulted significantly 

downregulated in SALS and these miRNAs were proposed as biomarkers for SALS 

(Freischmidt A et al., 2015). The same research group conducted both studies 

employing the microarray technique to profile the serum-miRNAs. The third recent 

miRNA profiling was performed on 16 plasma samples from SALS patients and 10 

from healthy controls. The experimental plan was divided in two phases: the 

discovery step with a discovery cohort analysed by microarray and the validation 

step conducted by qRT-PCR in a validation cohort of 48 SALS patients, 47 healthy 

controls and 30 disease controls. A total of three miRNAs resulted significantly 

upregulated (miR4258, 663b and 4649-5p) and six were downregulated (miR26b-5p, 

4299, 4419, 3187-5p, 4496 and let-7f-5p) in the discovery cohort. Following 

validation experiments confirmed the significant upregulation of miR4649-5p, and 

the significant downregulation of miR4299. This couple of miRNAs were suggested as 

potential biomarkers for ALS (Takahashi et al., 2015). Beyond the potential role as 

biomarkers it has been observed that the most notable target gene of these miRNAs 

was EPH receptor A4 (ephrin type-A receptor 4) (EPHA4), which was reported to be a 

disease modifier of ALS (Van Hoecke et al., 2012). 

A specific peripheral miRNA-deregulation was described in four other works.  In the 

first study, in which ALS patients were enrolled as control group (Gandhi R et al., 

2013), the miRNA levels in monocytes from ALS patients (n=15), RRMS (n=50), SPMS 

(n=51) and healthy controls (n=32) were analysed by qRT-PCR. The aim of the study 

consisted in the selection of deregulated molecules to develop immune biomarkers to 

monitor multiple sclerosis (RRMS - relapsing–remitting multiple sclerosis- and SPMS 

–secondary progressive multiple sclerosis-). Among the 16-deregulated miRNAs 

between MS and ALS samples, the miR-92 and let-7 resulted differentially expressed 

in RRMS but no differences between SPMS and ALS were reported, suggesting that 

similar processes may occur in SPMS and ALS. In the second study, nine different 

TDP-43 binding miRNAs were amplified by qRT-PCR and miR132-5p, miR132-3p, 

miR143-5p, miR143-3p and let7b-5p resulted specifically deregulated in serum of 
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ALS patients (Freischmidt et al., 2013). The third study (Toivonen et al., 2014), 

instead, consisted in the validation experiment for miR206 by qRT-PCR. The miR206, 

previously shown as upregulated in SOD1 mouse model during the initial time after 

denervation (Williams et al., 2009), resulted also increased in a group of 12 serum 

samples from ALS patients and suggested as a potential biomarker of neuromuscular 

damage corroborating the results previously reported by Williams and colleagues. 

Lastly, in a recent work the quantification of a muscle-specific set of miRNAs (miR-

206, miR-1, miR-133a/b, miR-27a) has been performed by qRT-PCR in serum from 

SALS. The expression levels of miR-206 and miR-133 resulted significantly increased 

while miR-27a was significantly reduced as compared to controls (Tasca et al., 2016). 

ALS MIRNA BIOMARKERS STUDIES IN CSF  

Expression levels of miRNAs in CSF was investigated in MS (Haghikia et al., 2012), AD 

(Cogswell et al., 2008; Müller et al., 2014; Burgos et al., 2014; Denk et al., 2015) and 

Parkinson’s Disease (PD) (Burgos et al., 2014), with promising results.  

To our knowledge no CSF miRNA profiling experiments have been published for ALS 

in the Medical Literature Analysis and Retrieval System Online (MEDLINE) database. 

The miRNA quantification by qRT-PCR on CSF sample from ALS patients was 

reported for TDP-43 binding miRNAs studies (Freischmidt et al., 2013), and for 

miR338-3p to verify the miRNA deregulation in CSF samples from ALS patients (de 

Felice et al., 2014). Thus, Freischmidt and colleagues revealed a significant 

deregulation of miR132-5p and 3p, miR143-5p and 3p, miR574-5p and let7b-5p in 

CSF from ALS and de Felice and colleagues confirmed the miR338-3p upregulation in 

CSF from ALS. 

However, it is worth noticing that conducting by generalized research on the Internet 

indicating as keywords “CSF-microRNA-profiling-Amyotrophic-Lateral-Sclerosis” was 

found a report entitled “Profiling of miRNAs in Cerebrospinal Fluid from Patients 

with Amyotrophic Lateral Sclerosis” conducted by Machida and colleagues (Machida 

et al., 2015). The study was performed on CSF samples from 23 ALS patients and 10 

normal controls using microarray technique (3D-GENE, Torray). The profiling 

analysis identified twenty-nine ALS-miRNAs, of which eleven were detected only in 
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ALS patients, twenty-five were upregulated and four downregulated (data not 

shown) in ALS patients. They suggested that the combination use of five miRNAs 

(miR10a, miR516b, miR24-2*, miR122* and miR4762-3p) exclusively detected in CSF 

from ALS patients are able to best differentiate healthy controls from patients with a 

sensitivity of 73,9% and specificity of 100%.   
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PART II 
AIM OF THE THESIS 
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At present there is no diagnostic laboratory test for ALS and the variability of clinical 

presentation often makes early diagnosis difficult. Thus, the scientific research on 

ALS points to the identification of specific biomarkers, which can recognize ALS 

before the symptom manifestation and/or discriminate ALS from other pathologies, 

providing a valuable tool in differential diagnosis.  

The identification of a specific miRNA profile in ALS that may have a strong impact on 

the biomarker research field and that may provide insight into the disease 

pathogenesis has been the main objective of this work of thesis. 

In detail, the PhD research has been focused on the two following specific topics: 

 miRNA profiling of Cerebrospinal Fluid pooled samples and serum pooled 

samples from ALS patients and healthy controls by qRT-PCR,  

 

 validation of the miRNAs selected in CSF and serum profiling in each single 

sample from ALS patients and controls included in the pools. 
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PART III 
METHODS 
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1 

PATIENT DATA AND SAMPLES 

 

CSF samples from 24 sALS and Serum samples from 24 sALS patients were available 

for the present study. ALS diagnosis was performed according to World Federation of 

Neurology El Escorial Revised criteria, and patients with no evidence of a family 

history of the disease were classified as sporadic (Brooks et al., 2000). The Sanger 

sequencing and repeat-primed PCR methods were employed to screen case and 

control samples for the presence of SOD1, TARDBP-43 and FUS mutations (Chiò et al., 

2014) and the GGGGCC hexanucleotide repeat expansion in C9orf72 (DeJesus-

Hernandez et al., 2011) respectively. 

Both for CSF and for Serum samples, among the 24 patients included in the study, 8 

were positive for C9orf72 expansion. The unaffected control groups consisted of 24 

age- and sex-matched CSF samples from subjects who underwent lumbar puncture 

for neurological or microbiological diagnostic purposes and were negative for all the 

performed tests. The serum control group included samples from 24 age- and sex-

matched healthy voluntary subjects for which were excluded neurological disorders. 

At the enrolment time, all participants did not have manifested neurodegenerative 

disorders, infections of hepatitis B virus (HBV), hepatitis C virus (HCV), human 

immunodeficiency virus (HIV) or human T-cell leukemia virus type 1 (HTLV-I). The 

Characteristics of ALS patients and controls enrolled for CSF study are reported in 

Tab. 1 while in Tab. 2 there are the characteristics of patients and controls for Serum 

study. 

The CSF, free of blood contamination, was centrifuged (1600 xg, 4°C, 15 min), frozen 

within 40 min of collection and stored at -80°C until use. The serum samples not 

haemolysed, drawn using vacuum systems, were centrifuged (2000 xg, 4°C, 10 min), 

the supernatant was aliquoted (0.5 ml) and stored immediately at -80°C until use. All 

procedures from withdrawal to storage of both CSF and serum samples were 
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performed according to the Guidelines for CSF and blood Biobanking for Biomarker 

Research (Teunissen et al., 2014). 

miRNA profiling was performed in a total of six pooled CSF samples and six pooled 

Serum samples (total volume 200 μl), consisting of three pools derived from ALS 

patients and three pools from control subjects. Each pool was composed of an equal 

volume (25μl) of four CSF or serum samples from females and four CSF or serum 

samples from males. The subsequent miRNA validation experiments were carried out 

using 200μl of CSF or serum from each individual. 

Written consent was obtained from each participant. This study was approved by the 

local ethics committee in accordance with the ethical standards of the Declaration of 

Helsinki and was carried out according to the international Good Laboratory Practice 

(GLP) and Good Clinical Practice (GCP) standards. 

 

 

Tab. 1 Characteristics of ALS patients and controls enrolled for CSF study 

 Patients 

w/o mutation 

C9orf72 

patients 

Control 

subjects 

No of subjects 16 8 24 

Gender 8M/8F 4M/4F 12M/12F 

Age mean ± SD (years) 63.94±8.45 60.50±8.50 58.25±5.04 

Age at onset 59.0±14.4 57.55±12.6  

Bulbar onset 25.0% 25.0%  

Disease duration (months) 41.5±20.5 47.0±19.7  
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Tab. 2 Characteristics of ALS patients and controls enrolled for Serum study 

 Patients 

w/o mutation 

C9orf72 

patients 

Control 

subjects 

No of subjects 16 8 24 

Gender 8M/8F 4M/4F 12M/12F 

Age mean ± SD (years) 64.25±14.99 62.20±9.01 54.38±8.44 

Age at onset 61.15±10.2 58.55±11.5  

Bulbar onset 25.0% 25.0%  

Disease duration (months) 40.5±15.7 47.5±20.2  

 

 

 
 

2 

RNA EXTRACTION AND REVERSE TRANSCRIPTION 

 

Total RNA from CSF was isolated employing the miRNeasy Mini kit (Qiagen) while 

miRNeasy Serum/Plasma kit (Qiagen) was employed for total RNA extraction from 

serum samples. Synthetic exogenous Ce-miR-39 miRNA (Cel-miR-39-3p) from 

Cenorabditis Elegans was added into each sample according to the manufacturer's 

recommendations. Purified RNA was stored at –80°C in RNase-free water. We 

quantified total isolated RNA using a spectrophotometer and evaluated the RNA 

quality by O.D.260/280 ratio. Standard procedures were employed to ensure the 

quality and the reproducibility of the pre-analytical step. 
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Isolated RNA was used as starting material for reverse transcription (RT) employing 

the miScript II RT kit (Qiagen) that provides the polyadenylation of mature miRNAs 

and reverse transcription into cDNA using oligo-dT primers. Following the 

manufacturer’s recommendations, 4,7 μl of isolated RNA were added to the reverse-

transcription reaction, for each RNA samples isolated from 200 μl of starting 

materials (CSF or Serum samples). The components of RT reaction master mix 

reported in Tab 3.1 and cycling conditions of RT reaction in Tab 3.2. The cDNA 

samples obtained by reverse transcription were stored undiluted at -20°C and 

thereafter diluted by adding 90μl of RNase-free water to each 20 μl, prior to real-time 

PCR.  

In order to check the quality of performed procedures we used miScript miRNA QC 

PCR Array (Qiagen) that ensures the selection of only high-quality samples, 

employable in subsequent experiments, by testing the quality of RNA isolation and 

cDNA preparation. A total of 32 cDNA samples were analysed on one 384-well 

miScript miRNA QC PCR Array utilizing 5 μl of cDNA appropriately diluted.  

 

Tab. 3.1 RT reaction master mix components  

Component Volume/reaction 

5x miScript HiSpec Buffer 4 μl 

10x miScript Nucleics Mix 2 μl 

RNase-free water 7.3 μl 

miScript Reverse Transcriptase Mix 2 μl 

Template RNA  4.7 μl 

Total volume 20 μl 

 



PART III 

 

 

 

40 

 

Tab. 3.2 Cycling conditions of RT reaction  

Step Time Temperature 

Incubation 60 min 37°C 

Incubation 5 min 95°C 

 

 

3 

MIRNA PROFILING BY QPCR   

 

cDNA samples prepared by RT reaction from RNA of pools were utilized as the 

template for real-time quantitative PCR (qPCR) analysis, performed in the 7900HT 

Fast Real-Time PCR System (Life Technologies) using the human-miFinder 384HC 

miRNA PCR array (Qiagen), which profiles the expression of the 372 most abundantly 

expressed and best-characterized miRNAs in miRBase (www.mirbase.org). According 

to the manufacturer’s recommendations, a final volume of 10μl containing cDNA 

properly diluted and SYBR Green-based real-time PCR (Qiagen) was dispensed on 

human-miFinder PCR array. The components of qPCR reaction master mix are 

reported in Tab. 4.1 and the qPCR amplification conditions in Tab 4.2. 

In CSF and Serum-miRNA profiling, after setting the baseline and the threshold, 

exponential processes (Ct-values) were converted to linear comparisons relative to 

the control group. Thus, the Ct-values were normalized to the Cel-miR-39-3p miRNA 

using relative expression quantification (2-∆∆Ct) method and it is the most utilized 

exogenous control for the normalization in miRNA profiling study.  

Free software miScript miRNA PCR Array Data Analysis (Qiagen), available at 

http://pcrdataanalysis.sabiosciences.com/mirna, was utilized for the analysis of 
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qPCR results of miRNA profiling experiments. Only miRNAs with Ct <35 and with a 

high efficiency amplification plot were taken into consideration for subsequent 

analysis. The ALS patients and control groups were compared using Student t-test 

and the cut off for the p-value was set at 0.05. 

 

Tab. 4.1 Real-time PCR reaction mixture components for human-miFinder 384HC 

miRNA PCR array 

Component 384-well Array 

2x QuantiTect SYBR Green PCR 

Master Mix 

2050 μl 

10x miScript Universal Primer 410 μl 

RNase-free water   1540 μl 

Template cDNA 100 μl 

Total volume  4100 μl 
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Tab. 4.2 Cycling conditions used to program the thermal cycler to perform qRT-PCR. 

Step Time Temperature 

PCR  Initial activation 

step 
15 min 95°C* 

3-step cycling   

Denaturation 15 s 94°C 

Annealing 30 s 55°C 

Extension 30 s 70°C§ 

Cycle number 40  

 

*
HotStarTaq DNA Polymerase is activated by this heating step; 

§ 
fluorescence data collection. 

 

 

4 

MIRNA ENDOGENOUS CONTROLS SELECTION  

 

Relative expression quantification (2-∆∆Ct) method was performed also in miRNA 

validation experiments employing both exogenous and endogenous controls (EC). 

The EC is one or a cluster of endogenous RNA molecules resulted the most stable and 

reproducible across different samples and experiments.  

For accurate results in relative quantification it is necessary to normalize the amount 

of target miRNA by using a suitable EC. Indeed, the normalization with EC corrects for 

factors that could lead to inaccurate quantification, including variation in RNA 
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content, possible RNA degradation, presence of inhibitors in the RNA samples, and 

differences in sample handling. Normalization also allows the comparison among 

results from different experiments and samples.  

Thus, free data analysis by the web interface RefFinder was employed to identify the 

best endogenous controls from a cluster of miRNAs selected in CSF and Serum 

profiling. This software integrates the major computational programs (geNorm, 

Normfinder, BestKeeper and comparative ∆∆Ct method) to compare and rank the 

tested candidate reference genes on each single patient and control.  Based on the 

rankings from each program, it assigns an appropriate weight to an individual gene 

and calculated the geometric mean of their weights for the overall final ranking using 

Recommended Comprehensive Ranking (RCR) method (Xie et al., 2012).  

 

5 

MIRNA VALIDATION 

 

Validation experiments of miRNAs selected in the profiling experiments were 

performed in triplicate by SYBR Green-based real-time PCR, analysing individually 

CSF and Serum samples obtained from each subject. The exogenous and the selected 

endogenous controls were used in the validation experiments to normalize miRNA 

expression values.  

In validation experiments the relative quantification was carried out using Data Assist 

v3.0 (Life Technologies). The Ct values of each mature miRNA were normalized to Ct 

value of both the exogenous and endogenous controls ΔCt = CtmiRNA – CtEEC. The 

normalized miRNA-Ct value (ΔCt) of our samples was compared to the ΔCt value of a 

calibrator according the formula ΔΔCt = ΔCt Sample - ΔCt Calibrator. The control group mean 

was used as the calibrator in the calculation of ΔΔCt. The fold change was calculated 

with the following formula 2-ΔΔCt. The resulting value was the relative expression 
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quantification of each miRNA obtained by comparing patients and controls. MiRNAs 

were considered downregulated for fold change values 0.67 and upregulated for 

values >1.5 and the miRNA molecules with Ct >35 were excluded from subsequent 

data analyses. 

 

6 

STATISTICAL ANALYSIS FOR MIRNA VALIDATION 

 

All statistical analyses were performed with SPSS (Version 18; SPSS Inc) and 

GraphPad Prism (Version 5.0). The Gaussian distribution of data was assessed by the 

Shapiro–Wilk test. Statistical differences were verified by Student’s unpaired two-

tailed t-test in the case of normal distributions, or two-tailed Mann–Whitney U test in 

the case of non-normal distributions. Analysis was performed for every miRNA, and 

ratios between different miRNAs were examined to identify any specific 

characteristics in ALS. The ratio between miRNAs was calculated as 2-∆Ct (ΔCt= Ct of 

upregulated miRNA - Ct of downregulated miRNA), as described by Sheinerman et al., 

2013.  

Receiver operating characteristic (ROC) curves were plotted to evaluate the power of 

miRNAs (singles or in combination) to differentiate ALS patients from controls. The 

ROC curves are summarized into a single metric known as the: Area Under the Curve 

(AUC). The AUC is an effective and combined measure of sensitivity and specificity 

that describes the inherent validity of diagnostic tests and a guide for assessing the 

utility of a biomarker based on its AUC is as follows: 0.9–1.0 = excellent; 0.8–0.9 = 

good; 0.7–0.8 = fair; 0.6–0.7 = poor; 0.5–0.6 = fail (Xia et al., 2013). 

Differences among groups of patients, stratified based on C9orf72 expansion and 

clinical features (gender, site of onset), were evaluated by Student’s unpaired two-

tailed t-test or two-tailed Mann–Whitney U test in the case of normal distributions or 



PART III 

 

 

 

45 

 

non-normal distributions, respectively. Spearman’s rho (r) was calculated to find 

correlation between miRNA expression level and age at onset. Association of each 

single miRNA expression level with disease duration was estimated using the Kaplan-

Meier method and compared by the log-rank. Patients were divided into high miRNA 

expression group (miRNA levels greater than the median) or low miRNA expression 

group (miRNA levels less than the median). p-values smaller than 0.05 were 

considered statistically significant.  
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PART IV 
RESULTS 
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1 

MIRNA PROFILING AND IDENTIFICATION OF DIFFERENTIALLY 

EXPRESSED MIRNAS 

 

CSF PROFILING 

The CSF profiling permitted the amplification by real-time PCR of 35 (9.4%) and 39 

(10.4%) miRNAs in CSF pools from ALS patients and control subjects respectively, for 

a total of 42 out of 372 (11%) miRNAs positively detected in our sample cohort. No 

detectable traces or traces with Ct >35 were identified for 330 miRNA molecules.  

Furthermore, our results showed an overall down-regulation of miRNAs in CSF from 

ALS patients compared to controls; indeed the majority of deregulated miRNAs were 

downregulated. The results of real-time PCR amplification of CSF-miRNA profiling are 

reported in Fig. 6A.  

From miRNA profiling analysis, we selected thirteen downregulated miRNAs (let7a-

5p, let7b-5p, let7f-5p, miR15b-5p, miR21-5p, miR122-3p, miR127-3p, miR148a-3p, 

miR150-5p, miR183-3p, miR195a-5p, miR204-5p, miR373-5p) and one upregulated 

miRNA (miR181a-5p), using a fold change threshold >1.5. Among these deregulated 

miRNAs, three (let7-a, miR195a-5p and miR21-5p) were significantly downregulated 

with a p-value of 0.0023, 0.039 and 0.030, respectively. The changes in the other 

eleven miRNAs did not reach statistical significance even though they were up- or 

down-regulated with a fold change >1.5. The results of CSF-miRNA profiling 

statistical analysis are graphed in the Volcano Plot reported in Fig. 7A.   

SERUM PROFILING 

In the Serum profiling, 223 (59.9%) miRNAs from ALS pools of patients and 218 

(58.6%) miRNAs from pools of control subjects were amplified, for a total of 227 out 

of 372 (61%) miRNAs positively detected in our sample cohort. No detectable traces 
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or traces with Ct >35 were identified for 145 miRNA molecules.  Contrary to the CSF 

profiling, an overall up-regulation of miRNAs was observed in serum from ALS 

patients compared to controls, as shown in Fig. 6B.  

Serum miRNA profiling analysis permitted the selection of eleven upregulated 

miRNAs (let7b-5p, let7f-5p, miR15b-5p, miR16-5p, miR27a, miR30c-5p, miR122-3p, 

miR197-3p, miR223-3p, miR328-3p, miR373-5p) and one downregulated miRNA 

(miR125b-5p), using a fold change threshold >1.5. No miRNAs reached statistical 

significance in serum profiling. The Volcano Plot reported in Fig. 7B graphs the 

results from statistical analysis for serum profiling.   

 

 

 

Fig. 6 The 3D Profile of fold difference in expression of each miRNA between patients and controls in 

the 384-well format of the PCR Array. The graph indicated by A is referred to CSF miRNA profiling 

while B regards serum miRNA profiling. The 3D Profile graphs the fold difference in miRNAs 

expression between patients and controls. Columns pointing up (with z-axis value>1) indicate a 

miRNA up-regulation and columns pointing down (with z-axis value<1) indicate a miRNA down-

regulation. 
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Fig. 7 Volcano Plot of log2 of the fold change for each miRNA and its p value. In A is reported the 

Volcano Plot from CSF-miRNA profiling results and in B the Plot from Serum profiling. The p-value is 

calculated based on the Student’s t-test of the replicate 2(-∆Ct) values for each miRNA in the control 

group and patient group. The central line in the graph indicates a fold change of 1. Vertical sliders 

indicate miRNAs as either up- or down- regulated with a fold change >1.5. The spots beyond right 

vertical slider indicate the upregulated miRNAs and the spots beyond the left slider the downregulated 

miRNAs. The horizontal line, parallel to the x-axis, indicates the desired threshold for the p-value of the 

Student’s t-test, defined <0.05. The Volcano Plot was generated by the software miScript miRNA PCR 

Array Data Analysis (Qiagen).  
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2 

MIRNA ENDOGENOUS CONTROL SELECTION FOR VALIDATION 

EXPERIMENTS 

 

After miRNA profiling for CSF and serum, we selected the best candidate miRNAs to 

use as endogenous controls for normalization in Validation phase. From the CSF 

profiling the miR608 and miR328-3p were selected by RefFinder from a panel of four 

potential endogenous references, since their expression showed high stability and 

reproducibility across different samples and experiments (Fig. 8A). The same 

software selected miR608 and miR489-3p as the best endogenous controls from 

serum profiling into a cluster of six potential endogenous controls (Fig. 8B). Both for 

the CSF and serum normalization, in validation experiments the Synthetic exogenous 

Cel-miR-39-3p was also employed as control.  

 

 

Fig. 8 Endogenous controls selection with RefFinder. In A is reported the bar diagram for Endogenus 

controls selection for CSF, in B is reported the bar diagram for Serum. The graph reports the overall 

final ranking of the candidate reference miRNAs, using Recommended Comprehensive Ranking (RCR) 

method. The RCR method measures the stability using the Geometric mean method. A lower Geometric 

mean value denotes more stable expression. The x-axis reports the candidate reference miRNAs and 

the y-axis shows the Geometric mean value. 
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3 

EXPRESSION PROFILES OF SELECTED CSF MIRNAS 

 

The fourteen deregulated miRNAs were validated in CSF samples obtained from each 

subject by qPCR. These miRNAs with a fold change 0.67 were considered 

downregulated and miRNAs with a fold change >1.5 were considered upregulated. 

The deregulation observed in the profiling was confirmed, with overall miRNA 

downregulation and only miR181a-5p upregulated (Fig. 9). Among the fourteen 

selected molecules, eight miRNAs were significantly deregulated in ALS patients 

compared to controls. In particular, changes in miR21-5p, miR195-5p and let7a-5p, 

which were significantly downregulated in miRNA profiling, were confirmed in the 

validation experiments, and a significant downregulation was also reported for 

miR148-3p, miR15b-5p, let7b-5p and let7f-5p. The miRNA181a-5p was confirmed as 

upregulated in CSF from ALS patients (Fig. 10). No significant differences were 

evidenced for the other six miRNAs included in the validation experiments.  

 

 

Fig 9. Results of miRNA validation 

experiments of CSF. Bar diagram shows 

the relative expression levels of 

miRNAs selected with profiling and 

validated in each single CSF sample. 

The y-axis log2 of relative expression 

levels is reported, considering the 

control group as calibrator. The data 

obtained in the profiling were 

confirmed for the majority of the 

selected miRNAs. 
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Fig. 10 Scatter graphs of results of validation experiments for the significantly deregulated CSF 

miRNAs. The p-values were calculated using two-tailed Mann–Whitney U test. Relative expression of 

deregulated miRNAs in CSF from ALS patients (ALS) and controls (CTR) normalized by 2-∆Ct are 

graphed. Medians are indicated as horizontal lines.  

 

The levels of the eight deregulated miRNAs were analysed in the ALS patient group to 

evaluate possible correlations with C9orf72 expansion and clinical variables. The 

C9orf72 repeat expansion, which represents the most frequent genetic alteration in 

ALS, was present in eight out of the twenty-four patients included in the study. No 

significant differences in miRNA expression levels were observed between ALS 

patients with or without the expansion. Statistical analyses failed to find any 

association of miRNA levels with site of onset, age at onset and disease duration. No 

statistically significant differences were found between males and females (Tab. 5).  
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The Receiver Operator Characteristic (ROC) curve analyses revealed that all the eight 

significant miRNAs could be fair/good potential biomarkers for ALS diagnosis giving 

the following areas under the ROC curve (AUC): let7a-5p (0.70) let7b-5p (0.76) let7f-

5p (0.73) miR148-3p (0.78) miR195-5p (0.79). However, among these miRNAs, the 

upregulated miR181a-5p and the downregulated miR21-5p and miR15b-5p showed 

the highest diagnostic accuracy (Fig. 12). The miR181a-5p levels gave an AUC of 0.81 

(95%CI: 0.677– 0.953). At the cutoff value of 6.16, the optimal sensitivity and 

specificity were 87% and 70% respectively. The downregulated miR21-5p and 

miR15b-5p gave areas under the ROC of 0.87 (95%CI: 0.761-0.996) and 0.87 (95%CI: 

0.757-0.982) respectively. At the cutoff value of 4.01 for miR21-5p, the optimal 

sensitivity and specificity were 95% and 74%, respectively, and at the cutoff value of 

8.17 for miR15b-5p the optimal sensitivity and specificity were 95% and 74%, 

respectively.   

The three miRNAs with the highest diagnostic accuracy, revealed by ROC curve, were 

analysed in combination. Values obtained from ratios between the upregulated 

miRNA and the two-downregulated miRNAs were examined comparing patients and 

controls. A significant deregulation was reported for the analyses of both miR181a-

5p/miR21-5p (p<0.0001) and miR181a-5p/miR15b-5p (p<0.0001). The ROC curve 

analysis of miR181a-5p/miR21-5p ratio showed an area under the curve of 0.917 

(95%CI: 0.836-0.999). At the cutoff value of 0.45, the optimal sensitivity and 

specificity were 90% and 87% respectively. The miR181a-5p/miR15b-5p ratio gave 

an area under the ROC of 0.922 (95%CI: 0.844-0.996). The optimal sensitivity and 

specificity were 85% and 91% respectively, at the cutoff value of 29.8 (Fig. 12).  
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Fig. 12 Receiver operating characteristic (ROC) curve for the upregulated miRNA (miR181a-5p) and 

the two-downregulated miRNAs (miR15b-5p and miR21-5p), which showed the highest significant 

differences in validation. For miR181a-5p, the normalized expression level (2-∆∆Ct) was selected as test 

variable and for the miR21-5p and miR15b-5p the logarithm of the normalized expression level was 

used. In the case of analyses in combination, ROC curve was obtained for the ratios between miRNAs, 

calculated as 2-∆Ct (ΔCt= Ct miR181a-5p - Ct miR21-5p and Ct miR181a-5p - Ct miR15b-5p). AUC (area 

under the ROC curve), sensitivity and specificity are reported for each ROC curve. 
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4 

EXPRESSION PROFILES OF SELECTED SERUM MIRNAS  

The twelve deregulated miRNAs were validated in serum samples obtained from each 

subject by qPCR. Similarly to CSF validation experiments, miRNAs with a fold change 

0.67 were considered downregulated and miRNAs with a fold change >1.5 were 

considered upregulated. The group of miRNAs resulted deregulated from the serum 

profiling was totally confirmed, with an overall miRNA upregulation and only 

miR125b-5p downregulated (Fig. 13).  

 

 

Fig 13. Results of miRNA validation for 

Serum-miRNAs. Bar diagram shows the 

relative expression levels of miRNAs 

selected with profiling and validated in 

each single serum sample. The y-axis log2 

of relative expression levels is reported, 

considering the control group as 

calibrator. The data obtained in the 

profiling were confirmed for the majority 

of the selected miRNAs. 

