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Summary

Two important processes are at the base of light-matter interaction: absorption and scattering.
The first part of this work focuses on the interaction of light with single absorbers/emitters
embedded in thin films. In the second part, diffusion of light through thin films of scattering
materials is numerically investigated.
Quantum emitters based on organic fluorescent molecules in thin films are investigated

in the first part of this thesis. The focus of this work is on the experimental characterization
of a specific system consisting of single Dibenzoterrylene (DBT) molecules embedded in a
thin crystalline matrix of anthracene. The system under investigation exhibits some unique
optical properties that enable its use in many applications, especially as a single-photon
source and as a sensitive nanoprobe. In particular, single DBT molecules are very bright and
stable within the anthracene matrix. At cryogenic temperatures, dephasing of the molecular
dipole due to interactions with the phonons of the matrix vanishes, and as a result the purely
electronic transition or 00-Zero-Phonon Line becomes extremely narrow, approaching the
limit set by its natural linewidth. Under pulsed excitation, the system can be operated as a
source of indistinguishable, lifetime-limited single photons. Furthermore, the spectral shifts
of the narrow ZPL can be exploited as a sensitive probing tool for local effects and fields.
In this work we perform a complete optical characterization of the DBT in anthracene

system. Using a home-built scanning epifluorescence microscope, we study its optical prop-
erties at room temperature: fluorescence saturation intensity, dipole orientation and emission
pattern, fluorescence and triplet lifetime are investigated. At temperatures down to 3K, we
observe a lifetime-limited absorption line. Also, we demonstrate photon antibunching from
this system. We then show that single DBT molecules can be effectively used for sensing
applications. Indeed, at the nanometre scale, i.e. on a scale of the order of their physical size,
the optical properties of a single molecule are affected by the surrounding environment.
In particular, we here demonstrate energy transfer between single DBT molecules and a
graphene sheet, a process that can be exploited to measure the distance d between a single
molecule and the graphene layer. Based on the universality of the energy transfer process
and its sole dependence on d, we provide a proof of principle for a nanoscopic ruler.
In the second part of this thesis we look at the interaction of light with matter from

a different perspective. By means of numerical simulations, we address the problem of
light transport in turbid media, with a particular focus on optically thin systems. The
problem is usually modelled by the Radiative Transport Equation and its simple Diffusion
Approximation which holds for the case of a single, thick slab of turbid material but fails
dramatically for thin systems. Alternatively, the problem of light transport can be modelled
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as a random walk process and therefore it can be numerically investigated by means of
Monte Carlo algorithms.

In this work we develop a Monte Carlo software library for light transport in multilayered
scattering samples, introducing several advancements over existing Monte Carlo solutions.
We use the software to build a lookup table which allows us to solve the so-called inverse
problem of light transport in a thin slab, i.e. the determination of the microscopic properties
at the base of light propagation (such as the scattering mean free path ls and the scattering
anisotropy g) starting from macroscopic ensemble observables. We then study diffusion
of light in thin slabs, with a particular attention on transverse transport. Indeed, even if
a diffusive behaviour is usually associated with thick, opaque media, as far as in-plane
propagation is concerned, transport is unbounded and will eventually become diffusive
provided that sufficiently long times are considered. By means of Monte Carlo simulations,
we characterise this almost two-dimensional asymptotic diffusive regime that sets in even
for optically thin slabs (OT = 1). We show that geometric and boundary conditions, such as
the refractive index contrast, play an active role in redefining the very asymptotic value of
the diffusion coefficient by directly modifying the statistical distributions underlying light
transport in a scattering medium.
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Preface

This thesis is a handbook of the things I have done and learnt during almost four years of
work in the Quantum Nanophotonics group at LENS, the European Laboratory for Non-
Linear Spectroscopy. Here, I have had the unique opportunity to work both on experimental
activities as well as on simulations andmodelling, focusing on two diverse aspects regarding
the interaction between light and matter. During this time, I enjoyed intellectual freedom in
my research activity and I had many chances to apply my skills — especially those related
to software development, of which it seems there is ubiquitous need, both in the laboratory
and for simulation purposes — in the most diverse situations.
Two important processes are at the base of light-matter interaction: absorption and scat-

tering. In the first case, probing matter with light allows one to determine its chemical
properties, since different molecular and atomic species give rise to unique absorption
spectra. Studying how light interacts with matter at the level of a single photon and a single
absorber/emitter is of fundamental and practical interest. Indeed, strong nonlinear interac-
tions are needed for the implementation of schemes for quantum information processing
and quantum networks, and they can be obtained already in the few-photon regime from the
saturation of a simple two-level system under efficient excitation. For the class of applica-
tions just mentioned, a single-photon source is a fundamental building block. In the second
case, by studying elastic scattering of a light beam by a turbid medium, information on the
microscopic physical structure of matter can be investigated starting from the observation of
how light macroscopically spreads in space and time. Besides being of fundamental interest,
the study of light transport in particular through thin scattering media has a number of
applications especially in the field of biomedical optics and diagnostics. In this work, these
two aspects of light-matter interaction are covered.

The focus of Part I of this thesis is on the experimental investigation of single-photon
sources based on single organic molecules. Such a quantum object produces indeed single-
photon states, as described in Chapter 1, where related measurement techniques are also
introduced. Sources of single, indistinguishable photons are a fundamental building block
for quantum computation schemes completely relying on linear optics and quantum in-
terference effects. While the first single-photon sources were demonstrated with trapped
atoms and ions in the gas phase, systems based on emitters in condensed matter — such
as quantum dots, NV centres in diamonds or dye molecules — have recently become more
attractive due to their ease of operation and integration in embedded circuits.
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Preface

In Chapter 2 the focus is specifically on (organic) dye molecules embedded in a thin, solid
host matrix. Here we discuss some unique electronic and optical properties emerging in
such configuration. First of all, the crystalline matrix stabilises and protects the organic
molecules from quencher agents such as oxygen, thus strongly preventing photobleaching.
Furthermore, when cooled down to cryogenic temperatures, dephasing of the electronic
dipole due to interactions with the phonons of the matrix vanishes. Consequently, the
purely electronic Zero-Phonon Line (ZPL) between the first excited state and the ground
state becomes extremely narrow and, for certain host-molecule combinations, it reaches
the limit set by its natural broadening. A lifetime-limited transition is a source of truly
indistinguishable single photons, therefore the system can be employed as a triggered single-
photon source, e.g. by means of pulsed excitation. Moreover, the narrow ZPL acts as a
resonator with a high quality factor, and as such it can be used to probe very small changes
in the nanoenvironment surrounding the molecule. In practice, the frequency shift of the
ZPL of a single molecule or other effects can be used as extremely sensitive probes for local
fields and physical processes occurring at the nanoscale. For all these applications, the
isolation and optical detection of a single molecule is a great experimental advancement,
often achieved by means of single-molecule fluorescence microscopy.
The next chapters are devoted to report the experimental activity in which I took part

in the first two years of this PhD program. In Chapter 3 we propose a specific system of
emitters, consisting of single Dibenzoterrylene (DBT) molecules embedded in thin films of
anthracene, which looks very promising as a single-photon source and for sensing applica-
tions. Using a home-built epifluorescence scanning microscope, a complete characterization
of the system’s optical properties was carried out. Several properties were investigated at
room temperature, such as fluorescence saturation intensity, dipole orientation and emis-
sion pattern, fluorescence and triplet lifetime. At temperatures down to 3K, we observed
lifetime-limited Zero-Phonon Lines. Also, photon antibunching was demonstrated. The
experimental activity regarding these measurements was particularly challenging and also
exciting, since the experimental setup had to be built from scratch. In this phase, my main
contribution was the conception and full development of the measurement automation and
data acquisition software — presented in section 3.2.3 — which coordinates the operation of
several hardware devices: APDs for fluorescence acquisition, piezo translational stages and
galvo mirrors for sample scanning, a device for Time-Correlated Single Photon Counting
(TCSPC), etc. Later, I took part in the measurements and developed some data analysis
scripts. Finally, at the Humboldt University in Berlin (Germany) I took part in the exploration
of an experimental technique based on combined fluorescence microscopy and Atomic Force
Microscopy (AFM) aimed at manipulating anthracene crystals on a sub-µm scale.

In Chapter 4we show how our system of single DBT molecules in thin anthracene films
could be successfully employed as the key ingredient to build a nanosensor. Indeed, at the
nanometre scale, i.e. on a scale of the order of their physical size, the optical properties of a
light emitter are affected by the surrounding environment. In particular, we demonstrate
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energy transfer between single DBT molecules and a graphene sheet, a process that can be
exploited to measure the distance d between a single molecule and the graphene layer. In our
particular configuration, DBT molecules close to undoped graphene relax by transferring
energy into the creation of electron-hole pairs in graphene, via a dipole-dipole interaction
mechanism similar to Förster Resonance Energy Transfer (FRET). The consequent increase of
the fluorescence decay rate results in a measurable reduction of the excited state lifetime. In
this chapter we perform a statistical characterization of the fluorescence lifetimemodification
of single DBT molecules in the presence of graphene. The results are then compared with a
simple universal model showing the characteristic d−4 dependence. The simplicity of the
model is such that d appears as the sole unknown, the other parameters being universal
quantities. This suggests that the energy transfer mechanism could be used as a nanoruler,
i.e. a tool to measure distances at the nanometre scale.
In the quest for efficient light-matter interfaces, an experimental effort in our laboratory

is directed towards the coupling of light produced by single DBT molecules with several
kinds of photonic nanostructures or dielectric waveguides. While I did not take part on this
side of the experimental activities, I was instead involved in the numerical study of a special
kind of structures based on thin, disordered 2D photonic crystals. Within such structures
and under certain conditions, localized quasimodes of the electromagnetic field emerge.
In some cases coupled modes may appear; these are so-called necklace states. Besides their
fundamental interest, our theoretical investigation was driven by the possibility of exploiting
such coupled electromagnetic modes to make two remote molecules interact with each other.
We performed Finite-Difference Time-Domain simulations of slightly disordered photonic
crystals where the localised quasimodes are excited with point-like dipoles (representing
single emitters such as single molecules). Since the identification of necklace states in
2D is not straightforward, we devised a recipe for their recognition based on the spatial
distribution of the phase of the electromagnetic field. My contribution to this project was in
the development of the analysis software for the calculation of the Fourier transform of the
simulated fields, from which the spatial maps of amplitude and phase that are at the base of
our identification method can be extracted. The task was particularly challenging, given the
heavy footprint of the simulations in terms of the size of the output data. I also contributed
in the definition of the initial idea of using the phase spatial distribution to assess the nature
of localised coupled modes. For the sake of brevity, this work is not presented within the
main body of this thesis but the corresponding paper is included in the Attachments part.

Part II of this thesis deals with the numerical investigation of light transport through thin
layers of scattering materials. This was a joint project in which I worked in close cooperation
with dott. Lorenzo Pattelli from the Complex Systems group at LENS. In this study, we
investigate light transport through turbid media by means of Monte Carlo simulations —
using a software package that was entirely developed as part of this thesis — with a specific
focus on optically thin systems.
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Preface

In Chapter 5 the theory at the base of the modelling of light transport through a scattering
medium is introduced. At its core, the Radiative Transport Equation (RTE) simply describes
the energy conservation within a small volume of a scattering material, taking into account
the losses and gains originating from the scattering process. While simple in its formulation,
the RTE cannot be easily solved analytically. In the case of a single, thick slab of turbid
material, where a multiple-scattering regime sets in, light transport is very well described in
terms of the simple Diffusion Approximation, which provides simple analytical formulas for
the most important macroscopic observables (such as the total fraction of transmitted light
and its profile in space and time). However, the approximation fails for optically thin samples,
which is a typical case in biomedical optics, since biological materials often naturally come
in the form of thin tissues or membranes. Furthermore, no analytical solutions can be found
for more complicated geometries such as a sample made of multiple layers of different
scattering materials.
Given the complexity of a deterministic description of light transport in the multiple-

scattering regime, a solution to the RTE can be found by adopting instead a statistical
approach in which the scattering process is modelled as a random walk of fictitious, energy-
carrying particles. A Monte Carlo method can be used to generate a high number of random
trajectories within a scattering material and to find an exact solution for the RTE which is
only affected by statistical noise. For the investigations presented in this work, I developed
a Monte Carlo software library for light transport in a multilayered system of scattering
materials called MCPlusPlus, which is introduced in Chapter 6. This software presents
some significant advantages over existing solutions: it makes possible to access the time-
resolved statistics of transmitted light, it comes with an easy-to-use programming interface
and is capable of efficiently running on modern multi-core computer architectures.
In Chapter 7 we tackle the so-called inverse problem of light transport in thin slabs, i.e.

the determination of the microscopic properties at the base of light propagation (such as
the scattering mean free path ls and the scattering anisotropy g) starting from macroscopic
ensemble observables. This is a problem of primary importance both from the point of view
of fundamental science as well as application-wise, since for example the scattering of light
can be used as a non-invasive tool to quantitatively measure the properties of in vivo tissues.
In our study we simulate light transport through a single thin slab of scattering material by
focusing on two experimental observables. The decay lifetime of the spatially-integrated
transmitted intensity in response to a light pulse impinging on the slab has long been
accessible experimentally and used used to determine the diffusion properties. Notably, we
consider another robust observable which became experimentally accessible with modern
optical gating techniques, i.e. the Mean Square Width (MSW) growth of the spatial profile
of the transmitted pulse. Such quantity grows linearly in time in a diffusive regime, and
is inherently robust since by definition it does not depend on absorption and its slope is
directly related to the diffusion coefficient. In our study we build a large database of these
two observables over a broad parameter space in terms of ls, g and optical thickness (ranging
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from 1 to 10). With the combined use of these two macroscopic quantities, which are both
experimentally accessible, we develop a look-up table routine that allows us to retrieve the
microscopic transport properties such as ls and g in the relevant case of a thin slab.

In Chapter 8 we study diffusion of light in thin slabs with a particular focus on transverse
transport. Light diffusion is usually associated with thick, opaque media. Indeed, multiple
scattering is necessary for the onset of the diffusive regime and such condition is generally
not met in almost transparent media. However, as far as in-plane propagation is concerned,
transport is unbounded and will eventually become diffusive provided that sufficiently
long times are considered. By means of Monte Carlo simulations, we characterise this
almost two-dimensional asymptotic diffusive regime that sets in even for optically thin slabs
(OT = 1). We again make extensive use of the MSW growth in time, since this observable is
related to transverse propagation. Even at such low optical thickness, we find a signature
of diffusive behaviour in the linear increase of the MSW slope with time, which however
obviously deviates from the prediction cast by the Diffusion Approximation. We show that
geometric and boundary conditions, such as the refractive index contrast, play an active role
in redefining the very asymptotic value of the diffusion coefficient by directly modifying the
statistical distributions underlying light transport in a scattering medium.

Sesto Fiorentino, 27th November 2015
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Γrad decay rate for radiative emission.

h Planck constant, 6.626 070 040× 10−34 J s.

I(r, t, ŝ) radiance or specific intensity.
IS saturation intensity.

k21 rate of direct decay from |S1,ν=0〉 to |S0,ν=0〉.
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Chapter 1.

Quantum light from single emitters

In this chapter we provide a broad introduction on single quantum emitters and their impact on
single-photon sources. We start by laying out some fundamental concepts that are specific to the
physics of individual quantum objects and that will be later used in the rest of this work. We
shall first recall the quantum properties of light produced by single emitters by introducing three
classifications of light based on the photon statistics and on the photon distribution in time. In
particular, the concepts of sub-Poissonian and antibunched light are introduced. We then review
some experimental techniques that can be used to assess the quantum nature of light and to measure
other time-resolved processes, such as the excitation and relaxation dynamics of a quantum emitter:
the Hanbury Brown – Twiss (HBT) experiment and the Time-Correlated Single Photon Counting
(TCSPC) technique. Finally, an overview on single-photon sources and their applications is given,
with a greater emphasis on condensed matter systems.

1.1. Different flavours of light

1.1.1. Photon statistics

Light emitted by a single quantum source exhibits unique properties that can be used in a
number of applications. In this section we will briefly discuss how different classifications
of light can be made in terms of photon statistics and in terms of how photons are spaced in
time in a light beam.

As a reference case, let’s consider a perfectly coherent light beam:

E(x, t) = E0 sin(kx−ωt + φ) (1.1)

where E(x, t) is the electric field module of the light wave and where the angular frequency
ω and phase φ are constant in time. The beam intensity I is proportional to the square of the
amplitude and is constant since we have assumed ω and φ independent of time. A perfectly
coherent light of constant intensity in the classical sense exhibits, from the point of view of
its fundamental constituents, Poissonian photon statistics, i.e. the distribution of the photon
number n is given by [1]:

P(n) = n̄
n!

e−n̄ n ∈N (1.2)

Poisson statistics generally describes processes that are intrinsically random, such as the
number of counts registered by a Geiger counter in front of a radioactive source. In this case,
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Figure 1.1.: (a) Comparison of the photon statistics for Poissonian, super-Poissonian and sub-
Poissonian light. All the distributions shown have an average photon number of n̄ = 100; being n̄ so
high, the discrete nature of the distributions cannot be appreciated. (b) Second-order correlation
function g(2)(τ) for bunched, perfectly coherent and antibunched light. The inset shows how photons
are spaced out in the photon stream for the three cases.

the observed counts fluctuate around the average value n̄ because of the random nature of
the decay process. A similar distribution applies to the count rate registered by a photon-
counting device able to detect individual photons in a light beam of constant intensity as
the one considered above. Here the randomness is due to the discrete nature of photons,
with an equal probability of finding a photon within any given time interval. A Poisson
distribution is only characterized by the mean value n̄ and its standard deviation is given by

∆n =
√

n̄ (1.3)

With respect to the reference case described above, we define three types of light based
on their standard deviation of their photon number distribution (see figure 1.1a) which are
briefly described below.
Super-Poissonian light is defined by the relation:

∆n >
√

n̄ (1.4)

Light following a super-Poissonian distribution is the most frequently found, since all
classical forms of light showing intensity fluctuations in time are expected to exhibit larger
photon number fluctuations than for the case with a constant intensity. Thermal light or
black-body radiation is indeed a notable example of super-Poissonian light. In this case, the
photon statistics of a single mode of the radiation field is the Bose-Einstein distribution:

Pω(n) =
1

n̄ + 1

(
n̄

n̄ + 1

)n

(1.5)
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Another example of super-Poissonian light is the so-called chaotic light, such as the light
form a single spectral line of a discharge light. This type of light exhibits partial coherence.
Classical intensity fluctuations are observed on a time scale shorter than the coherence time
τc, and again they cause fluctuations in the photon number that are greater than for the
perfectly coherent source.

Poissonian light is the type of light that we have taken as the reference case, i.e. light with
∆n =

√
n̄. An ideal single-mode laser producing a beam of constant optical power is a good

approximation of this type of light. From a classical point of view, a perfectly coherent beam
with no intensity fluctuations is the most stable type of light that can be imagined.

As shown in figure 1.1a, sub-Poissonian light has a narrower photon distribution than for
the Poissonian case. Indeed, it is characterized by having photon fluctuations such that

∆n <
√

n̄ (1.6)

A sub-Poissonian source is therefore less “noisy” thanperfectly coherent light. Sub-Poissonian
light has no classical counterpart, and as such is a synonym for quantum light. Photon
number states are the purest form of sub-Poissonian light. Photons from a single quantum
source also exhibit sub-Poissonian statistics, since they are emitted with a high degree of
regularity in time. In this work we are dealing with single fluorescent molecules, hence this
is the kind of light that we expect to observe. It is worth mentioning that sub-Poissonian
light is very fragile, since all kinds of losses and inefficiencies in the detection process will
tend to degrade the statistics back to the completely random (i.e. Poissonian) case. Therefore
the observation of large quantum effects in the photon statistics is a particularly challenging
experimental task.

1.1.2. Second-order correlation function

Another equally important classification of light is defined in terms of the degree of second-
order temporal coherence, expressed in classical terms by the normalized second-order
correlation function:

g(2)(τ) =
〈I(t)I(t + τ)〉
〈I(t)〉 〈I(t + τ)〉 (1.7)

where I(t) is the intensity of the light beam and angular brackets indicate averaging over a
long time period. It is easy to verify that for whatever time dependence of I(t) the following
equations hold:

g(2)(0) ≥ 1 (1.8)

g(2)(0) ≥ g(2)(τ) (1.9)

Additionally it must be g(2)(τ)→ 1 for τ → ∞, since at long times intensity correlations are
completely uncorrelated with each other. For a perfectly coherent monochromatic source
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Figure 1.2.: (a) Schematic representation of a Hanbury Brown – Twiss (HBT) setup used for coinci-
dence measurements. Photons impinge on a 50:50 beam splitter and are recorded by two detectors.
A counter/timer performs start-stop measurements to build a histogram of the photon arrival times.
(b) Block diagram showing the electronic components of a traditional Time-Correlated Single Photon
Counting (TCSPC) system. A Constant Fraction Discriminator (CFD) precisely determines the timing
of the events registered by the two detectors. A Time to Amplitude Converter (TAC) produces a
voltage proportional to the time delay, which is later converted to a digital value by the Analog to
Digital Converter (ADC) and used to build a histogram of the photon arrival times.

with constant intensity, it follows immediately that g(2)(τ) = 1 for all values of τ. Therefore
g(2)(τ) > 1 in all other cases.
Equation (1.7) is written in terms of the correlations of the classical intensity fluctuations.

In the quantum picture, the number of counts registered by a single photon counting device
is proportional to the intensity, so that referring to figure 1.2a we can write

g(2)(τ) =
〈n3(t)n4(t + τ)〉
〈n3(t)〉 〈n4(t + τ)〉 (1.10)

where ni(t) is the number of counts registered by each detector at time t. The counter/timer
builds a histogram of the time intervals between a start signal, triggered by detector D3, and
a stop signal from detector D4, so that — for short times1 — the second-order correlation
function can be reconstructed. In other words, the g(2)(τ) function expresses the joint
probability of detecting two subsequent photons separated by a time interval of τ, one
at time t on D3 and another one at time t + τ on D4. When photons are considered in
place of a classical electromagnetic wave, completely different results are obtained for
g(2)(τ). For example, if we consider a stream of photons spaced in time by long time
intervals, in the configuration of figure 1.2a we expect to observe no events at τ = 0, since
an impinging photon would either go to D3, triggering a start, or to D4, triggering a stop,
thus no simultaneous events can be registered by the two detectors. A certain amount of
1A histogram of coincident counts only considers pairs of consecutive photons, whereas the g(2) function gives
the distribution of all pairs of photons. Nonetheless the two distributions are nearly equal for short time
delays [2–4].
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time has to be waited for a second photon to trigger a stop pulse, therefore detected events
are expected to increase in time. This clearly violates equations (1.8) and (1.9) for classical
fields. If instead we consider a stream of photons arriving in bunches, simultaneous counts
from the two detectors are highly probable, with a large number of events registered near
τ = 0 and fewer at longer delays, since the probability of detecting a stop photon after a
start one has been registered decreases with time. This picture is in perfect agreement with
a classical framework. Again, since we have found different behaviours for light which can
have a classical counterpart or be purely quantum, we make another threefold distinction
based on the second-order correlation function g(2)(τ).
Bunched light occurs when g(2)(0) > g(2)(τ), i.e. when photons arrive grouped together

in bunches. Therefore, if a photon is detected at t = 0, there’s a higher probability to detect
another photon at short times rather than at long delays. From equations (1.8) and (1.9), it
follows that classical light is bunched, as is chaotic light from a discharge lamp.
As already anticipated, perfectly coherent light has g(2)(τ) = 1. Indeed, since it is charac-

terized by Poissonian photon statistics, photons are randomly spaced in time. Therefore,
once a photon is detected, the probability to detect another photon is the same for all values
of τ. Coherent light is compatible with a classical picture, since it satisfies equations (1.8)
and (1.9).
Antibunched light is a pure quantum phenomenon, having

g(2)(0) < g(2)(τ) (1.11)

which violates equation (1.9). In antibunched light, photons tend to arrive evenly spaced in
time, rather than with random spacing. The regularity with which photon arrives means
that there will be relatively long time delays between successive photons, i.e. a lower proba-
bility of observing counts at short delays. Photon antibunching is usually, but not always2,
accompanied by sub-Poissonian photon statistics, in which case g(2)(0) < 1.

1.2. Experimental techniques

1.2.1. Hanbury Brown-Twiss experiment

The experimental configuration of figure 1.2a is commonly known as Hanbury Brown –
Twiss (HBT) arrangement, after the two scientists who first used this setup while studying
the coherence properties of astrophysical sources [7]. The setup consists of a 50:50 beam
splitter, which equally divides incident photons between the two output ports. The photons
then impinge on two single-photon counting Avalanche Photo Diodes (APDs). Every time
they detect a photon, the APDs produce a pulse which is fed into an electronic counter/timer

2Antibunched light does not necessarily exhibit sub-Poissonian statistics [5]. Additionally, a two-mode state
can be constructed in which the counting statistics are sub-Poissonian, while photons exhibit bunching in
time [6].
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which we will better describe in section 1.2.2. This electronic device records the time delays
between pulses from detectors D3 and D4, and builds a histogram of the registered delays
which approximates the g(2) function at short times. A HBT experiment allows to observe
photon antibunching, therefore it makes it possible to assess the quantum nature of light.
In a typical antibunching measurement, a single emitting species (such as an individual
atom, molecule, quantum dot or colour centre) is excited using laser radiation and its
fluorescence is collected by detectors arranged in the HBT configuration. Once a photon
is emitted, a subsequent photon can only be emitted following another excitation cycle, i.e.
on average after an amount of time approximately equal to the radiative lifetime of the
transition. Since the photons arrive at the detectors with long gaps in between them, this will
result in the observation of the typical dip associated with antibunched light (figure 1.1b).
Photon antibunching was first successively observed by Kimble et al. in 1977 in resonance
fluorescence experiments with sodium atoms [8]. As far as single molecules are concerned,
the first experimental evidence of photon antibunching was found in 1992 by Basché et al.
with single pentacene molecules embedded in a p-terphenyl crystal at 1.5K [9].

In section 1.1.2 we highlighted how the second-order correlation function classically de-
scribes intensity correlations, whereas in a quantum picture it depends on the simultaneous
probability of counting photons at time t on D3 and at time t + τ on D4. For a quantum
analysis of the HBT experiment, we can rewrite equation (1.10) as [1]:

g(2)(τ) =
〈

â†
3(t)â†

4(t + τ)â4(t + τ)â3(t)
〉

〈
â†

3(t)â3(t)
〉 〈

â†
4(t + τ)â4(t + τ)

〉 (1.12)

where we have used the photon number operator n̂ = â† â. We are particularly interested in
the value for g(2)(0), since this gives a clear evidence of quantum behaviour:

g(2)(0) =
〈

â†
3 â†

4 â4 â3
〉

〈
â†

3 â3
〉 〈

â†
4 â4
〉 (1.13)

The expressions for the annihilation operators for the output ports are:

â3 = (â1 − â2)/
√

2

â4 = (â1 + â2)/
√

2
(1.14)

and the corresponding creation operators are found by taking the Hermitian conjugates. In
a HBT experiment, photons impinge only on input port 1, so that the vacuum state has to be
considered at port 2. The input state is therefore written as:

|Ψ〉 = |ψ1, 02〉 (1.15)

where ψ1 is the input state at port 1 and 02 is the vacuum state at port 2. Having the vacuum
state at one port greatly simplifies the final expression, which after some easy calculations
can be written as:

g(2)(0) =
〈ψ1|n̂1(n̂1 − 1)|ψ1〉/4

(〈ψ1|n̂1|ψ1〉/2)2 (1.16)
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If the input state is the photon number state |n〉, then we obtain:

g(2)(0) =
n(n− 1)

n2 = 1− 1
n

(1.17)

Therefore, for a single-photon source, i.e. a source emitting photon number states with n = 1,
we expect to obtain the highly non-classical result of g(2)(0) = 0 from a HBT measurement.

1.2.2. Time-Correlated Single Photon Counting

The relaxation dynamics of an emitter following an excitation event can be investigated by
means of time-resolved detection of the emitted photons. Time-Correlated Single Photon
Counting (TCSPC) is a well established and common technique for fluorescence lifetime
measurements [10, 11], but it can also be used for photon coincidence correlation measure-
ments in a HBT setup to observe antibunching effects. The method consists in the accurate
registration of the arrival times of single photons relative to a reference signal. By periodic
excitation, e.g. from a pulsed laser source, the fluorescence decay profile is reconstructed
over multiple excitation cycles.
A detector, typically a Single Photon Avalanche Diode (SPAD), generates a pulse per

each detected photon with very accurate timing of the photon arrival (typical timing jitter
≈ 100 ps). The pulse is then fed to the TCSPC electronics, which globally operate as a stop-
watch. Figure 1.2b shows a block diagram of a traditional TCSPC system. In a fluorescence
spectroscopy laboratory, it was not uncommon to implement a TCSPC system by chaining
together the single standalone blocks shown in the figure. Today, more modern and compact
commercial solutions exist, which embed sophisticated electronics in a single device. This is
the case for example of the PicoHarp module by PicoQuant, which we have used for all
the TCSPC measurements in this work. The first block in the electronic chain is a Constant
Fraction Discriminator (CFD). It is used to extract the precise timing of pulses which may
vary in amplitude, which is typical when the detectors used are Photomultiplier Tubes
(PMT) or Microchannel Plates (MCP). In addition to the detector signal, the reference or
sync signal is a required input for the electronics. Both signals are directed to a Time to
Amplitude Converter (TAC), which is basically a highly linear integrator. The sync signal
triggers the start of a ramp generator, which is later stopped by the signal coming from the
detector. Therefore, the resulting signal at the TAC output is a voltage proportional to the
time lag between the two inputs. The voltage produced by the TAC is digitized by an Analog
to Digital Converter (ADC) and used to address the corresponding bin in the histogram of
arrival times. In time-resolved fluorescence measurements, the reconstructed histogram
shows an exponential drop of counts at later times.

The configuration described above is called forward mode, in which the periodic excitation
source provides the sync signal and the detected fluorescence photon provides the stop
signal. However, the repetition rate of the excitation laser is much higher than the rate of
detected photons, since not all the excitation pulses cause a photon event. Therefore, when
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working in this mode, the TAC overflows and has to be reset every time, i.e. the electronics
is uselessly kept busy. To use the electronics at its full capability without decreasing the
count rates, the TCSPC can be operated in reverse mode, by connecting the reference signal
to the stop input while using the detected photon as the start signal. The consequence of
using this approach is that the measured times are those between a fluorescence photon
and the following laser pulse, instead of those between a laser pulse and a corresponding
photon event. This can be however circumvented by inserting a long delay cable so that the
reference signal arrives at the TAC later than the start pulse from the detector.

In an ideal scenario, where excitation pulses are infinitely narrow and the detector response
is instantaneous, the Instrument Response Function (IRF) would be infinitely narrow. In
practice though, the overall timing precision of a TCSPC system is given by a finite-width
IRF. The IRF is indeed broadened by the timing error of the detectors and of the reference
signal, and to a lesser extent by the jitter of the electronic components. Usually the IRF
is measured by sending some scattered excitation light to the detector and later used to
deconvolve the data, so that lifetimes down to 1/10 of the IRF width can be recovered. The
upper limit on the lifetime range is instead set by the repetition rate of the excitation source
and the dark count rate of the detector. Indeed, it should be ensured that fluorescence has
enough time to complete a full decay. Moreover the fall time of the excitation pulse should
be as short as possible, as this affects the resolution. When working with an ensemble
of emitters, one has to maintain a low probability of registering more than a photon per
excitation cycle. This is to guarantee that the reconstructed histogram be the same that one
would obtain with a single-shot analogue recording of the intensity decay. If this were not
the case, detectors would register only the first photon while missing the following ones
(because of their dead time), leading to an effect called pile-up — an over-representation
of early photons in the histogram. For the purposes of this work we will always deal with
single emitters, hence the requirement of no more than a detected photon per excitation
cycle is always met. In fact, in our case the lifetime of the quantum emitter is a statistical
average, and the registered decay histogram represents the time distribution of the emitted
photons. Finally, a favourable Signal-to-Noise Ratio (SNR) can be obtained by pumping the
emitter at an excitation intensity close to the saturation of the transition.

1.3. Single-photon sources

In the first part of this chapter we laid out the fundamental concepts related to the physics
of single quantum emitters. Most prominently, we saw that light emitted by single quantum
emitters possesses completely different properties compared to classical light. Indeed, single
emitters deliver photons one at a time, or antibunched light. While the concept of photon is
more than a century old, only in the past few years single quantum emitters began attracting
increasing interest as viable sources of on demand single photons. A single-photon source is a
quantum object capable of delivering number states with n = 1, ideally in response to an ex-
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ternal trigger. As wewill see shortly, such states are the fundamental elements in many appli-
cations. With the recent progress in the optical detection, manipulation and characterization
of single quantum objects, several schemes for single-photon sources were proposed and
successfully demonstrated. In this section we give a brief overview on this fast-growing field;
for a more in- depth discussion the reader is referred to the review by Lounis and Orrit [4].

1.3.1. Historical notes

Single photons were successfully generated for the first time by Clauser in 1974 based on a
cascade transitions in calcium atoms [12]. This early single-photon source delivered heralded
photons: the atom emits two photons at different frequencies and, by spectrally filtering the
observation of one of the two photons, the presence of the companion photon is signalled. As
already mentioned, a few years later (1977) the first demonstration of photon antibunching
was produced by Kimble et al. from the fluorescence of an attenuated beam of sodium atoms,
so that at most one atom at a time was excited [8]. Some important results were obtained
using this kind of source, such as the testing of Bell’s inequalities [13] and the observation of
interference between individual photons [14]. Nonetheless, this single-photon system was
limited by its low brightness and by the density and transit time of the atomic beam, which
could not be easily controlled. Later in the mid-1980s, Diedrich and Walther were able to ob-
serve, for an extended period of time, the fluorescence coming from a single atomic ion stored
in a radio-frequency trap [15]. At the same time, an important step forward was made by
Hong and Mandel who managed to realize a localized one-photon state by means of Sponta-
neous Parametric Down-Conversion (SPDC), a process in which a short high-frequency laser
pulse (pump) impinging on a nonlinear crystals generates pairs of lower-frequency correlated
photons called signal and idler, which can be used as heralded single photons. Parametric
sources have been used extensively in quantum-optics experiments, yet they have their own
limitations as well. Indeed, the two photons produced by SPDC cannot be considered fully
independent— aswewill see, a fundamental requirement for Quantum Information Process-
ing (QIP)— as they are produced by the same pump photon in the same region of the crystal.

Single-photon states can also be approximated by coherent states having a very low average
photon number, such as faint laser pulses. However, this and all the other macroscopic
sources described above (i.e. entangled photon pairs produced by atomic cascade or SPDC)
have Poissonian photon statistics, meaning that the probability of producing more than
one photon is never nil. Therefore, they typically require strong attenuation to keep the
probability of producing more than a photon to a minimum. More recently, important
encouraging results towards the realization of a single-photon source have been produced
with single atoms in the gas phase [17, 18]. Atom traps are however rather difficult to operate,
requiring complicated experimental apparatuses where efficient collection of light is hard to
achieve. In order to tackle these shortcomings and build a truly single-photon source, in the
past decades microscopic quantum emitters have been considered as a viable alternative,
mostly in the solid state. In the next section we will shortly review them.
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1.3.2. Microscopic single-photon sources in condensed matter

Single excited quantum emitters produce light with sub-Poissonian photon statistics. Indeed,
a single excitation cycle takes a finite amount of time, therefore the emitted photons are
spaced out in time. Microscopic-single photon sources are built around this kind of quantum
objects. Compared to the other conventional sources, for the same brightness the probability
of emitting two ore more photons can be completely neglected, as the processes involved
intrinsically lead to the emission of photons one at a time. The emission process is usually
spontaneous, so that two subsequent photons are truly indistinguishable, since they are
produced by two independent excitation events. Single-photon sources in the solid states
are naturally suited to be integrated in embedded structures, a configuration which greatly
facilitates coupling to cavities or waveguides and the realization of quantum circuits for
quantum computing.

When appropriately operated, microscopic single emitters are able to deliver single pho-
tons at high repetition rates. First of all, the emitter must be efficiently prepared — ideally
with certainty — into an excited state. Two schemes are usually employed. With incoherent
pumping, fast relaxation from a higher state is leveraged to prepare the emitter in the excited
state. A typical example, which we will study in greater detail in chapter 2, is that of a dye
molecule pumped to a vibrational level of the lowest excited electronic state, from which it
quickly relaxes to the vibrational ground state, i.e. the emitting state. Having a lifetime about
1000 times longer than the vibronic state, several pump photons contribute to efficiently
transfer the population from the ground state into a 100% population in the emitting state.
With coherent pumping, the emitter is directly prepared into the emitting state. In this case,
one has to separate the emitted photon from the pump photon, either temporally by delaying
detection or spectrally by looking at the red-shifted fluorescence resulting from the decay to a
vibrational level of the ground state (with a consequent loss of signal due to the cutting of the
resonant fluorescence). For example, a π-pulse or rapid adiabatic resonant excitation could
be used [4]. A second requirement for efficient operation of single-photon sources based
on single quantum emitters is that the emitting species should have a high quantum yield.
This depends on the photophysical properties of the object, but can be greatly improved by
enhancing spontaneous emission through coupling with resonant cavities.

