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1. Introduction

The ultrasonic techniques are being widely used in the non-destructive testing field for
flaw sizing and classification in metals. Flaw sizing has been solved by the ultrasound
scattering theory that correlates the information contained in the received ultrasonic signals
to the scattering properties of the flaws in the metal specimen [1]. This has been possible
thanks to the great amount of research work in the ultrasonic scattering theory and reliable
investigation techniques are now available for this scope [2]-[3].
On the other hand the classification of defects from ultrasonic images it’s a matter of
experience and confident evaluations are obtained only by well trained technical people.
Recently the problem of flaw classification has been tackled by several authors. In particular
basic research works concerning the investigation of weld defects are carried out by Burch et
al.[4] and Windsor et al.[5] and Windsor [6]. In the former work four classes of defects were
defined: the classification of artificial defects was carried out by pattern recognition methods
based on extracted features from the ultrasonic signals. The chosen type of defects significant
for non-destructive testing of welds are: (i) smooth cracks; (ii)rough cracks; (iii) slag;
(iv)porosity.
The choice of these classes is based on the risk factor associated to each type of defects: the
cracks split in the first two classes are more critical than the regions of porosity or the lump
of inhomogeneities.
The selecﬁon of meaningful features was not trivial in [4] and very good suggestions came
from the experience learnt by the technical people during several years.
In the first approach with conventional classifiers were obtained interesting results but the
discrimination between classes was not enough to get reliable responses. An improvement of
the performances was attempted by replacing the conventional classifiers with neural network
methods. Recently the neural networks received a broad acceptance and they are currently
employed in several fields such as speech processing [19]-[ZAO] and seismic data inversion [21].
Their success is due to the ability of giving correct answers with more generic situations
presented at the inputs of the network and not less importarit the fast brocessing time.

The performances of the neural methods were compared with the classification of the set of



artificial buried defects used by Burch [4]. It turned out that the performances of the neural
network classifier in the feature space were comparable to conventional ones. In particular the
method of error back-propagation for training with a multi-layer fully connected network [18],
did better than the Hopfield network. Despite of the faster non-iterative training procedure of
the Hopfield method, this method has the drawback that points close together in the feature
space do not necessarily correspond to images with many common points.

Thus from the results of the classification in the feature space emerges that exist good
classifiers among conventional and neural methods, and a high success rate can be achieved
when the classifiers are trained with significant set of features and consistent training samples.

However the classification in the feature space revealed two main drawbacks in our

applications:

1) Too long computation to extract features: then the benefits of a fast classification
offered by the neural networks are swamped because the computational task to derive

a set of feature values demands powerful computers to get a real time response:

2) The subjective judgment is still needed to define the best set of features to be extracted

from the ultrasonic images.

Recent developments in artificial neural networks offer an alternative solution to this problem.
Though these methods claim to be successful in many different applications, there are no
elegant prescriptions that insure the success in the speciﬁc”application.

Limiting the interest to supervised learning of clusters in n-dimensional feature space, there are
several neural network architectures to be investigated for the present problem.

These points have suggested the investigation of new methods and here is proposed the
automatic c1a551ﬁcat10n of weld defects directly from the ultrasonic 1mages 7 -
The clasmﬁcatmn of defects directly from the ultrasonic raw data has the advantage to be faster
than the classification in the feature space because is not necessary the preliminary task of ’

features calculation. Again both conventional and neural methods are considered but they have

been adapted to our application that requests methods able to extract significant features and
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classify.

However this report has devoted a special emphasis to neural methods, which are also the
objectives of the european collaborative project ANNIE (Applications of Neural Networks for
Industry). A preliminary analysis of different neural network methods [16]-[18] was carried out
by the project ANNIE itself.

Many‘ neural network methods that could be applied to the present problem of supervised
learning of clusters in a n-dimensional feature space, have been reviewed by Grossberg [7], and
by the ANNIE project itself [8]. Work in progress of this project are now addressed to the
automatic classification of defects directly with ultrasonic images.

Then the obtainable performances and speed of the different classifiers were evaluated with the
original dataset [4] and with new samples. The latter are gathered with a new experimental s
ystemdesigned for the assessment of defects in V welds and the results with three and four
dimensional images are reported. '
Probabilistic neural networks are an alternative solution to classify defects in welds by the

ultrasonic monodimensional signals and recent results are reported by Song et al. [25].