 

 

Among the twelve selected molecules, three miRNAs were significantly deregulated in 

ALS patients compared to controls (Fig. 14): the miR125b-5p was significantly 

downregulated in ALS patients and a significant upregulation was reported for 

miR328-3p and miR373-5p. No significant differences were evidenced for the other 

nine miRNAs included in the validation experiments.  
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Fig. 14 Scatter graphs of results of validation experiments for the significantly deregulated serum 

miRNAs. The p-values were calculated using two-tailed Mann–Whitney U test. Relative expression of 

deregulated miRNAs in serum from ALS patients (ALS) and controls (CTR) normalized by 2-∆Ct are 

graphed. Medians are indicated as horizontal lines. 

 

The levels of the three deregulated miRNAs were analysed in the ALS patients' cohort 

to evaluate potential correlations with C9orf72 expansion and clinical variables. 

However, no significant differences in miRNA expression levels were observed 

between ALS patients with or without the expansion. Moreover, statistical analyses 

did not find any association between miRNA levels and gender, site of onset, age at 

onset and disease duration (Tab. 6). 

The Receiver Operator Characteristic (ROC) curve analyses revealed that the three 

significant miRNAs could be potential biomarkers for ALS diagnosis even of they need 

of validation in a bigger cohort of patients and controls (Fig. 15). The downregulated 

miR125b-5p levels gave an AUC of 0.66 (95%CI: 0.496– 0.829). At the cutoff value of 

0.17, the optimal sensitivity and specificity were 70% and 78% respectively. The 

upregulated miRNAs: miR328-3p and miR373-5p gave AUCs of 0.74 (95%CI: 0.587-

0.909) and 0.79 (95%CI: 0.698-0.946) respectively. At the cutoff value of 0.82 for 

miR328-3p, the optimal sensitivity and specificity were 85% and 80%, respectively, 

and at the cutoff value of 1.04 for miR373-5p the optimal sensitivity and specificity 

were 76% and 80%, respectively.  

Since any serum-miRNA showed AUCs superior to 0.8 we decided to extend the 

analysis to a larger group of patients and controls.  
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Fig. 15 Receiver operating characteristic (ROC) curve for the downregulated miRNA (miR125b-5p) 

and the two-upregulated miRNAs (miR328-3p and miR373-5p). For miR125b-5p, the logarithm of the 

normalized expression level (2-∆∆Ct) was selected as test variable and for the miR328-3p and miR373-

5p the normalized expression level was used. AUC (area under the ROC curve), sensitivity and 

specificity are reported for each ROC curve. 
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Tab. 5 Correlations between miRNAs level and C9orf72 expansion, and ALS clinical 

variables in CSF 

miRNA 
C9orf7 * 

Disease 

duration 

Site of 

onset 
Gender Age at onset 

Let7a-5p 0.750 0.240 0.266 0.436 0.769 

Let7b-5p 0.750 0.379 0.267 0.631 0.384 

Let7f-5p 0.750 0.253 0.349 0.971 0.658 

miR15b-5p 1.000 0.070 0.497 0.684 0.270 

miR21-5p 0.437 0.515 0.197 0.481 0.156 

miR148a-3p 0.617 0.242 0.230 0.052 0.076 

miR181a-5p 1.000 0.542 0.933 0.393 0.137 

miR195-5p 0.211 0.745 0.211 0.796 0.286 

 

Tab. 6 Correlations between miRNAs level and C9orf72 expansion, and ALS clinical 

variables in Serum 

miRNA 
C9orf7 * 

Disease 

duration 

Site of 

onset 
Gender Age at onset 

miR328-3p 0.750 0.318 0.250 0.853 0.406 

miR373-5p 1.000 0.638 0.927 0.247 0.206 

miR125b-5p 1.000 0.407 0.925 0.912 0.259 

 

* patients were dichotomized in carriers and non-carriers of the C9orf72 expansion. For each column 

p-values are reported 
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1 

DISCUSSION  

 

EXPERIMENTAL STRATEGY 

In this work of thesis, a qualitative and quantitative study of miRNAs in CSF and 

serum from SALS patients was carried out in order to identify a specific signature of 

miRNAs as biomarkers for ALS employable in clinical practices and to better 

understand the epigenetic role of these ncRNA molecules in the pathogenesis of 

motor neuron disease.  

The expression of a panel of 372 miRNAs, representing the most abundantly 

expressed and best-characterized miRNAs in miRNA-databases for both the biofluids, 

was profiled. A total of 48 samples (24 from sporadic ALS patients and 24 controls) 

for CSF and serum, respectively, were analysed applying qRT-PCR in two phases: 

initial screening by miRNA-PCR array, using pooled samples, and subsequent 

validation of selected molecules in each single sample. Among the various techniques 

for miRNA profiling we chose the quantitative reverse transcription PCR (qRT-PCR) 

since it is the most specific and sensitive (Pritchard et al., 2012). This technique 

provides the immediate availability of quantitative data using nanograms of RNA and 

gives the possibility to study a consistent number of specific miRNAs with well-

known target mRNAs and molecular functions (Pritchard et al., 2012; Pacifici et al., 

2014). As in several miRNA-profiling studies, the initial screening was performed in 

pooled samples. This approach, using a sensitive assay such as qRT-PCR, offers a 

competitive and cost-effective tool for identification of ALS miRNAs. 

The study provides the first description of CSF miRNA profiling in ALS identifying a 

pattern of miRNAs significantly deregulated in ALS. In the literature only two reports 

have been published on miRNAs in CSF from ALS patients to date; they however used 

different approaches: the screening of a specific set of miRNAs binding TDP-43 
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(Freischmidt et al., 2013) and the analysis of one selected miRNA, found over-

expressed in ALS blood leukocytes (De Felice et al., 2014).  

The serum analysis performed in this PhD project is the first miRNA profiling for 

SALS conducted by qRT-PCR using a specific PCR array, bypassing the miRNA 

molecules selection on large-scale employing microarray or RNA-seq. Two serum 

miRNA profiling studies in ALS have already been realized; the first one was 

conducted in FALS and the second one in SALS by the same research group. In both 

studies the miRNA profiling was performed using Affymetrix GeneChip miRNA 3.0 

Arrays (microarray analysis). A strikingly homogenous miRNA profile in FALS, 

independently from the underlying disease gene, was reported in the first study, in 

which a comprehensive miRNAs expression profiling of serum from FALS, 

asymptomatic mutation carriers and healthy control subjects was performed 

(Freischmidt et al., 2014). In the second study, instead, a significant downregulation 

of two miRNAs (miR1234-3p and miR1825) was observed in SALS compared to 

controls. Therefore, after validation experiments conducted by qRT-PCR, the two 

deregulated miRNAs were proposed as valid biomarkers of ALS by the authors 

(Freischmidt A et al., 2015). Four other reports have been published on miRNAs 

quantification levels in serum from ALS patients, but they have not been performed 

by miRNAs profiling. Indeed, the studies are quantification analyses of different 

selected miRNAs, specifically selected: a set of miRNAs binding TDP-43 (Freischmidt 

et al., 2013), the miR338-3p found over-expressed in ALS blood leukocytes (De Felice 

et al., 2014), the miR206 resulted upregulated in SOD1 mouse model (Toivonen et al., 

2014) and a muscle-specific set of miRNAs (miR-206, miR-1, miR-133a/b, miR-27a) 

(Tasca et al., 2016).   

The approach used in the present study to identify deregulated miRNAs can present 

some limitations. We have employed qRT-PCR, which is a highly sensitive technique, 

but cannot identify novel miRNAs. Thus, it is possible that other informative miRNAs 

exist in CSF or serum. On the other hand, validation experiments showed that this 

method is not only sensitive and specific but also reproducible and accurate to detect 

miRNAs in CSF and serum. In addition, all the steps of the qRT-PCR have been 

monitored by quality control procedures, to ensure the reliability of the results. A 



PART V 

 

 

 

 62 

second challenge in miRNA quantification is data normalization, that is a key point for 

an objective evaluation of expression levels. For miRNA analysis, no consensus 

internal controls have been established yet. We used two endogenous reference 

miRNAs selected as the most stable and reproducible across different samples and 

experiments for each biofluid: miRNA608 and miR328-3p were employed for CSF, 

while miRNA608 and miR489-3p were used for serum. In addition, an exogenous 

control (Cel-miR-39-3p), widely reported in the literature, has been employed for the 

miRNA relative quantification. The analyses performed using the three reference 

miRNAs led to the same results.  

CEREBROSPINAL FLUID AND SERUM MIRNAS IN SALS PATIENTS 

The CSF-profiling allowed the detection of 42 out of 372 miRNAs. The percentage of 

miRNAs detected in our study (11%) was congruent with that recently reported by 

Denk and colleagues (15%) who used qRT-PCR to profile 384 different miRNAs in 

CSF from AD patients (Denk et al., 2015). A total of fourteen deregulated miRNAs 

were selected from the profiling: thirteen that were downregulated (let7a-5p, let7b-

5p, let7f-5p, miR15b-5p, miR21-5p, miR122-3p, miR127-3p, miR148a-3p, miR150-

5p, miR183-3p, miR195a-5p, miR204-5p, miR373-5p) and one upregulated 

(miR181a-5p). We observed an overall downregulation of miRNAs in ALS samples; 

this result is consistent with other studies reporting that the majority of deregulated 

miRNAs in tissues from ALS patients and ALS models are downregulated (Paez-

Colasante et al., 2015). 

In order to confirm these results, the expression levels of the selected miRNAs were 

analysed in each single sample included in the pool, using qRT-PCR. A group of eight 

out of the twelve miRNAs selected by miRNA profiling were confirmed as significantly 

deregulated: seven were downregulated (let7a-5p, let7b-5p, let7f-5p, miR15b-5p, 

miR21-5p, miR148a-3p, miR195a-5p) and one upregulated (miR181a-5p). We 

observed an interesting overlapping of six deregulated miRNAs in our dataset 

(miR181a-5p, miR21-5p, miR148a-3p and let7a-5p, let7b-5p and let7f-5p) with those 

described by Burgos and colleagues, who listed the 50 most abundant miRNAs 

detectable in CSF (Burgos et al., 2013). This observation suggests that the majority of 
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miRNAs selected in this study should be specific for nervous tissue and have a brain 

origin. 

The selected miRNAs have not been identified as significantly deregulated in the two 

previously published studies (Freischmidt et al., 2013; De Felice et al., 2014). A 

possible explanation for this discrepancy could be the different strategies used to 

identify the deregulated miRNAs. Only for let7b-5p is there a partial overlapping with 

Freischmidt and colleagues' study, which reported a decrease of let7b in CSF from 

ALS patients, even though it did not reach statistical significance (Freischmidt et al., 

2013). Regarding other neurodegenerative diseases, two studies reported a 

significant downregulation in expression levels of both miR15b-5p and miR181a-5p 

in CSF from AD patients (Cogswell et al., 2008; Burgos et al., 2014). Thus, in CSF from 

ALS patients, the levels of miR15b-5p seem to follow the same trend described in AD 

patients, whereas the deregulation of miR181a-5p shows an opposite tendency. 

The serum-profiling permitted the detection of 227 out of 372 miRNAs and the 

percentage of miRNAs detected in our study was 61%. A group of eleven upregulated 

miRNAs (let7b-5p, let7f-5p, miR15b-5p, miR16-5p, miR27a, miR30c-5p, miR122-3p, 

miR197-3p, miR223-3p, miR328-3p, miR373-5p) and one downregulated miRNA 

(miR125b-5p) were selected from the profiling. In this case, we observed an overall 

upregulation of miRNAs in SALS. Among the miRNAs reported in our study, three 

have been already described as significantly deregulated in patients with ALS. In 

particular, oppositely to our results, miR27a has been previously reported as 

significantly downregulated in serum from ALS patients compared to controls by 

Tasca and colleagues (Tasca et al., 2016). On the other side, our result was congruent 

with Butovsky and colleagues' study, which described a significant upregulation of 

miR27a in peripheral monocytes from ALS patients (Butovsky et al., 2012). In the 

same way, let7b-5p, and let7f-5p, which were upregulated in our study, resulted 

significantly downregulated in serum from SALS by Freischmidt and colleagues' study 

(Freischmidt et al., 2013) and in plasma from SALS by Takahashi and coleagues’ 

research (Takahashi et al., 2015) respectively. However, a significant increase of 

let7b-5p and let7f-5p has been observed in monocytes from ALS patients (Butovsky 

et al., 2012). Possible reasons for these incongruities could be linked to several 
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technical aspects and lie in the different strategies used to identify the deregulated 

miRNAs. Since our results are congruent with these reported by Butovsky and 

colleagues, who analysed the ALS-miRNA of monocytes, a possible contamination in 

our serum samples from fragments or vesicles of monocytes cannot be excluded.  

To verify the observed deregulation of the twelve miRNAs, their expression levels 

were analysed in each single serum sample included in the pool, using qRT-PCR. 

Among the selected molecules, only three miRNAs were significantly deregulated in 

ALS patients compared to controls; in particular, the miR125b-5p was downregulated 

and miR328-3p and miR373-5p were upregulated. These miRNAs have not been 

previously described in association with neurodegenerative diseases but they 

correlate with several tumours. In particular, it is worth noticing that a significant 

downregulation of miR328 has been previously observed in serum from patients with 

glioblastoma, showing an opposite tendency compared to our result (Wu et al., 2012). 

This observation is consistent with the results obtained for CSF that are discussed 

below.  

Why are miRNA present in the serum and what could be the implications of these 

changes in miRNA profiles for diagnosis and therapy? These are important open 

questions since the role of miRNA in serum has not been completely clarified. It has 

been hypothesized that serum miRNAs could have cytoplasmic origin: they are 

packaged into exosomes and secreted into the intercellular space. Serum exosomes 

are vesicles circulating throughout the body that, picked up by cells via targeted or 

non-targeted ways, deliver packages of miRNAs, which are able to change gene 

expression inside that cell (Creemers et al., 2012). Alternatively, miRNAs could be 

released from cells undergoing apoptosis or necrosis (Valadi et al., 2007). 

Independently from their origin, serum miRNAs are promising molecules able to give 

important indications about mechanisms involved in neurodegeneration.  

In the present study, no associations were found between miRNA levels and ALS 

clinical variables either for CSF or for serum. Moreover, no significant differences 

were present when miRNA levels of patients carrying the C9orf72 expansion were 

compared with those of patients without the expansion.  Although the analysis was 

performed in a relatively small number of patients, these data suggest a possible 
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mutation-independent deregulation of CSF and serum miRNAs. This is in line with the 

results obtained in a recent study of miRNA in the serum of sporadic and familial ALS 

patients, in which deregulated miRNAs revealed the same trend in patients with or 

without mutations in the major ALS genes, including C9orf72 expansion. It is 

hypothesized the presence of common pathogenic denominators connecting defects 

in sporadic ALS and in ALS associated with mutation in several different genes 

(Freischmidt et al., 2014). 

HYPOTHESES ABOUT THE ROLE OF CSF-MIRNAS 

The results obtained from CSF-miRNAs analyses were more promising than these got 

from serum. Indeed, the ROC curve analyses of CSF-miRNAs showed a higher 

diagnostic sensitivity and specificity than those of serum-miRNAs. Among the 

significantly deregulated CSF-miRNAs, miR181a-5p, miR15b-5p and miR21-5p, which 

showed the highest sensitivity and specificity in differentiating ALS from age-

matched controls, have been selected for the subsequent analysis. Interestingly, the 

sensitivity and specificity of these miRNAs were increased when they were paired 

combining the upregulated miRNA with the downregulated miRNAs (miR181a-

5p/miR15b-5p and miR181a-5p/miR21-5p). Therefore, miR15b-5p, miR21-5p and 

miR181a-5p might be strong candidates for new ALS biomarkers. Furthermore, the 

observation that miR181a-5p was downregulated in CSF from AD patients increased 

the application potential of this miRNA as specific marker of ALS.   

Beside their role as potential biomarkers, the deregulated miRNAs could reflect the 

biology of the tissue of origin, providing important insight into disease processes 

responsible for motor neuron degeneration. The majority of miRNAs analyzed in this 

study are molecules with well-know functions and the information about their 

potential role derives mainly from studies of brain tumours. For example, miR15-5p 

has been widely described in cancer and a significant upregulation has been reported 

in the CSF of patients with gliomablastoma (Teplyuk et al., 2012) and glioma 

(Baraniskin et al., 2012).  Abundant data have recently shown a very tight connection 

between miR21 and miR15, particularly in brain tumours. The expression levels of 

miR21 have been described as upregulated in CSF from patients with glioma, 
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glioblastoma and diffuse large B-cell lymphoma (PCNSL) (Sheinerman and Umansky, 

2013; Baraniskin et al., 2011). In addition, the use of miR21 in combination with 

miR15 has been proposed as specific signature for glioma, improving the diagnostic 

accuracy (Baraniskin et al., 2012). Further studies reported a significant upregulation 

of miR21 expression levels in CSF from patients with glioblastoma (Akers et al., 2013; 

Akers et al., 2015), supporting the hypothesis that miR21 could be a marker of glial 

cell proliferation (Garg et al., 2015). Finally, miR181a-5p has been reported as 

downregulated in neuroblastoma, glioblastoma and glioma (Gibert et al., 2014; Conti 

et al., 2009; Shi et al., 2008).  

It is worth noting that in brain tumours the deregulation of these three miRNAs 

displays a trend opposite of that observed in ALS in our study, where miR181a-5p is 

upregulated and miR21-5p and miR15b-5p are downregulated. 

It has been proposed that in the glioma, glioblastoma and astrocytoma carcinogenesis 

these three miRNAs may act in combination as promoters of glial cell proliferation 

(Conti et al., 2009; Shi et al., 2008; Baraniskin et al., 2012). In particular, miR21-5p is 

one of the first miRNAs to be described as an oncomir, since it works as an oncogene 

and its overexpression leads to tumour growth, inhibiting the expression of tumour 

suppressor genes. It has empirically been observed that miR21 leads to the 

downregulation of PDCD4 and modulates the networks of p53 and transforming 

growth factor β (Papagiannakopoulos et al., 2008).  The role of miR-15b in gliomas 

seems to be less defined, since its expression has been reported to be down- or up-

regulated by different research groups. However, recent evidence suggests the 

oncogenic potential of this miRNA in glioma tumorigenesis and malignant 

progression (Pang et al., 2015). Finally, mi181a-5p has been suggested as an anti-

oncomir, which acts as a tumour suppressor in normal tissues. Thus, its 

downregulation leads to cancerous growth increasing the expression of oncogenes in 

astrocytic tumours. In vitro experiments suggested that miR181a-5p triggers growth 

inhibition, apoptosis, and inhibits invasion (Conti et a.l., 2009).  

In the light of this evidence, it can be hypothesized that, whereas the contemporary 

downregulation of miR181a-5p and upregulation of miR21-5p and miR15b-5p are 

associated with apoptotic mechanism inhibition and cell proliferation, the 
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contemporary upregulation of miR181a-5p and downregulation of miR21-5p and 

miR15b-5p we find could be linked to cell death by favouring apoptotic pathways. 

This deregulation could directly involve microglia, which in turn may contribute to 

neuronal damage. In particular, it has been demonstrated that hypoxia, a common 

condition in ALS, induces the upregulation of the Fas ligand (FasL) and the 

simultaneous downregulation of miR- 21 in microglia, influencing neuronal 

apoptosis. Moreover, the ectopic expression of miR-21 partially protects neurons 

from cell death caused by hypoxia-activated microglia (Zhang et al., 2012). Thus, 

deregulated miRNAs could be able to modulate microglia response during 

inflammation after hypoxia, to alter communication between microglia and neurons, 

and finally to promote motor neuron degeneration (Fig. 16).  
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Fig. 16 CSF-miRNAs and their trend in brain tumours and in ALS  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
The picture reports a schematic representation of the opposite deregulation of miR15b, miR21 and 

miR181a in CSF samples from patients with brain tumours and patients with Amyotrophic Lateral 

Sclerosis. The contemporary downregulation of miR181a-5p and upregulation of miR21-5p and 

miR15b-5p in glioma and glioblastoma is associated with apoptotic mechanism inhibition and cell 

proliferation, while the combined upregulation of miR181a-5p and downregulation of miR21-5p and 

miR15b-5p in ALS could be linked to cell death by favouring apoptotic pathways.  
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2 

CONCLUSION  

 

The analyses of miRNAs in CSF and serum permitted the identification of deregulated 

molecules in the biofluids from ALS patients.  

The selected miRNAs in serum are promising but they need further confirmation 

experiments in a larger cohort of patients and controls.  

In CSF, considering the high diagnostic value of combined miR181a-5p, miR15b-5p 

and miR21-5p analyses in this pilot study, we provide initial evidence that identified 

miRNAs could represent promising biomarkers for ALS. If replicated in a larger 

cohort of patients, these molecules may represent a valuable diagnostic tool.  

In this study CSF and serum miRNA levels of ALS patients have been compared to 

those of control subjects not affected by neurological disorders. It will be of 

fundamental importance to extend the comparison to patients affected by other 

neurodegenerative diseases, to evaluate the specificity of deregulated miRNAs as ALS 

biomarkers. 

In perspective, these miRNAs may be used as prognostic biomarkers and as indicator 

of disease progression, to facilitate clinical management of this disease.  

Moreover, beside of the potential role of miRNAs as biomarkers, the finding of a 

deregulated miRNA expression in patients with ALS may provide important insights 

about the pathogenesis of the disease and eventually contribute to develop potential 

future therapeutic approaches.  
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a b s t r a c t

It has been recently reported that the p.His63Asp polymorphism of the HFE gene accelerates disease
progression both in the SOD1 transgenic mouse and in amyotrophic lateral sclerosis (ALS) patients. We
have evaluated the effect of HFE p.His63Asp polymorphism on the phenotype in 1351 Italian ALS patients
(232 of Sardinian ancestry). Patients were genotyped for the HFE p.His63Asp polymorphism (CC, GC, and
GG). All patients were also assessed for C9ORF72, TARDBP, SOD1, and FUS mutations. Of the 1351 ALS
patients, 363 (29.2%) were heterozygous (GC) for the p.His63Asp polymorphism and 30 (2.2%) were
homozygous for the minor allele (GG). Patients with CC, GC, and GG polymorphisms did not significantly
differ by age at onset, site of onset of symptoms, and survival; however, in SOD1 patients with CG or GG
polymorphism had a significantly longer survival than those with a CC polymorphism. Differently from
what observed in the mouse model of ALS, the HFE p.His63Asp polymorphism has no effect on ALS
phenotype in this large series of Italian ALS patients.

! 2015 Elsevier Inc. All rights reserved.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative dis-
order of adult life characterized by a progressive loss of upper
(cortical) and lower (bulbar and spinal) motor neurons. The disease
has an invariably fatal course over a period of 3e5 years. No disease-
modifying therapy is available, with the exception of riluzole, an
antiexcytotoxic drug that prolongs patients’ life by 3 months. The
cause of ALS is still unknown. About 10% of ALS patients have a
family history of ALS or frontotemporal dementia whereas inw90%
of cases the disease appears sporadically in the population. The
most common genes related to ALS are C9ORF72, SOD1, TARDBP, and
FUS, but at least 20 other rarer genes have been identified (Finsterer
and Burgunder, 2014; Renton et al., 2014). In addition, some genes
have been found to modify the phenotype or the survival of ALS.

Polymorphisms of Unc-13 homolog A (UNC13 A) (Chiò et al.,
2013; Diekstra et al., 2012) of nonimprinted in Prader-Willi and
Angelman syndrome 1 (NIPA1) (Blauw et al., 2012) genes and polyQ
intermediate-length expansion of ATXN2 (Chiò et al., 2014) have
been associatedwith a shorter survival,whereas a locus on 1p34.128
has been associatedwith a youngerage at onset (Ahmeti et al., 2013).

Recently, it has been reported that the p.His63Asppolymorphism
of the HFE gene accelerates disease progression in the ALS SOD1
transgenic mouse (Nandar et al., 2014). Conversely, in a small study
on 35 ALS patients, it has been reported that patients carrying the
p.H63D polymorphism of the HFE gene had a significantly longer
survival than those with the wild-type gene (Su et al., 2013).

The aim of this study was to assess the influence of the p.H63D
polymorphism of the HFE gene on the phenotype and survival of a
large series of ALS patients of Italian and Sardinian ancestry.

2. Methods

2.1. Cases

ALS cases were collected through the Italian ALS Genetic
(ITALSGEN) and the Sardinian ALS Genetic (SARDINIALS) consortia

(Chiò et al., 2012, 2014). Cases were patients with definite, probable,
probable-laboratory supported, and possible ALS diagnosed be-
tween 2006 and 2012. A total of 149 cases have been already re-
ported (Restagno et al., 2007). All cases were also screened for most
common ALS genes, that is, C9ORF72, SOD1, TARDBP, and FUS.

2.2. Controls

There were 1302 Italian and 121 Sardinian subjects without
neurologic disorders, age- andgender-matched to cases.Of these,162
Italian subjectshave beenpreviously reported (Restagnoet al., 2007).

2.3. Genotyping

Cases and controls were genotyped using the Illumina NeuroX
SNP array. The NeuroX platform consists of standard Illumina
exome content of approximately 240,000 variants and over 24,000
custom content variants focusing on neurologic diseases (Nalls
et al., 2015). Quality control parameters for genotype calling and
filtering are as previously described (Nalls et al., 2015). Genotypes
for rs1799945 (chr6:26091179, C> G, build 37) were extracted from
the larger NeuroX dataset. SNP genotypes were not confirmed on
another platform such as Sanger sequencing. However, the quality
of genotyping has been assessed using Polar and Cartesian cluster
plots for SNP rs1799945; the quality control metric of genotyping
accuracy for this SNP was 0.835, indicating a high level of precision
in assigning genotypes to samples (Supplementary Fig. 1 ).

2.4. Statistical methods

Comparisons between means were made with the Student’s t-
test or analysis of variance; comparison between categorical

Table 1
Clinical characteristics of Italian and Sardinian ALS cases

Italian ALS, n ¼ 1119 Sardinian ALS, n ¼ 232

Gender (female, %) 494 (44.1%) 92 (39.7%)
Mean age at onset (years) 62.2 (11.7) 60.5 (12.1)
Site of onset (Bulbar, %) 299 (26.7%) 48 (20.7%)
Genetic mutations
Wild Type 1021 (91.2%) 139 (59.9%)
C9ORF72 50 (4.5%) 23 (9.9%)
SOD1 24 (2.1%) 2 (0.9%)
TARDBP 10 (0.9%) 68 (29.3%)
FUS 14 (1.3%) 0

Key: ALS, amyotrophic lateral sclerosis.

Table 2
Frequency of rs1799945 in Italian and Sardinian ALS patients and controls

Genotype CC GC GG Minor allele frequency Total

Italians
Cases 804 (71.8%) 293 (26.2%) 22 (2.0%) 0.151 1119
Controls 948 (72.8%) 322 (24.7%) 32 (2.5%) 0.148 1302

Sardinians
Cases 154 (66.4%) 70 (30.2%) 8 (3.4%) 0.185 232
Controls 79 (65.3%) 38 (31.4%) 4 (3.3%) 0.190 121

Key: ALS, amyotrophic lateral sclerosis.

Table 3
Mean age at onset according to HFE H63D genotype

CC GC GG p Value

Mean age at onset
Italians 62.3 (11.2) 62.2 (11.7) 62.5 (11.2) 0.92
Sardinians 60.2 (12.8) 60.6 (10.5) 65.4 (10.3) 0.78
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variables was made with the c2 test; Levene’s test was used to
confirm the equality of variances. Survival was calculated from
onset to death/tracheostomy or censoring date (October 31, 2014)
using the Kaplan-Meier survival modeling, and differences in sur-
vival were measured by the log-rank test. No patients were lost to
follow up. Multivariable analysis was performed with the Cox
proportional hazards model (stepwise backward) with a retention
criterion of p < 0.1. The significance level was set at p < 0.05. Data
were processed using SPSS statistical package, version 22.0 (IBM
Corporation, Chicago, IL, USA).

2.5. Ethical approval

The study has been approved by the ethical committees of the
involved centers. All patients and controls signed a written
informed consent. Databases were treated according to the Italian
regulations for privacy.

3. Results

A total of 1119 Italian and 232 Sardinian ALS patients have been
included in the study. Patients’ clinical characteristics and genetic
mutations are reported in Table 1.

3.1. HFE genotyping

The frequency of CC, GC, and GG genotypes in Italian and
Sardinian ALS cases and controls is reported in Table 2. No signifi-
cant differences were found in either population. Genotype fre-
quencies are respected Hardy-Weinberg equilibrium in both
cohorts (not shown).

3.2. Clinical characteristics of patients with different genotypes

Patients with CC, GC, and GG genotypes did not differ by age at
onset and site of onset (Tables 3 and 4). No difference of survival
was found considering both the CC/GC/GG phenotypes and the
presence of a G allele in either cohorts of patients (Figs. 1 and 2).
This finding has been confirmed in Cox multivariable analysis.