Organic molecules Organic dyes and aromatic molecules show very promising charac-
teristics for being employed as single-photon sources. Since they are the main focus of this
work, they will be described in greater detail in chapters 2 and 3. The molecular species usu-
ally considered as candidates for single-photon sources typically feature a strong electrical
dipole and a high fluorescence yield. As opposed to atoms, molecular eigenstates include
also vibrations and phonons, therefore electronic transition are broadened by the creation
of additional vibrations and phonons. However, at cryogenic temperatures, the so-called
Zero-Phonon Line (ZPL) of the purely-electronic transition becomes very narrow, and often
lifetime-limited as dephasing due to interactions with the environment vanishes. A lifetime-
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(a) (b) (c)

Figure 1.3.: (a) Fluorescence from single terrylene molecules in a p-terphenyl crystal at room tem-
perature. Reprinted by permission from Macmillan Publishers Ltd: B. Lounis and W. Moerner.
“Single photons on demand from a single molecule at room temperature”. In: Nature 407, 6803 (2000),
pp. 491–493. [19] (b) Atomic structure of a Nitrogen-Vacancy (NV) centre in diamond. A carbon atom
is replaced with a nitrogen atom, and a neighbouring atom is missing. Reprinted by permission
from Macmillan Publishers Ltd: N. Bar-Gill et al. “Suppression of spin-bath dynamics for improved
coherence of multi-spin-qubit systems”. In: Nature Communications 3 (2012), p. 858. [20]. (c) SEM
image of a matrix of InGaAs pyramidal quantum dots. Reprinted by permission from Macmillan
Publishers Ltd: G. Juska et al. “Towards quantum-dot arrays of entangled photon emitters”. In:
Nature Photonics 7, 7 (2013), pp. 527–531. [21].

limited transition is only broadened by its natural lifetime of spontaneous emission, hence
two subsequent photons are truly indistinguishable. As will shall see, a narrow ZPL also acts
as a sensitive probe for the nearby nanoenvironment. At room temperature, absorption and
emission bands are very broad, however fluorescence still shows very strong antibunching
due to the very short lifetime of higher vibronic levels, which make the incoherent excitation
scheme feasible even at room temperature. Photostability of the molecule is a major issue
especially at room temperature, but if the molecules are embedded in a crystalline matrix,
they are shielded from quenching agents such as oxygen and by virtue of this their stability
is greatly increased.

Colour centres Point defects and vacancies in inorganic crystals often give rise to colour
centres with very strong absorption and fluorescence bands. Since these are inorganic
materials, a great advantage is that of a high photostability andmechanical rigidity, especially
in the case of diamond. Nitrogen-Vacancy (NV) centres in diamonds were the first single
colour centre ever detected [22]. Their behaviour as single-photon source was demonstrated
by means of antibunching measurements [23, 24], and important experiments using NV
centres in the field of QIP have been performed [25, 26]. Their quantum yield is close to unity,
even though they have dark states, and the spontaneous emission lifetime is 11.6 ns. The ZPL
around 637 nm is visible even at room temperature thanks to the stiffness of the diamond
lattice, however the transition is very far from being lifetime-limited because of the influence
of the matrix [27] and is affected by spectral diffusion. Furthermore, the branching ratio into
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Chapter 1. Quantum light from single emitters

the ZPL is poor even at low temperatures (Debye-Waller factor ≈ 0.04). Since diamond has
a high refractive index, extraction of fluorescence light is rather difficult, however resorting
to nanocrystals [28, 29] improves collection efficiency. For more detailed information on NV
centres in diamonds see the review by Doherty et al. [30]. Very recently, Silicon-Vacancy
(SiV) centres in diamonds have emerged as a more attractive alternative. Their ZPL is narrow
and very intense (Debye-Waller factor ≈ 0.8) and, being at 738 nm, it falls in a region where
background fluorescence from diamond is low. Single photon emission from SiV centres has
been demonstrated [31, 32], and as such they are good single-photon source candidates [33].

Quantum dots A Quantum Dot (QD) consists of nanoscale islands of a lower band gap
semiconductor, such asGaAs, embedded in higher band gap semiconductor, such asAlGaAs.
The band offset gives rise to a three-dimensional electronic confinement. In the initial state,
electrons are present in the valence band and holes in the conduction band. By optical
or electrical excitation, electron-hole pairs are formed which quickly nonradiatively decay
into the QD excited state, forming an exciton state. A photon is emitted following the
radiative decay of the exciton state. Quantum dots are grown epitaxially on single-crystalline
substrate by chemical vapour deposition. Thanks to this well-controlled growth process,
the photostability and radiative decay rate of quantum dots are very high; quantum yield is
also close to unity. Furthermore, the fabrication process is standard in the semiconductor
industry, therefore quantum dots can be easily integrated in embedded structures. At
cryogenic temperatures, a single QD gives a narrow line, close to natural width. Quantum
dots are often placed inside a resonant cavity, which enhances the spontaneous emission
rate by Purcell effect and helps collecting the photon in a well-defined spatial mode, since
extraction of the emitted light is not easy because of the high index of refraction of the
embedding semiconductor. One disadvantage of quantum dots is that they suffer from
spectral diffusion and blinking [34–36]. Furthermore, in self-assembled quantum dots,
multiple excitations are possible, leading to multi-exciton lines. For a single-photon source,
these must be eliminated to ensure that only photons from the single-exciton transition are
selected. Non-classical emission of light form quantum dots has been demonstrated [2],
even at room temperature [37]. For more information on quantum dots as single-photon
sources refer to the review by Buckley et al. [38].

1.3.3. Applications of single-photon sources

A wealth of applications in spectroscopy and quantum optics based on bright single-photon
sources have been proposed, and probably completely new and unsuspected applications
will emerge in the future.

A single-photon source delivers amplitude-squeezed light. In fact, it acts as a strong
nonlinear filter, eliminating the shot noise from the excitation source (laser). An ideal single-
photon source can therefore be used to measure arbitrarily weak absorption signals which
would be impossible to measure with a Poissonian source such as a laser beam.
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1.3. Single-photon sources

Single-photon sources can be used to implement Random Number Generators (RNGs).
Random numbers generated from numerical algorithms by a computer are called pseudo-
random; indeed, these form a deterministic series of numbers that appear to be random, but in
practice are periodic sequences with a very high period. While these sequences are perfectly
useful in many applications, their non-true randomness makes them not suitable for all
applications concerning cryptography. True random numbers can be generated by observing
an inherently random physical process, such as radioactive decay. A quantum coin tossing
experiment can be implemented using a 50:50 beam splitter [39]. The probability of a single
photon of being reflected or transmitted by the beam splitter is truly randomand independent
of previous events, i.e. it can be used to generate truly random bits. Alternatively, photon
arrival times can also be used to build a random number generator [40]. A single-photon
source can therefore be used to generate truly random numbers at high rates.
Quantum Information Processing (QIP) is perhaps the domain where single-photon

sources find their most interesting and promising applications. Photons indeed naturally
lend themselves for the implementation of a quantum bit, or qbit [41]. For example, quantum
information can be encoded in the polarization eigenstates of a single photon (vertical and
horizontal in a given basis) or in the absence/presence of a photon (vacuum state and
n = 1 state). Being propagating particles, photons could carry the encoded information
across nodes in a hypothetical quantum network [41, 42]. What distinguishes a qbit from a
classical bit is that a qbit can exist in a quantum superposition state. This opens tremendous
possibilities, indeed specifically designed quantum algorithms have been devised to efficiently
solve problems that are inaccessible to classical computers. Photons are easily manipulated,
but the processing of quantum information by logical gates requires strong interactions
between single photons. Huge nonlinearities are needed to make them interact. A solution
to this problem was proposed by Knill et al. [43], who suggested a completely different
approach known as Linear Optics Quantum Computation (LOQC). They showed how a
quantum computer could be implemented solely by means of linear optics, where the only
nonlinearity lies in the detection process. Single-photon sources— together with other linear
optical elements such as beam splitters, phase shifters and mirrors — are a key ingredient
to this scheme. In the realm of hypothetical quantum computers by means of LOQC, a
controlled-NOT (or CNOT) gate has been proposed as the universal gate [44], much like the
NAND gate for classical computing. It negates a target qbit depending on the value of a
control qbit, a highly nonlinear operation. Many quantum effects exploited for quantum
computation rely on the indistinguishability of single photons; that is the reason why
we emphasized the importance of having lifetime-limited transitions, since they produce
photons with a spectrum solely affected by the natural broadening due to spontaneous
decay. A notable example is that of photon coalescence: when two indistinguishable single
photons impinge on different input ports of a 50:50 beam splitter, two-photon interference
occurs [45], so that the two photons end up exiting together from the same output port [46,
47]. Interference needs to be fully constructive on one exit port and destructive on the other
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port, which can happen only when the two photon wavepackets are identical. Finally, it is
worth mentioning that among all applications of quantum information processing, quantum
cryptography is the closest to practical realization, and as such it is actively driving the
development of single-photon sources [48]. Of prominent importance are secure methods for
exchanging encryption keys, known as Quantum Key Distribution (QKD), whose security
relies on the impossibility of measuring an unknown quantum state without altering it.
The concept of a quantum network goes hand in hand with QIP. Indeed, while photons

act as flying qbits, it is also needs to be possible to store, retrieve and process quantum
information at the nodes of such network. The realization of an interface for controlled
light-matter interaction at the single-photon level — allowing reversible, coherent transfer of
quantum information between light and matter — is therefore a fundamental building block
for quantum networks. Single photons in the strong coupling regime of Cavity Quantum
Electrodynamics (CQED) are a promising route to this goal. A single-photon source placed
in a resonant cavity not only acts as an emitter but also as a receiver of single-photon states,
therefore mediating photon-photon interactions. In this respect, single atoms strongly
interacting with optical cavities have long been considered an attractive system [49–57]. In
more recent years, emitters in condensed matter coupled to photonic structures such as
photonic crystal cavities, waveguides and fibres have also emerged as a possible alternative,
since they are more easily operated and naturally lend themselves for the integration in
embedded, on-chip circuits [58–69].

In the following chapter we will specifically address organic molecules embedded in
a crystalline matrix, highlighting the properties that make them usable as single-photon
sources and sensitive nanoprobes.
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Single molecules

In this chapter we focus on single dye molecules embedded in solid host matrices. We discuss some of
the peculiar optical properties that emerge from this configuration, and highlight their potential for
several applications. In particular, single molecules in a crystalline matrix show high sensitivity to
perturbations in the local environment and as such they can be used as sensitive probes to measure
localized electric and strain fields or other physical phenomena occurring at the nanoscale. When
cooled down to cryogenic temperatures, dephasing of the transition due to interactions with the
phonons of the matrix vanishes. As a consequence, the purely electronic line or 00-Zero-Phonon
Line (ZPL) between the first excited state and the ground state becomes extremely narrow, reaching
the limit set by its natural broadening. Such narrow lines act as resonators with high quality factors,
which can therefore be used to probe very small changes in the nanoenvironment. Furthermore, a
lifetime-limited ZPL produces photons that are truly indistinguishable, a fundamental requirement
for many schemes for quantum information processing. Detection of single molecules is mainly
done through fluorescence excitation spectroscopy, which is here briefly described. Finally, some
recent experimental results are mentioned, showing the state of current research in the use of single
molecules for sensing and as single-photon sources.

2.1. Single molecules as sensitive probes and single-photon
sources

Compared to the first systems of quantum emitters that were briefly described in section
1.3.1, such as attenuated atomic beams or single ions in traps, experiments with single
molecules in condensed matter developed at a slower rate. Indeed, as we will describe
in section 2.3, several experimental difficulties need to be addressed in order to be able
to observe a single molecule; namely, one has to first isolate a single molecule and then
detect its weak fluorescence signal over the background, while ensuring the stability of the
system against photobleaching for extended periods of time. A single molecule was for the
first time detected by optical means in 1989 by Moerner and Kador [70], who performed a
sensitive measurement of its optical absorption at cryogenic temperatures. A year later, Orrit
and Bernard observed single pentacene molecules embedded in a p-terphenyl crystal by
detecting their fluorescence after excitation [71], with a higher Signal-to-Noise Ratio (SNR)
compared to absorption-based methods. Since then, over the last 25 years, the field has
expanded considerably as new applications were demonstrated, especially in biophysics.
Single-molecule methods are of current importance, in fact they were the subject of last
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year’s Nobel Prize in Chemistry awarded to Betzig, Hell and Moerner himself for their
contributions in the development of super-resolved fluorescence microscopy [72].
The experimental access to single molecules is an achievement of fundamental interest.

Before the advent of single-molecule methods, experiments usually involved a huge number
of (presumably identical) molecules, called ensembles. Conversely, the observation of a single
molecule completely eliminates ensemble averaging. As experimental procedures became
available on a single-molecule basis, it was immediately demonstrated that molecules of the
same chemical species do exhibit different physical properties. Indeed, a single molecule
can be thought of as a sensitive reporter of the surrounding nanoenvironment, i.e. a probe for
the exact configuration of atoms, ions, electrostatic charges and strain fields in its proximity.
The physical properties of single molecules thus follow a statistical distribution, of which
ensemble methods are capable of probing only its moments, such as the mean.

With single-moleculemethods, several behaviours and properties that would be otherwise
buried within ensemble averaging become accessible. For example, the heterogeneity of
single biomolecules can be probed; this provides informations on the different folded states
and configurations in which a single protein is found, or on the different catalytic states of an
enzymatic system [73]. The observation of individual molecules also eases the measurement
of some time-dependent photophysical properties such as the rate of intersystem crossing
and triplet lifetime, since by definition the need for synchronization of many different
molecules is removed. Slow fluctuations of the transition frequency of single molecules
embedded in a solid matrix — a process known as spectral diffusion— provides dynamical
information on its neighbourhood. For example, by illuminating a single molecule with a
laser with fixed frequency, the shifting of the absorption line in and out of resonance results
in detectable amplitude fluctuations in the fluorescence signal which, upon analysis, can
be related to the physical processes happening on the nanometre scale. Alternatively, a
“spectral trajectory” can be reconstructed— i.e. the change of frequency as a function of time
— another aspect that cannot be accessed in conventional ensemble studies.

Of no secondary importance, a single-molecule is a simple quantum object, and as such
it can be used to probe quantum-mechanical effects and nonlinear optical interactions.
Quantum light can be produced from the excitation and subsequent relaxation of a single
fluorophore. Periodic excitation of a single fluorescent molecule, e.g. by means of a pulsed
laser source, can be used to trigger the emission of single-photon states, i.e. a single molecule
can be operated as a single-photon source (section 1.3). Nonlinear optical effects can also
be observed, such as the shifting of the molecular transition frequency by the electric field
of a laser beam [74]. In section 2.4 an overview of some recent experimental results will be
presented.
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Figure 2.1.: (a) Jablonski diagram showing molecular levels and transitions between them. Vertical
coloured arrows indicate radiative transitions (green: excitation; orange: resonant excitation and
emission; red: red-shifted fluorescence). Vertical wiggly or dashed lines indicate non-radiative
conversion processes. For the purposes of this work we are mainly going to focus on the transitions
shown in panel (b), which approximate the behaviour of a Two-Level System (TLS) as far as the
electronic levels are concerned.

2.2. Optical properties of dye molecules in solid matrices

The optical properties of a molecule originate from the structure of its energy levels. Elec-
tronic, vibrational and rotational excitations together contribute to the shaping of the overall
energy structure of a molecule. Such excitations occur at different energy scales. Electronic
transitions generally occur in the visible range of the electromagnetic spectrum, while vibra-
tional and rotational excitations lie in the infrared and microwave region, respectively; the
exact energy ranges depend on the molecular size and shape. Rotational levels are not of
interest for the purposes of this work— since we are going to studymolecules embedded in a
solid matrix which effectively hinders molecular rotations — and will therefore be neglected.
In the following we are going to describe the physical mechanisms behind electronic and
vibrational transitions in a molecule. Later in this short introduction we will specifically
discuss how a solid host matrix influences the energy levels of a molecule.

2.2.1. Energy levels and transitions

Let us consider a single dye molecule. A multilevel system such as the one depicted in
figure 2.1a is suitable to describe its energy levels. Such representation is called a Jablonski
diagram [75], and shows the vibronic eigenstates with energy increasing along the vertical
axis. In a molecule at its electronic ground state, electrons are usually paired with their
spin antiparallel inside the bonding molecular orbital; the fundamental electronic level is
therefore a singlet state, which we denote with |S0〉. Electronic excited states can be both
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singlet |Si〉 or triplet states |Ti〉. In the organicmolecule jargon, the ground state is often called
Highest Occupied Molecular Orbital (HOMO), whereas the first excited state is the Lowest
Unoccupied Molecular Orbital (LUMO). This picture is further complicated by the presence
of energy levels linked to the vibrational degrees of freedomof themolecule; indeed, atoms in
a molecule vibrate about their bonds, and vibrational energy must be considered in addition
to electronic energy: each electronic state is accompanied by a band of vibrational levels
sitting on top of it, indicated as νi. Transitions between energy levels happen following either
an excitation event such as absorption, or a relaxation process through which the molecule
dissipates the excess energy. Because of spin selection rules, the strongest transitions are
of the singlet-singlet type, whereas singlet-triplet transitions are only weakly allowed and
therefore happen with much lower probability. At room temperature, the thermal energy is
small compared to a quantum of vibrational energy, therefore excitations usually start from
the vibrational ground state of the HOMO. A purely electronic transition brings an electron
from the ground state |S0〉 to a higher electronic excited state |Si〉 via the absorption of a
photonwith energy E = |ESi − ES0 | = hνexc, usually in the visible spectrum. Especially when
considering the first excited state |S1〉, this excitation scheme is called resonant excitation
or coherent pumping. A vibronic transition instead both promotes an electron to a higher
electronic level and brings the molecule to an excited vibrational state, which is known
as non-resonant excitation or incoherent pumping. Absorption is very fast, happening on the
femtosecond time scale. From the |Si,ν=n〉 state, the molecule usually quickly decays to the
|S1,ν=0〉 state mainly through one of these non-radiative1 processes:

vibrational relaxation occurs when the molecule decays to a lower vibrational state within
the same electronic level. Dissipation is mostly in the form of transfer of thermal
energy through collisions with the surrounding environment. This process is very fast,
happening on the scale of picoseconds, therefore it immediately follows an absorption
event.

internal conversion is very similar to vibrational relaxation, but it involves a transition between
vibrational levels of different electronic states. This process is more likely to dominate
at high electronic states, where it is facilitated by the strong energy overlap between
electronic states and the manifold of vibrational levels.

Through this chain of relaxation processes taking place after photon absorption, themolecule
is prepared in the |S1,ν=0〉 state. This state has a much longer lifetime, with typical values on
the scale of 1–10 ns. Indeed, at least for efficient fluorescent molecules, internal conversion
from |S1〉 to |S0〉 is very slow— or, equivalently, very unlikely — because of poor overlap
of vibrational and electronic levels and because of the large energy difference between the
electronic ground and first excited states. Therefore other mechanisms now compete to
determine the lifetime of the |S1,ν=0〉 state and its final relaxation to the ground state:
1Assuming we are not dealing with isolated molecules in the gas phase. Otherwise vibrational energy can be
lost with the emission of an infrared photon.
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fluorescence is the relaxation to the electronic ground state through the emission of a photon,
typically in the visible spectrum. Finally, this is the radiative transition of interest for
all applications. Several fluorescence lines are observed, corresponding to transitions
to the different vibrational levels of the |S0〉 state. Fluorescence is thus red-shifted
compared to the excitation wavelength, which is known as Stokes shift.

intersystem crossing or ISC involves a change in the spin multiplicity between excited states,
in this particular case from |S1〉 to |T1〉. According to electronic selection rules it is a
forbidden transition, but spin-orbit coupling makes it weakly allowed. For the same
reason, the radiative deexcitation |T1〉 → |S0〉 is very slow, taking place in the range
from 1µs to 10 s, and is termed phosphorescence.

In general, relaxation through other non-radiative processes is still possible, for example via
internal conversion or energy transfer to another structure, as we will see in chapter 4. We
define the fluorescence efficiency or Quantum Yield (QY) as [76, 77]:

φF =
Γrad

Γrad + Γnrad
(2.1)

where Γrad and Γnrad are the total decay rate for radiative and non-radiative emission. In
practice the QY measures the efficiency with which fluorescence is produced, by counting
how many fluorescence photons are generated per absorbed photon.

For reasonswhichwill become clear in the immediate following, it is interesting to evaluate
which portion of fluorescence goes into the purely electronic transition line by defining the
branching ratio between the decay rate k21 to the ground state |S0,ν=0〉 and the rate k2tot of
decay to all vibrational sublevels of the ground state:

BR =
k21

k2tot
(2.2)

The branching ratio can be understood in terms of the Frank-Condon principle, which states
that electronic transitions occur without altering the molecular configuration, i.e. they don’t
change the interatomic distance in the molecule. This follows from the Born-Oppenheimer
approximation, according to which electronic and nuclear motion are treated separately.
The approximation holds because electrons have a much smaller mass than nuclei and
therefore move on shorter time scales, which allows to factor the total wavefunction into an
electronic and a nuclear component. As a consequence of the Frank-Condon principle, in
a configuration diagram as the one shown in figure 2.2a transitions are drawn as vertical
arrows since they are so fast that the atomic coordinates (on the horizontal axis) remain
unchanged. The intensity of the purely electronic line (or 0-0 line) is measured in terms of
the Frank-Condon factor αFC which expresses the overlap integral of the ground vibrational
wavefunction between the electronic states. If the wavefunction overlap is poor, then the
purely electronic line has a lower fluorescence probability, in favour of other vibronic red-
shifted lines. A typical value for αFC is 0.4 for the case of terrylene in hexadecane at cryogenic
temperatures [78].
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Figure 2.2.: (a) Configuration diagram showing the vibronic levels of a single molecule as a function
of the nuclear displacement q. Transitions are drawn as vertical arrows, since according to the
Frank-Condon principle they happen on a time scale much shorter than the nuclear motion, so that
the atomic coordinate remains unchanged. (b) Schematic shape of an electronic absorption line,
showing the Zero-Phonon Line and the Phonon Side Band (not to scale). The relative intensity of the
two components is heavily dependent on temperature and is determined by the Debye-Waller factor.

2.2.2. Line shape and homogeneous broadening

We now turn to describe the line shape of radiative transitions. In a molecule embed-
ded in a solid matrix, each transition line from |S1,ν=0〉 features two components as shown
schematically in figure 2.2b: the Zero-Phonon Line (ZPL) and the Phonon Side Band (PSB)
[79]. As the name suggests, the ZPL is a transition without net creation of phonons, i.e.
quanta of vibrational excitations in the host lattice. The shape of the ZPL is a Lorentzian,
as further elaborated below. The PSB, also known as phonon wing, instead originates from
linear electron-phonon coupling which allows transfer of molecular excitations into lattice
vibrations; the strength of the coupling determines the displacement ∆ of the phonon wing
relative to the transition frequency ν0. In this case the shape is that of a Poisson distribution,
since it counts a discrete number of events, i.e. electronic transitions with phonons; the line
shape can anyway be approximated with a Gaussian in most cases. The PSB is blue-shifted
relative to the ZPL in an excitation transition, while of course it is red-shifted in fluorescence.
Whether the intensity of a given line goes into the ZPL or the PSB strongly depends on
temperature. At room temperature, the probability of having a zero-phonon transition
is null, since there is enough thermal energy to excite many phonons in the lattice bath.
Conversely, below 40K the ZPL starts to appear. The fraction of light going into the ZPL is
given by the Debye-Waller factor:

αDW =
IZPL

IZPL + IPSB
(2.3)
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The Zero-Phonon Line of the purely electronic transition is called 00-ZPL, and it is the source
of a fraction α equal to αFCαDW of the emitted fluorescence light. Rigid molecules tend to
have larger values of α, thus approaching the behaviour of a Two-Level System (TLS) (figure
2.1b).
Of all the Zero-Phonon Lines, the 00-ZPL is the most important one, since it is also the

narrowest one. Transitions ending in a vibrational level of the electronic ground state are
indeed very broad, because of the short lifetime of the final state which is on the order of
picoseconds. Conversely, the purely electronic line has a longer lifetime, in the 1–10 ns range.
The lifetime τF of the |S1,ν=0〉 state is written in terms of the decay rates (reciprocals of τ) as

1
τF

=
1

τrad
+

1
τnrad

(2.4)

taking into account both radiative and non-radiative decays. All these processes determine
a depopulation of the excited state and therefore contribute to the spectral broadening of the
transition line. Unfortunately, this is not the only source of broadening. In a solid environ-
ment we also have to take into account dephasing of the wevefunction due to collisions with
impurities or lattice vibrations (phonons). These scattering processes destroy the coherence
of the wavefunction (yet without altering the population) therefore significantly increasing
the spectral width of the transition. This is often called pure dephasing to make a distinction
with the damping of the wavefunction caused by population depletion. In the density matrix
formalism, the off-diagonal elements, or coherences, are responsible for this kind of damping
[80]. If we name T2 the total characteristic time of coherences, then the total dephasing rate
is written as [1]:

Γ2 =
1
T2

=
1

2T1
+

1
T∗2

(2.5)

where T1 = τF accounts for dephasing due to population decay, whereas T∗2 accounts for
dephasing by population-conserving scattering processes2. The normalized line shape
function of a ZPL is a Lorentzian3 [76, 79]:

I(ν− ν0) =
1

4π2
∆νhom

(ν− ν0)2 + (∆νhom/2)2 (2.6)

where the homogeneous linewidth γhom is related to the dephasing time of the optical
transition by the following equation:

γhom = ∆νhom =
1

πT2
=

1
2πT1

+
1

πT∗2
(2.7)

2This notation dates back to Bloch’s original treatment of nuclear magnetic resonance [81]. A T2 process is
also called transverse relaxation because in the Bloch sphere representation it is given by a projection of the
Bloch vector on the z axis (thus conserving population); a T1 process is instead referred to as a longitudinal
relaxation since it does not conserve population [1].

3In a solid environment pseudolocal phonons can lead to deviations from a pure Lorentzian, resulting in a
more complicated shape [82].
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While T1 is in practice independent of temperature, the pure dephasing time T∗2 instead dom-
inates at room temperature but can be strongly suppressed by cryogenic cooling. The actual
amount of pure dephasing depends on the excitation of low frequencymodes (local phonons,
molecular librations4) that couple to the electronic transition of the dye molecule. In particu-
lar, quadratic electron-phonon coupling results in a temperature dependent broadening of
the ZPL by phonon scattering [79]. In a crystalline host matrix at cryogenic temperatures
(T ≤ 4 K) T∗2 tends to infinity, therefore the ZPL is only limited by its natural broadening
which depends on the lifetime of the electronic excited state:

γnat = ∆νnat =
1

2πT1
(2.8)

In the simplest cases, we can express the linewidth as a function of temperature using the
Arrhenius law [83]:

γhom = γhom(0) + A exp
(
− Ea

kBT

)
(2.9)

where Ea is the activation energy (equal to the energy of the local phonon or molecular
libration), γhom(0) = γnat and A depends on the strength of the electron-phonon coupling.
When cooled down to cryogenic temperatures, a dye molecule in a solid matrix is therefore
able to deliver lifetime-limited photons through the fluorescence of the 00-ZPL.

2.2.3. Inhomogeneous broadening

To complete the picture about the spectral characteristics of molecules in solid matrices, we
are left with discussing the effects that the host matrix itself has on the energy levels of the
guest molecule. Indeed, the local environment surrounding a singlemolecule determines the
exact energy of the electronic levels, and consequently the exact frequency of the excitation
line. Local defects, random internal strain fields, crystal edges, impurities and dislocations
in the host matrix all contribute to create slightly different electrostatic environments for
different molecules. This results in the inhomogeneous broadening of the transition due to
each molecule feeling a different nanoenvironment in its immediate surroundings. Different
molecules will therefore present transition frequencies centred on different values. The
distribution of frequencies is a Gaussian, since the environmental fluctuations causing
this kind of broadening are different for each individual molecule. The inhomogeneous
broadening of the transition can be smaller than 1GHz in the best crystals, and as high
as 10 THz (≈ 330 cm−1) in polymers [84, 85]. The amount of inhomogeneous broadening
is determined by the particular choice of the dye-matrix pair and even by the sample
preparation technique. For example, slowly grown crystals feature a linewidth distribution
that is typically smaller than for shock-frozen ones.

4Molecular librations are hindered rotations, or small oscillations around a preferential orientation.
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As we will see, at cryogenic temperatures the inhomogeneous broadening of the lifetime-
limited 00-ZPLs can be exploited to spectrally address individual molecules. The inhomo-
geneous distribution of frequencies can also be viewed under a different light. Indeed, it
shows how a molecule could be used as an extremely sensitive probe for the nanoscopic
environment. Given that a lifetime-limited transition can be as narrow as a few MHz and
considering that the optical transition frequency is of the order of 500 THz (visible light),
the quality factor Q of the 00-ZPL can be as high as 108. It is therefore clear that very small
changes in the nanoenvironment, such as weak perturbations produced by local electric,
magnetic or strain fields, do cause a detectable shift in the resonance [86]. In absence of
other unwanted phenomena such as spectral diffusion, the line shift can therefore be used
as a sensitive probing tool for the local environment at the nanometre scale [87–90].

2.3. Single-molecule detection: fluorescence excitation microscopy

Optical detection of single molecules is conventionally accomplished by means of fluores-
cence excitation spectroscopy: a light source (laser) excites the molecule and the resulting
fluorescence is observed. The task of detecting a single molecule presents several experimen-
tal challenges. Broadly speaking, two apparently simple conditions must hold. Firstly, at
most one molecule should be excited by the laser and, secondly, the resulting signal should
be efficiently collected and detected against background and dark counts from the detectors.
In addition, the molecular system under investigation should be photostable over extended
period of times, have a quantum yield ideally close to unity and negligible bottleneck effects
— originating from triplet or metastable states — which limit the fluorescence rate.

The first requirement, i.e. the optical isolation of a single molecule, can be ensured either
spatially or spectrally, or by a combination of the two. In the first case, a very diluted sample
where the molecule is embedded as an impurity within a transparent matrix is prepared, so
as to ensure that a single molecule lies within the excitation spot. Tightly focused laser beams
through a microscope objective (spot diameter ≈ µm) also help in reducing the size of the
probed volume. At cryogenic temperatures, inhomogeneous broadening due to interactions
with the environment causes random shifts in the lifetime-limited lines. A narrow-band
laser (linewidth ≈ 1 MHz) tuned into the wings of the inhomogeneous line, where fewer
molecules are found, can therefore be used to successfully excite single molecules by spectral
selection.

Excitation is usually done throughmicroscope objectives. They provide diffraction-limited
spot sizes and collect light over a wide solid angle, especially oil-immersion objectives. In
fact, the same objective is often used both in excitation and collection, a configuration called
epifluorescence microscopy. In confocal excitation the sample is illuminated point by point
with a diffraction-limited spot. Since only a small spot is illuminated, other parts of the
sample are addressed by scanning either the spot itself or by moving the sample underneath
the excitation spot. Additionally, in single-molecule detection experiments this technique
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is often used in conjunction with a pinhole in the detection path, so as to prevent light
originating from out-of-focus planes on the sample to reach the detector, thus increasing
contrast and resolution. Conversely, in wide-field illumination a greater portion of the sample
is illuminated, as in a traditional microscope. Other experimental techniques include Total
Internal Reflection Fluorescence (TIRF) microscopy, in which a molecule is probed with the
evanescent field generated upon total internal reflection at a boundary with a high refractive
index contrast5, and Scanning Near-field Optical Microscopy (SNOM), in which excitation is
done through a small aperture such as a tapered, metal-coated fibre.

Collection and detection are other critical aspects of a single-molecule experiment. As an-
ticipated, a high-Numerical Aperture (NA) objective is used to efficiently collect fluorescence
from the sample. In general the excited dipole will not emit in the direction of the objective,
therefore having a high NA also helps in ensuring that light emitted at high angles is still
collected. Spectral filtering is needed to separate the red-shifted fluorescence signal from the
excitation light. Several optical elements, such as notch filters, longpass filters and dichroic
mirrors can be used to this purpose. The elimination of background light is particularly
crucial. Background sources include residual laser emission in the spectral range of the
detected fluorescence, residual transmission of backscattered laser light through the filters
and fluorescence from the filters themselves. Additionally, impurities on the sample can also
give rise to unwanted fluorescence, therefore special care has to be taken while preparing
and handling the samples.

2.4. Overview of recent research

Dibenzoterrylene (DBT) molecules embedded in anthracene crystals (DBT:anth), the system
that we are going to study in greater detail in the next chapter, have been proposed and
successfully operated as sensitive nanodetectors [91]. Recently, that system has been used
as a sort of nanomicrophone to probe acoustic strain, i.e. to detect localized low-frequency
acoustic vibrations, which is a first step towards detection and control of nanomechanical
oscillators by optical means [88, 90]. Detection of Stark shifts in single DBT molecules has
been used to investigate transport of electrical charge in organic crystals such as anthracene
in a field-effect transistor configuration [92].

A lot of ongoing research closely related to single-molecule detection and sensing makes
use of optical antennas [93, 94] to optimize the energy transfer between a localized emitter
and propagating light. Metallic nanoparticles have been used to enhance fluorescence of
weak emitters [95–97] and to enhance the rate of spontaneous emission [98, 99]. Furthermore,
active research in the field of super-resolution microscopy using optical antennas is ongoing
[100, 101]. Notable examples of important results enabled by the development of these
techniques are the recent findings on single light-harvesting complexes [102], in which
quantum behaviours such as coherent energy transfer [103] and photon antibunching [104]

5This technique is typically employed for vertically oriented molecules to optimise polarization matching.
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have been observed. Finally, optical antennas can also be used to direct single-molecule
emission and enhance collection efficiency [105–107].
Organic dye molecules such as Dibenzanthanthrene (DBATT) and DBT have been suc-

cessfully used as single-photon sources [108, 109] and as such have been the subject of
several important experiments. Operation of single DBATTmolecules as an optical transistor
has been demonstrated [110]. Indistinguishable photons from remote DBATT molecules
have been used to demonstrate two-photon interference [111] and to perform single-photon
spectroscopy [112]. The latter is an important step towards the realization of nonlinear
coupling between few emitters and few propagating photons [113]. Coherent manipulation
of single-molecule states is also actively investigated [114–116]. Very recently, new schemes
for efficient coherent interaction between light and single DBT molecules in a dielectric
nanoguide have been proposed [117]. Indeed, from the point of view of applications, an
important achievement would be the implementation of large optical nonlinearities on a
chip, using single dye molecules as embedded single-photon sources [64].

In the following chapter we are going to present a particular combination of a matrix-dye
system, based on single Dibenzoterrylene molecules embedded in thin anthracene crystals.
We will perform a full optical characterisation of this system, highlighting its promising
characteristics as a single-photon source.
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Chapter 3.

Spectroscopy and photophysics of single DBT
molecules
In this chapter we present a specific system of emitters based on single Dibenzoterrylene molecules
embedded in a thin matrix of crystalline anthracene. The system looks very promising as a single-
photon source and for sensing applications. Using a home-built epifluorescence scanning microscope,
a full optical study is performed, aimed at characterizing several photophysical properties of the
DBT:anth system. An overview of the employed methods is given, comprising sample fabrication and
experimental setup. Several properties are investigated at room temperature, such as fluorescence
saturation intensity, dipole orientation and emission pattern, fluorescence and triplet lifetime. At
temperatures down to 3K, we observe a lifetime-limited absorption line. Also, we demonstrate photon
antibunching from this system. Finally, an AFM-based nanomanipulation technique is presented,
allowing positioning of anthracene crystals at the sub-µm level.

3.1. DBT in anthracene crystals: an optimal dye-matrix match

Single molecule experiments typically involve samples in which the molecule under investi-
gation is embedded as a dopant in a solid host matrix. Such a system ensures optical stability
of the dye molecule and protects it against oxidation from quencher agents. A careful choice
of both the guest emitter and the host matrix must be made to obtain the best performance.
Most works published so far have concentrated on the family of Polycyclic Aromatic Hy-
drocarbons (PAH) as for the organic emitter. Typical investigated dye molecules include
pentacene, terrylene, dibenzoterrylene (DBT) and dibenzantanthrene (DBATT, whereas
common host crystals are naphtalene and anthracene. Besides crystals, a host matrix can
also be a polymer — such as poly(styrene) (PS) and poly(metyl methacrylate) (PMMA) —
or a so-called Shpol’skii matrix, such as frozen hexadecane, nonane and tetradecane. In
general, molecular crystals are more attractive than other hosts, since they tend to embed
the guest molecule at well-defined insertion sites, resulting in particularly stable systems
and narrow Zero-Phonon Lines (ZPL) limited only by the excited state lifetime. On the other
hand, molecules embedded in polymer films are much more subject to spectral diffusion
phenomena and photobleaching. A more comprehensive review of the most used dyes,
hosts and their properties can be found in the literature [85, 86].
The host-guest combination that we propose and study in this work is made of single

Dibenzoterrylene (DBT) molecules embedded in thin anthracene crystals (n ≈ 1.6). As
the host matrix, anthracene has several advantages. It is cheap and can be easily purified
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and handled; as detailed in section 3.2.1, thin anthracene crystals can be easily obtained
by means of spin coating or sublimation. Furthermore, anthracene is stable both at room
and cryogenic temperatures, without undergoing any phase transition during the cool
down process. Both DBT and anthracene are aromatic compounds, consisting of 8 and 3
benzene rings respectively (figure 3.1b). Due to their similar chemical structure, DBT nicely
finds its place within the crystalline structure of anthracene. Two main insertion sites have
been identified [83]. Most molecules are embedded in the main insertion site with a 00-ZPL
centred at 785.1 nm at cryogenic temperatures; few molecules will instead end up in the red
site at 794.3 nm. The optical lines can be tuned by applying a Stark voltage [83, 88]. Their
proximity to the atomic lines of rubidium and potassium is of particular interest, indeed
interfacing of molecular photons to atomic alkali vapours has already been proposed as a
fundamental step towards the realization of quantum memories [118]. Furthermore, the
spectral region covered by this system conveniently lies in the operating range of silicon-
based photodetectors, whose detection efficiency peaks around 750 nm. Thanks to the
good structural match between host and guest, the Zero-Phonon Lines are very stable
against photobleaching and spectral diffusion; indeed, the system has been shown to resist
several hours of strong illumination [119]. The stability of the transition frequency is a very
desirable property, if the shift in the spectral line is to be used as a probe for electrical or
other dynamical processes taking place at the nanoscale. In practice, the stability of the
overall system is only limited by the slow sublimation of the thin anthracene crystals at
room temperature, taking place over several days or weeks. A protective layer of poly(vinyl
alcohol) (PVA) can be deposited on top of the anthracene crystals to further increase the
crystals’ lifetime.

