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ABSTRACT 

 
p27

Kip1 
is a Cyclin-dependent Kinase Inhibitor (CKI) belonging to CIP/Kip protein family. It is 

essentially known for its inhibitory action on several cyclin/CDK complexes (specifically cyclin 

E(A)/CDK2 and cyclin A(B)/CDK1), suggesting a role as tumor suppressor. However, when 

localized in cytosol, p27
Kip1

 has a number of CDK-independent functions, including the 

regulation of apoptosis, cell motility and differentiation. Some of these activities can enhance 

malignant transformation and/or metastasization under specific conditions. p27
Kip1

 is 

characterized by the lack of a stable tertiary structure that favors its “adaptability” to bind 

different targets and contributes to the heterogeneity of its functions. Because of this peculiar 

structure, the presence of several post translational modifications (especially phosphorylation) 

has a key relevance for the CKI cellular localization, metabolism and functions. In this study, we 

have investigated the turn-over and cyclins/CDK interactions of phosphoserine10-p27
Kip1

 

(pSer10p27
Kip1

), the main CKI phosphoisoform.  Ser10p27
Kip1 

has been suggested to: i) increase 

p27
Kip1

 stability; ii) allow CKI cytosol translocation, and iii) induce cyclin D/CDKs complexes 

assembly and nuclear import. We have observed by several different approaches 

(immunoprecipitations, western blot (WB) and bidimensional analysis associated to WB) that 

serine 10 phosphorylation confers more stability to p27
Kip1

 allowing the CKI to escape the 

proteasome-dependent degradation mechanisms. We also established that pSer10p27
Kip1

 does not 

bind to CDK1, but interacts mostly with cyclin E/CDK2 complex. Conversely, cyclin A/CDK2, 

associates mainly with unmodified p27
Kip1

. These data demonstrated, for the first time, that the 

CKI phosphorylations might modulate its binding to cyclin/CDK complexes. Moreover, we 

demonstrated the absence of Thr187 phosphorylation on pSer10p27
Kip1

 suggesting that this 

isoform acts as inhibitor of cyclin E/CDK2 complex, and not as substrate. Thus, it is possible to 

conclude that the phosphorylation of serine 10 acts as a modification that increases the 

antiproliferative (oncosoppressive) feature of the CKI. We also examined  the localization, 

metabolism, phosphoisoforms pattern and interaction of a cancer-associated mutant form of the 

CKI (namely G9Rp27
Kip1

) in which glycine 9 is substituted by an arginine. Our attention focused 

on this p27
Kip1 

mutant since the residue change (i.e. glycine 9) occurs in the amino acid 

preceding serine 10 thus allowing the hypothesis that the mutation affects Ser10 post 

translational modification. Unexpectedly, our data demonstrated that the protein is 

hyperphosphorylated (when compared to the wild-type CKI) and is mostly localized in the 

nucleus. Part of the increased phosphorylation occurs Ser10. In turn, this reduces the interaction 

and inhibition of p27
Kip1 

mutant with CDK1. The lower inhibition could lead to an enhanced 

CDK1 activity that might represent a possible cause of p27
Kip1

G9R tumorigenic property.   
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1.INTRODUCTION 

1.1 Cell cycle control mechanisms 

Cell division cycle.  

Cell division cycle is a series of biochemical events that leads to cell division and consists of five 

distinct stages. Senescent cells are found in the G0 phase of the cell cycle and exist in a state 

where mRNA and protein syntheses are minimal. These cells (as well differentiated cells) may 

remain quiescent for long periods of time, but under specific condition, such as external signals 

stimulating cell growth, they can exit the senescent state and re-enter in the cycle at the first gap 

phase (G1). During G1, cells synthesize proteins required for DNA replication (S phase) 

following which cells enter into a second gap phase (G2). During G2, the synthesis of proteins 

required to assemble the cell division machinery occurs and, finally, cells proceed to mitosis (M 

phase), where the parental cells are divided into two daughter cells. In the cell cycle exists a 

number of checkpoints playing important roles in: i) the identification of defects that could take 

place during processes as DNA duplication or chromosome segregation, and ii) the induction of 

a cell cycle arrest until the defects are repaired. The first cell cycle checkpoint, called restriction 

point in mammalian cells, takes place at the G1-S transition. If cells pass this point they are 

committed to entering into S phase. Another cell cycle checkpoint, also known as the DNA 

damage checkpoint, occurs at the G2-M transition, it ensures that only cells with correct DNA 

replication enter into mitosis. The last checkpoint, known as mitotic spindle checkpoint, takes 

place in the M phase (specifically in metaphase) and it prevents the separation of the duplicated 

chromosomes until each chromosome is correctly attached to the spindle apparatus. This 

checkpoint is necessary to maintain the right number of chromosomes after each cell division.
1
. 

Cell division cycle progression is regulated by the formation, activation, and then inactivation of 

a series of binary complexes made by a catalytic subunit, a Ser/Thr kinase constitutively 

expressed by the cells and called cyclin-dependent kinase (CDK), and a regulatory subunit, a 

cyclin, whose concentration, instead, changes periodically during the cell cycle. As a 

consequence of its crucial roles within the cell, CDK enzymatic activity is regulated at different 

levels: cyclin binding, subunit phosphorylation (made by enzymes as CAK kinase) and de-

phosphorylation (due to enzymes as cdc25 phosphatase), association with and inhibition by a 

group of small regulatory proteins
2
. In particular two classes of CDK inhibitors (CKI) have been 

                                                        
1
 Li J. M. and Brooks G. “Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent 

kinase inhibitors) and the cardiovascular system; potential targets for therapy?” European Heart Journal (1999) 20, 
406–420. 
2 Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL, Matera AG, Xiong Y. “Growth suppression by 

p18, a p16INK4/MTS1- and p 14INK4B/MTS2- related CDK6 inhibitor, correlates with wild-type pRb function”. Genes & 

Development (1994) 8:2939-2952. 
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identified: the INK4 and the CIP/Kip family
3;4

 differing in structure and function. The first (i.e. 

INK4) includes p15
INK4b 5

, p16
INK4a 6

, p18
INK4c 2

, and p19
INK4d 7

, which are folded proteins 

containing tandem repeats of an ankyrin-like sequence binding specifically CDK4 and CDK6 

and inhibiting their activation by D-type cyclins
8
. The second includes  p21

CIP1/WAF1 9
 , p27

Kip1 10
 

and p57
Kip2 11

, which are intrinsically unfolded proteins (IUPs) interacting with and inhibiting a 

wide range of cyclin/CDK complexes (especially cyclin E(A)/CDK2 and cyclin A(B)/CDK1) 

with a conserved N-terminal domain that embraces both cyclin and CDK binding sites.  

The interaction between cyclin/CDK complexes and CIP/Kip proteins is critical for an 

appropriate regulation of cell cycle progression
12

. In this thesis, we have focalized our attention 

on the study of one of the CIP/Kip family members, namely p27
Kip1

. 

 

The CIP/Kip family members. The members of CIP/Kip (CDK interacting protein/kinase 

inhibitor protein) family were at first identified because of their ability to bind and inhibit or, in 

general, regulate cyclins/CDKs complexes and consequently to block cell cycle progression. 

Thus, they were mainly considered as tumor suppressors. More recently, however they were also 

recognized to be able to have several CDK-independent functions as regulation of transcription, 

apoptosis, cell migration and differentiation, and cytoskeleton remodeling. Importantly,  some of 

these functions may be oncogenic under certain circumstances. In particular, it seems that the 

three CKIs play opposing roles in relation to their localization: they act as oncogenes when 

localized in the cytoplasm, and as tumor suppressors when occurring in the nucleus. 

                                                        
3 Sherr CJ, Roberts JM “Inhibitors of mammalian G 1 cyclin-dependent kinases”  Genes & Development  (1995) 9; 

1149-1163.   
4 Elledge SJ “Cell cycle checkpoints: preventing an identity crisis”. Science (1996) 274; 1664-72. 
5 Hannon GJ, Beach D “p15INK4B is a potential effector of TGF-β-induced cell cycle arrest.” Nature (1994) 371; 257-

61. 
6 Serrano M, Hannon GJ, Beach D “A new regulatory motif of cell-cycle control causing specific inhibition of 

cyclin D/CDK4”. Nature (1993) 366; 704-7. 
7 Chan FK, Zhang J, Cheng L, Shapiro DN, Winoto A “Identification of human and mouse p19, a novel CDK4 and 

CDK6 inhibitor with homology to p16INK4”.  Molecular and Cellular Biology (1995)  2682–2688. 
8 Della Ragione F, Takabayashi K, Mastropietro S, Mercurio C, Oliva A, Russo GL, Della Pietra V, Borriello A, 

Nobori T, Carson DA, Zappia V “Purification and characterization of recombinant human 5'-methylthioadenosine 

phosphorylase: definite identification of coding cDNA.” Biochemical and Biophysical Research Communications 

(1996) 223; 514-519. 
9 Gu Y, Turck CW, Morgan DO “Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit”. 

Nature (1993)  366; 707-10. 
10 Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A “p27 Kip1, a cyclin-Cdk inhibitor, 

links transforming growth factor-13 and contact inhibition to cell cycle arrest”. Genes & Development (1994) 8; 9-

22 
11 Lee MH, Reynisdóttir I, Massagué J  “Cloning of p57Kip2, a cyclin-dependent kinase inhibitor with unique domain 
structure and tissue distribution”. Genes & Development (1995) 9; 639-649. 
12 Ou L, Ferreira AM, Otieno S, Xiao L, Bashford D, Kriwacki RW “Incomplete Folding upon Binding Mediates 

Cdk4/Cyclin D Complex Activation by Tyrosine Phosphorylation of  Inhibitor p27 Protein.” The Journal of 

Biological Chemistry (2011) 286; 30142–30151. 
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Regarding p21
CIP1/WAF1

, p27
Kip1 

and p57
Kip2

 CDK-dependent function, it is known that they are 

inhibitors of cyclin E(A)/CDK2 and cyclin A(B)/CDK1 complexes, but it is also reported a 

contribution of these CKIs in the assembly and transport from cytoplasm to the nucleus of cyclin 

D/CDK4(6) complexes
13;14

. In turn, CIP/Kip proteins sequestration into cyclin D/CDK4(6) 

complexes could allow the downstream activation of cyclin E/CDK2
15

.  

The three CIP/Kip CKIs have, also, different roles in cell cycle regulation and the activity of one 

of them is only partially surrogated by the other family members. p21
Cip1/WAF1

 is mainly 

regulated by two different pathways: a p53-dependent signaling which is induced in response to 

DNA damage and mediates cell cycle arrest in G1 and G2 phases with possible DNA repair or 

induction of apoptosis; a p53-independent signaling, mediated by cell growth factors as PDGF, 

FGF and EGF
16;17

. p27
Kip1

 regulates the transition from G0, through G1, into S phase and its 

expression is usually increased in response to cell density, differentiation signals, loss of 

adhesion to the extracellular matrix, TGF-β signaling and it is rapidly down-regulated as cells 

enter the cell cycle
10;18

. Finally, studies on p57
Kip2 

have demonstrated an increased association 

between cyclin D3 and CDK6 when the expression of this CKI is induced, but evidences of an 

increased stability of this ternary complex, are still lacking
19

. p57
Kip2

 has also an important role 

in the regulation of cell cycle during embryonic development and its transcriptional regulation is 

mediated by factors that play critical roles during embryogenesis such as Notch/Hes1, MyoD, 

BMP-2 and -6, and p73
13

. 

CIP/Kip proteins are intrinsically unfolded, or rather, they lack secondary and tertiary structure 

under physiological condition. They can assume specific tertiary conformations and execute their 

biological functions only after the binding to specific biomolecules in a process called folding-

upon-binding
20;21

. However, circular dichroism (CD) studies of p21
Cip1/WAF1 22

, p27
Kip1.20;23

 and 

                                                        
13 LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E. “New 

functional activities for the p21 family of CDK inhibitors”. Genes & Development (1997) 11;847-62. 
14 Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ. “The p21(Cip1) and p27(Kip1) CDK 

'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts”. The EMBO Journal  (1999) 

18; 1571–1583. 
15 Cheng M, Sexl V, Sherr CJ, Roussel MF. “Assembly of cyclin D-dependent kinase and titration of p27Kip1 

regulated by mitogen-activated protein kinase kinase (MEK1)”. Proc Natl Acad Sci U S A. (1998)  95;1091-6. 
16 Starostina NG, Kipreos ET. “Multiple degradation pathways regulate versatile CIP/Kip CDK inhibitors”. Trends 

Cell Biology (2012) 1; 33-41 
17 Pérez-Sayáns M, Suárez-Peñaranda JM, Gayoso-Diz P, Barros-Angueira F, Gándara-Rey JM, García-García A. 

“The role of p21Waf1/CIP1 as a Cip/Kip type cell-cycle regulator in oral squamous cell carcinoma”. Med Oral Patol 

Oral Cir Bucal. (2013) 18; 219-25. 
18

 Coats S, Flanagan WM, Nourse J, Roberts JM. “Requirement of p27
Kip1

 for restriction point control of the 

fibroblast cell cycle. Science (!996) 272; 877-80. 
19 Li G, Domenico J, Lucas JJ, Gelfand EW. “Identification of multiple cell cycle regulatory functions of p57Kip2 in 

human T lymphocytes”.  The  Journal of Immunology (2004)  173;2383-91. 
20 Besson A, Dowdy SF, Roberts JM. “CDK inhibitors: cell cycle regulators and beyond”. Developmental Cell 

(2008) 2; 159-69. 
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p57
Kip2 24 

indicate the presence of a nascent α-helical secondary structure in their CDK inhibitor 

domain.  

The conformational flexibility of CIP/Kip CKIs confers them some functional advantages 

compared to more structured proteins. First, they bind specifically to more than one target 

regulating various cellular functions. Second, most of CKIs residues are accessible for post-

translational modifications, these sites are involved in the control of protein function, 

localization and turnover. For example, phosphorylation events and protein-protein interactions 

may alter CKIs folding and modify their capacity to inhibit cyclin/CDK complexes
18;31

.  

All the three CKIs have a homologous N-terminal domain that contains a conserved region 

aimed to bind and inhibit the CDK kinase activity (the KID: kinase inhibitor domain)
25

. Instead, 

CIP/Kip proteins C-terminal domain, binds different effectors: p21
CIP1/WAF1

 and p57
Kip2

 present a 

PCNA (Proliferative Cell Nuclear Antigen) binding domain that, when bound, prevents the 

stimulation of DNA synthesis by PCNA
26;27

; p27
Kip1

 and p57
Kip2

 present within their C-terminus 

a QT domain that contains a threonine residue (Thr187 in p27
Kip1

 and Thr310 in p57
Kip2

) that, 

when phosphorylated by CDK2, determines a SCF/Skp2-dependent ubiquitination of p27
Kip1 28;29

 

and p57
Kip2 30;31

. 

                                                                                                                                                                                        
21 Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L, Kriwacki RW. “p27 binds cyclin-CDK 

complexes through a sequential mechanism involving binding-induced protein folding”. Nature Structural & 

Molecular Biology (2004) 4;358-64. 
22 Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE. “Structural studies of p21Waf1/Cip1/Sdi1 in the free 

and Cdk2-bound state: conformational disorder mediates binding diversity”. Proc Natl Acad Sci U S A (1996) 93; 

11504-9. 
23 Bienkiewicz EA, Adkins JN, Lumb KJ. “Functional consequences of preorganized helical structure in the 

intrinsically disordered cell-cycle inhibitor p27(Kip1).” Biochemistry (2002)  41; 752-9. 
24 Adkins JN, Lumb KJ. “Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2”. 

Proteins (2002) 46;1-7. 
25 Goubin F, Ducommun B. “Identification of binding domains on the p21Cip1 cyclin-dependent kinase inhibitor”. 
Oncogene (1995) 10;2281-7. 
26 Waga S, Hannon GJ, Beach D, Stillman B. “The p21 inhibitor of cyclin-dependent kinases controls DNA 

replication by interaction with PCNA”. Nature (1994) 369;574–578. 
27 Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y. “Suppression of cell transformation 

by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen”. Proc Natl 

Acad Sci U S A (1998) 95;1392–1397. 
28 Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M. “Ubiquitination of p27 is 

regulated by Cdk-dependent phosphorylation and trimeric complex formation”. Genes &Development  (1999)  

13;1181–1189. 
29 Nguyen H, Gitig DM, Koff A. “Cell-free degradation of p27(kip1), a G1 cyclin-dependent kinase inhibitor, is 

dependent on CDK2 activity and the proteasome”. Molecular Cell Biology (1999) 19;1190–1201. 
30 Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K, Nakayama KI. 
“Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation”. Proc Natl Acad Sci USA (2003) 

100;10231–10236. [ 
31 Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW. “Regulation of cell division by intrinsically unstructured 

proteins: intrinsic flexibility, modularity, and signaling conduits”. Biochemistry (2008)  47;7598–7609. 
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Another role assigned to the C-terminal region of all three CKIs is the regulation of actin 

filaments organization and cell migration
32;33;34

. It has been reported that CIP/Kip proteins have a 

common function in the mobilization of tumor cells and, in turn, in the development of 

metastases.  

The aim of the thesis is to understand the role of the principal nuclear phosphoisoforms 

occurring in wild-type and mutated p27
Kip1

, as well as to get information on their interactions 

with the cyclin/CDK complexes. To clarify our objective, the following sections will report a 

brief description of p27
Kip1

 gene expression, structure, metabolism and its role in human cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
32 Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, 

Dowdy SF. “Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell 

migration”. Nature Medicine (1998) 4; 1449-52. 
33

 McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF. “Novel p27(kip1) C-terminal scatter domain 

mediates Rac-dependent cell migration independent of cell cycle arrest functions”. Molecular and Cellular Biology 
(2003) 1;216-228. 
34 Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H, Sone H, Shimano H, Gotoda T, Nishimori S, 

Tanaka K, Yamada N. “p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the 

nucleus”. Journal of Biological Chemistry (2003) 278;52919-23. 