We also assessed the possible effect of HFE phenotypes in pa-
tients carrying genetic mutations. A list of identified genetic mu-
tations is reported in Supplementary Table 1. No difference was
found in the groups of patients carrying C9ORF72, FUS, and TARDBP
mutations. In the 26 patients with SOD1 mutations, we found an
increased survival in patients with GC or GG compared with CC
genotypes or in patients carrying the G allele (dominant assump-
tion) (p ¼ 0.04; Fig. 3). This finding is confirmed by the multivari-
able Cox model, where the G is retained as an independent
prognostic factor (p ¼ 0.03). A list of all SOD1 mutated cases with
clinical details and HFE status is reported in Table 5.

Table 4
Site of symptom onset according to HFE H63D genotype

Site of symptom onset CC GC GG p Value

Italians
Bulbar 216 78 5 0.91
Spinal 588 215 17

Sardinians
Bulbar 31 15 2 0.93
Spinal 123 55 6

Fig. 1. Italian patients. Survival curves by HFE genotype. CC, median survival time
3.0 years (interquartile range 1.9e5.5); GC/GG, median survival time 3.4 years (inter-
quartile range 2.0e6.7). p ¼ n.s. CC, blue; GC/GG green.

Fig. 2. Sardinian patients. Survival curves by HFE genotype. CC, median survival time
4.7 years (interquartile range 2.4e14.2); GC/GG, median survival time 3.5 years
(interquartile range 2.3e10.3). p ¼ n.s. CC, blue; GC/GG green.

Fig. 3. Italian patients carrying SOD1 mutations. CC, median survival time 2.1 years
(interquartile range 2.6e8.4); GC/GG, median survival time 15.3 years (interquartile
range 1.2e15.3). p ¼ 0.04. CC, blue; GC/GG green.
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4. Discussion

In 2 cohorts of Italian and Sardinian patients, we have found that
the p.H63D polymorphism of theHFE gene does not represent a risk
factor for ALS. Moreover, we showed that the presence of the G
allele does not modify the overall patients’ clinical phenotype and
survival. However, patients with SOD1 mutations carrying the G
allele had a better survival than other patients. In subjects with
C9ORF72, TARDBP, and FUS mutations, the p.H63D polymorphism
did not modify the phenotype and survival.

Several articles have suggested that the p.H63D polymorphism
of HFE represents a risk factor for ALS (Goodall et al., 2005;
Restagno et al., 2007; Sutedja et al., 2007), but others did not
confirm this finding; 2 meta-analyses of literature arrived at
opposite conclusions (Li et al., 2014; van Rheenen et al., 2013). This
discrepancy may arise from several reasons: first, some articles are
based on small, underpowered series; second, in some studies
controls are not matched by ethnic origin to cases. A meta-analysis
of worldwide HFE genotypes showed that the frequency of G
polymorphism ranges from 30% in southern Europe, 20% in
northern Europe, 15% in the Indian subcontinent, 5% in China, and
5% in sub-Saharan Africa (Hanson et al., 2001). Interestingly, the
minor allele frequency observed for rs1799945 among the Italian
samples analyzed in the present study (723 G alleles of 4842 alleles;
minor allele frequency ¼ 0.149) is comparable to its frequency re-
ported in the ExAC browser (9128 G alleles of 66,738 alleles; minor
allele frequency ¼ 0.137; http://exac.broadinstitute.org/variant/6-
26091179-C-G, accessed June 6, 2015).

In our 2 large cohorts of patients of Italian and Sardinian
ancestry, compared with regionally matched controls, we have
found that the p.H63D polymorphism of HFE does not increase the
risk of developing ALS.

Recently, an article on a small series of ALS patients reported a
significantly increased survival of subjects carrying the G allele
compared with those who were homozygous for the C allele of the
HFE gene (Su et al., 2013). The authors also found that the presence
of the G allele was associated with a reduction of SOD1 activity in

the muscle and that SOD1 protein expression was negatively
associated with total disease duration in ALS patients. In a subse-
quent article, the same group reported that a double transgenic
mouse line (SOD1/H67D) carrying the H67D HFE (homolog of hu-
man H63D) and SOD1 (G93A) mutations have a shorter survival and
an accelerated disease progression (Nandar et al., 2014); they
therefore concluded that when HFE is combined with a mutation in
an ALS gene the disease duration could be negatively impacted. The
authors suggested that H63D HFE polymorphism can modify ALS
pathophysiology via pathways involving oxidative stress, gliosis,
and disruption of cellular functions.

Previously, the relationship between survival and HFE poly-
morphisms had been assessed only in a French series of ALS pa-
tients with negative results (Praline et al., 2012). However, in this
article, no distinction between patients carrying or not-carrying
SOD1 mutations was made.

In our series, we found that in both populations the presence of a
G allele or GG/GC phenotypes did not influence overall patients’
survival. We also looked at the patients carrying mutations of major
ALS genes. No effect of HFE status was found in patients with
C9ORF72, TARDBP, and FUS mutations. Conversely, in patients with
SOD1 mutations the presence of a G allele was found to be signifi-
cantly associated with a longer survival. This finding is in contrast
with the reported shorter survival in the double transgenic mouse
line (SOD1/H67D) (Nandar et al., 2014), highlighting the possibility
that genetic interactions in mice compared with humans are bio-
logically different. However, because of the small number of pa-
tients carrying a SOD1mutation in this series, our finding should be
considered with caution, because of the possibility of a type 1 error.

In conclusion, we found that in 2 large cohorts of Italian and
Sardinian patients, HFE p.H63D polymorphism is not a risk factor
for ALS and does not modify the phenotype and survival of patients
with ALS. However, we found a possible interaction between the
presence of a SOD1 genetic mutation and HFE genotype, with better
survival in subjects carrying the G allele. Although based on a small
cohort of patients, this interactionwarrants further studies to better
understand the genetic mechanisms underlying ALS.

Table 5
Clinical characteristics and HFE status in patients with SOD1 mutation

Code Sardinian SOD1 mutation Age at onset Type of onset Gender HFE alleles Alive/dead Duration (years)

P02007-295 N A4V 82.74 S F CC D 2.10
SLA2011-362 N G93D 60.02 S M CC D 0.75
SLA2012-313 N S134N 73.47 S F CC D 2.08
FALS-SI24 N G41S 52.03 S M CC D 0.76
SLA2010-240 N G93D 45.00 S F CC D 6.24
SLA2008-201 N D101G 50.21 S F CC D 1.92
SLA2010-292 N L38V 46.74 S F CC D 0.47
512-SN N N19S 28.14 S F CC D 11.09
SLA2009-24 N E132del 53.20 S M CC D 8.44
SLA2010-495 N D90A heterozygous 85.52 B F CC D 1.52
SLA2009-217 Y A4T 45.68 S M CC D 3.33
SLA2009-28 N G93D 57.95 S F CC D 1.89
2543-SE N N19S 77.70 S F CC D 1.59
SLA2010-489 N D109Y 56.68 S F CC A 7.92
SLA2011-455 N N19S 57.04 S F CC A 3.09
SLA2009-107 N I150T 45.38 S F CC A 8.17
SLA2013-60 N G93D 18.00 S F CC A 2.58
SLA2009-02 N L144F 44.63 S F CC A 4.75
SLA2008-187 N D11Y 56.25 S F GC D 8.42
SLA2008-37 N D90A heterozygous 44.20 S M GC D 15.27
SLA2010-146 N D90N 70.70 S F GC D 0.75
SLA2011-30 N A4V 70.67 S F GC D 1.17
SLA2012-141 N D11Y 40.31 S M GC A 14.18
SLA2009-178 Y A95G 69.18 S M GC A 12.34
SLA2011-197 N D109Y 57.51 S F GC A 5.09
SLA2009-299 N L84F 27.97 S M GG A 4.92

Sardinian: N, no; Y, yes; type of onset: S, spinal; B, bulbar; gender: F, female, M, male; alive/dead: A, alive, D, dead.
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Chromogranins were reported to interact specifically withmutant forms of superoxide dismutase that are linked
to amyotrophic lateral sclerosis (ALS). Particularly, a variation c.1238CNT (p.Pro413Leu) in the chromogranin B
gene, CHGB, has been associated with an earlier age at onset in both familial and sporadic ALS in French/
French–Canadian populations studied.
The aim of our study was to evaluate the P413L chromogranin variation in Italian patients with sporadic ALS. The
study included 366 Italian patients with sporadic ALS and 382 control subjects. Genotyping of the polymorphism
P413L in the CHGB gene was performed and the clinical characteristics of patients were analyzed in relation to
their genotype. Our study on a cohort of Italian patients with SALS and controls failed to confirm an increased fre-
quency of the 413L variant in SALS patients. Furthermore, we did not confirm the previous observation of a dif-
ference of age at onset between T-allele carriers and non-carriers (median age of onset 58.5 vs. 60.2 years of age,
respectively). Our findings do not support the 413L variant as a risk factor for sporadic ALS in the Italian
population.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative dis-
ease characterized by the progressive loss of upper and lower motor
neurons. Inheritance of the disease is seen in approximately 10% of
ALS, with the remainder occurring as apparently sporadic cases
(Wijesekera and Leigh, 2009). Around 25–35% of familial ALS (FALS)
cases have been attributed to mutations in genes including SOD1,
TARDBP, FUS and UBQLN2 (Rosen et al., 1993; Sreedharan et al., 2008;
Vance et al., 2009; Deng et al., 2011). Rare mutations in OPTN, VCP
and FIG4 are also thought to occur for a small proportion of cases
(Andersen and Al-Chalabi, 2011). Recently, a pathogenic expansion of
a non-coding hexanucleotide repeat sequence (GGGGCC) in the
C9ORF72 gene was reported in familial and sporadic forms of ALS
(DeJesus-Hernandez et al., 2011; Renton et al., 2011).

Chromogranins (CgA and CgB) are major constituents of secretory
large dense-core vesicles in neurons (Taupenot et al., 2003) and may
act as chaperone-like proteins promoting secretion of mutant SOD1
(Urushitani et al., 2006) that can activate microglia leading to neuronal
death. Oxidized wild-type SOD1 appears to have similar binding prop-
erties to mutant SOD1 (Furukawa et al., 2006; Rakhit et al., 2004). Ex-
periments on lysates of a neuroblastoma cell line treated with H2O2

showed that oxidized wt SOD1 coimmunoprecipitated with CgB (Ezzi
et al., 2007). In addition, SOD1 and chromogranins have been viewed
to colocalize in aggregates in motor neurons of SALS patients (Schrott-
Fischer et al., 2009), suggesting a potential role for CgB in ALS
pathogenesis.

Gros-Louis et al. (2009) performed a classical candidate gene case–
control study on Chromogranin B (CHGB) variations in ALS patients of
French, French–Canadian, and Scandinavian origins. They found a
significant association between a missense variation c.1238CNT
(rs742710) in exon 4, coding for a leucine in place of a proline at
codon 413 (P413L), and ALS susceptibility. The presence of this variant
conferred an ≈3.3-fold increased risk of ALS in the French/French–
Canadian population studied. Furthermore, this c.1238CNT CHGB
variant would also act as a modifier of disease onset by decreasing the
median age at onset by 7 years in sporadic ALS patients and by as
much as 11 years in familial ALS.
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On this trail, other two studies were performed by two different
groups (Van Vught et al., 2010; Blasco et al., 2011) and did not support
the 413L variant as a risk factor for sporadic ALS in French and Dutch
populations.

Hereinwe present the screening of an Italian cohort of 366 SALS and
382 healthy individuals for the variant c.1238CNT of the CHGB gene.

2. Materials and methods

2.1. Patients

The study included 366 sporadic ALS patients and 382 control sub-
jects of Caucasian origin, belonging to Italian ancestry and living in
Northern and Central Italy.

ALS diagnosis was made accordingly to El Escorial Revisited criteria
(Brooks et al., 2000). Only patients with diagnosis of definite, probable
and probable laboratory supported ALS were included in the study.
Briefly, sites of onset were recorded as spinal vs. bulbar. Age at onset
was defined by the onset of the first symptoms. The survival endpoint
was death or time of initiation of all forms of invasive ventilatory sup-
port. The mean duration of the disease was defined as the time occur-
ring between onset and survival endpoint. Living cases were excluded
from the calculation of the mean disease duration.

The control group consisted of age- and sex-matched individuals
from the same ethnic background with no history of neurological dis-
eases. Characteristics of ALS patients and controls are summarized in
Table 1.

Written consent for genetic analysis was obtained from each indi-
vidual. This study was approved by the local ethics committee in accor-
dance with the ethical standards of the Declaration of Helsinki.

2.2. Genetic analysis

Genomic DNA from each ALS patient was extracted from peripheral
blood leukocytes using standard procedures. Genotyping of the poly-
morphism c.1238CNT in the CHGB gene (NM_001819.2)was performed
by PCR followed by restriction digest analysis using the enzyme MspI.

2.3. Statistical analysis

The estimation of the power of our sample to detect an association
was performed by using the statistical program QUANTO version 1.2.4
(Gauderman, 2002).

Association analyses were carried out by using the software package
SPSS v13.0. Interaction with single nucleotide polymorphisms (SNP)
was tested by χ2 analysis at genotypic and allelic levels. To evaluate
the association of P413L variation with ALS clinical variables, patients
were stratified in different groups for each variable. In particular,
patients were stratified by gender (males/females), age of onset
(b45 years/≥45 years, taking 45 years as arbitrary cut-off to discrimi-
nate early and late onset), and site of onset (spinal/bulbar). Association
analyses were carried out by χ2 analysis or Fischer's exact tests.

Genotype and allele associations with disease duration were esti-
mated with univariate analysis according to the Kaplan–Meier method
using the log-rank test to assess statistical differences between groups.
Analysis was performed considering only deceased patients and

considering both living and deceased individuals, using both censored
and non-censored approaches. Analysis was performed stratifying pa-
tients in carriers and non-carriers of the P413L variation.

ALS onset probability based on age at symptom onset was also
assessed by deriving Kaplan–Meier curves according to P413L polymor-
phism (carriers vs. non-carriers) and using the log-rank test. Unpaired t
test (mean ± standard deviation) was used to calculate and compare
the mean age of onset for each group.

3. Results

Our study had 80% power to detect an odds ratio of≥1.80 given the
known allele frequency and a significance cut-off of 0.05. The studied
SNP was in Hardy–Weinberg equilibrium in both cases and controls
(p N 0.05). Genotype and allele frequencies are shown in Table 2. Rare
T-allele was only found in the heterozygous state both in patients and
controls. No significant difference in distributions was observed in the
two groups.

Association of genotypes and alleles with gender, site of disease
onset (spinal versus bulbar) and age at disease onsetwas also evaluated.
No significant associations were found with the ALS clinical variables
examined. The results are summarized in Table 3. Survival analysis did
not reveal any association of genotypes and alleles with the disease du-
ration, using a censored approach (Table 3), a non-censored approach,
and considering only deceased individuals (data not shown).

There was no association between age at onset and T-allele carrier
status: ALS patients carrying the P413L variation had a median age of
onset of 58.5 ± 15.4 years, compared to 60.2 ± 14.3 years for ALS pa-
tients without the variation (p = 0.59). Similarly, no significant differ-
ence was observed when ALS onset probability based on age at onset
was evaluated by deriving Kaplan–Meier curves according to P413L
polymorphism (p = 0.768) (Fig. 1).

4. Discussion

Chromogranin B belongs to the granin family and is a low affinity,
high capacity calcium binding protein found in the hormone-storing or-
ganelles, the nucleus, and the endoplasmatic reticulum of excitable and
non-excitable cells (Huh et al., 2005).

Evidence for a role of this protein in pathogenesis of ALS has been
described (Rakhit et al., 2004; Urushitani et al., 2006; Furukawa et al.,
2006; Ezzi et al., 2007; Schrott-Fischer et al., 2009). In particular, three
studies tried to investigate the potential role of the polymorphism
c.1238CNT in exon 4 of the CHGB gene in different ALS populations
(Gros-Louis et al., 2009; Van Vught et al., 2010; Blasco et al., 2011).
This SNP is located in the C-terminal region of CgB, crucial for inducing
calcium release (Schmidt et al., 2011), but not within or in proximity of
the known binding site to mutant SOD1, located in a Hsp-like domain
(region 162–285) (Blasco et al., 2011). Moreover, the region containing
the variation has not been conserved during evolution (Blasco et al.,
2011), suggesting that the functional role for this region could be limit-
ed. None of the genome-wide association studies published to date
showed an association of the region containing CHGB with ALS (Van
Es et al., 2009). The first study, conducted by Gros-Louis, reported that
rs742710 of the CHGB gene was associated with ALS susceptibility and
age at onset in a population of 289 French (French or French–Canadian
origins) ALS patients. The other two studies conducted on a large cohort

Table 1
Characteristics of patients with ALS and controls.

ALS patients Controls

No. of subjects 366 382
Gender 194 M/172 F (1.13/1) 214 M/168 F (1.27/1)
Age at blood collection (years) 61.2 ± 15.1 56.4 ± 17.9
Age at onset 60.0 ± 14.4
Bulbar onset 30.0%
Disease duration (months) 35.8 ± 34.6

Table 2
Genotype and allelic distributions of P413L variation in sporadic ALS cases and controls.

Cases (%) Controls (%) p value OR 95% CI

P413L non-carriers (CC) 91.0 89.5 0.593 0.847 0.522–1.376
P413L carriers (TC) 9.0 10.5
Allele C 95.5 94.8 0.604 0.858 0.511–1.442
Allele T 4.5 5.2
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of 1082 Dutch patients and another French ALS population of 540 pa-
tients, respectively, did not find any association of the variation with
an increased risk for developing ALS and with an earlier age at onset
(Van Vught et al., 2010; Blasco et al., 2010); Table 4 reassumes the allele
frequency in the different populations studied.

Therefore, we evaluated the potential role of the coding polymor-
phism c.1238CNT of the CHGB gene, in 366 patients with sporadic ALS
and 382 healthy individuals belonging to Northern and Central Italy.

The frequency of the T-allele in our control group was 5.2%. This
value was higher than those reported in French/French–Canadian
(2.6%, n = 380), Swedish (1.8%, n = 303) (Gros-Louis et al., 2009)
and Dutch (3.5%, n = 1812) (van Vught et al., 2010) control popula-
tions, but it was in line with the other French control populations
(5.5%, n = 504) (Blasco et al., 2011) and with the results in the NCBI
SNP database from European populations (http://www.ncbi.nlm.nih.
gov/SNP/) that reports a frequency of the T-allele of 4.2%.

We are aware that French from France and French from Quebec are
clearly distinct populations, indeed several studies highlight the great

variety in types of relatedness present in the French Canadian founder
population (Gauvin et al., 2014).

These data underline a distribution of T-allele quite uniform in
Western–Southern Europe, but also a high variability among popula-
tions of different ethnic backgrounds.

Regarding the frequency of the mutated allele in SALS pa-
tients, we observed that the Italian and the French–Caucasian
populations showed similar values (4.5% and 5.3% respectively)
(Blasco et al., 2011). In the Dutch population, the frequency of
the T-allele in SALS patients was lower (3.4%), however in these
three populations there were no significant differences between
patients and controls. On the contrary, Gros-Louis and colleagues
reported a higher frequency of the T-allele in SALS patients in the
French–Canadian population (8.3%), and a very low frequency in
the Swedish population (2.6%). Anyway, in both cases there was
an association trend between the presence of rare allele and the
risk of ALS.

We also evaluated the influence of the c.1238CNT on the age at onset
in the group of SALS patients. The T-allele was associatedwith an earlier
age at onset by a decade in SALS French/French–Canadian and Swedish
populations (53.3 years of age for the T-allele carriers versus 59.7 years
of age for the non-carriers) (Gros-Louis et al., 2009). In our sample there
was no relation between T-allele and age at onset (median age at onset:
58.5 vs. 60.2 years, respectively), in agreement with the data reported
for French–Caucasian and Dutch populations (Blasco et al., 2011; van
Vught et al., 2010).

Our work gives additional information in understanding the role of
rs742710 of the CHGB gene in ALS. We can conclude that, in agreement
with the data reported for French–Caucasian andDutchpopulations, the
rs742710 SNP does not confer an increased risk for developing ALS and
an early age at onset on an Italian population.
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Table 3
Genotype and allelic distributions of P413L variation for ALS clinical variables.

Gender a Age at onset b45 years/≥45 yearsa Site of onseta

Spinal/bulbar
Survivalb

Censored
ALS onset probability based on ageb

Genotype p value 0.715 1.000 0.422 0.532 0.768
Allele p value 0.605 0.552 0.387 0.532 0.768

Key: ALS, amyotrophic lateral sclerosis.
a p values were calculated using χ2 or Fischer's exact tests.
b Survival analysis and ALS onset probability based on age of onset were estimated using the Kaplan–Meier method and compared by the log-rank test. Regarding the alleles, patients

were dichotomized in carriers and non-carriers of the risk allele (TC vs. CC).

Fig. 1. Onset probability of ALS patients among carriers and non-carriers of the P413L var-
iant. Gray curve corresponds to P413L variant carriers and black curve corresponds to non-
carriers of P413L variant.

Table 4
Allelic distributions of T allele (c.1238CNT) in different SALS populations.

SALS Controls Population References

40/482 (8.3%) 20/760 (2.6%) French/French Canadian Gros-Louis et al. (2009)
16/630 (2.6%) 11/606 (1.8%) Swedish Gros-Louis et al. (2009)
70/2056 (3.4%) 127/3624 (3.5%) Dutch Van Vught et al. (2010)
57/1080 (5.3%) 55/1008 (5.4%) French Caucasian Blasco et al. (2011)

SALS, sporadic amyotrophic lateral sclerosis.
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Abstract Macrophage migration inhibitory factor (MIF)
is a proinflammatory cytokine expressed in many different

cell types and implicated in the pathogenesis of numerous

acute and chronic inflammatory diseases. Variable Number
of Tandem Repeat (VNTR) CATT5–8 at position -794 in

the promoter of the MIF gene has been associated with

several human pathological conditions. Different methods
for genotyping the CATT tetranucleotide repeats have been

described. Here, we report, for the first time, the complete

characterization of the CATT5–8 repeat polymorphism
using exclusively the denaturing high-performance liquid

chromatography (DHPLC) technique under partially dena-

turing conditions. This approach, based on a step-by-step
DHPLC protocol, allowed the accurate determination of all

the homozygous and heterozygous genotypes in 350 DNA

samples from control subjects. The results were validated by
comparison to DNA sequencing, and the DHPLC approach

was accurate, sensitive, and highly reproducible. Data from

the current study demonstrate that this method of analysis by
DHPLC may represent a powerful and sensitive alternative

tool for a rapid and efficient genotyping of short tandem
repeats presenting a limited number of alleles.

Keywords Macrophage migration inhibitory factor
(MIF) ! Denaturing high-performance liquid

chromatography (DHPLC) ! Genotyping ! Polymorphisms !
Variable number of tandem repeat (VNTR)

Introduction

Macrophage migration inhibitory factor (MIF) is a proin-

flammatory cytokine which is implicated in the pathogen-
esis of many acute and chronic inflammatory diseases such

as sepsis, rheumatoid arthritis, multiple sclerosis, and

Alzheimer’s disease [1–3].
MIF is expressed in many different cell types; in par-

ticular, it is produced by cells and tissues that are in direct

contact with natural environment, such as the lung, the
epithelial lining of the skin, and gastrointestinal and geni-

tourinary tracts [1]. MIF is rapidly released by immune

cells in response to microbial products, to proinflammatory
cytokines, or during antigen-specific activation, and it has

potent autocrine and paracrine effects that promote cell

growth and survival [1]. Distinctive features of MIF
include its capacity to counter-regulate the immunosup-

pressive effects of glucocorticoids on immune cells and

sustain macrophage proinflammatory functions by inhibit-
ing p53-dependent apoptosis [4, 5].

The human MIF gene spans less than 1 kilobase and is
highly conserved. Two polymorphisms of MIF gene have

been associated with human pathological conditions.

Variable Number of Tandem Repeat (VNTR) CATT tet-
ranucleotide sequence, repeated five to eight times at

position -794 (rs5844572), correlates with disease severity

in patients with rheumatoid arthritis [6], and G-to-C single-
nucleotide polymorphism (SNP) at position -173 (rs755622)

is associated with systemic-onset juvenile arthritis [7, 8].

CATT tetranucleotide is noted to influence MIF gene
expression; in particular, the CATT5 allele is typically refer-

red as a ‘‘low-expression’’ allele, and the CATT6, CATT7, and

(rare) CATT8 alleles are considered ‘‘higher-expression’’
alleles [6]. The haplotype CATT7/-173*C (contemporary

presence of -173C allele and the CATT7 repeat in the same
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chromosome) has been associated with susceptibility to

inflammatory arthritis and atopy [8]. It is known that the dis-
tribution of MIF CATT allele frequencies is different in sub-

jects from various populations [9].

Several methods have been previously described for
genotyping the CATT tetranucleotide at position -794 in

the MIF gene. These methods are based on PCR and single-

strand conformation polymorphism (SSCP) [10], capillary
electrophoresis on automated DNA sequencing system

[6, 11, 12], or thin-film biosensor chips [13].
Here, we describe the use of the denaturing high-

performance liquid chromatography (DHPLC) tech-

nique as a rapid, accurate, and cost-effective method to
define the CATT tetranucleotide number variation in

the MIF gene.

DHPLC is a technique commonly used to identify
single-nucleotide substitutions, as well as small insertions

and deletions, for mutation detection and genotyping [14].

At partially denaturing conditions, the separation chem-
istry is essentially based on sequence. After heating to

95 "C and slowly cooling, the PCR product of individu-

als, who are heterozygous in a single-nucleotide mutation
or polymorphism, hybridizes and forms a mixture of

hetero- and homoduplexes. Mutation detection analysis on

the DHPLC system is performed at a temperature suffi-
cient to partially denature (melt) the DNA heteroduplexes.

The differential retention time (RT) on the cartridge

allows for a rapid mutation or SNP detection. On the
other hand, under non-denaturing conditions (50 "C),

the sequence is not a factor in determining the elution

behavior of the DNA, but the separation chemistry is
based on size only. Thus, insertions and deletions are

usually separated using non-denaturing conditions.

Although the -794 CATT tetranucleotide polymorphism
results in different sizes depending on the number of

CATT repeats, in this work, the genotyping of the poly-

morphism has been performed exclusively by partially
denaturing conditions. This analysis method has shown a

better performance in genotyping than non-denaturing

condition analysis and has provided high accuracy and
precision in repeat determination.

Materials and Methods

DNA Samples

After informed consent, in accordance with local ethical

committee guidelines, blood samples for DNA analysis
were collected from 350 healthy subjects belonging to

Italian ancestry. Genomic DNA was isolated from periph-

eral whole blood using standard procedures [15].

The whole sample series was previously genotyped for

CATT tetranucleotide repeats by direct sequencing (ABI
310 Genetic Analyzer, Applied Biosystems).

PCR Analysis

The analysis of the CATT tetranucleotide repeated at posi-

tion -794 in the regulatory region in MIF gene was carried
out by PCR amplification using the following primers:

Forward 50-CTGCAGGAACCAATACCCAT-30; Reverse
50-GTCCCCGAGTTTACCATTAG-30. The PCR reaction

mixture (50 ll) contained AmpliTaq Gold PCR Master mix

(Applied Biosystems), 0.2 lM each of the two oligonu-
cleotide primers, and 20 ng of DNA. Cycling conditions

consisted of initial denaturation and Taq polymerase acti-

vation at 95 "C for 18 min, followed by 30 cycles of 1 min at
94 "C, 1 min at 60 "C, 1 min at 72 "C, and a final extension

of 10 min at 72 "C. The PCR products (345 bp) were visu-

alized in a 2.5 % agarose gel containing ethidium bromide.

Denaturing High-Performance Liquid Chromatography

(DHPLC)

PCR products were denatured for 10 min at 95 "C and then

slowly reannealed by ramping the temperature down to
56 "C for 5 min. A 8 ll aliquot of each PCR product was

injected into the DHPLC cartridge (Transgenomic Wave-

MD Nucleic Acid Fragment Analysis System, Transge-
nomic Inc.) and eluted at a flow rate of 0.9 ml/min (run

time: 7.5 min) with a mobile phase consisting of a mixture

of buffer A (TEAA 0.1 M) and buffer B (TEAA 0.1 M and
acetonitrile 25 %). The NavigatorTM software (Vers. 1.6.4)

was utilized to calculate both the specific temperature of

analysis (57.3 "C) and the linear acetonitrile gradient buf-
fer (buffer B was increased from 50.9 to 55.9 % in the first

30 s and then from 55.9 to 64.9 % in the following 5 min).

Finally, the eluted DNA fragments were detected at
260 nm. The use of the Transgenomic Wave-MD system

allows carrying out 96 chromatographic runs in a day.

In order to define the genotype of homoduplex samples,
each homoduplex PCR product was mixed with an

approximately equimolar volume of a control sample pre-

viously characterized as homozygous CATT5/5. To distin-
guish between the different heteroduplex samples, each

heteroduplex PCR product was mixed with an approxi-

mately equimolar volume of a control sample previously
characterized as homozygous CATT7/7. The mixtures were

denatured by heating at 95 "C for 10 min and allowed to

cool down to 56 "C for 5 min. 8 ll of each sample were
then loaded on the DHPLC cartridge and analyzed as

described above. In the case of two-step analysis, the time

requested for the complete genotyping from the PCR
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product includes 2 steps of denaturation (15 min/each step)

and 2 DHPLC runs (7.5 min/each run), for a total of about
45 min.