Other than for their similar chemical structure, the dye-matrix pair that we are studying is
a good match also for the relative position of the energy levels. Indeed, in order to have high
fluorescence count rates, the guest molecule should have a very weak Inter System Crossing
(ISC) between the first excited singlet and triplet states (|S1〉 → |T1〉), so that the probability
that the molecule becomes momentarily trapped in the triplet state is low. When the host’s
triplet state lies at a lower energy than the guest’s singlet state, ISC in the guest molecule is
strongly facilitated, resulting in a weaker fluorescence signal that can make single molecule
detection impossible in the worst cases [120]. As a matter of fact, anthracene’s first triplet
state is located around 680 nm [121], that is to say at an energy well above DBT’s first excited
singlet state (785 nm). The intersystem crossing yield is very low at 10−7 [83], and the triplet
state is short-lived, with a lifetime of 1.5µs [119]. The effect of the triplet state is therefore
negligible so that, in the absence of external loss channels, a DBT molecule in the excited
state will relax through radiative decay with a Quantum Yield (QY) close to unity. All the
properties described so far make the DBT:anth system an ideal candidate for a stable and
bright single-photon source.

Figure 3.1a shows the energy level structure of DBT in themain insertion site, as well as the
transitions involved in the different excitation and detection schemes. We usually perform
single-molecule experiments with individual DBT molecules by pumping the molecule, by
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Figure 3.1.: (a) Jablonski diagram for DBT molecules embedded in an anthracene crystal showing
the energy levels and the transitions used in the different excitation and detection schemes. (b)
Fluorescence spectrum of DBT in anthracene, obtained with 767 nm excitation. The inset shows the
molecular structure of DBT (top) and anthracene (bottom).

means of laser excitation, into a vibrational state of the first electronic excited state |S1〉 (mode
at 300 cm−1, λexc = 767 nm). The molecule then quickly relaxes (in the ps time scale) to the
fundamental vibrational mode of the first electronic excited state |S1,ν=0〉 through vibrational
relaxation, a fast non-radiative process. The red-shifted fluorescence is then observed,
originating from the decay to the vibrational modes of the |S0〉 state. This excitation scheme
allows fluorescence from the 00-ZPL to be collected, but is not suitable for spectral selection
of single molecules at cryogenic temperatures, as the excitation linewidth is of the order of
40GHz at 2K [109]. Instead, excitation spectra at cryogenic temperatures are investigated
by pumping the 00-ZPL at 785 nm (resonant excitation). Below 4K indeed, dephasing due to
phonons vanishes and the line becomes almost lifetime-limited, showing a natural width of
about 40MHz corresponding to a lifetime of 4.2 ns. Because of inhomogeneous broadening,
different molecules will have this transition centred at different energies, as their levels are
shifted depending on the environment inside the crystalline matrix; thanks to its narrow
width, the 00-ZPL transition can therefore be used to spectrally address single molecules
below 4K (figure 3.3b).

3.2. Methods

3.2.1. Sample preparation

One advantage of our systemof emitters is that anthracene crystals embeddingDBTmolecules
are relatively easy to fabricate. Depending on the application and type of measurement,
we consider two different fabrication techniques that yield different kinds of crystals: spin-
coating and co-sublimation [119, 122].
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Spin-coated crystals are prepared starting from a nm solution of DBT obtained by mixing
two solutions: a solution of known concentration made of DBT dissolved in toluene and
a solution of anthracene dissolved in diethyl ether with a concentration of 2.5mgml−1. The
need to consider a nm concentration is readily explained with the necessity of being able to
isolate single molecules inside the crystalline film. With a 50 nm-thick film, considering that
the maximum resolution of an optical microscope is in the order of 250 nm, a small sample
volume with a side of 500 nm should contain only a single molecule. Thus we have [123]:

V = (500 nm)2 · 50 nm = 1.25× 10−17 l (3.1)

and the needed molar concentration c when asking that N = 1 is:

c =
N

NAV
=

1
NA · 1.25× 10−17 l

≈ 130 nm (3.2)

The crystals are then obtained by spin-casting a 20µl-droplet of this solution on different
substrates, e.g. a standard silica coverslip. Because of the rapid evaporation of the solution,
when placing the droplet on the coverslide care has to be taken to quickly start the spin-
coater. The sample is spun according to our preprogrammed recipe consisting of a first
step at 3000RPM for 30 s followed by 15 s at 1500RPM. The viscous flow created by rotation
and the evaporation of the solvent results in a gradual thinning of the anthracene film.
Following this protocol, crystals with clear-cut facets and thickness ranging from 20 to 80 nm
are formed, embedding DBT at single-molecule concentration. DBT is known to be hosted as
an impurity inside the anthracene matrix, but with a well-defined orientation parallel to the
crystal plane, so as to minimize Gibbs free energy [83, 119]. We studied the sample surface
roughness and thickness by means of Atomic Force Microscopy (AFM); an example recorded
image is shown in figure 3.2, displaying an average crystal thickness of 40 nm, and a typical
surface roughness of the order of 1 nm. Knowing the thickness of the host matrix is of crucial
importance when coupling the organic molecules to an external electric field, such as the
localized field of a photonic crystal cavity, or to a graphene sheet as we will see in chapter 4.
Co-sublimated crystals can be obtained with a simple setup consisting of a glass pipe

kept in a 150mbar nitrogen atmosphere [120]. At the bottom of the pipe, a mixture of
DBT and anthracene in powder is heated up so that the vapour pressure rises and small
crystals start to form in the convective nitrogen flow. These flying crystals can then be
captured on a coverslide. Crystals obtained with this protocol have a much more pure
crystalline structure as is also hinted by the macroscopic almost perfect hexagonal shapes
that these crystals have. Co-sublimatedDBT:anth crystals are also on average thicker (around
100 nm, but still very thin compared to the radiation wavelength) than the spin-coated ones.
DBT concentration with this procedure is harder to control than with spin-coating, but the
higher crystalline quality of these samples is very desirable and we usually employ them
for cryogenic measurements, where having single molecule concentration is not mandatory
because, exploiting inhomogeneous broadening of the narrow 00-Zero-Phonon Line (ZPL),
single molecules can be addressed spectrally (figure 3.3).
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Figure 3.2.: (a) Typical AFM topography image of a spin-coated anthracene crystal. Following our
fabrication protocol, crystals with clear-cut facets and thickness ranging from 20 to 80 nm are formed.
(b) Cross section showing the crystal thickness profile along the red line in panel (a).

(a) (b)

Figure 3.3.: (a) SEM image of a co-sublimated anthracene crystal with its typical hexagonal shape.
(b) Fluorescence image in wide field illumination from DBT molecules embedded in a co-sublimated
anthracene crystal at a temperature of 3K. The hexagonal shape of the crystal is clearly visible thanks
to a guiding effect of light along the crystal perimeter (nanthracene ≈ 1.6). This image is obtained
from the superposition of 350 frames taken while varying the laser excitation frequency in a 3GHz
range. As the laser frequency is scanned, different single molecules are turned on/off thanks to the
inhomogeneous broadening of the narrow 00-ZPL. Animated version available online [124].
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3.2.2. Experimental setup

To perform single molecule spectroscopy and study the photophysics of our DBT:anth
system,weuse a home-built, versatile epifluorescence scanningmicroscope. In epifluorescence
configuration, the same objective is used both to excite the sample and to collect fluorescence.
Figure 3.4 shows a simplified version of the setup, whichwe are here going to briefly describe.

Excitation arm

At the head of the excitation arm, we use several laser sources depending on the molecular
transition that we want to excite and the type of measurement that we want to perform. We
employ two narrowband (linewidth ≈ 1 MHz) Toptica tunable single-mode diode lasers: a
DL100 External Cavity Diode Laser (ECDL) emitting at 785 nm and a DL DFB (Distributed
FeedBack), emitting at 767 nm. These are Continuous-Wave (CW) lasers, while for lifetime
measurementswe employ a pulsed Ti:sapphire laser (Tsunami by Spectra-Physics) optimized
to emit 200 fs-long pulses at 767 nm. A white light (WL) lamp is instead used for simple
imaging of the sample.
As far as the diode lasers are concerned, optical isolators prevent scattered light to be

reflected back into the laser head; additional elements such as anamorphic prism pairs
and cylindrical lenses (not shown) are used to optimize the laser spot into a collimated
circular shape. The laser beams are monitored for stability with a Fabry-Pérot cavity and an
oscilloscope. Laser light is then coupled to a polarization-maintaining single-mode optical
fibre with a core diameter of 4µm. At the entrance of the fibre, we place a polarizing beam
splitter cube and two half-wave plates. The first plate is used to adjust the power transmitted
by the beam splitter, while the second one is used to rotate the linear polarization to match
that of the fibre. At the fibre output, a bandpass (BP) filter (Semrock FF01-769/41, TBP01-
790/12) is used to remove unwanted spectral components and residual fluorescence from
the laser beam.
Following the light path along the excitation arm, a half-wave plate is used to rotate

the polarization while neutral density filters are used to attenuate the beam as needed.
A widefield (WF) lens can be used for fluorescence imaging. Indeed, when this lens is
inserted, the laser beam is focused onto the objective back-aperture, causing a wider area
(≈ 20 × 20 µm) to be illuminated on the sample than in confocal excitation. Finally, a
dichroic mirror (Semrock FF776-Di01) sends the excitation light to the sample while letting
the collected fluorescence light into the detection box.

Sample accommodation

The final segment of the excitation path is divided into two independent lines, one for room
temperature measurements and another one for cryogenic cooling. The cryostat that we
use for low temperature measurements is the Cryostation by Montana Instruments. It is a
closed cycle helium cryostat, specifically designed for fluoresce confocal microscopy. The
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Figure 3.4.: Simplified diagram of the experimental setup. CW laser diodes emitting at 767 nm and
785 nm are used to excite the 0-1 and 0-0 transitions, respectively. A pulsed Ti:sa laser emitting
200 fs-long pulses at 767 nm is used for lifetime measurements. A white light lamp (WL) is used to
image the sample, whereas a widefield lens (WF) can be inserted to perform fluorescence imaging.
High Numerical Aperture (NA) objectives are used to efficiently collect fluorescence light. Samples
can be mounted either on a piezo stage for room temperature measurements or inside a cryostat for
measurements down to 3K. In the latter case, the laser spot is scanned on the sample by using a
galvo mirror (GM) and a telecentric system. Detection devices are placed inside a box which acts as
a shield for residual light. They comprise two Avalanche Photo Diodes (APDs) arranged in Hanbury
Brown – Twiss configuration, an EM-gain CCD camera and a grating spectrograph. A telescope and
a pinhole (PH) act as a spatial filter, increasing resolution and contrast.
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sample is mounted inside the cryostat’s vacuum chamber, at the top of a cold finger. A low
working distancewindowensures optical access and allows regular room temperature optical
components to be placed as close as 1mm from the cooled sample. In this configuration
we use an air objective with NA = 0.7 and a working distance of 6mm (Mitutoyo 100X
Plan Apochromat). The excitation light enters the objective through a telecentric system.
Together with a dual-axis galvo mirror, the telecentric system allows the laser spot to be
scanned over different points on the sample. This is necessary since at the moment we don’t
have a system of nanopositioners inside the cryostat chamber.

For room temperature measurement, the sample is mounted on a piezoelectric nanoposi-
tioner (NanoCube® by Physik Instrumente), which in turn is fixed on a dual-axis goniometer
and amanual translation stage for coarse positioning. In this case an air objective can be used,
but most often we use an oil-immersion objective for a much greater Numerical Aperture
(Zeiss Plan Apochromat, 100X, NA=1.4).

Detection box

All detection devices are placed inside a box to shield them from non-signal light. Fluores-
cence light collected through the objective enters the detection box through the dichroic
mirror and a longpass (LP) filter (Semrock RazorRedge®-785RS-25) to selectively let into the
box only the red-shifted fluorescence and cut residual excitation light. A telescope system
and a pinhole act as a spatial filter, by cutting light originating from out-of-focus planes
on the sample and from nearby emitters, thus greatly increasing resolution and contrast.
Two APDs arranged in Hanbury Brown – Twiss (HBT) configuration are used for Time-
Correlated Single Photon Counting (TCSPC) measurements in conjunction with PicoHarp,
a standalone TCSPC system by PicoQuant. The APDs that we use are τ-SPAD-50 Single
Photon CountingModules by PicoQuant; they feature low dark count rates (< 50 cps), short
dead time (< 70 ns) and detection efficiency up to 70%. Alternatively, light can be focused
on an EM gain (Electron-Multiplying) CCD camera (Andor iXon 885, 1004× 1002 pixels,
pixel size 8 µm× 8 µm) for fluorescence or white-light imaging. When enabled, EM gain
ensures high performance in low light scenarios, thanks to the generation of secondary
electrons via impact-ionization processes. Finally, light can be spectrally analysed using a
grating spectrograph (Andor Shamrock 303i).

3.2.3. Data acquisition and control software

The experimental setup described in the previous subsection comprises several electronic
devices that must be operated together and with the proper timings in order for the experi-
ment to be run smoothly. A dedicated acquisition software, tailored to our specific needs,
not only guarantees the optimal functioning of the overall setup but also allows to automate
crucial phases of the data taking procedures. To meet these requirements and to ease the
experimental workflow during everyday operations, a complete measurement and control
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software was developed from scratch entirely in the framework of this present thesis. A
brief description of its functionalities and structure is therefore given in this section. Our
software is also featured on National Instruments’ catalogue of case studies [125].
The control software was initially prototyped in its early form using LabVIEW, the

widespread platform from National Instruments for data acquisition, instrument con-
trol and automation. With time and a growing need to add more features to the software,
continuing development with LabVIEW became impractical so that a new version of the soft-
ware was entirely rewritten following a new approach. The new software is written in C++,
a widely used high-level programming language, and makes use of the Qt libraries which
provide the main application framework and user interface (UI). Since C++ is an object-
oriented programming language, the source code is highly modularized and abstracted into
reusable components that make development easier and will allow easy integration of new
hardware in the future. As new features were added, the source base grew considerably
in size, reaching 9286 Single Lines Of Code (SLOC) at the time of writing. The UI is conve-
niently organized in detachable tabs, each dedicated to a single instrument or a specific
measurement (figure 3.5).

Themain purpose of the software is to control the PCIe6351 Data Acquisition (DAQ) board
from National Instruments. To do so, it makes use of the vendor-provided NI-DAQmx
programming libraries for C/C++. Of all the features onboard the multifunction card,
the control software makes heavy use of the digital counters in order to count the single
photons seen by the APDs; indeed the τ-SPAD generates a digital TTL pulse upon detecting
a single photon. An additional digital counter, internal to the board, is configured as a gating
counter to enable/disable counting during an integration cycle, so that the exposure timing
is performed in hardware rather than in software. The measured count rates are displayed
in real time which is useful to perform alignment operations on the optical table.

Acquisition of count rates is most useful when done in sync with some action performed
by an actuator on the experimental setup. For example, we use an analogue output channel
of the DAQ card to drive the grating movement inside the tunable diode laser, which results
in a detuning of the laser frequency. The software makes it possible to measure fluorescence
count rates while varying the excitation laser frequency; this allows for example to measure
the width of a molecular absorption line as presented in section 3.3.4. A remarkable opportu-
nity for measurement automation comes from the possibility to acquire fluorescence count
rates while physically scanning the sample under the objective, so that the laser confocal spot
illuminates different points on the sample. The software allows to collect a fluorescence map of
a portion of a sample, by sending through the serial port the appropriate commands to move
the piezo NanoCube® horizontally in the sample plane. For each pixel of the fluorescence
map, photon counts are measured while the piezo stage dwells in position for the specified
integration time, then the software moves the sample to the adjacent pixel repeating the
count rate measurement. With this procedure, fluorescence maps such as the one shown in
figure 3.6a are acquired. When the sample is mounted inside the cryostation, scanning is
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(a)

(b)

Figure 3.5.: Screenshots of the custom data acquisition and control software. (a) Interface to PicoHarp
for TCSPC measurements showing an antibunching measurement with live fitting. (b) Interface for
fluorescence scan using the piezo translational stage or the galvo mirrors. An acquired fluorescence
map is shown, with single molecules automatically tagged.
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instead performed bymoving the galvo head placed at the pivot point of a telecentric system,
so that the laser confocal spot is directed to different points on the sample. The software
oversees the movement of the two galvo mirrors separately, by sending an analogue voltage
through two analogue output channels of the DAQ board. The acquisition of a fluorescence
map is often the very first step of a measurement session, since it allows single molecules
to be easily identified as diffraction-limited spots. Indeed, for the sake of convenience the
software allows single points to be labelled on the map: single molecules can be tagged
automatically — by looking for spots with a signal to noise ratio above a certain threshold
— or specified manually on the map. Once a fluorescence scan has been acquired and the
molecules have been tagged, it is possible to move the excitation spot directly on a given
molecule to perform other measurements. Manual controls are also available, allowing a
fine control of both sample position and laser focus.
In addition to controlling the piezo translational stage and the DAQ board, the software

also interfaces directly with the PicoHarpmodule via the proprietary programming libraries
provided by PicoQuant. It is therefore possible to collect time-resolved measurements
directly from within our custom software, while having access to the full range of the
instrument’s configuration options. Additionally, antibunching and lifetime curves may
be fitted in real time during the data-taking process. Speaking again of automation, time-
resolved measurements can be taken automatically by sequentially moving the sample on
molecules that have been previously marked on the fluorescence map. This feature is very
convenient in that it could be used for example to considerably shorten the time needed to
collect lifetime measurements on many molecules, not only making it possible to collect
higher statistics in less time, but also making the measurements themselves less sensitive
to instabilities or drifts in the setup. In the future, by fully exploiting the combination of
time-resolved measurements and sample scanning, the software can be easily expanded to
take lifetime maps, for example to image a graphene flake by taking lifetime measurements
of a layer of dyes deposited on top of it (figure 4.5).

Finally, our custom software also allows to control flippable mounts on the optical table —
such as the mirror in front of the CCD camera and the pinhole acting as a spatial filter — by
sending a toggle pulse either through an analogue or a digital output channel of the DAQ
card.

3.3. Optical characterization

In this section we present a complete optical characterization of singleDBTmolecules embed-
ded in a thin anthracene crystal. The measurements here discussed allow us to test the newly
built experimental setup and assess its performance, as well as build a knowledge of the
typical expected values for the experimental observables. When appropriate, we will also
highlight how the observed optical properties relate to the characteristics of single-photon
sources as described in section 1.3. Unless otherwise specified, all measurements were taken
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Figure 3.6.: (a) Typical confocal fluorescence scan showing single DBTmolecules as diffraction-limited
spots. (b) Measured coincidences from a single DBT molecule (total integration time 900 s, laser
power 150µW). The strong reduction (93%) of the detected coincidences at zero time delay is a clear
indication of the quantum nature of the observed light.

at room temperature on single DBTmolecules in spincoated anthracene crystals, exciting the
0-1 transition with a CW laser at 767 nm. Excitation spectra at cryogenic temperatures were
instead investigated on sublimated crystals, exciting the resonant 0-0 transition at 785 nm.
Finally, fluorescence lifetime measurements were taken using a pulsed Titanium-Sapphire
(Ti:sa) laser at 767 nm.

3.3.1. Photon antibunching

While time-resolved measurements will be presented as the last two sub-topics of this
section, we nonetheless start this overview by studying the photon statistics of the collected
fluorescence light. Indeed, ideally the first step to undertake before studying whichever
optical property is to make sure that the observed fluorescence originates from a single DBT
molecule. As explained previously, at room temperature single molecule selection can only
be achieved by ensuring that exactly one molecule is found underneath the laser excitation
spot. In practical terms, this is tantamount to a sample prepared with a very low DBT
concentration. The ultimate proof that the diffraction-limited spots observed in a confocal
scan as the one shown in figure 3.6a really do originate from a single molecule is to look for
photon antibunching in a coincidence correlation measurement.

Coincidences between photon counting events are acquired with the PicoHarp, to which
the two APDs arranged in Hanbury Brown – Twiss (HBT) configuration are connected.
Figure 3.6b shows the histogram of the observed coincidences from a single DBT molecule
in CW excitation, featuring a strong antibunching dip. The experimental data is fitted at
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short delays with the function

g(2)(τ) = 1− b exp
(
−|τ|

∆t

)
(3.3)

where ∆t accounts for the excitation and spontaneous emission rates [109, 126] and b, the
dip depth, is found to be 93% in the measurement shown. Such a strong reduction of the
detected coincidences at zero time delay is a clear indication of the quantum nature of the
observed light, since a new excitation-emission cycle is necessary for a single quantum
source to emit a second photon, which requires an average delay. If the emitter is excited
with an intense and short trigger pulse, exactly one photon will be emitted after an average
time equal to the radiative lifetime, i.e. we can use our DBT:anth system as a source of
on-demand single photons [109].
Photon statistics is critically affected by optical losses and noise, therefore a high SNR

is required to observe a pronounced antibunching dip. Indeed, background photons are
responsible for false start-stop measurements, leading to coincidence counts higher than 0
at zero delay. The depth of the observed dip can be understood in terms of the expected
probabilities to detect fluorescence signal (S) or background counts (BG):

PS =
IS

IS + IBG
PBG =

IBG
IS + IBG

(3.4)

The expected value for the correlation function at zero delay is thus:

g(2)(0) = PSPBG + PBGPS + PSPS + PBGPBG ≈ 2PSPBG + PBGPBG (3.5)

where we have neglected the probability to detect two fluorescence photons simultaneously
(antibunching). For the reported measurement, we have a typical count rate of 300 kcps
for the fluorescence signal and 15 kcps for the background noise (SNR≈ 20), yielding an
expected reduction of the observed coincidences of 1− g(2)(0) ≈ 91 %.

3.3.2. Saturation behaviour

Having a high signal to noise ratio is a crucial requirement to perform Single Molecule
Spectroscopy (SMS) successfully. In order to maximize the fluorescence emission rate,
the molecule must be pumped to the excited state with high probability. It is therefore
important to understand the saturation behaviour of the emitter in order to choose the
proper excitation power. For example, when the highest count rates are desired, it is best
not to exceed saturation intensity, as doing so would have the sole effect of increasing the
background due to residual unfiltered laser light and matrix fluorescence, in addition to
increasing the likelihood of photobleaching.
If we call σp the absorption cross section and Ii the excitation intensity, to a first approx-

imation the rate of absorption Γa is given by σp Ii [127], or equivalently the probability of
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a molecule to be pumped in the excited state is given by the ratio σp/A, with A the cross
section of the confocal laser beam. The general expression for the peak (resonant) absorption
cross section for a randomly oriented molecule is [77]:

σp = 2π
(

λ

2π

)2 Γrad
γtot

(3.6)

where λ is the excitation wavelength, Γrad the radiative fluorescence rate, and γtot the total
frequency width of the absorption. Saturation occurs when the absorption rate equals the
decay rate of the excited state, so that the molecule cannot decay to the ground state fast
enough. The ability of the molecule to absorb photons thus decreases, which is given by a
decrease of the absorption cross section:

σp(I) =
σp(0)

1 + I/IS
(3.7)

where IS is the characteristic saturation intensity. For the simple limit of the molecule
approximating a Two-Level System (TLS)1, the saturation intensity is given by:

IS =
hν

2στF
(3.10)

where τF is the fluorescence lifetime (equation 2.4).
The effects of transition saturation are seen as a broadening of the single-molecule

linewidth ∆ν(I) and the saturation of the emission rate R(I) [77]:

∆ν(I) = ∆ν(0)
√

1 + I/IS (3.11)

R(I) = R∞

[
I/IS

1 + I/IS

]
(3.12)

where
R∞ ≈

1
2τF

(3.13)

is themaximumemission rate. Figure 3.7 shows a typical saturationmeasurement performed
on a single DBT molecule in anthracene crystal at room temperature, exciting at 767 nm.
1In the three-level case the presence of bottleneck states caused by ISC leads to a premature saturation of the
emission rate:

IS =
hν

2στ21

[
1 + kISC/k21
1 + kISC/kT

]
(3.8)

where k21 is the rate of direct decay from |S1〉 to |S0〉, kISC is the rate of Inter System Crossing and kT is the
decay rate from the triplet |T1〉 state to the ground state |S0〉. The maximum emission rate is given by:

R∞ =
(k21 + kISC)φF

2 + kISC/kT
(3.9)

42



3.3. Optical characterization

(a)

0 100 200 300 400 500 600

0

200

400

600

excitation intensity (kWcm−2)
flu

or
es
ce
nc

e
(k
co
un

ts
/s

)

(b)

Figure 3.7.: Saturation measurements on a single DBT molecule in anthracene crystal at room tem-
perature. (a) A confocal fluorescence scan of the diffraction-limited spot is acquired at increasing
excitation powers. Pixel size is 100 nm and the scanned area is 1.5 µm× 1.5 µm. (b) Background-
corrected plot of the maximum values of the count rates observed in the confocal scan. The fitted
curve yields a saturation intensity of 108± 15 kWcm−2.

Several fluorescence scans of the diffraction-limited spot corresponding to a single molecule
are acquired at different excitation powers by scanning the sample under the confocal laser
spot in the small region where the molecule is located (figure 3.7a). From these maps, the
value of the brightest pixel is extracted and corrected for the background counts, which
increase linearly with laser power. The resulting saturation plot is shown in figure 3.7b,
fitted with the curve given by equation (3.12). The saturation intensity for this particular
molecule is found to be 108± 15 kWcm−2, which we consider a typical value. Saturation
intensity though shows a great variability between different molecules, as the excitation
efficiency depends greatly on the molecule position and depth within the sample, and on
polarization as well. Mostly, the excitation efficiency is strongly reduced — hence saturation
intensity increased — when there is a mismatch between the laser profile and the spatial
emission pattern of the molecular dipole, which we investigate in the next section. We
also find R∞ ≈ 660 kcps which, accounting for the quantum efficiency of the APD at 65%,
corresponds to a photon rate of ≈ 1 MHz at the detector. Comparing this value with the
theoretical one of 100MHz from equation (3.13) allows us to estimate the overall efficiency of
our setup to be around 1%. However it is worth stressing that photon rates of approximately
one million photons per second at the detector are to be considered very high, and as such
our system can compete with other single emitters, such as quantum dots [128], as a bright
quantum source.
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3.3.3. Dipole orientation and emission pattern

While in free space the radiation pattern of a molecule is given by the well-known sin2 Θ

distribution [129] —with Θ being the angle between dipole axis and observation direction—
when amolecule is close to dielectric interfaces the emission pattern is altered. This is because
light is scattered, refracted or reflected at the interfaces, resulting in interference effects that
significantlymodify the observed angular distribution. Knowledge of themolecular emission
pattern is crucial for assessing and enhancing the excitation and collection efficiency of our
DBT:anth system. Furthermore, various photophysical properties of a molecule trapped in a
host matrix depend on the orientation of the molecular dipole, which can be determined by
investigating the molecule’s emission pattern

The emission pattern can be accessed by performing back focal plane imaging. Indeed, the
spatial distribution of the emitted light is directly encoded in the intensity profile collected
on the back focal plane (or the back-aperture plane for an infinity-corrected system as in our
case) [130]. Figure 3.8 gives a simple illustration of how this happens by considering the
simple laws of geometrical optics: photons emerging from the source dipole with different
orientations of the wave vector k, i.e. forming different angles θ with the optical axis, are
taken to different points on the objective Back Focal Plane (BFP), whereas parallel wave
vectors end up on the same point on the BFP. The intensity profile observed on the BFP can
be therefore directly mapped to the angular distribution of the emitted light. In terms of
Fourier optics, what happens is that the objective projects the Fourier transform of the field
at the entrance pupil onto the BFP.
As shown in figure 3.8, an image of the BFP can be obtained by placing the camera lens

off focus, so that the BFP — rather than the sources — is imaged onto the CCD. In practice,
this is achieved with a dedicated lens mounted on a flippable holder in front of the camera.
The distance between the BFP lens and the camera can be obtained from the well-known
lens equation 1

f = 1
p +

1
q :

q =
l ±
√

l2 − 4l fBFP
2

(3.14)

where l = p + q is the total distance between the objective BFP and the camera, fBFP is the
focal length of the BFP lens and p = p1 + p2 as shown in the figure.
Figure 3.9a shows the theoretical prediction as computed by S. Checcucci [131] for the

far field intensity from a single DBT molecule embedded in a 50 nm-thick anthracene layer,
oriented with the molecular dipole parallel to the anthracene layer. The inner black ring at
θ = 67° highlights the maximum angle that we can collect with our oil-immersion objective:

θmax = arcsin
(
NA
noil

)
≈ 67° (3.15)

where NA = 1.4 and noil = 1.52 is the refractive index of the oil in which the objective
is immersed. Figure 3.9b instead shows a typical BFP image of a single DBT molecule
observed with our setup. Comparison of the two figures shows a good agreement between
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Figure 3.8.: Schematic representation of the optical configuration used to acquire Back Focal Plane
(BFP) images. Light emerging from the source dipoles with different orientations of the wave vector
k is taken to different points on the objective BFP, which is imaged onto the CCD with the BFP lens.
A spatial filter made of a telescope and a pinhole cuts light from nearby unwanted molecules on the
source plane and on out-of-focus planes, increasing resolution and contrast.
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Figure 3.9.: (a) Theoretical prediction for the normalized intensity, collected on a plane in the far field,
from a dipole embedded in a 50 nm-thick anthracene layer emitting at 785 nm (in-plane orientation,
see S. Checcucci [131] for more details). The black circle at θ = 67° shows themaximum angle that our
objective can collect (NA = 1.4). φ is the azimuthal angle on the BFP. (b) BFP image of a single DBT
molecule in confocal illumination (excitation power: 25µW; integration time: 2 s) after background
subtraction and despeckling, observedwith our setup. (c) Cross cuts showing the angular distribution
of the emitted light along the s and p polarizations. Dashed lines are theoretical predictions [131].
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Figure 3.10.: (a) Normalized emission pattern in polar coordinates showing the total power density
as a function of the emission angle θ, as predicted from the theoretical model [131]. The emission
pattern is strongly modified compared to the free space case, exhibiting two side lobes . (b) Cross
cuts showing the power density for the two s and p polarizations.

the theoretical model and the observed profile. The radial distance h of a point on the BFP
image can be related to the emission angle θ by noting that h(θ) = fobjnoil sin θ. Figure
3.9c shows crosscuts of the BFP image along the two cross sections corresponding to s
and p polarizations. The dipole emission pattern is strongly modified compared to the
free space case, featuring two side lobes — that are best appreciated in figure 3.10 — at
angles greater than the critical angle θc = arcsin (nair/nanth) ≈ 39°, where nanth ≈ 1.6 is
anthracene’s refractive index. Supercritical emission is a typical phenomenon of dipoles
close to interfaces in the near field, and is the result of the conversion of evanescent waves
into travelling waves [132].

Different single molecules exhibit very similar emission patterns, the geometry of which
allows us to conclude that DBT molecules are embedded inside anthracene with their dipole
preferentially parallel to the crystal plane [130, 133], or at most out of plane by just a few
degrees, in agreement with previous studies [83, 119]. Since the dipole emission pattern is
strongly influenced by its surrounding environment, engineering of the angular distribution
of the emission of a single molecule can be achieved by embedding DBT molecules in
a multilayer structure made not only of anthracene but also other dielectric, metallic or
polymeric layers [131]. Being able to tailor the spatial distribution of light coming from a
single molecule is indeed crucial — for example when coupling with some other photonic
nanostructure is desired, or to channel light within the objective acceptance angles in such a
way to increase collection efficiency — and is therefore advised as a promising direction for
future research.
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Figure 3.11.: (a) Linewidth dependence on temperature for DBTmolecules in anthracene crystal (main
site) showing the exponential increase given by the Arrhenius law, modelled after the measurements
by Nicolet et al. [83]. (b) Resonant excitation spectrum of a single DBT molecule measured at a
temperature below 3K. Fitting a Lorentzian yields a natural linewidth of 42± 1MHz.

3.3.4. Resonant excitation linewidth at cryogenic temperatures

As we have outlined in section 1.3, many applications of single-photon sources require
photons that must be completely indistinguishable. In an ideal two-level system, pure
spontaneous emission generates photons that are truly indistinguishable and with the
natural linewidth determined only by the excited state lifetime. In reality (section 2.2.2), in
a solid environment pure optical dephasing originating from scattering with the phonon
bath leads to a considerable broadening of the transition. Since these processes are strongly
dependent on temperature, they can be eliminated by cryogenic cooling (figure 3.11a).
As part of the optical characterization, we studied excitation spectra of single DBT

molecules embedded in sublimated anthracene crystals at temperatures below 3K. During
the preliminary step of looking at the sample in widefield illumination to identify single
molecules, we immediately notice a first hint of a strong reduction of the linewidth. Indeed,
as the laser excitation frequency is varied over just a fewGHz around a central wavelength of
785 nm, we can clearly observe diffraction-limited spots being turned on and off (figure 3.3b).
These spots are single DBT molecules that fluoresce only when the excitation frequency is at
resonance with their ZPLs. Here we are also observing the effect of inhomogeneous broad-
ening, which causes the transition frequencies of an ensemble of molecules to be normally
distributed (section 2.2.3). While spectacular, the effect shown in figure 3.3b highlights a key
technique enabling single-molecule spectroscopy at cryogenic temperatures. Indeed, single
molecules can be addressed spectrally one at a time, simply by tuning a narrowband laser.
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Figure 3.11b shows the excitation spectrum of a single DBT molecule below 3K, illumi-
nated in confocal excitation at 785 nm. The measurement is performed by scanning the
excitation frequency of the pump laser around the resonance of the ZPL. This is achieved
by sending an increasing voltage to the piezo actuator that drives the grating movement
inside the ECDL laser. The voltage-to-frequency conversion is calibrated beforehand. As
the laser frequency is scanned, fluorescence counts are acquired by an APD. In the figure, a
total detuning of 800MHz is shown, in which range only a single molecule is excited. The
line shape of a homogeneously broadened transition is a Lorentzian (see eq. 2.6); fitting
this particular spectrum yields a linewidth of 42± 1MHz. Such a narrow transition is to be
considered lifetime-limited, corresponding to an average fluorescence decay time of about
4 ns as we will show in the immediate following.

3.3.5. Fluorescence lifetime

The relaxation dynamics of a single DBT molecule is investigated by means of TCSPC
measurements. The molecule is excited using a Ti:sapphire laser optimized to emit pulses
of 200 fs around a wavelength of 767 nm with a repetition rate of 81.2MHz, i.e. pulses are
spaced 12.3 ns apart from one another, which is sufficient to observe an expected lifetime of
4 ns. The sync input (start signal) of the PicoHarp is connected to an APD which detects
fluorescence photons. The other channel (stop signal) is instead connected to the output of
a fast photodiode which detects laser pulses, i.e. we are working in reverse TCSPC mode.
The decay curve is then reconstructed over many excitation cycles, by histogramming the
measured start-stop delays.
Figure 3.12a shows the fluorescence decay curve obtained for a single DBT molecule in

anthracene. Fitting with a single exponential decay at long times yields an excited state
lifetime of 4.4± 0.1 ns, which is in agreement with previous results [119] and confirms the
lifetime-limited nature of the 00-ZPL linewidth found in the previous subsection. While the
excited state lifetime of an isolated molecule is an intrinsic molecular property, in a solid
matrix several effects contribute to a spreading of the observed values. This will be treated
in greater detail in chapter 4, where a full statistical study on lifetimes is presented along
with the analysis procedure followed to deconvolve the effects of the Instrument Response
Function (IRF). We will also show that fluoresce decay is an ideal nanoscale probe, since it
can be highly influenced by its surrounding environment.

