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We present a simple adaptive learning model of a poker-like game, by means of which we show how a bluffing strategy emerges
very naturally and can also be rational and evolutionarily stable. Despite their very simple learning algorithms, agents learn to bluff,
and the most bluffing player is usually the winner.

1. Introduction

Among the concepts formulated and elaborated by the cogni-
tive psychology in the last century, the study of the process
of development of problem-solving strategies has enabled
a meaningful improvement in the comprehension of the
mental activity and its relations with the cerebral circuits.

At this level of description, the concept of cognitive proc-
ess is defined as the interconnected performances of some ele-
mentary cognitive activities that operate on and affect mental
contents, representing the fundamental issue to bridge at
a theoretical level the superior cognitive functions and the
human behaviour [1, 2]. Such a concept is used in a wider
sense to mean the act of knowing andmay be interpreted in a
social or cultural sense to describe the emergent development
of knowledge, concepts, or strategies.

Cognitive psychologists argue that the mind can be un-
derstood in terms of information processing, especially when
processes as abstraction, categorization, knowledge, expert-
ise, or learning are involved [3–5].

The concept of cognitive process is defined both in terms
of result of the parallel elaboration of several well-defined
and functionally independent neural moduli and in terms of
a sort of “software” able to optimize the integration among
different cognitive functions by the adaptation to the different
environmental/informational circumstances [6–8].

The target of the present paper is to formulate a cognitive
model of a poker-like game in which the players are able

to develop strategies by learning from experience. Such a
task, better known as problem solving, allows to investigate
effectively the relation and coupling between the dynamics of
cognitive process and the environment.

Moreover, the study of poker is of great and general inter-
est in complex systems, because it is strictly related with
sociophysics, decision theory, and behaviour evolution. Actu-
ally, the study of human behaviour and, more in general, of
social phenomena has been faced in the last years utilizing
the tools of complex systems physics [9]. Poker-like games
provide a very good instance of strategic dilemma where
agents must optimize their income in conditions of imperfect
information (see Section 2) or where it is not clear which is
the true optimal strategy, a case which is very common in real
human interactions [10, 11]. Understanding the mechanisms
which underlie poker is then very useful for a comprehension
of human psychology and to get hints of how we have to
approach to more complicated models of human society.

2. Poker-Like Games

Poker is an interesting testsbed for artificial intelligence
research [12–15]. It is a game of imperfect information, where
multiple competing agents must deal with probabilistic
knowledge, risk assessment, and possible deception, not
unlike decisions made in the real world. The so-called
“opponent modelling” is another difficult problem in deci-
sion-making applications, and it is essential to achieve
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high performances in poker. Moreover, poker has a rich
history of study in several academic fields. Economists and
mathematicians have applied a variety of analytical tech-
niques to poker-related problems [16–18]. For example, the
earliest investigations in game theory, by luminaries such as
John von Neumann and John Nash, used simplified poker to
illustrate the fundamental principles.

There is an important difference between board games
and popular card games like bridge and poker. In board
games, players have complete knowledge of the entire game
state since everything is visible to all participants. In contrast,
bridge and poker involve imperfect information since the
other players’ cards are not known.

From a computational point of view, it is important to
distinguish the lack of information from the possibility of
chance moves. The former involves uncertainty about the
current state of the world, in particular situations where
different players have access to different information. The
latter involves only uncertainty about the future, uncertainty
which is resolved as soon as the future materializes. Perfect
and imperfect information games may involve an element of
chance; examples of games from all four categories are shown
in Table 1.

The presence of chance elements does not need major
changes to the computational techniques used to solve a
game. In fact, the cost of solving a perfect information game
with chance moves is not substantially greater than solving a
game with no chance moves. By contrast, the introduction
of imperfect information increases the complexity of the
problem.

Due to the complexity (both conceptual and algorithmic)
of dealing with imperfect information games, this problem
has been largely ignored at the computational level until the
introduction of randomized strategies concept.

Once randomized strategies are allowed, the existence of
“optimal strategies” in imperfect information games can be
proved. In particular, this means that there exists an optimal
randomized strategy for poker in the same way as there exists
an optimal deterministic strategy for chess. Indeed, Kuhn
showed for a simplified poker game that the optimal strategy
does use randomization [19].