Results

The first step of the DHPLC analysis was conducted in a
subgroup of 50 samples, previously genotyped by auto-

mated sequencing, including all the six possible genotypes
(CATT5/5, CATT6/6, CATT7/7, CATT5/6, CATT5/7, and

CATT6/7). The CATT8 allele was not present in our pop-

ulation, in agreement with previous studies failing to detect
this allele or reporting a very low frequency in European

populations [2, 16–18]. The homozygous genotypes CATT5/5,

CATT6/6, and CATT7/7 resulted in a chromatogram profile
showing a single peak in DHPLC analysis, as depicted in

Fig. 1a. PCR products heterozygous for CATT5/6 and

CATT6/7 resulted in the same identical heteroduplex profile,
characterized by two different peaks (defined ‘‘first

heteroduplex profile,’’ Fig. 2a). The PCR products hetero-

zygous for CATT5/7 showed a different characteristic het-
eroduplex profile displaying two clearly resolved peaks

(defined ‘‘second heteroduplex profile,’’ Fig. 2d) immedi-

ately identifiable.

Homozygote Characterization

The first DHPLC analysis was not able to discriminate

among homozygous genotypes CATT5/5, CATT6/6, and
CATT7/7. For this reason, each sample showing a single

elution peak was further analyzed by preparing an equi-

molar mixture with a PCR product obtained from a pre-
viously characterized homozygous CATT5/5 control DNA

to generate potential heteroduplex species and distinguish

the homozygosity for CATT5, CATT6, and CATT7 alleles.
No alterations of chromatogram elution profile were

detected for CATT5/5 homozygote (Fig. 1b). Homozygous

CATT6/6 genotypes resulted in a characteristic heterodu-
plex chromatogram profile with two well-resolved peaks

Fig. 1 Flowchart of DHPLC
analysis for homozygote
characterization. DHPLC
elution profile of homozygous
genotype is depicted in (a).
After the first step, amplicons
with homoduplex
chromatogram profile were
mixed in approximately
equimolar proportions with a
control sample previously
characterized as homozygous
CATT5/5. This allowed
differentiating the three
homozygous genotypes.
b Homoduplex profile of a
sample with the same genotype
as the added control sample
(homozygous CATT5).
c Heteroduplex profile of a
sample that differed from the
control for one tetranucleotide
repeat (homozygous CATT6).
d Heteroduplex profile of a
sample that differed from the
control for two repeats
(homozygous CATT7). On the
top of each peak, the specific
heteroduplex or homoduplex
condition is indicated
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(Fig. 1c). The second peak showed a typical retention time

of 3.62 min ± 0.036. Homozygous CATT7/7 genotypes
resulted instead in a heteroduplex elution profile charac-

terized by two less closely spaced peaks, with a typical RT

for the second peak of 4.21 min ± 0.074. In addition, the
second peak showed a distinctive weak shoulder in the left

side (Fig. 1d).

Heterozygote Characterization

In order to distinguish between the PCR products hetero-

zygous for CATT5/6 and CATT6/7, we analyzed in DHPLC

all heteroduplex samples showing the first heteroduplex
profile (Fig. 2a) after mixing them with the PCR product

from a previously characterized CATT7/7 control DNA. No

changes in the elution profiles were found for heterozygous
CATT6/7 samples (Fig. 2b). The heterozygous condition

CATT5/6 showed a DHPLC chromatogram profile charac-

terized by a triple peak pattern, as depicted in Fig. 2c.

System Validation

In the second step of the analysis, the remaining 300

samples were examined by DHPLC in a blinded experi-

ment. We first performed the DHPLC analysis and only
after the examination of the chromatograms, the results

were compared to those of the sequencing in order to

validate the accuracy of the DHPLC technique. This
comparison showed a 100 % match between the results

obtained from the two methods.

The precision of the method, defined as the ability to
obtain a reproducible chromatogram elution profile of PCR

products from injection to injection using the DHPLC, was

determined for a set of 100 samples analyzed in different
days. All the included chromatogram profiles displayed

distinguishable peaks (one, two, three peaks) and a mini-

mal peak intensity of 2 mV. The retention time (RT) in
heteroduplex species was considered and measured for

both the first and the last peak in heteroduplex chromato-

grams. We subsequently determined the mean of D-Het
(difference in RT between the two heteroduplex peaks) and

Standard Deviation (SD) in both the first heteroduplex

profile and the second heteroduplex profile. In particular,
we revealed a D-Het of 0.617 ± 0.027 min for the first

heteroduplex profile (Fig. 3a) and a D-Het of 0.985 ±

0.075 min for the second heteroduplex profile (Fig. 3b), indi-
cating a good reproducibility of the method.

Discussion

In this study, we describe, for the first time to our knowl-
edge, the use of the DHPLC technique for the complete

characterization of CATT tetranucleotide at position -794

in the MIF gene.
The DHPLC analysis has been performed exclusively

under partially denaturing conditions and has allowed the

accurate determination of all the homozygous and hetero-
zygous genotypes. Under the partially denaturing condition,

the CATT tetranucleotide number variations may be detected

based on their peak retention pattern, following a simple
flowchart. The first DHPLC analysis allows defining homo-

duplex and heteroduplex profiles and thus distinguishing
homozygous from heterozygous genotypes. The samples

heterozygous for alleles that differ in two tetranucleotide

repeats (CATT5/7) are immediately identifiable. In this first
step, however, it is not possible to define the exact genotype of

the other heterozygous (CATT5/6 and CATT6/7) and homo-

zygous (CATT5/5, CATT6/6, and CATT7/7) samples. The
second step of DHPLC analysis is then performed after

mixing PCR samples with a PCR product obtained from a

previously characterized homozygous control DNA: This
allows discriminating all the possible homozygous and het-

erozygous genotypes. It is worth noting that the CATT8 allele

was not present in our population, either at a heterozygous or
at a homozygous state. We can hypothesize that the approach

described above could enable the identification of the CATT8

allele using a mixture with an appropriate PCR product pre-
viously characterized, although this protocol needs to be

validated before using in genotyping.

A similar DHPLC analysis has been formerly performed
for the partial genotyping of the TA six and seven repeats

at position -53 in the promoter of UGT1A1 gene [19]. In

this case, a two-step DHPLC analysis under partially
denaturing conditions was used to identify TA6/7 hetero-

zygous samples at the first step and to distinguish between

homozygous TA6/6 and TA7/7 genotypes at the second step
by mixing PCR products with the PCR of a sample

homozygous for TA6/6 [19]. The DHPLC use is thus

analogous to that typically used to identify point mutations
in a homozygous state. Here, we propose a more complete

approach, where DHPLC analysis allows the complete -794

CATT genotyping in MIF gene, including the accurate
characterization of heteroduplex profiles corresponding to

different heterozygous conditions.

The performance of the method has been evaluated and
this approach has been found to be accurate and sensitive

(with a 100 % match with sequencing results) and highly

reproducible (with a SD of the D-Het between heterodu-
plex peaks less than 8 %). The interpretation of the chro-

matograms is particularly simple and rapid and the

retention times (RT) in heteroduplex species are a constant
characteristic making the interpretation of results easier.

The method presents several advantages in comparison

to other techniques usually employed in this kind of anal-
ysis. The DHPLC analysis conducted under a partially
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denaturing condition is more sensitive than the analysis

under non-denaturing conditions, often used for determin-
ing the PCR product size. This analysis is rapid (about

20 min per sample), but in our experience it is not always

very sensitive, in particular for PCR products which differ
in only a few base pairs. In comparison to SSCP analysis,

the DHPLC analysis applied to MIF -794 CATT geno-

typing is easier, more rapid, and more reproducible since it
is an almost completely automated system that does not

need to prepare and handle gels and reagents and strongly

reduces the variability among different experiments and
different operators [20, 21]. In addition, since the DHPLC

is a technique usually available in the most of the genetic

laboratories, its use is more accessible in comparison to the
innovative methodology based on thin-film biosensor

chips, which shows a high performance, but requires spe-

cific tools and technologies [22]. DHPLC analysis has a
reliability similar to capillary electrophoresis on automated

DNA analyzer; however, it is less expensive since it does

not need specific labeled reagents: The cost per sample is
about 1 € for one-step analysis and about 1.5 € for two-step

analysis. The method shows an accuracy comparable with

that of direct sequencing (100 % of matching), but it is
more time effective and cost effective [23].

Fig. 2 Flowchart of DHPLC
analysis for heterozygote
characterization. DHPLC
chromatogram of first
heteroduplex profile is depicted
in (a). The amplicons with this
heteroduplex profile were mixed
in approximately equimolar
proportions with a control
sample previously characterized
as homozygous CATT7/7. This
allowed differentiating two
heterozygote genotypes:
b Elution profile without
changes with respect to the first
heteroduplex chromatogram,
corresponding to a sample
heterozygous CATT6/7.
c Elution profile with the
characteristic triple peak,
corresponding to heterozygous
CATT5/6. d DHPLC
chromatogram of second
heteroduplex profile,
corresponding to heterozygous
genotype CATT5/7. On the top
of each peak, the specific
heteroduplex or homoduplex
condition is indicated

Fig. 3 Representation of the
critical parameters of D-Het for
system validation. The
difference in retention time
between the peaks (D-Het) in
the first (a) and the second
(b) heteroduplex profiles is
indicated in
minutes ± Standard Deviation
(SD)
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In conclusion, we provide evidence that the partially

denaturing DHPLC analysis is an excellent alternative
approach for MIF -794 CATT genotyping with respect to

several techniques used in recent years. Since VNTR is

involved in the pathogenesis of various diseases [24], we
suggest that this DHPLC protocol could be used for the

rapid and efficient screening of short tandem repeats

identified in other genes.
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M. A., Anaya, J. M., & Martı́n, J. (2007). Macrophage migration

inhibitory factor gene influences the risk of developing tubercu-
losis in north western Colombian population. Tissue Antigens, 70,
28–33.

12. Meyer-Siegler, K. L., Vera, P. L., Iczkowski, K. A., Bifulco, C.,
Lee, A., Gregersen, P. K., et al. (2007). Macrophage migration
inhibitory factor (MIF) gene polymorphisms are associated with
increased prostate cancer incidence. Genes and Immunity, 8,
646–652.

13. Zhong, X. B., Leng, L., Beitin, A., Chen, R., McDonald, C.,
Hsiao, B., et al. (2005). Simultaneous detection of microsatellite
repeats and SNPs in the macrophage migration inhibitory factor
(MIF) gene by thin-film biosensor chips and application to rural
field studies. Nucleic Acids Research, 33, e121.

14. Marsh, D. J., & Howell, V. M. (2010). The use of denaturing high
performance liquid chromatography (DHPLC) for mutation
scanning of hereditary cancer genes. Methods in Molecular
Biology, 653, 133–145.

15. Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple
salting out procedure for extracting DNA from human nucleated
cells. Nucleic Acids Research, 16, 1215.

16. Lehmann, L. E., Book, M., Hartmann, W., Weber, S. U., Schewe,
J. C., Klaschik, S., et al. (2009). A MIF haplotype is associated
with the outcome of patients with severe sepsis: a case control
study. Journal of Translational Medicine, 7, 100.

17. Makhija, R., Kingsnorth, A., & Demaine, A. (2007). Gene
polymorphisms of the macrophage migration inhibitory factor
and acute pancreatitis. Journal of the Pancreas, 8, 289–295.

18. Grigorenko, E. L., Han, S. S., Yrigollen, C. M., Leng, L., Mizue,
Y., Anderson, G. M., et al. (2008). Macrophage migration
inhibitory factor and autism spectrum disorders. Pediatrics, 122,
e438–e445.

19. Pirulli, D., Giordano, M., Puzzer, D., Crovella, S., Rigato, I.,
Tiribelli, C., et al. (2000). Rapid method for detection of extra
(TA) in the promoter of the bilirubin-UDP-glucuronosyl trans-
ferase 1 gene associated with Gilbert syndrome. Clinical Chem-
istry, 46, 129–131.

20. Bunn, C. F., Lintott, C. J., Scott, R. S., & George, P. M. (2002).
Comparison of SSCP and DHPLC for the detection of LDLR
mutations in a New Zealand cohort. Human Mutation, 19, 311.

21. Mlakar, S. J., & Ostanek, B. (2011). Development of a new
DHPLC assay for genotyping UGT1A (TA)n polymorphism
associated with Gilbert’s syndrome. Biochemia Medica (Zagreb),
21, 167–173.

22. Frueh, F. W., & Noyer-Weidner, M. (2003). The use of dena-
turing high-performance liquid chromatography (DHPLC) for the
analysis of genetic variations: impact for diagnostics and phar-
macogenetics. Clinical Chemistry and Laboratory Medicine, 41,
452–461.

23. Mogensen, J., Bahl, A., Kubo, T., Elanko, N., Taylor, R., &
McKenna, W. J. (2003). Comparison of fluorescent SSCP and
denaturing HPLC analysis with direct sequencing for mutation
screening in hypertrophic cardiomyopathy. Journal of Medical
Genetics, 40, e59.

24. Bois, P., & Jeffreys, A. J. (1999). Minisatellite instability and
germeline mutation. Cellular and Molecular Life Sciences, 55,
1636–1648.

Mol Biotechnol (2013) 54:874–879 879

123



Lack of Mutations of the Telomerase RNA Component
in Familial Papillary Thyroid Cancer with Short Telomeres
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Stefania Marchisotta,1 and Furio Pacini1

Background: The occurrence of familial papillary thyroid cancer (FPTC) is well established but no susceptibility
genes for this disease have been discovered. Our group has recently demonstrated that patients with FPTC have
shorter telomeres, not associated with mutations in telomerase reverse transcriptase, gene than patients with
sporadic papillary thyroid cancer (SPTC), healthy subjects (HS), and unaffected family members (UFMs). Several
diseases, however, have short telomeres associated with mutations in the telomerase RNA component (TERC)
gene or in the shelterin complex (POT1, RAP1, TIN2, TPP1, TRF1, and TRF2) genes. The objective of the present
study was to verify whether short telomeres observed in FPTC patients were related to mutations in TERC or
shelterin genes.
Methods: Sixty-six patients with FPTC, 46 UFMs, 111 patients with SPTC, and 153 HS were analyzed by
polymerase chain reaction followed by denaturing high performance liquid chromatography analysis and direct
sequencing for the presence of TERC or shelterin gene mutations. When present, single-nucleotide polymor-
phisms were tested by v2 analysis at the genotypic, allelic, and haplotypic levels.
Results: The entire sequence of the TERC gene was analyzed with particular attention to known mutations
known to be associated with short telomeres. All samples appeared to be homozygous wild type for A-771G, C-
99G, G305A, G322A, C323T, C408G, G450A, T467C, G508A, A514G, G623A, and C727G substitutions and for
the 378D/30 deletion in the TERC gene. In addition, upon analysis of all samples for shelterin proteins, we
observed a significant decrease in POT1 and RAP1 protein expression in the blood of FPTC patients compared
with SPTC subjects. However, no mutations or polymorphisms were found when in the coding sequences of
both genes.
Conclusions: To our knowledge this is the first study of TERC mutations or alterations in the shelterin complex
in relation to FPTC. Shorter telomeres observed in FPTC are not linked to mutations or polymorphisms in TERC,
POT1, or RAP1 genes.

Introduction

Differentiated thyroid cancer (DTC), although
mostly sporadic, presents as familial occurrence (familial

nonmedullary thyroid cancer [FNMTC]) with a prevalence of
up to 10% (1,2). The risk of developing FNMTC in first-degree
relatives of subjects with DTC is significantly higher (between
3.2 and 8.6) than in the general population (3,4). Several rare
hereditary syndromes caused by germline mutations of
known tumor suppressor genes are associated with the oc-
currence of DTC, mainly of the papillary histotype (familial
papillary thyroid cancer [FPTC]), such as familial adenoma-
tous polyposis, Cowden syndrome, Werner syndrome, and

Carney complex (5–8). However, most FPTC patients have
thyroid cancer as the only disease manifestation. At the mo-
ment, no candidate gene(s) has been discovered for FPTC and
only in a minority of cases a locus of susceptibility has been
identified, these being the locus TCO on 19p13.2 (9), the locus
PRN1 on 1q21 (10), and the locus NMTC1 on 2q21 (11). Recent
studies (12,13) carried out in our Unit provided clinical and
molecular evidence that FPTC displays the features of clinical
‘‘anticipation’’ and that there are germline alterations in the
telomere–telomerase complex. Patients with FPTC, compared
with those with sporadic cancers, have significantly shorter
telomeres and increased telomerase reverse transcriptase
(TERT) activity.
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Short telomeres and inherited or acquired genetic defects in
telomere maintenance have been associated with an increased
risk of developing familial diseases such as dyskeratosis
congenita (DC) syndrome (14) and familial forms of cancer
such as head, neck, lung, breast, and renal cancers (15). Sev-
eral mutations in telomerase RNA component (TERC) gene
are associated with benign and malignant diseases such as DC
(16), aplastic anemia (17,18), systemic sclerosis (19), myelo-
dysplastic syndrome (18), and generally with a reduction in
mean telomere length (20). Similarly, recent studies have
highlighted an important role of the shelterin complex in
cancer development (21). This complex is formed by six pro-
teins that normally contribute to shape and safeguard human
telomeres. In particular three shelterin subunits, TRF1, TRF2,
and POT1, directly recognize the TTAGGG repeats. They are,
moreover, interconnected by three additional shelterin pro-
teins, TIN2, TPP1, and RAP1, forming a complex that allows
cells to distinguish telomeres from extra-telomeric sites of
DNA damage. Without the protective activity of shelterin,
telomeres are no longer hidden from the DNA damage control
mechanisms and chromosome ends are inappropriately pro-
cessed by DNA repair pathways (22).

Based on these observations, the aim of the present work
was to determine whether there are variations in TERC gene
in the peripheral blood of patients with FPTC, perhaps ex-
plaining the telomere shortening observed in these patients.
Shelterin proteins were also investigated to determine whe-
ther there were alterations in mRNA expression or the pres-
ence of gene mutations.

Patients and Methods

After informed consent in accordance with local ethical
committee guidelines, blood samples for DNA analysis were
collected from 66 patients with FNMTC (referred here as
FPTC from the moment that all display the papillary histotype
of the disease) (belonging to 38 kindreds), 46 unaffected
family members (UFMs) (belonging to 23 kindreds), 111
sporadic papillary thyroid cancer (SPTC) patients, and 153
healthy subjects (HS). FPTC was defined as the presence of at
least one first-degree relative with DTC. The HS were selected
from volunteers of the ‘‘Blood donor centre’’ of the hospital of
Siena (Italy). In these subjects, autoimmune diseases, cardio-
vascular diseases, and diabetes were excluded. Patients and
HS with a history of radiation exposure and malignancies
were excluded.

DNA extraction

Genomic DNA was extracted using salting out procedures.
For each sample DNA concentration was assessed by spec-
trophotometry and stock solutions of 200 ng/50 lL were
prepared and used for following experiments.

Search for TERC mutation

To determine the presence of TERC mutations, 25 lL/
samples of AmpliTaq Gold PCR Master mix (Applied Bio-
systems) was been added to 1.5 mM MgCl2, 400 lM dNTPs,
and 300 nM of specific primers (primer sequences, annealing
temperatures, and denaturing high performance liquid chro-
matography [DHPLC] conditions are available upon request)
designed to sequence the entire gene in a final volume of

50 lL. Polymerase chain reaction (PCR) products were visu-
alized with ethidium bromide in a 2% agarose gel. Samples
were subsequently denatured (10 minutes at 95!C followed by
5 minutes at 56!C) and analyzed with the DHPLC (Trans-
genomic Wave Nucleic Acid Fragment Analysis System-
Transgenomic Inc.) technique to confirm the presence/absence
of mutations using specific temperatures and applying gradient
conditions as calculated by the Navigator" software (Vers.
1.6.4). Samples with different elution profile were subjected to
direct pyrosequencing (99.5% accuracy) (Primm).

Shelterin protein expression

RNA was extracted from fresh blood of 51 FPTC and 82
SPTC patients using QIAamp RNA Blood Mini Kit (Qiagen).
One microgram of each sample was retrotranscribed into
complementary cDNA using iScript cDNA Synthesis Kit
(Biorad) and 200 ng/lL was evaluated by real-time PCR us-
ing the MJ Mini Thermocycler (Biorad) in a mix containing 2 ·
iQ" Supermix (Biorad) and 20 · TaqMan primer/probes
(Applied Biosystems) in a final volume of 25 lL. Annealing
temperature was 60!C for 35 cycles. Each sample was run in
duplicate and for each run efficiency of real time PCR (RT-PCR)
(E), slope values, and correlation coefficients (R2) were deter-
mined. The expression level was calculated as DDCt and re-
ported as 2 -DDCt against beta-actin and RPL13 chosen as
reference genes by two different software programs for the
selection of optimal control genes in qRT-PCR studies,
Normfinder and GenNorm. The GenNorm provides a ranking of
the tested genes, based on their expression stability, deter-
mining the two most stable reference genes or a combination
of multiple stable genes for normalization. NormFinder iden-
tified the optimal normalization genes among a set of candi-
dates according to their expression stability value in a given
sample set and a given experimental design.

Search for POT1 and RAP1 point mutations

To determine the presence of POT1 and RAP1 point mu-
tations, specific primers were designed using Vector NTI
Software# to cover all the coding sequence of the genes (see
Ensembl database). For each sample (66 FPTC, 111 PTC, 46
UFMs, and 153 HS), 200 ng of DNA was amplified in a final
volume of 50 lL containing 2 · AmpliTaq Gold PCR Master
mix (Applied Biosystems) and 300 nM of specific primers
(primers and PCR conditions are available upon request).
Samples were subsequently denatured and analyzed with the
DHPLC (Transgenomic Wave Nucleic Acid Fragment Ana-
lysis System-Transgenomic Inc.) technique to confirm the
presence/absence of mutations. Samples with different elu-
tion profiles were subjected to pyrosequencing (Primm)
(DHPLC conditions are available upon request).

Statistical analysis

Statistical analysis was performed using the software
package SPSS version 13.0 (IBM Company). Interaction with
single-nucleotide polymorphisms (SNPs) was tested by v2

analysis at genotypic, allelic, and haplotypic levels. p < 0.05
was considered statistically significant. Student’s t test was
used to calculate the difference in the expression levels of
shelterin proteins using StatView for Windows, ver.5.00.1
(SAS Institute).
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Results

Search for TERC mutations

Samples were tested for known, generally disease-associated,
TERC variations (Table 1) together with a complete sequencing
of the entire gene. All of the subjects analyzed (FPTC patients,
UFMs, SPTC patients, and HS) were homozygous wild type for
A-771G, C-99G, G305A, G322A, C323T, C408G, G450A, T467C,
G508A, A514G, G623A, and C727G substitutions and for the
378D/30 deletion.

We found two polymorphisms indicated as polymorphism
#1 (SNP rs2293607) and polymorphism #2 (SNP rs35073794)

of unknown pathogenic significance (Ensembl database).
Polymorphism #1 consisted of n501 (T > C) substitution (for-
ward strand), and was observed in the heterozygous form
(TC) in 48/153 (31.4%) of HS, 26/66 (39.4%) of FPTC patients,
17/46 (37%) of UFMs, and 35/111 (31.5%) of SPTC patients
(Table 2). The homozygous variant (CC) was detected in
16/153 (10.5%) of HS, 4/66 (6.1%) of FPTC patients, 6/46
(13%) of UFMs, and 9/111 (8.1%) of sporadic PTC patients
(Table 2). The different distribution of this polymorphism in
the four groups was not statistically significant (Pearson chi-
square p = 0.714).

Polymorphism #2 was more rare and consisted of n701
(G > A) (forward strand) substitution. It was found as het-
erozygous (GA) in 4/153 (2.6%) of HS, 4/66 (6.1%) of FPTC
patients, 3/46 (6.5%) of UFMs, and 2/111 (1.8%) of SPTC
patients (Table 2). The homozygous variant (AA) was de-
tected only in 1/153 (0.7%) of HS (Table 2). Also in this case,
polymorphism frequency was not statistically different
among groups (Pearson chi-square p = 0.504). In addition, the
diplotype distribution obtained by considering the combina-
tion of polymorphisms #1 and #2 was not different in the
various groups (Table 3) as well as the single allele frequency
of both polymorphisms (Table 4, p value of 0.576 for poly-
morphism #1 and a p value of 0.417 for polymorphism #2,
respectively) and the association between single alleles (Table
5, p value of 0.640).

When TERC copy number variations were analyzed, we
found one sample belonging to the UFMs with two inser-
tions and two deletions (Fig. 1) not reported before. These
insertions concern nucleotides 1418 (1418insA) and 1437

Table 1. Panel of Known Telomerase RNA Component
Mutations (Reverse Strand) and Possible

Associated Diseases

TERC variants Possible associated diseases

A-771G Myelodysplastic syndrome (MDS);
aplastic anemia (AA)

C-99G Aplastic anemia (AA); paroxysmal
nocturnal hemoglobinuria (PNH)

821-bp deletion
30-end 378D/30

Autosomal dominant dyskeratosis
congenita (DC)

G305A Nonsevere aplastic anemia (NSAA)
G322A Myelodysplastic syndrome (MDS)
C323T Myelodysplastic syndrome (MDS)
C408G Autosomal dominant dyskeratosis

congenita (DC)
G450A Severe aplastic anemia (SAA)
T467C Aplastic anemia (AA)
G501A Pathogenic significance unknown
G508A Neural tube defects
A514G Systemic sclerosis
G623A Neural tube defects
C701T Pathogenic significance unknown
C727G Pathogenic significance unknown

TERC, telomerase RNA component.

Table 2. Frequency of Polymorphisms #1 and #2

Polymorphism #1 Polymorphism #2

Subjects n % n %

Healthy
subjects
(153)

TT 89 58.2 GG 148 96.7
TC 48 31.4 GA 4 2.6
CC 16 10.5 AA 1 0.7

FPTC
patients
(66)

TT 36 54.5 GG 62 93.9
TC 26 39.4 GA 4 6.1
CC 4 6.1 AA 0 0

Unaffected
family
members
(46)

TT 23 50 GG 43 93.5
TC 17 37 GA 3 6.5
CC 6 13 AA 0 0

Sporadic
PTC
patients
(111)

TT 67 60.4 GG 109 98.2
TC 35 31.5 GA 2 1.8
CC 9 8.1 AA 0 0

T = Wt allele and C = polymorphic allele for polymorphism #1;
G = Wt allele and A = polymorphic allele for polymorphism #2.

FPTC, familial papillary thyroid cancer.

Table 3. Diplotype Distribution of the Two
Polymorphisms Among Groups

Subjects

Diplotype
polymorphism #1/
polymorphism #2

Frequency
(number

of subjects)
Percent

(%)

Healthy
subjects (153)

TT/GG 85 55.6
TT/GA 3 2
TT/AA 1 0.7
TC/GG 47 30.7
TC/GA 1 0.7
CC/GG 16 10.5

FPTC patients (66) TT/GG 32 48.5
TT/GA 4 6.1
TT/AA 0 0
TC/GG 26 39.4
TC/GA 0 0
CC/GG 4 6.1

Unaffected family
members (46)

TT/GG 20 43.5
TT/GA 3 6.5
TT/AA 0 0
TC/GG 17 37
TC/GA 0 0
CC/GG 6 13

Sporadic PTC
patients (111)

TT/GG 65 58.6
TT/GA 2 1.8
TT/AA 0 0
TC/GG 35 31.5
TC/GA 0 0
CC/GG 9 8.1
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(1437insT) while the deletions affected nucleotide 1440–
1442 (1440_1442delCTG) and 1461–1467 (1461_1467delG-
GAAAAA). We did not find two other variations reported
in genome databases (i.e., Ensembl) and indicated as
CN_996453 and CN_996452. When the search was extended
to the entire gene sequence, no mutations or polymorphisms
were found.

Shelterin protein complex

We extended our research to the six proteins of the shelterin
complex implicated in the regulation of telomere length. We
previously analyzed their expression levels in blood of 51
patients with FPTC and 82 patients with SPTC and expressed
the results as 2 -DDCt with respect to two different reference
genes (beta-actin and RPL13). Figure 2 reports the mean
expression values for (Fig. 2A) TRF1 (SPTC: 9.39 – 2.5, FPTC:
13.05 – 3.2, p = 0.9), (Fig. 2B) TRF2 (SPTC: 3.04 – 1, FPTC:
3.18 – 0.8, p = 0.1), (Fig. 2C) TIN2 (SPTC: 6.16 – 2.4, FPTC:
11.9 – 2.7, p = 0.05), (Fig. 2D) TPP1 (SPTC: 5.18 – 0.78, FPTC:
4.89 – 1, p = 0.4), (Fig. 2E) POT1 (SPTC: 6.45 – 1.2, FPTC:
2.8 – 0.93, p < 0.01), and (Fig. 2F) RAP1 (SPTC: 11.5 – 1.2, FPTC:
4.9 – 1, p = 0.03). Only for POT1 and RAP1 did we observe a
significant decrease in the expression level in patients with
FPTC compared with patients with SPTC (Fig. 2). We then
looked for point mutations in POT1 and RAP1 genes in the
blood of 66 patients with FPTC, 111 patients with SPTC, 46
UFMs, and 153 HS. All samples were homozygous wild type
in both genes. We found only the polymorphism rs4888444 in
RAP1, with a frequency of 2.9%, in FPTC patients. This was
considerably lower than that reported for normal population
(20%) and, thus, not associated with the FPTC phenotype.