2. Collection and preprocessing of ultrasonic data

Since our classification method is based on ultrasonic images instead of single A-scans, this
section describes the characteristics and the requirements of the ultrasonic data collection and
preprocessing of the raw ultrasonic iméges. After these operations a tied-up version of the input
ultrasonic image is provided for the subsequent classification.

Investigations on the reflected signals from various type of defects, revealed that additional
information of the defect type could be obtained with the analysis of the backscattered signals
from the entire volume of the defect and over different inclinations. This means that is
necessary to use three or four dimensional images, where the third dimension is the depth of
the defect beneath the plane of the receiving aperture, and the fourth dimension is the angle -
of the incident ultrasound beam. By software the three dimensional (3D) images were formed
by stacking a set of parallel B-scan acquired at different position along the weld direction (see

figure 1).



The fourth dimension is provided by the
acquisition with different probe angles. A
data set with of four dimensional image of
real defects was collected by Burch et al.[4].
In that work the defects of known type were
introduced artificially into metal test pieces.
The data took the form of three-dimensional
ultrasonic reflected intensity as a function of

position x, and y and depth z in the material.

The four dimensional images were collected

at two different angles, usually 0 and 20

degrees. Figure 1 Ultrasonic scanning system for three/four

dimensional acquisition: the volume is formed by the B-

A usual problem of pattern recognition is
scans compound.

how much a classification method depends

on the format of the input image. Therefore, the experimental data were reduced to a standard
format with a preprocessor before the classification. Further details of the preprocessing
influence on the classification are reported in the next section.

The first step for setting up a classifier is the collection of a real dataset that is later used for
training.

In this work are considered two types of steel blocks containing artificial buried defects and
the system for data collection is adapted to cope with the different defect scattering geometries:
- in the first type the defects are ai a given depth from the top surface and the direct pulse-echo
reflected signals was acquired at 0° and 20° from thé vertical. Tﬁe measurements were carried
out with a single immersion probe above the defect, coupled by water to the metal specimen
(see figure 2a).

- in the second series the defects along V welds were considered én’d the'ibackscrattergadfsignals
was measured indirectly from the back wall of the plate sample (one or double ship
inspeétion). Here we use contact probes with two different inclinations: 60° and 45° or-70°
respectively (see figure 2b).

The inspection geometry has consequence on the treatment of these data, because the
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Figure 2 (a) [nspection geometry with immersion probe on planar defects. (b) Inspection geometry with
angle contact probes for V welds with bottom wall reflection (one sKip).

ultrasound propagation changes with the two different set-ups. In fact the signal amplitudes
depend on the round trip path length as well the angle dependent reflections at the interfaces.
The experimental implications on the classification performances are reported in section 5.
Thus we normalised the signal amplitudes to compensate for different attenuations, by referring
all the signals to those obtained from a calibration reflector such as a side driiled hole at fixed
probe distance. Additional difficulties are due to the different sizes and resolutions of the
experimental measurements.

From the above considerations a preprocessor program was developed to create a set
of normalized data in a standard format to be presented to the classifier.

The first task of the preprocessor consists. in places the original image onto an image
of standard size, with the most appropriate resolution. In figure 3 ‘there is an example of

preprocessing for a two dimensional image: the three processes of centering, placing and




averaging carried out by the

preprocessor.
ORIGINAL PIXEL SIZE

The centering operation is based -

. LOST AREAS
on the definition of the centre of —
gravity of the original image. Once
this characteristic point is found,

. ) FINAL
the original image is moved to a IMAGE SIZE
new standard size image with its 1

i FINAL )
center onto the centre of gravity. PIXEL |
From experimental observations
we found that the centre of gravity \zsno PADDED AREAS

is better estimated by the data of ORIGINAL IMAGE SIZE

the first angle probe. In fact the

second probe provides low signal

. . Figure 3 Averaging and centering task of the original ultrasonic
to noise images for NON jpmage (raw data) for the two dimensional case.