11 

 

1.2 p27
Kip1

 gene expression 

p27
Kip1

 gene, named CDKN1B, is located on chromosome 12p13 and consists of two exons (a 

total of 541 bp) originating a protein of 198 amino-acids. p27
Kip1 

cell content is generally 

controlled by protein degradation mechanisms, however several transcription factors have been 

reported as involved in CDKN1B transcriptional control, including  members of the Forkhead 

box O (FOXO) transcription factor family, menin, E2F1, and Sp1
35

.  

Members of FOXO transcription factors family play important roles in cell cycle progression
36

, 

apoptosis
37

, oxidative stress
36

 and DNA repair
38

. Their activity is negatively regulated by the 

Ser/Thr kinase Akt. Specific extracellular signals activate Akt that can phosphorylate three 

members of the FOXO family, FOXO1, FOXO3a and FOXO4
39

. This modification induces their 

detachment from DNA, subsequent translocation and sequestration into the cytoplasm. Thus, 

FOXO factors are inactivated and consequently, the expression of some genes involved in cell 

cycle regulation like CDKN1B is suppressed. 

Menin is encoded by the tumor suppressor gene MEN1 (multiple endocrine neoplasia) and 

represents another transcription factor able to regulate CDKN1B expression. Specifically it acts 

in differentiated pancreatic islet cells
40;41

. Recent works have shown that mature mice with 

mutated MEN1 gene, present reduced p27
Kip1 

level and develop insulinomas; young animals, 

instead, express p27
Kip1 

at normal levels in hyperplastic and dysplastic islets, indicating that loss 

of p27
Kip1 

in these insulinomas requires additional molecular events
40;42

. In rats it has also been 

found a CDKN1B germline fremshift mutation that reduces p27
Kip1 

levels and causes multiple 

                                                        
35 Borriello A, Bencivenga D, Criscuolo M, Caldarelli I, Cucciolla V, Tramontano A, Borgia A, Spina A, Oliva A, 

Naviglio S, Della Ragione F. “Targeting p27Kip1 protein: its relevance in the therapy of human cancer”. Expert 

Opin Ther Targets  (2011) 15;677-93. 
36Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, 
Burgering BM. “Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress”. Nature 

(2002) 419;316-21. 
37 Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. 

“Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor”. Cell (1999) 96;857-

68. 
38 Tran PT, Erdeniz N, Dudley S, Liskay RM. “Characterization of nuclease-dependent functions of Exo1p in 

Saccharomyces cerevisiae”. DNA Repair (2002) 1;895-912. 
39Burgering BM, Kops GJ. “Cell cycle and death control: long live Forkheads”. Trends in Biochemical Science 

(2002) 27;352-60. 
40 Chu IM, Hengst L, Slingerland JM. “The Cdk inhibitor p27 in human cancer: prognostic potential and relevance 

to anticancer therapy”. Nature Reviews Cancer (2008) 8;253-267. 
41 Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y, Meyerson M, Kim SK. “Menin 
regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and 

p18INK4c”. Proc Natl Acad Sci USA. (2005) 102;14659-64. 
42 Fontanière S, Casse H, Bertolino P, Zhang CX. “Analysis of p27(Kip1) expression in insulinomas developed in 

pancreatic beta-cell specific Men1 mutant mice”. Familial Cancer (2006) 5;49-54. 
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endocrine neoplasia (MENX). Furthermore, CDKN1B germline mutations have also been 

identified in some human patients which present MEN1 phenotype
40;43

. 

E2F1 is activated by cyclin/CDK2 complexes and can subsequently activate CDKN1B promoter 

and determine a feedback inhibition of its own activity
40;44

. Finally, other transcription factors as 

SP1 and NFY, HES1 and vitamin D3 receptor (VDR) regulate p27
Kip1

 expression and might 

control CKI levels during development
40;45;46

. 

p27
Kip1

 expression can also be modulated with a translational control, effectuated by miRNAs. 

p27
Kip1 

mRNA was, in fact, identified from several groups as a target for two polycistronic 

miRNAs: miR-221 and miR-222
35;47;48

. These two miRs can bind p27
Kip1

 in the same seed 

sequence localized in the CKI 3’-UTR and affect its translation. Regulation of p27
Kip1 

repression, 

so, is essential for cell growth and may also have a role in carcinogenesis. miR-221 and miR-222 

levels, in fact, are elevated in several types of cancer, as hepatocellular carcinoma
49

, chronic 

lymphocytic leukemia
50

 and ovarian cancer
51

, and correlate inversely with p27
Kip1

 levels
35

.  

 

 

 

 

 

 

 

 

                                                        
43 Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ. 

“Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans”. PNAS 

(2006) 103;15558-63. 
44 Wang C, Hou X, Mohapatra S, Ma Y, Cress WD, Pledger WJ, Chen J. “Activation of p27Kip1 Expression by 

E2F1. A negative feedback mechanism”. Journal of Biological Chemistry (2005) 280;12339-43. 
45 Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, Sakai T, Minato N. “Hes1 directly controls 

cell proliferation through the transcriptional repression of p27Kip1”. Molecular and  Cellular Biology (2005) 25; 

4262-71. 
46 Huang YC, Chen JY, Hung WC. “Vitamin D3 receptor/Sp1 complex is required for the induction of p27Kip1 
expression by vitamin D3”. Oncogene (2005) 23; 4856-61. 
47 Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG. “miR-221 and miR-222 

expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1”. Rhe 

Journal of Biological Chemistry (2007) 282; 23716-24. 
48 Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, Borbone E, Petrocca F, Alder H, Croce CM, 

Fusco A. “MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, 

regulate p27Kip1 protein levels and cell cycle”. Endocrine Related Cancer (2007) 14;791-8. 
49 Fu X, Wang Q, Chen J, Huang X, Chen X, Cao L, Tan H, Li W, Zhang L, Bi J, Su Q, Chen L. “Clinical 

significance of miR-221 and its inverse correlation with p27Kip¹ in hepatocellular carcinoma”. Mol Biol Rep. 

(2011) 38;3029-35. 
50

 Frenquelli M, Muzio M, Scielzo C, Fazi C, Scarfò L, Rossi C, Ferrari G, Ghia P, Caligaris-Cappio F. “MicroRNA 

and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and 
p27”. Blood (2010) 115; 3949-59. 
51 Wurz K, Garcia RL, Goff BA, Mitchell PS, Lee JH, Tewari M, Swisher EM. “MiR-221 and MiR-222 alterations 

in sporadic ovarian carcinoma: Relationship to CDKN1B, CDKNIC and overall survival”. Genes Chromosomes 

Cancer (2010) 49;577-84. 
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    1.3 p27
Kip1

protein structure  
p27

Kip1 
protein sequence can be divided into two principal regions: the N-terminus and the C-

terminus. The first contains the KID domain (residues 25-90) and the nuclear export signal 

(NES, residues 32-46). It is principally involved in the inhibition of cyclin/CDK complexes and 

therefore it is responsible of p27
Kip1 

major oncosoppressive function. The second includes the QT 

domain which embraces several phosphorylatable residues, some of which are critical for p27
Kip1

 

metabolism, and a bipartite nuclear localization signal (NLS, residues 152-153 and 166-168). C-

terminus functions were initially unknown, but recent studies reported the interaction of this 

region with proteins apparently not correlated with cell cycle control. Some of these interactions, 

however, probably favor p27
Kip1

oncogenic funtions
35

 (Fig. 1). 

 

p27
Kip1

 N-terminal domain. The KID contains: a cyclin-binding subdomain (D1, residues 25-

36), a CDK-binding subdomain (D2, residues 62-90), and a linker helix subdomain (LH, residues 

38-60) that connects D1 and D2. Although p27
Kip1

shows a disorder conformation before the 

interaction with its target, it also presents a nascent secondary structure (α-helix) in the LH 

domain that may have a function in molecular recognition
23

 (Fig.2B).  

As the other CIP/Kip family members, p27
Kip1

 assumes an order conformation when bound to its 

partners. This folding-upon-binding has been well characterized for the ternary complex p27
Kip1

-

cyclin A/CDK2 through kinetic and thermodynamic analyses realized with isothermal titration 

calorimetry (ITC) and surface plasmon resonance. The accumulated data showed that p27
Kip1 

KID domain binds cyclin A/CDK2 with a sequential mechanism
21

.  

At first, p27
Kip1 

subdomain D1 rapidly binds to cyclin A causing subtle structural changes in the 

cyclin. Then, the LH subdomain folds into an α-helix and induces the complete reorganization of 

subdomain D2 that slowly binds to CDK2. Finally, subdomain D2 forms a β-hairpin and an 

intermolecular β-sheet with CDK2 and the subdomain 310 forms a 310-helix that inserts into 

CDK2 ATP binding pocket
12;31;52

 (Fig.2A). These structural features reveal that p27
Kip1

 inhibits 

cyclin A/CDK2 in three different ways: by blocking the substrate binding site on cyclin A; by 

remodeling CDK2 catalytic cleft; and by occupying CDK2 ATP-binding pocket
53

. 

Studies using CD, ITC, computational docking, and biochemical assays have analyzed and 

compared interaction of cyclin D/CDK4 and cyclin A/CDK2 with p27
Kip1

-KID and various 

p27
Kip1

-KID deletion constructs. It has been proposed that p27
Kip1

 utilizes different combinations 

of residues within its D1 and D2 subdomains to bind and inhibit different cyclin/CDK 

                                                        
52 Russo AA, Jeffrey PD, Patten AK, Massagué J, Pavletich NP. “Crystal structure of the p27Kip1 cyclin-

dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex”. Nature (1996) 382;325-31. 
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complexes. Although exist an elevated sequence conservation between cyclin D/CDK4 and 

cyclin A/CDK2, p27
Kip1

 subdomains have different affinity in the bind to these complexes
12

.  

The NES domain regulates p27
Kip1

 export from the nucleus into the cytoplasm through CKI 

interaction with the exportin CRM1, the signalosome component Jab1 and nucleoporines as 

mNPAP60. 

 

p27
Kip1 

C-terminal domain. When localized in the cytoplasm, p27
Kip1 

interacts through its C-

terminal domain with different proteins as RhoA, Rac, Stathmin, Grb2 and 14-3-3. p27
Kip1

 

C-terminus interaction with RhoA has not been exactly mapped, however 

coimmunoprecipitation experiments have proved that the CKI can bind RhoA directly and that it 

can inhibit its pathway blocking RhoA activation mediated by GEF exchanger and thus 

determining increased cell motility
54;55

. Rac GTPase binds p27
Kip1

 in the region defined as 

“scatter domain” (residues 118–158), the binding is required for p27
Kip1

-dependent 

movement
54;56

. Stathmin is a microtubule-destabilizing protein, it interacts with 170-198  

residues of p27
Kip1

. In HT-1080 fibrosarcoma cells, stathmin function is inhibited by p27
Kip1

, this 

causes the accumulation of stabilized microtubules and the subsequent inhibition of 

mesenchymal cells motility
54;57

.
 
Grb2 binds to p27

Kip1
 in a region that contain the proline rich 

domain (residues 90–96). Due to this possible interaction, p27
Kip1

 competes with Sos, a Ras GTP 

exchanger, for binding to Grb2, and prevent Ras activation
54;58

. The 14-3-3 proteins are a family 

of acidic polypeptides. They bind to pSer/Thr motifs in a sequence-specific manner and regulate 

the activity of protein involved in signal transduction and cell cycle. It has been demonstrated 

that p27
Kip1

 interacts with various members of 14-3-3 family and that this interaction can be 

induced by AKT-dependent phosphorylation on Thr157 or Thr198. The formation of this 

complex should inhibit the CKI entry into the nucleus, inducing its cytosolic accumulation
54;59

. 

                                                                                                                                                                                        
53 Yoon MK, Mitrea DM, Ou L, Kriwacki RW. “Cell cycle regulation by the intrinsically disordered proteins p21 

and p27”. Biochemical Society Transactions (2012) 40;981-88.  
54 Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F. “p27Kip1 metabolism: a fascinating labyrinth”. 

Cell Cycle (2007)  6;1053-61. 
55 Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. “p27Kip1 modulates cell migration through the 

regulation of RhoA activation”. Genes & Development (2004) 18;862-76. 
56 McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF. “Novel p27(kip1) C-terminal scatter domain 

mediates Rac-dependent cell migration independent of cell cycle arrest functions”. Molecular Cell Biology (2003) 

23;216-28. 
57 Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P, Morrione A, Canzonieri V, 

Colombatti A. “p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion”. Cancer Cell (2005) 

7;51-63. 
58 Moeller SJ, Head ED, Sheaff RJ. “p27Kip1 inhibition of GRB2-SOS formation can regulate Ras activation”. 

Molecular Cell Biology (2003) 23;3735-52. 
59 Fujita N, Sato S, Katayama K, Tsuruo T. “Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 

and cytoplasmic localization”. Journal of biological chemistry (2002) 277;28706-13. 
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Finally, the NLS domain is recognized by the α/β importins and regulates p27
Kip1

 transport into 

the nucleus
60

. (Fig. 1). 

 

 

 

Figure 1 p27
Kip1

 protein domains. 
 

 

                    
Figure 2 A) p27

Kip1
 folding-upon-binding to cyclin A/CDK2 complex

31
; B) p27

Kip1
 N-terminal subdomains

61
. 

 

 

 
 

 

                                                        
60 Zeng Y, Hirano K, Hirano M, Nishimura J, Kanaide H. “Minimal requirements for the nuclear localization of 
p27(Kip1), a cyclin-dependent kinase inhibitor”. Biochem Biophys Res Commun. (2000)  274;37-42. 
61 Wang Y, Fisher JC, Mathew R, Ou L, Otieno S, Sublet J, Xiao L, Chen J, Roussel MF, Kriwacki RW. “Intrinsic 

disorder mediates the diverse regulatory functions of the Cdk inhibitor p21”. Nature Chemical Biology (2011) 7; 

214-21. 
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1.4 p27
Kip1 

phosphoisoforms, metabolism and functions  
 

p27
Kip1 

is an atypical tumor suppressor that controls G0 to S phase transitions by binding and 

regulating CDKs activity. In G0 and early G1, p27
Kip1 

levels are very elevated and the CKI binds 

and inhibits cyclin D/CDK4(6) and cyclin E(A)/CDK2 complexes causing the subsequent 

inhibition of pRb phosphorylation and the block of cell cycle progression
54

. The progressive 

reduction in p27
Kip1 

levels
 
during G1 and S phases and the CKI export in the cytoplasm, after the 

phosphorylation of some residues (including Ser10), permits to cyclin E(A)/CDK2 to trigger the 

transcription of genes required for G1-S transition and to participate in the initiation of DNA 

replication. p27
Kip1

 levels are mainly controlled by translational regulation and nuclear and 

cytoplasmic ubiquitination-dependent proteolysis. In early G1, p27
Kip1 

cytoplasmic 

ubiquitination is regulated by the KPC complex, at the G1-S transition, instead, nuclear 

ubiquitination is regulated by a two-step mechanism that involves p27
Kip1 

multiple 

phosphorylations, first on Tyr88 by Src kinase and second on Thr187 by CDK2 (all these 

mechanisms will be widely discuss below)
40

. In G2/M phases p27
Kip1 

levels increase again, 

however CKI role in late phases of cell cycle is less clear. Several investigations speculate that 

p27
Kip1 

could have a function in mitosis and in the maintenance of genomic integrity and DNA 

damage response
62;63;64

.  

D-type cyclin/CDKs are activated by mitogens and causes G0 exit and the re-enter in G1 phase. 

However, p27
Kip1 

has an opposite role in cyclin D/CDK4(6) regulation: in some cases, as contact 

inhibition, it can inhibit cyclin D/CDK4(6); instead, in early G1 to mid G1, p27
Kip1 

phosphorylated on Thr157 and/or Thr198  favors cyclin D1/CDK4(6) assembly and nuclear 

translocation
40

. This and many others dual functions of p27
Kip1 

allow us to presume how intricate 

are the CKI roles in cell physiology.   

Moreover, several in vivo studies on p27
Kip1 

knock out effects have been done. It has been 

observed that p27
Kip1

 homozygous null mice are viable but are bigger than wild-type 

models
38;65;66

. In particular, they present multiple organ hyperplasia, pituitary tumors and, in 

                                                        
62 Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ, Roberts JM. “A pathway in quiescent cells that 

controls p27Kip1 stability, subcellular localization, and tumor suppression”. Genes & Development (2006) 20;47-

64. 
63 Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Iemura S, 

Natsume T, Nakayama KI. “Skp2-mediated degradation of p27 regulates progression into mitosis”. Developmental 

Cell (2004) 6;661-72. 
64

 See WL, Miller JP, Squatrito M, Holland E, Resh MD, Koff A. “Defective DNA double-strand break repair 

underlies enhanced tumorigenesis and chromosomal instability in p27-deficient mice with growth factor-induced 
oligodendrogliomas”. Oncogene (2010) 29;1720-31. 
65 Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, 

Kaushansky K, Roberts JM. “A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and 

female sterility in p27(Kip1)-deficient mice”. Cell (1996) 85;733-44. 
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some cases, retinal dysplasia, thymic hyperplasia, female sterility, and hyperplasia of the adrenal 

gland
38;47;48

. Thus p27
Kip1

 does not seem a vital gene, but a protein that controls, through its local 

inhibitory action on the cell cycle, body and organ size
38

.  

p27
Kip1 

CDK-dependent and also independent activity is controlled at different levels, by its 

concentration, subcellular localization and phosphorylation status. In particular, p27
Kip1

 post-

translational modifications have a critical role and a highly impact on protein functions, because 

of the absence of a CKI well-defined folding. Thus, some of the most frequent and important 

phosphorylations that regulate p27
Kip1 

levels and metabolism, subcellular localization, and its 

main CDK-dependent and independent functions are described below (Fig.3).  

 

 

 

 

 

 

Fig. 3 Major p27
Kip1

 phosphorylations and the most accreditate kinases responsible of these post-translational 

modifications. 
 

 

 

 

 

 

 

                                                                                                                                                                                        
66 Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. “Mice 

lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors”. 