Discussion

Telomeres are structures of eukaryotic chromosomes con-
sisting of 6 bp repeats (TTAGGG) that protect chromosome
ends from degradation and from end-to-end fusions (23).
Telomeres are maintained by telomerase complex composed
by an enzymatic component (TERT) and an RNA component
(TERC) (24), which acts as template for addition of telomeric
repeats. In addition, accessory proteins such as dyskerin,
NHP2, NOP110, pontin/reptin, and TCAB1 are found at
telomere ends (24). Dyskerin, NHP2, and NOP10 are neces-
sary for the stability and accumulation of TERC, whereas
dyskerin collaborates with pontin/reptin to allow the as-
sembly between TERC and TERT. Telomerase cooperates in
telomere lengthening together with several proteins such as
the shelterin family (TRF1, TRF2, RAP1, TIN2, POT1, and
TPP1) and molecular chaperones such as HSP90 (25). The
TERC gene maps on chromosome 3 and is characterized by
one exon of 438-bp long (Ensembl database). As reported in
aplastic anemia (AA) (26) and DC (14, 26), several mutations
in TERC gene are associated with telomere shortening par-
ticularly those involving the pseudoknot domain (26). In DC,
TERC mutations and short telomeres are responsible for the
familial form (14, 27). In a previous study we have demon-
strated that patients with FPTC have significantly shorter
telomeres compared with patients with SPTC, UFM, and HS
not related to mutations in TERT gene (12). In this report, we
search for known/new TERC gene mutations as possible
implicated factor for telomere shortening in FPTC. All sam-
ples analyzed, however, were homozygous wild type for

Table 5. Association Between Single Alleles
of Both Polymorphisms

Allelic associations

Subjects n %

Healthy subjects (153) TG 221 72.2
TA 5 1.6
CG 79 25.8
CA 1 0.3

FPTC patients (66) TG 94 71.2
TA 4 3.0
CG 34 25.8
CA 0 0

Unaffected family
members (46)

TG 60 65.2
TA 3 3.3
CG 29 31.5
CA 0 0

Sporadic PTC
patients (111)

TG 167 75.2
TA 2 0.9
CG 53 23.9
CA 0 0

FIG. 1. Schematic representation of
telomerase RNA component insertions and
deletions found in one sample belonging to
one unaffected family member.

Table 4. Single Allele Frequency

Polymorphism #1 Polymorphism #2

Subjects n % n %

Healthy
subjects
(153)

T 226 73.9 G 300 98
C 80 26.1 A 6 2

FPTC
patients
(66)

T 98 74.2 G 128 97
C 34 25.8 A 4 3

Unaffected
family
members
(46)

T 63 68.5 G 89 96.7
C 29 31.5 A 3 3.3

Sporadic
PTC
patients
(111)

T 169 76.1 G 220 99.1
C 53 23.9 A 2 0.9
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TERC mutations with the exception of two SNPs (T501C and
G701A) of unknown pathogenetic significance. Statistical
analysis of the distribution of the two single polymorphisms,
of the combination of both polymorphisms, and of the asso-
ciation between single alleles of polymorphisms #1 and #2
among FPTC patients, SPTC patients, and HS yielded no
statistically significant difference. We then extended our re-
search to accessory proteins involved in telomere mainte-
nance. We excluded from this analysis proteins such as
dyskerin that has been clearly associated with DC develop-
ment (28) or hoyeraal-hreidarsson syndrome (29) completely
absent in our patients (Genecards database) and focused our
attention on shelterin complex. We found a significant re-
duction in mRNA expression of POT1 and RAP1, not linked to
known mutations in both genes.

To our knowledge this is the first report in which mutations
in TERC, POT1, and RAP1 have been searched in FPTC and
our results exclude that variations of these genes are respon-
sible for telomere shortening observed in familial form of
PTC. However, a possible implication of shelterin proteins
needs to be further investigated (i.e., miRNA regulation) from
the moment that FPTC patients display a decrease in POT1
and RAP1 mRNA expression.
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Abstract

The c.677C!T polymorphism in the 5,10-methylenetetrahydrofolate reductase gene (MTHFR) has been recently associated with
susceptibility to sporadic amyotrophic lateral sclerosis (ALS). We have investigated this association in 450 ALS patients and 700 control
subjects from Italy. No significant association was observed at the genotype and allelic level, either for the c.677C!T variant alone or in
combination with PON1 polymorphisms. Our negative results suggest that the MTHFR c.677C!T polymorphism is not a risk factor for ALS
in the Italian population.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive and
fatal disease characterized by the progressive loss of motor
neurons in the cerebral cortex, brain stem, and spinal cord.
About 90% of all the ALS cases are sporadic. To date, the
etiology of the sporadic form is poorly understood and
several genetic risk factors have been implicated in its
pathogenesis. Among these, the c.677C!T polymorphism
(rs1801133) in the 5,10-methylenetetrahydrofolate reduc-
tase gene (MTHFR) has been recently reported to be signif-
icantly associated with ALS in a German/Swiss ALS pop-
ulation, in particular with bulbar onset ALS (Kuhnlein et al.,
2010). The c.677C!T variant encodes a thermolabile form
of the enzyme, which reduces enzyme activity and results in

increased blood homocysteine levels. In the present study,
we tested the reported association of the MTHFR c.677C!T
variant in an Italian ALS population. Because paraoxonase
1 (PON1) is an esterase which protects against protein
homocysteinylation, we also examined the association of
this variant in combination with PON1 polymorphisms that
have been related to increased homocysteine levels in the
blood.

2. Methods

The study included 450 sporadic ALS patients and 700
age- and sex-matched control subjects from Italy (northern
Italy: 235 patients and 353 controls; central Italy: 215 pa-
tients and 347 controls). The sample series from northern
Italy partially overlapped with that previously studied by
Penco et al. (2008). The whole sample series included the
samples formerly analyzed for PON1 and PON2 polymor-
phisms (Ricci et al., 2011). Characteristics of ALS patients
and controls are summarized in Supplementary Table 1.
Genotyping of MTHFR c.677C!T variant was performed
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by restriction digest analysis using the enzyme HinfI. Fre-
quencies were compared using !2 statistics. Survival anal-
ysis was performed using the Kaplan-Meier method. For
details see Supplementary data.

3. Results

Our sample had ! 95% power to detect the reported
association, assuming an allele frequency of 0.44 (Botto and
Yang, 2000) and an arbitrary odds ratio of 1.5, at a signif-
icance level of " # 0.05. The polymorphism was in Hardy-
Weinberg equilibrium in both cases and controls (p # 0.604
and p # 0.536, respectively). No significant difference in
MTHFR c.677C!T distributions was observed in patients
compared with controls (Table 1). Statistical analysis failed
to find any association of c.677C!T polymorphism with
bulbar ALS in our population (in bulbar patients: CC/
CT/TT 0.266/0.527/0.207, T allele 0.470; in controls: 0.256/
0.511/0.233, T allele 0.489; p # 0.548, odds ratio [OR],
0.93; confidence interval [CI], 0.733–1.179). MTHFR
c.677C!T variant was not associated with ALS clinical
variables (gender, site and age at onset, disease duration;
Supplementary Table 3). Finally, no significant differences
were observed when the risk allele (T) for MTHFR
c.677C!T was present in combination with risk allele for
PON1 L55M (M) and for PON1 Q192R (Q), respectively
(Supplementary Table 4).

4. Discussion

We failed to find any association between the MTHFR
c.677C!T polymorphism and the risk of ALS in an Italian
population. The c.677C!T polymorphism was not associ-
ated with ALS clinical variables, either at the genotype or
allelic level. No association was found when MTHFR
c.677C!T variant was considered in combination with the
L55M and Q192R polymorphisms in PON1 gene. A recent
study on MTHFR c.677C!T polymorphism has shown a
positive association in a German/Swiss ALS population
(Kuhnlein et al., 2010). In this population the frequency of
T allele was quite low (28%), with a homozygosity fre-
quency of 6%. On the contrary, it is known that in Italy the
mean T allele frequency is considerably higher (about 44%),
with a mean homozygosity frequency of about 18%. In
Europe the prevalence of the TT genotype increases from
low values in the north (4%–7%), to higher values in south-

ern Europe (12%–15%), peaking in southern-central Italy
(20%–30%) (Wilcken et al., 2003). The mechanisms gen-
erating this gradient seem to involve gene-nutrient interac-
tions. Because the TT genotype encodes for a thermolabile
MTHFR variant that reduces the enzyme activity in pres-
ence of low folate intake, dietary folate may be one factor
that has influenced the prevalence of T allele in Europe. The
highest T allele frequency is reported in the geographic
regions with the highest folate intake and the consequent
highest plasmatic folate levels. In these areas the influence
of the TT genotype on homocysteine (Hcy) plasma levels is
the lowest, whereas it is the most evident in the regions with
low frequency of T allele and low dietary intake of folate.
Thus, MTHFR c.677C!T polymorphism is a risk factor for
defects associated with high levels of Hcy (e.g., neural tube
defects) in northern Europe, but it is neutral in western and
southwestern Europe (Guéant-Rodriguez et al., 2006). A
similar scenery may be hypothesized for the risk of ALS in
the Italian population. Here, the c.677C!T variant is not
associated with ALS and it is unlikely that it is involved in
ALS pathogenesis, at least in presence of a sufficient dietary
intake of folate. Whether Hcy plasma levels are a risk factor
for ALS, other genetic and/or environmental factors, caus-
ing an alteration in homocysteine metabolism, could be
responsible for the motor neuron damage observed in ALS
in the Italian population.
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Table 1
Genotype and allelic distributions of MTHFR c.677C!T polymorphism in sporadic ALS cases and control subjects

CC CT TT p value C T p value OR 95% CI

Case 0.292 0.508 0.200 0.256 0.546 0.454 0.102 0.869 0.734–1.029
Controls 0.256 0.511 0.233 0.511 0.489

Key: ALS, amyotrophic lateral sclerosis; CI, confidence interval; OR, odds ratio.
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Introduction: Many studies have found an association between altered telomere length (TL), both
attrition or elongation, and cancer phenotype. Recently, we have reported that patients with the
familial form of papillary thyroid cancer (FPTC) have short telomeres in blood leucocytes.

Aim: To evaluate relative TL (RTL) at somatic level in neoplastic and nonneoplastic tissues of
patients with FPTC (n ! 30) and sporadic PTC (n ! 46).

Methods: RTL was measured by quantitative PCR in neoplastic thyroid tissues, in the corresponding
nontumor thyroid tissues (normal contralateral thyroid), and in other extrathyroidal tissues (lymph
nodes, muscles, or buccal mucosa). RTL was also measured in adenomas and hyperplastic nodules.
In a subset of samples, telomerase expression was measured by quantitative PCR.

Results: Mean " SD RTL of FPTC patients was short in neoplastic thyroid tissues (0.87 " 0.2) with no
difference from the normal contralateral thyroid tissues (0.85 " 0.11) and extrathyroidal tissues
(0.85 " 0.31). On the contrary, in patients with sporadic PTC, the mean " SD RTL in the neoplastic
tissues (1.73 " 0.63) was significantly shorter than that found in normal contralateral tissues (2.58 "

0.89) and extrathyroidal tissues (2.5 " 0.86). For all tissue samples (cancer, normal thyroid, and
nonthyroidal tissues) the mean " SD RTL of familial cases was shorter (P # 0.0001) than that found
in tissues from sporadic PTC. RTL of FPTC was also lower (P # 0.0001) than that of 23 follicular
adenomas (1.6 " 0.7) and 24 hyperplastic nodules (2.2 " 0.9).

Conclusions: Our results demonstrate that short telomeres are a consistent feature of PTC, which
in familial cases, is not restricted to the tumor tissue. This finding suggests that FPTC has a distinct,
heritable, genetic background. (J Clin Endocrinol Metab 96: E1852–E1856, 2011)

Telomeres are repetitive structures located at the chro-
mosome ends that progressively shorten with each

cell replication due to incomplete lagging DNA strand syn-
thesis and oxidative damage (1). Previous studies (2, 3)

have indicated that human malignant cells in general have
shorter telomeres than normal cells, and a relationship
between telomere shortening and risk of cancer has been
advocated. Many studies (4–6) have found an association
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between altered relative telomere length (RTL), both at-
trition and elongation, and cancer phenotype. The few
studies that have analyzed RTL in thyroid cancer tissues
have found shorter RTL in primary tissues compared with
normal peritumoral tissues or benign adenomas (7–9). Re-
cently, our group reported that patients with the familial
recurrence of papillary thyroid cancer (FPTC) display
short telomeres in the peripheral blood compared with
sporadic PTC patients, suggesting that this alteration may
be implicated in the inherited predisposition to FPTC (10).
To further extend this observation, the present report in-
vestigated RTL at the somatic level, analyzing primary
PTC tissues, normal contralateral thyroid tissues, and
nonthyroidal tissues (muscles, normal lymph nodes, and
buccal mucosa) in patients with familial and sporadic
PTC, adenomas, and hyperplastic nodules.

Patients and Methods

Patients
We studied a total of 76 patients (60 females) with PTC. The

mean " SD age at diagnosis was 49.2 " 16.6 yr (range 17–83 yr).
Sixty-six of these patients were treated in the Section of Endo-
crinology of the University of Siena, and 10 were provided by the
Department of Endocrinology of the University of Thessaloniki
(Greece). Thirty patients (25 females) had the familial recurrence
of the disease defined as the presence of at least one first-degree
relative with PTC. All patients had been treated with total
thyroidectomy.

No clinical or epidemiological differences were present be-
tween familial and sporadic cases (sex, age at diagnosis, primary
tumor diameter, tumor extension, lymph node metastases, and
presence of BRAF mutation) with the exception of more frequent
multifocality in the familial cases. We also analyzed 23 patients
with follicular adenomas (16 females) with mean " SD age at
diagnosis of 60.9 " 13.7 yr (range, 32–85 yr) and 24 patients
with hyperplastic nodules (19 females), with mean " SD age of
59.4 " 14.1 yr (range, 32–83 yr).

Tissue samples
For molecular analysis, a total of 252 tissue specimens were

obtained from these patients after signed informed consent ac-
cording to a protocol approved by the local ethical committee.
Samples of the primary tumor and their normal contralateral
tissues were available in all 76 patients with cancer (30 familial
and 46 sporadic PTC). Nonthyroidal tissues were available in 53
cases (18 with FPTC and 35 with sporadic PTC) and consisted in
muscles (n ! 13), reactive lymph nodes (n ! 11), and buccal
mucosa obtained by scraping (n ! 29). Twenty-three samples
were from patients with follicular adenoma, and 24 were from
patients with hyperplastic nodules.

DNA extraction
Fresh tissues were collected at surgery into a 1.5-ml micro-

centrifuge tube containing Allprotect Tissue reagent (QIAGEN,
Milan, Italy). After 24 h at 4 C, the solution was removed and
tissues were frozen at $80 C. Genomic DNA was extracted using

the QIAamp DNA Micro Kit (QIAGEN) following kit instruc-
tions. For paraffin-embedded tissues, approximately 25 mg tis-
sue was incubated overnight at 56 C in lysis buffer (provided by
the kit) in the presence of proteinase K (20 !l). Samples were then
incubated for 15 min at 95 C to allow paraffin melting. After
centrifugation for 3 min at 14,000 rpm, DNA was extracted
following QIAamp DNA Micro Kit instructions (QIAGEN).

Measurement of RTL
RTL was assessed with two different techniques.

Quantitative PCR
A quantitative PCR assay was carried out on 30 ng/!l

genomic DNA using an MJ mini personal thermal cycler (Bio-
Rad, Milan, Italy) as already described (11). Briefly, telomere
length quantification involved determining the relative ratio of
telomere repeat copy number to a single-copy gene copy number
in experimental samples using standard curves. This ratio is pro-
portional to the average telomere length. The 36B4 gene, en-
coding acidic ribosomal phosphoprotein P0, has been used as the
single-copy gene. Primers and conditions are detailed in Ref. 11.

Southern blot
The TeloTAGGG telomere length assay (Roche, Milan, Italy)

kit was used to perform the Southern blot experiments. Briefly,
1.5 !g purified genomic DNA was digested by an optimized
mixture of restriction enzymes provided by the kit. After diges-
tion, the DNA fragments were separated by gel electrophoresis
(voltage 0.5/cm) for 4 h and transferred overnight to a nylon
membrane. Hybridization was carried out as described by the kit
and telomere length determine by chemiluminescence. Telomere
length was calculated as mean telomere restriction fragment us-
ing the following formula: %(ODi)/%(ODi/Li), where ODi is the
chemiluminescent signal and Li is the length of telomere restriction
fragment at position i.

hTERT mRNA expression
hTERT mRNA expression was evaluated by quantitative RT-

PCR from 24 FPTC cancer tissues and 14 normal contralateral
tissues, 12 sporadic PTC cancer specimens and six normal con-
tralateral tissues, 11 follicular adenoma, and seven hyperplas-
tic nodules. RNA was extracted using the RNeasy Mini Kit
(QIAGEN)andretrotranscribedintocDNAusingthe iScriptcDNA
synthesis kit (Bio-Rad, Hercules, CA). Approximately 100 ng/
sample was analyzed using the MJ mini thermocycler (Bio-Rad)
in a mix containing 2& SsoFast EvaGreenSupermix (Bio-Rad)
and 300 nM specific primers (Beacon designer software version
7.7; Bio-Rad) (hTERT forward, 5'-ACGGCGACATGGAGAA-
CAA-3', and hTERT reverse, 5'-CACTGTCTTCCGCAAGTT-
CAC-3') in a final volume of 20 !l. To exclude the presence of
nonspecific binding between EvaGreen and primers, a melting
curve was added at the end of all PCR amplification reactions.
The PCR protocol was as follows: step 1, 3 min at 95 C; step
2 (40 repetitions), 15 sec at 95 C and 30 sec at 60 C, followed
by a melting curve of step 1, 1 min at 95 C; step 2, 30 sec at
55 C, and step 3, 80 cycles of 0.5 C increments (10 sec each)
from 55–95 C.

Each sample was run in duplicate, and for each run, efficiency
of RT-PCR, slope values, and correlation coefficients (R2) were
determined. The expression level was calculated as ((Ct and
reported as 2$((Ct against GAPDH, which was chosen as the
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optimal reference gene by two well-validated software pro-
grams, Normfinder and GenNorm.

Statistical analysis
Statistical analysis was conducted with StatView for Win-

dows, version 5.00.1 (SAS Institute, Cary, NC). All data are
presented as mean "SD. To calculate differences in RTL among
different groups, the one way ANOVA test with Dunn’s multiple
comparisons was used. For the analysis of RTL in tumoral thy-
roid tissues, normal thyroid tissues and extrathyroidal tissues in
the same patient, the paired t test was used. A p-value #0.05 was
considered significant. ANOVA multiple comparison was also
used to determine the difference in hTERT mRNA expression
levels among groups.

Results

AsshowninFig.1,mean" SDRTLinprimarytumorsamples
of FPTC patients was 0.87 " 0.2 (range: 0.62–1.23), not
different from the mean " SD RTL of their corresponding
normal thyroid tissues (0.85 " 0.11; range, 0.66–1.2) or
extrathyroidal tissues (0.85 " 0.31; range, 0.16–1.48).

On the contrary, in sporadic cases, the mean " SD RTL
of primary cancer tissues was significantly (P # 0.0001)
shorter (1.73 " 0.63; range, 0.18–3.2) compared with the

mean " SD RTL found in normal contralateral tissues
(2.58 " 0.89; range, 0.78–6.5) or extrathyroidal tissues
(2.5 " 0.86; range, 1–4.8). For all tissue samples (cancer,
normal thyroid, and nonthyroidal tissues) the mean " SD

RTL of familial cases was significantly shorter (P #
0.0001) than that found in the tissues from sporadic PTC.
Similarly, RTL of FPTC (of all tissues) was significantly
lower (P # 0.0001) than that of 23 follicular adenomas
(1.6 " 0.7; range, 0.32–3.1) and 24 hyperplastic nodules
(2.2 " 0.9; range, 0.64–3.8). The difference between RTL
of cancer tissues, normal thyroid tissues, or extrathyroidal
tissues of sporadic cases is even more apparent when the
data were analyzed within each individual patient by
paired t test (Fig. 2). RTL was shorter in cancer tissues
compared with normal thyroid tissues and extrathyroidal
tissues in the majority of cases (80%).

Measurement of RTL by Southern blot technique con-
firmed the results obtained by quantitative PCR. In terms
of kilobases, we found an average telomere length of 2.3 "
0.03 and 2.68 " 0.1 for primary tumors and contralateral
tissues of FPTC, respectively, and 3 " 0.04 and 10.04 "
0.21 for primary tumors or contralateral tissues of spo-
radic PTC, respectively (data not shown).

FIG. 1. RTL measured by quantitative PCR and expressed as ratio of telomere (T) repeat copy number to a single-copy gene (S) copy number (T/S
ratio) in cancer tissues, normal thyroid tissues, and extrathyroidal tissues of FPTC and sporadic PTC, adenomas, and hyperplastic nodules. ns, Not
significant.
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Both in familial and sporadic cases, no correlation was
found between RTL values and any clinical or patholog-
ical parameter (gender, age, primary tumor diameter, bi-
laterality, tumor extension, lymph node metastases, and
BRAF status).

To address whether a change in telomerase expression
is involved in telomere length, we evaluated hTERT
mRNA expression (expressed as 2$((Ct) in 24 primary
cancer tissues and 14 contralateral tissues of FPTC, 12
primary tumors and six contralateral tissues of sporadic
PTC, 11 adenomas, and seven hyperplastic nodules.

hTERT mRNA expression was found in 20 of 24 FPTC
cancer tissues (mean " SD value of 3.2 " 0.5) and in 11 of
14 contralateral tissues (mean " SD value of 2.77 " 0.3).
In sporadic cases, we found hTERT mRNA expression
only in primary tumors (seven of 12, mean " SD value of
4.3 " 0.7) but never in contralateral tissues. Among be-
nign lesions, eight of 11 adenomas had hTERT mRNA
expression (mean " SD value of 0.55 " 0.24), whereas it
was completely absent in all the hyperplastic lesions. The
hTERT mRNA expression found in FPTC and in sporadic
primary tumors was significantly higher (P ! 0.04 and
0.018, respectively) compared with adenomas, hyperplas-
tic nodules, and sporadic contralateral tissues. No signif-
icant correlation between hTERT activity and RTL was
found.

Discussion

Our study confirms that short telomeres are present in
tissue samples from papillary and follicular thyroid cancer
compared with normal thyroid tissues and benign thyroid
nodules (7–9). Follicular adenomas behave in an interme-

diate fashion between malignant and hyperplastic nod-
ules, probably reflecting their tumoral (although biolog-
ically benign) nature. In addition, our study has the
novelty of analyzing tissue from familial cases of PTC. In
these familial cases, we previously demonstrated short
telomere length in blood leukocytes compared with pa-
tients with sporadic PTC and postulated that this altera-
tion may be heritable (10). In the present study, we have
extended this observation by measuring the telomere
length at the somatic level. Although the RTL was re-
duced in both sporadic tumors and, even more, in fa-
milial tumors, the RTL of normal thyroid tissues and
extrathyroidal tissues differed in the two cohorts of pa-
tients. In familial cases, RTL was similarly short in any
tissue examined, whereas in sporadic cases, normal thy-
roid tissues and extrathyroidal tissues had longer telo-
meres compared with the primary tumor.

This finding demonstrates that in familial patients, the
presence of short telomeres is a peculiar feature of all the
cells of the body, likely inherited from the parents. This
concept is in agreement with a recent report by Chiang et
al. (12), who elegantly showed in a shortened-telomerase
mouse model that the set-point of telomere length of off-
spring is determined by the telomere length of their
parents.

Short telomeres in the genome have been associated
with chromosome instability and predisposition to several
benign and malignant diseases, particularly of the familial
type (4, 6, 13–16). The contribution of short telomeres in
our FPTC patients to develop thyroid cancer is uncertain.
However, recent studies in normal individuals prospec-
tively followed for many years have shown that incident
cancers were significantly associated with those subjects
who had short telomere length at baseline, independently
of standard cancer risk factors (17). In addition, the same
study found a significant inverse correlation between telo-
mere length and cancer mortality. This finding might sup-
port our previous report (18) showing that kindred with
the FPTC display the phenomenon of genetic anticipation
and have, in general, a more aggressive course compared
with sporadic cases. The shorter telomere length in the
tumor tissue of FPTC found in the present report com-
pared with the tissue from sporadic cases may be somehow
linked with the higher aggressiveness of familial tumors.

The telomerase experiments have shown that this enzyme
is expressed in most malignant tissues, both familial and spo-
radic, and in some adenomas (at lower levels) but never in
hyperplastic nodules or normal tissue of sporadic patients.
Interestingly, telomerase was expressed also in normal
tissue of familial patients, strengthening the concept
that the alterations of the telomere-telomerase complex
are peculiar and possibly constitutive features of FPTC.

FIG. 2. RTL in tumor thyroid tissues, normal thyroid tissues, and
extrathyroidal tissues of individual patients with sporadic PTC. T/S ratio
is the ratio of telomere (T) repeat copy number to a single-copy gene
(S) copy number.
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In conclusion, our results confirm that short telomeres
are a constant feature of PTC, both sporadic and familial.
However, in familial cases, we have demonstrated that
short telomeres are not restricted to the tumor tissue but
are consistently present in other tissues, suggesting that
FPTC has a distinct, heritable, genetic background.
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A B S T R A C T

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal disorder characterized by degeneration of motor neurons in the cerebral
cortex, brain stem, and spinal cord. Most cases of ALS appear sporadically but about 1!13.5% of patients have a family history of ALS.
Although the precise cause for the majority of cases is still unknown, mutations in the gene encoding for copper!zinc superoxide dismutase
(SOD1) have been found in 12!23% of familial cases of the disease. Currently, more than 150 different SOD1 gene mutations have been
identified in ALS patients most of which with autosomal dominant transmission. Occasionally, specific mutations are associated with a
particular phenotype. Some SOD1 mutations occur as recurrent or founder mutations with a different geographic distribution. The discovery
of mutations in the SOD1 gene has marked a change in ALS research and enabled the development of novel experimental rodent models to
investigate the pathogenesis of familial ALS. However, the mechanism by which mutant SOD1 causes neural death remains elusive. Several
lines of evidence suggest that ALS is a protein-folding disease and the increased propensity of mutant SOD1 to form aggregates may confer
toxicity in motor neurons. Despite the apparent selectivity for motor neurons, recent data indicate that non-neuronal cell types contribute to
pathogenesis and disease progression.
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INTRODUCTION
Amyotrophic lateral sclerosis (ALS), the most common

adultonset motor neuron disease, is a progressive and fatal
disorder characterized by neurodegeneration of motor neu-
rons in the motor cortex, brain stem, and spinal cord [1].
Although motor neurons are selectively affected by degenera-
tion and death, increasing evidence indicates that non-
neuronal neighboring cell types contribute to pathogenesis
and disease progression [2, 3]. Motor neuron degeneration
results in progressive weakness of bulbar, thoracic, abdom-
inal, and limb muscles. Dysfunction of upper motor neurons
(UMN) in the motor cortex leads to hyperreflexia, extensor
plantar response, and increased muscle tone, whereas
dysfunction of lower motor neuron (LMN) in the bra-
instem and spinal cord triggers generalized weakness,
hyporeflexia, muscle atrophy, muscle cramps, and fascicula-
tions [1]. Symptoms present in early disease may vary.
Affected individuals most often present with asymmetrical
distal onset in a limb with both UMN and LMN signs from
the onset (classical Charcot ALS). Patients with bulbar-onset
ALS typically have slurred speech and difficulty swallowing,
and the condition is designated progressive bulbar palsy
(PBP). Limbs symptoms in the majority of cases will occur
within 1!2 years. During the course of the disease, most
cases become generalized with a combination of both
LMN and UMN signs affecting spinal and brainstem
regions [4].

At presentation, limb involvement occurs more often than
bulbar involvement, which accounts for about 25% of ALS
cases. Other brain functions, as well as oculomotor and
sphincter functions, are rarely involved. Mild cognitive
impairment is described in 20!50% of cases, and a fronto-
temporal dementia (FTLD) is reported in 3!5% [5]. Cognitive
abnormalities may precede or occur after the onset of motor
symptoms. Death, mainly because of respiratory failure,
occurs 2!4 years after onset; however, a small group of
patients may have a disease duration of 10 years or even more.
There is no objective test capable of providing the diagnosis
of ALS. It remains essentially a clinical diagnosis based
on clinical features, electrodiagnostic testing, and exclusion
of conditions that can mimic ALS. The clinical diagnosis of
ALS may be categorized into various levels of certainty by
clinical and laboratory assessment based on El Escorial
criteria [6].