perpendicular incidence on the
weld.
The integration is made over both angles so that the center of gravity Xg, Yg, Zg of the four

dimensional image I(x,y,z,a) is defined by the relationship (1) :

Z. yza I(x,y,z,a) X

- Xg= (1)

Zyyza HXY52,00)
and similarly for Yg and Zg.
The centre of grail_ity is then rounded to the nearest pixel. The next operation is to place a
square scratch array of standard size of the image with the central pixel overlapped to the
centre of gravity of the original image. Ideally the new images are symmetric respect to the

centre of gravity if the array dimension is odd. Without loss of generality we have restricted

our software to work with odd dimensional arrays.
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Areas of the original image not contained by the new array are truncated and wasted. Areas
of the new image that are not filled by the original image are zeros padded.

Generally the placing process is repeated because some parts of the original image are lost and
the new centre of gravity may need to be recalculated until convergence. The averaging process
generates a final image with the pixel size that is greater than the original ones. The average
size is generally different along the cartesian axis to adjust different original resolutions of the
collected data. Again the centre of gravity is hold in the central pixel if an odd average size
is chosen. The optimum size of the averaging volume should be the largest as possible that
preserves the essential features of the image to be correctly classified.

The last operation of the preprocessor is the amplitude normalization. The ultrasonic
amplitude that we relied on, is the result of the rectification of digitized radiofrequency signal.
As in other image analysis problems, here is assumed that only the image intensity distribution
retains the essential features and the phase information is neglected. The absolute intensities
of ultrasonic reflections were digitized onto 236 levels. However, this dynamics is further
restricted by thresholding the data to provide a lower discrimination of significant defects. The
lower level was set to 1% of the peak absolute intensity of each image. Then the peak intensity
of each image was normalized to a constant value equal to 999, This method has the advantage
that the images are experimentally consistent and they do not vary in intensity as the image
size is changed. Alternative methods that normalize to a constant area of the image were also
considered. | 7
In figure 4 are reported with axonometric view the sample images of the ultrasonic response
for each of four defect types in welds. The image size in figure 4 is 11x11x11x2 array,
obtained from the preprocessing previously described of ultrasonic raw data. The figure shows
the response from two different angles of ultrasound. with the probe angle at 0°(left), and 20°
(right) to the vertical. The three elevations show the three integrals over the full data in the X,

y and z directions. The height gives the intensity of the ultrasound reflection.
Section 3 of this report briefly illustrates the potential of automatic classifi cation by dlfferent
methods. In conclusion of this section it is interesting to spent some words on how the human

can classify with their eyes from images such as in figure 4: the human expertise learns from

its personal experience built up with the analysis of many images enclosing the expected range
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of variations. Besides the case that some of them could be corrupted or incomplete data, these
patterns are stored in the human memory and then used to assess new samples by matching or
interpolating among the memorized prototypes. Concerning the case of ultrasonic defects
classification, the humans can notice and extract gross and subtle features in the image
intensities. What we normally do with our eyes, we scan across the image looking for relative
heights, shapes and peak positions.

Moreover we can classify successfully whatever is the object position within the image since
we operate on a topological context basis: in other words we need a classification invariant to
the object transformation such as rotation and translation. As we will point out in the next
sections a crucial point is the translational and rotational invariance of the classification

methods.

3. Classification methods directly from ultrasonic raw data

The existing classification methods fall into two main categories: the statistical pattern
recognition methods and the neural network based classifiers. Although the statistical classifiers
are more general, the neural networks are more attractive for their speed and flexibility. The
intrinsic parallel structure of the neural networks has a less computational complexity, which
leads to fast response. However it’s still unclear if the conventional pattern recognition will be
replaced by the neural network approach and the debate is still open. ,

For specific problems definite indications for the choice of the best classification method can
be achieved only after a sistematic comparison of different methods.

Experience gained in real applications on both types of classifiers, has suggcsted the
development of modified versions of the basic methods as well combination of different types.
In the ehrly stage of ANNIE project conventional pattém matching methods, neural network
backpropagatlon and combmatlon of both were analyzed. Some of them proven to fit for our
goalngmg a higher success rate in training and testing phase (say>90%). 7

Therefore the chosen methods used in this work are:

1) A conventional pattern matching method using prototypes for each class.
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2) An adaptive field method in which receptive fields centred on peaks in the image are
first extracted and averaged together to give a prototype for each class of the image.

