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The post-critical flutter regime is still an open issue, despite the interest for its applications in 
the field of energy harvesting, where the knowledge of the self-sustained motion at large 
amplitudes is of crucial importance. In the paper, the experimental approach has been followed 
to investigate this issue. The role of some governing parameters, mainly the mass centre 
position and the damping level in the translational degree of freedom, were investigated 
through wind tunnel tests, evaluating their effects on the critical condition and subsequent 
oscillatory regime. Linear analyses supported the identification of the instability threshold. 
Downstream mass eccentricity of about 0.05 times the section chord significantly anticipated 
the critical onset velocity and modified the motion characteristics, in terms of ratio between 
translational and rotation amplitudes and their phase difference. External damping was 
introduced, up to a ratio-to-critical value of 18%, and the consequent reduction of the motion 
amplitudes was clearly shown. In particular, even if the amplitude-velocity diagrams always 
maintained the same qualitative features, a non-linear dependence on the damping level of its 
slopes was apparent. In addition, a theoretically stable configuration with large damping was 
found to perform self-sustained motion if triggered by large initial conditions. 

 
Keyword: Flutter, Wind Tunnel Tests, Post-critical Behaviour, Sub-critical Bifurcation. 

1. INTRODUCTION 
In the common practice of wind and aeronautical engineering, dynamic fluid-structure interaction is a 

dangerous phenomenon and the design of structures prone to flow-induced vibrations usually aims at limiting 
any flow-induced vibration. Nevertheless, the aeroelastic phenomena are characterized by important nonlinear 
effects that produce Limit Cycles of Oscillation (LCO). In some cases, LCO is restricted to a limited range of 
flow velocities, as in the case of vortex-induced vibrations, or flow-velocity-unrestricted oscillations can be 
observed after a critical threshold, as in the case of galloping and flutter. From a different perspective, recent 
studies on alternative energy sources showed the possibility of exploiting fluid-elastic instabilities and the 
consequent large steady-state oscillations to capture energy from the flow and generate electricity through 
suitable energy conversion apparatus1). Some authors have preliminary explored aero-/hydro-elastic generators 
based on: vortex-induced vibrations2); transverse3) and torsional4),5) galloping; wake-galloping6); flapping7),8),9) 
and fluttering10) wings. 

From the literature analysis one can conclude that flutter-based solutions are the most promising 
ones8),10) and the actual capability of performing self-sustained large-amplitude motion in the post-critical 
regime is a fundamental requirement for any flutter-based generator. Nevertheless, only very few scientific 
works have been developed so far on the flutter post-critical regime, due to the limited interest for 
conventional civil/aeronautical structures. Reliable predictive models for the post-critical behaviour are still 
missing and CFD investigations are hardly applicable due to the very large-amplitude oscillations. Following 
an experimental approach, aeroelastic setups can be developed to observe the post-critical response11), but they 
require specific and complex design solutions. 

In the classical flutter12) involving two Degrees of Freedom (DoFs), the system is excited by 
aerodynamic lift and moment forces depending on its motion. The energy transfer between airstream and 
structure relies on the elastic and/or aerodynamic coupling between two modes, generally with components on 
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both DoFs, as well as on the phase lag between the displacement and its aerodynamic reaction. This 
interaction generates phase adjustment and loss of damping in one of the modes, which leads to the instability 
and drives the growth of the motion. Then, when the cross-flow displacements and rotations are no longer 
small, nonlinearities occur in the self-excited loads. Particularly important are those due to the massive flow 
separation encountered for large angles of attack, beyond the dynamic stall angle of the section. The 
subsequent amplitude-velocity path manifests large amplitudes in both degrees of freedom that generally 
increase with the flow velocity, after a steep initial jump. 

Unlike the availability of semi-empirical predictive models about the dynamic-stall flutter 
mechanism13),14),15), due to the importance for wings operating at high angles of attack16),17),18),19),20), the 
research on post-critical oscillations due to classical flutter is not so extensive. In addition, the physical 
sources of nonlinearity still represent an open issue, since the literature studies often focused on classical 
flutter LCOs under specific nonlinear mechanical boundary conditions21),22),23). Hence, further research is 
required on reliable mathematical models and experimental setups allowing for large oscillations to deal with 
the classical-flutter post-critical behaviour. 