Cell (1996) 85;707-20. 
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1.4.1 Phosphorylation on Tyr74, Tyr88, Tyr89 

There are three tyrosines in p27
Kip1 

at residues 74, 88 and 89, all within the KID. Tyrosine 88 

(Tyr88) is highly conserved among all CIP/Kip family members, whereas tyrosine 74 (Tyr74) is 

specific for p27
Kip1

. Three kinases responsible of tyrosine phosphorylation are ABL, LYN and 

SRC
40

. In particular, the nonreceptor tyrosine kinase LYN phosphorylates p27
Kip1 

on Tyr88; 

ABL phosphorylates p27
Kip1 

at the residues 88 and 89; SRC phosphorylates in vitro p27
Kip1 

on 

Tyr74 and Tyr88 (in vivo it seems that the phosphorylation on these residues is decreased 

because of SRC functional inactivation)
67;68;69

. 

Tyrosine modification causes a reduced ability of p27
Kip1

 to inhibit CDK2, by affecting the 

interaction with the cyclin/CDK complex. Crystal structure analysis, in fact, show that Tyr88 is a 

part of a 310-helix that inserts into the CDK2 catalityc cleft and displaces ATP inactivating the 

kinase; Tyr74 forms hydrophobic interactions with CDK2. p27
Kip1 

affinity for CDK2 is weakly 

decreased by Tyr88 phosphorylation, however NMR analysis demonstrate that when this amino 

acid is phosphorylated, the 310-helix is expelled from cyclin/CDK2 catalytic cleft, opening up the 

ATP binding pocket and determining kinase activation. Thus, phosphorylation of p27
Kip1 

at 

Tyr88 causes the subsequent CKI phosphorylation at Thr187 residue by the active cyclin 

E(A)/CDK2 complex. This kind of post-translational modification, determines, so, the transition 

of p27
Kip1 

from inhibitor of cyclin E(A)/CDK2 to a substrate of the same complex. Because the 

phosphorylation at Thr187 activates SCF/Skp2 mediated p27
Kip1 

proteolysis, the modification on 

tyrosine residues probably results in a p27
Kip1 

increased instability
40;50;51

 (Fig. 4). 

 

1.4.2 Phosphorylation on Thr187 and p27
Kip1 

proteolysis  

Phosphorylation on Thr187 represents the only post translational modification consistently 

demonstrated and accepted, it is catalyzed by the cyclin E(A)/CDK2 complex and also by cyclin 

B/CDK1
70;71

. During the G1-S transition the nuclear Thr187 phosphorylation is required for 

p27
Kip1

 polyubiquitylation by SCF/Skp2/E3 ubiquitin ligase (S-phase kinase associated protein 

1/Cullin/F-box protein: S-phase kinase associated protein 2) and for the subsequent degradation 

                                                        
67 Kardinal C, Dangers M, Kardinal A, Koch A, Brandt DT, Tamura T, Welte K. “Tyrosine phosphorylation 

modulates binding preference to cyclin-dependent kinases and subcellular localization of p27Kip1 in the acute 

promyelocytic leukemia cell line NB4”. Blood (2006) 107;1133-40. 
68 Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, Jäkel H, Kullmann M, Kriwacki RW, 

Hengst L. “Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases”. 

Cell (2007) 128; 269-80. 
69

 Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, Sun P, Tan CK, Hengst L, Slingerland J. “p27 

phosphorylation by Src regulates inhibition of cyclin E-Cdk2”. Cell (2007) 128;281-94. 
70 Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. “Cyclin E-CDK2 is a regulator of p27Kip1”. Genes 

& Development (1997) 11;1464-78. 
71 Vlach J, Hennecke S, Amati B. “Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor 

p27”. (1997) 16;5334-44. 
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by 26S-proteasome. The SCF/Skp2 RING-type ubiquitin ligase consists of SKP1, CUL1, the 

ring finger protein RBX1 (also known as ROC1), the F-box protein Skp2 and the accessory 

protein CSK1B
72

. The cyclin/CDK-bound pThr187p27
Kip1

, binds to the phosphate binding site of 

CSK1B, to Skp2 and to the CSK1B-Skp2 interface. p27
Kip1

 binding to cyclin E(A)/CDK2 

causes, not only phosphorylation on Thr187, but it also stimulates p27
Kip1 

recruitment to 

SCF/Skp2, because cyclin A binds Skp2 and CDK2 binds CSK1B. It was initially thought that 

the SCF/Skp2 complex was able to regulate only the G1-S transition, but recent studies show 

that it plays an important role also in S and G2 phases
40;73

 (Fig. 5). 

 

pThr187-independent p27
Kip1

 proteolysis. p27
Kip1

 nuclear proteolysis mediated by Skp2 can 

also occur in G1 independently of Thr187 phosphorylation
74

. Exists, in fact, an additional Skp2-

dependent ubiquitin ligase complex that does not require CKS1B for p27
Kip1 

recruitment. This 

complex is constituted by DDB1, a subunit of the damaged-DNA binding protein DDB, that 

functions also as an adaptor for Cul4A, a member of the cullin family of E3 ubiquitin ligase; the 

Cul4A-DDB1 complex is also associated with the COP9 signalosome. Recently the complex 

made by Skp2-Cul4A-DDB1-COP9, has been shown to target p27
Kip1 

for proteolysis
75

. Further 

studies illustrate a p27
Kip1

 degradation mediated by Cul4A in S-phase, independently of Skp2 

presence. Thus, it has been proposed that Cul4 acts to reprogram S-phase progression and to 

replace some functions of SCF/Skp2
35;76

. 

In early G1, in addition to the nuclear proteolysis, p27
Kip1 

can also have a cytoplasmic 

degradation mediated by a Skp2-and Thr187-independent pathway
54

. The CKI export in early 

G1, can be promoted by p27
Kip1 

phosphorylation on serine 10 (Ser10). Some kinases responsible 

of this post-translational modification are KIS, MIRK and DIRK1, which increase p27
Kip1 

bind, 

through the NES domain, to CRM1 promoting, in turn, the CKI nuclear export
77;78

. p27
Kip1 

export requires loss of cyclin/CDK2 binding, because CRM1 binds p27
Kip1 

in its CDK2 

                                                        
72 Nakayama KI, Nakayama K. “Ubiquitin ligases: cell-cycle control and cancer”. Nature Review Cancer (2006) 

6;369-81. 
73 Bloom J, Pagano M “Deregulated degradation of the cdk inhibitor p27 and malignant transformation”. Seminars 

in Cancer Biology (2003) 13;41-7. 
74 Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM. “A mouse knock-in model 

exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase”. Nature (2001) 413;323-7. 
75 Bondar T, Kalinina A, Khair L, Kopanja D, Nag A, Bagchi S, Raychaudhuri P. “Cul4A and DDB1 associate with 

Skp2 to target p27Kip1 for proteolysis involving the COP9 signalosome”. Molecular and Cellular Biology (2006) 

26;2531-9. 
76 Li B, Jia N, Kapur R, Chun KT. “Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, 

and differentiation during erythropoiesis”. Blood (2006) 107;4291-9. 
77 Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K, Nakayama KI. “Phosphorylation of p27Kip1 on serine 10 

is required for its binding to CRM1 and nuclear export”. The Journal of Biological Chemistry (2002) 277;14355-8. 
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interaction site. Cytoplasmic p27
Kip1 

can be ubiquitylated by the ubiquitin ligase Kip1 

ubiquitylation-promoting complex (KPC). KPC complex is constituted of two subunits that act 

cooperatively: KPC1 and KPC2. KPC1 contains the catalytic domain of the complex, 

responsible for the poly-ubiquitination of the protein; KPC2 instead transfers the labeled protein 

to the proteasome
54

.  

In addition other two removal processes need to be mentioned: the first is dependent on the 

activity of calpain, a Ca
2+

-dependent protease, and has been demonstrated in MAPK-activated 

OCM-1 (a choroidal melanoma tumor-derived cell line)
35;79;80

. The second requires an initial 

interaction between p27
Kip1

 and annexin 6 that commits the CKI to endolysosomal degradation. 

The process has been demonstrated in several cell lines and might contribute to p27
Kip1

 

downregulation after serum stimulation
35;81

. 

 

1.4.3 Phosphorylation on Thr157 and Thr198 

p27
Kip1

 phosphorylation of on Thr157 and Thr198 by Akt kinase inhibits nuclear import of the 

CKI, causing p27
Kip1

 accumulation in cytosol and the inhibition of G1 arrest
82;83

. Further studies 

have demonstrated that also the oncogenic Ser/Thr  kinase, Pim, phosphorylates p27
Kip1 

on the 

same residues, promoting cell cycle progression. When Thr157 or Thr198 are phosphorylated, it 

is generated a recognition domain for the 14-3-3 proteins that competes with the α-importin to 

bind p27
Kip1

 (Thr157 is, in fact, located in the NLS) and leads to sequestration of the CKI in the 

cytoplasm
59;84

 (Fig. 6). 

Phosphorylation of Thr157 and Thr198 promotes assembly but not activation of p27
Kip1

–cyclin 

D/CDK complexes. PI3K-mediated activation of Akt, p90RSK1, mTOR and SGK may 

                                                                                                                                                                                        
78 Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM. 

“CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and 

proteolysis”. Molecular Biology of the Cell (2003) 14;201-13.  
79 Delmas C, Aragou N, Poussard S, Cottin P, Darbon JM, Manenti S. “MAP kinase-dependent degradation of 

p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export”. Journal of Biological 

Chemistry (2003) 278;12443-51. 
80 Akashiba H, Matsuki N, Nishiyama N. “Calpain activation is required for glutamate-induced p27 down-regulation 

in cultured cortical neurons”. Journal of Neurochemistry (2006) 99;733-44. 
81 Fuster JJ, González JM, Edo MD, Viana R, Boya P, Cervera J, Verges M, Rivera J, Andrés V. “Tumor suppressor 

p27(Kip1) undergoes endolysosomal degradation through its interaction with sorting nexin 6”. FASEB J. (2010) 

24;2998-3009. 
82 Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston 

R, Franssen E, Slingerland JM. “PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-

mediated G1 arrest”. Nature Medicine (2002) 8;1153-60. 
83 Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, 
Bellacosa A, Fusco A, Santoro M. “Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase 

inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer”. Nature Medicine (2002) 8;1136-44. 
84 Fujita N, Sato S, Tsuruo T. “Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases 

promotes its binding to 14-3-3 and cytoplasmic localization”. Journal of Biological Chemistry (2003) 278;49254-60. 
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contribute to p27
Kip1 

phosphorylation at Thr157 and Thr198 and favor p27
Kip1 

–cyclin D/CDK 

complexes association in several cell types
40

.  

These modifications can also interfere with the cytoskeleton normal structure: pThr198, in fact, 

can favor p27
Kip1

 bind to RhoA, preventing its GEFs activation and increasing cell motility and 

metastatic capability. Furthermore, several works have shown that phosphorylation on Thr198 

may have a role on p27
Kip1 

stabilization: in HeLa and MCF7 cell lines treated with Phorbol-12-

myristate-13-acetate (PMA), an activator of PKC, the protein kinase C is able to phosphorylate 

Thr198 residue, this modification results in the increase of p27
Kip1

 protein levels
85

. In early G1 

this modification seems to increase the CKI stability, but it is not connected to the protein sub-

cellular localization; in this case, the stabilization could be probably due to the combination of 

this phosphorylation with Thr157 and/or Ser10 phosphorylations
86

.  

 

1.4.4 Phosphorylation on Ser10 

Phosphorylation on Ser10 might be considered the mayor p27
Kip1 

post-translational modification, 

it represents the 70–75% of CKI phosphoisoforms, and was identified for the first time by 

Nakayama’s group in 2000
87

. Different kinases have been supposed to catalyze the 

phosphorylation at Ser10 residue, some approved are: MAPK (Erk1/2)
88

, human kinase 

interacting stathmin (hKis)
89

, Akt
84

, Minibrain related kinase (Mirk)/dual specificity tyrosine-

phosphorylation-regulated-kinase 1B (DirkB1)
90

, CDK5
91

 and calcium calmodulin-dependent 

protein kinase II (CaMKII)
92

. The involvement of these kinases in Ser10 phosphorylation has 

been principally demonstrated with in vitro assays or with overexpression experiments. 

Therefore, the “physiological” role of these enzymes in p27
Kip1

 phosphorylation and metabolism 

needs to be confirmed
35

. 
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Main roles correlated with Ser10 phosphorylation are p27
Kip1

 nuclear export
77

 and protein 

stabilization
87

. In early G1 this modification facilitates p27
Kip1

 binding to CRM1 and subsequent 

cytoplasm translocation and degradation by KPC complexes (Fig. 7). Studies on mouse 

fibroblasts have shown that the mutation of Ser10 to Ala10 reduces p27
Kip1

 nuclear export, and 

causes its accumulation in the nucleus
56;77;78;93

. Furthermore, several studies speculate that Ser10 

phosphorylation stabilizes the CKI in quiescent cells. Mutation of Ser10 to Ala10 or Glu10 

destabilizes or stabilizes p27
Kip1

 respectively
87;94

 and similar results have been also reported by 

studies on Ser10Ala p27
Kip1

-knock-in mouse
62

. It seems that, in quiescent cells, Ser10 

phosphorylation could increase protein stability by modulating CKI interactions with 

cyclin/CDK complexes, although these mechanisms are still unknown. Borriello et al. have 

shown that in LAN-5 (neuroblastoma cell line), ATRA (all-trans-retinoic acid) treatment 

increases p27
Kip1 

levels
95

. This increase is not due to impairment of CKI degradation in that 

ATRA-treatment does not down-regulate Skp2 and CSK1 and does not impair p27
Kip1 

nuclear 

export. Using two-dimensional PAGE/immunoblotting, it has been demonstrated that, after 

retinoic treatment, the nuclear monophosphorylated CKI isoform is up-regulated and it has also 

been proved, using immunological analysis, that this isoform corresponds to pSer10p27
Kip1

. 

Furthermore, ATRA-treated nuclear LAN-5 extracts show an enhanced capability of 

phosphorylating p27
Kip1

 on Ser10, thus explaining the nuclear up-regulation of the isoform. 

Thus, it seems that another mechanism by which ATRA can explicate its antiproliferative 

activity is the up-regulation of Ser10 phosphorylation. This event causes p27
Kip1

 stabilization and 

its accumulation in the nuclear compartment, suggesting a possible role of pSer10p27
Kip1 

in the 

regulation of cell cycle progression
96

. 

Other pSer10p27
Kip1 

roles are linked to cortical neuron differentiation and migration
91

 and 

apoptosis regulation
92

. Neural migration control is associated to CDK5 activation by p35 in post 

mitotic neurons
97;98;99;100

. It seems that after p35-mediated activation, CDK5 could act as p27
Kip1 
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positive regulator, phosphorylating the CKI on Ser10 residue in G0-arrested neurons. 

Subsequently, this determines microtubule and actin reorganization through the suppression of 

RhoA activity and through cofilin activation
91

. In vivo p27
Kip1 

suppression leads to neuronal 

abnormal migration and cytoskeleton disorders. 

Furthermore, Kajihara and colleagues have demonstrated that, in HeLa cells, CaMKII increases  

p27
Kip1 

expression and stability through Ser10 phosphorylation and that the wild-type protein 

overexpression, but not the Ser10Ala mutant increases Bcl-xL expression and confers resistance 

to apoptosis
92

. 

 

 

 

 

 

                
                   Fig. 4 Effect of tyrosine phosphorylations on  p27

Kip1 
inhibitory functions. 
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                    Fig. 5 Effect of Thr187 phosphorylation on p27

Kip1
 metabolism. 

                
                         

           
                  Fig. 6 Effect of Thr157 and Thr198 phosphorylation on p27

Kip1
 localization. 
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                     Fig. 7 Effect of Ser10 phosphorylation on p27

Kip1
 localization and metabolism. 

 

 

1.5 p27
Kip1 

and cancer 

p27
Kip1

 was previously considered only a key regulator of cell proliferation, which explicates its 

activity mainly interfering with cyclin/CDK complexes, suggesting a role as tumor suppressor. 

Consistent with this view, many tumors show CKI decreased levels due to its impaired synthesis 

or accelerated degradation, indicating that p27
Kip1 

expression levels could have both prognostic 

and therapeutic implications (Fig. 8). However, in the last decade, p27
Kip1

 has emerged both as 

an oncosoppressor and as a potential oncogene. As described previously, while p27
Kip1

 opposes 

cell cycle progression by binding to and inhibiting cyclin/CDK complexes, phosphorylation on 

Thr157 or Thr198 promotes the assembly and the nuclear translocation of D-type cyclin/CDKs; 

and phosphorylation on Ser10 promotes p27
Kip1

 mislocalization in the cytoplasmatic 

compartment, where it can play important role in cell motility and migration. In addition, in 

human cancers, also the oncogenic activation of mitogenic signaling (as PI3K signaling 

pathway) results in p27
Kip1

 cytoplasmic translocation. Thus, because of its anti-oncogenic and, at 

the same time, pro-oncogenic properties, p27
Kip1 

was defined by Slingerland and co-workers  as 

“Dr. Jekyll and Mr. Hyde”
101

. Now we are going to describe some aspects of p27
Kip1

 

involvement in cancer. 
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p27
Kip1 

deregulation in human cancers. Normal human epithelial cells express p27
Kip1 

elevated 

levels in the nucleus. In several human cancers as breast, colon, lung, prostate carcinomas, 

lymphomas and gliomas, instead, it has been shown decreased p27
Kip1

 protein levels, even if 

mRNA levels remain normal. p27
Kip1

 low levels in primary tumors have been associated with  

reduced time to disease relapse and/or reduced patient survival
100;102

. Initial works proposed that 

an increased proteolysis was the principle cause of p27
Kip1 

loss in human tumors
103

,  however 

recent findings suggest that a reduction in p27
Kip1 

translation might contribute to the CKI down-

regulation in cancers
104

. le Sage et al. have demonstrated that two miRNAs (miR221 and 

miR222) are involved in p27
Kip1 

translational inhibition in different human tumors, specifically 

glioblastoma, papillary thyroid carcinoma, pancreatic adenocarcinoma, colon and stomach 

cancers and chronic lymphocytic leukemia
100;105

. Thus, p27
Kip1

 protein reduction in 

malignancies, may be due to: accelerated proteolysis; miR-mediated inhibition of translation, or 

both these processes. Mechanisms of CKI translational regulation are still not well defined, 

however have been proposed some hypotheses to explain the accelerated p27
Kip1 

degradation. 