3) Direct input to conventional back propagation neural network.

4) A receptive field input in which any field centred on a peak in the image becomes an
example input to a back propagation net.

5) Direct input to the shared weights adaptation of the back propagation network.

Remanding the reader to the original works for the details on these methods [9]-[15], in the

following are outlined their features and implications for the classification of defects in welds.

1) Conventional pattern matching

As an example of conventional image analysis methods, a standard pattern matching algorithm
was applied to the four-dimensional data sets. In this method the training data set was used to
define a single prototype or average image for each class. These four prototype images were
stored and compared with each of the test images in turn. Considering the case of a two

dimensional image (x.y), if the prototype image for class c is described by [ and the test

axy ?

image for example e by the function I, then the pattern matching may be performed by

evaluating the least squares difference:

D, =X [Ic.x.y - Ie,x,y ]2 (2)

X,y

The class with the minimum value of D, then defines the class of the example.

The sums of the squares of the differences between corresponding pixels in each prototype and
the test image 1s ev;aluated and the class with the lowest sum selected. The method was run in
the average mode where the imagés of each class from the whole of the training set'ﬁwe;e
averaged together. Since this method works essentially on template matching it is not
translationally invariant. The centre of gravity placing of the image has provided an element

of spatial invariance not unlike that given by the receptive fields considered later.
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2) The Adaptive Receptive Field method

The reasons for the poor results using the conventional pattern matching method, relating to
the conventional feature parameter classification methods are clear enough. Although the
images had been roughly centred through their centre of gravity position, it remains a good
deal of spatial variance in the position of the peaks and valleys in the image. The class
significant relationships between adjacent pixels are smoothed out. Receptive field methods
supply this spatial invariance by pattern matching on a smaller receptive field that is scanned
across the image in a raster fashion. Briefly receptive fields are defined for each class. Initial
receptive field values are defined from, for example. the positions in the image where there is
a local peak. The receptive feld is then refined iteratively by scanning over the training
examples in each class and finding the position where the difference between the image and
the field is a minimum. The portion of the image under the receptive field is then used to
update the field of that class. In testing, each of the fields is scanned over the image in turn.

The class whose field gives the best fit somewhere in the image is chosen.
3) The standard back propagation method

In the straightforward approach of the back propagation method each pixel in the image is
presented as a separate input of the network. It is well kndwn froni a previous work on generic
images and from many other studies [24], that the problem of this method is the disparity
between the number of adjustable weights in the net and the number of distinguishable pixels
in the data set. Therefore, from the above considerations the back propagation method can
cope with multiple templates. ' 7 |

Although back propagation carries no direct information on the neighbourhood relationships
between pixels in the image, these are impliéd indirectly through the training set. For example
the sfnooth cracks correspond to a set of high values of adjaceht pixels along a line in the
image. The degree to which this information can be used by fhe m;ethod depends strongly on

the number of training images.
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4) Hybrid methods involving receptive fields and back propagation

Hybrid methods can be obtained by the combination of different standard classifiers and the
resulting method takes advantage from the best characteristic of each one. A new method called
the receptive field back propagation has been developed for our application.

There is a strong link between receptive fields and neural networks. Receptive fields detecting
features such as orientated lines are known to exist in the visual cortex. The multiplicative field
product is very similar to the sum of products of input vectors and weights of any neuron.
Receptive fields may be classed as either "multiplicative” or "least squares". For example for
a two dimensional image, the multiplicative field is computed by multiplying the portion of the

image I, by the corresponding pixels in the receptive field R .. The summed products

P, = Z[ [,Rey] €)

are noted. Here the best fit is given by the maximum response, or excitation value of the
summed product P_

Because the scanning over the image can generally be done in parallel makes fast processing
possible. The method of receptive fields is used by Fukushima in his neocognitron neural net
model [22], and applied to character recognition. However, in the ultrasonic application the
spatial positioning of the features is of very little utility. The neocognitron method has not
therefore been pursued. The method used in this section was developed to combine the
advantages of receptive fields with those of back propagation. The shared weights method may
be considered to belong to this class of methods, but in general has been included in a separate
section because of its wide acceptance.