3.3.6. Triplet lifetime

The triplet state lifetime is usually much longer compared to the first excited singlet level,
because a transition to the singlet ground state involves a change in spin multiplicity which
is forbidden according to electronic selection rules. A |T1〉 → |S0〉 transition is only made
weakly allowed by spin-orbit coupling. As said previously, triplet states act as a bottleneck
for fluorescence, since a molecule there trapped is not able to cycle through the |S0〉 and |S1〉
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Figure 3.12.: (a) Time-resolved measurement of the fluoresce decay of a single DBT molecule. A
single exponential fit yields an excited state lifetime of 4.4± 0.1 ns. (b) Histogram of the inter-photon
arrival times seen while illuminating a single DBT molecule for 10 s at saturation. Fitting to a single
exponential decay for long time delays yields a triplet lifetime of 1.47± 0.05µs.

states. The continuous stream of photon is therefore interrupted, at least until the molecule
finally decays back to the ground state after an average time equal to the triplet lifetime.
Obviously a good fluorescent source is required to have both a small ISC and a short triplet
lifetime.
To make an estimate of the triplet lifetime, we record the photon arrival times while

exciting the molecule with a pump rate sufficient to saturate the transition so that, at long
times, the dark intervals in the observed fluorescence are limited only by the triplet lifetime.
To this purpose we use PicoHarp in the Time-Tagged–Time-Resolved (TTTR) mode [134].
While operating in this mode, both APDs are connected to the PicoHarp inputs in HBT
configuration and are treated equally, maximizing the number of detected photons while
mitigating the detector’s dead times. The device records the absolute photon arrival times
from both photodiodes since the start of the experiment with a very high resolution of 4 ps.
In TTTR mode an additional coarse time tag representing the macroscopic arrival time of
the photon since the start of the measurement is stored along the fine TCSPC time. When
the time tag overflows, a special record in inserted in the data stream so that a theoretically
infinite time span can be reconstructed at full resolution upon processing. The result of this
measurement is a tagged time trace that can be elaborated to extract the time delays between
two consecutive photons. The inter-photon arrival times are then histogrammed as shown
in figure 3.12b. Fitting to a single exponential decay for long time delays yields a triplet
lifetime of 1.47± 0.05µs, in agreement with previous measurements [119]. Such a low value
of the triplet lifetime, together with an estimated ISC yield of 10−7, again confirms the good
performance of our system of emitters, and allows us to treat it as a two-level system as far
as the electronic transitions are concerned, with a quantum yield close to unity.
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Figure 3.13.: Simplified layout of the combined optical and AFM setup used to image andmanipulate
anthracene crystals. A Ti:Sa laser (λ ≈ 767 nm) is used in excitation. An AFM mounted on top
of the sample is used for topography measurements (when operated in tapping mode) and crystal
manipulation (contact mode). Fluorescence is collected through a 1.4-NA objective, a dichroic mirror
(DM), a longpass (LP) and a spatial filter (pinhole, PH) then acquired by two APDs arranged in a
HBT configuration to perform photon correlation measurements.

3.4. Nano-manipulation of anthracene crystals with AFM

In the realm of nanophotonics and Cavity Quantum Electrodynamics (CQED), typical real-
life experiments involve the coupling of single-photon emitters with nanostructures such
as photonic crystal cavities [135–137], waveguides [64], or optical nanoantennas [93, 105,
138]. A resonant cavity of any kind can indeed be exploited to enhance and tailor the
emitter’s spontaneous emission rate by means of Purcell effect or strong coupling, or to
shape the emitter’s emission pattern — i.e. channel the emitted light into a well-defined
spatial mode — so as to improve collection efficiency or coupling to another structure. To
obtain efficient coupling, these experiments require a sub-µm control of the relative position
between the emitter and the nanostructure. Having so far outlined the qualities of our
system as a standalone single-photon source, we now briefly describe a proof of concept for
amanipulation technique allowing control of the crystal’s position on the typical scales of the
aforementioned photonic structures. This proof provides a broader picture of the possible
applications involving the engineering of our crystalline system in embedded nanostructures
and its coupling to localized electromagnetic fields. In fact, anthracene crystals prepared
following the spin coating procedure outlined in section 3.2.1 are formed at random locations
on the glass substrate, therefore it is not possible to control their position at fabrication time.
After the sample has been prepared though, the availability of a manipulation technique to
move crystals at specific desired positions — e.g. on top of a photonic crystal microcavity —
is indeed desirable.
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We explored a manipulation technique based on Atomic Force Microscopy (AFM) at the
Humboldt University in Berlin (Germany), in cooperation with the Nanooptik group led by
prof. Benson [139]. The experimental setup that we used, shown in figure 3.13, combines
an optical and an Atomic Force Microscope to allow simultaneous acquisition of both the
crystal topography and the fluorescence signal. It consists of an inverse confocal microscope,
observing the sample from the bottom of the glass coverslide, and an AFM (NT-MDT with
NC-50 nanoworld silicon tips) mounted on top of the sample holder [140]. The AFM tip can
be scanned along all the three directions, whereas the optical microscope has a piezo stage
to move the sample on the horizontal xy plane and a piezo actuated objective positioning
system for focusing along the z direction. In this way it is possible to independently position
the sample and the AFM tip relative to the laser focus.

During normal workflow, the AFM is operated in tapping mode to acquire the topography
map of a sample containing spin coated anthracene crystals; additionally, a fluorescence
map from the same region is acquired through a 1.4-NA objective while scanning the sample
in confocal excitation. Once the topography and fluorescence maps have been acquired,
crystal manipulation can be performed by operating the AFM in contact mode. In this way the
cantilever tip can be used for example to push a crystal to another position; alternatively, by
pressing the tip against a crystal, it is even possible to make the crystal adhere to the tip itself
for later repositioning at another distant location [140]. Figure 3.14a shows a topography
map of a sample region containing several anthracene crystals. By operating the AFM in
contact mode, we were able to cut a crystal into two sub-µm sized pieces as shown in figure
3.14b. Also, it was possible to push the fragments several hundreds of nm across the sample;
while doing so we found the stability of DBT fluorescence to be not affected by the cutting
and pushing procedure.

Being able to cut the anthracene crystals opens the possibility to reduce their dimensions
in a controlled way, eventually isolating small crystals containing a certain number of
DBT molecules. To demonstrate this, we performed g(2) measurements shown in figures
3.14c to 3.14f. Looking at a confocal fluorescence scan (figure 3.14c), we identified a bright
diffraction-limited spot containing DBT molecules. By performing Time-Correlated Single
Photon Counting (TCSPC) measurements with the usual setup consisting of a beamsplitter
and two APDs arranged in Hanbury Brown – Twiss (HBT) configuration, we can estimate
the number of DBT molecules contained inside a fluorescence spot from the normalized
second-order correlation function g(2)(τ). For n identical emitters we can use the expression
that we derived in equation (1.17) [1, 80, 141]

g(2)(0) = 1− 1
n

(3.16)

to estimate from figure 3.14d a number of n ≈ 3–4 molecules (g(2)(0) ≈ 0.75). We then
applied the cutting and pushing procedure to divide the host crystal in two parts, and as a
result we now observe two separate diffraction-limited spots (figure 3.14e). Measurements
of the autocorrelation functions (figure 3.14f) now yield a number of n ≈ 2–3 molecules
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Figure 3.14.: Demonstration of the nanomanipulation technique [139]. (a-b) The anthracene crystal
located at (2µm,2µm) is divided in two sub-µm crystals by operating the AFM in contact mode. (c,e)
Confocal fluorescence scan of an anthracene crystal before and after AFM cutting. (d,f) Fluorescence
autocorrelation functions measured at the encircled spots in panels (c,e). The original crystal contain-
ing n ≈ 4 molecules is divided in two parts, one containing n ≈ 3 molecules and another containing
n ≈ 1 molecule.
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for the brightest spot and probably a single molecule (g(2)(0) < 0.5, without background
correction) for the second spot. In practice, we were able to selectively carve a portion of an
anthracene crystal containing just a single molecule. As said above, the ability to precisely
manipulate anthracene crystals on this scale is crucial for the integration of our quantum
emitter in embedded devices.

53





Chapter 4.

Proof of principle for a graphene-based
nanoscopic ruler

In this chapter we show how our single DBT molecules could be successfully employed as the key
ingredient to build a nanosensor. Indeed, at the nanometre scale, i.e. on a scale of the order of their
physical size, the optical properties of a light emitter are affected by the surrounding environment.
In particular, we here demonstrate energy transfer between single DBT molecules and a graphene
sheet, a process that can be exploited to measure the distance d between a single molecule and the
graphene layer. In our particular configuration, DBT molecules close to undoped graphene relax by
transferring energy into the creation of electron-hole pairs in graphene, via a dipole-dipole interaction
mechanism similar to Förster Resonance Energy Transfer (FRET). The consequent increase of the
fluorescence decay rate results in a measurable reduction of the excited state lifetime. In this work
we perform a statistical characterization of the fluorescence lifetime modification of single DBT
molecules in the presence of graphene. The results can be compared with a simple universal model
showing the characteristic d−4 dependence. The simplicity of the model is such that d appears as
the sole unknown, the other parameters being universal quantities. This suggests that the energy
transfer mechanism could be used as a nanoruler, i.e. a tool to measure distances at the nanometre
scale. The work presented in this chapter is published in New Journal of Physics [142] and in the
MRS Proceedings [122].

4.1. Fluorescence near interfaces

The presence of an interface nearby an excited molecule may significantly alter the way the
molecule loses energy. First, it can alter the spatial emission pattern and, by affecting the
Photonic Mode Density (PMD), the radiative decay rate too. Second, the excited molecule
can transfer its energy to the interface via non-radiative energy transfer, a process which
both induces a modification of the decay rate and quenching of the fluorescence [143].
The problem of how an interface modifies the emission properties of a molecule is one
of fundamental and also practical interest, since many optical processes take place near
interfaces.

Especially in the case where the interface is a metallic surface, the fluorescence of a nearby
molecule is highly affected [144]. The nature of this influence depends on the distance d
between the emitter and the interface. At distances grater than the emission wavelength,
the emitter couples to radiation in the far field, i.e. de-excitation is primarily radiative with
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the emission of a photon. Fluorescence rate, hence lifetime, shows an oscillatory behaviour
with d which originates from the interference effects between the direct and reflected fields
driving the optical dipole: depending on the delay, the reflected field will be in phase or out
of phase thus enhancing or suppressing the decay rate. In the 1960s, pioneering experiments
by Drexhage and coworkers were the first ones to observe the oscillatory dependence on d of
the lifetime of Eu3+ ions in front of an Agmirror [145–147]. The problem is usually modelled
by considering the emitter as an oscillating dipole driven by its own field reflected off the
metal; the dipole field is expanded as a summation of plane waves and then the reflected
and source fields are recombined to deduce the spontaneous emission rate [148, 149].

At distances shorter than the emission wavelength, fluorescence is quenched by coupling
between the molecule and the propagating Surface Plasmon Polaritons (SPPs) on the metal-
dielectric interface [150]. At even shorter distances, when d < λ/4, other non-radiative
processes dominate the decay rate, such as interband absorption or electron-hole pair
excitation [143, 151]. In these cases, if we assume that energy is transferred from the excited
dipole to a dipole in the substrate, then the transfer mechanism will be of the dipole-dipole
kind. The transfer rate predicted by the standard Förster model [152] for the dipole-dipole
energy transfer has a d−6 dependence, originating in the distance dependence of the near
field of both the donor and acceptor dipoles. If the acceptor is in the form of a line of dipoles,
integration over all transfer sites yields instead a d−5 dependence, whereas transfer to a sheet
of acceptors (i.e. a surface) and to the bulk yield a d−4 and a d−3 dependence respectively.

The “surface” that we are concerned with in this work is graphene, a material with unique
properties that we are going to briefly introduce in the following section.

4.2. Graphene: a truly 2D material

Graphene is the name given to a 2D single atomic layer of carbon. Undoubtedly, carbon is
one of the most interesting elements in the periodic table [153, 155]. Being a small tetravalent
atom, carbon gives rise to an incredibly rich chemistry which is also at the base of DNA and
all life on Earth. Several allotropes of carbon exist, such as diamond and graphite, having
completely different properties. Diamond is the hardest known material and is transparent,
while graphite is malleable and opaque, yet very strong. In the last decades, new forms of
molecular carbon such as fullerenes [156] and nanotubes [157, 158] received much attention
in the hope they could revolutionize nano-electronics thanks to their low electrical resistance
and microscopic dimensions. The properties of graphitic materials of all dimensions — 0D
fullerenes, quasi-1D nanotubes or 3D graphite — originate from those of graphene, the 2D
building block from which the other forms are derived (figure 4.1a). That graphite is made
of hexagonal carbon sheets stacked on top of each other was a well known fact, and in fact
the properties of 2D graphite have been theoretically studied for decades. Yet, 2D graphite
served only as a reference case, and was believed to be unstable and consequently not to exist
in the free state [159]. It therefore came as a surprise when in 2004 Konstantin Novoselov
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4.2. Graphene: a truly 2D material

(a) (b)

Figure 4.1.: (a) Graphene, a one-atom-thick sheet of carbon atoms arranged in a honeycomb lattice, is
the base of other graphitic forms such as C60 fullerenes, carbon nanotubes or graphite. Reprinted by
permission from Macmillan Publishers Ltd: Nature Materials [153], © 2007. (b) Electronic bands in
graphene, showing the six double cones intersecting at the K-points. The Fermi energy of undoped
graphene lies at their connection points. Reprinted figure with permission from A. C. Neto et al.
“The electronic properties of graphene”. In: Reviews of Modern Physics 81, 1 (2009), p. 109. © 2009 by
the American Physical Society.

and Andre Geim were able to isolate and electrically characterize a 2D carbon sheet [160,
161] and other 2D atomic crystals such as Boron-Nitride (BN) and Molybdenum-disulphide
(MoS2) [161], an accomplishment for which they were awarded the Nobel Prize in Physics
in 2010 [155]. The single layer of carbon that they identified is what we now call graphene.

In a graphene sheet, carbon atoms are arranged in a hexagonal lattice with an interatomic
separation of 1.42Å. Each atom is sp2 hybridized, forming three σ bonds and a π bond
(oriented out of plane) with the neighbouring atoms. The σ bonds are responsible for the
robustness and structural flexibility of the lattice, while π bonds hybridize together to form
the π and π∗ bands, which are responsible for most of the unique electronic properties of
graphene. The electronic structure evolves rapidly with the stacking of layers, approaching
the 3D limit of graphite already at 10 layers [153]. As a consequence, the most interesting
properties are found only in the monoatomic layer.

From the point of view of its electronic properties, graphene is a zero-gap semiconductor
[153]. Its cosine-like energy bands give rise to a peculiar Fermi surface as shown in figure
4.1b. The two bands intersect at zero energy near the edges of the Brillouin zone, generating
six double cones in the energy spectrum for |E| < 1 eV. At the connection points of these
cones lies the Fermi level of undoped graphene; the Fermi surface therefore reduces to a set
of points, referred to as the K-points. The electrical conductivity of intrinsic graphene is quite
low, of the order of the conductance quantum σ ≈ e2/h, since the density of states is zero at
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Chapter 4. Proof of principle for a graphene-based nanoscopic ruler

those points. However the Fermi level can be changed chemically or by applying an electric
field, so that thematerial becomes n or p doped and, depending on the level of extrinsic disor-
der, carrier mobilities as high as 105 cm2V−1 s−1 can be obtained [162, 163]. Such high levels
of mobility translate into quasi-ballistic transport at room temperature, making graphene
an interesting material for nanoelectronics [164, 165] and high frequency applications [166].
The fact that sections of the energy bands are conical at the K points means that the

dispersion relation for electrons and holes is locally linear, which corresponds to a zero
effective mass for the charge carriers. Therefore, excitations in graphene are more easily
described in terms of the Dirac (relativistic) equation rather than Shrödinger equation.
Charge carriers in graphene are massless Dirac fermions and as such they mimic relativistic
particles, with the difference that they travel at the Fermi speed of vF ≈ 106 m s−1, i.e. 300
times smaller than the speed of light c [153, 154, 167].
As for the optical properties, in the optical region of the electromagnetic spectrum

graphene is practically transparent. Indeed, it absorb only a fraction πα ≈ 2.3 % of the
incident light, a value that is interestingly determined only by universal constants (α being
the fine structure constant) [168, 169]. Anyway this percentage is relatively high, considering
that it comes from just a one-atom-thick layer, and allows graphene to be seen even with the
naked eye. Furthermore, being a gapless semiconductor, all frequencies are absorbed with
equal efficiency, making graphene interesting also as a broadband photodetector [170, 171].

Recently, hybrid systemsmade of light absorbers/emitters efficiently coupled to a graphene
sheet have been attracting increasing interest. For example, as we will demonstrate in the
remainder of this chapter, such a system can be exploited as a nanoscopic ruler. In addition
to sensing at the nanoscale, other important applications of these hybrid systems can be en-
visioned, where efficient energy transfer between graphene and light absorbers/emitters is
exploited to enhance graphene absorption. Acting as an extraordinary energy sink, graphene
is a promising material in the realms of photodetection and energy harvesting. Indeed, a
wealth of applications have been proposed in photonics and optoelectronics, from solar cells
and LEDs to touch screens, photodetectors and ultrafast lasers. See Bonaccorso et al. for a
complete review [171]. In the field of photonics, graphene can be used to investigate the
dynamics of dark molecules (i.e. molecules that have an intrinsically low quantum yield) by
capturing the energy from the molecule’s excited state. Additionally, active control of the
emission properties and relaxation pathways of quantum emitters using graphene has been
demonstrated [172].

4.3. A fundamental nanoscopic ruler by optical means

In the previous sections we showed that fluorescence from an excited photoemitter is
quenched by means of resonance energy transfer in the vicinity of a metallic surface. Con-
versely, when placed in the proximity of a transparent isolating surface, no transfer is
expected. Graphene, being an almost transparent one-atom-thick semimetal, represents an
interesting intermediate case both from a fundamental and an application point of view.
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Figure 4.2.: (a) Schematic representation of the ruler concept. Single DBT molecules embedded
in anthracene (red spheres in white box) are placed in the close proximity with a graphene layer.
Because of dipole-dipole resonance energy transfer (FRET), an excited molecules relaxes by exciting
electron-hole pairs in graphene. This results in fluorescence quenching and lifetime shortening. (b)
Confocal fluorescence scan of DBT:anth molecules in proximity of graphene.

Thanks to its gapless band structure, graphene is able to absorb over a broad frequency range.
Therefore, when a dye molecule is placed near a graphene sheet, resonance energy transfer
is expected to occur [173]. The transfer takes place in the form of a FRET-like process, i.e. by
means of Coulomb dipole-dipole interaction, exciting electron-hole pairs in the semimetal
which are later dissipated mostly by internal radiationless decay. Förster Resonance Energy
Transfer (FRET) is a mechanism of energy transfer between a donor and an acceptor chro-
mophore, and is widely exploited to study biochemical processes and molecular interactions
in cells. In our case, the rate of energy transfer to graphene shows a d−4 dependence [174],
where d is the distance between the molecule and the graphene layer, as expected for a 2D
distribution of acceptor dipoles. Such a dependence allows quenching to be observed up to
distances of a few tens of nm [174], i.e. at longer distances than with traditional FRET, which
scales as d−6 [10, 175]. Recent experiments with single emitters [176–178] and ensemble of
emitters [179] have demonstrated the high efficiency of FRET coupling with graphene and
confirmed the predicted d−4 distance dependence of the non-radiative transfer rate. The
magnitude of such coupling, enhanced with respect to other lossy materials, is described
by universal parameters (such as the fine structure constant α) so that the relative distance
of an object — in particular that of a fluorescent molecule — can be accurately determined
(within few nm) by comparing the emitter decay rate relative to vacuum. The remarkable
universality of the distance-scaling law therefore provides us with a fundamental distance
ruler at the nanoscale [180].
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In the near-field range, plasmonic rulers have been proposed [181, 182] and employed
to measure nuclease activity [183], to follow dimer assembly and DNA hybridization [184].
In the simplest geometry, two metal nano particles, integrated into the sample as a probe,
interact with each other, yielding a shift of the plasmonic resonance which obeys a 1/d3

distance dependence. Different schemes helped improving sensitivity (up to about 10–15 nm)
or maximum range (40 nm [185]), by means of nanoparticle-induced lifetime modification.
The promise of plasmonic rulers, however, has been partially compromised by a lack of
universality, as the actual scaling laws typically depend on the nano-particle shape [186].
The work that we present in this chapter represents a key extension of another ruler species,
based on FRET [10, 152, 187], which may be employed to measure distances beyond 10 nm.
More specifically, our method relies on the efficient coupling between single DBT molecules
and a graphene monolayer.

A schematic viewof our proof of concept for a graphene nanoruler is depicted in figure 4.2a.
Single DBT molecules embedded in an anthracene crystal are brought in close proximity
with a one-atom-thick sheet of undoped graphene. Considering the typical thickness of
the anthracene crystals (section 3.2.1) we are always working in the limit where d < λ/4;
furthermore, since we are using undoped graphene, coupling to surface plasmons is not
possible so that the main relaxation mechanism in our configuration is FRET-like. Different
DBT molecules, embedded at different depths inside the crystal, will exhibit different
degrees of coupling. The otherwise almost unitary quantum yield defined by equation (2.1)
is quenched by the onset of the new nonradiative decay channel:

φF =
Γrad

Γrad + Γnrad
(4.1)

Fluorescence lifetime (equation 2.4) is also strongly reduced, since the Förster-like transfer
takes place on time scales that are shorter than the radiative lifetime (τnrad < τrad):

1
τF

=
1

τrad
+

1
τnrad

(4.2)

In the following, we perform a full statistical survey on the lifetimes of single DBT molecules
showing the effect of coupling to graphene. At the single emitter level, a quantitative analysis
for the decay rate modification was still missing to date.

4.4. A single graphene layer

The graphene monolayers under investigation have been fabricated by chemical vapour de-
position (CVD) on copper [188]. Polycrystalline graphene is then transferred on amicroscope
slide and annealed in H2-Ar (1:5) at 300 ◦C for 3 hours. Later, anthracene crystals contain-
ing single DBT molecules are spin-casted on the same coverslide following the procedure
described in section 3.2.1.
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Figure 4.3.: Raman spectrum of the CVD pristine graphene sample, obtained with a CW solid state
diode laser (640 nm), exhibiting the characteristic lines at ≈ 1581 cm−1 and ≈ 2640 cm−1. The single
Lorentzian profile of the 2D band, the respective positions and relative amplitude for G and 2D
bands show unambiguously a signature of a graphene monolayer.

Prior to the spincoating of DBT:anth crystals, we verify the presence of a single graphene
layer by performing Raman spectroscopy on the sample. Across graphene-related research,
Raman spectroscopy is the preferred tool to investigate doping, stress and structural proper-
ties [189]. Indeed, it is a fast and non-invasive technique allowing unambiguous identification
of graphene layers and their properties. Electron-phonon scattering processes involving
neighbouring Dirac cones give rise to characteristic Raman lines, providing information on
both electron and phonon bands. In particular, a clear signature for single layer graphene
would be the observation of the G peak at ≈ 1580 cm−1 and the 2D (also known as G′) band
at ≈ 2700 cm−1 [190]. The G band originates from one-phonon processes involving the
doubly degenerate phononmode E2g at the centre of the Brillouin zone. The 2D peak instead
originates from a two-phonon scattering process. In a single layer of graphene, the 2D peak
is roughly four times more intense than the G peak and has a narrow shape [190]. For an
increasing number of layers, the 2D band is up-shifted and becomes broader, consisting of
multiple components.
The experimental setup that we use is the standard configuration for confocal Raman

spectroscopy. We employ a 100X objective with NA= 0.7 and excite the sample using a
continuous wave solid state diode laser, with central emission wavelength around 640 nm
and TEM00 spatial mode. A narrow (2 nm) bandpass filter is used in excitation to clean the
laser beam, whereas a longpass filter in the detection path only lets the Stokes shifted light
through, while filtering out Rayleigh scattered light. Finally, the Raman spectra are collected
with a grating spectrometer with a spectral resolution of 3 cm−1.

Figure 4.3 shows the measured Raman spectrum of a graphene specimen prepared as
described above. The two prominent features of a graphene monolayer can be readily
identified, i.e. the G and 2D bands. The G band position is measured at 1581 cm−1 and has
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Figure 4.4.: Time-resolved measurements of the fluorescence decay for single DBT:anth molecules,
situated at different distances from a graphene layer. Solid black lines are fit to the experimental
data with the convolution between the Instrument Response Function (IRF) (light grey) and a single-
exponential-decay. The longer lifetime of molecule B compared to A is associated to a brighter signal,
as displayed on the right in the close-up of a bigger confocal fluorescence scan. The quenching of
fluorescence and the shortening of its lifetime suggest that molecule A sits closer to graphene than
molecule B.

pure Lorentzian shape. The profile of the Raman 2D band at 2640 cm−1 is Lorentzian and
shows correct agreement with the expected line shape for monolayer graphene [190, 191].
The D band at≈ 1350 cm−1 —which is activated only in the presence of structural defects —
is not observed, suggesting the purity of the sample.

4.5. Statistical survey of lifetime measurements

The decay rate of molecules coupled and uncoupled to graphene are compared in terms of
excited-state lifetime measurements. The fluorescence dynamics are probed as described in
section 3.3.5, using a pulsed Ti:sa laser and the PicoHarpmodule for TCSPC. We perform
the analysis in a systematic way, starting from a scan similar to the one in figure 4.2b and
defining an intensity threshold for the faintest detectable molecule according to a minimum
SNR of 3. On each selected molecule, we then measure the relaxation dynamics and extract
a value for the excited-state lifetime. Figure 4.4a shows particularly clean single-exponential
decays of DBT fluorescence in the vicinity of graphene. As anticipated in chapter 3, such
signals can be associated to a single optically active system with a simple level structure, i.e.
with no contribution from the host matrix [119].

In fitting the decay curves, we have to take into account that the excitation pulse is not
a delta-function and that the instrumentation has a finite response time, quantified by the
Instrument Response Function (IRF) or L(t), which can be determined by measuring the
instrument response profile to the backscattered laser light (grey solid line in figure 4.4a).
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(a) (b) (c)

Figure 4.5.: A graphene flake, seen through an optical microscope (a) can be imaged by observing
the fluorescence quenching (b) or lifetime shortening (c) of a layer of rhodamine molecules. Adapted
with permission from L. Gaudreau et al. “Universal Distance-Scaling of Nonradiative Energy Transfer
to Graphene”. In: Nano Lett. 13, 5 (Mar. 2013), pp. 2030–2035. © 2013 American Chemical Society.

The IRF is approximately a Gaussian with σ ≈ 400 ns, corresponding mainly to the APD’s
jitter. If we think L(t) as a series of delta-excitation pulses with varying amplitude, then
the measured intensity at time t, N(t), is the convolution integral between L(t) and the
fluorescence intensity I(t) from the emitter:

N(t) =
∫ t

0
L(t′)I(t− t′)dt′ (4.3)

In fitting the decay curves we account for the IRF by employing DecayFit, a fluorescence
decay analysis software based on MATLAB [192]. In the fitting procedure no actual de-
convolution takes place; rather, iterative reconvolution is implemented, i.e. decay times are
derived from the best fit of the convolution between the IRF and a single-exponential decay
model.
The proximity to a graphene monolayer is clearly reflected in lifetime measurements: a

molecule, say molecule A in the example shown in figure 4.4, is characterized by a short
lifetime due to efficient energy transfer to the graphene sheet, also resulting in fluorescence
quenching. On the other hand, molecule B appears brighter and with a longer lifetime, and
is supposedly further away from the graphene layer compared to the other molecule. As
we have anticipated, shorter lifetimes are due to the non-radiative decay rate enhancement,
which results in a decreased quantum efficiency (equation 4.1), and lifetime shortening
(equation 4.2). Fluorescence quenching [176, 179, 193] or even lifetime mapping [176, 179]
can be exploited to image a graphene monolayer (figure 4.5), or to characterize the coupling
efficiency between emitters and graphene [177].

As a reference test sample we consider our usual DBT:anth crystals spincoated on a bare
SiO2 coverslide, and collect lifetime measurements for 75 molecules. In the histogram shown
in figure 4.6a we observe a symmetric distribution of lifetimes around 4.1 ns with σ ' 0.4 ns,
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which cannot be fully accounted for by simple interface effects, acting differently depending
on the distance to the surface. In fact, considering the in-plane orientation of DBT molecules
(see section 3.3.3) and calculating the spread in lifetime for a 40 nm-thick crystal, following
the discussion for amultilayer in [149], we estimate a 10% total lifetime variation, resulting in
approximately half the experimental spread. Local environment and edge effects contribute
predominantly to determine the observed variation of lifetimes for DBT [194, 195]. Overall,
the observed spread can hence be reasonably accounted for with a Gaussian distribution
(solid line in figure 4.6a).

Coupling to graphene is investigated on a sample that differs from the reference case
only for the addition of a graphene sheet between the glass coverslide and the anthracene
crystals. The lifetimes of 150 different molecules are collected for this configuration. When
the emitters find themselves in close proximity to the monoatomic carbon layer, the lifetime
distribution is strongly affected, becoming asymmetric with a long tail for short lifetimes
(histogram in figure 4.6b). In particular, the average lifetime is shorter (3.7 ns), as a new
non-radiative decay channel has opened up. This is a clear demonstration of the energy
transfer from the single DBT molecules to the graphene monolayer.

4.6. Discussion

We here show how the lifetime distribution obtained for the 150 DBT molecules close to the
graphenemonolayer only depends on universal parameters, besides the position distribution.
As lifetime measurements are not affected by the instrumental collection efficiency, whether
geometrical or intrinsic, the system shows promising characteristics as a nanoscopic ruler.
In the following we briefly describe a semi-classical1 model for emitters coupled to a nearby
material, in which the emitters are described as classical dipoles; the emission rate is worked
out by integration over parallel wave vectors considering the total field at the dipole as a
result of interference between the dipole emission and its Fresnel reflection.
Let’s consider the semi-classical model successfully applied by Gaudreau et al. [179] for

describing the energy transfer between a layer of rhodamine molecules to a graphene sheet.
The decay rate Γg can be written in terms of the electric field Eind induced by a dipole d on
itself [76]:

Γg = Γ0 +
2
h̄

Im{d∗ · Eind} (4.4)

where Γ0 = 4k3
0|d|2/3h̄ is the decay rate in free space and k0 = ω/c is the free-space wave

vector. If the emitter is above a substrate covered with a graphene sheet, relating the induced
field to Fresnel coefficients rs and rp of graphene we have [197, 198]:

Γg = Γ0 +
1
h̄

∫ ∞

0
k‖ dk‖ Re

{[∣∣d‖
∣∣2(k2

0rs − k2
⊥rp) + 2|d⊥|2k2

‖rp
]e2ik⊥z

k⊥

}
(4.5)

1It is worth noting that the obtained results are in agreement with a full quantum optical analysis [196].
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Figure 4.6.: Probability Density Function (PDF) of the excited state lifetimes of single DBT:anth
molecules on a bare glass substrate (a) and on the same substrate with an added graphene sheet (b).
Histograms represent experimental values, while blue solid lines result from the theoretical models
discussed in the text. The bin size is given by the time resolution of the setup, amounting to 400 ps
after deconvolution with the instrument response function. A PDF of a normal distribution (solid
line), centred around 4.2 ns is used to reproduce the intrinsic spread in lifetimes of DBT molecules in
a thin anthracene film. The PDF for lifetimes on graphene is obtained from the model by assuming
the Gaussian distribution of panel (a) for the lifetimes in the uncoupled case, and the PDF reported
in panel (c) for the molecule-graphene distances. The expected potential accuracy in operating our
system to measure distances is plotted in panel (d) as a function of the relative distance.
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where z is the emitter-graphene distance and the integral is computed over wave vectors
parallel to graphene (k‖). In the long wavelength limit, i.e. for small distances compared to
the emission wavelength, we obtain:

Γg ≈ Γ0 +
1
h̄
(
∣∣d‖
∣∣2 + 2|d⊥|2)

∫ ∞

0
k2
‖ dk‖ Im

{
rp
}

e−2k‖z (4.6)

from which the ratio of decay rates is written as [179]:

Γg

Γ0
= 1 +

3νλ3
0

32π3

∫ ∞

0
k2
‖ dk‖ Im

{
rp
}

e−2k‖z (4.7)

where λ0 is the light wavelength and ν = 1 (ν = 2) when the dipole is oriented parallel
(perpendicular) to the surface. The k‖ dependence of the Fresnel coefficient is at the origin
of the distance dependence of decay rate. For graphene, we have

Im
{

rp
}
= Im

{
−2

ε + 1 + 4πiσk‖/ω

}
(4.8)

where σ is the graphene conductivity, ω the photon frequency and ε the permittivity of the
substrate supporting graphene. By taking σ = e2/4h̄, the above integral has a closed-form
analytical solution written as Γg/Γ0 = 1+ νCI(x)where C = 3(ε + 1)2/2(πα)3 is a constant,
x = 4(ε + 1)d/αλ0 and I(x) ≈ 1/(x2 + x3/3 + x4/6). In the distance range of interest for
our work, the solution reduces to a simple elegant formula:

Γg

Γ0
≈ 1 +

9να

256π3(ε + 1)2

(
λ0

d

)4

(4.9)

having the well-known d−4 dependence. In the formula above, d is the sole unknown, the
other quantities being universal constants, the substrate permittivity and the wavelength.
There are no material-dependent parameters related to graphene. The universality of this
model lies in the universal value of the optical conductivity that we used, which in turn
derives from graphene’s pure 2D structure and gapless band structure.
We now go back to our case of single DBT molecules in anthracene in close proximity

to a graphene layer. The effect of energy transfer to graphene is compared to the reference
case of DBT:anth molecules on the substrate without graphene. To keep the model simple,
we consider the DBT molecules as embedded in a semi-infinite anthracene medium, where
the lifetimes of DBT molecules are characterized by the homogeneous (phenomenological)
Gaussian distribution as shown in figure 4.6a. This assumption is motivated by theoretical
calculations according to which the finite-size effect of the anthracene crystal on the emitter
lifetime spread is of secondary importance compared to local-field and edge effects [149].
We thus find the following simple model to be effective in describing the energy transfer
between single DBT molecules and a graphene sheet:

Γg

Γng
≈ 1 +

9α

256π3(εsub + εanthr)2

(
λ0

d

)4

(4.10)
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4.6. Discussion

where Γng is the decay rate in the reference case, i.e. in the same geometry but without
graphene and εanthr is the permittivity of anthracene. Also, in writing the equation above
we have considered that DBT molecules are embedded within anthracene crystal with their
dipole oriented parallel to the crystal plane (section 3.3.3).

To quantitatively test the model, we make an educated guess as for the molecule positions
inside anthracene, hence their distance to graphene. Let’s assume the simplest case in which
DBTmolecules are homogeneously distributed inside anthracene crystals, whose thicknesses
are of 40 nm on average according to AFM measurements (section 3.2.1). A cutoff on the
distribution is introduced, accounting for the quenching of fluorescence at short distances
which, given our threshold of SNR > 3, makes detection difficult for distances to graphene
shorter than 20 nm. The resulting Probability Density Function (PDF) is shown in figure
4.6c. As for Γng, we assume a Gaussian distribution of lifetimes as shown in figure 4.6a and
explained above. We then perform a sampling of equation (4.10) by randomly choosing
lifetimes and distances from these two distributions; the drawn values are respectively
inserted into Γng and d in the equation. The distribution of lifetimes resulting from the
model is then plotted in figure 4.6b on top of the experimental histogram, showing a good
agreement with the data. The simplicity and universality of equation (4.10) enables our
system as a tool for position measurement at the nanoscale, since the distance d can be
obtained from a simple measurement of the decay rate Γg of a single molecule. In figure
4.6d the uncertainty in position measurement is shown. Here we have only included the
effect of the intrinsic DBT:anth lifetime spread and assumed an ideal setup, i.e. no cutoff due
to detection is considered. We observe that the distance to the graphene interface of DBT
molecules can be determined with an accuracy below 5nm for distances smaller than 30 nm.
Given the lifetime distribution for molecules on glass and on graphene, we can estimate

the probability to measure a transfer efficiency η higher than 40%, which is the maximum
value reported in literature for single emitters [176, 178]. According to the equation

η = 1− τg

τng
(4.11)

which holds when the intrinsic quantum yield amounts to 1, with τg and τng being respec-
tively the lifetime measured with and without graphene [176], we find that in our case 12%
of the measured molecules have experienced an energy transfer efficiency higher than 40%.
Given a typical SNR for a single molecule equal to about 15 and a minimum detectable
lifetime of about 1 ns, we do not expect (probability smaller than 0.1%) to observe molecules
with transfer efficiency higher than ' 70%. Note that such numbers are only determined
by instrumental issues, such as minimum detectable lifetime and SNR, therefore they do
not represent absolute limitations for the proposed nanoruler. Finally we can estimate a
maximum measured transfer efficiency from a single DBT molecule to graphene equal to
(61± 21)%. The uncertainty is estimated taking into account the fluctuations in the reference
value and the precision of lifetime measurements.
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Chapter 4. Proof of principle for a graphene-based nanoscopic ruler

4.7. Conclusions

In conclusion, we have presented a full statistical study of the coupling between single
long-lived organic molecules and a graphene monolayer sheet. We have reported the highest
— to our knowledge — ever measured transfer efficiency from single emitters to graphene,
amounting to 61± 21%. The molecule excited-state lifetime is strongly affected by the pres-
ence of the monoatomic carbon layer, because of its two-dimensionality, high conductivity
and gapless dispersion relation. As a result, we can detect a FRET-like effect to distances
well beyond the characteristic range of 10 nm of standard acceptor-donor energy transfer.
The semi-classical model yielding a universal d−4 dependence of the coupling efficiency
[179, 180] was successfully verified in the near-field range against a statistical distribution of
the molecule lifetimes. The presented investigation on our favourable DBT:anth platform
constitutes a proof of principle for a graphene-based nano ruler, where ideally the distance
to a surface can be measured by extracting the lifetime of a well-referenced single emitter,
serving as a marker. We expect a N-fold increase of the effect for a N-layer system because
the optical conductivity (and thus the energy transfer rate) increases linearly with N for at
least up to 5 layers [199].