Epidemiology

The incidence (1!2/100 000 person-year) and the prevalence
(4!13/100 000) of the disease are relatively uniform in
European and North American populations, although several
high-incidence foci occur in the Western pacific [4, 7]. Four
European population-based registers showed an increase of
the incidence of ALS after the age of 40 years, with a peak in
the late 60s or early 70s, followed by a rapid decline [8]. The
lifetime risk for sporadic ALS by the age of 70 has been
estimated at 1 in 1000 [4]. Several non-population based
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studies consistently report that males are more likely to
be affected than females with a M:F ratio of about 1.5:1.
However, more recent data from European population-based
registers report a change in the gender ratio, which is
approaching equality [4]. A better ascertainment among
women and/or a change in prevalence of risk factors across
genders as a consequence of socioeconomic changes have
been suggested as possible explanations for the increase of
ALS incidence among women [8].

Over the years, a multitude of environmental exposure and
lifestyle risk factors have been proposed as possible con-
tributors to the cause of ALS including manual work, exposure
to lead/solvents, pesticides, cigarette smoking, and intense
physical activity. At present, however, no conclusive data are
available, and further studies are needed to define exogenous
risk factors of ALS [8, 9].

Negative prognostic indicators, arising from population-
based studies, include site of disease onset, higher age of
onset, and progression rate of respiratory, bulbar, and lower-
limb symptoms [10].

Most cases (90%) are classified as sporadic ALS (SALS), as
they are not associated with a documented family history. In
retrospective epidemiological studies, in 1!13% of patients
the disease is reported to be inherited and referred to as
familial ALS (FALS), most commonly with a Mendelian
dominant mode of inheritance and high penetrance, although
pedigrees with incomplete penetrance or recessive inheritance
have been reported [11]. The mean age of onset for SALS
is 56 years and for FALS is 46 years. Age of onset in FALS
shows a Gaussian distribution, whereas SALS is characterized
by an age-dependant incidence [4]. The term ‘‘juvenile
ALS’’ is used for patients with onset of disease prior to
age 25 [12].

Apart from a mean age of onset for SALS that is about a
decade later than for FALS, sporadic and familial forms are
clinically indistinguishable suggesting a common pathogen-
esis. The precise cause of the selective death of motor neuron
in the disease at present remains elusive, and progress in
understanding the mechanisms underlying familial ALS may
shed light on both forms of the disease [13].

Genetic Factors

Eight ALS genes have currently been identified: Cu/Zn
superoxide dismutase (SOD1) [14], alsin (ALS2) [15, 6],
senataxin (SETX) [17], fused in sarcoma/translated in lipo-
sarcoma (FUS/TLS) [18, 19] vesicle-associated membrane
protein (VAPB) [20], angiogenin (ANG) [21, 22], Tar DNA-
binding protein 43 (TARDBP) [23!25], and dynactin (DCTN1)
[26, 27] (Table 1). Among these genes, ALS2 encodes a
protein that may act as a GTPase regulator; SETX, FUS/TLS,
ANG, and TARDBP encode proteins involved in the RNA
metabolism; VABP and DCTN1 presumably regulate axonal
transport. Therefore, familial ALS genes control different
cellular mechanisms, suggesting that the pathogenesis of ALS
may be related to several different processes finally leading to
motor neuron degeneration.

COPPER!ZINC SUPEROXIDE DISMUTASE
(SOD1) GENE

The most important contribution toward an understanding
of ALS thus far has come from the discovery in 1993 of
missense mutations in the gene encoding for copper!zinc
superoxide dismutase (SOD1) on chromosome 21q22.1 asso-
ciated with an adult-onset autosomal dominant form of the
disease (ALS1) [14]. The human SOD1 gene is a small gene
comprising five exons, separated by four introns, encoding
for a metalloenzyme of 153 highly conserved amino acids
[14]. The SOD1 protein is a homodimeric Cu/Zn-binding
enzyme, composed of eight antiparallel b strands and two
metal atoms, that cat alyzes the conversion of the toxic
superoxide anion (O2

#) to hydrogen peroxide (H2O2) and
molecular oxygen (O2). SOD1 is ubiquitously expressed and
account for about 0.5!0.8% of the soluble protein in the
human brain [28]. It is found in the cytosol and nucleus, and
in the intermembrane space of the mitochondria [29].

Currently, more than 150 different mutations in the SOD1
gene (Figure 1) have been described worldwide in ALS
patients, and an updated list can be found at the ALS Online
Genetic Database (ALSOD: http://alsod.iop.kcl.ac.uk/) [30].
The majority of mutations in SOD1 gene are missense, with a
small number of deletion and insertion mutations resulting in
truncated SOD1 polypeptides. Missense mutations that cause
ALS phenotype have been documented at 80 codons in SOD1
gene, with multiple amino acid substitutions involving a
given position (up to six different substitutions at position
G93) [31].

In studies from different populations, the frequency of
SOD1 gene mutations ranges from 12% to 23% in patients
diagnosed with FALS and from 0% to 7% in patients
diagnosed with SALS [11, 32, 33], with an overall frequency,
including all the published studies, of 20.7% for FALS and
2.2% for SALS (Table 2). In the Italian population, our early-
referred study found a frequency of SOD1 gene mutations in
FALS cases (17.9%) similar to figures reported in studies from
different countries [11]. However, a significant difference was
found between the frequency of SOD1 mutations in SALS cases
(0%) [34] and that previously reported in the literature [11].
Since our study was published, a total of 390 SALS cases were
screened and a low mutation frequency (0.8%) was confirmed
in our series. It is interesting to note that our data are in
agreement with a recent population-based study from Italy
that found a figure of 0.7% in SALS, and suggested that the
frequency of SOD1 mutations in sporadic cases observed in
case series could be overestimated because of referral bias
[35]. A low SOD1 mutation frequency was recently found also
in the Dutch population both in familial (1.8%) and sporadic
(0.4%) cases [36]. These findings suggest heterogeneity in
the genetic background of ALS within different populations.

Recurrent Mutations and Genotype!Phenotype
Correlation

Among the known SOD1 gene mutations a geographic
distribution is beginning to emerge [11]. The D90A mutation
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is the most common mutation globally and the most
prevalent one in Europe, accounting for 50% of overall ALS
cases in some areas of Sweden and Finland. The A4V
mutation is the most prevalent mutation in the United States,
accounting for about 50% of all SOD1 mutated patients, and
the I113T mutation is by far the most common mutation in
the United Kingdom. In the Balkans the most prevalent
mutation seems to be the L144F [52]; in Germany, the R115G
[41]; and in Italy, the G41S [53].

All SOD1 mutations are autosomal dominantly inherited
with some exceptions. Although a single familial case
homozygous for the L84F mutation has been reported [38],
only the D90A substitution has been clearly shown to be
inherited as both a dominant and a recessive trait [39]. In
addition, compound heterozygous D90A and D96N patients
have been described in a recessive French family [54]. In
Scandinavia, the D90A allele exists as a polymorphism
because it is found in 0.5!5% of the population [55] In the

Table 1. ALS-Causing Genes

ALS type Gene Protein Locus Inheritance Clinicai features

ALS1 SOD1 Cu/Zn superoxide dismutase 21q22.1 AD/AR Adultonset, Classical

ALS2 ALS2 ALsin 2q33 AR Juvenile onset, UMN

ALS4 SETX Senataxin 9q34 AD Juvenile onset, slow

ALS6 FUS/TLS Fused in sarcoma/translated in liposarcoma 16p11.2 AD Adultonset, Classical

ALS8 VAPB VAMP-associated protein 20qI3.3 AD Adult onset, Atypical
features

ALS9 ANG Angiogenin 14q11.2 AD Adultonset, Classical

ALS10 TARDBP Tar DNA-binding protein 43 (TDP-43) Iq36 AD Adultonset, Classical

LMND DCTN1 Dynactin 1 2PI3 AD LMND

AD, autosomal dominant; AR, autosomal recessive; UMN, upper motor neuron; LMND, lower motor neuron disease.

Figure 1. Mutation in the SOD1 gene of ALS patients. Exons 1!5 of the SOD1 gene are shown as green boxes; for each exon the size in base pairs is indicated.
Different mutations are indicated in different colors (black: missense and silent mutation; green: deletion (del) and insertion (ins); red: nonsense mutations).
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majority of cases the D90A mutation causes ALS as a recessive
trait. In all reported D90A homozygous patients, the disease
shows a homogeneous phenotype with an initial pre-paretic
phase followed by a paretic phase and a mean disease
duration of about 14 years. In the first phase, patients have
sensory complaints such as lower back, hip, or knee pain
or heat sensations usually remitting at the onset of the
second, slowly ascending phase. Atypical features have been
reported, including bladder disturbance, intermitted ataxia,
and aching pain [11]. A few D90-Aheterozygous patients have
been described, predominantly as sporadic cases but also in
dominant pedigrees, in Sweden and Finland [39], Belgium
[56], Russia [57], the United Kingdom [48], United States
[55], the United States of German ancestry [58], France [59],
Spain [47], and Italy [60!62], and recently in The Netherlands
[36]. The D90A-heterozygous patients have been divided
in two groups: the first group resembles the D90A-
homozygous condition, whereas the second one shows a
more variable and aggressive phenotype, with spinal or bulbar
onset, short or intermediate survival, and a lack of atypical
features [11].

Phenotypic heterogeneity in terms of age at onset, disease
duration, penetrance, and clinical manifestations is not

uncommon among patients with different SOD1 mutations
and also in members of the same family. Clinical presentation
can occasionally be correlated with SOD1 mutations. For
example, the phenotype of the A4V mutation is characterized
by a sudden symptom onset and relatively rapid disease
progression, with a mean survival of usually 1!2 years. Muscle
weakness can start in the limbs or in the bulbar muscles.
LMN signs usually dominate the clinical presentation [51]. A
uniform phenotype has been described in six Italian FALS
with the G41S mutation [53], confirming previous observa-
tions that this mutation is consistently associated with a
dramatic and fast-progressing phenotype [14, 35, 51, 63]. The
clinical picture of these G41S mutated FALS patients was
characterized by spinal onset with early UMN and LMN
involvement, appearance of bulbar signs usually within 1 year,
and death a few months later. The patients displayed a rapidly
progressive disease course, with a mean age at onset of
49.3911.3 years (range 25!66 years) and an illness duration
of 0.990.3 years (range 0.2!1.2 years) [53]. On the opposite
end of the spectrum, an extreme phenotypic variability has
been reported for patients with the I113T mutation with a
range of disease duration of 2!20 years, spinal or bulbar
onset, and variable penetrance even among members of the
same family [33, 51, 64].

Table 2. Frequency of SOD1 Mutations in FALS and SALS in Different Populations

FALS SALS

Country n8 Studied n8 SOD1 positive n8 Studied n8 SOD1 positive References

Belgium 23 7 (30.4%) 69 2 (2.9%) Aguirre et al. [37]

Canada 117 20 (17.1%)
Range:

14.3!21.3%

159 3 (1.9%) Eisen et al. [33],
Boukaftane et al. [38]

Denmark 2 2 (100%) 25 1 (4.0%) Andersen et al. [39]

Finland 21 9 (42.9%) 80 9 (11.3%) Andersen et al. [39]

France ! (15.0%) ! ! Jafari-Schluep et al. [40]

Germany 75 9 (12.0%) ! ! Niemann et al. [4i]

Ireland 8 1 (12.5%) 90 2 (2.2%) Alexander et al. [42]

Italy 99 15 (15.2%)
Range:

13.6!17.9%

675 10 (1.5%)
Range: *0.7!4.5%

Gellera et al. [43],
Battistinietal. [34]*,
Corrado et al. [44],
Chiò et al. [35]

Japan 7 5 (71.4%) ! ! Abe et al. [45]

Norway 4 0 (0.0%) 37 0 (0.0%) Andersen et al. [39]

Scotland 10 5 (50.0%) 57 4 (7.0%) Jones et al. [46]

Spain (Catalonia) 30 5 (16.7%) 94 4 (4.3%) Gamez et al. [47]

Sweden 45 16 (35.6) 213 4 (1.9) Andersen et al. [39]

The Netherlands 55 1 (1.8%) 451 2 (0.4%) van Es et al. [36]

UK 123 25 (20.3%)
Range:

20.0!21.0%

330 9 (2.7%)
Range: 2.6!2.9%

Jackson et al. [48],
Shaw et al. [49],
Orrell et al. [50]

USA 290 68 (23.4%) ! ! Cudkowicz et al. [51]

Overall frequency 20.7% 2.2%

*The frequency of SOD1 mutation in SALS cases previously reported by the authors as 0%[34]. has been updated to 0.8% (3 out of 390 cases) (unpublished
data).
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Haplotype Studies

Though some SOD1 mutations occur as recurrent, few data
have been reported in the literature regarding haplotype
studies. A founder effect has been demonstrated for the
I113T mutation in six Scottish SALS and FALS cases [65], for
the D90A in recessive and dominant European and North
American families [55], for the R115G in four German cases of
FALS, [41]. for the A4V in many North American [66!68] and
European families [68], and for the G41S in six Italian FALS
[53]. Interestingly, the age of the mutation has been estimated
for a limited number of mutations. In the case of the D90A
mutation, individuals from dominant and recessive D90A
pedigrees have been shown to share a common founder
existing around 895 generations ago in Eurasia, with recessive
families arising around 63 generations ago in the founding
populations of Finland [55, 69]. It was initially proposed by
the authors that some modifying factors in the coding or
regulatory regions of SOD1 gene could be able to slow the
disease progression in recessive cases [55]. However, sub-
sequent studies failed to confirm the presence of such
neuroprotective factors in the genomic region around the
SOD1 gene [70, 71]. In addition, two different founders have
been identified for the North American A4V mutation. One
founder, responsible for 18% of North American A4V patients,
had a genetic background similar to that of European A4V
patients. The other founder, accounting for the remaining
82%, was genetically similar to Native Americans, who
reached the Americas from Asia. The authors have estimated
that the mutation has been introduced into the white
population about 400!500 years ago [68]. Another study on
A4V North American ALS patients identified a conserved
minimal haplotype more similar to Asian than European
population, confirming that this mutation occurred in an
Asian population who migrated into the North America
through the Bering Strait, and arose in this population about
540 generations ago [66]. These findings may explain why this
mutation is rare in Europe. Finally, founder analysis showed
that the G41S mutation, identified so far only in Italian ALS
families, may have originated in Italy approximately 45
generations ago from a common founder from Northwest
Tuscany region [53]. These reports may contribute to a better
understanding of the evolutionary history of the disease and
how ALS originated and spread within populations.

ANIMAL MODELS OF SOD1-LINKED ALS
The discovery of mutations in the SOD1 gene in 1993 [14] has

marked a change for the scientific research of ALS and
prompted many investigators to develop experimental rodent
models to investigate the mechanism of neuronal death
associated with SOD1 gene defects. Several transgenic mouse
strains expressing the human SOD1 gene with different
mutations, including missense mutations and C-terminally
truncated variants, have been generated to date. The most
extensively used strains for studying the disease pathogenesis
are [72] SOD1G93A [73], SOD1A4V [74], SOD1G37R [75]
SOD1G85R [76], SOD1G86R [77], SOD1D90A [78], SOD1L84V

[79], SOD1I113T [80], SOD1H46R/H48Q [81], and SOD1H46R/H48Q/

H63G/H120G [82] for the missense mutations, and SOD1L126X

[74, 83], SOD1L126delTT [84], and SOD1G127X [85] as Ctermin-
ally truncated variants. In addition to the mice, there are two
examples of transgenic rats carrying two different human
SOD1 mutations, the SOD1H46R rats[86] and the SOD1G93R rats
[86, 87]. Mutant SOD1 transgenic mice and rats develop
muscle wasting and progressive paralysis, which clinically
resemble human ALS. They also express histopathological
features that reflect several characteristics of the human
disease, in particular, selective degeneration of spinal motor
neurons [88] aggregation of ubiquitinated proteins in motor
neuron, decrease of constitutive proteasome levels with a
concomitant increase of immunoproteasome [89], and,
finally, microglial activation in the degeneration area [90].
The various transgenic mouse strains, however, show some
genetic and phenotypic differences consisting in the transgene
copy number, expression levels of mutant SOD1 protein,
disease onset, and disease duration. Overall, it is widely
accepted that transgenic rodents are a good model of human
SOD1-linked FALS. However, the main limitation of the use of
rodent models is that the level of expression needed in
transgenic rodents to induce the pathological phenotype is
much higher than that in patients with heterozygous SOD1
mutation, so these differences between mice and men should
be taken into account when using mouse models [91].

In addition to transgenic models, a first spontaneously
occurring animal model of ALS has recently been reported.
Indeed, a mutation in the SOD1 gene (E40K), recessively
inherited, has been identified in canine degenerative myelo-
pathy (DM), a disease characterized by symptoms and
histopathologic and immune-histophalogical lesions similar
to those present in ALS patients [92]. Dogs with DM,
compared with the transgenic rodents, are more similar to
humans with ALS in terms of structure and complexity of
the nervous system, disease duration, and mutant SOD1
expression levels, and may be a faithful model to investigate
the processes underlying the motor neuron degeneration
in ALS.

STRUCTURAL PROPERTIES OF SOD1 PROTEIN
AND DISEASE MECHANISM

The role of SOD1 in detoxifying superoxide anion, together
with its high expression levels in neural tissue, suggested the
initial hypothesis that the SOD1 mutations resulted in an
enzyme unable to neutralize reactive oxygen species. This loss
of enzymatic activity could lead to accumulation of toxic
radicals, and oxidative damage and death of neural cells.
However, SOD1 knockout mice do not develop a murine motor
neuron disease [93]. Moreover, transgenic mice carrying
human mutant SOD1, in addition to their own endogenous
SOD1, develop symptoms similar to those observed in human
patients, whereas transgenic mice expressing human wild-
type SOD1, in addition to their own endogenous SOD1, do not
[73, 76]. These collective observations converge to indicate
that the mutant SOD1 protein acts through the gain of a toxic
property and not through a loss of function. The current
hypotheses for the mechanism of toxicity include oxidative
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stress, mitochondrial dysfunction, impairment of axonal
transport, aberrant RNA metabolism, glial cell pathology,
and glutamate excitotoxicity [2]. Although the mechanism by
which mutant SOD1 causes neural death remains elusive,
several lines of evidence suggest that ALS is a protein-folding
disease analogous to other neurodegenerative disorders like
Alzheimer’s, Parkinson’s, and Creutzfeldt!Jakob’s disease
[31, 94, 95].

Structure of the SOD1 Protein

SOD1 is a 32-kDa homodimeric enzyme in which each
subunit contains an 8-stranded Greek key b barrel and several
loops (Figure 2A). Each subunit can form an intramolecular
disulfide bond and coordinate one copper ion and one zinc
ion in its active site [96]. Two loop elements, termed the
‘‘zinc loop’’ (loop IV, residues 50!83) and the ‘‘electrostatic
loop’’ (loop VII, residues 121!142) project from the b barrel
and are important in metal ion binding and formation of the
active site. In the mature enzyme, the C57 is covalently linked
to the C146 through a disulfide bond [97]. The fully
metallated SOD1 protein is a highly stable dimeric molecule
that remains active under a broad range of denaturing
conditions. This conformational stability seems to be closely
linked to copper and zinc ion coordination, which leads to
the formation of the intramolecular disulfide bond; in

addition, metallation and disulfide bond promote the homo-
dimerization of SOD1 subunits [98!100].

SOD1 Mutants and Their Effects on Enzyme Structure

The pathogenic SOD1 mutations are classified into two
groups based on their position in the structure (Figure 2B).
The b-barrel mutants are characterized by a metal content
comparable to that of the wild-type SOD1 and their three-
dimensional structures are all similar to that of the wild-type
protein except for a perturbation near the site of mutation
(eg, A4V, G93A, I113T). In contrast, the metal-binding
mutants are generally deficient in copper and/or zinc, and
are characterized by conformational disorder of the electro-
static and zinc loop elements (eg, H46R, G85R, D125H)
[101]. The b-barrel mutations can result in local perturbations
that are able to alter the protein structure by affecting
selectively the monomer stability, or weakening exclusively
the dimer interface, or doing both at the same time [102]. The
metal-binding mutations can diminish the metal coordina-
tion and lead to altered SOD1!SOD1 interactions. In both
cases, the mutations cause a destabilization of SOD1 structure
and could promote oligomerization and aggregation. In
addition, several ALS-associated SOD1 mutations decrease
the net negative charge of the SOD1 protein, and this
reduction could promote aggregation. Most proteins possess
a net surface charge at physiological pH, and the prevalence
of net charge has been supposed as a general biological
mechanism that prevents aggregation. Thus, some ALS-
associated SOD1 mutations, such as the D101N and D76V,
that are unlikely to cause SOD1 aggregation by protein
destabilization or inhibition of metal binding, might promote
the aggregate formation by decreasing the net negative charge
of the SOD1 protein [103]. Based on these assumptions, the
potential effect of a specific SOD1 mutation on protein
stability can be predicted using computational bioinformatics
tools (eg, the ‘‘Panther software’’ and the ‘‘SOD1 Database*
Motor Neuron Disease Mutations,’’ directly available from the
ALSOD database, and the ‘‘Swiss model server,’’ accessible
via the ExPASy web server) [30, 104, 105]. For example, the
modeling of the novel G10R mutation showed a relevant
increase in energy around the site of mutation causing a
strong destabilization of the protein that could influence the
strength of the dimer interface [106].

It has also been suggested that mutant SOD1 proteins have a
reduced ability to interact properly with the copper chaperone
for SOD1 (CCS), a polypeptide that confers two critical
stabilizing posttranslational modifications on the newly
synthesized SOD1: the insertion of the copper ion [107],
and the oxidation of the disulfide bond within each SOD1
subunit [108]. The reduced interaction with this chaperone
might result in an increased destabilization and aggregation
propensity [101].

SOD1 Aggregation and Motor Neuron Degeneration

The accumulation of detergent-insoluble aggregates of
mutant SOD1 has been observed to coincide with the
manifestation of disease symptoms in all mouse models

Figure 2. A) Structure of human SOD1 protein. The b barrel is shown in
blue, and the zinc loop and the electrostatic loop are shown in green and
red, respectively. The copper and zinc ions are represented as orange and
blue spheres, respectively. B) ALS-associated mutations in the SOD1
protein. The position of the SOD1 mutations are represented as small
spheres within the SOD1 monomer.
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[31, 97]. Similar evidence that mutant SOD1 aggregation is a
pathologic feature has been reported in human SOD1-
associated ALS [109!111]. So, the presence of detergent-
insoluble aggregated forms of mutant SOD1 in the spinal
cord seems to strictly correlate with the disease. Whether the
toxic action in SOD1-associated ALS is caused by the
misfolded pathogenic SOD1 monomers, soluble oligomers,
or insoluble aggregates remains unclear. Data from cell
models suggest that the formation of large SOD1 aggregates
could be the main mechanism of toxicity [112]. However, it
remains possible that it is the soluble precursors of these
large SOD1 aggregates (rather than the aggregates them-
selves) that are toxic. Indeed, in mouse models of SOD1-
associated ALS, the most significant accumulation of mutant
SOD1 aggregates occurs late in the disease [31], after the
appearance of multiple pathologic abnormalities [113]. Thus,
it has been supposed that a toxic form of mutant SOD1,
different from the larger protein aggregates, is responsible
for initiating the disease [31].

Recent studies have used several biophysical data to
calculate the aggregation rates for ALS mutants, suggesting
that the aggregation of mutant protein might be a key
element in disease progression [102, 114]. A study analyzed
the aggregation propensity in about 30% of all known SOD1
mutants in a cell culture model, providing definitive evidence
that increased aggregation propensity is highly likely to be a
universal feature of mutant SOD1 [31]. However, it failed to
identify a specific biochemical or biophysical property that
adequately explains the variability in the propensity of
different mutant proteins to aggregate, even in cases in
which multiple mutations target a single amino acid position.
Interestingly, no obvious relationship between aggregation
propensity and age of onset was found. However, SOD1
mutations with a high aggregation propensity, such as the
A4V and the G41S, are generally correlated with a more
rapidly progressing disease and a shorter duration [31]. For
the G41 position it has been demonstrated that the G41S
mutation showed an in vitro aggregation propensity higher
than the G41D substitution, which is associated with a less
aggressive phenotype and a longer survival (B1 year vs. 17
years). The association with the disease duration appears to
be a distinctive feature of ALS, because in other examples of
neurodegenerative disorders associated with aggregation,
aggregation propensity is best correlated with disease onset
[115, 116].

Several hypotheses have been proposed regarding the
toxicity mechanism of SOD1 aggregates, including the
perturbation of mitochondrial function, the alteration of
axonal transport, the aberrant binding of apoptosis regula-
tors, and the glutamate exocitotoxicity [103]. Various lines of
evidence suggest that the presence of SOD1 aggregates affects
the capability of the cell to preserve the protein homeostasis.
In the cell, chaperones aid partially folded or unfolded
polypeptides to revert to their functional conformation,
preventing their aggregation and their interaction with
inappropriate partners [117]. If proteins cannot be refolded,
they are escorted to the proteasome system for degradation

[118]. In the case of SOD1 mutations, the chaperones might
be engaged in the unproductive effort to remove protein
aggregates, and might become not available for productive
functions in protein folding. At the same time, the mutant
proteins may overburden the proteasome system, resulting in
an impairment of the degradation activity. A general dysfunc-
tion in protein-folding and metabolism, caused by the
alteration of these crucial protein homeostatic processes,
could be responsible for the rapid progression of the disease.

Mutant SOD1 Toxicity in Non-neuronal Cells

The collective evidence is that, although ALS is character-
ized by motor neuron degeneration and death, toxicity of
SOD1 mutants is produced by damage developed not only
within motor neurons, but also by other non-neuronal
neighbors [3]. SOD1 aggregates occur not exclusively in
neurons, but also in the glial cells surrounding the motor
neuron [76, 119, 120]. The role of glial cells in SOD1-linked
ALS pathogenesis has been initially demonstrated in mice
chimeric for a human SOD1 mutation [121]. In these mice,
degeneration of motor neurons expressing mutant SOD1 was
delayed or prevented when they were surrounded by wild-type
non-neuronal cells, whereas wild-type motor neurons devel-
oped degenerative changes when surrounded by non-neuro-
nal cells expressing mutant SOD1 [121]. It is now accepted
that damage within motor neurons is a primary determinant
of disease onset. During this initial phase, mutant SOD1
primarily acts directly within motor neurons, where aggrega-
tion of misfolded SOD1 damages cellular machinery and
alters normal cellular functions. SOD1 mutant injury is
amplified by the action within other cell types, especially
the microglia, which respond to the initial damage and lead
to a more rapid disease progression [3]. Progression is
indeed characterized by a massive activation of microglia and
astrocytes, in addition to continuing damage within motor
neurons themselves. Misfolded SOD1 mutant within micro-
glial cells and astrocytes, together with their activation in
response to neuronal damage, can cause inflammation and
provoke an increased release of toxic factors. These molecules
in turn exert a toxic effect on neighboring cells and cause
acceleration of the disease progression [122]. In addition,
recent findings have shown that protein components of
neurosecretory vesicles in neurons and neuroendocrine
system, termed chromogranins, can interact with mutant
SOD1, but not with the wild-type protein [123]. Chromogra-
nins may act as chaperone-like proteins to promote the
secretion of SOD1 mutants by motor neuron and astrocytes.
Extracellular mutant SOD1 in turn can activate microgliosis
and cause neuronal cell death. This model emphases the
likely crosstalk between motor neurons, microglial cells, and
potentially other nonneuronal cells that may cooperate to
drive disease progression. In the light of these assumptions,
the selective sensitivity of motor neurons to toxicity from
ubiquitously expressed SOD1 mutants can be explained by the
accidental convergence of the peculiar properties of motor
neurons and the combination of injuries sustained by those
cells and their multiple cellular neighbors.
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SUMMARY
ALS is a progressive and fatal disorder characterized by

degeneration of motor neurons in the cerebral cortex, brain
stem, and spinal cord. Mutations in the SOD1 gene have been
found in 12!23% of patients with a diagnosis of FALS. To
date, more than 150 mutations located in all five exons of the
SOD1 gene have been described worldwide in ALS patients,
with autosomal dominant transmission or, rarely, recessive
transmission. A genotype!phenotype correlation has been
defined for only a few mutations. In particular, the A4V
mutation is mostly associated with a rapidly progressive form
of LMN ALS with a survival time usually of 1!2 years. A
uniform phenotype with spinal onset, bulbar involvement at
the end of the disease, and a short survival time of about 1
year has been described for the G41S mutation. On the
opposite end of the spectrum, an extreme phenotypic
variability has been reported for patients with the I113T
mutation with a range of disease duration of 2!20 years,
spinal or bulbar onset, and variable penetrance even among
members of the same family. Some SOD1 mutations occur as
recurrent or founder mutations, and a geographic distribu-
tion is beginning to emerge. The D90A mutation is the most
common mutation globally and the most prevalent one in
Europe, the A4V mutation is the most prevalent mutation in
the United States, accounting for about 50% of all SOD1
mutated patients, and the I113T mutation is by far the most
common mutation in the United Kingdom.