For example, several cancers show an increased Skp2 expression or, alternatively, some kinases 

(as Src) could be up-regulated increasing p27
Kip1

 tyrosine phosphorylation and its proteasomal 

degradation
35;106

.  

Some cancers, however, present high p27
Kip1 

levels, this can be due to p27
Kip1

 sequestering in 

cyclin D/CDK4 complexes. As described before, this interaction is required for the cytosolic 

formation of the active complex and the subsequent translocation into the nucleus. However, an 

excessive upregulation of cyclin D/CDK4 can sequester p27
Kip1

 in a ternary complex, hindering 

its ability to bind and inhibit cyclin E/CDK2. Moreover, cyclin D2/CDK4 complex can induce 

p27
Kip1 

export from the nucleus to the cytosol, thus allowing p27
Kip1

 degradation
35;107

.  

In several human tumors, it has been also described an increased p27
Kip1 

cytoplasmic 

translocation. Specifically, in breast cancer p27
Kip1 

(mainly pThr198p27
Kip1

)
 
is mislocalized in 

the cytoplasm in association with Akt activation; in breast carcinomas, acute myelogenous 
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leukemia, pancreatic cancer and ovarian carcinomas an increase of p27
Kip1

 cytoplasmic 

localization is correlated with a poor prognosis
82;100

. 

 

p27
Kip1 

and cell motility. Directed cell migration is a process essential for embryonic 

development, tissue repair and regeneration, immune responses, angiogenesis and tumor 

metastasis
100

. In several cell types, p27
Kip1

 accumulation in the cytoplasm increases cell motility, 

whereas, in other cell models, it exerts a negative effect on cell migration. This opposite CKI 

role could be due to p27
Kip1

 interaction with distinct targets and might have important 

consequences in cancer development and therapy
35

.  

Rho GTPases is a protein family principally involved in cell motility regulation, cytokinesis and 

morphology. It includes 23 members of which RhoA, Rac and Cdc42 are the best characterized. 

RhoA exists in two states: in a GDP-bound inactive state and a GTP-bound active state. RhoA-

GTP activates Rho-kinases, ROCK1 and ROCK2, which subsequent activate LIM domain-

containing protein kinase (LIMK). LIMK phosphorylates and inhibits the actin depolymerization 

factor, cofilin (Fig. 9). Thus, the activation of this signaling determines an increase in actin 

polymerization and in the assembly and stability of focal adhesions. Conversely, the inhibition of 

RhoA pathway leads to a decrease in stress fibers and focal adhesions stabilization and to a 

subsequent increase in cell motility
100;108

. Cytosolic p27
Kip1

 is able to bind to RhoA and prevent 

its activation by GEFs, therefore an increase of p27
Kip1

 cytoplasmic levels can result in enhanced 

cell motility. Nagahara et al. were the first to show that cytoplasmic p27
Kip1 

promoted cell 

migration
109

 and then McAllister et al. demonstrated that this function was dependent on the CKI 

C-terminal domain
33;100

. Then, Besson and co-workers, showed that p27
Kip1

 null mouse 

embryonic fibroblasts (MEFs) have reduced motility compared to wild type MEFs and re-

expression of p27
Kip1

 rescued the motility defect of p27
Kip1

 null MEFs. They also showed that re-

expression of p27
Kip1

 mutant unable to bind cyclins and CDKs (p27
Kip1

CK-) restored cell 

motility, suggesting that p27
Kip1

 effect on cell migration was not dependent on its cell cycle role. 

In the same study, Besson and colleagues demonstrated by immunoprecipitation experiments, 

that p27
Kip1

 interacts directly with RhoA preventing the binding with GEF interactors and 

leading to the protein inhibition
55;100

. Further investigations reported that p27
Kip1

 with mutations 

in the NLS domain (and thus with a cytosolic localization) decreases RhoA activation and 
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increases cell motility in MCF-7 breast cancer cells
100;110

. Moreover, cytoplasmic expression of 

p27
Kip1

 in murine melanoms models, causes an enhanced cell migration and also an increased 

capability of the tumor to metastasize
100;111

. Recently, Larrea and colleagues, demonstrate that 

phosphorylation on Thr198 by p90 ribosomal S6 kinase (RSK1) induces cytoplasmic p27
Kip1

 

accumulation and enhances motility of melanoma cell lines through RhoA/ROCK inhibition
112

. 

In conclusion, all these evidences support the hypothesis that increased p27
Kip1

 cytoplasmic 

levels improve cell migration and favor the metastasization process.  

However, in contrast to the reported findings, different studies have demonstrated that 

cytoplasmic p27
Kip1

 can also inhibit cell migration. This effect has been observed in vascular 

smooth muscle cells, umbilical vein endothelial cells, neurons and oral cancer cells. In 

glioblastoma cell lines, Schiappacassi et al. demonstrated that p27
Kip1 

overexpression induces 

cell cycle arrest and inhibition of cell motility, invasion and tumor-induced 

neoangiogenesis
35;113

. Cytosolic p27
Kip1

 antimigratory activity depends on its ability to interact 

with and inhibit the microtubule-destabilizing protein stathmin. In particular, cytosolic p27
Kip1

 

upregulation or downregulation of stathmin levels result in the inhibition of mesenchymal cell 

motility. Conversely, high stathmin and low cytoplasmic p27
Kip1

 expression correlate with the 

metastatic phenotype of human sarcomas in vivo
35;57

. Belletti et al. reported that the interaction 

between p27
Kip1

 and stathmin also influences morphology and motility of fibroblasts in three-

dimensional matrices. When cells lacking p27
Kip1 

are immersed in 3D environments, they show 

reduced microtubule stability, rounded shape and a mesenchymal-amoeboid conversion. These 

modification in p27
Kip1

 null cells were determined by the concomitant genetic stathmin ablation, 

suggesting that a balanced expression of p27
Kip1

 and stathmin is critical for the cytoskeletal 

organization
35;114

.  

Thus, it is clear that cytosolic p27
Kip1

 significantly modulates cell motility, but its effect is not 

definitely clarified, suggesting that p27
Kip1

 activity is strongly dependent on cell phenotype
35

. 
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1.5.1 p27
Kip1

 mutation in human tumors 

Differently from other tumor suppressors, CDKN1B was initially reported as rarely inactivated in 

human cancers. However, more recent investigations are subverting this initial hypothesis. 

Monoallelic inactivation of CDKN1B, in fact, has been demonstrated to increase significantly 

cancer development. CDKN1B haploinsufficiency seems caused mainly by deletion or 

frameshift; missense changes, instead, have been identified, but their effects on the protein 

dosage/function have been poorly characterized. Furthermore it seems that mutated p27
Kip1 

cannot function as a dominant negative
115

.  

Data supporting the importance of CDKN1B haplosinsufficiency were initially shown in 1998 by 

Fero and co-workers in a study on CDKN1B knockout mice and were then confirmed by 

others
116

. Recently, CDKN1B was demonstrated inactivated in several human tumors as: 

parathyroid adenomas
117

, MEN4
118

, small intestine neuroendocrine tumors (SI-NET)
119

, 

pancreatic neuroendocrine tumors (PNET)
120

, luminal breast cancer
121

 and hairy cell leukemia
122

. 

Moreover, although the importance of CDKN1B mutations in human cancers is now evident, the 

mechanisms by which these alterations drive carcinogenesis are still obscure
114

. 

 

CDKN1B mutations in MEN syndroms. MEN are autosomal dominant syndromes 

characterized by the manifestation of tumors involving two or more neuroendocrine glands. The 
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two syndromes principally characterized are the MEN type 1 (MEN1) and the MEN type 2 

(MEN2). MEN1 is caused by loss-of-function of the tumor suppressor gene MEN1, and affected 

patients develop multiple parathyroid adenomas, pancreatic islet cell neoplasia, and anterior 

pituitary adenomas. MEN2 is caused by activating germline mutations in the RET proto-

oncogene and the two subtypes are MEN2A and MEN2B. The first is characterized by the onset 

of medullary thyroid carcinoma (MTC), pheochromocytoma and parathyroid adenomas; the 

second (also known as MEN3), causes MTC, pheochromocytoma, marphanoid habitus and 

mucosal and digestive ganglioneuromatosis
117

.  

Recently, a MEN syndromes variant has been discovered in rats and named MENX, affected 

animals develop endocrine tumors that overlap the spectrum of human MEN1 and MEN2, but 

they do not present germline mutations in the canonical genes. A germline loss-of-function 

mutation in CDKN1B has been identified, with linkage analysis followed by positional cloning, 

as the gene responsible of this new syndrome. Affected rats carry a tandem duplication of eight 

nucleotides in exon 2 of CDKN1B, which causes a frameshift. At protein level, the mutated allele 

encodes a protein with a novel C-terminal sequence starting at codon 177 (p27
Kip1

fs177). The 

wild-type p27
Kip1

 (p27
Kip1

wt) protein is 198 amino acids long, whereas the mutated protein, as a 

result of the frameshift, is predicted to be 221 amino acids long. This CDKN1B mutation was 

identified in homozygosity in all MENX-affected rats tested, and it was never observed in 

unaffected littermates
123;124

. To understand the possible roles of mutated CDKN1B in  MENX 

development, functional in vitro studies have been done. These analyses have demonstrated that 

p27
Kip1

fs177 mutant protein retains some properties of the p27
Kip1

wt: it can localize into the 

nucleus and interact with CDK2, CDK4 and with cyclins. However, differently from p27
Kip1

wt, 

the mutant is more unstable and it is rapidly degraded, at least in part, with a Skp2-dependent 

proteasomal proteolysis. The p27
Kip1

-unrelated C-terminal domain of p27
Kip1

fs177 is responsible 

for this rapid degradation, probably through protein misfolding
125

.  

Heterozygous germline mutations in the human homologue CDKN1B gene have been identified 

in few patients presenting multiple endocrine tumors and no germline mutations in MEN1 and 

RET genes. Thus, these findings lead to the identification of a novel MEN syndrome, named 

MEN4 (OMIM No. 610755) characterized by mutations in CDKN1B and by the development of 
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pituitary tumors in affected patients. In 2006, Pellegata and colleagues screened for the presence 

of CDKN1B germline mutations several patients. They identified a germline heterozygous 

TGG<TAG nonsense mutation at codon 76 (p27
Kip1

W76X) in a female proband presenting 

symptoms characteristic of  the MEN1 spectrum
123

. The mutated protein has lost its NLS and so 

it is mislocalized in the cytoplasm (as demonstrated with both in vitro and in vivo experiments). 

p27
Kip1

W76X cannot bind to and inhibit cyclin/CDK complexes and as a consequence, cell 

growth is not decreased.  

Other germline mutations have been identified in patients with features suggestive of MEN1. 

Georgitsi et al. identified a heterozygous 19-bp duplication in exon 1 of the CDKN1B gene. The 

duplication causes a frameshift, and the variant mRNA is predicted to encode a p27
Kip1

 protein 

69 amino acids shorter than p27
Kip1

wt and with a different amino acid sequence after codon 25 

(p27
Kip1

K25fs)
122;126

.  

Subsequently, three new germline CDKN1B changes were identified by Agarwal and co-

workers: ATG-7(g<c); c.283C<T (p27
Kip1

Pro95Ser); and c.592G<G (stop.Gln, stop.Q). ATG-

7(g<c) change affects the Kozac consensus sequence, which plays a major role in the initiation 

of mRNA translation. The mutation reduces the translation efficiency of the variant allele, 

which, subsequently, determines a reduction in p27
Kip1

 amount. p27
Kip1

P95S variant, instead, 

causes a change in Grb2 binding site, inheriting p27
Kip1

 binding to the adaptor protein. This may 

ultimately impair the activation of Ras signal transduction
127

.  

Molatore et al identified a heterozygous germline change (c.206C<T) which, at the protein level, 

substitutes a Pro with a Leu at codon 69 (p27
Kip1

P69L)
128

. The mutated residue is located in KID 

domain, so it seems that p27
Kip1

P69L binds to CDK2 with lower affinity and that it is less 

efficient then p27
Kip1

wt to inhibit cell growth. Furthermore, in vitro the mutant protein is more 

unstable and it is expressed at reduced levels both in transfected cells and in mutation-positive 

patients. 

 

CDKN1B mutations in NETs and endocrine disease. NETs are rare neoplasms that develop 

from endocrine precursor cells and occur mostly in lung, pancreas, and small intestine. MEN1 

                                                        
126 Georgitsi M, Raitila A, Karhu A, van der Luijt RB, Aalfs CM, Sane T, Vierimaa O, Mäkinen MJ, Tuppurainen 

K, Paschke R, Gimm O, Koch CA, Gündogdu S, Lucassen A, Tischkowitz M, Izatt L, Aylwin S, Bano G, Hodgson 

S, De Menis E, Launonen V, Vahteristo P, Aaltonen LA. “Germline CDKN1B/p27Kip1 mutation in multiple 

endocrine neoplasia”. The Journal of Clinical Endocrinology and Metabolism (2007) 92;3321-5. 
127

 Agarwal SK, Mateo CM, Marx SJ. “Rare germline mutations in cyclin-dependent kinase inhibitor genes in 

multiple endocrine neoplasia type 1 and related states”. The journal of Clinical Endocrinology and Metabolism 
(2009) 94;1826-34. 
128 Molatore S, Marinoni I, Lee M, Pulz E, Ambrosio MR, degli Uberti EC, Zatelli MC, Pellegata NS. “A novel 
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germline and somatic mutations are frequent in some kinds of NETs, especially lung and 

pancreatic
118

. SI-NET is one of the most known small intestinal neoplasia and it is characterized 

by the secretion of monoamines as serotonin or peptide hormones. These hormones secretion can 

led to the development of carcinoid syndrome, that represents the principal cause of morbidity 

and mortality in affected patients. Moreover, SI-NETs present relatively low cellular 

proliferation but they are also characterized by a strong invasive capability
129

. Recently Francis 

et al identified through exome/genome sequence analysis of SI-NETs, some heterozygous 

somatic mutations and genomic deletions of CDKN1B gene. It seems that CDKN1B 

haploinsufficiency lead to loss of its tumor suppressor function, suggesting a possible role of 

27
Kip1 

in SI-NET cell cycle regulation and pathogenesis
118

. As in other types of NETs, p27
Kip1

 is 

reportedly important in the progression of pancreatic islet cells into the S phase of the cell cycle. 

Disruption of this pathway could lead to PNET tumorigenesis. Recently Maxwell et al. screened 

a population of patients affected by small bowel neuroendocrine tumors (SB-NET) and PNET . 

They found both in SI-NET primary tumors and in their metastasis, frameshift and missense 

mutations and hemizygous deletions and duplications of CDKN1B gene; instead in PNET 

primary tumors and metastasis they do not found CDKN1B frameshift mutations. 

Immunohistochemistry analysis of patients tissues revealed that mutated p27
Kip1 

localizes mainly 

in the cytoplasm compared to the nucleus. However in one missense mutation found in PNET, 

p27
Kip1 

presents a prevalent nuclear localization in both primary tumor and lymph node 

metastasis. Thus, also these investigations let suppose that CDKN1B mutations and copy number 

variants could be involved in NETs alterations of cell cycle control and that these aberrations 

could have implications for new treatment modalities
119

. 

In addition to patients with a MEN1-like phenotype, also patients which present only a 

predisposition to sporadic parathyroid adenomas or to pituitary adenomas may have alterations 

in CDKN1B gene. Recently, Costa-Guida et al, found two novel germline CDKN1B mutations 

analyzing 90 common sporadic parathyroid adenomas with non-familial presentation. 

Specifically, one patient presented the heterozygous single nucleotide substitution c.397C<A, 

directing a Pro133Thr (p27
Kip1

P133T) in the translated protein. Another patient carried a 

heterozygous germline single nucleotide change c.25G<A in CDKN1B exon 1, which results in a 

Gly9Arg (p27
Kip1

G9R) substitution in the translated protein. Gly in position 9 of p27
Kip1

 is highly 

conserved across species, and its substitution to Arg might affect phosphorylation on the 

adjacent Ser10 residue, influencing p27
Kip1 

subcellular localization and stability. Costa-Guida in 
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vitro experiments show a p27
Kip1

G9R lower stability then wild type protein, which in turn 

determines p27
Kip1 

low levels in tumor tissue of mutation carrier individuals
116

. 

Finally, sequence analysis of 124 affected individuals which belonged to a familial pituitary 

adenoma (FIPA) families, that did not present any mutations in the AIP gene (the canonical gene 

responsible of this neoplasia), revealed the presence of a point mutation in CDKN1B  gene: 

c.356T<C, which results in the substitution of an Ile to a Thr (p27
Kip1

I119T). p27
Kip1

I119T 

analysis through polyacrylamide electrophoresis reveled a slower migration pattern in the 

mutated protein compared to p27
Kip1

WT. This different pattern does not seem to be caused by an 

increased phosphorylation at Thr119, but it could be the consequence of other post translational 

modification as glycosylation, which in turn could confer more stability to the protein
130;131

.  

The interplay between cancer and CDKN1B haploinsufficiency should, however, be clarified in 

more details to understand how CDKN1B mutations could affect p27
Kip1 

level, post translational 

modifications, localization and function, and subsequently, how these aberrations could 

influence not only cell cycle regulation, but also tumorigenesis, in order to open novel 

opportunities for therapeutic strategy.  

 

                                  

                                   Fig. 10 Principal CDKN1B mutations identified in human tumors
114

. 
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2. AIMS OF THE STUDY 

 

p27
Kip1 

is a protein characterized by an elevated percentage of post translational modifications, 

principally phosphorylation, that regulate its levels, cellular localization and functions. The 

relevance of p27
Kip1

 post translational changes is also strengthened by the absence of a well-

defined tertiary structure. Moreover, several evidence suggest that phosphorylations could shift 

p27
Kip1

 tumor suppressor properties to oncogenic activities and vice versa. Finally, a number of 

investigations have revealed that also mutations in p27
Kip1 

encoding gene, namely CDKN1B, can 

be involved in different human tumors oncogenesis, especially in endocrine neoplasias.  