In the near future, the use of single emitters will be essential to focus on local effects such
as mapping the local Fermi energy in graphene, useful for electron-transport engineering in
graphene-based devices. Dibenzoterrylene molecules, emitting single photons on demand
in the near infrared, are also particularly promising candidates to launch deterministic
single plasmons into heavily-doped graphene. Recently, new hybrid electro-optomechanical
systems exploiting the excellent mechanical properties of graphene have been proposed, in
which the strength of coupling between single quantum emitters and a graphene resonator
is controlled by the electrostatic deflection of a suspended graphene membrane [200]. In a
similar geometry, quantum emitters such as our DBT:anth system could be used in another
kind of conceptual nanorulers, based on the Casimir interaction with a surface such as
graphene or MoS2. In this case, the physical mechanism on which the ruler is based is the
modification of the energy of the emitter’s electronic states — hence its transition frequency
— due to the vacuum fluctuations in the presence of a nearby surface [201]. The field of
quantum sensing is today a very thriving one, and new interesting applications are to be
expected in the coming years.

68



References

[1] M. Fox. Quantum Optics: An Introduction. 6. Oxford university press, 2006.
[2] B. Lounis, H. Bechtel, D. Gerion, P. Alivisatos, andW.Moerner. “Photon antibunching

in single CdSe/ZnS quantum dot fluorescence”. In: Chemical Physics Letters 329, 5
(2000), pp. 399–404.

[3] R. Verberk and M. Orrit. “Photon statistics in the fluorescence of single molecules
and nanocrystals: Correlation functions versus distributions of on-and off-times”. In:
The Journal of Chemical Physics 119, 4 (2003), pp. 2214–2222.

[4] B. Lounis and M. Orrit. “Single-photon sources”. In: Reports on Progress in Physics 68,
5 (2005), p. 1129.

[5] S. Singh. “Antibunching, sub-poissonian photon statistics and finite bandwidth
effects in resonance fluorescence”. In: Optics Communications 44, 4 (1983), pp. 254–
258.

[6] X. Zou and L. Mandel. “Photon-antibunching and sub-Poissonian photon statistics”.
In: Phys. Rev. A 41, 1 (1990), p. 475.

[7] R. Hanbury Brown and R. Q. Twiss. “Correlation between photons in two coherent
beams of light”. In: Nature 177 (1956), pp. 27–29.

[8] H. Kimble, M. Dagenais, and L. Mandel. “Photon antibunching in resonance fluores-
cence”. In: Phys. Rev. Lett. 39, 11 (1977), p. 691.

[9] T. Basché, W. Moerner, M. Orrit, and H. Talon. “Photon antibunching in the fluores-
cence of a single dye molecule trapped in a solid”. In: Phys. Rev. Lett. 69, 10 (1992),
p. 1516.

[10] J. R. Lakowicz. Principles of Fluorescence Spectroscopy. Springer, 2006.
[11] M. Wahl. Time-Correlated Single Photon Counting. PicoQuant Technical Note.
[12] J. F. Clauser. “Experimental distinction between the quantum and classical field-

theoretic predictions for the photoelectric effect”. In: Phys. Rev. D 9, 4 (1974), p. 853.
[13] A. Aspect, P. Grangier, and G. Roger. “Experimental tests of realistic local theories

via Bell’s theorem”. In: Phys. Rev. Lett. 47, 7 (1981), p. 460.
[14] P. Grangier, G. Roger, and A. Aspect. “Experimental evidence for a photon anticorre-

lation effect on a beam splitter: a new light on single-photon interferences”. In: EPL
(Europhysics Letters) 1, 4 (1986), p. 173.

69



References

[15] F. Diedrich and H. Walther. “Nonclassical radiation of a single stored ion”. In: Phys.
Rev. Lett. 58, 3 (1987), p. 203.

[16] C. Hong and L. Mandel. “Experimental realization of a localized one-photon state”.
In: Phys. Rev. Lett. 56, 1 (1986), p. 58.

[17] J. Beugnon, M. P. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grang-
ier. “Quantum interference between two single photons emitted by independently
trapped atoms”. In: Nature 440, 7085 (2006), pp. 779–782.

[18] P. Maunz, D. Moehring, S. Olmschenk, K. Younge, D. Matsukevich, and C. Monroe.
“Quantum interference of photon pairs from two remote trapped atomic ions”. In:
Nature Physics 3, 8 (2007), pp. 538–541.

[19] B. Lounis and W. Moerner. “Single photons on demand from a single molecule at
room temperature”. In: Nature 407, 6803 (2000), pp. 491–493.

[20] N. Bar-Gill, L. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J. Maze, M. Lukin,
A. Yacoby, and R. Walsworth. “Suppression of spin-bath dynamics for improved
coherence of multi-spin-qubit systems”. In: Nature Communications 3 (2012), p. 858.

[21] G. Juska, V. Dimastrodonato, L. O. Mereni, A. Gocalinska, and E. Pelucchi. “Towards
quantum-dot arrays of entangled photon emitters”. In: Nature Photonics 7, 7 (2013),
pp. 527–531.

[22] A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Von Borczysko-
wski. “Scanning confocal optical microscopy andmagnetic resonance on single defect
centers”. In: Science 276, 5321 (1997), pp. 2012–2014.

[23] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter. “Stable solid-state source of
single photons”. In: Phys. Rev. Lett. 85, 2 (2000), p. 290.

[24] R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier. “Photon antibunching in the
fluorescence of individual color centers in diamond”. In: Optics Letters 25, 17 (2000),
pp. 1294–1296.

[25] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup. “Observa-
tion of coherent oscillation of a single nuclear spin and realization of a two-qubit
conditional quantum gate”. In: Phys. Rev. Lett. 93, 13 (2004), p. 130501.

[26] P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques,
G. Balasubramanian, M. Markham, D. Twitchen, et al. “Quantum register based on
coupled electron spins in a room-temperature solid”. In: Nature Physics 6, 4 (2010),
pp. 249–253.

[27] F. Jelezko, C. Tietz, A. Gruber, I. Popa, A. Nizovtsev, S. Kilin, and J. Wrachtrup.
“Spectroscopy of single NV centers in diamond”. In: Single Molecules 2, 4 (2001),
pp. 255–260.

70



References

[28] A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier. “Nonclassical radiation
from diamond nanocrystals”. In: Phys. Rev. A 64, 6 (2001), p. 061802.

[29] J. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup.
“Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals”.
In: Nano letters 7, 11 (2007), pp. 3433–3437.

[30] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hol-
lenberg. “The nitrogen-vacancy colour centre in diamond”. In: Physics Reports 528, 1
(2013), pp. 1–45.

[31] C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard. “Single photon emission
from SiV centres in diamond produced by ion implantation”. In: Journal of Physics B:
Atomic, Molecular and Optical Physics 39, 1 (2006), p. 37.

[32] E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C.
Becher. “Single photon emission from silicon-vacancy colour centres in chemical
vapour deposition nano-diamonds on iridium”. In:New Journal of Physics 13, 2 (2011),
p. 025012.

[33] E. Neu, M. Agio, and C. Becher. “Photophysics of single silicon vacancy centers in
diamond: implications for single photon emission”. In: Optics Express 20, 18 (2012),
pp. 19956–19971.

[34] M.Abbarchi, F. Troiani, C.Mastrandrea, G. Goldoni, T. Kuroda, T.Mano, K. Sakoda, N.
Koguchi, S. Sanguinetti, A. Vinattieri, et al. “Spectral diffusion and line broadening in
single self-assembled GaAs/ AlGaAs quantum dot photoluminescence”. In: Applied
Physics Letters 93, 16 (2008), p. 162101.

[35] M. Orrit and T. Basché. “Steady light from quantum dots, at last. But how?” In:
ChemPhysChem 10, 14 (2009), pp. 2383–2385.

[36] M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P.
Mulvaney, and B. Lounis. “Spontaneous spectral diffusion in CdSe quantum dots”.
In: The Journal of Physical Chemistry Letters 3, 12 (2012), pp. 1716–1720.

[37] P. Michler, A. Imamoğlu, M. Mason, P. Carson, G. Strouse, and S. Buratto. “Quantum
correlation among photons from a single quantum dot at room temperature”. In:
Nature 406, 6799 (2000), pp. 968–970.

[38] S. Buckley, K. Rivoire, and J. Vučković. “Engineered quantum dot single-photon
sources”. In: Reports on Progress in Physics 75, 12 (2012), p. 126503.

[39] J. Rarity, P. Owens, and P. Tapster. “Quantum random-number generation and key
sharing”. In: Journal of Modern Optics 41, 12 (1994), pp. 2435–2444.

[40] M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Benson. “An ultrafast
quantum random number generator with provably bounded output bias based on
photon arrival time measurements”. In:Applied Physics Letters 98, 17 (2011), p. 171105.

71



References

[41] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien.
“Quantum computers”. In: Nature 464, 7285 (2010), pp. 45–53.

[42] H. J. Kimble. “The quantum internet”. In: Nature 453, 7198 (2008), pp. 1023–1030.
[43] E. Knill, R. Laflamme, and G. J. Milburn. “A scheme for efficient quantum computa-

tion with linear optics”. In: Nature 409, 6816 (2001), pp. 46–52.
[44] T. Sleator and H. Weinfurter. “Realizable universal quantum logic gates”. In: Phys.

Rev. Lett. 74, 20 (1995), p. 4087.
[45] C. Hong, Z. Ou, and L. Mandel. “Measurement of subpicosecond time intervals

between two photons by interference”. In: Phys. Rev. Lett. 59, 18 (1987), p. 2044.
[46] P. Grangier. “Quantum physics: Single photons stick together”. In: Nature 419, 6907

(2002), pp. 577–577.
[47] C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto. “Indistinguishable

photons from a single-photon device”. In: Nature 419, 6907 (2002), pp. 594–597.
[48] M. Leifgen, T. Schröder, F. Gädeke, R. Riemann, V. Métillon, E. Neu, C. Hepp, C.

Arend, C. Becher, K. Lauritsen, and O. Benson. “Evaluation of nitrogen-and silicon-
vacancy defect centres as single photon sources in quantum key distribution”. In:
New Journal of Physics 16, 2 (2014), p. 023021.

[49] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. “Quantum state transfer and
entanglement distribution among distant nodes in a quantum network”. In: Phys.
Rev. Lett. 78, 16 (1997), p. 3221.

[50] X. Maitre, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. Raimond, and
S. Haroche. “Quantum memory with a single photon in a cavity”. In: Phys. Rev. Lett.
79, 4 (1997), p. 769.

[51] S. Brattke, B. T. Varcoe, and H. Walther. “Generation of photon number states on de-
mand via cavity quantum electrodynamics”. In: Phys. Rev. Lett. 86, 16 (2001), p. 3534.

[52] A. Kuhn, M. Hennrich, and G. Rempe. “Deterministic single-photon source for dis-
tributed quantum networking”. In: Phys. Rev. Lett. 89, 6 (2002), p. 067901.

[53] J. McKeever, A. Boca, A. Boozer, R. Miller, J. Buck, A. Kuzmich, and H. Kimble.
“Deterministic generation of single photons from one atom trapped in a cavity”. In:
Science 303, 5666 (2004), pp. 1992–1994.

[54] T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe. “Single-atom single-photon quantum
interface”. In: Science 317, 5837 (2007), pp. 488–490.

[55] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E.
Figueroa, J. Bochmann, and G. Rempe. “An elementary quantum network of single
atoms in optical cavities”. In: Nature 484, 7393 (2012), pp. 195–200.

[56] T. Northup and R. Blatt. “Quantum information transfer using photons”. In: Nature
Photonics 8, 5 (2014), pp. 356–363.

72



References

[57] D. E. Chang, V. Vuletić, andM. D. Lukin. “Quantum nonlinear optics [mdash] photon
by photon”. In: Nature Photonics 8, 9 (2014), pp. 685–694.

[58] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković. “Controlling
cavity reflectivity with a single quantum dot”. In: Nature 450, 7171 (2007), pp. 857–
861.

[59] D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković. “Generation and
transfer of single photons on a photonic crystal chip”. In: Optics Express 15, 9 (2007),
pp. 5550–5558.

[60] D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel,
and Y. Yamamoto. “Photon antibunching from a single quantum-dot-microcavity
system in the strong coupling regime”. In: Phys. Rev. Lett. 98, 11 (2007), p. 117402.

[61] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković. “Controlled
phase shifts with a single quantum dot”. In: Science 320, 5877 (2008), pp. 769–772.

[62] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković. “Coher-
ent generation of non-classical light on a chip via photon-induced tunnelling and
blockade”. In: Nature Physics 4, 11 (2008), pp. 859–863.

[63] A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković. “Integrated
quantum optical networks based on quantum dots and photonic crystals”. In: New
Journal of Physics 13, 5 (2011), p. 055025.

[64] J. Hwang and E. Hinds. “Dye molecules as single-photon sources and large optical
nonlinearities on a chip”. In: New Journal of Physics 13, 8 (2011), p. 085009.

[65] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Ima-
moğlu. “Strongly correlated photons on a chip”. In: Nature Photonics 6, 2 (2012),
pp. 93–96.

[66] H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks. “A quantum logic gate
between a solid-state quantum bit and a photon”. In: Nature Photonics 7, 5 (2013),
pp. 373–377.

[67] A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Take-
uchi. “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable
Nanofibre Cavity”. In: Scientific Reports 5 (2015).

[68] P. M. Vora, A. S. Bracker, S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, L. Yang,
P. G. Brereton, S. E. Economou, and D. Gammon. “Spin-cavity interactions between
a quantum dot molecule and a photonic crystal cavity”. In: Nature Communications 6
(2015).

[69] A. Javadi, I. Sollner, M. Arcari, S. Lindskov Hansen, L. Midolo, S. Mahmoodian, G.
Kirsanske, T. Pregnolato, E.H. Lee, J. D. Song, S. Stobbe, and P. Lodahl. “Single-photon
non-linear optics with a quantum dot in a waveguide”. In: Nature Communications 6
(Oct. 2015).

73



References

[70] W. Moerner and L. Kador. “Optical detection and spectroscopy of single molecules
in a solid”. In: Phys. Rev. Lett. 62, 21 (1989), p. 2535.

[71] M. Orrit and J. Bernard. “Single pentacene molecules detected by fluorescence exci-
tation in a p-terphenyl crystal”. In: Phys. Rev. Lett. 65, 21 (1990), p. 2716.

[72] Super-resolved fluorescence microscopy. Scientific Background on the Nobel Prize in
Chemistry 2014, compiled by the Class for Physics of the Royal Swedish Academy of
Sciences. Oct. 2015.

[73] W. Moerner and M. Orrit. “Illuminating single molecules in condensed matter”. In:
Science 283, 5408 (1999), pp. 1670–1676.

[74] P. Tamarat, B. Lounis, J. Bernard, M. Orrit, S. Kummer, R. Kettner, S. Mais, and
T. Basché. “Pump-probe experiments with a single molecule: ac-stark effect and
nonlinear optical response”. In: Phys. Rev. Lett. 75, 8 (1995), p. 1514.

[75] A. Jabłoński. “Efficiency of anti-Stokes fluorescence in dyes”. In: Nature 131, 839-840
(1933), p. 21.

[76] L. Novotny and B. Hecht. Principles of nano-optics. Cambridge university press, 2012.
[77] W. Moerner and D. P. Fromm. “Methods of single-molecule fluorescence spectro-

scopy and microscopy”. In: Review of Scientific Instruments 74, 8 (2003), pp. 3597–
3619.

[78] W. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm, and U. P. Wild. “Optical
Probing of Single Molecules of Terrylene in a Shpol’kii Matrix: A Two-State Single-
Molecule Switch”. In: The Journal of Physical Chemistry 98, 30 (1994), pp. 7382–7389.

[79] T. Basché, S. Kummer, and C. Bräuchle. “Excitation and Emission Spectroscopy and
Quantum Optical Measurements”. In: Single-molecule optical detection, imaging and
spectroscopy. Ed. by W. Moerner, M. Orrit, U. Wild, and T. Basché. John Wiley & Sons,
2008.

[80] R. Loudon. The quantum theory of light. Oxford university press, 2000.
[81] F. Bloch. “Nuclear induction”. In: Physical Review 70, 7-8 (1946), p. 460.
[82] T. Nonn and T. Plakhotnik. “Non-Lorentzian single-molecule line shape: Pseudolocal

phonons and coherence transfer”. In: Phys. Rev. Lett. 85, 7 (2000), p. 1556.
[83] A. A. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown,

and M. Orrit. “Single dibenzoterrylene molecules in an anthracene crystal: Main
insertion sites”. In: ChemPhysChem 8, 13 (2007), pp. 1929–1936.

[84] A. Brouwer, J. Köhler, E. Groenen, and J. Schmidt. “13C isotope effects for pentacene
in p-terphenyl: High-resolution spectroscopy and single-spin detection”. In: The
Journal of Chemical Physics 105, 6 (1996), pp. 2212–2222.

[85] P. Tamarat, A. Maali, B. Lounis, and M. Orrit. “Ten years of single-molecule spec-
troscopy”. In: The Journal of Physical Chemistry A 104, 1 (2000), pp. 1–16.

74



References

[86] Moerner, W.E. “Physical Principles and Methods of Single-Molecule Spectroscopy
in Solids”. In: Single-molecule optical detection, imaging and spectroscopy. Ed. by W. Mo-
erner, M. Orrit, U. Wild, and T. Basché. John Wiley & Sons, 2008.

[87] J.-M. Caruge and M. Orrit. “Investigations of local currents in a semiconductor by
single-molecule spectroscopy”. In: Journal of Luminescence 98, 1 (2002), pp. 1–5.

[88] M. Kol’chenko, A. Nicolet, M. Galouzis, C. Hofmann, B. Kozankiewicz, and M. Orrit.
“Single molecules detect ultra-slow oscillators in a molecular crystal excited by ac
voltages”. In: New Journal of Physics 11, 2 (2009), p. 023037.

[89] S. Faez, S. J. van der Molen, and M. Orrit. “Optical tracing of multiple charges in
single-electron devices”. In: Phys. Rev. B 90, 20 (2014), p. 205405.

[90] Y. Tian, P. Navarro, and M. Orrit. “Single molecule as a local acoustic detector for
mechanical oscillators”. In: Phys. Rev. Lett. 113, 13 (2014), p. 135505.

[91] C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit. “Towards nanoprobes
for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals”. In:
Chemical physics 318, 1 (2005), pp. 1–6.

[92] A. A. L. Nicolet. “Single-molecule probes in organic field-effect transistors”. PhD
thesis. 2007.

[93] L. Novotny and N. Van Hulst. “Antennas for light”. In: Nature Photonics 5, 2 (2011),
pp. 83–90.

[94] M. Agio. Molecular scattering and fluorescence in strongly confined optical fields. Habili-
tationsschrift, ETH Zurich, Switzerland, 2011.

[95] H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit. “Thousand-fold Enhance-
ment of Single-Molecule Fluorescence Near a Single Gold Nanorod”. In: Angewandte
Chemie International Edition 52, 4 (2013), pp. 1217–1221.

[96] S. Khatua and M. Orrit. “Probing, Sensing, and Fluorescence Enhancement with Sin-
gle Gold Nanorods”. In: The Journal of Physical Chemistry Letters 5, 17 (2014), pp. 3000–
3006.

[97] S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit. “Resonant plas-
monic enhancement of single-molecule fluorescence by individual gold nanorods”.
In: ACS nano 8, 5 (2014), pp. 4440–4449.

[98] K. Lee, H. Eghlidi, X. Chen, A. Renn, S. Götzinger, and V. Sandoghdar. “Spontaneous
emission enhancement of a single molecule by a double-sphere nanoantenna across
an interface”. In: Optics Express 20, 21 (2012), pp. 23331–23338.

[99] X.-W. Chen, M. Agio, and V. Sandoghdar. “Metallodielectric hybrid antennas for
ultrastrong enhancement of spontaneous emission”. In: Phys. Rev. Lett. 108, 23 (2012),
p. 233001.

75



References

[100] T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst. “λ/4
resonance of an optical monopole antenna probed by single molecule fluorescence”.
In: Nano letters 7, 1 (2007), pp. 28–33.

[101] A. Singh, J. Hugall, G. Calbris, and N. van Hulst. “Fiber-Based Optical Nanoantennas
for Single-Molecule Imaging and Sensing”. In: Lightwave Technology, Journal of 33, 12
(June 2015), pp. 2371–2377.

[102] E. Wientjes, J. Renger, A. G. Curto, R. Cogdell, and N. F. van Hulst. “Nanoantenna
enhanced emission of light-harvesting complex 2: the role of resonance, polarization,
and radiative and non-radiative rates”. In: Physical Chemistry Chemical Physics (2014).

[103] R. Hildner, D. Brinks, J. B. Nieder, R. J. Cogdell, and N. F. van Hulst. “Quantum
coherent energy transfer over varying pathways in single light-harvesting complexes”.
In: Science 340, 6139 (2013), pp. 1448–1451.

[104] E. Wientjes, J. Renger, A. G. Curto, R. Cogdell, and N. F. van Hulst. “Strong antenna-
enhanced fluorescence of a single light-harvesting complex shows photon antibunch-
ing”. In: Nature Communications 5 (2014).

[105] T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst. “Optical antennas direct single-
molecule emission”. In: Nature Photonics 2, 4 (2008), pp. 234–237.

[106] K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S.
Götzinger. “A planar dielectric antenna for directional single-photon emission and
near-unity collection efficiency”. In: Nature Photonics 5, 3 (2011), pp. 166–169.

[107] X.-L. Chu, T. Brenner, X.-W. Chen, Y. Ghosh, J. Hollingsworth, V. Sandoghdar, and
S. Götzinger. “Experimental realization of an optical antenna designed for collecting
99% of photons from a quantum emitter”. In: Optica 1, 4 (2014), pp. 203–208.

[108] V. Ahtee, R. Lettow, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar.
“Molecules as sources for indistinguishable single photons”. In: Journal of Modern
Optics 56, 2-3 (2009), pp. 161–166.

[109] J.-B. Trebbia, H. Ruf, P. Tamarat, and B. Lounis. “Efficient generation of near infra-red
single photons from the zero-phonon line of a single molecule”. In: Optics Express 17,
26 (2009), pp. 23986–23991.

[110] J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V.
Sandoghdar. “A single-molecule optical transistor”. In:Nature 460, 7251 (2009), pp. 76–
80.

[111] R. Lettow, Y. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger, and V. Sandoghdar.
“Quantum interference of tunably indistinguishable photons from remote organic
molecules”. In: Phys. Rev. Lett. 104, 12 (2010), p. 123605.

[112] Y. Rezus, S. Walt, R. Lettow, A. Renn, G. Zumofen, S. Götzinger, and V. Sandoghdar.
“Single-photon spectroscopy of a single molecule”. In: Phys. Rev. Lett. 108, 9 (2012),
p. 093601.

76



References

[113] A. Maser, B. Gmeiner, T. Utikal, S. Götzinger, and V. Sandoghdar. Few-photon coherent
nonlinear optics with a single molecule. 2015.
arXiv: 1509.05216 [quant-ph]

[114] I. Gerhardt, G. Wrigge, G. Zumofen, J. Hwang, A. Renn, and V. Sandoghdar. “Coher-
ent state preparation and observation of Rabi oscillations in a single molecule”. In:
Phys. Rev. A 79, 1 (2009), p. 011402.

[115] I. Gerhardt, G. Wrigge, J. Hwang, G. Zumofen, and V. Sandoghdar. “Coherent non-
linear single-molecule microscopy”. In: Phys. Rev. A 82, 6 (2010), p. 063823.

[116] R. Hildner, D. Brinks, and N. F. van Hulst. “Femtosecond coherence and quantum
control of single molecules at room temperature”. In: Nature Physics 7, 2 (2011),
pp. 172–177.

[117] S. Faez, P. Türschmann, H. R. Haakh, S. Götzinger, and V. Sandoghdar. “Coherent
interaction of light and single molecules in a dielectric nanoguide”. In: Phys. Rev.
Lett. 113, 21 (2014), p. 213601.

[118] P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt. “Molecular photons interfaced
with alkali atoms”. In: Nature 509, 7498 (2014), pp. 66–70.

[119] C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar. “Near-
infrared single-photons from aligned molecules in ultrathin crystallinefilms at room
temperature”. In: Opt. Express 18, 7 (Mar. 2010), pp. 6577–6582.

[120] A. A. Nicolet, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, and M. Orrit. “Sin-
gle dibenzoterrylene molecules in an anthracene crystal: Spectroscopy and photo-
physics”. In: ChemPhysChem 8, 8 (2007), pp. 1215–1220.

[121] G. Smith. “Triplet exciton phosphorescence in crystalline anthracene”. In: Physical
Review 166, 3 (1968), p. 839.

[122] G. Mazzamuto, A. Tabani, S. Pazzagli, S. Rizvi, A. Reserbat-Plantey, K. Schädler,
G. Navickaite, L. Gaudreau, F. Cataliotti, F. Koppens, and C. Toninelli. “Coupling of
single DBT molecules to a graphene monolayer: proof of principle for a graphene
nanoruler”. In:MRS Proceedings. Cambridge University Press. 2015, p. 1728.

[123] F. F. Voigt. Single-Molecule Detection. Oct. 2010.
[124] Quantum-nanophotonics group. LENS.

url: http://www.lens.unifi.it/quantum-nanophotonics
[125] G. Mazzamuto. Sistema di acquisizione dati e controllo per misure su singole molecole con

tecniche di microscopia di fluorescenza. National Instruments case study.
url: http://sine.ni.com/cs/app/doc/p/id/cs-15965

[126] P. Kapusta, M. Wahl, and R. Erdmann. Advanced Photon Counting: Applications, Meth-
ods, Instrumentation. 15. Springer, 2015.

77

http://arxiv.org/abs/1509.05216
http://www.lens.unifi.it/quantum-nanophotonics
http://sine.ni.com/cs/app/doc/p/id/cs-15965


References

[127] K. Visscher, G. Brakenhoff, and T. Visser. “Fluorescence saturation in confocal mi-
croscopy”. In: Journal of Microscopy 175, 2 (1994), pp. 162–165.

[128] A. Nowak, S. Portalupi, V. Giesz, O. Gazzano, C. Dal Savio, P.-F. Braun, K. Karrai,
C. Arnold, L. Lanco, I. Sagnes, et al. “Deterministic and electrically tunable bright
single-photon source”. In: Nature communications 5 (2014).

[129] J. Jackson. Classical Electrodynamics. Wiley, 1998.
[130] M. A. Lieb, J. M. Zavislan, and L. Novotny. “Single-molecule orientations determined

by direct emission pattern imaging”. In: JOSA B 21, 6 (2004), pp. 1210–1215.
[131] S. Checchucci. “Planar optical antenna to direct light emission”.MS Thesis. University

of Florence, 2015.
[132] H. F. Arnoldus and J. T. Foley. “Transmission of dipole radiation through interfaces

and the phenomenon of anti-critical angles”. In: JOSA A 21, 6 (2004), pp. 1109–1117.
[133] J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia.

“Orientation of luminescent excitons in layered nanomaterials”. In: Nature Nanotech-
nology 8, 4 (2013), pp. 271–276.

[134] M.Wahl and S. Orthaus-Müller. Time Tagged Time-resolved Fluorescence Data Collection
in Life Sciences. PicoQuant Technical Note.

[135] M. Barth, N. Nüsse, B. Löchel, and O. Benson. “Controlled coupling of a single-
diamond nanocrystal to a photonic crystal cavity”. In: Optics Letters 34, 7 (2009),
pp. 1108–1110.

[136] J. Wolters, A.W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel,
B. Löchel, M. Barth, and O. Benson. “Enhancement of the zero phonon line emission
from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic
crystal cavity”. In: Applied Physics Letters 97, 14 (2010), p. 141108.

[137] D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin.
“Deterministic coupling of a single nitrogen vacancy center to a photonic crystal
cavity”. In: Nano letters 10, 10 (2010), pp. 3922–3926.

[138] J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R.
Bratschitsch, A. Leitenstorfer, T. Aichele, et al. “Coupling of single nitrogen-vacancy
defect centers in diamond nanocrystals to optical antennas and photonic crystal
cavities”. In: Physica Status Solidi (B) 249, 5 (2012), pp. 918–924.

[139] G. Kewes, M. Schoengen, G. Mazzamuto, O. Neitzke, R.-S. Schönfeld, A. W. Schell,
J. Probst, J. Wolters, B. Löchel, C. Toninelli, and O. Benson. Key components for nano-
assembled plasmon-excited single molecule non-linear devices. Jan. 2015.
arXiv: 1501.04788 [physics.optics]

78

http://arxiv.org/abs/1501.04788


References

[140] A.W. Schell, G. Kewes, T. Schröder, J. Wolters, T. Aichele, and O. Benson. “A scanning
probe-based pick-and-place procedure for assembly of integrated quantum optical
hybrid devices”. In: Review of Scientific Instruments 82, 7 (2011), p. 073709.

[141] C. Gerry and P. Knight. Introductory quantum optics. Cambridge University Press,
2005.

[142] G. Mazzamuto, A. Tabani, S. Pazzagli, S. Rizvi, A. Reserbat-Plantey, K. Schädler, G.
Navickaite, L. Gaudreau, F. Cataliotti, F. Koppens, and C. Toninelli. “Single-molecule
study for a graphene-based nano-position sensor”. In: New Journal of Physics 16, 11
(2014), p. 113007.

[143] W. Barnes. “Fluorescence near interfaces: the role of photonic mode density”. In:
Journal of Modern Optics 45, 4 (1998), pp. 661–699.

[144] G. W. Ford and W. H. Weber. “Electromagnetic interactions of molecules with metal
surfaces”. In: Physics Reports 113, 4 (1984), pp. 195–287.

[145] K. Drexhage, H. Kuhn, and F. Schäfer. “Variation of the fluorescence decay time
of a molecule in front of a mirror”. In: Berichte der Bunsengesellschaft für physikalische
Chemie 72, 2 (1968), pp. 329–329.

[146] K. Drexhage. “Influence of a dielectric interface on fluorescence decay time”. In:
Journal of Luminescence 1 (1970), pp. 693–701.

[147] K. H. Drexhage. “IV Interaction of Light with Monomolecular Dye Layers”. In: ed. by
E. Wolf. 12. Progress in Optics. Elsevier, 1974, pp. 163–232.

[148] R. Chance, A. Prock, and R. Silbey. “Molecular fluorescence and energy transfer near
interfaces”. In: Adv. Chem. Phys 37, 1 (1978), p. 65.

[149] R. Amos and W. Barnes. “Modification of the spontaneous emission rate of Eu3+ ions
close to a thin metal mirror”. In: Phys. Rev. B 55, 11 (1997), p. 7249.

[150] H. Morawitz andM. Philpott. “Coupling of an excited molecule to surface plasmons”.
In: Phys. Rev. B 10, 12 (1974), p. 4863.

[151] B. N. J. Persson and N. D. Lang. “Electron-hole-pair quenching of excited states near
a metal”. In: Phys. Rev. B 26, 10 (1982), p. 5409.

[152] T. Förster. “Zwischenmolekulare energiewanderung und fluoreszenz”. In: Annalen
der Physik 437, 1-2 (1948), pp. 55–75.

[153] A. K. Geim and K. S. Novoselov. “The rise of graphene”. In: Nature Materials 6, 3
(2007), pp. 183–191.

[154] A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim. “The electronic
properties of graphene”. In: Reviews of Modern Physics 81, 1 (2009), p. 109.

[155] Graphene. Scientific Background on the Nobel Prize in Physics 2010, compiled by the
Class for Physics of the Royal Swedish Academy of Sciences. Oct. 2010.

79



References

[156] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. “C60: Buckmin-
sterfullerene”. In: Nature 318 (Nov. 1985), pp. 162–163.

[157] A.Oberlin,M. Endo, and T. Koyama. “Filamentous growth of carbon through benzene
decomposition”. In: Journal of Crystal Growth 32, 3 (1976), pp. 335–349.

[158] S. Iijima et al. “Helical microtubules of graphitic carbon”. In:Nature 354 (1991), pp. 56–
58.

[159] E. Fradkin. “Critical behavior of disordered degenerate semiconductors. II. Spectrum
and transport properties in mean-field theory”. In: Phys. Rev. B 33, 5 (1986), p. 3263.

[160] K. S. Novoselov, A. K. Geim, S.Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva,
and A. Firsov. “Electric field effect in atomically thin carbon films”. In: Science 306,
5696 (2004), pp. 666–669.

[161] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov,
and A. K. Geim. “Two-dimensional atomic crystals”. In: Proceedings of the National
Academy of Sciences of the United States of America 102, 30 (2005), pp. 10451–10453.

[162] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.
Stormer. “Ultrahigh electron mobility in suspended graphene”. In: Solid State Com-
munications 146, 9 (2008), pp. 351–355.

[163] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, and A.
Geim. “Giant intrinsic carrier mobilities in graphene and its bilayer”. In: Phys. Rev.
Lett. 100, 1 (2008), p. 016602.

[164] M. C. Lemme, T. Echtermeyer, M. Baus, and H. Kurz. “A Graphene Field-Effect
Device”. In: Electron Device Letters, IEEE 28, 4 (Apr. 2007), pp. 282–284.

[165] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim. “Energy band-gap engineering of
graphene nanoribbons”. In: Phys. Rev. Lett. 98, 20 (2007), p. 206805.

[166] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and
P. Avouris. “100GHz transistors from wafer-scale epitaxial graphene”. In: Science
327, 5966 (2010), pp. 662–662.

[167] K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S.
Dubonos, and A. Firsov. “Two-dimensional gas of massless Dirac fermions in gra-
phene”. In: Nature 438, 7065 (2005), pp. 197–200.

[168] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz. “Measurement
of the optical conductivity of graphene”. In: Phys. Rev. Lett. 101, 19 (2008), p. 196405.

[169] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A.
Geim. “Fine structure constant defines visual transparency of graphene”. In: Science
320, 5881 (2008), pp. 1308–1308.

80



References

[170] K. Tielrooij, J. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn,
L. Levitov, and F. H. Koppens. “Photoexcitation cascade and multiple hot-carrier
generation in graphene”. In: Nature Physics 9, 4 (2013), pp. 248–252.

[171] F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari. “Graphene photonics and optoelec-
tronics”. In: Nature Photonics 4, 9 (2010), pp. 611–622.

[172] K. Tielrooij, L. Orona, A. Ferrier, M. Badioli, G. Navickaite, S. Coop, S. Nanot, B.
Kalinic, T. Cesca, L. Gaudreau, et al. “Electrical control of optical emitter relaxation
pathways enabled by graphene”. In: Nature Physics (2015).

[173] R. S. Swathi and K. L. Sebastian. “Resonance energy transfer from a dye molecule to
graphene”. In: The Journal of Chemical Physics 129, 5 (2008), p. 054703.

[174] R. S. Swathi and K. L. Sebastian. “Long range resonance energy transfer from a dye
molecule to graphene has (distance)-4 dependence”. In: The Journal of Chemical Physics
130, 8 (2009), p. 086101.

[175] D. L. Andrews. “Resonance energy transfer: theoretical foundations and developing
applications”. In: Tutorials in Complex Photonic Media. Ed. by M. A. Noginov, M. W.
McCall, G. Dewar, and N. I. Zheludev. SPIE Press, 2009, pp. 439–478.

[176] J. Tisler, T.Oeckinghaus, R. J. Stöhr, R. Kolesov, R. Reuter, F. Reinhard, and J.Wrachtrup.
“Single Defect Center Scanning Near-Field Optical Microscopy on Graphene”. In:
Nano Lett. 13, 7 (June 2013), pp. 3152–3156.

[177] Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus. “Energy Transfer from
Individual Semiconductor Nanocrystals to Graphene”. In: ACS Nano 4, 5 (Apr. 2010),
pp. 2964–2968.

[178] X. Liu, G. Wang, X. Song, F. Feng, W. Zhu, L. Lou, J. Wang, H. Wang, and P. Bao.
“Energy transfer from a single nitrogen-vacancy center in nanodiamond to a graphene
monolayer”. In: Applied Physics Letters 101, 23 (2012), p. 233112.

[179] L. Gaudreau, K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. G. de Abajo,
and F. H. L. Koppens. “Universal Distance-Scaling of Nonradiative Energy Transfer
to Graphene”. In: Nano Lett. 13, 5 (Mar. 2013), pp. 2030–2035.

[180] G. Gómez-Santos and T. Stauber. “Fluorescence quenching in graphene: A funda-
mental ruler and evidence for transverse plasmons”. In: Phys. Rev. B 84, 16 (2011),
p. 165438.

[181] P. K. Jain and M. A. El-Sayed. “Universal Scaling of Plasmon Coupling in Metal
Nanostructures: Extension from Particle Pairs to Nanoshells”. In:Nano Lett. 7, 9 (Aug.
2007), pp. 2854–2858.

[182] P. K. Jain, W. Huang, and M. A. El-Sayed. “On the Universal Scaling Behavior of the
Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler
Equation”. In: Nano Lett. 7, 7 (June 2007), pp. 2080–2088.

81



References

[183] G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear,
J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen. “A nanoplasmonic molecular
ruler for measuring nuclease activity and DNA footprinting”. In: Nat. Nanotech. 1, 1
(Oct. 2006), pp. 47–52.

[184] C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. “A molecular ruler
based on plasmon coupling of single gold and silver nanoparticles”. In: Nat. Biotech.
23, 6 (June 2005), pp. 741–745.