This work concentrates on wind tunnel tests on a sectional model with elongated rectangular cross 
section (width-to-depth ratio of 25:1, with the smaller dimension of 4 mm facing the flow). The developed 
setup allowed motion in two DoFs), namely vertical (heaving, η, maximum ±100 mm) and rotational (pitching, 
α, maximum ±150°) oscillations, with linear mechanical features in the tested range. Magnetic dampers were 
used to introduce linear viscous damping into the heaving degree of freedom, up to a ratio-to-critical value of 
about 20%. Linear aeroelastic models were preliminary used to parametrically explore the flutter boundaries. 

The main objective of the paper is to improve the understanding of the influence of some of the 
governing parameters on the system response24), such as the position of the mass centre, the ratio of pitching 
to heaving frequency and the still-air heaving damping. The latter, in the context of flutter-based energy 
generators, can be assumed to simulate the energy extraction process25), as it pumps out energy from the 
fluid-structure system. 

2. METHODOLOGY 
(1) Analytical linear model 

The stability of the system is investigated by means of linearized models, arranged for the 2-DoF 
problem, within the assumption of small perturbations around the equilibrium position. The self-excited loads 
are given by Theodorsen’s model12), which derives from potential flow theory applied to a theoretical flat plate 
in conjunction with the Kutta condition. The investigated width-to-depth ratio of the cross section is 25:1 and 
it is large enough for the oscillation body to be idealized as a flat plate26). 

The 2-DoF flutter problem (Figure 1) and the governing equations are reported in a non-dimensional 
form in Eqs. 1-2, assuming the heaving and pitching DoFs in the form ( ) = ∗ ( ) and ( ) =∗ ( ∗), where n and φ* are respectively the frequency of oscillation and phase difference at flutter 
onset: 

 1 + − 1 ( ) − ( ) = , ( , , , , )
 (1 + ) − 1 ( ) − ( ) = , ( , , , , )   (1) 

, ( ) = − − 2 + ( ) ( ) − 2 + ( ) + 2 + ( ) 14 −  ( ) ; 
, ( ) = − 2 + ( ) ( ) + 164 + 2 + ( ) + − 2 14 − + ( ) 14 −   ( ). (2) 

The heaving amplitude is normalized with the plate chord (width) = 2 .  and  are the coefficients 
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In all the tested configurations, the theoretical and experimental critical conditions are in good 
agreement. Moreover, the instability threshold always lies close to the change of slope between the sub-critical 
and the post-critical branch, probably suggesting a slightly different excitation mechanism in the two ranges. It 
is also worth noting that, even though the increase of heaving damping stabilises the system, mainly through a 
reduction of the motion amplitudes, the unstable branch gets closer to the rest position, so that smaller 
perturbations can be sufficient to foster the steady-state motion in the sub-critical range. 

4. CONCLUSIONS 
A systematic experimental approach was used to explore the behaviour of a flat plate model with 

rectangular 25:1 width-to-depth cross section prone to two-degree-of-freedom classical flutter. Analytical linear 
models supported the investigation of the flutter critical condition. Wind tunnel tests on a spring-mounted 
sectional model were conducted to verify the critical condition and to investigate the large amplitude 
oscillations in the post-critical regime for several dynamic configurations. The key role played by the position of 
the mass centre and by the damping in the translational degree of freedom was mainly studied. 

A small mass unbalance significantly anticipates the instability threshold and modifies the 
characteristics of the motion in terms of ratio of pitching to heaving components and phase difference. For the 
investigated set of configurations, the introduction of high levels of heaving damping reduces the motion 
amplitude and postpones the instability threshold. The amplitude-velocity diagrams are not distorted by 
increasing the external damping, maintaining a linear evolution with the flow speed of the sub-critical and 
post-critical branches. By contrast, the slopes of these branches nonlinearly depend on the damping. 
Steady-state oscillations were found also for a configuration theoretically stable with large damping provided 
that the motion is artificially triggered through a large enough initial condition 

The present results can form the basis for the development of numerical nonlinear models to predict 
large-amplitude post-critical oscillations that are triggered by the classical-flutter instability but whose 
evolution to the steady state is mainly driven by the dynamic-stall mechanism. 

In the near future, the investigation will be extended to other dynamic parameters governing the flutter 
problem, in order to achieve a more complete knowledge of their influence on the post-critical flutter regime. 
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