The methods used in this section have all been developed for the present problem

When a multiplicative receptive field for each class is used rather than a least squares field,
a classification can in principle be made from that class with the maximum excitation product
P, . In practice this method has given poor results. Better results are obtained if the products
P, are treated as values in a feature space equal to the number of classes. Generally the back

propagation and learning vector quantisation [17] have been used as classifiers in this work,
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but the results obtained from other classifiers indicate that other choice are possible.

5) The shared weights back propagation method.

The shared weights development of the back propagation algorithm builds spatial invariance
directly into the architecture of the network. The hidden layer weights are arranged in a two
or three dimensional grid, as in the image, and may be considered as a receptive field. The
connections from the image to the hidden layer are duplicated for every possible position of
the hidden layer within the image. However the weights to the layer are not independent, but
are constrained to a single set of values. The code used was that from the ANSim suite of
neural network methods[26]. This technique proposed by Rumelhart in [18], has the advantage
of few of parameters because many units share the same set of weights.

A preliminary work tested these algorithms on two dimensional artificial data sets [27]. The
statistical features of the ultrasonic images of real defects were reproduced by a developed suite
of software programs and most of synthesized ultrasonic images were created. This artificial
dataset was employed for training and testing the above classifiers.

The adaptive least squares method (i1), the neural net receptive field back propagation method
(iv), and the shared weights method (v) all gave good results comparable to those obtained in
conventional feature extraction studies. The achieved results encouraged further developments
and the results of the classification of three and four dimensional ultrasonic images of real

defects are described in the rest of the paper.

4. Defects classification with neural networks

In this section we will discuss some questions related to the implementation of a classifier
based on the two neural methods described in section 3.

Ideally, we would that the neural network classifier does what we do when we classify an
image containing a defect: Therefore the neural classifier can extract and classify features
automatically of the given input image. '

The success rate in training and testing the network evaluates the performances and

satisfactorily figures are often considered >90%.
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The network performance is strongly influenced by the choice of the dataset and the lack of
clear indications on this point lead very often to empirical solutions. One parameter that has
to be set is the learning fraction p, defined as the fraction of the whole dataset for the training
phase. The rest of the samples equal to 1-p will be used for testing.

Different values of p where tried but in the end the "Leave One Out" method was assumed.
The LOO method is the conventional name for the procedure to be used when the learning
fraction is nominally 100%. If all the data are available for training, a meaningful test success
can be defined in which training is carried out using all the examples in the dataset except one.
Testing is carried out only on this one example, and the process repeated until all examples in
the dataset have been chosen. The overall success rate is then evaluated from the average over
the results. The method is computationally intensive since the classification process is
multiplied by the number of examples. However the method gives the success rate most
appropriate to a commercial assessment, since it closely reflects the success rate of a new
measurement made using all the existing data for training.

Another difficulty of neural network classifiers is the overlearning during the training phase.
This problem is related with the net structure as well as its size. The size of the network
defines the number of adjustable variables that are set during the training phase and then play
an important role for overlearning. We can observe by the results obtained with conventional
methods, that also these methods suffer of ovelearning.

The conventional pattern matching method was tested with different input array size, from
11x11x11x2 to 5x5x5x2.

For all cases we”obtained a best success rate around 86%, which is a rather indifferent
performance especially when compared to that one obtained with the conventional pattern
matching in the feature space. For the direct classification of ultrasonic images, the template
matching suffers of the spatial variance in spite of the centre of gravity provides an element
of spatial invariance. This means that the baricentex{ does not suffice to retain the essential
features of each class: thére are sﬁll remarkable variations in the relative positions of peaks and
valleys of the images and consequently the essential features are smoothed out. This is not so

for feature classification where the input variables can be assumed independent one of each

others.
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In the adaptive receptive field method, the scansion of the defect volume is done with a
moving window, which works as a local feature extractor. If the size of the moving window
is 3x3x3x2, there are at least 54 of adjustable variables equal to the number of the pixel in the
receptive field. This is an advantage of this method over the standard back propagation as we
will discuss later, because the problem of overfitting is unlike due to the reduced size of the
adjustable variables. The results are less influenced by the number of the training examples and
the choice of the learning fraction parameter, is less critical. In addition much of the
optimization of the method could be performed with the otherwise artificial training set of all
the available examples.