In a previous study, the research group in which I developed my PhD thesis, characterized 

p27
Kip1

 phosphoisoforms pattern in neuroblastoma cell line, confirmed that pSer10p27
Kip1

 is the 

most quantitatively abundant p27
Kip1

 phosphoisoform and found the occurrence of CKI mono- 

and bi-phosphorylated derivatives. Since pSer10p27
Kip1

 represents, in some circumstances, about 

30-40 % of the total nuclear p27
Kip1

 content, we decided to evaluate its metabolism and 

interactions in the nucleus. 

The first aim of this research has been to investigate the possible causes of pSer10p27
Kip1 

abundance. Thus, we took into consideration the main mechanism that control nuclear p27
Kip1

 

levels, i.e. ubiquitin-proteasomal dependent degradation pathway. To examine this pathway, we 

evaluated whether phosphorylation on serine 10 could also allow a phosphorylation on pThr187. 

Phosphorylation on Thr187 is, in fact, a prerequisite for p27
Kip1 

nuclear degradation. 

Furthermore, considering pSer10p27
Kip1 

high levels, its consistent nuclear localization, and the 

increased stability that it confers to p27
Kip1

, we have investigated the possibility that this 

phosphorylation could be important in modulating the interaction of the CKI with specific 

cyclin/CDK complexes.  

The second aim of this research has been to analyze the possibility that Ser10 phosphorylation 

play a role in the metabolism and function of p27
Kip1

 mutant forms recently identified in human 

cancers.  Specifically we focalized our attention on p27
Kip1

G9R, because residue change (glycine 

9 into arginine) is adjacent to Ser10 residue. Thus, through site-directed mutagenesis and 2D/WB 

approaches, we characterized p27
Kip1

G9R post translational modifications and investigate their 

possible role in mutant metabolism and activity. 
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3. MATERIALS AND METHODS 
 

3.1 Reagents and antibodies  

All-trans-retinoic acid (ATRA), phenylmethylsulphoniyl fluoride (PMSF), reduced dithiothreitol 

(DTT), leupeptin, trypsin inhibitor, sodium ortho-vanadate (Na3VO4), sodium fluoride (NaF), 

sodium pyrophosphate, Igepal CA-630, Mg132, isopropyl-ß-galattosyltiopiranoside (IPTG), 3-

[(3-Chloramidopropyl)dimethylammonium]-1-propanolsulphonate (CHAPS), Protein A 

sepharose and anti-actin rabbit polyclonal antibody were supplied by Sigma Chemical Company 

(St Louis, MO, USA). Substrates for immune complexes detection by chemiluminescence (ECL: 

Enhanced ChemoLuminescence) was from Amersham Biosciences, (Buchs, UK). Epoxomicin, 

cycloheximide were from BIOMOL International, LP (Plymouth Meeting, PA). siRNA for Skp2 

gene silencing was supplied by Applied Biosystems (Ambion, 2130 Woodward St. Austin, 

USA). Transfectant agent Turbo-fect and cyclin E mAb were obtained from Thermo Fisher 

Scientific, USA. Human wild type p27
Kip1

 coding sequence, cloned into the pcDNA3 plasmid, 

were gently given by Dr. Michele Pagano (Department of Pathology, New York University 

School of Medicine and New York University Cancer Institute, New York, NY, USA). 

QuikChange II Site-Directed Mutagenesis Kit was from Agilent Technologies (Santa Clara, CA, 

USA). Gel strips "IPG strip pH 3-10" and oil "DryStrip cover fluid" were supplied by Amersham 

Pharmacia Biotech (Little Chalfont , UK). Mouse mAb anti-p27
Kip1

 was provided from BD 

Transduction Laboratories (Franklin Lakes, NJ, USA). 

Lambda protein phosphatase, rabbit pAbs directed against p27
Kip1

(C19), HDAC1, CDK1, CDK2, 

CDK4, CDK6, CDK7, Skp2, phospho(T187) p27
Kip1

, cyclin E, cyclin A, phospho(S10)p27
Kip1

, 

RhoA,  cofilin, mouse mAb PKM2, CDK2, CDK1, CDK5, cyclin D1, cyclin E, cyclin A, cyclin 

B1, pyruvate kinase M2 (PKM2),  p-cofilin, not related pAb were provided by Santa Cruz 

Biotechnologies (Santa Cruz, CA, USA). pAb against pT198-p27
Kip1

 were from Aviva System 

Biology (San Diego, CA, USA) and RD System (Minneapolis, MN, USA). 

All other reagents, of the highest purity available, were obtained from commercial sources.  

 

3.2 Cell cultures and treatments 

Human neuroblastoma cell line Lan-5 was grown in 100 cm
2
 plates in OptiMEM and RPMI 

1640 culture medium (Invitrogen Corporation CA, USA) supplemented with 10% fetal bovine 

serum, penicillin (100 units/ml) and streptomycin (100 μg/ml). Mouse embryonic fibroblast cell 

line MEF (gently given by Dr. Marcos Malumbres, Cell Division and Cancer Group, Spanish 

National Cancer Research Centre, Madrid, Spain) was grown in 100 cm
2 

plates in DMEM 
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culture medium (Invitrogen Corporation) supplemented with 10% bovine serum, penicillin (100 

U/ml) and streptomycin (100 μg/ml). Prostate cell line EPN was grown in 100 cm
2 

plates in 

DMEM-F12 culture medium (Invitrogen Corporation) supplemented with 5% bovine serum, 

penicillin (100 U/ml) and streptomycin (100 μg/ml). Mouse fibroblast cell line NIH3T3 was 

grown in 100 cm
2 

plates in DMEM culture medium (Invitrogen Corporation) supplemented with 

10% bovine serum, penicillin (100 U/ml) and streptomycin (100 μg/ml). Chronic myeloid 

leukemia cell line K562 was grown in 100 cm
2 

plates in RPMI culture medium (Invitrogen 

Corporation) supplemented with 10% bovine serum, penicillin (100 U/ml) and streptomycin 

(100 μg/ml). All cell lines were cultured in a humidified incubator at a temperature of 37° C and 

5% CO2. Cells were plated at low density (2.5 - 3.0 x 103 cells/cm
2
) to avoid contact inhibition. 

Generally, cells were left in culture for 24 hours before the addition of ATRA (diluted from a 

stock solution in ethanol 5x10
-3

M), epoxomicine (5x10
-6

M), cycloheximide (3.6x 10
-6

M) and 

before transfection. 

p27
Kip1

half-life evaluation. To evaluate p27
Kip1

 half-life and metabolism, Lan-5 and K562 were 

grown with ATRA (5μM) for 8 hours, with cycloheximide (36 μM), with Mg132 (1µM) and 

epoxomicin (5µM). To evaluate p27
Kip1

WT and p27
Kip1

G9R half-life and metabolism, NIH3T3 

were treated, after 24 h of transfection (see below) with cycloheximide (36 μM) for 6 hours and 

then (in some experiments) with Mg132 (1µM) for other 2 hours. After treatments cells were 

harvested and processed as described below (i.e, analyzed by WB or 2D/WB).  

Cell lines synchronization. 1) G0 phase: Lan-5 at 30-40% confluency were washed twice with 

1X PBS (Phosphate Buffered Saline, 0.8% NaCl, 10 mM sodium phosphate pH 7.4, and 2.7 mM 

KCl) and fresh medium serum free was added. After 72h cells were collected. 2) G1 phase: after 

72 hours of starvation, serum free medium was removed and Lan-5 were maintained for 3 hours 

with 10% serum medium to release cells and then collected. 3) S phase: Lan-5 at 30-40% 

confluency were wash twice with 1X PBS, and 5 mM thymidine was added to the medium. After 

48h cells were collected. 4) G2/M phases: after thymidine treatment, thymidine-containing 

medium was removed, Lan-5 were washed twice with PBS1X and then medium without 

thymidine were added to release cells. After 15 hours cells were collected.  Cell synchronization 

was evaluated by FACS analysis and cyclins blot . 

 

3.3 Cell extracts preparation 

Cell pellets were suspended in RIPA 1X lysis buffer (100 mM Tris-HCl pH 7.5, 300 mM NaCl, 

2% deoxycholate, 2% Triton X-100, 0.2% SDS, 0.57 mM PMSF, 0.27 mM TPCK, 21 μM 

leupeptin, 0.83 μg/ml chymostatin, 10 μg/ml trypsin inhibitor, 0.5 mM DTT, 16 mM PNPP, 
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1mM Na3VO4, 40 mM NaF and 1 mM sodium pyrophosphate) and then left for 1 hour at 4°C. 

Samples were centrifuged at 16,000g for 10 minutes in order to remove cell debris, and the 

supernatants recovered and stored at -80°C. 

 

3.4 Cell fraction preparation  

Cytoplasmic and nuclear extracts were prepared suspending cell pellets in hypotonic lysis buffer 

1X (10 mM Hepes pH 7,9, 1.5 mM MgCl2, 10 mM KCl) for 15 min at 4°C. Then Igepal 0,06% 

were added and samples were centrifuged at 16,000 g for 30 sec. Samples supernatants which 

contain cytoplasmic fraction, were recovered and stored at -80°C. Samples pellets were 

suspended with lysis buffer 1X (50 mM Tris, 150 mM NaCl, 0,1% Igepal) for 45 min at 4°C.  

Samples were centrifuged at 16,000 g for 10 minutes in order to remove cell debris, and the 

supernatants which contain nuclear fraction were recovered and stored at -80°C. 

The occurrence of cross-contamination were assessed by western blotting with anti-HDAC1 

(nuclear marker) and PKM2 (cytoplasmic marker). 

 

3.5 Protein concentration determination  

Protein concentration was determined according to the method of Bradford (1976) using the 

reagent "Protein Assay Kit" of Bio-Rad Laboratories (Richmond, CA, USA). Calibration curve 

was constructed using serial dilutions of a solution of known concentration (1.5 mg/ml) of 

standard proteins (Bio-Rad).   

 

3.6 Western blot analysis 

Protein extracts were separated by electrophoresis on vertical polyacrylamide gel (SDS/PAGE) 

using a 12% resolving gel. After separation and electroblotting on a nitrocellulose filter, protein 

of interest were identified by specific antibodies and immunoreactive bands were detected by 

secondary HRP (horseradish peroxidase) conjugated antibodies and ECL detection method. After 

1 minute of ECL reagent (Amersham Biosciences) incubation, membranes were exposed to an 

autoradiographic hyperfilm (Hyperfilm ECL, Amersham Biosciences) and immunoreactive 

bands were identified. Different exposure times were used to verify the reproducibility and 

proportionality of signals. 

Western blot images obtained by scanning were acquired and processed by using Adobe 

Photoshop 3.0 installed on a Power Macintosh 5400/180. Bands intensity was determined using 

the program NIH Image 1.61.  
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3.7 Immunoprecipitation experiments 

Immunoprecipitation experiments (IP) were realized incubating 0.05-4 mg of cell extract 

proteins with antibodies directed against the protein of interest overnight at 4 °C under mild 

stirring. Immune complexes were then bound to Protein A-Sepharose (Sigma) incubating 

protein-antibody mixture with blocked resin for 2 hours at room temperature (RT). Then, the 

mixture was centrifuged for 2 min. IP supernatants were removed and immunoprecipitates were 

suspended in the sample loading buffer for monodimensional SDS PAGE analysis (WB). When 

immunoprecipitated materials were analyzed by two-dimensional electrophoresis, immune 

complexes were eluted from the resin with buffer 100 mM Glycine-HCl pH 2.5. Proteins 

recovered in eluate were precipitated with 10% trichloroacetic acid (TCA). After 40 min at 4°C, 

samples were centrifuged at 16,000 g for 20 minutes and then TCA was removed. Precipitated 

proteins were washed twice with cold acetone and pellets were suspended in specific two-

dimensional analysis buffer (see below) and stored  at -20°C. 

 

3.8 Two-dimensional electrophoresis 

Samples were suspended in buffer isoelectrofocusing (urea 8M, CHAPS 4% w / v, DTE 65mm, 

40mM Tris, bromophenol blue and 0.2% anfoline) and loaded on gel strips (IPG strip pH 3 -10 

linear, Amersham Biosciences) and coated with oil (DryStrip cover fluid, Amersham 

Biosciences). The hydration and the subsequent focusing were performed using a system Protean 

IEF Cell (Biorad). After this first separation according to isoelectric point, strips were placed on 

polyacrylamide gels (12%) and covered with 2 ml of a Tris-Glycine buffer pH 8.8, containing 

4% SDS, 50 mM Dithiothreitol, 0.5% agarose. Electrophoresis allowed to proteins second 

separation according to molecular weight. Gels were transferred onto nitrocellulose membranes 

that were subsequently incubated with specific antibodies. On the basis of p27
Kip1 

isoforms 

theoretical isoelectric points, calculated using ExPASy Proteomics Tools program 

(www.expasy.org/tools), the pIs in which they appeared as different immunoreactive signals 

(spots) were determined through a pI calibration curve (made by means of proteins with known 

pIs).   

 

3.9 Phosphatase assay  

 For this assay was used λ phosphatase (BioLabs): 100 units of λ phosphatase remove 250 

picomoles of phosphate in 30 minutes at 30°C.  

500 μg of nuclear Lan-5 cells extract (in lysis buffer including protease and phosphatase 

inhibitors) were incubated with rabbit pAbs anti-pS10p27
Kip1

 and immuneprecipitated with 
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protein A Sepharose. Immunoprecipitate was incubated at 30°C for 1 hour in 50 ml of reaction 

buffer with 400 units of enzyme. At the end of reaction, immunoprecipitate was centrifuged at 

4000 x g and recovered. Proteins, linked to resin, were extracted with 100 mM Glycine-HCl pH 

2.5 and subsequently precipitated with TCA 10%, as reported above. Precipitate was suspended 

in buffer for two-dimensional analysis. 

 

3.10 Plasmids preparation and transfection  

Plasmids were prepared starting from the coding sequence of wild type p27
Kip1

 cloned in 

pcDNA3. Particularly, plasmids containing the following mutations were prepared: p27
Kip1

G9R, 

p27
Kip1

G9RS10A, p27
Kip1

G9RT187A, p27
Kip1

G9RS10AT187A, and p27
Kip1

G9RT198V. To 

mutagenize was used QuikChange II Site-Directed Mutagenesis Kit, from Agilent Technologies 

(Santa Clara, CA, USA). Each plasmid sequence was then confirmed by direct sequencing.  

Oligonucleotides employed for mutagenesis are: 

  

 

p27
Kip1

G9R 
 
mutants Primers sequence 

Fw p27
Kip1

G9R 5’ GCG AGT GTC TAA CAG GAG CCC TAC GCT GG 3’ 

Rev p27
Kip1

G9R 5’ CCA GGC TAG GGC TCC TGT TAG ACA CTC GC 3’ 

Fw p27
Kip1

G9RS10A 5’GCG AGT GTC TAA CAG GGC CCC TAG CCT GG 3’ 

Rev p27
Kip1

G9RS10A 5’ CCA GGC TAG GGG CCC TGT TAG ACA CTC GC 3’ 

Fw p27
Kip1

T187A 5’ GTT CTG TGG AGC AGG CGC CCA AGA AGC CTG 3’ 

Rev p27
Kip1

T187A 5’ CAG GCT TCT TGG GCG CCT GCT CCA CAG AAC 3’ 

Fw p27
Kip1

T198V 5’ CCT CAG AAG ACG TCA AGT GTA AAA TTC TGC 3’ 

Rev p27
Kip1

T198V 5’ GCA GAA TTT TAC ACT TGA CGT CTT TCT GAG G 3’ 

 

 

3.11 Immunofluorescence analysis 

MEF transfected with p27
Kip1

WT and p27
Kip1

G9R were plated on cover slips for confocal 

microscopy. Cells were fixed with 4% of paraformaldehyde (PFA) for 30 min at room 

temperature and permeabilizated with 1X PBS + Triton 0,5% for 10 min. MEF were treated with 

a blocking solution (5% horse serum) for 30 min at room temperature and then incubated 

overnight at 4°C with anti-p27
Kip1 

mouse monoclonal antibody (BD Transduction Laboratories, 

Franklin Lakes, NJ, USA). Goat anti-mouse FITC-conjugate (ImmunoReagents, Inc Raleigh 
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NC) was used as secondary antibody, nuclei were stained with Hoechst. Slides were examined 

with ZEISS Confocal Microscope and image analyzed with ZEISS software. 

 

3.12 Wound healing 

NIH3T3 were plated at high confluence, starved and transfected with p27
Kip1

WT and p27
Kip1

G9R 

vectors. After 24 hours of transfection, wounds were made by sterile pipet tip and the cell 

photographed (time 0). After different time intervals (up to 42 hours) the healing process was 

monitored and images were taken by DM IRB Microscope and  Optica Vision 6.0 software. 
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4. RESULTS 

 

4.1 p27
Kip1 

phosphoisoforms characterization  

In a previous study, Borriello and colleagues demonstrated that p27
Kip1

 is characterized by 

multiple phosphoisoforms in nuclear and cytosolic compartments of neuroblastoma cell line Lan-

5. In particular, after 8 hours of ATRA treatment, a high pSer10p27
Kip1 

up-regulation was found 

in Lan-5 cytoplasm and also in the nucleus
95

. To clarify the mechanisms of pSer10p27
Kip1 

increase, p27
Kip1

 phosphoisoforms characterization was performed through IP followed by two-

dimensional electrophoresis (2D) and western blot (WB). IP was performed, when available, 

with anti-phospho-p27
Kip1

 specific antibodies
95

. Borriello et al demonstrated that classical WB 

analysis was not sufficient to characterize p27
Kip1

 isoforms because of the contemporaneously 

presence of multiple  p27
Kip1

 post translational modification on multiple residues, the recurrently 

low specificity of anti-phospho-p27
Kip1

 antibodies and the faint level of some p27
Kip1

 isoforms. 

Instead, they found that the use of 2D/WB, associated at the occurrence with IP, lead to a better 

and direct phosphoisoforms identification.    