The optimal strategy has several advantages: the player
cannot do better than this strategy if playing against a good
opponent; furthermore, the player does not do worse even if
his strategy is revealed to his opponent; that is, the opponent
gains no advantage fromfiguring out the first player’s strategy.

Another interesting result of such researches is the
existence of an optimal strategy for the gambler in poker
game. As first observed in a simple poker-like game by Kuhn
[19], behaviors such as bluffing, that seem to arise from the
psychological makeup of human players, are actually game
theoretically optimal.

One of the earliest and most thorough investigations of
poker appears in the classical treatise on game theory “Games
and Economic Behavior” by von Neumann andMorgenstern
[20], where a large section was devoted to the formal analysis
of “bluffing” in several simplified variants of a two-person
poker game with either symmetric or asymmetric informa-
tion.

Table 1

Perfect information Imperfect information
No chance Chess Inspection game
Chance Monopoly Poker

Indeed, the general considerations concerning poker and
the mathematical discussions of the different versions of the
game were carried out by vonNeumann as early as 1926. Rec-
ognizing that “bluffing” in poker “is unquestionably practiced
by all experienced players,” von Neumann and Morgenstern
identified two reasons for bluffing. “The first is the desire to
give a “false” impression of strength in “real” weakness; the
second is the desire to give a “false” impression of weakness
in “real” strength” [20].

Solutions to these simplified poker-like games as well
as a large class of both zero-sum and nonzero-sum games
were unified by the concept of mixed strategy, a probability
distribution over the player’s set of actions. The importance
of mixed strategies to the theory of games and its applications
to the social and behavioral sciences stems from the fact that
for many interactive decision processes there can be no Nash
equilibria in pure strategies.

Using randomization and adaptive learning as key con-
cepts tomodelize into a computational scaffolding of the cog-
nitive processes, we believe that this area of research is more
likely to produce insights about superior cognitive strategies
because of their intrinsically structures. Finally, comparing
themwith the real human strategy, it is possible both to inves-
tigate the role of environmental factors on cognitive strategies
development and to validate some theoretical psychological
assumptions.

2.1. Summary. The target of this paper is to show how bluffing
strategies can arise naturally as a mathematical property of a
very simple model, without any references to psychological
assessments. For this reason, we present a simple model of
poker-like game with only two players and only two possible
strategies: folding and calling, which each agent assumes
simultaneously. Such oversimplified game, as we will see,
allows to catch the fundamental mechanisms underlying
the phenomenon of bluffing. The fact that bluffing naturally
emerges already in a very simple version of the game seems
to suggest that such a strategy is perfectly rational and can be
mathematically characterized.

3. The Model

Themodel we are going to define and analyse is probably one
of the greatest simplifications possible of a game of chance
with imperfect information.

Here we have two players: at the beginning of each hand
of the game, they put one coin as the entry pot. Then, they
pick a “card” from a pack: each card has an integer value
between 0 and 𝑁 − 1 (i.e., there are 𝑁 cards overall). At
this point, according to the value of their card, the players
decide to call or instead to fold. If both players call, they
put another coin in the pot, and who holds the highest card
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wins: the winner gets the entire pot (four coins). If one of
the players folds, the “caller” wins and gets the entry pot (two
coins). Finally, if nobody calls, both players take back the coin
they had put as entry pot. Mathematically, when the player 𝑖
holds the card of value 𝑛, he decides to call according to the
probability distribution 𝑃

𝑖
(𝑛), with of course 𝑖 = 1, 2 and 𝑛 ∈

{0, 1, . . . , 𝑁 − 1}. After every hand, both players update their
strategy. More precisely, if one folds, nothing happens; if the
agent 𝑖, thanks to the card 𝑛, calls andwins (because he has the
highest card or because the opponent folds), the probability
that he calls holding the card 𝑛 will change in this way

𝑃
𝑖 (𝑛) 󳨀→ 𝑃

𝑖 (𝑛) + 𝜇𝑖 [1 − 𝑃𝑖 (𝑛)] . (1)

Analogously, if the agent 𝑖 loses (i.e., if he calls but the
opponent has a higher card than him), the probability 𝑃