Among the neural methods we considered a fully connected net trained by the direct back
propagation algorithm. In our implementations the image is directly presented as input field
to the network. The size of the input image is much more crucial because the network learns
from most of samples containing the different type of variance of the image. Thus, the results
are strongly dependent from the number of training examples. Moreover, large input images

lead to large difference between the number of adjustable weights and the number of

distinguishable pixels in the image.

Therefore the original images of

MULTHAYER-PERCEPTRON
NEURAL NETWORK

the dataset are averaged over a
larger voxel: this operation reduces

‘the size of the image but adjacent BT ——->

pixels can be correlated untruly.

Considering the size of the |

] 9

~ averaged image equal to Tx7x7x2,

3x3 Receptive Field = 9 NEURAL NETWORK INPUTS

and a network with two hidden
ORIGINAL IMAGE

units and four outputs, there are

Figure 5 The receptive_field method applied to neural networks: the
1400 adjustable weights in the input field selects a portion of the image with dimensionality smaller
. network. In this work the training than the original one.
éet consists of 66 samples of four dimensional images. It’s evident the disparity between the
number of input pixels (say 66x7x7x7x2=45276) and the number of adjustable variables.

We have seen that with the direct back propagation method, the network is required to learn
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the various types of variance present in the images. Large numbers of examples are required
for this, and the consequently large networks make the results vulnerable to overfitting. The
hybrid methods use a moving window rastered over the image, and the network has few inputs
equal to the number of pixels within the window. The number of examples increases since the
areas within several windows may be extracted from a single image. From the dataset of
11x11x11x2 images, the method produced a second dataset of say 3x3x3x2 window images,
so that the field has the minimum size that allows the neighbour relationships to be examined.
The window was instructed to pause at the position where the central pixel in the window was
high, and intense enough to be at least half the maximum intensity in the image. These images
were fed directly into a back propagation network as illustrated in figure 5. The devised
method is less prone to overfitting because unlikely the backpropagation learns not generalized
details from the multiplicative receptive field. As an example, assuming a network with four
hidden units and four outputs the adjustable weights are 216 that are less than the standard
back propagation.

Some results of this method applied to four defect types one for each class are presented in the
tables 1.1-1.4. Different test conditions are considered: the receptive field stops on the portion
of input image with highest central pixel (method MCP) and in another case where also the
sum of outer pixels in the receptive field is maximum (method MSO); the method MCP is
tested with different number of hidden units between 2 and 4.

Legend for tables 1.1-1.4: |

-MCP Maximum Central Pixel, MSO Maximum Sum Outers

-Strikeout type is for misclassified case.

Table 1.1 Real defect is POROSITY
# HIDDEN UNITS Rec. Field CLASS 1 CLASS 2 CLASS 3 CLASS 4
METHOD POROSITY SLAG SCRACK | RCRACK
2 MCP 0000 - 0039 | 0.0005 0.50
3 MCP 0.989 0.005 - 0.001 0.01
4 MCP 0.98 0.006 0.0006 0.011
3 MCP&MSO 0.99 0.006 0.0006 0.013
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Table 1.2 Real defect is SLAG

# HIDDEN UNITS Rec.Field CLASS 1 CLASS 2 CLASS 3 CLASS 4
METHOD POROSITY SLAG S.CRACK R.CRACK
2 MCP 0.92 0.00 3exp-6 0.86
3 MCP 0.003 0.51 0.006 0.48
MCP 0.029 0.57 0.006 0.41
3 MCP&MSO 0.023 0.011 0.0038 .94
Table 1.3 Real defect is SMOOTH CRACK
# HIDDEN UNITS Rec.Field CLASS 1 CLASS 2 CLASS 3 CLASS 4
METHOD POROSITY SLAG S.CRACK R.CRACK
2 MCP 0.00 0.01 0.99 7exp-6
3 MCP 0.002 0.019 0.987 0.000086
4 MCP 0.025 0.021 0.986 0.00006
MCP&MSO 0.004 0.001 0.989 0.00029
Table 1.4 Real defect is ROUGH CRACK
# HIDDEN UNITS Rec.Fieid CLASS 1 CLASS 2 CLASS 3 CLASS 4
METHOD POROSITY SLAG S.CRACK R.CRACK
2 MCP 0.00 0.017 098 0.00024
3 MCP 0.021 0.0005 0.12 0.73
4 MCP 0.017 0.001 0.051 0.85
3 MCP&MSO 088 0.0022 0.0016 0.0065