[185] J. Seelig, K. Leslie, A. Renn, S. Kühn, V. Jacobsen, M. van de Corput, C. Wyman,
and V. Sandoghdar. “Nanoparticle-Induced Fluorescence Lifetime Modification as
Nanoscopic Ruler: Demonstration at the Single Molecule Level”. In: Nano Lett. 7, 3
(Feb. 2007), pp. 685–689.

[186] C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed. “On the Use of Plasmonic
Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole
Plasmon Coupling on Nanoparticle Size and Shape”. In: J. Phys. Chem. A 113, 10 (Dec.
2008), pp. 1946–1953.

[187] L. Stryer. “Fluorescence Energy Transfer as a Spectroscopic Ruler”. In: Annual Review
of Biochemistry 47, 1 (1978), pp. 819–846.

[188] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc,
et al. “Large-area synthesis of high-quality and uniform graphene films on copper
foils”. In: Science 324, 5932 (2009), pp. 1312–1314.

[189] A. C. Ferrari and D. M. Basko. “Raman spectroscopy as a versatile tool for studying
the properties of graphene”. In: Nature Nanotechnology 8, 4 (2013), pp. 235–246.

[190] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D.
Jiang, K. Novoselov, S. Roth, et al. “Raman spectrum of graphene and graphene
layers”. In: Phys. Rev. Lett. 97, 18 (2006), p. 187401.

[191] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus. “Raman spectroscopy
in graphene”. In: Physics Reports 473, 5 (2009), pp. 51–87.

[192] DecayFit. Fluorescence Decay Analysis Software, FluorTools.
url: www.fluortools.com

[193] E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo. “High-
Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Sili-
con by Fluorescence Quenching”. In: J. Am. Chem. Soc. 131, 43 (Oct. 2009), pp. 15576–
15577.

[194] M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild. “Orientation dependence of
fluorescence lifetimes near an interface”. In: The Journal of Chemical Physics 117, 20
(2002), pp. 9430–9433.

82

www.fluortools.com


References

[195] L. Rogobete and C. Henkel. “Spontaneous emission in a subwavelength environment
characterized by boundary integral equations”. In: Phys. Rev. A 70, 6 (Dec. 2004),
p. 063815.

[196] R. J. Glauber and M. Lewenstein. “Quantum optics of dielectric media”. In: Phys.
Rev. A 43, 1 (Jan. 1991), pp. 467–491.

[197] F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo. “Graphene plasmonics: a
platform for strong light–matter interactions”. In: Nano letters 11, 8 (2011), pp. 3370–
3377.

[198] L. A. Blanco and F. J. García de Abajo. “Spontaneous light emission in complex
nanostructures”. In: Phys. Rev. B 69, 20 (May 2004), p. 205414.

[199] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R.
Peres, and A. K. Geim. “Fine Structure Constant Defines Visual Transparency of
Graphene”. In: Science 320, 5881 (2008), p. 1308.

[200] A. Reserbat-Plantey, K. G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger, D.
Chang, C. Toninelli, A. Bachtold, and F. H. Koppens. Electro-mechanical control of an
optical emitter using graphene. 2015.
arXiv: 1504.08275 [cond-mat.mes-hall]

[201] C. A. Muschik, S. Moulieras, A. Bachtold, F. H. Koppens, M. Lewenstein, and D. E.
Chang. “Harnessing vacuum forces for quantum sensing of graphene motion”. In:
Phys. Rev. Lett. 112, 22 (2014), p. 223601.

83

http://arxiv.org/abs/1504.08275




Part II.

Light transport in thin films





Chapter 5.

Theoretical background

In this introductory chapter we lay out the theory at the base of the modelling of light transport
through a scattering medium. At its core, the Radiative Transport Equation (RTE) simply describes
the energy conservation within a small volume of a scattering material, taking into account the
losses and gains originating from the scattering process. While simple in its formulation, the RTE
cannot be easily solved analytically. In the case of a single, thick slab of turbid material, where
a multiple-scattering regime sets in, light transport is very well described in terms of the simple
Diffusion Approximation, which provides simple analytical formulas for the most important macro-
scopic observables. However, the approximation fails for optically thin samples, which is a typical
case in biomedical optics, since biological materials often naturally come in the form of thin tissues
or membranes. Furthermore, no analytical solutions can be found for more complicated geometries
such as a sample made of multiple layers of different scattering materials. Alternatively, the problem
of light transport can be modelled as a random walk process and therefore it can be numerically
investigated by means of Monte Carlo algorithms.

5.1. Wave theory of light

In classical electrodynamics, electromagnetic fields are fully described by a fundamental set
of famous equations, known as Maxwell’s equations. In a vacuum, they are written as [1, 2]:

∇ · E0 =
ρ

ε0
(5.1a) ∇ · B0 = 0 (5.1b)

∇× E0 = −∂B0

∂t
(5.1c) ∇× B0 = µ0 J + ε0µ0

∂E0

∂t
(5.1d)

where E0, B0 are the electric and the magnetic induction fields, and ε0, µ0 are the vacuum
electric permittivity and permeability. The charge density ρ and the current density J are
the sources of the electromagnetic field; they are related through the continuity equation
∇ · J + ∂ρ

∂t = 0.
If, instead of vacuum, electromagnetic fields are placed inside a homogeneous and

isotropic material, in addition to the macroscopic localized sources J and ρ we have to
take as well into account the microscopic charges and currents induced in the medium by
the field itself:

ρP = −∇ · P (5.2) JP =
∂P
∂t

(5.3)
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where P = ε0χE is the polarization vector and χ is called electric susceptibility. By defining
the electric displacement field

D = ε0E + P = ε0εrE = εE (5.4)

and the magnetic field

H =
B

µ0µr
=

B
µ

(5.5)

where εr and µr are the relative permittivity and relative permeability of the material,
Maxwell’s equations are written as

∇ · D = ρ (5.6a) ∇ · B0 = 0 (5.6b)

∇× E = −∂B
∂t

(5.6c) ∇× H = J +
∂D
∂t

(5.6d)

In a dielectric material where there are no localized charges or currents (ρ = 0, J = 0),
taking the curl of equation (5.6c) leads to the well-known wave equations:





∇2E− εµ
∂2E
∂t2 = 0

∇2B− εµ
∂2B
∂t2 = 0

(5.7)

From the equations above it results that electromagnetic fields, hence light, propagate in a
homogeneous medium in the form of a wave where the electric and magnetic fields oscillate
orthogonally to each other. The fields are also perpendicular to the wave vector k which
points in the normal direction to the wave fronts, i.e. the surfaces of constant phase. The
direction of energy flow doesn’t always coincide with k, which is the case for anisotropic
systems such as birefringent crystals, and is given instead by the Poynting vector

S = E× H (5.8)

In a vacuum, the speed of an electromagnetic wave is the universal constant c = 1/
√

ε0µ0 =

299 792 458 m s−1, i.e. the speed of light; in a material, the speed at which light propagates,
better known as phase velocity, is given by vp = 1/

√
εµ = c/ Re(n), where n =

√
εrµr is

called refractive index. For the purposes of this work, all the materials of interest such as
paper, biological tissues or colloidal emulsions can be considered non-magnetic (µr = 1)
and as such the refractive index n takes on the same physical meaning as the electric relative
permittivity εr. Furthermore, these media are electrically neutral so that the only source
terms in Maxwell’s equations are the result of the polarization induced by the external
driving fields on the electron clouds of atoms and molecules (eq. 5.2,5.3).

In the following sections we will show that light transport in turbid materials is best de-
scribed by dropping the wave nature of light and following a completely different approach.
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k′

k

θ

S

φ

Figure 5.1.:Geometry of a single scattering event by a localized particle [3]. A single scatterer deviates
light from k to k′. The polar angle is θ while φ is the azimuthal angle.

Indeed, while in a homogeneous medium the only effect of a (purely real) permittivity which
is constant in space is to slow down the propagation of light, in a turbid material the electric
permittivity fluctuates on the micrometre scale because of inhomogeneities and impurities:
ε(r) = ε̄ + δε(r). In this case, for fields oscillating with frequency ω, the form of the wave
equation satisfied by the electric field is [3]:

−∇2E +∇(∇ · E)− ω2

c2
δε(r)

ε0
E =

ε̄

ε0

ω2

c2 E (5.9)

The term ∇ · E represents the polarization charge density (5.2), while the term proportional
to δε(r) notably gives rise to scattered waves. An opaque material can be regarded as an
ensemble of randomly distributed point-like scatterers in which the scatterer density and
scattering strength are high enough for a multiple-scattering regime to set in. As we will see,
it is in this regime that both defining the turbid material on a macroscopic scale and finding
an analytic solution to Maxwell’s equations is not feasible, while following a stochastic
approach considerably simplifies the description.

5.2. Single scattering

A scattering event occurs when an electromagnetic wave bumps into an inhomogeneity in
the medium in which it propagates. At the microscopic level, the acceleration driven by
the external field on the electronic clouds in the material causes energy to be re-emitted in
all directions; macroscopically, scattering can be seen in terms of diffraction by a point-like
obstacle, that is an object whose dimensions are much smaller than the wavelength of the
scattered radiation.
Leaving aside polarization effects, we consider the case of a scalar plane wave scattered

by a localized potential, i.e. impinging on a single localized point-like scattering centre. In
the far field approximation the emerging field ψ can be written as the superposition of the
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impinging plane wave and a scattered spherical wave [3]:

ψ(r) = eik·r +
eik0r

r
f (k, k′) (5.10)

where f (k, k′) is called scattering amplitude and has the dimensions of a length. In most cases
the scattering amplitude can be considered independent of the incoming direction k (which
is true for scattering by spherical particles or for randomly oriented scatterers), andwe can as
well assume the problem to have cylindrical symmetry with respect to the azimuthal angle
φ (Figure 5.1). Furthermore we will consider elastic collisions only, so that the scattering
amplitude depends only on the modulus k0 = |k| = |k′| and on the scattering angle θ:
f (k, k′) = f (k0, θ). In case of no dependence from θ, scattering is said to be isotropic.
The scattered field is fully characterized by the differential scattering cross section. Consid-

ering a surface S, it is defined as the ratio between the flux of the Poynting vector of the
scattered field in a solid angle dΩ and the incident flux per unit surface [3]:

∂σs =
dFout/ dΩ

dFin/ dS
(5.11)

This parameter describes how the impinging energy is redistributed in space following the
scattering event, and is dependent on the wavelength λ of the radiation. The scattering cross
section is obtained by integrating over the whole solid angle:

σs =
∫

4π
∂σs dΩ (5.12)

It is a measure of the probability of the incoming field to be scattered. Being the single
scattering problem still relatively not too complicated, analytic expressions for the scattering
cross section were derived for some relevant cases [3, 4] such as Mie scattering by spherical
particles and its limit for scatterer size very small compared to the wavelength, known as
Rayleigh scattering. In this last notable case, σs scales as λ−4 and that is the reason why the
sky appears to be blue: sunlight is preferentially scattered at short wavelengths by the small
diatomic molecules in the atmosphere. Finally, we also define the scattering phase function
by normalizing the differential scattering cross section

p(k, k′) = p(cos θ) =
∂σs
σs

(5.13)

which measures the probability for an incoming wave to be scattered at an angle θ, and the
anisotropy factor as the average cosine of the deflected angles

g = 〈cos θ〉 =
∫

4π
p(cos θ) cos θ dΩ (5.14)

which describes how much “memory” of the incoming direction is retained in the scattered
wave: g = 0 indicates isotropic scattering, i.e. the emerging direction is completely indepen-
dent of the initial direction, whereas the more g is close to 1 the more the wave is scattered
in the forward direction.
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(a) (b) (c)

Figure 5.2.: Light propagating in different scattering regimes, modified from [5]. (a) When there
is no scattering, light passes undisturbed through the sample (ballistic light). (b) Single scattering
regime from sparse scatterers. (c) Multiple scattering regime from dense scatterers.

5.3. Multiple scattering

As mentioned in the previous section, the single scattering regime is relatively easy to
study and it is successfully applied to describe relevant phenomena such as diffusion of
light by the atmosphere. In this regime, a wave propagating through a scattering medium
will have undergone a number of scattering events close to one. In other cases, involv-
ing bigger and denser scatterers such as water droplets in clouds, a multiple-scattering
regime sets in. This is the case of what happens with many objects encountered during
everyday life, such as milk, foams, paper, snow, fog and clouds. All of these materials
share similar looks in that they are appear to be white and opaque. Indeed, in a multiple-
scattering regime, the dependence of the scattering cross section on the radiation wavelength
is not enough to determine a spectral selection of the scattered waves, so that light in a
broad frequency range is back-diffracted in random directions causing the white opaque
aspect.
The different scattering regimes so far outlined are illustrated in Figure 5.2. As shown

in panel c), a turbid medium can be thought of as an ensemble of point-like centres placed
randomly inside the material. In such configuration, modelling the multiple-scattering
problem in the framework of the wave theory of light is not trivial. Some techniques exist
in which the total scattered field is first written as the superposition of the partial fields
scattered by the individual particles and then the so-called Foldy-Lax equations are iterated
to finally derive an expansion for the scattered field [6]. However, these methods require the
position of each scattering centre to be known in advance (what is called quenched disorder,
where scatterers are found at determined positions) and many iterations on the scattered
fields are needed. As the number of scatterers increases, these techniques become soon
unsuitable for an efficient description.
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As anticipated, in order to make the multiple-scattering problem more easily manageable,
it is best to drop the deterministic description using fixed scatterers in favour of a statistical
approach. In a homogeneously disordered sample, scatterers are randomly distributed with
a constant density ρs so that we can identify the average distance ls between two consecutive
scattering events as a characteristic property of the material, called scattering mean free path.
We also define the scattering rate as

µs = σsρs =
1
ls

(5.15)

which measures the probability per unit length of a propagating wave of being scattered in
another direction. In order to fully characterize the turbid material, in addition to scattering
we need to consider absorption as well, since part of the incident energy may be absorbed by
atoms or molecules in the medium. Therefore, in full analogy we also define the absorption
rate and the absorption mean free path

µa = σaρa =
1
la

(5.16)

where ρa is the density of absorbers. When a wave of intensity I travels for a distance L
inside an absorbing medium, its intensity decreases according to the Lambert-Beer law:

I = I0 exp(−µaL) (5.17)

Absorption is not the only process causing a decrease in the observed intensity: the energy
redistributed in other directions because of scattering appears to be “lost” as well. When
investigating microscopic optical properties such as ls, absorption is often a hindrance since
it is not easy to decouple its effect from that of scattering. For what is said above we also
define the total extinction rate µe as

µe = µs + µa (5.18)

and the single-scattering albedo
a =

µs
µe

(5.19)

With the parameters introduced above we are able to describe the average scattering
properties of a turbid material. Of course these quantities are meaningful as long as the far
field approximation that we used since the beginning is holding, that is to say in the limit
where the scattering mean free path is longer than the radiation wavelength, so that for each
scattering event the theory outlined for the single scattering regime can still be used. With
these basic concepts laid out, in the following section we shall see how light transport in
turbid media can be modelled in the framework of Radiative Transport Theory (RTT).
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5.4. The Radiative Transport Equation

The Radiative Transport Theory dates back to the end of 19th century, when it was first
derived to model light transport in foggy atmospheres [7]. It later found many applications
in different areas of science and engineering, such as in astrophysics where it is used to
describe light propagation through the interstellar medium and in stellar atmospheres. More
recently, light transport in biological tissues has become the object of study of the growing
field of biomedical optics and diagnostics [8].

In the following we are going to write the equation which lies at the core of the Radiative
Transport Theory, known as Radiative Transport Equation (RTE). In terms of its formulation,
the RTE is a very simple equation, in that it is simply an energy balance equation stating
energy conservation inside a small test volume. Here we will describe the equation through
the heuristic and intuitive point of view which was used when the equation was first
formulated. Recently though it was shown that the RTE can be rigorously derived from
Maxwell’s equations [9], thus recovering the initially missing formal link with wave theory.
We start by assuming scattering events as point-like collisions both in space and time,

and by requiring that there be no correlations in the position of scattering centres so that
interference effects between scattered waves can be ignored. Considering a small volume V,
the RTE is simply written by balancing the flow of energy entering and leaving that volume
along a direction ŝ [8, 10, 11]:

1
v

∂I(r, t, ŝ)
∂t

= −ŝ · ∇I(r, t, ŝ)− µe I(r, t, ŝ) +
µe
4π

∫

4π
p(ŝ, ŝ′)I(r, t, ŝ′)dΩ′ + Q(r, t, ŝ) (5.20)

where I(r, t, ŝ) is the radiance or specific intensity measured in Wm−2 sr−1. The variation in
time of the radiance on the left-hand side is balanced on the right-hand side by four terms
which we can identify as follows:

1. the change in radiance due to energy entering and leaving the volume through its
boundaries;

2. the losses due to absorption and scattering;

3. the gain due to scattering into the direction ŝ from another direction ŝ′;

4. radiance gain due to possible sources inside the volume.

It is worth noting that in the RTE the wave nature of light is completely lost; its link with
wave propagation is retained only in the scattering coefficient and scattering phase function.
Electromagnetic energy is indeed considered to be carried by rays of light in the geometrical
optics sense. As we will soon see, this is a first step towards a description of light scattering
and propagation in terms of a random walk of fictitious energy-carrying particles.
Despite its simple formulation, the RTE can’t be easily solved analytically. Before seeing

how to tackle the problem of solving the RTE, we can observe two properties of its solutions
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[11]. First, considering a source term of unitary strength

Q(r, t, ŝ) = δ(r)δ(t)δ(ŝ) (5.21)

where δ is the Dirac delta function, if I(r, t, ŝ) is a solution of the RTE then

Ī(r̄, t̄, ŝ) =
(

µ̄e
µe

)3

I(r, t, ŝ) (5.22)

with
r̄ = r

µe
µ̄e

t̄ = t
µe
µ̄e

(5.23)

is a solution for amediumhaving an extinction coefficient µ̄e and the same scattering function
and albedo. This is also known as similarity principle and it allows to scale the results for
another geometry, provided the same albedo and scattering function are kept the same.
Second, if I(r, t, ŝ′)|µa=0 is the solution for a nonabsorbing medium, then

I(r, t, ŝ′) = exp(−µavt)I(r, t, ŝ′)|µa=0 (5.24)

is a still a solution to the same equation when the absorption coefficient µa is independent
of r.

5.5. The Diffusion Approximation

Given its complexity, the RTE cannot be solved directly. Several approximations have to
be made in order to attempt an analytical approach. One method consists in writing the
radiance as an expansion of spherical harmonic functions truncated after N terms, which
is known as the PN-approximation. In particular, we will show that applying this method
with N = 1 leads to the so-called Diffusion Approximation (DA).

Let’s consider an isotropic source emitting a pulse of energy E0 [11]:

Q(r, t, ŝ) = Q0(r, t) =
E0

4π
δ(r− r′)δ(t) (5.25)

When scattering is stronger than absorption, we can assume the radiance to be almost
isotropic plus a small directional flux:

I(r, t, ŝ) =
1

4π
Ud(r, t) +

3
4π

Fd(r, t) · ŝ (5.26)

where
Ud(r, t) =

∫

4π
I(r, t, ŝ)dω (5.27)

is the average diffuse intensity and

Fd(r, t) =
∫

4π
I(r, t, ŝ)ŝ dω = Fd(r, t)ŝf (5.28)
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is the diffuse flux vector. By inserting equations (5.25) and (5.26) into the RTE (5.20) and
integrating — over the whole solid angle — the RTE and the RTE multiplied by ŝ, we obtain
the following coupled equations:

(
1
v

∂

∂t
+ µ′s

)
Fd(r, t) +

1
3
∇Ud(r, t) = 0 (5.29)

1
v

∂

∂t
Ud(r, t) +∇Fd(r, t) = Q0(r, t) (5.30)

where
µ′s = (1− g)µs (5.31)

is known as the reduced scattering coefficient. As usual, we also assume that the scattering
phase function depends only on the scattering angle between ŝ and ŝ′. Finally, we assume
the variation in time of the flux vector to be negligible over a length scale of the order of the
transport mean free path

lt =
1
µ′s

=
1

(1− g)µs
(5.32)

In formulas: ∣∣∣∣
1

vµ′s

∂Fd(r, t)
∂t

∣∣∣∣� |Fd(r, t)| (5.33)

With these assumptions, equation (5.29) becomes

Fd(r, t) = −1
v

D∇Ud(r, t) (5.34)

known as Fick’s equation of diffusion, where D is the diffusion coefficient

D =
v

3µ′s
=

1
3(1− g)µs

=
1
3

vlt (5.35)

measured in m2 s−1. By inserting Fick’s equation back into equation (5.30) we finally obtain
the Diffusion Equation (DE) [11, 12]:

1
v

(
∂

∂t
− D∇2

)
Ud(r, t) = Q0(r, t) (5.36)

For a source emitting an isotropic pulse as in equation (5.25), a general solution for the DE
in an infinitely extended nonabsorbing medium is given by:

Ud(r, t) = E0
v

(4πDt)3/2 exp
(
−|r− r′|2

4Dt

)
(5.37)

which according to equation (5.24) can be easily extended for the case of an absorbing
medium by simple multiplication by exp(−µavt). The diffused intensity thus exhibits a
Gaussian profile in space which broadens in time.

95



Chapter 5. Theoretical background

5.6. Diffusion in bounded media

In the previous section a solution of the DE was derived in the case of an infinitely extended
medium. For most practical cases though, a more interesting geometry is that of a scattering
medium with finite size along at least one dimension, that is to say a layer or a slab. The
slab geometry is indeed used in many applications as a simple representation for biological
tissues, a compressed breast or a layer of paint, just to make a few examples. It is therefore
of primary interest to derive analytical expressions for this relevant case.

Let’s consider a slab made of a scattering medium, having infinite dimensions along the x
and y directions and a finite thickness L along z. Since the diffusing medium is bounded by
a surface Σ, we have to impose some boundary condition for the diffuse specific intensity
I(r, t, ŝ) on that interface. Several different boundary conditions have been used to treat
the problem of a finite medium [13]. In the simplest case, when there is no refractive index
mismatch across the interface, the boundary is perfectly transmitting (i.e. there are no Fresnel
reflections), so that all the light crossing the interface will leave the sample. In other words
we assume perfectly absorbing boundary conditions by asking that, for r on Σ and ŝ directed
inward, there should be no diffuse light entering the medium (Zero Boundary Condition) [11,
13]:

I(r, t, ŝ) = 0 (5.38)

However, because of the earlier assumption that the intensity be almost isotropic (5.26), such
condition cannot be satisfied exactly. Therefore we can only look for approximate boundary
conditions. The simplest approximation states that on the external surface the total diffuse
flux directed inward must be zero [11, 12]:

∫

ŝ·n̂>0
I(r, t, ŝ)(ŝ · n̂)dΩ = 0 (5.39)

for r on Σ and where n̂ is the inward normal to the interface surface Σ. We now consider the
flux at the two boundaries in z = 0 and z = L. In case of no reflections, imposing a null flux
incoming from outside the slab leads to the two following boundary conditions [14, 15]:

U − 2lt
3

∂U
∂z

= 0 at z = 0

U +
2lt
3

∂U
∂z

= 0 at z = L
(5.40)

If we assume that ∂U/∂z is constant inside the sample near the boundaries and pretend
that we can extend the solutions outside the sample by linear extrapolation, then the two
conditions above are equivalent to require that U be zero at the fictitious coordinates z = −ze
and z = L + ze where ze is called extrapolated length:

ze =
2D
v

=
2
3

lt (5.41)
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assuming the slab is placed at z = 0. This is known as Extrapolated Boundary Condition (EBC)
and basically relates the sample thickness L with a fictitious thickness Leff = L + 2ze that
would make the specific intensity vanish assuming we linearly extrapolate its derivative
near the boundaries. In case of refractive index mismatch between the sample and the
environment, the total diffuse flux at the boundary directed inward into the medium must
equate the reflected fraction of the flux directed outward so that equation (5.39) becomes:

∫

ŝ·n̂>0
I(r, t, ŝ)(ŝ · n̂)dΩ =

∫

ŝ·n̂<0
R(ŝ)I(r, t, ŝ)|ŝ · n̂|dΩ (5.42)

again for r on Σ and where R(ŝ) is the Fresnel reflection coefficient for unpolarized light:

R(ŝ) =
1
2

[(
n cos θi − cos θt
n cos θi + cos θt

)2

+

(
cos θi − n cos θt
cos θi + n cos θt

)2
]

(5.43)

In the equation above n = nin/nout is the refractive index contrast between the sample and
the environment, whereas θi (cos θi = −ŝ · q̂) and θt = arcsin(n sin θi) are the incident and
refracted angle respectively. From equations (5.42) and (5.26) we have

Ud(r, t) +
A
2π

Fd(r, t) · n̂ = 0 (5.44)

where the coefficient

A =
1 + 3

∫ π/2
0 R(θi) cos2 θi sin θi dθi

1− 2
∫ π/2

0 R(θi) cos θi sin θi dθi
(5.45)

can be found in the literature written as an expansion of n [11]. In this case equation (5.41)
becomes:

ze =
2AD

v
=

2
3

Alt (5.46)

By intuition we can state that a reasonable assessment of boundary conditions is important
in order to obtain accurate results, especially for optically thin samples (L � lt) where
approximations such as (5.39) are more easily disobeyed. The presence of a refractive
index mismatch at the interface between the diffusing medium and the environment can
significantly alter the magnitude of the specific intensity inside the medium as well as
the determination of the microscopic transport parameters such as lt. For example, for a
refractive index contrast n ≈ 1.4 (a typical value for biological tissues) from equation (5.43)
follows that the boundaries reflect more than 50% of light back into the sample, with the
result that from the point of view of diffusion the slab appears to be thicker than it really
is. Additionally, a striking effect of the presence of reflections at the boundaries is that the
fraction of transmitted light is heavily altered by the presence of ze, even for optically thick
samples (L� lt) [14]:

T =
lt + ze
L + 2ze

(5.47)
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Figure 5.3.: A pencil beam impinging on an infinite slab can be modelled as an isotropic source
located at z = lt inside the sample. Extrapolated Boundary Conditions are met by considering an
infinite series of positive and negative sources [11].

We now turn to finding a solution for the time-dependent DE in the slab geometry as
shown in Figure 5.3. Herewe consider a pencil beam of pulsed light impinging normally to the
slab entrance surface placed at z = 0, that is we take a thin and collimated beam described
in the time domain by a Dirac delta function. This is a good approximation for an ultrashort
laser pulse, with geometrical dimensions much smaller than the sample size, which is
typically used in real case experiments to probe light transport and diffusion in scattering
media. However, the DE as derived in section 5.5 was obtained with the assumption of an
isotropic source (5.25) and cannot be used for an impinging beam as in this case.

Several methods can be used to model a pencil beam within our derivation of the DE. For
example, the monodirectional source can be modelled [12, 16] as a continuous distribution
of point-like sources located along the slab thickness, having an intensity proportional to
µs exp(−zµt) (the probability for ballistic light to penetrate the sample at a depth z) and
an angular distribution given by the scattering function. A simpler further approximation
can be made, is the slab is much thicker than the scattering mean free path, by replacing
the pencil beam with a single isotropic source located at z = lt inside the sample [17]. This
choice can be explained by considering that, upon entering the slab, the incoming light will
keep on propagating along z before being isotropically scattered for the first time, an event
which will happen on average at a depth z = lt. The error introduced by this approximation
is of course more relevant for thin slabs.
Following the latter approach, we here consider a pulse of energy E0 emitted by an

isotropic point source located at z = lt:

Q(r, t) =
E0

4π
δ(x)δ(y)δ(z− lt)δ(t) (5.48)

We assume Extrapolated Boundary Conditions, i.e. an average diffuse intensity vanishing

98



5.6. Diffusion in bounded media

at the two extrapolated planes located at a distance ze from the boundary on both sides of
the slab. In order for this condition to be met, we have to add an infinite series of identical
sources with alternating signs placed at

{
z+,m = 2m(L + 2ze) + lt for positive sources
z−,m = 2m(L + 2ze)− 2ze − lt for negative sources

(5.49)

for m = (0,±1,±2, . . . ). Equation (5.37) can then be used to compute the contribution of
every source separately, to finally obtain the time resolved transmittance T(ρ, t) i.e. the power
crossing the exit surface at z = L, per unit area, at a distance ρ from the z axis, integrated
over all exit angles [11]:

T(ρ, t) = −n̂ · Fd(ρ, z = L, t) = −4πD
v

∂

∂z
Ud(ρ, z = L, t)

=
E0

2
e−µavt− ρ2

4Dt

(4πD)3/2t5/2

+∞

∑
m=−∞

[
z1,m exp

(
−

z2
1,m

4Dt

)
− z2,m exp

(
− z2

2,m

4Dt

)] (5.50)

where {
z1,m = L(1− 2m)− 4mze − lt
z2,m = L(1− 2m)− (4m− 2)ze + lt

(5.51)

An analogous formula for the reflectance R(ρ, t) at z = 0 can be derived as well. By in-
tegrating the above result in space and time we obtain the following expressions for the
time-resolved total transmitted intensity and for the steady state profile:

T(t) =
E0e−µavt

2(4πD)1/2t3/2

+∞

∑
m=−∞

[
z1,m exp

(
−

z2
1,m

4Dt

)
− z2,m exp

(
− z2

2,m

4Dt

)]
(5.52)

T(ρ) =
E0

4π

+∞

∑
m=−∞

[
z1,m(ρ

2 + z2
1,m)

−3/2
(

1 +

√
µav(ρ2+z2

1,m)

D

)
e−
√

µav(ρ2+z2
1,m)

D +

−z2,m(ρ
2 + z2

2,m)
−3/2

(
1 +

√
µav(ρ2+z2

2,m)

D

)
e−
√

µav(ρ2+z2
2,m)

D

]
(5.53)

Finally, by integrating equation (5.52) in time we obtain the fraction of transmitted energy
as:

T =
E0

2

∞

∑
m=−∞

[
sgn(z1,m) exp

(
−|z1,m|

√
µav/D

)
− sgn(z2,m) exp

(
−|z2,m|

√
µav/D

)]
(5.54)

The results shown above were obtained following the instructive method outlined in
[11]. Before commenting on the qualitative behaviour of these solutions, we briefly mention
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another derivation method based on eigenmode expansion, leading to formulas highlighting
interesting properties. We consider the diffusion equation in the presence of absorption:

1
v

(
∂

∂t
− D∇2 + vµa

)
Ud(r, t) = Q(r, t) (5.55)

Given the cylindrical symmetry in the slab geometry, it is best to separate the spatial coor-
dinate r in a transverse component r⊥ and a longitudinal one z. Considering a point-like
source in z = lt, we take the Fourier transform in the spatial transverse component and the
Laplace transform in time (with F [U(r⊥)] = Û(k⊥) and L [U(t)] = Û(s)). The DE then
becomes [18, 19]:

D
v

(
∂2

∂z2 − k2
⊥ +

s
D

+
vµa
D

)
Ûd(z, k⊥, s) = −Û0(k⊥, s)δ(z− lt) (5.56)

Using Extrapolated Boundary Conditions a solution of the DE is written as:

Ûd(z, κ) =
vÛ0

Dκ

cosh(κ(lt − L + z− ze)) cosh(kze)
sinh(L + 2ze)

(5.57)

where
κ2 = k2

⊥ +
s
D

+
1
L2
a

(5.58)

and
L2
a =

D
vµa

=
1
3

lsla (5.59)

is the squared average length at which light penetrates the sample before being absorbed.
Transmission T and reflection R are defined as the flux computed in z = 0 and z = L

T = F(z = L) (5.60)
R = −F(z = 0) (5.61)

and are easily found as functions of κ or s by replacing equation (5.56) in Fick’s equation (5.34).
Of course the obtained quantities need to be inversely transformed to have them expressed as
functions of space and time. For the relevant case of no absorption and considering a pulsed
source (so that its Laplace transform in time is unity) Q(r, t) = E0(r⊥)δ(z− lt)δ(t)/4π, the
solution can be expanded as [20]:

Ud(z, t) =
2E0v

L + 2ze

∞

∑
n=1

sin
(

nπ(l + ze)
L + 2ze

)
sin
(

nπ(z + ze)
L + 2ze

)
exp

(
− n2π2Dt
(L + 2ze)2

)
(5.62)

Inserting the above equation into Fick’s equation (5.34) yields

F(z, t) = − 2E0Dπ

(L + 2ze)2

∞

∑
n=1

n sin
(

nπ(l + ze)
L + 2ze

)
cos

(
nπ(z + ze)

L + 2ze

)
exp

(
− n2π2Dt
(L + 2ze)2

)

(5.63)
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which can be easily evaluated in z = 0 and z = L to obtain R(t) and T(t).
From the solutions obtained in the previous paragraphs we can derive interesting insights.

Equation (5.50) shows that at all times the spatial profile is a Gaussian. Its Mean Square
Width (MSW) defined as

w2(t) = 2σ2(t) =
∫

ρ2T(ρ, t)ρ dρ∫
T(ρ, t)ρ dρ

(5.64)

grows linearly in time with a slope of

4D = 4vlt/3 (5.65)

which is considered to be a signature of diffusion. The slope of the MSW is a valuable
experimental observable because the MSW is by definition independent of absorption,
which cancels out exactly in (5.64). Even more strikingly, in this framework of Diffusion
Approximation, the slope does not depend on the slab thickness nor on the refractive index
contrast between the sample and the surrounding environment. The MSW slope is thus a
very robust observable when investigating the microscopic transport properties such as lt.

In equation (5.63) the dominant term for long times is the one with n = 1, so that the
transmitted and reflected light exhibit a single exponential decay in time with a lifetime τ

given by:

τ =
Leff

2

π2D
=

(L + 2ze)2

π2D
(5.66)

In the presence of absorption, the equation above must be modified as follows:

1
τ
= D

(
π2

(L + 2ze)2 +
1
L2
a

)
(5.67)

5.7. Modelling light transport with RandomWalks

As we have seen in section 5.4, the Radiative Transport Equation (RTE) (5.20) expresses
energy conservation inside a small volume by balancing the gains and the losses due to
scattering and absorption. If we take a step back and separately consider the single diffracted
fields from different scattering centres, then the intensity at a given point and time is given
by

I(r, t) =
cneff

2

∣∣∣∣∣∑i
Ei(r, t)

∣∣∣∣∣

2

(5.68)

where neff is the effective refractive index of the medium. In the assumption of weak scatter-
ing, i.e. when the average distance between scattering centres is bigger than the radiation
wavelength, as well as considering a complete lack of spatial correlations between scatterers,
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ls, g 6= 0

lt, g = 0

Figure 5.4.: A random walk performed by a particle being scattered inside a turbid medium. Accord-
ing to the similarity relation, an anisotropic random walk (g 6= 0) with a scattering mean free path
of ls can always be mapped to a completely isotropic one (g = 0) but having a scattering mean free
path equal to lt.

then the interference terms average out to zero so that the total intensity is simply given by
the sum of the intensities of the scattered waves:

I(r, t) = ∑
i

Ii(r, t) (5.69)

Of course, the wave nature of light cannot be neglected if the scattering is so important that
consecutive scattering events happen within a single oscillation of the radiation, a regime
which can lead to Anderson Localization of light [21].

Experimentally, in a typical setting where a light beam impinges on a turbid medium and
the transmitted light is collected, the interference terms in the summation (5.68) will give
rise to a random speckle pattern originating from constructive and destructive interference
which depends on the exact configuration of scatterers being probed. The speckle pattern is
averaged out by probing different disorder configurations, i.e. by considering a different
entrance point in the sample, to obtain an incoherent transmission profile.
From the point of view of modelling instead, equation (5.69) allows us to think of light

transport in terms of a random walk of fictitious energy-carrying particles, which opens
new possibilities to find numerical solutions of the RTE. In fact, the RTE can be rewritten
so as to describe the transport of these scalar particles. If N(r, ŝ, t) is the density of such
particles propagating along a direction ŝ, then the specific intensity is written as I(r, ŝ, t) =
N(r, ŝ, t)Ev where E is the energy per particle. The RTE then becomes [5]:

1
v

∂N
∂t

= −ŝ · ∇N − µeN +
µe
4π

∫

4π
p(ŝ, ŝ′)N dΩ + QN (5.70)

where QN(r, t, ŝ) = Q(r, t, ŝ)/Ev is now the number of particles emitted per unit time,
volume and solid angle.

From equation (5.70) it is now clear that solving the RTE is just a matter of tracing particles
inside the scattering medium, following them as they randomly walk from scatterer to
scatterer. This can be done for example by implementing a Monte Carlo algorithm as will
be shown in chapter 6, which in the limit of an infinite number of particles yields an exact
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solution for the RTE. Figure 5.4 shows the trajectory of a particle being scattered inside a
turbidmedium. The scattering mean free path as defined in (5.15) now takes its full meaning as
the average distance between two consecutive scattering events, or steps to use a terminology
more suited to random walks. With homogeneous and isotropic disorder, the scattering
steps l follow an exponential distribution with mean equal to ls: the Step Length Distribution
(SLD) is

p(l) =
1
ls

exp
(
− l

ls

)
(5.71)

Anyway, because of anisotropy, transport properties are better described in terms of the
transport mean free path lt (5.32):

lt =
ls

1− g
(5.72)

This is because, as highlighted in Figure 5.4, an anisotropic random walk (g 6= 0) with a
scattering mean free path of ls can always be mapped to a completely isotropic one (g = 0)
but having a scattering mean free path equal to lt. The relationship between ls and lt goes
under the name of similarity relation. It follows that different materials having a different
microscopic structure can exhibit the same properties with respect to light transport. It is
therefore useful to define the Optical Thickness (OT) as the ratio

OT =
L
lt

(5.73)

since materials having the same OTwill show the same optical properties. Unfortunately the
similarity relation also implies that assessing the presence of anisotropy in light transport is
not easy at all, especially for optically thick samples. Indeed, the similarity relation is best
satisfied as the optical thickness increases, i.e. when light will have undergone a number
of scattering events enough for the original direction to be fully randomized. Attempts to
exploit the breakdown of the similarity relation to retrieve the scattering anisotropy are only
possible considering thin slabs or by studying early light [22].