Borriello and co-workers demonstrated that pattern spots 0 and 2 correspond respectively to 

unmodified and monophosphorylated p27
Kip1 

forms, and that signal 4 corresponds to 

biphosphorylated isoforms. Signal 1, defined as “intermediate form”, was associated with a 

covalent modification (perhaps an acetylation) still unidentified. Spot 3 corresponds to the 

monophosphorylated derivative  of “intermediated form” (Fig. 11)
95

. In Borriello’s report, to 

obtain a precise characterization of Ser10 phosphorylation, Lan-5 nuclear extract was also 

immunoprecipitated using anti-pSer10p27
Kip1 

antibody 
95

. 2D/WB analysis of pSer10p27
Kip1

 IP, 

indicated the presence of at least three p27
Kip1

 forms phosphorylated on Ser10 residue: spots 2, 3 

and 4 (Fig. 12A)
95

. In pSer10p27
Kip1

 IP supernatant, a small amount of CKI phosphorylated 

forms was still visible (Fig. 12A)
95

, proving the existence of nuclear p27
Kip1

 phosphoisoforms 

not phosphorylated on Ser10 residue
95

. Furthermore, to confirm data on Ser10 phosphorylation, 

pSer10p27
Kip1

 IP was treated with λ phosphatase (λPPase) and analyzed by 2D/WB. As shown in 

Fig. 12B, only spots 0 and 1 were visible after λPPase treatment, demonstrating that forms 2 and 

3 corresponded respectively to the monophosphorylated derivatives of unmodified and 

“intermediated”. Spot 4 represented, probably, unmodified biphosphorylated isoforms containing 

both pSer10 and an additional modified residue
95

.  

Successively, the authors examined other nuclear p27
Kip1

 phosphoisoforms. In particular, 

Borriello et al investigated pThr187p27
Kip1

-containing isoforms, since Thr187 modification 

represents the most frequently demonstrated and accepted p27
Kip1 

phosphorylation that is 
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principally required for p27
Kip1

 removal in S and G2/M phases
70-73

. Fig. 13 showed 

pThr187p27
Kip1 

pattern characterization performed through 2D/WB analysis of pThr187p27
Kip1

 

IP on Lan-5 nuclear extract: signals 2 and 4 corresponded  respectively to pThr187p27
Kip1 

mono- 

and bi-phosphorylated forms. Conditions employed for pThr187p27
Kip1

 detection were different 

from those employed to analyze pSer10p27
Kip1

 because of pThr187p27
Kip1

 scarce amount (Fig. 

13)
95

. 

 

 

                                             
 
Fig. 11 p27

Kip1
 phosphoisoforms pattern characterization. 2D/WB analysis of Lan-5 nuclear extract analyzed 

with anti-p27
Kip1

 mouse monoclonal antibody
95

. 

 

 

 

 

 

                                        
Fig. 12A-B pSer10p27

Kip1
 isoforms characterization. A) 2D/WB of Lan-5 nuclear extract (INPUT), Lan-5 

nuclear extract immunoprecipitated (1mg) with anti-pSer10p27
Kip1

 rabbit polyclonal antibody and 

pSer10p27
Kip1

 IP supernatant. All the  samples were analyzed  with anti-p27
Kip1

 mouse monoclonal antibody. 

B) 2D/WB of Lan-5 nuclear extract (INPUT), pSer10p27
Kip1

 IP before and after λPPase treatment 
95

. 
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Fig. 13 pThr187p27
Kip1

 isoforms characterization. 2D/WB of Lan-5 nuclear extract (INPUT), Lan-5 nuclear 

extract immunoprecipitated (5mg) with anti-pThr187p27
Kip1

 rabbit polyclonal antibody, pSer10p27
Kip1

 IP (as 

in Fig. 12). All the samples were analyzed with anti-p27
Kip1

 mouse monoclonal antibody
95

. 

 

 

 

 

 

4.2 pSer10p27
Kip1 

metabolism 

As definitely reported in Literature, pSer10p27
Kip1

 represents more than 60-70% of all p27
Kip1

 

phosphoisoforms, and remarkably increases the CKI stability
87

. Thus, we decided: i) to verify 

pSer10 function(s) in neuroblastoma model; ii) to clarify its increase mechanism(s), and iii) to 

investigate nuclear p27
Kip1

 phosphoisoforms metabolism. At first, we verified pSer10p27
Kip1 

stability exposing Lan-5 cell line to the protein translation inhibitor cycloheximide (CHX) for 8 

hours at the concentration of 36µM. 2D/WB analysis of Lan-5 nuclear extracts showed that after 

treatment, isoform 2 increases compared to isoform 0, suggesting that it is more stable than the 

unmodified protein (Fig.14). The obtained isoforms pattern was also analyzed with anti-

pSer10p27
Kip1

 antibody revealing that p27
Kip1 

phosphorylated on Ser10 residue corresponds to 

the degradation resistant isoforms (Fig. 14).  

p27
Kip1 

nuclear proteolysis is mainly regulated by SCF-Skp2 dependent mechanism that requires, 

in its initial step the phosphorylation on Thr187. To verify if the higher pSer10p27
Kip1 

nuclear 

stability was due to a reduction in SCF-Skp2 ubiquitination, we down-regulated Skp2 levels by 

transfecting Lan-5 with Skp2-siRNA for 48 hours. As shown in Fig. 15A, after siRNA treatment 

Skp2 levels are reduced, p27
Kip1 

is strongly up-regulated, but there are not any variations in 

pSer10p27
Kip1 

amount. These data show that p27
Kip1 

phosphorylated in Ser10 is not susceptible to 

SCF-Skp2 dependent proteolysis. Subsequently we verified the possibility that nuclear 

pSer10p27
Kip1

 levels were regulated by other degradation mechanisms Skp2-independent. Thus, 
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Lan-5 cells were cultured in the presence of two proteasome inhibitors: Mg132 (used at the 

concentration of 1µM) and epoxomicin (Epox, used at the concentration of 5µM) (Fig. 15B). To 

better evaluate phosphorylated isoforms, cells nuclear extracts were immunoprecipitated with 

anti-pSer10p27
Kip1

 antiserum (Fig. 15D). Data showed that after treatment there is an increase in 

p27
Kip1 

levels, but not in pSer10p27
Kip1 

(Fig. 15B and Fig. 15D). We hypothesized that p27
Kip1

 

elevation in the presence of proteasome inhibitors could be due to the modification on Thr187. 

Therefore, we immunoprecipitated Lan-5 nuclear extracts with an anti-Thr187p27
Kip1

 antibody. 

WB analysis confirmed that pThr187p27
Kip1 

isoform is responsible of p27
Kip1 

increase after 

Mg132 and Epox treatment (Fig. 15C). To understand if there were variations in p27
Kip1 

isoforms 

pattern after Mg132 treatment, 2D/WB analysis of pThr187-depleted Lan-5 nuclear extract was 

performed (namely, pThr187p27
Kip1

 was preliminarly immunoprecipitated from treated nuclear 

extracts and, then, IP supernatant was analyzed by 2D/WB analysis). The experiment showed 

that p27
Kip1 

phosphorylated isoforms up-regulated by Mg132 contain high amount of 

pThr187p27
Kip1 

(Fig. 16A). 2D membranes were then incubated with anti-pSer10p27
Kip1

 

antibody and, as shown in Fig. 16B, no change was detect in spot 4, suggesting that 

phosphorylation on Ser10 does not co-exist with phosphorylation on Thr187. These data confirm 

the evidence that pSer10p27
Kip1 

metabolism is not influenced by pThr187-dependent proteolysis 

mechanisms. 

 

                                      

Fig. 14 Analysis of pSer10p27
Kip1

 stability. 2D/WB analysis of Lan-5 nuclear extracts before and after 8h of 

treatment with CHX 36µM. 2D membranes were incubated with anti-p27
Kip1

 mouse monoclonal antibody and 

with anti-pSer10p27
Kip1

 rabbit polyclonal antibodies. 
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Fig. 15A-D Analysis of pSer10p27

Kip1
 metabolism. A) WB analysis of Lan-5 extracts control, transfected with 

Skp2 siRNA and scramble siRNA. All the samples were analyzed with anti-p27
Kip1 

monoclonal antibody, anti-

Skp2, anti-pSer10p27
Kip1

 and anti-actin rabbit polyclonal antibodies. B) WB analysis of Lan-5 extracts 

control, Lan-5 extracts after treatments with ATRA 5µM, Mg132 1µM and Epox 5µM. all the samples were 

analyzed with anti-p27
Kip1

 mouse monoclonal antibody and with anti-actin rabbit polyclonal antibody. C) WB 

analysis of Lan-5 extracts described in B) immunoprecipitated (1mg) with anti-pThr187p27
Kip1 

polyclonal 

antibody and rabbit Not Related (NR) antibodies. All the samples were analyzed with anti-p27
Kip1 

mouse 

monoclonal antibody. D) WB analysis of Lan-5 extracts described in B) immunoprecipitated (1mg) with anti-

pSer10p27
Kip1 

rabbit polyclonal antibody. All the samples were analyzed with anti-p27
Kip1 

mouse monoclonal 

antibody.   

                                   
Fig. 16A-B Analysis of pSer10p27

Kip1
 and pThr187p27

Kip1
 isoforms after proteasome inhibition. A) 2D/WB of 

Lan-5 nuclear extracts treated for 8h with Mg132 1µM before and after pThr187p27
Kip1 

depletion (Lan-5 

nuclear extracts treated with Mg132 were at first immunoprecipitated with anti-pTh187p27
Kip1 

rabbit 

polyclonal antibody and then IP supernatant was analyzed with 2D/WB). Membranes were analyzed with 

anti-p27
Kip1 

mouse monoclonal antibody. B) 2D/WB analysis of Lan-5 extract and IP supernatant described in 

A) analyzed with anti-pSer10p27
Kip1 

rabbit  polyclonal antibody.  
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4.3 pSer10p27
Kip1 

biphosphorylated isoform identification 

2D/WB analysis of Lan-5 pThr187p27
Kip1

-depleted nuclear extract (Fig. 16B) showed the 

existence of a p27
Kip1 

biphosphorylated isoform constituted by pSer10 and another 

phosphorylation which is clearly not located on Thr187 residue. We decided, so, to clarify which 

should be the other modification compatible with pSer10 in cell nucleus. We focalized our 

attention in particular on pThr198, although this phosphorylation have been reported to occur 

mainly in cytoplasm. At first we verified if pThr198p27
Kip1 

could have a nuclear localization. 

WB analysis of Lan-5 nuclear extract immunoprecipitated with anti-pThr198p27
Kip1

 antibody 

confirmed that this modification occurs also in the nucleus and not only in cytosol (Fig. 17). 

Then we performed 2D/WB analysis on the same samples to examine pThr198p27
Kip1

 

phosphorylation pattern. Fig. 18A shows that this modification appears as mono- and as 

biphosphorylated signals in the cytoplasm and also in the nucleus. 2D/WB analysis of Lan-5 

nuclear pThr198p27
Kip1 

IP  depleted of pSer10p27
Kip1 

(we made a subsequent IP with anti- 

pThr198p27
Kip1 

antibody from pSer10p27
Kip1

IP supernatant) revealed that phosphorylation on 

Thr198 co-exists with phosphorylation on Ser10. As shown in Fig. 18B, in fact, spot 4 

disappears when pSer10 is absent, so the biphosphorylated isoform of pSer10p27
Kip1 

is 

pSer10pThr198p27
Kip1

. 

 

 

 

                                        
 

Fig. 17 pThr198p27
Kip1

 localization analysis. WB analysis of Lan-5 nuclear and cytoplasmic extracts 

immunoprecipitated (500µg) with anti-pThr198p27
Kip1

 rabbit polyclonal antibody and rabbit NR antibody. 

All the samples were analyzed with anti-p27
Kip1 

mouse monoclonal antibody and at different time of exposure.  

 

 

 

 

 

 

 

 



48 

 

                                 
 

 

                                  
Fig. 18A-B pThr198p27

Kip1
 phosphorylation pattern analysis. A) 2D/WB analysis of Lan-5 nuclear and 

cytoplasmic extracts immunoprecipitated (1mg) with anti-pThr198p27
Kip1

 rabbit polyclonal antibody and 

analyzed with anti-p27
Kip1

 mouse monoclonal antibody. B) 2D/WB analysis of Lan-5 nuclear pThr198p27
Kip1

 

IP, as in A), before and after pSer10p27
Kip1

 depletion analyzed with anti-p27
Kip1

 mouse monoclonal antibody. 

  

 

 

 

4.4 p27
Kip1 

isoforms in cell cycle phases 

The data reported in the previous sections demonstrated that phosphorylation on Ser10 confers 

more stability to p27
Kip1

 (probably by allowing the CKI to escape Skp2 and proteasome 

dependent degradation) and suggested that this isoform mostly occurs in cell nucleus as mono- 

and biphosphorylated forms. Therefore, we decided to investigate whether pSer10p27
Kip1

 could 

have a role not only in p27
Kip1 

cytoplasmic translocation but also into the CDK regulation along 

the cell division cycle. Preliminarly, we studied p27
Kip1 

phosphoisoforms distribution in the 

various cell cycle phases. Lan-5 nuclear and cytoplasmic extracts were prepared synchronizing 

cells in G0, G1, S and G2/M phases. To obtain cells enriched in G0, Lan-5 were starved with 

serum free culture medium for 72 hours; to obtain cells in G1 we cultured starved Lan-5 with 
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10% FBS medium for 3 hours and then we harvested them; cells in S phase were obtained 

treating Lan-5 with 5mM thymidine  for 48h; finally G2 cells were obtained removing thymidine 

from Lan-5 blocked in S phase and maintaining them with a complete culture medium for 15 

hours. Lan-5 synchronization was confirmed with FACS analysis and WB analysis of cyclins 

expression pattern (data not shown). Fig. 19 shows total p27
Kip1 

levels in cell cycle phases: in G0 

CKI levels are maximal, followed by a small decrease in G1; in S phase p27
Kip1 

levels are 

significantly reduced and in G2/M they increase again, especially in the nucleus. To examine 

p27
Kip1 

phosphoisoforms nuclear distribution in cell cycle phases we immunoprecipitated 1 mg 

of synchronized Lan-5 nuclear extracts with anti-p27
Kip1

, anti-pSer10p27
Kip1

,
 

anti-

pThr187p27
Kip1 

and not related antibodies and analyzed them through WB. As shown in Fig. 20, 

p27
Kip1 

IP confirms the distribution observed in previous experiment; pSer10p27
Kip1 

IP occurred 

at significant high levels in G0 and then declined in G1. The phosphoisoform abruptly decreased 

in S phase while statistically increased in G2/M. In this experiment pThr187p27
Kip1 

is not 

detected. To examine pThr187p27
Kip1 

it was necessary immunoprecipitate 2 mg of Lan-5 nuclear 

extract (instead of 1mg) and expose the filter for a prolonged time. pThr187p27
Kip1 

analyses 

revealed that the isoform was weakly detectable in G1, it increased in S phase and was expressed 

at maximal levels in G2/M (Fig. 21). Synchronized Lan-5 nuclear extracts pSer10p27
Kip1

-

depleted and their inputs were analyzed by 2D/WB to obtain a clear evaluation of p27
Kip1 

phosphoisoforms distribution in cell cycle phases. pSer10p27
Kip1

-depleted extracts were used to 

investigate pSer10p27
Kip1 

contribution to phosphoisoforms amount. In G0 the most 

representative isoforms are monophosphorylated and biphosphorylated and, as demonstrated by 

pSer10p27
Kip1 

depletion, a large percentage of them was pSer10p27
Kip1

 (Fig. 22A). In G1, a 

reduction in both mono- and biphosphorylated isoforms was observed, however pSer10p27
Kip1 

remained the most representative (Fig. 22B). During S phase biphosphorylated isoforms were 

not present and monophosphorylated CKI was weakly detectable. As shown in Fig. 22C, 

pSer10p27
Kip1 

represented almost the totality of p27
Kip1 

monophosphorylated isoforms. In G2/M 

phases, monophosphorylated isoforms were more detectable then in S phase and a small quantity 

of biphosphorylated was also observed. Also in these phases, pSer10p27
Kip1 

is a significant 

percentage of all p27
Kip1 

phosphoisoforms (Fig. 22D). In brief, our data demonstrate that 

pSer10p27
Kip1 

amount varies during cell cycle, at least in part, independently on total p27
Kip1

.  
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Fig. 19 p27
Kip1

 distribution in cell cycle phases. WB analysis of Lan-5 synchronized cytoplasmic and nuclear 

extracts analyzed with anti-p27
Kip1 

mouse monoclonal antibody at different time of exposure. Analysis with 

anti-HDAC1 rabbit polyclonal antibody and anti-PKM2 mouse monoclonal antibody were used as nuclear 

and cytoplasmic loading control.   
 

 

                                

Fig. 20 p27
Kip1

 phosphoisoforms distribution in cell cycle phases. WB analysis of synchronized Lan-5 nuclear 

extracts immunoprecipitated (1mg) with anti-p27
Kip1

, anti-pSer10p27
Kip1

, anti-Thr187p27
Kip1 

and  NR rabbit 

polyclonal antibodies, all analyzed with anti-p27
Kip1 

mouse monoclonal antibody at different time of exposure. 

 

                              

                                                        

Fig. 21 pThr187p27
Kip1

 distribution in cell cycle phases. WB analysis of synchronized Lan-5 nuclear extracts 

immunoprecipitated (2mg) with anti-pThr187p27
Kip1

 and NR rabbit polyclonal antibodies, all analyzed with 

anti-p27
Kip1 

mouse monoclonal antibody. 
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Fig. 22A-D. pSer10p27
Kip1

 distribution in cell cycle phases. 2D/WB analysis of synchronized Lan-5 nuclear 

extracts and synchronized Lan-5 nuclear extract pSer10p27
Kip1

-depleted analyzed with anti-p27
Kip1 

mouse 

monoclonal antibody. Different amounts of Lan-5 extracts of each phase were used because of differences in 

p27
Kip1 

content: in G0 and G1 500µg; in S 4mg; in G2/M 2mg. 
 