Some observations can be made about the above results:

- the method MCP performed well with number of hidden units 3 and

hidden umts the network size is too smail,

- the smooth crack type defect is classified surely instead of others such as the slag type w1th
outputs- close to the rough crack type
_ The classification time is in the order of fe

math coprocess

adaptive receptive field method.
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(compare columns 4 and 6 of table 1.2).

4 while with only 2

w seconds on a processor i386sx 16MHz without

or nor source code optimization and it is at least five times faster than the-



5. Real time classification and experimental set-up.

A demonstration system is built up for the automatic defects classification in V-welds

in steel. The designed demonstration system exploits the hardware and software features of the
ZIPSCAN system [23]. This is a flexible ultrasonic equipment that copes with different
ultrasonic inspection situations. Both the hardware and software of the ZIPSCAN are adaptable
to develop new applications. In this section we show the capabilities of real-time classification
with two of the classification methods in section 4.
Among the five methods described in the previous sections we have chosen the Adaptive
Receptive Field and the Receptive Field Neural Network with standard Rumelhart Back-
Propagation, because they merge fast response times with good performances. Moreover the
two methods have a complementary behaviour about the decision boundaries between classes:
the minimum distance classifier is well suited when the boundary is, or is close to be linear;
for arbitrary complex boundaries the neural network algorithms perform better.

Both the methods were trained and tested on a data base of well-known defects (steel
test-objects with artificially introduced defects), with a successful classification rate around
94%. The database of four dimensional (4D) raw data images comprising the defect volume
was formed previously. The defects were scanned with parallel B-scan (x.y) along the weld
direction z and repeated with a two-angle probe system (al, a2). Dealing with defects in V
welds in ferritic steel with thickness about 30mm, shear wave angle probe can be used with
incident angle in the range 45-60 degree because they have the advantage of a higher spatial
resolution (Vshear = 3100 instead of Vlong = 5900 in stainless steel 347).

The chésen ihspection technique uses the reflection of the ultrasonic beam on to the metal plate
bottom, allowing the inspection of the whole weld extension with a reduced ultrasonic round
trip path and consequently a lower attenuation. However the shear wave method may generate
mode converted signals due to the defect inclination, that must be eliminated carefully with a
properrselectiﬁon of Atihe ac;quisit.ion time \);’ir;dOW. - 7

In the early stage of this project a first prototype of on-line classifier was carried out for the
classification of two dimensional images répresenting sections of the V-weld perpendicular to

the weld direction. The results of the classification obtained with the former prototype system
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outlined a poor discrimination between the porosity-rough crack defect and slag-smooth crack
defect.

Therefore, the experimental results suggested expanding the system for the acquisition of four
dimensional data to improve the success rate of the classification. A flexible acquisition system
for up to 4D ultrasonic data has been designed and two classification programs have been
modified to adjust the new dimensions of the input image for an on-line classification.

The acquisition of the ultrasonic signals reflected from a volume containing the defect, has
some advantages for the classification, because each defect type has own well-defined features
considering its expansion in three dimensions. In particular for the smooth crack and rough
crack classes are better discriminated using the reflected signals over two different incident
angles. Therefore the upgraded classifying system includes the signal acquisition from a second
angle probe. In the new prototype the acquisition is completely computer controlled apart a
manual movement in the weld direction. This movement will be controlled by the same
computer in a forthcoming PC386 version by a robotized arm. The acquisition parameters such
as spatial step, number of A-scans and B-scans are read in with a Fortran program by a Menu
Driven System (MDS). During the acquisition the program gives information to the operator
about the automatic and manual operations in progress. After the acquisition of the single
B-scan, the detected image is transferred to a file on the ZIPSCAN virtual memory that
accumulate all the images. Later the user can decide whether the data file with compatible
ZIPSCAN format must be stored on the hard disk to create a data base of real defect images.
Then the acquisition program changes the angle probe by resetting the movements to the initial
positfon and the acquisition is repeated with a different incident angle.