As easy as it is to picture the idea of a random walk, it is tempting to refer to the fictitious
energy-carrying particles as photons. This terminology, while colourful and widespread, is
totally inappropriate, since the “photons” considered in the framework of random walks
have nothing to do with the concept of a photon in quantum physics. This is often referred
to as photonic confusion [23]. It would be more appropriate in this case to call them “walkers”.
Similarly, applying a Monte Carlo method to trace the walkers and solve the RTE is not really
a simulation, in that it doesn’t simulate any physical process. Instead, it is rather a numerical
way of finding an exact (albeit affected by statistical noise) solution to the RTE.

In chapter 6 we will come back to the concept of random walks, especially as regards their
implementation in software. Here we conclude this section by deriving, entirely from the
point of view of random walks, some of the already found solutions.

First, let’s consider awalker performing a step of amplitude∆XN drawn from adistribution
p(r). We assume that all steps are independently chosen from the same distribution p(r)
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and that they are isotropic, so that p(r) = p(r) and 〈∆XN〉 = 0 (i.e. there are no drifts). Let
XN be the position of the walker after N steps

XN =
N

∑
i

xi =
N

∑
i

li x̂i (5.74)

and PN(R) the probability of finding the walker at position R after N steps. For the N + 1-th
step we can write the following recursion [24]:

PN+1(R) =
∫

p(r)PN(R− r)ddr (5.75)

where d is the dimensionality of the space in which the random walk takes place. The
equation above holds thanks to the assumption of independence of the steps, which allows
the probability to step from R− r to R to be factored in the integrand. For N → ∞, the
length scale on which PN(R) varies is much bigger than any typical r, so that we can take
the Taylor expansion:

PN+1(R) =
∫

p(r)
[

PN(R)− r · ∇PN(R) +
1
2

r · ∇∇PN · r + . . .
]

ddr (5.76)

= PN(R)− 0 +
1
2 ∑

i
∑

j

〈
rirj
〉 ∂2PN

∂Ri∂Rj
+ . . .

= PN(R) +
〈r · r〉

2d
∇2PN(R) + . . .

If ∆t is the time between two consecutive steps we have t = N∆t and:

PN+1(R)− PN(R)

∆t
=

〈
r2〉

2d∆t
∇2PN + . . . (5.77)

In the limit N → ∞ the distribution PN(R) = ρ(R, N∆t) satisfies the Diffusion Equation:

∂ρ

∂t
= D∇2ρ (5.78)

with D =
〈
r2〉 /2d∆t. We solve this partial differential equation with the initial condition

ρ(R, 0) = δ(R) (i.e. the walk starts from the origin) by performing a Fourier transform1:

∂ρ̂

∂t
= −Dk2ρ̂ (5.81)

1Here we use the following definitions for Fourier transform and inverse transform:

ρ̂(k, t) =
∫

e−ik·xρ(x, t)ddx (5.79)

ρ(x, t) =
1

(2π)d

∫
eik·x ρ̂(k, t)ddk (5.80)
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This is an ordinary differential equation with solution:

ρ̂(k, t) = e−Dk2tρ̂(k, 0) = e−Dk2t (5.82)

which taking the inverse transform becomes:

ρ(R, t) =
e−R2/4Dt

(4πDt)d/2 (5.83)

and we have obtained equation (5.37) again. As for the diffusion coefficient in (5.81), using〈
r2〉 =

〈
l2〉 and ∆t = 〈l〉 /v it can be written as

D =

〈
r2〉

2d∆t
=

v
2d

〈
l2〉

〈l〉 (5.84)

which for an exponential SLD yields (5.35) D = vlt/3 exactly. Equation (5.84) will play an
important role in our analysis (chapter 8) and it shows how the diffusion coefficient relates
to the first two momenta of the Step Length Distribution.
Finally, we derive a powerful expression for the fraction of light transmitted through a

slab by showing that equation (5.47), although following from applying the full Diffusion
Theory (DT) formalism or using Green’s function techniques, can also be obtained with a
simple reasoning based on random walks [14]. Let’s consider a photon starting a random
walk at a depth z = lt inside the slab and stopping either at zB = −ze and zR = L + ze
in case it is reflected or transmitted, respectively. For a photon reaching the centre of
the slab, the probabilities of being transmitted or reflected must be the same so that we
must have T(L) = T(L′)/2 where L′ + 2ze = (L + 2ze)/2. We can iterate this reasoning
by continuing to divide the remainder of the slab in two halves, so that after N times
T(L) = T[(L+ 2ze)/2N− 2ze]/2N . Eventually, when the slab thickness is twice the transport
mean free path, a photon at the slab centre will have 50% probability of being reflected or
transmitted, which stops the recursion: T(2lt) = 1

2 . This yields equation (5.47) directly

TD =
lt + ze
L + 2ze

(5.85)

and it is easy to verify that this formula satisfies both conditions. This is just the diffuse
contribution of transmitted light, to which one should add the ballistic contribution of
unscattered light (though it decays exponentially with increasing slab thickness: TB = e−L/ls)
in order to obtain the total transmission.

105





Chapter 6.

MCPlusPlus: a Monte Carlo C++ code for
radiative transport

I’m personally convinced that computer science
has a lot in commonwith physics. Both are about
how the world works at a rather fundamental
level. The di�erence, of course, is that while in
physics you’re supposed to figure out how the
world is made up, in computer science you create
the world. Within the confines of the computer,
you’re the creator. You get to ultimately control
everything that happens. If you’re good enough,
you can be God. On a small scale.

(Linus Torvalds)

In this chapter we introduce MCPlusPlus, a Monte Carlo software library for the transport of light
through a multilayered system which was developed from scratch entirely in the framework of this
thesis. A short overview of Monte Carlo methods and of the internal structure of MCPlusPlus are
given, highlighting the improvements of our software over existing Monte Carlo solutions.

6.1. Introducing MCPlusPlus

To perform the simulations presented in this workwe developed a newMonte Carlo software
library, calledMCPlusPlus, for the transport of light through a multilayered sample. This
software was created from scratch aiming at enriching existing multilayer Monte Carlo
software such as MCML [25] or CUDAMCML [26] and is made publicly available online [27].
Being developed entirely in C++, the program extensively takes advantage of the object-
oriented programming paradigm (OOP), which is particularly suited to model a random
walk problem [28]. Since pieces of code can be encapsulated in reusable objects, OOP offers
several advantages including scalability, modularity, ease of maintenance and abstraction. Of
equal importance is the fact that OOP naturally lends itself as a tool to describe a high-level
interface to the software itself. Indeed,MCPlusPlus comes as a shared library rather than an
executable package. As a notable feature, a Python interface to the library is also provided
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#!/usr/bin/python

from pymcplusplus import *

#define a sample consisting of two layers of different materials
sample = Sample ()

#add a layer of material mat and thickness 1000um
mat = Material ()
mat.n = 1.5
mat.g = 0
mat.ls = 1000

sample.addLayer(mat ,1000)

#add a layer of material mat2 and thickness 500um
mat2 = Material ()
mat2.n = 1.3
mat.g = 0.5
mat.ls = 700

sample.addLayer(mat2,500)

externalMaterial = Material ()
externalMaterial.n = 1

sample.setSurroundingEnvironment(externalMaterial)

#define a photon source
source = PencilBeamSource ()

#define the main simulation object , simulate 1e10 photons using 8 parallel threads.
#note that each thread will use increasing seeds starting from 0
sim = Simulation ()
sim.setSample(sample)
sim.setSource(source)
sim.setNPhotons(10000000000)
sim.setNThreads(8)
sim.setSeed(0)
sim.setOutputFileName("example.h5")

#define and add several histograms to the simulation

# 1) a histogram of the exit times
hist = Histogram ()
hist.setDataDomain(DATA_TIMES)
hist.setPhotonTypeFlags(FLAG_TRANSMITTED)
hist.setMax(1000)
hist.setBinSize(2)
hist.setName("times")
hist.setSpatialVarianceEnabled(True)
sim.addHistogram(hist)

# 2) a histogram of the exit distances from the center
hist = Histogram ()
hist.setDataDomain(DATA_POINTS );
hist.setPhotonTypeFlags(FLAG_TRANSMITTED)
hist.setMax(1000000)
hist.setBinSize(50)
hist.setName("points")
sim.addHistogram(hist)

# 3) a bivariate histogram of the exit distances as a function of time
hist = Histogram ()
hist.setDataDomain(DATA_POINTS , DATA_TIMES)
hist.setPhotonTypeFlags(FLAG_TRANSMITTED)
hist.setMax(100000,1000)
hist.setBinSize(500,2)
hist.setName("points_vs_times")
sim.addHistogram(hist)

# run the simulation
sim.run()

Figure 6.1.: Example of simulation with MCPlusPlus using the Python scripting interface. The sam-
ples consists of two layers of different materials and a pencil beam is used for the source. 1010 photons
are simulated on 8 parallel threads. Several histograms to be saved to the output file are configured.
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Figure 6.2.: Comparison of the output produced by MCPlusPlus with the output from MCML and
CUDAMCML for a slab with OT = 10. (a) Steady-state profile of transmitted light. (b) Time-resolved
decay of transmitted light. (c) Time-resolved growth of the mean square width of transmitted light
(see equation 5.64). Note that neither MCML nor CUDAMCML provide time-resolved statistics: the
curves labelled CUDAMCML have been obtained from a manually modified version of the software.

so that simulations are extremely easy to set up and run through very simple scripts (figure
6.1). Scriptability proved to be very useful for the realization of the studies presented in this
work. In chapter 7 we will use MCPlusPlus to run a substantial number of simulations over
a broad parameter space with the goal of building a look-up table, a situation in which we
could profitably make use of the scriptable interface and automate many operations. We
believe this to be a key strength of our package which improves considerably on existing
multilayer Monte Carlo software. The output produced by MCPlusPlus has been tested
against MCML and CUDAMCML; figure 6.2 shows some comparisons.
Random walk implementations of light transport fall into the category of so-called “em-

barrassingly parallel” problems, whose solution can largely benefit from the increasing
availability of parallel computing architectures such as GPUs (Graphics processing units)
and multi-core CPUs. Yet, despite delivering the fastest performance, working with GPUs
still present some difficulties and limitations [26]. To better meet our needs, we therefore
decided to develop our software for CPUs. In particular, for the purposes of the works
presented in chapters 7 and 8, we are targeting numerical accuracy, reliability and repro-
ducibility rather than execution speed. Moreover, current GPU implementations of the light
transport problem in scattering media more often address realistic biomedical applications
involving complex meshes which would otherwise present an overwhelming computational
burden. Conversely, we are here focusing on a rather fundamental and statistical study.
However we must note that, despite running on CPUs, the performance of MCPlusPlus is
not much sacrificed as we can still exploit the ubiquitous multi-core architecture of modern
computers via multithreading; performance close to GPU is soon matched on a small com-
puting cluster or even on a single multi-core workstation. CPU code also ensures maximum
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hardware compatibility, while GPU-based implementations are hardware or even vendor
specific. Additionally, developing software for a pure CPU architecture has generally less
complications than writing GPU-compatible code; plenty of software libraries and high-
quality Pseudo-Random Number Generators (PRNGs) are widely available for the CPU,
providing us with the flexibility and freedom that we needed for the purpose of this work.

Finally, the extent of the simulations that wewill describe in the next chapter and especially
in chapter 8 is particularly significant (up to 1014 photons), a fact which alone poses several
challenges. Indeed, simulating such a large number of photons requires the use of 64-bit
PRNGs in place of the more common 32-bit implementations, which would introduce a
statistically significant truncation in the sampled distributions as better explained in the
following section. Accordingly, the correct representation of the random variates requires
the use of long double floating point notation. Both these requirements are straightforward
on a CPU architecture, as opposed to GPUs, supporting our preference for the former.

6.2. The Monte Carlo method

Monte Carlo (MC) methods encompass a broad class of computational algorithms aimed at
solving a deterministic problem, whose analytic solution is often lacking or impractical, by
repeatedly sampling a probabilistic description of an analogue model. As the number of
observations goes to infinity the estimate approaches the true value, therefore the Monte
Carlo method provides an exact solution to the original problem. However, being based
on random sampling, that solution is affected by statistical noise, which decreases with
an increasing number of trials. A simple typical example of a Monte Carlo technique is
the determination of the area of a lake having a generic shape. The problem is solved by
enclosing the lake within a square, the area of which is easily calculated, and then throwing
a number of point-like stones uniformly over the square area, counting how many of them
fall inside or outside the lake. The ratio of the number of stones that fell into the lake and
the number of stones that fell outside the lake is then an estimate of the ratios of the two
areas. As the number of launched stones goes to infinity, the estimate becomes exact.

At the heart of a Monte Carlo method is the ability to sample random variables with well-
defined probability distributions. Therefore, a good source of random numbers is needed
for this purpose. Truly random numbers can only be generated by observing an inherently
random physical process, such as radioactive decay or some other quantum process (see sec-
tion 1.3.3). However, while truly random numbers are required for applications concerning
cryptography, their use in many other applications — such as Monte Carlo methods — is not
only impractical but also unneeded. Within a computer, pseudorandom are more efficiently
produced through Pseudo-Random Number Generators (PRNGs), i.e. algorithms which
generate a deterministic sequence of numbers which approximate the properties of a truly
random sequence. In practice, they are periodic sequences with an extremely high period.
MCPlusPlusmakes use of the PRNGs implemented in the Boost C++ libraries. In particular
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we chose the broadly used Mersenne Twister algorithm which is fast while providing good
performances1.

Let us consider a random variable χ, with a Probability Density Function (PDF) p(χ)
normalized such that ∫ b

a
p(χ)dχ = 1 (6.1)

Random numbers with an arbitrary PDF are usually generated starting from another random
variable ξ uniformly distributed in the interval (0, 1), provided by the computer. The
Cumulative Distribution Function (CDF) F(ξ) of this variable is thus

Cξ(ξ) =





0 if ξ ≤ 0

ξ if 0 < ξ ≤ 1

1 if ξ > 0

(6.2)

To sample the generic p(χ), we assume the existence of a nondecreasing function f (ξ) = χ

which provides a one-to-one mapping between ξ ∈ (0, 1) and χ ∈ (a, b) [29]. Therefore the
following equalities hold between the probabilities:

P{ f (0) < χ ≤ f (ξ1)} = P{0 < ξ ≤ ξ1} → P{a < χ ≤ χ1} = P{0 < ξ ≤ ξ1} (6.3)

The equalities above can be changed to an equation of CDFs:

Cχ(χ1) = Cξ(ξ1) (6.4)

Using the definition of CDF and equation (6.2), the last expression becomes:
∫ χ1

a
p(χ)dχ = ξ1 for ξ ∈ (0, 1) (6.5)

Finally, solving for χ1 yields the sought function f (ξ1). A prominent example is the case of a
random variable following an exponential distribution, such as the Step Length Distribution
(SLD) that we will use for the random walk process. In this case

p(l) =
1
ls

exp
(
− l

ls

)
(6.6)

Equation (6.5) yields an expression for a sample variate l1 based on the random variate ξ1:

ξ1 =
∫ l1

0
p(l)dl = 1− el1/ls (6.7)

1The standard Mersenne Twister algorithm has a period of 219937−1 and good uniform distribution in up to
623 dimensions for the 32-bit version (up to 311 dimensions for the 64-bit version). It also passes several
tests for statistical randomness.
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Solving for l1 we finally obtain:
l1 = −ls ln(1− ξ1) (6.8)

It is worth noting that the random variable ξ is in turn generated by the pseudorandom
number generators, which usually provide unsigned integer numbers. A 32-bit generator
provides random integers ζ in the range [0, 232 − 1], therefore ξ ∈ [0, 1) is obtained as

ξ =
ζ

232 (6.9)

Consequently, the maximum value that can be generated for ξ is

ξmax =
232 − 1

232 (6.10)

which for the case of the exponential distribution yields lmax ≈ 22.2ls through equation (6.8).
Therefore, the resulting exponential distribution is truncated. Whether this represents a
problem or not depends on how many random variates one needs to generate. For ls = 1,
since ∫ ∞

22.2
exp(−l)dl ≈ 2.3× 10−10 ≈ (4× 109)−1 (6.11)

it follows that, whenever one needs to generate more than 4× 109 variates, the truncations
introduced by the generation process are statistically significant. In chapter 8wewill simulate
up to 1014 photons, and for each of them the exponential distribution has to be sampled
multiple times. This level of precision is therefore insufficient. Using 64-bit pseudorandom
number generators improves the situation considerably, since now lmax ≈ 44.4ls and up to
≈ 2× 1020 variates can be safely generated. At the same time one should use a floating
point representation with long double precision (64 bit), since the corresponding ξmax =

1− 1/264 cannot be represented with sufficient precision using 32-bit (i.e. single precision)
floating point numbers. As anticipated at the end of the previous section, this is one of the
requirements that pushed us towards the development of a custom software implementation
for the CPU, improving on existing solutions such as MCML and CUDAMCML.

6.3. Software implementation of a random walk for light

In section 5.7 we saw that the transport of light through a turbid medium can be modelled
as a random walk of fictitious, energy-carrying particles, in terms of which the Radiative
Transport Equation (RTE) can be rewritten (equation 5.70). Randomwalks for these particles
can be effectively traced by means of a Monte Carlo algorithm where the trajectories are
randomly generated starting from appropriate distributions for the scattering angles and
step lengths. By propagating a sufficiently large number of these particles, the observables of
interest such as the spatial or temporal distribution of light transmitted through a scattering
medium can be estimated, by counting the number of particles that are transmitted within a
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given bin in space and time. It is worth stressing again that, within the algorithm, no actual
simulation of physical processes takes place. Simply, a large number of random trajectories
are generated in order to statistically sample the RTE and converge to an exact solution.
Similarly, these fictitious particles have nothing to do with photons in the quantum sense.
In fact, in this chapter we will refer to them as “walkers” to highlight their relationship with
a random walk. For convenience we will nonetheless call them photons in chapters 7 and 8,
which is accepted in the commonly used terminology.

In this section we describe some implementation details that are specific to MCPlusPlus.
More information can be found in the online documentation [27].

6.3.1. Sample description

With MCPlusPlus, a system of multiple semi-infinite slabs can be simulated. The multilayer
geometry is described through the Sample class. Each slab is characterized by a finite
thickness, expressed in µm, and by a Material. Properties of a Material are its refractive
index n, its scattering anisotropy g and its scatteringmean free path ls, again expressed in µm.
For a non-scattering material, ls is set to infinity. Layers are stacked along increasing values
of z in a Cartesian coordinate system, with the first slab being placed at z = 0. Finally, to
complete the description of the simulated geometry, the Material properties of the (possibly
different) surrounding environments must be specified.

6.3.2. Source term

In MCPlusPlus, a simulation starts with the creation of a walker at a given position and
with an initial k vector. In most Monte Carlo implementations of light propagation through
scattering slabs, walkers are created at a fixed position and impinge perpendicularly on the
slab surface, i.e. the initial k vector is (0, 0, 1). This is often called a pencil beam source, and it
can be defined as a combination of Dirac delta functions in the form δ(r− r0)δ(k− k0).
Thanks to the flexibility given by the object-oriented programming paradigm, the in-

structions related to the creation of a walker are not hard-coded in the main body of the
software, but they are rather encapsulated within dedicated classes. In our case (figure 6.3)
the Source class defines the interface and the basic properties of a generic source, therefore
it acts as a base class. Specific implementations of different sources are given in its derived
classes. The PencilBeamSource class, for example, implements the pencil beam source that
we just described. Contrarily to most Monte Carlo packages which provide a pencil beam
source only, with MCPlusPlus several sources are predefined or a custom source can be
specified by the user. Some of the available sources are the IsotropicPointSource and the
GaussianRayBundleSource, the latter providing a ray-optic description of a Gaussian beam
waist [30]. The distribution in time of the generated walker can also be specified. For most
cases, the distribution is a Dirac delta δ(t− t0).
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UniformDistribution

Sech2Distribution

Source

Simulation

GaussianRayBundleSource

GaussianBeamSource
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IsotropicPointSourceH5OutputFile
H5FileHelper

Histogram

Sample

NormalDistribution

IsotropicPsiGenerator
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BaseRandom

CosThetaGenerator

AbstractDistribution

ExponentialDistribution

DeltaDistribution

Figure 6.3.:Hierarchy of the main classes within MCPlusPlus internal structure. The arrows connect
derived classes to their base class.

y
x

z

Figure 6.4.: An example of a GaussianRayBundleSource, one of the specialized sources provided
by MCPlusPlus (not used in this work). This source mimics a laser beam focused by a lens; the z
coordinate of the focus can be chosen by the user. In this example, a sample made of three slabs in
shown; walker trajectories (rays) are coloured differently within each slab. Here the Gaussian beam
is focused on the boundary with the last medium.
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Whatever the choice of the source class, its function is to create a walker in its initial state.
It therefore initializes the fields of the Walker class, which is simply a container structure
for storing the position and direction of the walker at each simulation step, according to
the particular distributions for that source. For example, with a PencilBeamSource walkers
are always created at the same initial coordinate r0 and with k0 = (0, 0, 1), whereas for
a GaussianRayBundleSource the initial distributions of positions and directions is more
complicated (figure 6.4). Within the Walker class, the current Cartesian coordinates x, y and
z of the walker are stored, together with the unit vector k described in terms of its directional
cosines (µx, µy, µz):

µx = k · x̂ µy = k · ŷ µz = k · ẑ (6.12)

where x̂, ŷ and ẑ are the versors of the Cartesian axes.

6.3.3. Walker propagation

The core of the random walk process is implemented within the Simulation class. This is
where all the classes defined above converge. Indeed, the task of this class is to propagate
the Walkers produced by the Source through the geometry provided by the Sample class.
At each simulation steps, the position and direction of a Walker are updated.

Let us consider the generic n-th step of the random walk process. Suppose that a given
walker just reached a position r while travelling in a direction k. The software has to propa-
gate the walker to a new position r′ and a new direction k′. In other words, each simulation
step represents a scattering event. As we have already mentioned, we are only dealing
with homogeneous media with annealed disorder: in place of simulating the propagation
through a structure of scattering centres at fixed positions in space (quenched or deterministic
disorder), we are instead building the random walk starting from the statistical distribution
of the step lengths and scattering angles. This is computationally far easier.
In order to randomly scatter a propagating walker, a new propagation direction has to

be chosen. While positions and directions of a walker are described in a fixed Cartesian
coordinate system, the scattering event is best described in a moving spherical coordinate
system whose z axis is always aligned with the current propagation direction. A scattering
event is determined by a random sampling of the deflection angle θ and the azimuthal angle
φ (figure 5.1). For the polar angle θ we employ the Henyey-Greenstein scattering phase
function [31], originally proposed for diffuse radiation in the galaxy and now commonly
used in the transport of light:

p(cos θ) =
1− g2

2(1 + g2 − 2g cos θ)3/2 (6.13)

where g is the anisotropy factor as defined by equation (5.14). In case of isotropic scattering
(g = 0), cos θ is uniformly distributed between −1 and 1. Therefore, starting from the usual
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random variate ξ uniformly distributed between 0 and 1 we have [25]:

cos θ =





1
2g

[
1 + g2 −

(
1−g2

1−g+2gξ

)2
]

if g > 0

2ξ − 1 if g = 0
(6.14)

The instructions controlling the random generation of cos θ are implemented within the
CosThetaGenerator class, therefore the addition of other scattering phase functions in the
future is straightforward. Since the azimuthal angle φ is uniformly distributed between 0
and 2π, a random variate for φ is simply obtained as φ = 2πξ. Starting from cos θ and φ, the
direction cosines of the new vector k′ are given by2:

µ′x =
sin θ√
1− µ2

z
(µxµz cos φ− µy sin φ) + µxcosθ (6.16)

µ′y =
sin θ√
1− µ2

z
(µyµz cos φ + µx sin φ) + µycosθ (6.17)

µ′z = − sin θ cos φ
√

1− µ2
z + µz cos θ (6.18)

Once the scattering angles have been defined, the length of the current step must be
randomly chosen. In a homogeneous and isotropic medium, the scattering step lengths l
follow an exponential distribution with mean equal to ls (equation 5.71) independent from
the propagation direction:

p(l) =
1
ls

exp
(
− l

ls

)
(6.19)

Through the PRNGs, the software samples the Step Length Distribution (6.19) to determine
the length l of the n-th step. The walker position is then updated, i.e. the walker is effectively
propagated, with these simple expressions:

x′ = x + µxl y′ = y + µyl z′ = z + µzl (6.20)

The total propagation time is also incremented by l/v, where v = c/n is the speed of light in
that medium. The process is repeated with starting from the new position r′ and direction
k′.
The final position calculated with the equation above may lie inside another medium, i.e.

in another slab of a multilayer sample or it can end up in the surrounding environment.
In these cases, the intersection with the nearest boundary is calculated and the walker is
propagated to that intersection point instead. The remainder length is discarded3. Once
2When k is too close to the z axis, the following expressions are used instead:

µ′x = sin θ cos φ µ′y = sin θ sin φ µ′z = sgn(µz) cos θ (6.15)

3Note that this does not affect the overall distribution of generated lengths, since the exponential distribution
is memoryless.
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on an interface, reflections and refractions must be evaluated. If we name αi = arccos |µz|
the angle of incidence with the boundary, the angle of transmission αt is computed through
Snell’s law:

ni sin αi = nt sin αt (6.21)

where ni and nt are the refractive indexes on the two sides of the boundary. If the transmitted
angle is beyond the critical angle, then the walker undergoes total internal reflection, an
operation that is simply accomplished by flipping the sign of µ′z. Otherwise, the probability
of internal reflectance r(αi) is calculated using Fresnel’s formulas:

r(αi) =
1
2

[
sin2(αi − αt)

sin2(αi + αt)
+

tan2(αi − αt)

tan2(αi + αt)

]
(6.22)

which is an average of the reflectances of the two orthogonal polarizations. Then, by gen-
erating the usual random number ξ ∈ (0, 1), the walker is internally reflected if ξ ≤ r(αi),
otherwise it is refracted in the new medium and the propagation direction is updated
according to the θt angle given by equation (6.21).

If thewalker is transmitted into the surrounding environment, the simulation is terminated.
Within MCPlusPlus, terminated walkers are divided in four classes. Walkers transmitted
through the last boundary are classified either as TRANSMITTED or BALLISTIC if they have
undergone more than one and zero scattering events, respectively. Similarly, walkers leaving
the sample from the first boundary (entrance) are called REFLECTED or BACKREFLECTED.

6.3.4. Output

Incremental counters for the total number of walkers falling into the four categories are
always saved. For each terminated walker and for each of the four classifications, the exit
position, time and direction can be saved. This provides a form of very granular raw output.
The output file is saved in HDF5 format, a widely used format for storing large datasets
in binary form. However, this approach has a very heavy footprint in terms of storage
space, and the data needs to be further processed (binned) for meaningful analysis. As
an alternative, we have built a powerful and flexible interface for histogramming within
MCPlusPlus. Instead of saving the raw data for each simulated walker, data can be saved
in a binned form. Any number of simple or bivariate histograms can be specified, so that
both steady state or time-resolved statistics can be extracted very easily. This is a notable
upgrade compared to other packages such asMCML or CUDAMCML, where time-resolved
output is not available. Notably, the time-resolved spatial variance (equation 5.64) can be
computed and saved. In the next chapter we will make extensive use of this quantity, as its
linear increase in time is a signature for diffusive behaviour.
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Chapter 7.

Deducing effective light transport parameters
in optically thin systems

In this study we tackle the so-called inverse problem of light transport in thin slabs, i.e. the de-
termination of the microscopic properties at the base of light propagation (such as the scattering
mean free path ls and the scattering anisotropy g) starting from macroscopic ensemble observables.
We investigate light transport through a single thin slab of scattering material by focusing on two
experimental observables. The decay time of the transmitted intensity in response to a light pulse
impinging on the slab has long been accessible experimentally and used to determine the diffusion
properties. Notably, we also consider another robust observable which became experimentally ac-
cessible with modern optical gating techniques, i.e. the Mean Square Width (MSW) growth of the
spatial profile of the transmitted pulse. Such quantity grows linearly in time in a diffusive regime,
and is inherently robust since by definition it does not depend on absorption and its slope is directly
related to the diffusion coefficient. We build a large database of these two observables over a broad
parameter space in terms of ls, g and optical thickness (ranging from 1 to 10). With the combined
use of these two macroscopic quantities, which are both experimentally accessible, we develop a
look-up table routine that allows us to retrieve the microscopic transport properties such as ls and
g in the relevant case of a thin slab. The results presented here are in publication in New Journal
of Physics [32].

7.1. Introduction

Studying light propagation through matter has provided powerful and versatile tools to
investigate the optical properties of materials in different fields of science and technology.
Indeed, predicting how light is scattered by a turbid medium allows one to relate the
observed experimental parameters, measured by shining light through a specimen of a
given material, to the microscopic structural and chemical properties. For example, it was
recently demonstrated how the exceptionally white brightness of the body of Cyphochilus —
a kind of beetle common in South Asia — originates from an optimized anisotropy of chitin
networks acting as a dense scattering medium for light [33]. These networks are to be found
in the beetle’s scales which are just a few micrometers thick, providing an example of how
nature efficiently managed to engineer whiteness. Thus, those findings are interesting not
only from the point of view of natural science, but also as a source of inspiration for the
design of new materials. Material science is indeed one branch that can undoubtedly benefit
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from a thorough knowledge of the microscopic properties of matter, which as said can be
probed by passing light through the particular material under investigation. Also, light can
be used as a non-invasive diagnostic tool, e.g. for probing thin layers of paint in a painting.
An important field of application, which grew considerably in the past years and is still
growing, is that of biomedical optics [8], in which light can be used as a non-destructive tool
to quantitatively access the properties of in vivo tissues depending on how it is scattered or
absorbed [34, 35]. From just these few examples, it is clear how solving the so-called inverse
problem — i.e. the determination of the microscopic properties that affect light propagation
starting from macroscopic ensemble observables — is a problem of primary importance
both from the point of view of fundamental science as well as application-wise. In this
chapter we are going to describe the procedure that we have developed to map the observed
macroscopic parameters to a table of simulated observables (namely the Mean SquareWidth
slope and the decay time), which allows us to tackle the inverse problem in thin slabs where
the Diffusion Approximation fails.
As we have seen in Chapter 5, the Diffusion Approximation (DA) provides a robust

theoretical framework leading to very simple analytical expressions that describe light
transport both in space and time. With these, it is possible to solve the inverse problem
and retrieve the microscopic parameters. However, the DA comes with some points of
failure built-in, as a consequence of the approximations that we have made to derive it. In
particular, we obtained the DA under the assumption of almost isotropic radiance (5.26),
a condition that is truly verified only asymptotically in space and time and progressively
breaks down if the characteristic scattering length becomes comparable to the thickness
of the slab or to the absorption length. Therefore, the DA is bound to significantly fail for
media whose extension is not large enough to allow the onset of a multiple-scattering regime.
This is typical in biomedical optics, since biological materials often naturally come in the
form of thin tissues or membranes: ocular fundus [36], vascular walls [37], living epithelial
cells [38], skin dermis [39], bone tissue [40], dental enamel [41]. In this cases, in order to
have more accurate results, refined approximations to the Radiative Transport Equation
are still actively investigated [42–44], or alternatively a Monte Carlo approach is able to
provide an exact solution for the RTE where the only uncertainty is given by statistical noise.
Nevertheless, due to its simplicity and its convenience in characterizing scattering media,
the DA still retains a large appeal, and numerous attempts were made to try to extend its
validity range in special situations by introducing all sorts of minor modifications [45, 46].
Even at its standard formulation derived in Sections 5.5 and 5.6, the DA casts an incredibly
simple prediction on transverse transport: a light beam impinging on a scattering slab will
be transmitted with an enlarged Gaussian profile in space which grows linearly in time
as w2(t) = 4Dt, where the mean square width w2(t) is defined for an arbitrary intensity
distribution I(ρ, t) by equation (5.64), here rewritten for convenience:

w2(t) =

∫ ∞
0 ρ2 I(ρ, t)ρ dρ∫ ∞

0 I(ρ, t)ρ dρ
(7.1)
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Experimentally, the evolution in time of the Mean Square Width (MSW) can be measured
from a collection of discrete spatio-temporally resolved profiles I(ρ, ti) obtained with opti-
cal gating techniques [19, 47]. The slope of its linear growth is predicted by the diffusion
approximation to be determined by the diffusion coefficient D, and the linear increase itself
can be considered as a signature of diffusion. It is worth remarking how an experimental
observable based on the mean square width is very robust in its nature, since by definition it
is independent from absorption, which cancels out exactly at every ti in (7.1). Additionally,
according to the diffusion approximation, the mean square width does not depend on the
slab thickness nor on the refractive index contrast between the material and the surround-
ing environment. These are unique properties to the mean square width, whereas other
observables depend critically on boundary conditions, sample size and absorption.

The present study is aimed at characterizing light transport in the infinite slab geometry for
the relevant case of optically thin slabs, a configuration in which the diffusion approximation
is expected to be no longer valid. In particular, we perform Monte Carlo simulations over a
broad range of optical parameters and test how the DA prediction on transverse transport,
i.e. the linear MSW increase, behaves as the optical thickness of the sample decreases. In
fact we believe that the simple DA prediction can still be profitably applied in a thin slab
geometry, since boundary and confinement effects are less relevant along the slab’s main
extension where transverse transport occurs. Dealing with thin slabs of course means that
the vast majority of transmitted light will be ballistic — i.e. light which has undergone a
number of scattering events equal to zero or close to unity — therefore uninteresting for our
purposes. This represents a challenge also whenmodelling the Radiative Transport Equation
by means of Monte Carlo, since in order to keep statistical noise levels to a minimum one
has to simulate an enormous number of photons. By taking into careful consideration
transverse transport and its related observables, our study completes the picture on the
breakdown of the diffusion approximation when moving from the diffusive to the ballistic
regime — a transition that has been so far extensively characterized with respect to axial
rather than transverse propagation [22, 48–50], relying mostly on the decay time τ as the
main observable. Indeed, even when exploiting Monte Carlo modelling, which does not
pose any limitation as for the available observables, transverse transport has been largely
disregarded in previous studies, supposedly because it was hardly accessible experimentally
before the advent of more recent techniques [47]. With a large set of simulated data, we
finally develop a Look-Up Table (LUT) routine as a straightforward tool to solve the inverse
problem in thin slabs, starting from robust experimental observables such as τ and the MSW
slope which are independent of absolute intensity measurements. Moreover, as we will see
in chapter 8, tackling the problem of transverse transport in a confined geometry is one of
fundamental interest, as we will show that a multiple-scattering regime can occur even in
thin semi-transparent media which are not usually associated with this transport regime.
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7.2. Methods: simulations and analysis

In this work we perform a systematic Monte Carlo study over a range of different optical
properties aimed at testing the validity of the diffusion approximation for the relevant case
of optically thin slabs. TheMCPlusPlus software that we described in chapter 6 was used
for this purpose. Its scriptable interface proved very useful in the iteration over the large
space of simulated parameters.

The simulation setup consists of a δ(r)δ(k)δ(t) pencil beam impinging normally on an in-
finite slab as shown in figure 7.1. Photons are then propagated inside the scattering material
through a standard random-walk algorithm, where scattering lengths follow an exponential
distribution and scattering angles are generated using the well-known Henyey-Greenstein
function. For each transmitted photon we record the spatial coordinates of the exit point
as well as the arrival time. In this setting, we perform a fine sampling of the (n, g, OT−1)
parameter space, where n = nin/nout is the relative refractive index contrast, g is the average
cosine of the scattering angle θ as defined by equation (5.14), and OT−1 is the reciprocal1
of the optical thickness. In particular, all combinations of the following values have been
simulated, for a grand total of 2816 simulations: n ∈ [0.6; 0.8; 0.9; 0.95; 1; 1.02; 1.05; 1.1; 1.2;
1.3; 1.4; 1.5; 1.6; 1.8; 2.0; 2.2], g ∈ [0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.99], OT−1 ∈ [0.1; 1

9 ;
1
8 ; 1

7 ; 1
6 ; 0.2; 0.25; 0.3; 0.35; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1]. For each configuration, 109 incident pho-

tons were simulated. For convenience, the slab thickness and internal refractive index were
always kept constant to L0 = 1000 µm and nin = 1 respectively, while varying ls, g, and nout.
Since Fresnel reflection coefficients depend solely on the relative refractive index contrast
n = nin/nout, keeping nin = 1 constant while varying nout allows one to have a consistent
time scale over the whole set of simulations. The real time scale of any single simulation can
later be recovered by simple multiplication by the actual value of nin.
For each simulation we examine the time-resolved integrated intensity and the mean

square width of the transmitted profile in order to extract the decay lifetime τ and the
MSW slope, respectively. For the lifetime, we first fit a single exponential decay to the
time-resolved transmitted intensity curve to obtain an initial guess τ′ of the lifetime. We
then repeat the same fit, this time in the range 4τ′–9τ′, to obtain the final estimate for τ

(figure 7.3a). This ensures that the fitting is done at times long enough for the asymptotic
value of τ to be extracted, and adds consistency to the fitting method between different
simulations. Once τ is obtained, we find 4D by performing a linear fit on the mean square
width w2(t) as a function of time, calculated using equation (7.1) from the exit points of all
the single photons within a given time bin. The fit is performed on the same 4τ–9τ range;
the lower limit is chosen so as to always exclude the early-time photons before the onset of

1In this work we will often refer to the reciprocal of the optical thickness rather than its direct value to
put a greater emphasis on the optically thinnest cases. During the analysis, we also found that fitting
and smoothing algorithms behave better when using OT−1, because of the smoother dependence of the
investigated parameters on the OT−1 scale. Since OT−1 = lt/L0, it acts as a dimensionless measure for the
transport mean free path lt.
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Figure 7.1.: Left panel: sketch of the investigated configuration. A pencil beam impinges on an
infinite slab, and can undergo multiple scattering even in thin slabs (as discussed in greater detail in
chapter 8). At each time slice, the transmitted profile is approximately Gaussian. Its mean square
width w2(t) grows linearly in time (central panel) while the spatially integrated transmitted intensity
T(t) falls exponentially (right panel).

the diffusive regime, while the upper limit is to avoid the noise found at very long times due
to insufficient statistics (figure 7.2a). As previously specified, mean square width values are
exactly independent of absorption, which has thus been excluded from the simulations.
It is worth explaining why it is appropriate to use the decay time as a time unit for the

mean square width evolution, since the former is mainly determined by transport properties
along the slab thickness, while the latter occurs mainly in-plane. A time range based on
τ actually provides a convenient way of defining a consistent, self-tuning fitting window
across the whole dataset. This simple choice is also advocated under practical reasons,
since the decay time is undoubtedly the actual temporal unit that eventually dictates —
both in real and numerical experiments — the signal-to-noise ratio. In this respect, every
diffusion coefficient within our simulated phase space has been determined under equal
noise conditions. No less important, limiting our investigation to a long-time window is
also relevant under a more technical point of view: for all practical purposes, the specific
choice of both the spatial source distribution and the phase function becomes negligible.