 

 

4.5 pSer10p27
Kip1

 interaction with CDKs 

Subsequently to the characterization of pSer10p27
Kip1 

nuclear distribution in cell cycle phases, 

we examined its interaction with different CDKs, in particular CDK4, CDK2, CDK1, CDK5 and 

CDK7, in asynchronous Lan-5. WB analysis of p27
Kip1

 and pSer10p27
Kip1

 IP revealed that 

unmodified p27
Kip1 

interacts (although differently) with all these CDKs, except CDK7. 

pSer10p27
Kip1

, instead, interacts only with CDK4 and CDK2 (Fig. 23A-B). We also verified 

pThr187p27
Kip1 

association with CDK2 and CDK1 in synchronized Lan-5. As shown in Fig. 24, 

this isoform in G1 is scarce and it does not associate with CDK2 and CDK1, in S and G2/M 

phases pThr187p27
Kip1

 levels increases and the isoform interacts with both the CDKs. To 

confirm our data on pSer10p27
Kip1

 association with CDKs, we performed 2D/WB analysis of 

CDK4 and CDK2 IPs. In Fig. 25A are shown 2D/WB analyses of CDK4 IP and CDK4 IP 

pSer10p27
Kip1

-depleted, and, as evident by spot 2 reduction, pSer10p27
Kip1

 represents a 

significant proportion of p27
Kip1 

monophosphorylated isoform bound to CDK4. Fig. 25B 

demonstrates that pSer10p27
Kip1 

is able to bind CDK2 both in its monophosphorylated and 
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biphosphorylated forms and that it also represents a large percentage of p27
Kip1 

phosphoisoforms 

bound to CDK2.  

                               

Fig. 23A-B p27
Kip1

 and pSer10p27
Kip1

 interaction with CDKs. WB analysis of Lan-5 nuclear extract (INPUT) 

and Lan-5 nuclear extracts immunoprecipitated (500µg) with anti-p27
Kip1

, anti-pSer10p27
Kip1

 and NR rabbit 

polyclonal antibodies, all analyzed with anti-p27
Kip1

 mouse monoclonal antibody, anti-CDK4, anti-CKD5, 

anti-CDK7 and anti-CDK1 rabbit polyclonal antibodies. 

                                                    
Fig. 24 pThr187p27

Kip1
 interaction with CDKs. WB analysis of synchronized (G1, S, G2/M) Lan-5 nuclear 

extracts immunoprecipitated (2mg) with anti-pThr187p27
Kip1

 and NR rabbit polyclonal antibodies, all 

analyzed with anti-p27
Kip1

, anti-CDK1 and anti-CDK2 mouse monoclonal antibodies. 

 

               
 

Fig. 25A-B pSer10p27
Kip1

 interaction with CDK4 and CDK2. A) 2D/WB analysis of Lan-5 nuclear extracts 

immunoprecipitated (2mg) with anti-CDK4 rabbit polyclonal antibody and CDK4 IP pSer10p27
Kip1

-depleted. 

Both the membranes were analyzed with anti-p27
Kip1

 mouse monoclonal antibody. B) 2D/WB analysis of Lan-

5 nuclear extracts immunoprecipitated (2mg) with anti-CDK2 rabbit polyclonal antibody and analyzed with 

anti-p27
Kip1 

mouse monoclonal and pSer10p27
Kip1 

rabbit polyclonalantibody. 
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4.6 pSer10p27
Kip1 

interaction with cyclins. 

Since pSer10p27
Kip1 

interacts with CDK2 and CDK4, we planned to characterize its association 

with different cyclins, in particular cyclin E, cyclin A and cyclin B. As reported in literature, 

cyclins levels changes during cell cycle phases: cyclin E occurs mostly in S phase, cyclin A in S 

and G2/M phases and cyclin B in G2/M phases. Thus, we examined p27
Kip1 

and pSer10p27
Kip1 

association with these cyclins in the phases in which they are abundant. We verified p27
kip1 

and 

pSer10p27
Kip1 

interaction with cyclin E and cyclin A in S phase with mono- and bidimensional 

electrophoresis/WB. We observed with WB analysis of p27
Kip1 

and pSer10p27
Kip1 

 IPs that total 

p27
kip1 

binds both the cyclins, instead, pSer10p27
Kip1 

interacts only with cyclin E (Fig. 26).  

2D/WB analysis of cyclin E IP analyzed with anti-p27
Kip1 

antibody confirms that this cyclin 

binds preferentially p27
Kip1

 monophosphorylated isoform than the unmodified CKI (Fig. 27). 

Successively, we performed 2D/WB analysis of cyclin A IP: this experiment, however, was 

more complex than the previous because of cyclin A capability to form complexes with both 

CDK2 and CDK1. Thus, to identified p27
Kip1 

isoforms associated complexes (cyclin A/CDK2 or 

cyclin A/CDK1), we analyzed cyclin A IP CDK1-depleted and cyclin A IP CDK2-depleted (Fig. 

28A-B). These experiments confirmed that both cyclin A complexes are preferentially associated 

with unmodified p27
Kip1

; as shown in Fig. 28A-B, spot 0 is the most intense signal. However is 

also present a weaker p27
Kip1 

monophosphorylated isoforms interaction with cyclin A/CDK2 

complex, but not with cyclin A/CDK1. Finally Fig. 29 shows that only unmodified p27
Kip1 

associates with cyclin B.  

In conclusion, we found that p27
Kip1 

monophosphorylated isoforms and specifically 

pSer10p27
Kip1

,
 
bind preferentially to cyclin E/CDK2 complex. These data and the absence of 

biphosphorylated
 
isoform pSer10pThr187p27

Kip1 
suggest that pSer10p27

Kip1
 does not act as 

cyclin E/CDK2 substrate, but more probably functions as inhibitor. In turn, we hypothesize that 

the phosphorylation on Ser10 contributes to p27
Kip1 

antiproliferative function(s).  
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Fig. 26 pSer10p27
Kip1

 interaction with cyclins. WB analysis of p27
Kip1

 and pSer10p27
Kip1

 IPs (200µg and 

400µg of synchronized Lan-5 nuclear extracts were immunoprecipitated respectively for p27
Kip1 

and 

pSer10p27
Kip1 

 IPs) analyzed with anti-cyclin A, anti-cyclin E, anti-CDK2 and anti-p27
Kip1 

mouse monoclonal 

antibodies). 

 

 

 

 

 

 

                                                  
 

Fig. 27 p27
Kip1

 phopshoisoforms interaction with cyclin E. 2D/WB analysis of cyclin E IP (4mg of 

synchronized Lan-5 nuclear extract were immunoprecipitated with anti-cyclin E mouse monoclonal 

antibody) revealed with anti-p27
Kip1

 mouse monoclonal antibody. 
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Fig. 28A-B. p27
Kip1

 phopshoisoforms interaction with cyclin A complexes. A) 2D/WB analysis of cyclin A IP 

depleted of CDK1 (Lan-5 synchronized in S+G2/M phases were previously immunoprecipitated with anti-

CDK1 rabbit polyclonal antibody, successively IP supernatant was immunoprecipitated with anti-cyclin A 

rabbit polyclonal antibody) and then revealed with anti-p27
Kip1 

mouse monoclonal antibody. B) 2D/WB 

analysis of cyclin A IP depleted of CDK2 (Lan-5 synchronized in S+G2/M phases were previously 

immunoprecipitated with anti-CDK2 rabbit polyclonal antibody; successively IP supernatant was 

immunoprecipitated with anti-cyclin A rabbit polyclonal antibody) and then revealed with anti-p27
Kip1 

mouse 

monoclonal antibody. 

 

 

 

 

                                                     
Fig. 29 p27

Kip1
 phosphoisoforms interaction with cyclin B. 2D/WB analysis of cyclin B IP (G2/M synchronized 

Lan-5 nuclear extract was immunoprecipitated with anti-cyclin B mouse monoclonal antibody) revealed with 

anti-p27
Kip1

 mouse monoclonal antibody. 

 

 

 

 

4.7 p27
Kip1

G9R mutation localization analysis 

Recent studies reported the relevance of CDKN1B mutations in several human tumors 

development including neuroendocrine tumors
117;118

, breast cancer
120

 and hairy cell leukemia
121

. 

In particular, Costa-Guida and co-workers identified in a patient affected by non-familiar 

parathyroid adenoma, a missense mutation (c.25G<A, exon 1, CDKN1B gene) that results in 

Gly9Arg substitution in the translated protein
116

. Gly in position 9 of p27
Kip1

 is highly conserved 

across species, and its substitution to Arg might affect the phosphorylation of the adjacent Ser10 

residue
116

. Given the role of Ser10 phosphorylation in the CKI activity, we were interested in 

investigating the effect of G9R mutation on Ser10
 
modification. 
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Thus, we transfected p27
Kip1

 and p27
Kip1

G9R encoding vectors in mouse (Mouse Embryo 

Fibroblasts, MEF, and NIH3T3) and human (EPN and K562) cell lines. In Literature, p27
Kip1 

oncogenic activity was often associated with its cytoplasmic localization and was usually 

attributed to CKI C-terminal domain. Thus, we previously analyzed p27
Kip1

G9R nuclear and 

cytoplasmic localization in EPN and MEF cell lines with WB and immunofluorescence 

approaches. Contrary to our expectations, WB analysis of transfected EPN revealed a higher 

nuclear localization of p27
Kip1

G9R compared to p27
Kip1

WT (Fig. 30). These data were confirmed 

by immunofluorescence (IF) experiments in MEF (Fig. 31A-B).  

 

 

                                     

 

Fig 30 p27
Kip1

G9R localization. WB analysis of transfected EPN nuclear and cytoplasmic extracts. EPN  were 

transfected with p27
Kip1

WT and p27
Kip1

G9R pcDNA3 vectors and after 24h of transfection, were harvested 

and lysed to extract nuclear and cytoplasmic proteins. –VECTOR is transfection negative control. All the 

proteins were analyzed with anti-p27
Kip1

 mouse monoclonal antibody, with anti-HDAC rabbit polyclonal 

antibody as nuclear loading control and with anti-PKM2 mouse monoclonal antibody as cytoplasmic loading 

control. 
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Fig. 31A-B p27

Kip1
G9R and p27

Kip1
WT localization. A) IF analysis of MEF cell line transfected with 

p27
Kip1

G9R pcDNA3 vector. IF stain was performed with anti-p27
Kip1 

mouse monoclonal antibody and anti-

mouse FITC-conjugated antibody. Cell nuclei were stained with Hoechst. B) IF analysis of MEF cell line 

transfected with p27
Kip1

WT pcDNA3 vector. IF stain was performed with anti-p27
Kip1 

mouse monoclonal 

antibody and anti-mouse FITC-conjugated antibody. Cell nuclei were stained with Hoechst.  

 

 

4.8 p27
Kip1

G9R metabolism and phosphoisoforms pattern 

To understand if the mutation can affect CKI stability, we examined p27
Kip1

G9R half-life. 

Transfected K562 were treated with CHX 36µM for 6 hours and then analyzed with 2D/WB 

approach. Indeed, as shown in Fig. 32, p27
Kip1

G9R presents some differences in its isoelectric 

point compared to p27
Kip1

WT. In particular, glycine substitution with a positive charged arginine 

residue caused a lowering of isoelectric point. Thus, in 2D/WB analysis, we can see p27
Kip1

G9R 

isoforms shift towards more acid isoelectric point (Fig. 32). Furthermore, mutated protein 

appears more phosphorylated then p27
Kip1

WT: as shown, spot 2 and spot 4 are much more 

intense then spot 0 in p27
Kip1

G9R, instead in p27
Kip1

WT the unmodified is the most 

representative isoform (Fig. 32). CHX treatment does not indicate any differences in p27
Kip1

G9R 

isoforms stability compared to p27
Kip1

WT isoforms half-life (Fig. 33A-B). To understand if 

p27
Kip1

G9R metabolism is influenced by a proteasome-dependent degradation, we treated 

transfected EPN with  Mg132 1µM for 2 hours, after 6 hours of CHX 36µM treatment. As 
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shown in Fig. 34 p27
Kip1

G9R levels increase after Mg132 treatment, suggesting a proteasome-

dependent proteolysis, as for p27
Kip1

WT.   

Considered p27
Kip1

G9R nuclear localization and its peculiar pattern of phosphorylation, we 

decided to clarify in detail its phosphoisoforms pattern, specifically pSer10 content, in different 

mouse and human cell models: MEF, NIH3T3, EPN and K562. To evaluate pSer10p27
Kip1

G9R 

we used a site-directed mutagenesis approach, because we found that the available anti-

pSer10p27
Kip1 

antibodies are not able to recognize pSer10 residue in the mutated protein, 

probably due to Arg steric hindrance (data not shown). We mutagenized p27
Kip1

G9R on residue 

10 creating a Ser to Ala substitution and transfected NIH3T3 cell line with p27
Kip1

G9RS10A 

pcDNA3 vector. As shown in Fig. 35 pSer10 absence determines an extreme biphosphorylated 

isoforms reduction and consequently an increase in unmodified isoform; monophosphorylated 

isoforms, instead, are only weakly decreased. These data suggest that Ser10, not only is 

phosphorylated, but it is one of the two residues modified in the totality of p27
Kip1

G9R 

biphosphorylated isoforms (these findings were also confirmed in EPN cell lines, see below). We 

also confirmed these data treating transfected cells with λ phosphatase (Fig. 36A-B). However, 

the data reported in Fig. 35 demonstrated that a large amount of monophosphorylated forms is 

not constituted by pSer10 since the 2D/WB analysis of p27
Kip1

G9RS10A mutant still showed an 

abundant phosphorylation. 

Thus, we planned to identify this second quantitatively relevant phosphorylation site. 

Initially, we evaluated the possibility that pThr198 could represent a large part of p27
Kip1

G9R 

monophosphorylated isoforms and pSer10p27
Kip1

G9R second phosphorylation. Therefore, we 

substituted threonine 198 with a valine. Fig. 37 shows that in NIH3T3 transfected with 

p27
Kip1

G9RT198V phosphoisoforms variations are minimal: monophosphorylated isoforms 

levels are weakly decreased and also biphosphorylated isoforms are slightly reduced when 

pThr198 is absent. Successively we investigated Thr187phosphorylation in p27
Kip1

G9R mutant, 

also for these experiments we used a site-directed mutagenesis approach creating a Thr to Ala 

substitution in p27
Kip1

G9R. We analyzed p27
Kip1

G9R phosphoisoforms pattern missing Thr187 

phosphorylation, transfecting NIH3T3 cell line with p27
Kip1

G9R, p27
Kip1

G9RT187A and 

p27
Kip1

G9RS10AT187A. As shown in Fig. 38, 2D/WB analysis revealed that p27
Kip1

G9RT187A 

transfected cells present a weakly reduced ratio between unmodified and monophosphorylated 

isoforms compaired to p27
Kip1

G9R, and a reduction in biphosphorylated content. NIH3T3 were 

then transfected with a pCDNA3 vector modified into both Ser10 and Thr187. 2D/WB analysis 

shows that spot 0 and spot 2 present equal levels and their ratio does not show any variations 
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compared to p27
Kip1

G9RS10A (Fig. 38). Thus, pThr187p27
Kip1

G9R represents a modest 

percentage of p27
Kip1

G9R phosphorylation and it is not compatible with pSer10.  

 

 

 

 

                                        
 

Fig. 32 p27
Kip1

G9R phosphoisoforms characterization. 2D/WB analysis of K562 cells transfected with 

p27
Kip1

WT and p27
Kip1

G9R pCDNA3 vectors. Both extracts were analyzed with anti-p27
Kip1

 mouse 

monoclonal antibody. 

 

 

 

 
 

 
 

          

 

    

 

Fig. 33A-B p27
Kip1

G9R half-life analysis. A) 2D/WB analysis of K562 transfected with p27
Kip1

WT pCDNA3 

vector before and after treatment with CHX 36µM for 6h. K562 extracts were analyzed with anti-p27
Kip1

 

mouse monoclonal antibody. B) 2D/WB analysis of K562 transfected with p27
Kip1

G9R pCDNA3 vector before 

and after treatment with CHX 36µM for 6h. K562 extracts were analyzed with anti-p27
Kip1

 mouse 

monoclonal antibody 
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Fig. 34 p27
Kip1

G9R metabolism. WB analysis of EPN transfected with p27
Kip1

WT and p27
Kip1

G9R pcDNA3 

vectors. Transfected cells were treated with CHX 36µM for 6h and then treated with Mg132 1µM for 2h. 

Extracts were analyzed with anti-p27
Kip1 

mouse monoclonal antibody at different time of exposure. 

 

 

 

 

                                                 
 
 

                                                    

Fig. 35 pSer10p27
Kip1

G9R isoforms analysis. 2D/WB analysis of NIH3T3 transfected with p27
Kip1

G9R and 

p27
Kip1

G9RS10A pCDNA3 vectors. NIH3T3 extracts were analyzed with anti-p27
Kip1

 mouse monoclonal 

antibody. 
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Fig. 36A-B p27
Kip1

G9R and p27
Kip1

G9RS10A λ phosphatase treatment. A) 2D/WB analysis of NIH3T3 

transfected with p27
Kip1

G9R pCDNA3 vector, before and after λ phosphatase (λPPase) treatment. NIH3T3 

extracts were analyzed with anti-p27
Kip1

 mouse monoclonal antibody. B) 2D/WB analysis of NIH3T3 

transfected with of p27
Kip1

G9RS10A pCDNA3 vector, before and after λ phosphatase (λPPase) treatment. 

NIH3T3 extracts were analyzed with anti-p27
Kip1

 mouse monoclonal antibody. 

 

       

 

                                                
 

 

 

 
                                               

Fig 37 p27
Kip1

G9R phosphoisoforms analysis. 2D/WB analysis of NIH3T3 transfected with p27
Kip1

G9R and 

p27
Kip1

G9RT198V pCNDA3 vectors. NIH3T3 extracts were analyzed with anti-p27
Kip1

 mouse monoclonal 

antibody. 
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Fig. 38 p27
Kip1

G9R phosphoisoforms analysis. 2D/WB analysis of NIH3T3 transfected with p27
Kip1

G9R, 

p27
Kip1

G9RS10A, p27
Kip1

G9RT187A, p27
Kip1

G9RS10AT187A pCDNA3 vectors. NIH3T3 extracts were 

analyzed with anti-p27
Kip1

 mouse monoclonal antibody. 