𝑖
(𝑛)

will change instead in the following way:

𝑃
𝑖 (𝑛) 󳨀→ 𝜇

𝑖
𝑃
𝑖 (𝑛) . (2)

In (1) and (2), the coefficient 𝜇
𝑖
is the learning factor (LF),

which can also be seen as a sort of risk propensity of the
player 𝑖. The LFs of the players are set at the beginning of
the game and will never change. Moreover, it can assume a
value between 0 (no risk propensity at all) and 1 (maximum
risk propensity possible): actually, a player with 𝜇

𝑖
= 0 and

the card 𝑛 does not increase 𝑃
𝑖
(𝑛), even though he wins and

sets 𝑃
𝑖
(𝑛) = 0 as soon as he loses; instead, with 𝜇

𝑖
= 1, he

sets 𝑃
𝑖
(𝑛) = 1 when he wins but does not decrease 𝑃

𝑖
(𝑛) if he

loses. Finally, it is easy to notice that (1) and (2) ensure that
𝑃
𝑖
(𝑛) will always stay in the interval [0, 1].

3.1. Numerical Results. In this section, we will present the
most remarkable results of the simulations of the simple
model defined previously.

First of all, for simplicity, we set the LF 𝜇
1
of the “player 1”

equal to 0.5, and thenwe checked the dynamics by varying𝜇
2
:

actually it is the difference between the LFs which essentially
determines the main features of the dynamics, as we saw in
several simulations. In particular, we can distinguish three
cases: 𝜇

2
< 𝜇
1
, 𝜇
2
= 𝜇
1
, and 𝜇

2
> 𝜇
1
.

3.1.1. Case 𝜇
2
< 𝜇
1
. In Figures 1 and 2, the behaviour of the

money of both players is shown as a function of time, where
the time unit is a single hand of the game: we set𝑁 = 25, 𝜇

2
=

0.3, and 𝜇
2
= 0.48, respectively, and the results are averaged

over 104 and 105 iterations, respectively; in both cases, we
let the agents play 104 hands. For simplicity, we considered
players with an infinite amount of money available, and we
gauged to zero the initial amount. Additionally, the initial
calling distributions 𝑃

𝑖
(𝑛) are picked randomly for each 𝑛.

As it can be seen, the first player, with higher LF, wins
over his opponent, with smaller LF, and the money gained
by player 1 increases with time. Moreover, the smaller 𝜇

2
, the

faster and bigger the winnings of player 1. Previous figures
show that on average, the player with bigger risk propensity
finally overwhelms the other one, and this means that in
a single match the most risk-inclined player has a bigger
probability to win, and such probability increases as the
difference 𝜇

1
−𝜇
2
increases in its turn.The fact that risking is
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Figure 1: Behaviour of the money won (or lost) by the two players
versus time, that is, versus the hands played, averaged over 104
iterated matches. The LFs of the players are here 𝜇

1
= 0.5 and

𝜇
2
= 0.3.

Time
0 2000 4000 6000 8000 10000

𝜇1 = 0.5

𝜇2 = 0.48

0

100

200

300
M
on

ey

−200

−300

−100

Figure 2: Behaviour of the money won (or lost) by the two players
versus time, that is, versus the hands played, averaged over 105
iterated matches. The LFs of the players are here 𝜇

1
= 0.5 and

𝜇
2
= 0.48.

convenient gets confirmed in the next figures, where the final
calling distributions for both players are depicted.

As we can see, in both cases, the winner is characterized
by higher calling probabilities than his opponent’s ones for
every value of 𝑛. Moreover, we have 𝑃

𝑖
(𝑛 = 0) > 0, which is

the most explicit evidence of the emergence of bluffing.

3.1.2. Case 𝜇
2
= 𝜇
1
. In this case, both players have the

same winning probability, as it is well shown in Figure 5:
indeed, having the same LF, they have also exactly the same
behaviours so that in a single match nobody is able to over-
whelm definitively the opponent.
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Figure 3: Calling probabilities as functions of the card value 𝑛 for
both players. Black symbols: player 1 (𝜇

1
= 0.5); red symbols: player

2 (𝜇
2
= 0.3). Data took after 104 hands of the game and averaged

over 104 iterations. Random initial distribution for every 𝑃
𝑖
(𝑛).
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Figure 4: Calling probabilities as functions of the card value 𝑛 for
both players. Black symbols: player 1 (𝜇

1
= 0.5); red symbols: player

2 (𝜇
2
= 0.48). Data took after 104 hands of the game and averaged

over 105 iterations. Random initial distribution for every 𝑃
𝑖
(𝑛).