Although the mechanism by which mutant SOD1 causes
neural death remains elusive, several lines of evidence suggest
that ALS is a protein-folding disease and that the toxic action
in SOD1-associated ALS is caused by the misfolded patho-
genic SOD1 monomers, soluble oligomers, or insoluble
aggregates. Mutant SOD1 aggregation is indeed a common
pathologic feature reported in human SOD1-associated ALS.
SOD1 is a homodimeric enzyme in which each subunit forms
an intramolecular disulfide bond and coordinates one copper
ion and one zinc ion in its active site. The SOD1 mutations are
classified into b-barrel mutations, which result in local
perturbations that are able to affect the monomer stability,
the dimer interface, or both at the same time, and metal
binding mutations, which diminish the metal coordination
and lead to altered SOD1!SOD1 interactions. In both cases,
the mutations cause a destabilization of SOD1 structure and
may promote oligomerization and aggregation. Experimental
evidence has shown that the increased aggregation propensity
is highly likely to be a universal feature of mutant SOD1,
although it has not been identified as a specific biochemical
or biophysical property able to adequately explain the
variability in propensity of the different mutant proteins to
aggregate. No obvious relationship between aggregation
propensity and age of onset has been found; however, the
aggregation propensity appears to be involved in the progres-
sion and inversely associated with the disease duration.
Among the hypotheses advanced to explain the toxicity
mechanism of misfolded SOD1, it has been proposed that
SOD1 aggregates play a direct role in altering the cellular

protein homeostasis, particularly affecting the chaperone
activity and the proteasome system.

In addition, it has been demonstrated that mutant SOD1
may be secreted in the extracellular environment by motor
neurons and astrocytes and in turn can activate microgliosis
and cause neuronal cell death. This model for the pathogenic
mechanism mediated by SOD1 mutants is consistent with the
concept that ALS is a non-cell autonomous disease, and that
motor neuron degeneration requires the expression of mutant
SOD1 also in non-neuronal cell types.
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35. Chiò A, Traynor BJ, Lombardo F, et al. Prevalence of SOD1 mutations in
the Italian ALS population. Neurology. 2008;70:533!537.

36. van Es MA, Dahlberg C, Birve A, et al. Large scale SOD1 mutation
screening provides evidence for genetic heterogeneity in amyotrophic
lateral sclerosis. J Neurol Neurosurg Psychiatry. 2010;81:562!566.

37. Aguirre T, Matthijs G, Robberecht W, et al. Mutational analysis of the
Cu/Zn superoxide dismutase gene in 23 familial and 69 sporadic cases
of amyotrophic lateral sclerosis in Belgium. Eur J Hum Genet. 1999;7:
599!602.

38. Boukaftane Y, Khoris J, Moulard B, et al. Identification of six novel SOD1
gene mutation in familial amyotrophic lateral sclerosis. Can J Neurol Sci.
1998;25:192!196.

39. Andersen PM, Nilsson P, Keranen ML, et al. Phenotypic heterogeneity in
motor neuron disease patients with CuZn-superoxide dismutase muta-
tions in Scandinavia. Brain. 1997;120:1723!1737.

40. Jafari-Schluep HF, Khoris J, Mayeux-Portas V, et al. Superoxide
dismutase 1 gene abnormalities in familial amyotrophic lateral sclero-

sis: phenotype/genotype correlations. The French experience and review
of the literature. Rev Neurol (Paris). 2004;160:44!50. French.

41. Niemann S, Joos H, Meyer T, et al. Familial ALS in Germany: origin of
the R115G SOD1 mutation by a founder effect. J Neurol Neurosurg
Psychiatry. 2004;75:1186!1188.

42. Alexander MD, Traynor BJ, Coor B, et al. SOD1 Mutation analysis in the
Irish ALS population*a preliminary report. Amyotroph Lateral Scler Other
Motor Neuron Disord. 2000;1:99 (Abstract).

43. Gellera C, Castellotti B, Riggio MC, et al. Superoxide dismutase gene
mutations in Italian patients with familial and sporadic amyotrophic
lateral sclerosis: identification of three novel missense mutations.
Neuromuscul Disord. 2001;11:404!410.

44. Corrado L, D’Alfonso S, Bergamaschi L, et al. SOD1 gene mutations in
Italian patients with Sporadic Amyotrophic Lateral Sclerosis (ALS).
Neuromuscul Disord. 2006;16:800!804.

45. Abe K, Aoki M, Ikeda M, et al. Clinical characteristics of familial
amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene
mutations. J Neurol Sci. 1996;136:108!116.

46. Jones CT, Swingler RJ, Simpson SA, et al. Superoxide dismutase
mutations in an unselected cohort of Scottish amyotrophic lateral
sclerosis patients. J Med Genet. 1995;32:290!292.

47. Gamez J, Corbera-Bellalta M, Nogales G, et al. Mutational analysis of
the Cu/Zn superoxide dismutase gene in a Catalan ALS population:
should all sporadic ALS cases also be screened for SOD1? J Neurol Sci.
2006;247:21!28.

48. Jackson M, Al-Chalabi A, Enayat ZE, et al. Copper/Zinc superoxide
dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155
cases and identification of a novel insertion mutation. Ann Neurol.
1997;42:803!807.

49. Shaw CE, Enayat ZE, Chioza BA, et al. Mutations in all five exons of
SOD-1 may cause ALS. Ann Neurol. 1998;43:390!394.

50. Orrell RW, Habgood JJ, Malaspina A, et al. Clinical characteristics of
SOD1 gene mutations in UK families with ALS. J Neurol Sci. 1999;169:
56!60.

51. Cudkowicz ME, McKenna-Yasek D, Sapp PE, et al. Epidemiology
of mutations in superoxide dismutase in amyotrophic lateral sclerosis.
Ann Neurol. 1997;41:210!221.

52. Ferrera L, Caponnetto C, Marini V, et al. An Italian dominant FALS
Leu144Phe SOD1 mutation: genotype-phenotype correlation. Amyotroph
Lateral Scler Other Motor Neuron Disord. 2003;4:167!170.

53. Battistini S, Ricci C, Giannini F, et al. G41S SOD1 mutation: a common
ancestor for six ALS Italian families with an aggressive phenotype.
Amyotroph Lateral Scler. 2010;11:210!215.

54. Hand CK, Mayeux-Portas V, Khoris J, et al. Compound heterozygous
D90A and D96N SOD1 mutations in a recessive amyotrophic lateral
sclerosis family. Ann Neurol. 2001;49:267!271.

55. Parton MJ, Broom W, Andersen PM, et al. D90A-SOD1 mediated
amyotrophic lateral sclerosis: a single founder for all cases with
evidence for a Cis-acting disease modifier in the recessive haplotype.
Hum Mutat. 2002;20:473!480.

56. Robberecht W, Aguirre T, Van den Bosch L, et al. D90A heterozygosity
in the SOD1 gene is associated with familial and apparently sporadic
amyotrophic lateral sclerosis. Neurology. 1996;47:1336!1339.

57. Skvortsova VI, Limborska SA, Slominsky PA, et al. Sporadic ALS
associated with the D90A Cu, Zn superoxide dismutase mutation in
Russia. Eur J Neurol. 2001;8:167!172.

58. Andersen PM, Sims KB, Xin WW, et al. Sixteen novel mutations in the
Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a
decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other
Motor Neuron Disord. 2003;4:62!73.

59. Corcia P, Jafari-Schluep HF, Camu W. Reply to ‘‘Disease penetrance in
Amyotrophic Lateral Sclerosis associated with mutations in the SOD1
gene’’. Ann Neurol. 2004;55:299.

60. Giannini F, Battistini S, Mancuso M, et al. D90A-SOD1 mutation in ALS:
the first report of heterozygous Italian patients and unusual findings.
Amyotroph Lateral Scler. 2010;11:216!219.

61. Origone P, Caponnetto C, Mascolo M, et al. Heterozygous D90A-SOD1
mutation in an Italian ALS patient with atypical presentation. Amyotroph
Lateral Scler. 2009;10:492.

SOD1 mutations in ALS

www.slm-neurology.com 9 ENJ 2010; 000:(000). Month 2010



62. Luigetti M, Conte A, Madia F, et al. Heterozygous SOD1 D90A mutation
presenting as slowly progressive predominant upper motor neuron
amyotrophic lateral sclerosis. Neurol Sci. 2009;30:517!520.

63. Rainero I, Pinessi L, Tsuda T, et al. SOD1 missense mutation in an
Italian family with ALS. Neurology. 1994;44:347!349.

64. Lopate G, Baloh RH, Al-Lozi MT, et al. Familial ALS with extreme
phenotypic variability due to the I113T SOD1 mutation. Amyotroph Lateral
Scler. 2010;11:232!236.

65. Hayward C, Swingler RJ, Simpson SA, et al. A specific superoxide
dismutase mutation is on the same genetic background in sporadic and
familial cases of amyotrophic lateral sclerosis. Am J Hum Genet.
1996;59:1165!1167.

66. Broom WJ, Johnson DV, Auwarter KE, et al. SOD1A4V-mediated ALS:
absence of a closely linked modifier gene and origination in Asia.
Neurosci Lett. 2008;430:241!245.

67. Rosen DR. A shared chromosome-21 haplotype among amyotrophic
lateral sclerosis families with the A4V SOD1 mutation. Clin Genet.
2004;66:247!250.

68. Saeed M, Yang Y, Deng HX, et al. Age and founder effect of SOD1 A4V
mutation causing ALS. Neurology. 2009;72:1634!1639.

69. Al-Chalabi A, Andersen PM, Chioza B, et al. Recessive amyotrophic
lateral sclerosis families with the D90A SOD1 mutation share a common
founder: evidence for a linked protective factor. Hum Mol Genet.
1998;7:2045!2050.

70. Broom WJ, Russ C, Sapp PC, et al. Variants in candidate ALS modifier
genes linked to Cu/Zn superoxide dismutase do not explain divergent
survival phenotypes. Neurosci Lett. 2006;392:52!57.

71. Broom WJ, Johnson DV, Garber M, et al. DNA sequence analysis of the
conserved region around the SOD1 gene locus in recessively inherited
ALS. Neurosci Lett. 2009;463:64!69.

72. Turner BJ, Talbot K. Transgenics, toxicity and therapeutics in rodent
models of mutant SOD1-mediated familial ALS. Prog Neurobiol.
2008;85:94!134.

73. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice
that express a human Cu,Zn superoxide dismutase mutation. Science.
1994;264:1772!1775.

74. Deng HX, Shi Y, Furukawa Y, et al. Conversion to the amyotrophic
lateral sclerosis phenotype is associated with intermolecular linked
insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci USA.
2006;103:7142!7147.

75. Wong PC, Pardo CA, Borchelt DR, et al. An adverse property of a familial
ALS-linked SOD1 mutation causes motor neuron disease characterized
by vacuolar degeneration of mitochondria. Neuron. 1995;14:1105!1116.

76. Bruijn LI, Becher MW, Lee MK, et al. ALS-linked SOD1 mutant G85R
mediates damage to astrocytes and promotes rapidly progressive
disease with SOD1-containing inclusions. Neuron. 1997;18:327!338.

77. Ripps ME, Huntley GW, Hof PR, et al. Transgenic mice expressing an
altered murine superoxide dismutase gene provide an animal model of
amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 1995;92:689!693.
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Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease associated with a positive familial history
in 5–10% of ALS cases. Mutations in the superoxide dismutase-1 (SOD1) gene have been found in 12%–23% of
patients diagnosed with familial ALS. Here we report a novel mutation in exon 4 of SOD1 gene in a 55-year-
old ALS patient belonging to a large Italian family with ALS first clinically described in 1968. In the family the
clinical presentation was characterized by relatively early age of onset, spinal onset with proximal
distribution weakness, bulbar involvement and a rapid disease course. Molecular analysis showed a
heterozygous mutation at codon 106 resulting in a substitution of phenylalanine for leucine in the SOD1
protein (L106F). In analogy with the previously reported L106V mutation, we propose that the L106F causes
a relevant destabilization of the protein chain around the mutation site, able to affect the SOD1 monomer
and dimer structures suggesting a pathogenic role for this novel mutation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive
and fatal neurodegenerative disease with unknown pathogenesis,
characterized by degeneration of motor neurons although increasing
evidence indicates that non-neuronal neighboring cell types contrib-
ute to pathogenesis and disease progression [1,2]. The annual
incidence of the disease is about 1–3/100,000, increasing with age.
Approximately 90% of cases present as sporadic form of ALS (SALS),
whereas 5%–10% are described as familial form of ALS (FALS).
Mutations in the copper/zinc superoxide dismutase-1 (SOD1) gene
are responsible for 12%–23% of all FALS cases [3]. More than 150 SOD1
mutations have been identified (ALS Online Genetic Database, ALSOD:
http://www.alsod.iop.kcl.ac.uk/) [4], with autosomal dominant trans-
mission or, rarely, recessive transmission. We here report a novel
missense mutation (L106F) in exon 4 of SOD1 gene in an Italian ALS
patient belonging to a large family with ALS. We describe the clinical
features of the nine affected family members and evaluate the
potential effect of this novel mutation on SOD1 protein structure and
stability.

2. Materials and methods

2.1. Case report

A 55-year-old man (individual IV-9, Fig. 1,) came to our
observation because of a three-month history of left leg weakness
and gait impairment. Neurological examination showed left leg
atrophy and weakness affecting proximal muscles (Medical Research
Council, MRC 3/5) more than distal muscles (MRC 4/5), diffuse
fasciculations in the lower limbs with hypotonia and normal deep
tendon reflexes. Within few months the patient's conditions wors-
ened with progressive weakness accompanied by wasting of the right
upper and lower extremity. He could walk only with support and
couldn't stand up. Moreover the patient developed right facial nerve
palsy, dysarthria, nasal voice and severe dysphagia with loss of 5 kg in
weight. Routine blood examination was unremarkable apart from
mildly elevated serum creatine kinase level (600 UI/L; n.v.: 25–
195 UI/L). Magnetic resonance imaging (MRI) of the brain was
normal. Spinal cord MRI showed anterior displacement of the spinal
cord at the T4 level with an enlargement of the dorsal subarachnoid
space suggestive for idiopathic spinal cord herniation or arachnoid
cyst. Motor evoked potentials (MEP) by transcranial magnetic
stimulation, recorded from the abductor pollicis brevis (APB) and
the tibialis anterior (TA) muscles, revealed normal central conduction
time (APB: left, 5.4 ms; right, 5.6 ms; n.v.b7.4 ms. TA: left, 13.5 ms;
right, 10.7 ms; n.v.b15.7). Somatosensory evoked potentials (SEP)
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from tibial nerve stimulation showed slowing of conduction in the
dorsal columns with prolonged bilateral cortical P37 latency (left and
right, 48.0 ms; n.v.b41 ms). These findings caused initial diagnostic
uncertainty and a myelopathy was hypothesized. Electromyography
(EMG) showed neurogenic pattern with denervation activity at rest in
the cervical, thoracic, and lumbo-sacral regions. ALS Functional Rating
Scale (ALS-FRS), at the first observation, was 35 and forced vital
capacity as percent predicted (FVC%) was 103%. At the last follow-up,
three months later, ALS-FRS was 27 and FVC% decreased of 15% in
upright position and of 50% sitting and non-invasive nocturnal
ventilatory support was initiated. His condition rapidly deteriorated.
The patient declined invasive ventilatory treatment and expired of
respiratory insufficiency 9 months after onset of the first symptom.

Our patient belonged to a large kindred with a multigenerational
history of FALS first clinically described by Avanzini et al. in 1968 [5]. At
the time of the original description, hewas still unaffected. The pedigree
is shown in Fig. 1. In the study by Avanzini et al. a total number of
8 affected family members distributed across four generations were
identified: three affected family members (individuals III-1, III-8, III-9)
were directly examined and others five affected family members
(individuals I-1, II-1, III-6, III-16 and IV-1) were identified on the basis
of anamnestic data and medical records. There were no skipped
generations and there was evidence of an autosomal dominant
inheritance. The main clinical features of these nine affected family
members (including our case) are summarized in Table 1. The clinical
picture of our patient and of the other affected family members
previously reported [5] was quite uniform, characterized by spinal
onset with proximal distribution weakness, upper (UMN) and lower
(LMN)motor neuron involvement and appearance of bulbar signs at the
end of the disease. All patients displayed a rapidly progressive disease
course, with amean age at onset of 46.9±4.8 years (range 38–55 years)
and an illness duration of 1.9±1.1 years (range 0.8–4.0 years).

2.2. Molecular analysis

After obtaining written informed consent, genomic DNA from the
proband was extracted from peripheral blood using standard
procedures [6]. Exons 1 to 5 and 3′ untranslated regions of SOD1
gene were amplified from genomic DNA by polymerase chain reaction
(PCR). All the amplicons were screened for sequence variations by
direct sequencing using the Big-Dye Terminator v3.1 sequencing kit
(Applied Biosystems, Milan, Italy) and ABI 310 Genetic Analyzer
(Applied Biosystems, Milan, Italy).

2.3. Bioinformatics analysis and Modelling of the SOD1 L106F mutation

The effect of the newly detected SOD1missensemutation on protein
structure or function was analyzed with the prediction programs
PredictProtein (http://www.predictprotein.org) [7] and PolyPhen
(http://www.genetics.bwh.harvard.edu/pph/) [8]. The likelihood of the
mutation to cause a functional impact on theprotein, basedonalignment
of evolutionarily relatedproteins,was calculatedusing the pathogenicity
predictor Panther software, directly available from the ALSOD database
(http://www.pantherdb.org/tools/csnpScoreForm.jsp) [9].

Modelling of the L106F mutation was performed using the Swiss
model server (http://www.swissmodel.expasy.org/) [10,11] and the
molecular visualization system Pymol (http://www.pymol.sourceforge.
net/) fromthe crystal structure of thenormal SOD1protein (PDB2c9vA).
The atomic empirical mean force potential atomic non-local environ-
ment assessment (ANOLEA) [12] was used to assess the packing quality
of the models. The program performs energy calculations on a protein
chain evaluating the “non-local environment” (NLE) of eachheavy atom
in the molecule. In addition, the impact of the mutation on the protein
structurewasevaluatedusing the “SOD1Database-MotorNeuronDisease
Mutations” link (http://www.bioinf.org.uk/mndb/), accessible from the
ALSOD database.

3. Results

3.1. Molecular analysis

DNA analysis of the proband showed a heterozygous mutation
c.319CNT in the SOD1 gene (Fig. 2). The mutation of CTC to TTC at
codon 106 in exon 4 determined a substitution of leucine to
phenylalanine in the SOD1 protein (L106F). No other family members
were available for SOD1 screening and therefore it was not possible to
confirm the co-segregation of this mutation with the disease. The
mutation was absent in 400 chromosomes from healthy controls.

Fig. 1. Pedigree of the family with the L106F mutation. circle = female; square = male;
filled symbol = ALS-affected individual; open symbol = unaffected individual; arrow =
proband; diagonal line = individual deceased; and asterisk = mutation.

Table 1
Summary of the clinical features of the affected family members.

Patient Sex Age at
onset
(years)

Site of
onset

Clinical
presentation

Bulbar
signs

Age at
death
(years)

Disease
Duration
(years)

I-1 M 43 NA NA NA 45 2
II-1 F 45 LL NA + 47 2
III-1 M 46 Left LL, proximal UMN+LMN + 47 0.9
III-6 M 50 LL+UL NA + 52 2
III-8 M 47 LL, proximal UMN+LMN + 51 4
III-9 M 48 LL, proximal UMN+LMN + 50 1.5
III-16 M 50 Left LL UMN+LMN NA NA NA
IV-1 M 38 Left LL UMN+LMN NA NA NA
IV-9 M 55 Left LL, proximal UMN+LMN + 56 0.8

Abbreviations: LMN, lower motor neuron; UMN, upper motor neuron; LL, lower limb;
UL, upper limb; and NA, data not available.

Fig. 2. Automated sequence analysis of the SOD1 gene. Automated sequence analysis of
exon 4 from the SOD1 gene showing the heterozygous mutation c.319CNT (arrow).

113S. Battistini et al. / Journal of the Neurological Sciences 293 (2010) 112–115



Multi-species comparisons showed that the leucine at codon 106 is
a highly conserved residue among various species (Table 2). The
pathogenicity predictor Panther software evidenced a score of
−3.478, suggesting a highly harmful mutation.

3.2. Modelling of the SOD1 L106F mutation

The PredictProtein server showed that L106F mutation could have
a non-neutral effect with an accuracy of 93%. This prediction was
confirmed using PolyPhen. The calculation showed that PSIC score
differences (Position-Specific Independent Counts) was in the interval
1.5–2.0 and this value predicts a possibly damaging effect resulting in
a cavity creation.

The model of the mutant SOD1 showed a destabilization of the
secondary structure around the phenylalanine in position 106. The
substitution of leucine with the aromatic amino acid phenylalanine
would cause an alteration of the protein secondary structure, due to
the increased steric hindrance of the benzene ring in a region where it
interacts with another phenylalanine in position 20 located in the β
barrel (Fig. 3). Moreover, the energy calculation of the protein chain
showed a relevant increase in energy, corresponding to an unfavour-
able energy environment, around the phenylalanine in the mutant
SOD1 compared with the wild-type protein (Fig. 3).

Table 2
Protein alignment of the residues conserved across different species.

Multi-species comparison of the SOD1 protein in the region surrounding leucine in
position 106 (grey box).

Fig. 3. Three-dimensional structure of both wild-type human SOD1 protein and a model of the SOD1 L106F variant, and their specific atomic non-local environment assessment
(ANOLEA) plots. a. Three-dimensional x-ray diffraction structure of wild-type human SOD1 protein (PDB2c9vA). b. Model of the superoxide dismutase L106F mutation. The leucine
and phenylalanine in position 106 and the phenylalanine in position 20 are represented with sticks and are indicated by an arrow. c. ANOLEA plot with the atomic empirical mean
force potential of the normal SOD1 protein. d. ANOLEA plot of the SOD1 L106F mutation. The y-axis of the plots represents the energy for each amino acid in the protein chain.
Negative energy values (grey) represent a favourable energy environment, whereas positive values (black) represent an unfavourable energy environment for a given amino acid.
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4. Discussion

Here we report a novel exon 4 missense mutation (L106F) in the
SOD1 gene in an ALS patient belonging to a large Italian family with
ALS first described in 1968 [5]. In this family there was evidence of an
autosomal dominant inheritance. The clinical presentation of the nine
affected family members was characterized by relatively early age of
onset, spinal onset with proximal distribution weakness, bulbar
involvement and a rapid disease course of about two years.

In the same codon, two different missense mutations have been
previously described. A mutation resulting in the substitution of
leucine to valine (L106V) has been identified in a Bulgarian ALS family
[6,13] and in a Japanese family [14], with a quite similar disease
course, characterized by early age of onset and rapid disease
progression [15]. Another mutation, the L106P, has been found in an
Italian patient who, analogously with our cases, presented with spinal
onset with weakness mainly in proximal areas, a rather uncommon
feature in ALS. However, this patient differed from our cases since,
30 months after disease onset, the pattern of weakness remained
restricted to the upper limbswithout pyramidal tract dysfunction, and
it was consistent with brachial amyotrophic diplegia (BAD), a
relatively slowly progressive variant of motor neuron disease [16,17].

The L106 amino acid residue is highly conserved in different
species (Table 2) suggesting an important role for the proper
structure and function of the SOD1 protein. The leucine 106 is
localized in a completely buried position in the connecting loop
between the β-6 strand and the α-helix 2. In the case of the L106V
mutation, it has been previously observed that the introduction of an
oversized chain alters the folded structure through steric clashes and
destabilizes both the monomer and dimer interface [18]. Regarding
the L106F mutation reported in our study, the presence of phenyl-
alanine could cause an even stronger alteration, due to the increased
steric hindrance of the benzene ring. In support of this explanation, a
similar obstructive effect has been reported for the substitution of
phenylalanine for isoleucine at position 104 (I104F) [18]. In addition,
the modelling of L106F mutation has shown a relevant destabilization
of the protein chain around the mutation site, able to affect the SOD1
monomer and dimer structures (Fig. 3), suggesting a pathogenic role
for this novel mutation.

In conclusion, molecular genetic analysis showed that the Italian
ALS family clinically described in 1968 [5] harboured a novel SOD1
gene mutation. Further studies of this and other families with the
L106F mutation will help to confirm its pathogenicity and the
correlation with a severe ALS phenotype.

Acknowledgement

The authors thank Prof. Giuliano Avanzini at the C. Besta
Foundation Neurological Institute, Milan, Italy for his support and
advice in investigating this family.

References

[1] Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral
sclerosis. Ann Neurol 2009;65:S3–9.

[2] Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in
neurodegenerative disorders: ALS and beyond. J Cell Biol 2009;187:761–72.

[3] Andersen PM. Amyotrophic lateral sclerosis associated withmutations in the CuZn
Superoxide dismutase gene. Curr Neurol Neurosci Rep 2006;6:37–46.

[4] Wroe R, Wai-Ling Butler A, Andersen PM Powell JF, Al-Chalabi A. ALSOD: the
amyotrophic lateral sclerosis. Online database. Amyotroph Lateral Scler 2008;9:
249–50.

[5] Avanzini G, Lechi A, Mancia D. Familial amyotrophic lateral sclerosis. Apropos of a
clinical case. Sist Nerv 1968;20:311–9 Italian.

[6] Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations
in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic
lateral sclerosis. Nature 1993;362:59–62.

[7] Rost B, Yachdav G, Liu J. The predictProtein server. Nucleic Acids Res 2004;32:
W321–6.

[8] Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey.
Nucleic Acids Res 2002;30:3894–900.

[9] Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER:
a library of protein families and subfamilies indexed by function. Genome Res
2003;13:2129–214.

[10] Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: a web-
based environment for protein structure homology modelling. Bioinformatics
2006;22:195–201.

[11] Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein
homology-modeling server. Nucleic Acids Res 2003;31:3381–5.

[12] Melo F, Feytmans E. Assessing protein structures with a non-local atomic
interaction energy. J Mol Biol 1998;277:1141–52.

[13] Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, et al. Amyotrophic
lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science
1993;261:1047–51.

[14] Kawamata J, Hasegawa H, Shimohama S, Kimura J, Tanaka S, Ueda K. Leu106–NVal
(CTC–NGTC) mutation of superoxide dismutase-1 gene in patient with familial
amyotrophic lateral sclerosis in Japan. Lancet 1994;343:1501.

[15] Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller B, Hayden DL, et al.
Epidemiology of mutations in superoxide dismutase in amyotrophic lateral
sclerosis. Ann Neurol 1997;41:210–21.

[16] Valentino P, Conforti FL, Pirritano D, Nisticò R, Mazzei R, Patitucci A, et al. Brachial
amyotrophic diplegia associated with a novel SOD1 mutation (L106P). Neurology
2005;64:1477–8.

[17] Wijesekera LC, Mathers S, Talman P, Galtrey C, Parkinson MH, Ganesalingam J,
et al. Natural history and clinical features of the flail arm and flail leg ALS variants.
Neurology 2009;72:1087–94.

[18] Lindberg MJ, Byström R, Boknäs N, Andersen PM, Oliveberg M. Systematically
perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1
mutants. Lindberg. Proc Natl Acad Sci U S A 2005;102:9754–9.

115S. Battistini et al. / Journal of the Neurological Sciences 293 (2010) 112–115



Lack of association of PON polymorphisms with sporadic ALS in an
Italian population

Claudia Riccia, Stefania Battistinia, Lorena Cozzib, Michele Benignia, Paola Origonec,
Lorenzo Verriellod, Christian Lunettae, Cristina Ceredaf, Pamela Milanif, Giuseppe Grecoa,

Maria Cristina Patrossob, Renzo Causaranog, Claudia Caponnettoh, Fabio Gianninia,
Massimo Corboe, Silvana Pencob,*

a Department of Neuroscience-Neurology Section, University of Siena, Siena, Italy
b Department of Laboratory Medicine, Medical Genetics, Niguarda Ca’ Granda Hospital, Milan, Italy

c Department of Oncology, Biology and Genetics, University of Genoa and U.O. Medical Genetics of A.O.U. S. Martino di Genova, Genoa, Italy
d Department of Neurology and DPMSC, University and Santa María della Misericordia Hospital, Udine, Italy

e Centro NEMO, Fondazione Serena, Milan, Italy
f IRCCS Institute of Neurology C. Mondino, Pavia, Italy

g Department of Neurological and Vision Science, Niguarda Ca’ Granda Hospital, Milan, Italy
h Department of Neuroscience, Ophthalmology and Genetics, Section of Neurology, University of Genoa, Genoa, Italy

Received 2 October 2009; received in revised form 4 February 2010; accepted 16 February 2010

Abstract

Paraoxonase (PON) gene polymorphisms have been associated with susceptibility to sporadic amyotrophic lateral sclerosis (ALS). We
have investigated the role of the previously associated single nucleotide polymorphisms rs854560, rs662, and rs6954345 in 350 ALS patients
and 376 matched controls from Italy. No significant association was observed at genotype and haplotype level. Our data suggest that PON
polymorphisms are not involved in ALS pathogenesis in an Italian population.
© 2011 Elsevier Inc. All rights reserved.