                                            

 

 

 

 

4.9 p27
Kip1

G9R interaction with CDKs 

 
Until now, we found that p27

Kip1 
oncogenic mutant p27

Kip1
G9R is principally located in cell 

nucleus and presents an enriched content in phosphorylated isoforms, especially in pSer10 

amount. To investigate which characteristics make this mutant oncogenic, we decided to explore 

its functions starting from the cell compartment in which it is mainly situated, the nucleus. We 

began examining the possibility that p27
Kip1

G9R could interact with CDKs differently from 

p27
Kip1

WT. EPN were transfected with p27
Kip1

WT, p27
Kip1

G9R and p27
Kip1

G9RS10A pCDNA3 

vectors and then CDK2 and CDK1 were immunoprecipitated from nuclei. CDKs IPs were 

analyzed with WB and 2D/WB techniques. Fig. 39A shows that all the proteins interact with 

CDK2, and that p27
Kip1

G9R binds to the kinase a little more than p27
Kip1

WT and 

p27
Kip1

G9RS10A. Instead, p27
Kip1

G9R interacts less than the others with CDK1 (Fig. 40), it is 

possible to think that the large pSer10 content present in the mutated CKI, could have a role in 
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this weaker interaction, in fact when pSer10 is absent, mutant association to CDK1 is reverted to 

p27
Kip1

WT level (Fig. 40). 2D/WB analysis of CDK2 IPs revealed that p27
Kip1

WT interacts with 

the kinase as previously shown for endogenous protein in Lan-5 cell line. Instead p27
Kip1

G9R 

interacts mainly with its monophosphorylated isoforms, however on CDK2 the ratio between 

unmodified and biphosphorylated isoforms is reverted, suggesting that probably there is not a 

pSer10 essential role in this association. In fact, in p27
Kip1

G9RS10A transfected extracts, is 

observed only a weak variation in unmodified/monophosphorylated isoforms ratio in CDK2 IP 

compared to control extract (Fig. 41). These data suggest that in p27
Kip1

G9R, pSer10 is not 

CDK2 main interactor and that probably another modification is responsible of this association. 

2D/WB analysis of CDK1 IPs confirms that pSer10 content can cause p27
Kip1

G9R reduced 

interaction with CDK1: as shown in Fig. 42, just a minimal percentage of biphosphorylated 

isoforms binds to the kinase. As previously described, almost the totality of p27
Kip1

G9R 

biphosphorylated isoforms is composed by pSer10 and, as demonstrated in Lan-5 cell line, this 

post translational modification does not interact with CDK1. However a large part of mutated 

CKI monophosphorylated isoforms binds to CDK1, it is possible to think that some 

phosphorylation not well characterized could favorite this association.     

 

 

 

Fig. 39A-B p27
Kip1

G9R  interaction with CDK2. A) WB analysis of EPN nuclear extracts immunoprecipitated 

(50µg) with anti-CDK2 rabbit polyclonal antibody and analyzed with anti-p27
Kip1

 mouse monoclonal 

antibody. EPN were previously transfected with p27
Kip1

WT, p27
Kip1

G9R and p27
Kip1

G9RS10A pCDNA3 

vectors (-VECTOR is transfection negative control). B) WB analysis of EPN nuclear extracts transfected as in 

A) and CDK2 IPs supernatans. All the samples were analyzed with anti-CDK2 and anti-Actin mouse 

monoclonal antibodies. 
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Fig. 40 p27
Kip1

G9R interaction with CDK1. WB analysis of EPN nuclear extracts immunoprecipitated (50µg) 

with anti-CDK1 rabbit polyclonal antibody and analyzed with anti-p27
Kip1

 and anti-CDK1 mouse monoclonal 

antibodies. EPN were previously transfected with p27
Kip1

WT, p27
Kip1

G9R and p27
Kip1

G9RS10A pCDNA3 

vectors (-VECTOR is transfection negative control). 

 

 

 

 
 

 

Fig. 41 A-C p27
Kip1

G9R phosphoisoforms interaction with CDK2. A) 2D/WB analysis of EPN nuclear extracts 

immunoprecipitated (300µg) with anti-CDK2 rabbit polyclonal antibody and their INPUTs and analyzed 

with anti-p27
Kip1

 mouse monoclonal antibody. EPN were previously transfected with p27
Kip1

WT pCDNA3 

vector. B) 2D/WB analysis of EPN nuclear extracts immunoprecipitated (300µg) with anti-CDK2 rabbit 

polyclonal antibody and their INPUTs and analyzed with anti-p27
Kip1

 mouse monoclonal antibody. EPN were 

previously transfected with p27
Kip1

G9R pCDNA3 vector. C) 2D/WB analysis of EPN nuclear extracts 

immunoprecipitated (300µg) with anti-CDK2 rabbit polyclonal antibody and their INPUTs and analyzed 

with anti-p27
Kip1

 mouse monoclonal antibody. EPN were previously transfected with p27
Kip1

G9RS10A 

pCDNA3 vector. 

 

 

 

 

 



65 

 

 
 

 

 

Fig. 42 A-C p27
Kip1

G9R phosphoisoforms interaction with CDK1. A) 2D/WB analysis of EPN nuclear extracts 

immunoprecipitated (300µg) with anti-CDK1 rabbit polyclonal antibody and their INPUTs and analyzed 

with anti-p27
Kip1

 mouse monoclonal antibody. EPN were previously transfected with p27
Kip1

WT pCDNA3 

vector. B) 2D/WB analysis of EPN nuclear extracts immunoprecipitated (300µg) with anti-CDK1 rabbit 

polyclonal antibody and their INPUTs and analyzed with anti-p27
Kip1

 mouse monoclonal antibody. EPN were 

previously transfected with p27
Kip1

G9R pCDNA3 vector. C) 2D/WB analysis of EPN nuclear extracts 

immunoprecipitated (300µg) with anti-CDK1 rabbit polyclonal antibody and their INPUTs and analyzed 

with anti-p27
Kip1

 mouse monoclonal antibody. EPN were previously transfected with p27
Kip1

G9RS10A 

pCDNA3 vector. 

 

 

 
 

4.10 p27
Kip1

G9R functions in cell motility 

Data obtained from CDK1 interaction analysis suggested to us that p27
Kip1

G9R association to the 

kinase could contribute, at least in part, to mutant p27
Kip1

 oncogenic activity. Although 

p27
Kip1

G9R is especially located in cell nucleus, we also decided to evaluate if its cytoplasmic 

content has some functions in tumor progression. In particular we focused our attention on  

p27
Kip1

G9R possible involvement in cell motility increase. As widely documented in literature,  

one of the main p27
Kip1

 cytoplasmic molecular targets is RhoA-GTPase. Cytosolic p27
Kip1

 is able 

to bind to RhoA and prevent its activation by GEFs leading to enhanced cell motility
108

.  

At first we transfected NIH3T3 cell line with p27
Kip1

WT and p27
Kip1

G9R pCDNA3 vectors and 

evaluated their capability to migrate and to close the “healing” made on starved and confluent 

plates. NIH3T3 were photographed at time 0, monitored during successive hours and 

photographed again after 42 hours, when results were more appreciable. As shown in Fig. 43, 

there are not significant differences between migration induced by p27
Kip1

WT and by 

p27
Kip1

G9R. We confirm these data investigating RhoA signaling through RhoA 

immunoprecipitation and p-Cofilin WB analysis. EPN cell line were transfected with p27
Kip1

WT 

and p27
Kip1

G9R pCDNA3 vectors and then cytoplasmic extracts were immunoprecipitated with 

anti-RhoA antibody and analyzed with WB. Fig. 44A shows that p27
Kip1

G9R is less associated to 

RhoA than p27
Kip1

WT suggesting a GTPase lower inhibition by p27
Kip1

 mutant. phospho-Cofilin 



66 

 

levels were also examined from EPN cytoplasmic extracts, and as shown in Fig. 45 and in RhoA 

IP, p27
Kip1

G9R does not determines a reduction in Cofilin phosphorylation, confirming the 

absence of an increased RhoA inactivation and the lack of an enhanced migration stimulus in 

p27
Kip1

G9R transfected cells. Therefore, we suggest that p27
Kip1

G9R does not seem favor cell 

motility.   

  

 

 

Fig. 43 p27
Kip1

G9R and cell migration capability. "Wound Healing" assay of NIH3T3 transfected with        

p27
Kip1

WT and p27
Kip1

G9R pCDNA3 vectors (-VECTOR is transfection negative control). Cells were 

photographed at time 0 and after 42h. 
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Fig. 44A-B A) p27
Kip1

G9R interaction with RhoA. WB analysis of EPN cytoplasmic extracts 

immunoprecipitated (100µg) with anti-RhoA rabbit polyclonal antibody and analyzed with anti-p27
Kip1

 

mouse monoclonal antibody. EPN were previously transfected with p27
Kip1

WT and p27
Kip1

G9R pCDNA3 

vectors (-VECTOR is transfection negative control). B) WB analysis of RhoA IP supernatants and EPN 

cytoplasmic extracts transfected as in A), analyzed with anti-RhoA rabbit polyclonal antibody and anti-

p27
Kip1

 mouse monoclonal antibody. 
 

 

 

                                                
 

Fig. 45 p27
Kip1

G9R effects on RhoA signaling. WB analysis of EPN cytoplasmic extracts analyzed with anti-

Cofilin rabbit polyclonal  antibody, anti-p-Cofilin, and anti-Actin mouse monoclonal antibodies. EPN were 

previously transfected with p27
Kip1

WT and p27
Kip1

G9R pCDNA3 vectors (-VECTOR is transfection negative 

control). 
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5. DISCUSSION AND PERSPECTIVES 

p27
Kip1

 is an atypical tumor suppressor. The protein has been initially considered only as a key 

regulator of cell proliferation, which explicates its activity mainly interfering with cyclin/CDK 

complexes. On this basis, since many tumors show CKI decreased levels, p27
Kip1 

expression has 

been suggested to have a prognostic and therapeutic importance. On the other hand, in the last 

decade, p27
Kip1

 has also emerged as a potential oncogene, because of its capability, when 

localized in the cytosol, to favor processes as cell migration and motility and to activate 

mitogenic pathway (for example, the PI3K signaling pathway). More recently, additional studies 

have demonstrated that mutations of CDKN1B gene can be implicated in the oncogenesis of 

some human tumors. Thus, a precise characterization of p27
Kip1

 involvement in tumor 

progression is particularly intricate, and the protein has been defined as “Dr. Jekyll and Mr. 

Hyde”
100

.  

In addition, a number of p27
Kip1

 features (the lack of secondary structure, its ability to bind to 

different targets and the occurrence of several post translational modifications), make 

remarkably difficult to investigate its roles. Particularly, the occurrence of numerous post-

translational modifications (PTMs) strongly affects p27
Kip1

 interactions. Thus, the knowledge of 

p27
Kip1

 PTMs constitutes a fundamental step to unravel the CKI roles. In this study, we have 

focused our attention on the phosphorylation on serine 10. It has been reported that the Ser10 

residue modification is responsible of p27
Kip1 

increased stability. It has also been associated to 

some CKI oncogenic characteristics as cytoplasmic mislocalization and cyclin D/CDKs 

complexes assembly and nuclear translocation. pSer10p27
Kip1

 represents the mayor p27
Kip1

 

nuclear phosphoisoform
87

 and, as reported by Borriello et al in neuroblastoma cell model, its 

levels increase in response to ATRA treatment
95

. Thus, we decided to investigate the 

mechanisms by which this modification confers more stability to p27
Kip1

 and to explore the 

possibility that pSer10 could have a role in cell nucleus focusing on cyclin/CDKs complexes 

regulation.   

Examination of pSer10 Skp2-dependent ubiquitination revealed that the high nuclear content of 

this CKI isoform might be due, at least in part, to a reduced proteasome-dependent removal that 

it is known to represent the principal mechanism of p27
Kip1 

nuclear degradation. This view is 

strengthened by the lack of a p27
Kip1

 isoform phosphorylated contemporaneously on Ser10 and 

Thr187 residues. In fact, as demonstrated by 2D/WB of Lan-5 nuclear extracts treated with 

Mg132 and analyzed with anti-pSer10p27
Kip1

 antibody, no differences have been observed in 

pSer10p27
Kip1

 biphosphorylated amount after pThr187 depletion. Thus, we concluded that serine 



69 

 

10 phosphorylation
 
might confer more stability to the CKI by allowing the escape from the 

proteasome-dependent degradation mechanism.  

A detailed analysis of CKI biphosphorylated isoforms revealed that the second modification 

compatible with phosphorylation on Ser10 residue is pThr198. As known this modification is 

involved in some p27
Kip1

 oncogenic properties: it can inhibit the CKI nuclear translocation, 

determining its cytoplasmic accumulation, it promotes cyclin D/CDKs complexes assembly and 

it can favor RhoA interaction and inhibition
84;85

. Although, pThr198p27
Kip1

 is known to be 

localized principally in cytoplasm, our IP and WB experiments revealed that it also exists as 

nuclear isoform. Moreover, although 2D/WB experiments demonstrated that in Lan-5 cell 

nucleus exists a pSer10pThr198p27
Kip1

 biphosphorylated isoform, its functions need to be further 

clarified.  

As a subsequent step of this study, we have evaluated a possible pSer10p27
Kip1

 function in cell 

cycle regulation. Particularly, we analyzed the phosphoisoform distribution in different cell 

division phases and its interaction with CDKs and cyclins. We observed that pSer10p27
Kip1

 

presents a pattern similar to total p27
Kip1

, in that both are expressed at maximum levels in G0 

phase and their expression decreases slightly in G1 phase. In S phase the total CKI and its 

phosphoserine 10 derivative are scarcely detectable and, finally, their content increases again in 

G2/M. These similarities in cell cycle distribution between pSer10p27
Kip1

 and total p27
Kip1 

could 

not be coincidental or foregone. pThr187p27
Kip1

, for example, presents a different distribution. It 

is weakly detectable in G1, increases in S phase and is expressed at maximal levels in G2/M. 

What emerged from CDKs immunoprecipitation experiments is that pSer10p27
Kip1

 binds to 

CDK4 and CDK2 (as unmodified p27
Kip1

), but not to CDK1 (differently from unmodified 

p27
Kip1

).  

As previously discussed, we ruled out the existence of a contemporary phosphorylation on Ser10 

and Thr187 residues. Thus, it is difficult to suggest that pSer10p27
Kip1

 is a substrate of active 

CDK. It is more probable that pSer10p27
Kip1

 associated to CDK2 mostly functions as kinase 

inhibitor. Although CDK2 can form complexes with both cyclin E and cyclin A, we found that 

cyclin E/CDK2 interacts preferentially with pSer10p27
Kip1

 isoform while cyclin A/CDK2 

associates with unmodified protein. These data suggest that pSer10p27
Kip1 

binds to and inhibits 

cyclin E/CDK2 complex, possible leading to a cell cycle block. In conclusion, we hypothesized 

that this serine 10 modification can contribute to p27
Kip1

 canonical antiproliferative activity 

while we ruled out that it presents oncogenic properties.  



70 

 

Recently, it has been hypothesized that mutant forms of p27
Kip1 

are involved in human 

carcinogenesis since mutations of CDKN1B have been found in several cancers. Variations have 

been found in endocrine tumors
117;118

 as NETs (especially siNET and pNET), MEN4, pituitary 

adenomas and parathyroid adenomas, and also in breast cancer
120

 and hairy cell leukemia
121

.  

In this study, we have chosen to characterize a p27
Kip1 

mutant identified by Costa-Guida et al, in 

a patient with non-familial parathyroid adenoma.  This mutation (c.25G<A in CDKN1B exon 1) 

lead to a Gly substitution in position 9 with an Arg
116

.  Considering that the site of mutation is 

strictly associated to serine 10, and that Ser10 phosphorylation plays an important role in the 

CKI anticancer functions, we decided to evaluate how Gly9Arg substitution is involved in 

tumorigenesis and, in particular, whether the mutation affects Ser10 phosphorylation. 

We observed that p27
Kip1

G9R presents some peculiar and unexpected features. First, it is 

principally located in cell nucleus. Indeed, although p27
Kip1

 mutated in G9R is associated with 

tumorigenesis, only a minor percentage of its amount is located is cytoplasm, where, conversely, 

p27
Kip1 

generally explicates oncogenic activity. Second, it is characterized by an elevated 

phosphorylation degree, remarkably higher than the wild-type protein. In addition, by 2D/WB 

analysis we demonstrated that while unmodified Gly9Argp27
Kip1

 is scarcely present in cell 

extract of transfected cells, high levels of mono- and bi-phosphorylated isoforms are detectable. 

Thus we analyzed p27
Kip1

G9R phosphoisoforms pattern and verified that almost the totality of 

mutant biphosphorylated isoforms and a part of monophosphorylated isoforms, includes serine 

10 phosphorylation. An additional site of phosphorylation should be present in the protein, 

although we still failed in its identification. Subsequent CDKs association experiments 

evidenced that p27
Kip1

G9R binds to CDK2 similarly to the wild-type protein, but binds to CDK1 

with a minor affinity compared to p27
Kip1

. This reduced interaction with CDK1 is possibly linked 

to pSer10 hyperphosphorylation. As demonstrated by 2D/WB analysis, p27
Kip1

G9R associates to 

the kinase with its unmodified isoforms, with a percentage of its monophosphorylated isoforms, 

but not with biphosphorylated. These data allowed us to hypothesize that part of p27
Kip1

G9R 

oncogenic action could be explicated through a reduction in CDK1 complexes inhibition. In this 

case it seems that the high phosphorylation grade on Ser10 confers oncogenic properties to 

mutant p27
Kip1

.  

We finally evaluated the possibility that the minimal p27
Kip1

G9R cytoplasmic amount could be 

involved in cell migration increase. However neither “wound healing” experiments, and neither 

RhoA interaction and signaling analysis, suggested an augmented cell motility. 
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What emerges from this work is the high complexity and difficulty of studying the function(s) of 

intrinsically unstructured proteins and how in these studies are important the precise 

characterization of the PTMs. As a matter of facts, these modifications might significantly affect 

protein localization, metabolism and functions. Although we provides novel insights in 

pSer10p27
Kip1

 nuclear metabolism and functions, several aspects of this modification, as its role 

in p27
Kip1

 oncogenic mutants, need to be clarified to obtain more information on the role of this 

protein in carcinogenesis and to develop novel therapies based on the handling of CKIs level and 

activities.  
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