Naturally, it is also easy to forecast the behaviour of the
final calling probabilities of the agents: theywill be equal, with
𝑃
𝑖
(𝑛 = 0) > 0 for both 𝑖 = 1 and 𝑖 = 2.

3.1.3. Case 𝜇
2
> 𝜇
1
. In this case, the results are qualitatively

equal to the ones of case 𝜇
2
> 𝜇
1
; only now it is player 2 which

defeats player 1, as shown in Figures 7 and 8.

3.2. Discussion. The first conclusion we can obtain just from
the numerical results is that in this game bluffing emerges
necessarily as rational strategy. Moreover, the player who
bluffsmore finally wins.This can be easily understood watch-
ing Figures 3, 4, 6, and 8. Indeed, while in general the calling
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Figure 5: Behaviour of the money won (or lost) by the two players
versus time, that is, versus the hands played, throughout a single
match. The LFs of the players are here 𝜇
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Figure 6: Calling probabilities as functions of the card value 𝑛 for
both players. Black symbols: player 1 (𝜇

1
= 0.5); red symbols: player
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). Data took after 104 hands of the game and averaged

over 2.5 ⋅ 104 iterations. Random initial distribution for every 𝑃
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probabilities of both players tend to have the same value for
𝑛 → 𝑁−1, for small 𝑛 the player with higher LF, that is, with
higher risk propensity, bluffs much more than his opponent:
this means that even holding a poor card, the “risk-lover” will
call and unless his opponent has a very good point will get the
entry pot.

It is possible to formalize such considerations by writing
the equations of the dynamics for themodel at stake. Neglect-
ing fluctuations, the “mean-field” equation ruling the money
𝑀
1
won (or lost) by the first player is

𝑀
1 (𝑡 + 1) = 𝑀1 (𝑡) +

𝑁−1

∑

𝑛
1
=0

1

𝑁
[(1 − Π̂

1

2
) 𝑃
1
(𝑛
1
; 𝑡)
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− Π̂
1

2
(1 − 𝑃

1
(𝑛
1
; 𝑡))

+2𝑃
1
(𝑛
1
; 𝑡) Π̂
1

2
(P
1

2
−P
2

1
)] ,

(3)

where P1
2
= Pr(𝑛

1
> 𝑛
2
) is the probability that the card 𝑛

1

held by player 1 is higher than the card 𝑛
2
held by player 2;

analogously it isP2
1
= Pr(𝑛

2
> 𝑛
1
). On the other hand, Π̂1

2
is

an operator defined as follows

Π̂
1

2
⋅ 𝑋 =

𝑁−1

∑

𝑛
2
=0

[
𝑃
2
(𝑛
2
; 𝑡)

𝑁 − 1
(1 − 𝛿

𝑛
2
,𝑛
1

)𝑋] (4)

and represents the probability that player 2 calls from the
point of view of player 1. Equation (3) can be rewritten as a
differential equation in time, which can assume the form

𝑀̇
1 (𝑡) = [1 − 2𝛾2 (𝑡)] 𝜔1 (𝑡) − [1 − 2𝛾1 (𝑡)] 𝜔2 (𝑡) (5)

with

𝜔
𝑖 (𝑡) =

1

𝑁

𝑁−1

∑

𝑛=0

𝑃
𝑖 (𝑛; 𝑡) 𝑖 = 1, 2,

𝛾
𝑖 (𝑡) =

1

(𝑁 − 1)
2

𝑁−1

∑

𝑛=0

𝑛𝑃
𝑖 (𝑛; 𝑡) 𝑖 = 1, 2.

(6)

Since this is a zero-sum game, second player’s money will
be obtained by the relation𝑀

2
(𝑡) = −𝑀

1
(𝑡).