Keywords: Amyotrophic lateral sclerosis; Paraoxonase (PON) genes; Single nucleotide polymorphisms

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive and
fatal disease characterized by the degeneration of motor
neurons of the cerebral cortex, brain stem, and spinal cord.
Sporadic ALS (SALS) accounts for about 90% of all ALS
cases and is thought to result from the interaction of several
susceptibility genes with environmental factors. Among the
genetic factors, special attention has been reserved for the
paraoxonase (PON) genes (PON1, PON2, PON3), which
express detoxifying enzymes involved in the metabolism of
a large number of substrates. Some single nucleotide poly-

morphisms (SNPs) have been identified in the PON genes.
Several studies in different populations have investigated
the association between PON genetic variants and the risk
for sporadic ALS, and reported conflicting results (Cronin et
al., 2007; Landers et al., 2008; Morahan et al., 2007; Saeed
et al., 2006; Slowik et al., 2006; Valdmanis et al., 2008;
Wills et al., 2009). In the light of the discrepancy in results,
replication in independent populations can be of substantial
importance to better understand the role of paraoxonase
genes in sporadic ALS.

2. Methods

The study included 350 sporadic ALS patients and 376
control subjects from Italy. ALS diagnosis was made ac-
cording to El Escorial Revisited criteria (Brooks et al.,
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2000). Control group consisted of age- and sex-matched
individuals from the same ethnic background with no his-
tory of neurological diseases. Characteristics of ALS pa-
tients and controls are summarized in Table 1S in the
Supplementary material. Genotypes for the SNPs rs854560
(L55M) and rs662 (Q192R) in the PON1 gene and
rs6954345 (S311C) in the PON2 gene were determined
using restriction enzyme digestion and/or direct sequencing.
Frequencies were compared using !2 statistics. Survival
analysis was performed using the Kaplan-Meier method.
For details see Supplementary material.

3. Results

Based on frequency and odds ratio data previously re-
ported for the examined SNPs (Cronin et al., 2007; Slowik
et al., 2006; Wills et al., 2009), our sample had "85%
power to detect the risk allele at a significance level of " #
0.05. All the studied SNPs were in Hardy-Weinberg equi-
librium in both cases and controls (p " 0.05). No significant
difference in rs854560 (L55M), rs662 (Q192R), and
rs6954345 (S311C) distributions was observed in patients
compared with controls, assuming additive, dominant, and
recessive models (see Table 1 and Table 2S). Haplotype
analysis did not reveal a significant association for any
haplotypes (Table 3S). None of the genotypes/haplotypes
were associated with ALS clinical variables (i.e., gender,
location of disease onset, age at the onset, and disease
duration; see Table 4S).

4. Discussion

The present study investigated the association between
PON gene polymorphisms and susceptibility to ALS in an
Italian population. To our knowledge, no studies on PON
genes and ALS had been previously performed in patients
from Italy. No significant association was observed between
the examined SNPs and the risk of ALS, either at genotype
or haplotype level. Previous studies involving PON genes
have reported positive associations in several ALS popula-
tions. However, each study found different SNPs and/or
haplotypes to be associated with ALS susceptibility. This
may reflect heterogeneity among different populations at the

genetic level, but it should not be overlooked that conflict-
ing results can originate from the large range of PON SNPs
chosen for the analysis in each report. Here, we have ex-
amined some of the most frequently assayed PON polymor-
phisms (Wills et al., 2009), analyzed in the first association
study (Slowik et al., 2006), which are able to influence/
modulate paraoxonase activity in vivo (Li et al., 2003). Our
findings in the Italian population agree with the results of a
recent meta-analysis of PON gene polymorphisms in spo-
radic ALS that failed to confirm any positive association in
a comprehensive study on more than 8000 patients and
controls, including the SNPs assayed in the present report
(Wills et al., 2009). Lack of association of SNPs with ALS
in the Italian population may indicate that PON genes play
a minor role, and other gene-environment interactions are
involved in ALS pathogenesis.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a relatively rare
(incidence: 1–3/100,000/year), progressive, and fatal disease
characterized by the neurodegeneration of motor neurons of
the cerebral cortex, brain stem, and spinal cord. Familial ALS
(FALS) accounts for about 10% of the cases, and is usually
inherited as an autosomal dominant trait. Currently eight ALS
genes and several additional chromosomal loci have been iden-
tified (Beleza-Mereiles and Al-Chalabi, 2009; Kwiatkowski et
al., 2009; Valdmanis and Rouleau, 2008; Vance et al., 2009);
approximately 20% of familial ALS cases are attributed to
mutations in SOD1 gene (Andersen, 2006). In contrast, 90% of
all the ALS cases are sporadic (SALS). To date, the etiology of
the sporadic form is undisclosed and little is known about the
factors contributing to the development of the disease. SALS is
thought to result from the interaction of several genes with
environmental factors, including exposure to adverse environ-
mental agents, thus depicting sporadic ALS as a typical mul-
tifactorial disease (Schymick et al., 2007; Simpson and Al-
Chalabi, 2006).

Among the genetic factors, special attention has been
reserved to the paraoxonase (PONs) genes, that express
detoxifying enzymes involved in the metabolism of a large
number of substrates. The genetic locus encoding PON is
localized on chromosome 7q21.3 and contains 3 genes (or-
dered PON1, PON3 and PON2). PON1 is synthesized in the
liver and associated with high-density lipoprotein (HDL) in
the circulation; it exhibits antioxidative properties, prevent-
ing low-density lipoprotein (LDL) from peroxidation and
inactivating oxidized lipids in LDL (Li et al., 2003). PON1
also detoxifies organophosphate insecticides, pesticides and
nerve gases (Li et al., 2003). PON2 is a ubiquitously ex-
pressed intracellular protein able to protect the cells against
the oxidative damage (Ng et al., 2001). PON3 displays
properties similar to PON1, but differs from it in regulation
pathway and substrate specificity (Reddy et al., 2001).

Some single nucleotide polymorphisms (SNPs) have
been identified in the PON cluster. In particular, L55M
(rs854560) and Q192R (rs662) SNPs have been detected in
the coding region of the PON1 gene and related to the
enzyme activity. The 192RR and 55LL genotypes are asso-
ciated with the greatest hydrolytic activity against paraoxon,
whereas the 192QQ and 55-MM genotypes possess the
highest protective capacity against LDL oxidation (Humbert
et al., 1993). In addition, individuals with the M allele have
lower levels of PON1 mRNA and plasma concentration of
the enzyme, thus showing a 30% reduction in the serum
PON activity (Garin et al., 1997). In the coding region of
PON2, the S311C (rs6954345) polymorphism has been as-
sociated with variations in lipoprotein metabolism and
plasma lipoprotein concentration (Li et al., 2003).

Several studies have investigated the association be-
tween PON genetic variants and the risk for sporadic ALS.

The first study reported a significant association of the R
allele at Q192R in PON1 and the C allele at S311C in PON2
with SALS in a Polish population (Slowik et al., 2006).
Subsequently, 5 additional case-control association studies
were performed in Australian (Morahan et al., 2007), Irish
(Cronin et al., 2007), North-American (Saeed et al., 2006;
Landers et al., 2008), French, Quebec, and Swedish (Vald-
manis et al., 2008) populations. These studies assayed a
heterogeneity of SNPs across the PON locus and reported
conflicting results. Recently, a meta-analysis of all these
data, also including genome-wide association studies
(GWAS), did not confirm the previous results and failed to
find a significant association between the most common
variants in PON genes and the risk for sporadic ALS (Wills
et al., 2009).

In the light of this discrepancy in results, replication in
independent populations could be of substantial importance
to better understand the role of paraoxonase genes in spo-
radic ALS.

2. Methods

2.1. Patients

The study included 350 sporadic ALS patients and 376
control subjects of Caucasian origin, belonging to Italian
ancestry and living in Northern and Central Italy. ALS
diagnosis was made accordingly to El Escorial Revisited
criteria (Brooks et al., 2000). Only patients diagnosed to
have Definite, Probable and Probable laboratory supported
ALS, who gave their informed consent, were included in the
study. Briefly, sites of onset were recorded as spinal versus
bulbar. Age at onset was defined by the onset of first
symptoms. The survival endpoint was death or time of
initiation of all forms of invasive ventilatory support. The
mean duration of the disease was defined as the time oc-
curring between onset and survival endpoint. Living cases
were excluded from the calculation of the mean duration.

Control group consisted of age- and sex-matched indi-
viduals from the same ethnic background with no history of
neurological diseases. Characteristics of ALS patients and
controls are summarized in Table 1S. This study was ap-
proved by the local ethics committee.

2.2. Genotyping

Genomic DNA was obtained from peripheral blood sam-
ples by using standard procedure. The analysis of the L55M
and Q192R polymorphisms within the PON1 gene and the
S311C within PON2 gene was carried out by PCR ampli-
fication using the following primers:

L55M: forward 5=-GCTCTAGTCCATCAATTTAAAA-
CAAA-3=, reverse 5=-TGGGTATACAGAAAGCCTAAGTGA-
3=; Q192R: forward 5=-AGACAGTGAGGAATGCCAGTT-3=,
reverse 5=-CAGAGAGTTCACATACTTGCCATC-3=; S311C:
forward 5=-TTCAACAGCATGTCCCCTTA-3=, reverse
5=-AGTGCCTATGAGCAGCTTCC-3=.
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PCR products for PON1-L55M and PON2-S311C were
analyzed by restriction enzyme digestion, by using NlaIII
and DdeI, respectively; Denaturing High Performance Liq-
uid Chromatography (DHPLC) screening and subsequent
sequence analysis of the samples with aberrant elution pro-
files were performed for PON1-Q192R.

2.3. Statistical analysis

The estimation of the power of our sample to detect an
association was performed by using the statistical program
QUANTO version 1.2.4 (Gauderman, 2002) the parameters
used for the calculation were outcome: disease; design:
unmatched case-control (1:1.1); hypothesis: gene only;
mode of inheritance: additive; significance: 0.05, 2-sided.
For each SNP, frequencies and odds ratios (OR), previously
reported in studies showing a positive association with
ALS, were used. In particular: for PON1-L55M OR # 1.5
and frequency # 0.37 (Cronin et al., 2007), for PON1-
Q192R OR # 1.4 and frequency # 0.33, for PON2-S311C
OR # 1.4 and frequency # 0.30 (Slowik et al., 2006).

Haplotype frequencies and association statistics for the
polymorphisms were constructed using PHASE version 2
software (Stephens et al., 2001; Stephens and Donnelly,
2003).

Association analyses were carried out by using the soft-
ware package SPSS v13.0 (IBM Company, Chicago, Illi-
nois). Interaction with SNPs was tested by !2 analysis at
genotypic, allelic, and haplotypic levels. In addition to basic
tests, the association of genotype with ALS was evaluated
assuming dominant and recessive models.

To evaluate the association between PON polymor-
phisms and ALS clinical variables, patients were stratified
in different groups for each variable. In particular, patients
were stratified by gender (males/females), age of onset
($45 years/#45 years, taking 45 years as arbitrary cut-off
to discriminate early and late onset), and site of onset
(spinal/bulbar). Association analyses were carried out by !2

analysis using the software package SPSS v13.0.
Genotype and allele associations with disease duration

were estimated with univariate analysis according to the
Kaplan-Meier method using the log-rank test to assess sta-
tistical differences between groups. Analysis was performed
considering: (1) deceased patients; and (2) both living and

deceased individuals, using both censored and noncensored
approaches.

3. Results

Based on frequency and odds ratio previously reported
for the examined SNPs (Slowik et al., 2006; Cronin et al.,
2007; Wills et al., 2009), our sample had "85% power to
detect the risk allele at a significance level of " # 0.05. All
the studied SNPs were in Hardy-Weinberg equilibrium in
both cases and controls (p " 0.05). Genotype and allele
frequencies for each of the analyzed polymorphisms are
shown in Table 1. No significant difference in PON1-L55M,
PON1-Q192R and PON2-S311C distributions was observed
in patients compared with controls. Statistical analysis
failed to find an association between genotypes and ALS
also assuming the dominant and recessive models (Table
2S).

Haplotype analysis did not reveal a significant difference
in distribution in cases and controls. Results are summarized
in Table 3S.

Association of genotypes and haplotypes with gender,
site of disease onset (spinal vs. bulbar) and age at disease

Table 1S
Characteristics of patients with ALS and control subjects

ALS patients Controls

n 350 376
Gender, n 186 M/164 F (1.13/1) 205 M/171 F (1.2/1)
Age at blood collection,

years
60.6 % 13.1 59.5 % 15.3

Age at onset, years 59.8 % 12.7
Bulbar onset 27.4%
Disease duration, months 34.7 % 28.1

Data are given as mean % SD, except where noted.
Key: ALS, amyotrophic lateral sclerosis; F, female; M, male.

Table 2S
Association of polymorphisms in paraoxonase genes in sporadic ALS,
assuming recessive and dominant models

SNP Cases (%) Controls (%) p value

PON1-L55M recessive
MM 13.6 16.8 0.225
LL!LM 86.4 83.2

PON1-L55M dominant
MM!LM 58.2 63.1 0.177
LL 41.8 36.9

PON1-Q192R recessive
RR 9.9 10.0 1.000
QQ!QR 90.1 90.0

PON1-Q192R dominant
RR!QR 49.9 46.4 0.369
QQ 50.1 53.6

PON2-S311C recessive
CC 5.4 3.2 0.140
SS!SC 94.6 96.8

PON2-S311C dominant
CC!SC 40.0 38.8 0.735
SS 60.0 61.2

Key: ALS, amyotrophic lateral sclerosis.

Table 3S
Haplotype distribution in patients with sporadic ALS and controls

Haplotype Cases (%) Controls (%) p value

L-Q-S 22.0 19.2 0.198
L-Q-C 13.2 13.0 0.929
L-R-S 22.8 22.5 0.867
L-R-C 6.2 5.3 0.446
M-Q-S 32.2 36.6 0.077
M-Q-C 3.2 2.6 0.528
M-R–S 0.3 0.5 0.688
M-R-C 0.1 0.3 1.000

Key: ALS, amyotrophic lateral sclerosis.
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onset was also evaluated. None of the genotypes and hap-
lotypes were significantly associated with ALS clinical vari-
ables examined. The results are summarized in Table 4S.
Survival analysis did not reveal any association of geno-
types and alleles with the disease duration, using a censored
approach (Table 4S), a noncensored approach, and consid-
ering only deceased individuals (data not shown).

4. Discussion

The present study investigated the association between
paraoxonase gene polymorphisms and susceptibility to ALS
in an Italian population. To our knowledge, no studies on
PON genes and ALS have been previously performed in
patients from Italy.

Genotype and allelic frequencies in the examined popu-
lation were quite similar in cases and controls. We did not
find any positive association between the examined SNPs
(L55M and Q192R in PON1 gene and S311C in PON2
gene) and the risk of ALS, either at the genotype or haplo-
type level.

Association studies performed on PON genes have pre-
viously reported positive associations in several ALS pop-
ulations (Slowik et al., 2006; Morahan et al., 2007; Cronin
et al., 2007; Saeed et al., 2006; Landers et al., 2008; Vald-
manis et al., 2008). However, each study found different
SNPs and/or haplotypes to be associated with ALS suscep-
tibility. This can reflect the heterogeneity among different
populations on a genetic level. It is known that the genetic
frequencies for SNPs, as well the level of association with
a specific phenotype, can largely diverge among different
populations (Goldstein and Cavalleri, 2005; International
HapMap Consortium, 2005). By contrast, it should not be
overlooked that these conflicting results can originate from
the large range of paraoxonase SNPs chosen for the analysis
in each report.

In the present report, we have examined the 3 single
nucleotide polymorphisms analyzed in the first association
study (Slowik et al., 2006). These SNPs are some of the
most frequently assayed PON polymorphisms and are able
to influence/modulate paraoxonase activity in vivo (Li et al.,
2003). Our data agree with the recent results of the meta-

analysis of PON gene polymorphisms in sporadic ALS
(Wills et al., 2009). This analysis failed to confirm any
positive association, in a comprehensive study on more than
4000 ALS cases and 4000 controls, including the SNPs
assayed in the present report. Lack of association of such
SNPs with ALS can indicate that in the Italian population,
as well as already observed in the Swedish population
(Valdmanis et al., 2008), PON genes play a minor role, and
other gene-environment interactions are involved in ALS
pathogenesis.
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                       SHORT REPORT   

                             A novel exon 1 mutation (G10R) in the SOD1 gene in a patient
with familial ALS      

    CLAUDIA   RICCI ,      MICHELE   BENIGNI ,      STEFANIA   BATTISTINI ,      GIUSEPPE   GRECO , 
     ANTONIO TORZINI  &      FABIO   GIANNINI    

   Department of Neuroscience, University of Siena, Siena, Italy    

         Abstract   
 Mutations in the superoxide dismutase-1 (SOD1) gene have been found in 12–23% of patients with a diagnosis of ALS. 
Although the mechanism by which mutant SOD1 causes neural death remains elusive, several lines of evidence suggest that 
ALS is a protein-folding disease. Here we report a novel missense mutation in exon 1 of the SOD1 gene in a 68-year-old 
female with familial ALS characterized by spinal onset with upper and lower motor neuron signs and early neuroimaging 
evidence of corticospinal tract involvement. Molecular analysis identifi ed a heterozygous mutation in codon 10, with substi-
tution of a highly conserved glycine with arginine (G10R). Modelling of the mutant SOD1 showed a strong destabilization 
of the protein secondary structure that could infl uence the strength of the dimer interface. This property can result in a 
failure of the protein to fold and generation of toxic intracellular aggregates, suggesting a pathogenic role for the mutation.  

  Key words:   Amyotrophic lateral sclerosis ,  SOD1 mutation ,  protein structural modelling     

Introduction  

 Amyotrophic lateral sclerosis (ALS) is a progres-
sive and fatal disorder characterized by selective 
 degeneration of motor neurons in the cerebral  cortex, 
brainstem, and spinal cord. About 1–13.5% of patients 
have a family history of ALS (FALS). A mutation in 
the SOD1 gene has been found in 12–23% of patients 
with a diagnosis of familial ALS (1). The SOD1 pro-
tein is a homodimeric Cu/Zn binding enzyme, com-
posed of eight anti-parallel β-strands and two metal 
atoms, that catalyses the conversion of the toxic 
superoxide anion (O 2 

–) to hydrogen peroxide (H 2 O 2 ) 
and molecular oxygen (O 2 ). More than 150 different 
SOD1 gene mutations have been identifi ed in ALS 
patients (ALS Online Genetic Database, ALSOD: 
http://alsod.iop.kcl.ac.uk/) (2), mostly with autosomal 
dominant transmission. Although the mechanism by 
which mutant SOD1 causes neural death remains 
elusive, several lines of evidence suggest that ALS is 
a  protein-folding disease analogous to other neurode-
generative disorders such as Alzheimer’s, Parkinson’s, 
and Creutzfeldt-Jakob’s disease (3–5). The  propensity 
of mutant SOD1 protein to misfold and form toxic 

intracellular aggregates is thought to be a common 
mechanism in ALS caused by SOD1  variations (4,6). 
Most SOD1 mutations, when mapped onto the crys-
tallographic structure of the SOD1 protein, localize 
near the dimer interface and at the beginning of 
the active loop (7). SOD1 mutations are proposed 
to perturb the protein stability by destabilizing the 
precursor monomer, weakening the dimer interface, 
or both (8). Here we report a novel missense muta-
tion (G10R) in exon 1 of the SOD1 gene in a FALS 
patient. The mutation was mapped onto the three-
dimensional structure of SOD1 in order to predict 
how this amino acid substitution affects the structure 
of the SOD1 protein, and to evaluate its potential role 
in protein stability and aggregation.   

 Case report 

 The proband, a 68-year-old female, presented with a 
nine-month history of diffi culty in climbing stairs, fol-
lowed by progressive weakness in the lower limbs. 
Neurological examination showed reduced strength 
in proximal and distal sites of the right lower limb and 
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in the distal site of the left lower limb. Deep tendon 
refl exes were brisk in the upper limbs and at the knees. 
Achilles refl exes were absent. Hoffmann and Babinski 
signs were present on the right side. No autonomic or 
cognitive impairments were present. An EMG study 
showed active neurogenic changes in the cervical, 
thoracic, and lumbosacral regions. Motor evoked 
potential (MEP) by transcranial magnetic stimulation 
10 months after symptom onset showed normal 
latency and amplitude in all four limbs (Table I). 
MRI Flair images disclosed bilateral hyperintensity 
of the centrum semiovale and the corticospinal path-
ways in the brainstem. Twenty-one months after the 
onset of symptoms, the patient showed severe weak-
ness and muscular atrophy in the lower limbs and 
mild weakness in the proximal site of the right upper 
limb. The patient was able to stand only with bilat-
eral aid. At the last follow-up, three months later, the 
patient showed further worsening of strength in the 
lower limbs and she was wheelchair-bound. At this 
time MEP showed no changes and normal values in 
upper limbs while responses in the lower limbs were 
lost, also by recording from the tibialis anterior mus-
cles, probably due to severe peripheral denervation 
(Table I). Bulbar and respiratory functions were nor-
mal. Her father developed bulbar onset ALS at the 
age of 55 years and died seven months after the onset 
of symptoms. The patient had two daughters, aged 
45 and 39 years, who were clinically unaffected at 
the time of our examination. Due to ethical con-
cerns, SOD1 screening was not performed in these 
subjects. No other family members were available for 
clinical examination and genetic testing.  

 Molecular analysis  

 After obtaining written informed consent, genomic 
DNA was extracted from peripheral blood using stan-
dard procedures. Exons 1 to 5 of the SOD1 gene were 
amplifi ed from genomic DNA by polymerase chain 
reaction (PCR), as previously described (9). cDNA 
was obtained by reverse transcription of total RNA 
extracted from the patient’s white blood cells using 
standard procedures, and amplifi ed by PCR to con-
fi rm the presence of the mutation and evaluate SOD1 
expression. All PCR products were sequenced by an 
automated sequencing system (ABI 310 Genetic Ana-

lyzer, Applied Biosystems). The presence and zygosity 
of the G10R mutation was also confi rmed by 
 restriction digestion ( Cfo I from Roche Diagnostic).   

 Modelling of the SOD1 G10R mutation  

 The pathogenicity of the mutation was evaluated using 
Panther software (www.pantherdb.org/tools/csnpScore
Form.jsp), directly available from the ALSOD database 
(2).   Modelling of the G10R mutation was performed 
using the Swiss model server (http://swissmodel.expasy.
org/) (10,11) and the molecular visualization system 
Pymol (http://pymolsourceforge.net/) from the crystal 
structure of the normal SOD1 protein (PDB2c9vA). 

Table I. MEP values by transcranial magnetic stimulation.

Muscle

Amplitude
(% of M-wave)

Latency (contracted)
(msec)

CMCT (root stimulation)
(msec)

I II NL I II NL I II NL

R thenar 60 54
!20

21.1 20.6
"24.1

 5.3 4.8
 "7.4

L thenar 65 64 20.2 20.2  5.2 5.2
R abductor hallucis 60 NR

!15
40.4 NR

"48.0
13.1 NR

"15.7L abductor hallucis 59 NR 39.9 NR 13.5 NR

Table I. I: 10 months after disease onset; II: 24 months after disease onset; CMCT: central motor conduction time; NL: normal limit; 
R: right; L: left; NR: no response.

  Figure 1.     Automated sequence analysis of both the SOD1 gene 
and cDNA.     a. Automated sequence analysis of exon 1 from the 
SOD1 gene showing the heterozygous mutation c.31G # C.     b. 
Automated sequence analysis of SOD1 cDNA with the variation 
 GGC  to  CGC  at codon 10 resulting in the substitution of arginine 
for glycine in the SOD1 protein (G10R).  
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 A novel SOD1 gene mutation in a FALS patient 483

Figure 2. Three-dimensional structure of both wild-type human SOD1 protein and a model of the SOD1 G10R variant, and their specifi c 
atomic non-local environment assessment (ANOLEA) plots. a. Three-dimensional X-ray diffraction structure of wild-type human SOD1 
protein. b. Model of the superoxide dismutase G10R mutation. The steric hindrance of glycine and arginine is represented with spheres 
and the backbone distortion caused by the amino acid substitution is indicated by arrows. c. ANOLEA plot with the atomic empirical 
mean force potential of the normal SOD1 protein. d. ANOLEA plot of the SOD1 G10R mutation. The y-axis of the plots represents the 
energy for each amino acid in the protein chain. Negative energy values (grey) represent a favourable energy environment, whereas positive 
values (black) represent an unfavourable energy environment for a given amino acid.

The atomic empirical mean force potential, atomic 
non-local environment assessment (ANOLEA) (12) 
was used to assess the packing quality of the models. 
The program performs energy calculations on a protein 
chain evaluating the ‘non-local environment’ (NLE) of 
each heavy atom in the molecule. In addition, the effect 
of the mutation on the protein structure was evaluated 
using the link to the ‘SOD1 Database-Motor Neuron 
Disease Mutations’ (http://www.bioinf.org.uk/mndb/), 
accessible from the ALSOD database (2).    

 Results  

 Molecular analysis 

 DNA analysis showed a heterozygous mutation 
c.31G # C in the SOD1 gene in the proband 
(Figure 1a). The mutation of  GGC  to  CGC  at codon 
10 in exon 1 determined a substitution of arginine 
for glycine in the SOD1 protein (G10R) (Figure 1b). 
RT-PCR revealed the presence of both wild-type and 
G10R mutant SOD1 mRNA, confi rming that the 

mutation was present in a heterozygous state and 
that both alleles were transcribed into mRNA. No 
additional mRNA alterations were observed. Since 
no other family members were available for genetic 
testing, it was not possible to confi rm the cosegrega-
tion of this mutation with the disease. 

 Multi-species comparisons showed that the gly-
cine at codon 10 is a highly conserved residue among 
various species (Figure 3). The pathogenicity predic-
tor software revealed a score of –3.109, which 
suggests a highly harmful mutation. This mutation 
was absent in 400 chromosomes from healthy 
controls.    

 Modelling the SOD1 G10R mutation  

 The model of the mutant SOD1 showed destabili-
zation of the secondary structure around the argi-
nine in position 10 involving the structure of the 
surrounding β-barrel, particularly in the β8-strand 
(Figure 2a, b). The energy calculation of the protein 
chain showed a relevant increase in energy, corre-
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sponding to an unfavourable energy environment, 
around the arginine in the mutant SOD1 compared 
with the wild-type protein (Figure 2c, d). 
Moreover, the substitution of glycine with the 
positively charged arginine would cause, under 
physiological conditions, a decrease in the magni-
tude of the net negative charge compared with the 
normal SOD1.    

 Discussion  

 In this study, we report a novel exon 1 missense muta-
tion (G10R) in the SOD1 gene in an Italian patient 
with familial ALS. The proband's clinical picture was 
characterized by spinal onset with upper and lower 
motor neuron signs and early neuroimaging evidence 
of corticospinal tract involvement. Although not 
specifi c, this conventional MRI fi nding has been 
reported in up to 17% of early-phase ALS patients 
(13). Bulbar and respiratory functions were normal 
24 months after onset. In contrast, her father devel-
oped ALS with bulbar onset at the age of 55 years 
and showed a very rapid course of the disease ("1 
year). Heterogeneity in the age of onset, disease dura-
tion, and disease severity is not uncommon between 
members of the same family (1,14), suggesting that 
the phenotype is modifi ed by elements other than the 
mutation, such as different genetic or environmental 
factors. 

 In the present study it was not possible to dem-
onstrate whether this novel mutation segregates with 
the disease in the family. However, some evidence 
supports this mutation as causative. First, the G10R 
mutation was not present in 400 control chromo-
somes. In addition, in the same codon, as well as a 
synonymous mutation found in a sporadic ALS case, 
a different missense mutation,  GGC  to  GTT  result-
ing in the substitution of glycine to valine (G10V), 
has been identifi ed previously in a Korean ALS fam-
ily associated with a quite uniform phenotype, char-
acterized by relatively early age of onset and rapid 
disease progression (15). 

 Furthermore, the G10R mutation involves an 
amino acid residue that is highly conserved in differ-
ent species and appears to be important for the 
proper structure and function of the protein 

(Figure 2). The G10R substitution is located at the 
beginning of the fi rst loop connecting the β1 and β2 
strands, which form the dimer interface (7). It is 
known that glycine is a critical amino acid residue 
for protein secondary structure formation, since, 
when localized at the beginning of a loop, it can 
interrupt the regularity of the β strand and α-helix 
conformations. The presence of an amino acid other 
than glycine in position 10 is hypothesized to alter 
the correct folding of SOD1 protein. As shown in 
Figure 3 ,  the steric hindrance of arginine leads to a 
relevant backbone distortion that can be propagated 
over a considerable distance in the protein structure, 
signifi cantly altering the stability of the free  monomer 
and infl uencing the strength of the dimer interface. 
Moreover, since the G10R substitution introduces 
an extra positive charge, this decreases the magni-
tude of the net negative charge and could conse-
quently alter the aggregation propensity of the 
protein, in agreement with previous fi ndings (3,4). 
These properties can result in a failure of proper 
protein folding and/or genesis of toxic intracellular 
aggregates, suggesting a pathogenic role for the 
G10R SOD1 mutation in ALS. 

 This report of a novel SOD1 mutation with the 
corresponding clinical data and the hypothetical pro-
tein structural rearrangement expands the number 
of ALS associated SOD1 gene mutations stored in 
the ALSOD online database (2). Further studies on 
ALS patients carrying the G10R mutation may 
 validate its pathogenicity, and reveal a possible 
 genotype-phenotype correlation.   

 Declaration of interest: The authors report no 
confl icts of interest. The authors alone are respon-
sible for the content and writing of the paper.     
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