Since the two data sets are obtained with different ultrasonic angle probes, it has been
necessary to execute a run time system calibration when the two angle prébes are exchanged.

The two probes were calibrated by V1 type calibration blocks and the calibration parameters

stored in a file.
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6. Results of the classification on real defects

Finally the on line classifier was tested with real defects consisting of one defect for each type
in a 60° V weld. The 4D images were acquired with the laboratory system described in section
5 and then reduced to a standard format with the preprocessing programs amended to treat 4D
ultrasonic data sets. As previously described the task of the ultrasonic data preprocessing

consists of the following operations:

] Centering by the evaluation of the center of gravity
O Normalization and thresholding

O Averaging on a defined volume and voxel size

Usually the size for of the processed image was chosen 11x11x11x2 but in our case we
used 11x5x11x2 and 2x2x2 mm voxel size. Two contact shear wave probes with 4 MHz
central frequency and incident angle 60° for the first probe, while the second angle probe was
45° or 70° depending on the position of the region to be inspected.

Preliminary results obtained with the adaptive receptive field classifier on a limited number of

tests are reported. For each class of defect (porosity, slag, smooth and rough crack) a
characteristic field with dimension 3x3x3x2 has been calculated with the data base of planar
defects [28]. In turn each characteristic field is swept over the preprocessed image and the
minimum distance between the characteristic field and the real image is calculated. Finally the -
class is chosen for the best match with the minimum distance criterion among the four classes.
A first trial with 38 real samples gave a success rate of 73% that is worst than that obtained
in the testing phase of about 94%. Further investigations on the misclassified cases showed that
the intensities of the original images of both angles, didn’t match the model of the receptive
field used for the classification: in some cases the second probe (45°) signals were too high
due to the hlgher ampllﬁcatlon compared with the first probe and shorter ultrasonic path. The
above experxmental observations suggest using proper gain difference between the two angle ,
probes for data acquisition.

The performances are improved further with a calibration procedure based on a ideal isotropic
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reflector (say side drilled hole). The calibration is done at different ranges to count for the

attenuation of ultrasound. Moreover we considered the different probe efficiency and the

correction necessary for refraction due to the probe height [29]. It’s worth to observe that this

problem was negligible in the original data base acquired with planar defects and a single

immersion probe tilted at different angles (see scanning geometry in Fig.2a).

We increased the versatility of the prototype system with the addition of a third contact 4 MHz

- 70° shear wave probe. This probe can be activated directly by the operator with the MDS

program interface for inspections of defects near the weld root.

After the amplitude correction the quality of the images has been improved and the defect

features are better defined. The results of the classification of four real defects belonging to the

38 images data set are shown in Table 2.

Table 2. Results of the classification with the adaptive receptive field and amplitude calibration. Input image size

11x5x11x2, voxel resolution 2x2x2 mm.

Defect type Gain Angle of Defect range | Output 1 Output 2 Output 3 Qutput 4
difference contact [mm] class class class class
compensation | probes (Porosity) (Slag) (Smooth (Rough

[dB] Crack) Crack)

Porosity -2 60°-45° 80-100 546 . 1098 1683 798

Slag -3 60°-45° 66-100 92 75 103 81

Smooth Crack 2 60°-45° 80-112 1267 556 112 930

Rough Crack +4 60°-70° 86-55 809 1208 1012 553

In Table 2 the correct responses are underlined. These results indicate an

improved

discrimination among the classes respect of the previous classifications with the corresponding

uncompensated images. The following work is addressed to the application of th{s method the

whole set of 38 sample images to reduce the number of misclassified cases.

7. Conclusions

The first part of this repoft examines the feasibility of conventional and neural network based

classifiers and the relative merits for the defect classification with ultrasonic images. Among

different classification methods, the direct classification from three dimensional ultrasonic

images with neural network classifiers offers a new opportunity for a fast and automatic

(]
(5]
(6]
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