Finally, the relation giving the temporal behaviour of the
calling distributions 𝑃

1
(𝑛; 𝑡) of player 1 (being the one of the

opponent of analogous form) is

𝑃̇
1
(𝑛
1
; 𝑡) =

1

𝑁
𝑃
1
(𝑛
1
; 𝑡) [(1 − Π̂

1

2
+ Π̂
1

2
P
1

2
)

× [𝑃
1
(𝑛
1
; 𝑡) + 𝜇

1
(1 − 𝑃

1
(𝑛
1
; 𝑡))]

+𝜇
1
𝑃
1
(𝑚
1
; 𝑡) Π̂
1

2
P
2

1
]

+
1 − 𝑃
1
(𝑛
1
; 𝑡)

𝑁
𝑃
1
(𝑛
1
; 𝑡) −

𝑃
1
(𝑛
1
; 𝑡)

𝑁
.

(7)

Now, (5), (6), and (7) are rather complicated, but some
features of them can be determined without an explicit solu-
tion. Actually, it is straightforward to understand that we have

𝑃
1 (𝑛; 𝑡) = 𝑃2 (𝑛; 𝑡) 󳨐⇒ 𝜔

1 (𝑡) = 𝜔2 (𝑡) ,

𝛾
1 (𝑡) = 𝛾2 (𝑡) 󳨐⇒ 𝑀̇

1
= 𝑀̇
2
= 0.

(8)

Now, since in our simulations we always started from the
same initial 𝑃

𝑖
(𝑛) for all 𝑖, 𝑛, and from𝑀

1
(0) = 𝑀

2
(0) = 0,

this implies that for 𝜇
1
= 𝜇
2
both players must have on

average the same calling distributions and then they should
not gain nor lose money, apart from fluctuations: this is
exactly what we found in Figures 5 and 6. It can also be shown
that if 𝜇

1
> 𝜇
2
, then we will have soon 𝑃

1
(𝑛) ≥ 𝑃

2
(𝑛) for all

𝑛 (with the equality holding only for 𝑛 = 𝑁 − 1), so that (6)
allow us to get 𝑀̇

1
> 0, that is, the victory of player 1, as shown

in Figures 1 to 4. Obviously, the opposite situation takes place
for 𝜇
1
< 𝜇
2
(as shown in Figures 7 and 8).
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Figure 7: Behaviour of the money won (or lost) by the two players
versus time, that is, versus the hands played, averaged over 104
iterated matches. The LFs of the players are here 𝜇
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4. Conclusions and Perspectives

In this work, we have developed a model to describe very
roughly a cognitive processes dynamics.Themodel is among
the most simple ones, but allows to capture the main behav-
iours of real dynamics, demonstrating how fundamental is
bluffing as a rational strategy.

First of all this model confirms the role of LF (𝜇) as
prominent. In a straightforward way, a direct connection
between LF and bluffing tendency is here detectable. In fact
even though both agents tend to develop bluff, the one with
the greatest LF bluffs more than the other, ending up as
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the winner. Finally this last evidence suggests that bluffing
must be an evolutionary rational (stable) strategy.

Other, more realistic models have been developed [21],
and for sure they can give us deeper information about the
inner mechanisms driving to bluffing behaviours in poker-
like games, but the emergence of bluff as a rational strategy
already in a so simple toy model is with no doubt a very
remarkable result. Indeed, more in-depth analyses of the real
game can be found in the literature [13] which systematically
survey every facet of poker (blind, flop, raise, etc.), but this
is the first time that it is tried to catch the main features of it
by means of a very “reductionist” approach, by means of the
simplest version of the game. Shortly, if it has been thought
until now that to catch an apparently complex behaviour,
bluffing with effective outcomes, it is necessary to take into
account (almost) all the rules of poker, we have shown here
that such attitude is much more fundamental, and emerges
naturally when few simple ingredients are present.

Moreover, for practical purposes, a simpler model which
can be more easily understood turns out to be very useful
because it will result easier also in the realization and the
analysis of experimental tests with real human agents, and
hence it will be possible to plan more accurately other kinds
of experimental tools. In particular, it will be straightforward
to utilize a tool as in reference [22] for a test with real players
and to exploit data frompoker-onlineweb sites for a statistical
analysis of the outcomes of real poker games.
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