Each simulated point in the (n, g, OT−1) parameter space defines a discrete grid. Following
the analysis protocol described above, the extracted values of D and τ can be assigned to each
point of the grid. In other words, we have two sets of four-dimensional data, that are best
arranged in the form of a hypersurface as shown in figures 7.2b and 7.3b. Instead of their raw
values, we plot the deviations from the prediction cast by the diffusive approximation. The
obtained values for D, evaluated as 1/4 of the variance slope, are divided by the predicted
value (equation 5.65)

DDA =
1
3

ltc (7.2)

Accordingly, values for τ are compared to the expression that we found within the diffusive
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approximation for a non-absorbing medium (equation 5.66):

τDA =
Leff

2

π2DDA
(7.3)

where Leff is the effective thickness of the medium and ze (equation 5.41) is the extrapolated
length. The resulting “hypercubes” are shown in figures 7.2b and 7.3b; the volume is
sampled on a discrete grid, corresponding to the simulations that have been run. The
noise originating from statistic fluctuations and fit uncertainty can be greatly reduced if we
consider each simulated n-slice separately and smooth the data. On each slice, we applied a
local regression algorithm using weighted linear least squares and a 2nd degree polynomial
as provided by the Loess MATLAB model (range parameter set to 0.25) as shown in figures
7.2c and 7.3c. Smoothed slices are then put back together to perform a cubic interpolation
along the refractive index contrast axis to obtain a hypersurface for D and τ that can be
evaluated continuously for any triplet in the (n, g, OT−1) parameter space (figures 7.2d and
7.3d). Interpolation has been performed separately on the n ≤ 1 and n ≥ 1 regions of the
cube due to the sharp first-derivative discontinuity occurring in n = 1.
A few comments are due. Firstly, we intended to focus our investigation on asymptotic

transport. This explainswhy the diffusion coefficient D has been evaluated by the linear slope
of the mean square width in a time window ranging from 4 to 9 units of τ, as determined
from time-resolved curves. Depending mainly on the optical thickness of the sample, there
is an early-time range where the MSW exhibits a super-linear increase. We carefully checked
that the fitting range was always largely excluding such regime, in order to safely address
the asymptotic slope, as confirmed for example in 7.2a.
Secondly, it is well known that most biological soft tissues share a refractive index equal

or close to nin = 1.4 [51]. This is supposedly the reason why refractive index variations have
so far been disregarded in similar multi-parameter investigations [52–55]. Nonetheless, we
decided to include the refractive index contrast as a simulation parameter because, especially
in the case of thin slabs, the range of interest for n is undoubtedly wider, spanning from
well below 1 to as high as 2. The case of small n is of interest for cases where specimens
are enclosed in glass slides, or laid or immersed in different substrates/solutions. The high
values for n have been included envisioning possible applications of our study to metal
oxides and similar highly scattering materials, which are extremely relevant, for instance,
for coatings and in photovoltaics [56–60].

7.3. Discussion

Figure 7.2a shows a subset of the simulated mean square width dataset for typical optical
properties of relevance for bio-optics (n = 1.4, g = 0.9) and for decreasing optical thickness.
The mean square width exhibits a perfectly linear increase also in the optically thinnest case,
but its actual value deviates from the DA prediction. Indeed, looking at the obtained data
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(figure 7.2d), two features are immediately noticeable. First of all, the diffusion approxi-
mation appears to always underestimate the actual spreading rate, of course recovering
agreement for higher optical thicknesses as expected. A second, finer feature occurs in
the close proximity of n = 1, particularly evident at low g and OT values. Both these fea-
tures arise from the interplay between geometric and boundary conditions. In particular,
in chapter 8 we will see that the presence of internal reflections in a thin layer geometry
helps to selectively hold inside the slab those photons that happen to draw statistically
longer steps. For the moment, we stress that the mean square width slope exhibits a distinct
pattern of characteristic deviations from the diffusion approximation, which can therefore be
exploited as a tool to unambiguously retrieve the intrinsic microscopic transport properties
of a given sample. In particular, we notice a subtle dependence on g that, however small,
can be profitably used to finally access the angular statistics of the scattering process.
Looking at the decay times (figure 7.3d), it is worth highlighting two main differences

from the results described above for the mean square width slope. First of all, the observed
decay times deviate more from the values predicted by the diffusive approximation, as they
can take values as low as 20% of what is predicted by the DA (for the highest values of g
and n). It is indeed known that refractive index contrasts greater than one (n > 1) are harder
to be taken into account, even when appropriate boundary conditions are considered and
even at high OT [50]. Secondly, we note that deviations in both directions are possible, since
the τ/τDA ratio can take values that are both greater and smaller than 1. We here stress the
importance of an accurate and precise modelling of the index contrast, which we think has
been often overlooked, for example when an averaged contrast is used to model asymmetric
experimental configurations [44, 61].

By combining the two investigated observables, i.e. the mean square width slope and the
decay time, some unique insight on the effects of absorption can be gained, as we will show
in the next section. On one hand, the effects of absorption cancel out exactly in w2(t), while
the asymptotic decay time is expected to shift exactly to

1
τ
→ 1

τ
+ µav (7.4)

τ being the decay time in the non-absorbing case. The presence of absorption is often
regarded as the source of numerous problems, since both scattering and absorption compete
to the depletion of specific intensity from a given position, time and direction (an effect
sometimes referred to as absorption-to-scattering cross-talk, see equation 5.20). This is often
considered a major hindrance in the correct determination of transport properties [21, 62–66].
Besides that, having a weakly absorbing medium — i.e. one where µa � µ′s — is often
quoted as a required condition for the diffusive theory to hold. Indeed, the diffusive regime
coincides with a multiple-scattering regime, in which long trajectories dominantly shape
the transport properties. In the presence of increasing absorption though, longer paths are
selectively more and more penalized [5]. Diffusion theory therefore progressively breaks
down, since transport becomes dominated by short trajectories with few scattering events.
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Figure 7.2.: Procedure followed to generate the hypersurface of relative Mean Square Width (MSW)
slope deviations. (a) Subset of simulated time-resolvedMSW for n = 1.4, g = 0.9 and different values
of OT−1 = lt/L0. The MSW exhibits a perfectly linear increase also in the optically thinnest case.
The slope is fitted for each curve by applying a linear fitting model over a temporal window ranging
from 4 to 9 decay lifetimes, which in turn have been estimated by time-resolved curves (figure 7.3a).
(b) Hyper-surface showing the D/DDA ratio over the whole range of simulated parameters. (c) Each
simulated n-slice (n = 1.4 shown) is processed through a Loess fitting routine (range parameter set
to 0.25). (d) Smoothed slices are eventually put together in order to carry a gridded interpolation
along the n axis.
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Figure 7.3.: Procedure followed to generate the hypersurface of relative decay time deviations. (a)
Subset of simulated time-resolved transmittance for n = 1.4, g = 0.9 and different values of OT−1 =
lt/L0. The decay time is fitted for each curve by applying an exponential fitting model over a
temporal window ranging approximately from 4 to 9 units of τ, a parameter which is iteratively
estimated in a multi-step process. (b) Hyper-surface showing the τ/τDA ratio over the whole range
of simulated parameters. (c) Each simulated n-slice (n = 1.4 shown) is processed through a Loess
fitting routine (range parameter set to 0.25). (d) Smoothed slices are eventually put together in order
to carry a gridded interpolation along the n axis.
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The task of assessing the presence of absorption has been to date a very challenging one, but
the use of absorption-independent observables such as the rate of the mean square width
growth can help disentangle its role. For this reason, techniques capable of providing direct
access to the mean square width recently stimulated a great deal of interest [67–69], given
the absorption-independent nature of the variance expansion. The full potential of MSW
measuring techniques probably has yet to be fully unravelled, and will eventually play a key
role among the most accurate characterization techniques for both scattering and absorption
properties.

On a last remark, we note that a vast literature on the validity range of the diffusion
approximation in the time domain has been produced [22, 48–50, 70–73], but a compre-
hensive understanding of the interplay between optical thickness, refractive index contrast
and absorption is still a debated topic. It is a commonly accepted fact that the diffusion
approximation fails gradually with decreasing optical thickness, with OT = 8 being custom-
arily considered as the lower threshold under which the introduced error starts to become
non negligible [50]. Nevertheless, in a recent work a non-absorbing slab with n ≈ 1.5 and
OT = 8 was investigated experimentally, and a transmittance lifetime was found such that
the diffusion approximation is unable to provide any real solution for τ [74]. This suggests
that the breakdown of the diffusion approximation might step in abruptly depending on
the interplay between different parameters other than the optical thickness. In the following
section we will show that the decay lifetime and mean square width expansion that were
experimentally observed for that sample are in perfect agreement with our simulations. In
fact, they can even be triangulated within our simulated dataset, by accessing the simulated
data following a Look-Up Table (LUT) approach.

7.4. Look-up table approach

In the introduction to this chapter we emphasized how solving the so-called inverse problem
— i.e. the retrieval of the properties that govern light transport at the microscopic scale —
is of great importance both fundamentally and application-wise. In the past years, thanks
to the broad availability of high computing power, Monte Carlo methods have become a
widely used tool to tackle the inverse problem. Broadly speaking, two main approaches are
used: Monte Carlo fitting and Look-Up Table (LUT) routines.

In the first case, the forward problem is iteratively solved by means of Monte Carlo simula-
tions while varying the transport parameters, until convergence with the experimental data
is reached. This approach is computationally demanding, therefore existing implementa-
tions typically take advantage of rescaling properties of the Radiative Transport Equation to
adapt a limited set of pre-simulatedMonte Carlo data to the experimental measurements [36,
49, 52, 75–79]. Unfortunately, this too presents some challenges, since rescaling must be done
on a single photon basis to limit the occurrence of “scaling artefacts”, thus requiring to store
each exit time and position separately [77, 78]. Furthermore, improper binning strategies
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are a possible source of artefacts, requiring complicated binning criteria to be devised [79].
Finally, it is worth noting that while a single dimensionless Monte Carlo simulation for
a semi-infinite geometry can be easily rescaled, for finite-thickness geometries (slabs) the
computational burden increases quickly, since different scattering mean free paths values
must be simulated separately. This is probably the reason why only few examples can be
found in the literature dealing with this configuration [52].
LUT routines are instead based on a database of pre-simulated configurations that is

queried to solve the inverse problem. In this case, the computational burden is a one-time
effort, concentrated in the construction of a look-up tablewhich can be later straightforwardly
accessed at no computational cost. Several LUTmethods can be found in the literature, based
on both experimental [54] and simulated data [53, 55, 80–85]. The typical scalar parameters
on which these routines rely are the total amount of transmitted/ballistic/reflected light
from a slab, which are linked to the transport properties. This triplet of observables, often
referred to as Ttot, Tcoll and Rtot, has been extensively exploited to retrieve optical parameters
through Monte Carlo-based LUT routines [53, 55, 80–85]. Unfortunately, resorting to this
kind of observables brings about some problems. First of all, the mentioned parameters are
all absolute quantities, therefore not easily measured [53, 83] and prone to unpredictable
systematic errors [85]. Secondly, for thin samples — which are the focus of this and other
studies aimed at providing an alternative where the DA approximation breaks down —
the importance of these observables is greatly reduced [36]: indeed, for thin systems their
values become dominated by light that has been either specularly reflected or ballistically
transmitted through the sample, thus carrying very little information about the material
properties.

Taking advantage of the large set of simulations that we have performed, we propose a
look-up table (LUT) routine to demonstrate how the combined use of the mean square width
slope and the decay lifetime can be very effective at tracking down the microscopic transport
properties. The advantages originating from the use of these observables are manifold. First
of all they are very robust, since they are free from any absolute intensity measurement and
they are evaluated well into the multiple-scattering regime; therefore there’s no need to
calibrate the source, the detector or to know exactly the excitation intensity. Also, knowledge
of the temporal response function or of the actual size of the excitation spot is not required,
since both τ and w2(t) are asymptotic quantities. Nor is the precise determination of the
origin of the time axis (i.e. the exact time of pulse injection), which instead is critical in
other measurements; indeed both the decay lifetime and the linear increase of the mean
square width do not exhibit any critical dependence on the exact delay at which they are
determined, provided that it is sufficiently large. Besides the robustness of the observables
that we have considered, a LUT approach has on its own some advantages over Monte
Carlo fitting routines. Indeed, retrieval of data from a LUT is very fast, since no iterative
procedure is involved, therefore a LUT is more suitable for real-time solving of the inverse
problem. A LUT based on our two scalar parameters can be rescaled easily; since the scalar
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parameters are extracted with their proper original binning, rescaling does not introduce
any binning-related artefact. Finally, our LUT notably does not include absorption; therefore
the computational burden that this poses on Monte Carlo simulations can be reasonably
handled, since we are dealing with a simulation phase space of reduced dimensionality.
Actually, the fact that there even is no need to add absorption after the simulation is run,
means that it is also not necessary to store exit times and positions on a single-photon basis;
therefore, the LUT footprint in terms of the total size of data that has to be stored is kept to
the minimum.
For the sake of simplicity, our present Monte Carlo-LUT demonstration is limited to the

retrieval of the following pairs of transport parameters:

• lt and g assuming that absorption is known, or

• lt and µa assuming that g is known.

The latter is a realistic and common assumption in similar works, especially those involving
biological samples [52, 53, 76]. The effective refractive index n and the thickness of the
sample L are also expected as input parameters. The LUT that we have developed, which
we are now going to describe, can be queried online via a dedicated interface at this address:
http://www.lens.unifi.it/quantum-nanophotonics/mcplusplus/lut/.
To illustrate the steps involved in the look-up table routine (figure 7.4), we first test the

retrieval procedure against two simulated samples, and later on real experimental data. We
simulate a set of parameters that are not included in the database on which the LUT is built;
specifically, we consider two samples with L = 1.3 mm, n = 1.38, g = 0.95, ls = 45 µm and
µa respectively equal to 0.2mm−1 and 0mm−1 (i.e. no absorption). From these simulations
we extract the mean square width slope and the decay time, which we use as inputs for the
LUT routine to find what we pretend to be the unknown values.
The first step of the LUT procedure involves rescaling of the mean square width and

lifetime hypersurfaces. Rescaling must be done both in space and time to match the target
thickness and refractive index. The original simulations were performed for a sample of
thickness L0 = 1 mm and unitary internal refractive index; dimensional analysis shows that
eventually the mean square width and lifetime hypersurfaces are to be rescaled by L/(L0nin)

and ninL/L0 respectively.
Let us consider the first case of a medium with unknown scattering mean free path and

absorption coefficient, but known g. After proper rescaling of the continuously interpolated
version of the mean square width hypersurface (figure 7.2d), we can slice the data at the
given refractive index contrast n. The obtained two-dimensional surface will feature an
iso-level curve corresponding to themeasuredmean square width slope, whichwill basically
give the expected OT−1, i.e. lt, in a completely absorption-independent way. For the test
sample described above, fitting the simulated mean square width values yields a slope
of 337 750µm2 ps−1, i.e. D = 84 437 µm2 ps−1. By intersecting this iso-level curve with the
simulated value of g = 0.95 (which we take as known), we eventually retrieve the best OT−1
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Figure 7.4.: Demonstration of the MC-LUT routine. (a-b) Retrieving lt and µa with known g. The
measured value of D is used to draw an iso-D curve (dashed line in panel a) on the proper n slice
extracted from the hypersurface shown in figure 7.2d. OT−1 is found by intersecting the iso-D
curve with the value of g, which is assumed to be known. Once OT−1 is determined, the expected
absorption-free lifetime value is retrieved from the hypersurface of figure 7.3d is plotted as a dashed
blue line in panel b; comparison with the experimental lifetime yields µa. (c-d) Retrieving lt and g
with known µa. Intersecting iso-D and iso-τ curves yields g (panel c and d), which can then be used
as in the previous case.
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estimate (figure 7.4a). Nonetheless, even if the scattering anisotropy is not known a priori,
plugging reasonably bounded values into the routine helps getting an estimate of how an
uncertainty on g spreads over lt and eventually µa. Once that also OT−1 is determined, it is
sufficient to read the expected absorption-free lifetime value stored in τ(n,OT−1, g) (shown
in figure 7.4b as a dashed blue line) from the interpolated lifetime hypersurface (figure 7.3d)
and compare it directly to the measured value: the discrepancy between their reciprocal
values will directly give µac/nin through equation (7.4). Fitting the simulated transmitted
intensity decay yields a decay time of 11.234 ps, and we finally retrieve µa = 0.1997 mm−1

and lt = 897 µm, to be compared with the initial values µa = 0.2 mm−1 (δx ≈ −1.5× 10−3)
and lt = ls/(1− g) = 45 µm/0.05 = 900 µm (δx ≈ −3× 10−3).

The second implementation of our routine allows to retrieve lt and g assuming that µa is
known. A common case is that of vanishing absorption, which is often encountered when
studying for example metal oxide powders with NIR radiation. Since D is not affected by
absorption, we reconsider the same iso-D curve of figure 7.4a which we replot in figure 7.4c.
Superimposing this curve over the τ(n = 1.38) surface and its experimental iso-τ curve at
21.936 ps (dashed line in figure 7.4c) finally gives the estimated g parameter — for example
by means of spline interpolation over a discrete set of (OT−1, g) pairs evaluated on the iso-D
curve (figure 7.4d) — which can then be used proceeding as in the previous case. We find
lt = 897 µm and g = 0.938 (δx ≈ −1.2× 10−2).
We now test our LUT against recent experimental data, where mean square width mea-

surements are obtained by means of an ultrafast optical gating technique. Pattelli et al. [74]
recently highlighted the robustness of the mean square width as a valuable experimental
observable for the retrieval of the microscopic transport parameters. In that work, the au-
thors consider a homogeneous isotropic sample made of TiO2 nanoparticles (g = 0.6, with
vanishing absorption at the working wavelength of 810 nm) embedded in a polymer matrix;
sample thickness was measured to be 203µm and the average refractive index at the working
wavelength is 1.52, close to that of many biological tissues. The authors found an experi-
mental lifetime and a mean square width slope of 6.01 ps and 6984µm2 ps−1 respectively,
for which the diffusion approximation was unable to provide any real solution all. They also
found a value of lt = 25.5 µm with a brute-force Monte Carlo inversion procedure against
the experimental data, involving the simulation of many combinations of optical parameters
(what we defined above as Monte Carlo fitting). Here, by feeding the same experimental
parameters into our look-up table routine, we instantly find a value of lt = 25.7 µm, in good
agreement with the value reported in the paper.
Evaluation of errors should be performed on a wide range of parameters, both from

simulations and experimental data, which is beyond the scope of this work. Nonetheless we
note that, especially at lower thickness where the diffusion approximation is bound to fail,
our routine offers accurate retrieving capabilities as compared to other slab-geometry fitting
and/or LUT approaches [52].
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7.5. Conclusions

By means of Monte Carlo simulations, we have studied the radiative transfer problem in
the infinitely extended slab geometry. The numerical solutions that we obtain are com-
pared to the predictions cast by diffusion theory. The peculiarity of this study is that both
transverse and axial transport are addressed, using the mean square width growth rate and
the decay time of the spatially integrated transmitted intensity as the respective figures of
merit. These two observables, measured at late times, provide valuable insight on light
transport properties well into the diffusive regime. The mean square width growth rate is
of particular interest since, within the diffusion approximation, it depends solely on the
diffusion coefficient, as opposed to other time-resolved observables where also the thickness
and refractive index contrast usually play a critical role.

Our investigation provides a complete characterization of how the diffusive approximation
gradually fails over a range of optical thicknesses from 10 to 1. An extensive database of
mean squarewidth slopes and decay lifetimeswas built, by systematically performingMonte
Carlo simulations over a three-dimensional parameter space consisting of the refractive
index contrast n, the scattering anisotropy g and scattering mean free path ls.
As regards the mean square width expansion rate, our results deviate from the simple

diffusion approximation prediction especially at low optical thicknesses and scattering
anisotropy, always in the form of an underestimation of the actual rate. Notably, when
considering the case of high scattering anisotropywhich is most relevant in many biomedical
applications, the magnitude of the observed deviation remains limited even at low optical
thicknesses. Decay times instead deviate significantly even when extrapolated boundary
conditions are included; in this case the diffusion approximation can both underestimate or
overestimate the retrieved value.

Taking advantage of the large simulated dataset, we presented a look-up table (LUT) based
on the combination of the decay time and mean square width slope as input parameters,
which offer a series of relevant advantages over existing LUT solutions. Prominently, their
experimental evaluation does not imply any absolute intensity measurement nor precise
determination of the origin of the time axis. On the contrary the observables that we have
used are inherently precise and robust, since their scalar value is extracted by fitting multiple
points of a curve. Finally, we have tested the usefulness of our LUT strategy against real
experimental measurements, by showing how microscopic transport properties could be
instantly retrieved for a notable case in which no solution could be foundwithin the diffusive
approximation.

As a last point, we note that extensions of the presented LUT routine are of course possible.
At least a third input observable in addition to the decay time and the mean square width
slope needs to be known in order to retrieve simultaneously all three transport parameters
at once from an unknown medium. A possible candidate could be represented by the
asymptotic slope of a steady state profile, which should exhibit an appreciable dependence
on g at lower optical thicknesses. Other relative parameters could be exploited, taking
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advantage of their g dependence, such as the rising time of the time-resolved decay curve
[22]. To sum up, look-up table methods are very general in their nature and consequently
can be profitably applied in a number of practical use cases. Of course, in order to tackle
more complex geometries (e.g. multilayered or anisotropic slabs) more observables are
needed. Nonetheless we believe that, whenever possible, mean square width and decay
time measurements should always be preferred and included in every LUT-based retrieval
routine, thanks to their intrinsic robustness.
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Chapter 8.

Diffusion of light in thin slabs

In this chapter we study diffusion of light in thin slabs with a particular focus on transverse trans-
port. Light diffusion is usually associated with thick, opaque media. Indeed, multiple scattering
is necessary for the onset of the diffusive regime and such condition is generally not met in almost
transparent media. However, as far as in plane propagation is concerned, transport is unbounded
and will eventually become diffusive provided that sufficiently long times are considered. By means
of Monte Carlo simulations, we characterise this almost two-dimensional asymptotic diffusive regime
that sets in even for optically thin slabs (OT = 1) making again extensive use of the mean square
width growth in time. Even at such low optical thickness, we find a signature of diffusive behaviour
in the linear increase of the mean square width slope with time, which however obviously deviates
from the prediction cast by the Diffusion Approximation. We show that geometric and boundary
conditions, such as the refractive index contrast, play an active role in redefining the very asymptotic
value of the diffusion coefficient by directly modifying the statistical distributions underlying light
transport in a scattering medium.

8.1. Introduction

DuringWorldWar II, AbrahamWald (1902–1950) was working as a member of the Statistical
Research Group (Columbia University) when he was asked to estimate the vulnerability
of military aircraft, so that reinforcement strategies could be devised in order to minimize
losses [86, 87]. A previous study by the Center for Naval Analyses, based on the examination
of returned aircraft, had erroneously come to the conclusion that armour should have been
added to those parts of the aircraft that were damaged the most. Wald instead noted that
the analysed population was strongly biased, since it relied solely on the data coming from
the survived aircraft, while there was no means to assess the damage of those aircraft that
had been taken down. However, he was able to realize that the observed population was
nonetheless providing valuable information. In fact, Wald proposed that protections should
instead be added to those parts of the aircraft that were not hit, since the fact alone that the
plane was able to return meant that it could withstand that kind of damage, i.e. the damaged
parts were not critical.

This anecdote helps with introducing the statistical study that we describe in this chapter.
Here we investigate light transport in optically thin slabs by focusing our attention on
photons that have “survived” long times inside the sample, and we show that they carry a
great deal of information about the microscopic transport properties of the material. When
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dealing with optically thin systems, one is faced with the problem that the vast majority of
transmitted light is ballistic or quasi-ballistic, i.e. it is immediately “lost” after zero or only
a few scattering events. Vice versa, those very few photons that instead happen to spend
longer times inside the scattering material will carry a signature of those conditions that
allowed their survival or, equivalently, prevented their early loss.
In the previous chapter we numerically investigated how the predictions cast by the

Diffusion Approximation (DA) deviate from the “exact” results obtained by means of Monte
Carlo (MC) simulations when optically thin samples are considered. Here, we use Monte
Carlo simulations to investigate diffusive behaviour in the thin slab geometry, with a partic-
ular focus on transverse transport. Light diffusion is usually associated with thick, opaque
media, since the onset of multiple scattering is a necessary condition for diffusive behaviour.
Conversely, such condition is generally not met in almost transparent media. Nonetheless,
as far as in-plane transport is concerned, a multiple-scattering regime can occur even when
thin systems are considered [88]. Indeed, in an infinitely extended slab, transverse propa-
gation is unbounded, and will eventually become diffusive at sufficiently long times. In
this chapter we will specifically focus on this almost two-dimensional asymptotic diffusive
regime. While MC simulations are continuously contributing to unveiling the peculiar
physics that governs light transport in complex media such as heterogeneous or anisotropic
materials [89, 90], our findings show that our comprehension of way simpler systems such
a homogeneous, isotropic single slab is still incomplete. For example, we show that even
a minute tuning in the refractive index contrast allows to sensibly modify the long time
behaviour of semitransparent slabs.

8.2. Transport in a thin slab geometry

In this study we will make again extensive use of the Mean Square Width (MSW):

w2(t) =

∫ ∞
0 ρ2 I(ρ, t)ρ dρ∫ ∞

0 I(ρ, t)ρ dρ
(8.1)

where I(ρ, t) is the transmitted intensity as a function of time and of the distance from
the slab axis ρ. We mentioned already many reasons which make the Mean Square Width
an interesting quantity. It is completely independent from absorption, which cancels out
exactly at any time [68], and within the simple diffusion approximation it curiously does
not depend on the slab thickness and its refractive index contrast. In the previous chapter
we found that the mean square width growth in time is remarkably linear — after a short
superlinear transient — over the whole range of investigated optical parameters, even at an
optical thickness as low as 1. This can be considered as a signature of diffusive behaviour.
Although linear, its slope of course deviates from the simple prediction cast by diffusion
theory, according to which w2(t) = 4DDAt.

136



8.2. Transport in a thin slab geometry

1 1.5 2
1

1.5

2

2.5

n = nin/nout

D
/

D
D

A

g = 0
g = 0.3
g = 0.6
g = 0.9

(a)

0 5 10 15

0

50

100

t/τ

w
2 (

t)
/

l2 t

n = 1.0
n = 1.016
n = 1.1

(b)

Figure 8.1.: (a) Crosscuts along different values of g of the simulated hyper-surface of figure 7.2b, taken
at lt = L0 = 1 mm (OT = 1). For each point, the MSW slope has been evaluated from a simulation of
1010 photons. The introduction of a small amount of boundary reflections appears to enhance in-plane
diffusion remarkably. A subset of parameters (black filled dots) where the effect is more dramatic
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different configurations highlighted in panel (a). Linear fits are performed excluding the range t < 4τ.
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Figure 8.2.: (a) Decay time relative deviations at OT = 1 showing crosscuts on g from the hypersurface
of figure 7.3. The ratio can clearly go above 1 for specific values of n, especially at low g values. The
dependence of τ on OT for the two values highlighted as black filled circles is shown in panel (b),
along with the DA prediction and a higher order fit. The DA can both oversetimate (red shaded area)
or underestimate (blue shaded area) the simulated value.

137



Chapter 8. Diffusion of light in thin slabs

Considering again the simulations performed in the previous chapter, let us focus on
the case OT = 1. Figure 8.1a shows a subset of the diffusion coefficients obtained from the
simulated mean square width slopes, as extracted from the hypersurface of figure 7.2b for
OT = 1. High deviations are obviously expected for such a low optical thickness. However,
it is somewhat unexpected that the highest deviations occur in the proximity of n = 1,
since the index-matching condition is sometimes quoted as a safer configuration for the
diffusion approximation [22]. While this might be true under various circumstances, from an
experimental point of view the typical attempts to approximately index-match a thin sample
within a reference material might more likely introduce an error rather than neutralize it,
since apparently it’s the very smallest index mismatch that results in the strongest deviations
from the theory. The relative deviations are always in the form of an overestimation of the
diffusion coefficient and they approach unity for increasing optical thickness, thus recovering
the diffusive prediction as expected.

A possible, intuitive explanation for this nontrivial trend can be found by considering the
d-dimensional modelling of diffusion as a randomwalk process. According to the derivation
outlined in section 5.7, given any arbitrary step length distribution P(l) with finite moments
〈l〉 and 〈l2〉, the diffusion coefficient can be written as (equation 5.84)

D =
1

2d
v
〈
l2〉

〈l〉 =
1
d

vlt (8.2)

where the last equality holds for an exponential step length distribution with average step
length lt. As the optical thickness of the simulated slab decreases, transport occurs in an
increasingly planar geometry. Therefore the perceived dimensionality of the environment,
d, drifts from 3 to 2. Hence, as suggested by the above equation, the effective diffusion
coefficient D as inferred from the mean square width slope might be up to 3/2 times higher
than its bulk nominal value. The perceived environment dimensionality is also clearly
dependent on the refractive index contrast. Near n = 1, where deviations are more relevant,
any late-time surviving photon will have performed an almost planar trajectory, more similar
to a purely 2-dimensional walk. Indeed, since there are no reflections in the index-matched
case, the photon is lost as soon as it “touches” the interface. Conversely, with increased
reflections at boundaries, trajectories are allowed to fold back into the sample thus perceiving
a more 3-dimensional environment.

Another unexpected feature occurs in the close proximity of n = 1. The g-crosscuts in the
OT = 1 plane shown in figure 8.1a reveal a sharp modulation of the diffusion coefficient
across unitary index contrast. In particular, contrarily to what one would expect from the
above discussion, the mean square width expansion exhibits a localminimum at n = 1 rather
than a maximum. The introduction of a small amount of boundary reflections appears to
enhance in-plane diffusion remarkably. The enhancement is asymmetric, and it reaches an
absolute maximum at n ≈ 1.016 for g = 0.
In the quest for insights suggesting possible explanations for the origin of the observed

behaviour for D, we will perform further simulations as we will discuss in the next section.
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Later in section 8.4 we will show that these features arise from a subtle interplay between
the optical properties of the sample and the boundary conditions.

Before further investigations on the observed trend for D, we here note in passing — even
though in this chapter we aremainly concernedwith in-plane transport— that a qualitatively
similar behaviour to what we have just described for D is mirrored in the relative deviations
of the decay times. This can be seen in figure 8.2a, where the same crosscuts at OT = 1 thatwe
showed for D are taken from the hypersurface of figure 7.3b. It is worth discussing this point
separately, especially given that — contrarily to the MSW slope — decay time measurements
have long been experimentally accessible and exploited to estimate the diffusion coefficient
via the usual expression (in case of a non-absorbing medium):

τDA =
L2
eff

π2DDA
(8.3)

In chapter 7 we already noticed how the relative deviations for the decay times are more
significant than for the MSW slope, even at high optical thickness, and how they can be both
greater and lower than unity depending subtly on the scattering anisotropy and the refractive
index contrast of the sample. Because of this, retrieval of the diffusion coefficient from a
decay timemeasurement is sometimes regarded as a poor estimation, since it can lead both to
over or underestimated values. Figure 8.2b further illustrates this, for the two representative
cases shown as black filled circles in figure 8.2a which exhibit opposite deviations.

In the diffusion approximation, the lifetime equation can be written as

τDA =
(L + 2ze)2

π2DDA
= p0 + p+1lt + p−1l−1

t (8.4)

where p0 = 8AL/π2v, p+1 = 16A2/3π2v, p−1 = 3L2/π2v and A = A(n) is the correction
factor accounting for internal reflections. From our simulations, we notice that a better
modelling of the τ(lt) dependence can be obtained by also including higher order terms
as p+2l2

t and p−2l−2
t . This model perfectly reproduces each simulated value on a broad

parameter space (as shown in figure 8.2b, red curves), while preserving important physical
properties of the lifetime dependence such as its divergence with OT→ ∞, which would
not be guaranteed by a generic polynomial fit.

8.3. Methods

To investigate the origin of the peculiar features that we have found in the relative deviations
for D as a function of n (figure 8.1a), we sample the observed peak in the g = 0 crosscut at the
three key points highlighted as black filled circles in the figure, i.e. n = 1, 1.016 and 1.1, the
last being the coordinate where diffusion approximately recovers the value in n = 1. Those
three set of parameters were simulated separately aiming at a much higher statistics com-
pared to the simulations that were run to build the hypersurfaces of chapter 7. In particular
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1× 1014, 0.5× 1014 and 1× 1013 photons were simulated for the three values of n, respec-
tively. The index-matched case (n = 1) requires the highest number of simulated photons,
since the vast majority of light will be lost as ballistic. The Monte Carlo simulations were
again performed using our ownMCPlusPlus software in the same configuration used for the
simulations of chapter 7. In fact, the unprecedented magnitude of these simulations and the
subtlety of the investigated effects required a particular focus on numerical stability, precision
and reproducibility, which we could guarantee with our software by using 64-bit Pseudo-
RandomNumber Generators and high floating point precision (see discussion in section 6.2).
As suggested by eq. (8.2), the most straightforward insight on the effective diffusion

coefficient D is obtained by directly looking at the distribution of the step lengths performed
during the random walk. To this aim, we ran the simulations using a modified version of
MCPlusPlus, in which we have introduced the possibility to build a time-resolved histogram
of the values actually drawn from the Step Length Distribution (SLD) during the simulation,
and of the step lengths actually taken inside the slab1. The same was done for the cosine of
the scattering angle θ and the azimuthal angle φ: we build the histograms of the actually
drawn values, for later comparison with the nominal distribution.

8.4. Discussion

In principle, while random walking, each photon is propagated by the software according
to the same step length distribution P(l) = l−1

s exp(−l/ls), which is characterized by a
decaying slope and an average value of ls (which for this particular case is ls = L0, since
OT = 1 and g = 0). On the contrary, we found that there exists a clear correlation, induced
by the geometrical confinement, between a long permanence inside the sample and an
unevenly sampled step length distribution. Figure 8.3 shows the histograms of the step
lengths and angles that were actually generated by the pseudorandom number generator for
those photons that were transmitted at t = 90 ps (corresponding to a path length of ≈ 27L0);
the nominal distributions, i.e. those implemented in the software, are shown as dashed blue
lines for comparison.

Let us start by analysing the distribution of the step lengths actually taken by the random
walker inside the slab. From figure 8.3a we notice how, for all the three simulated refractive
index contrasts, the confined geometry induces an enhancement of the tails of the nominal
exponential distribution. This is consistent with a diffusion coefficient higher than the one
expected by the diffusion approximation, because heavier tails will generally be associated
with a greater enhancement of the second rather than the first moment, which from equation
(8.2) results in an increased D. In practice, the peculiar late transport regime arising in
this confined geometry is characterized by an uneven sampling of the nominal step length

1The step taken by the walker can be shorter than the one generated from the step length distribution. This
can happen only when the photon hits an interface and is therefore refracted or reflected. In all other cases it
propagates for the full length of the generated step.
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Figure 8.3.: Late-time step length and angular distributions, comparedwith the nominal distributions
implemented in-software for the random walk process (dashed blue lines). Three simulations with
OT = 1, g = 0 and n = 1, 1.016 and 1.1 are considered. Panel (a) shows the histogram of the step
lengths between consecutive scattering events performed by those photons that were transmitted at
t = 90 ps. Apparently, those late photons sample the step length distribution unevenly, as can be
seen from the enhanced tails compared with the nominal distribution. Also angles become unevenly
sampled at late times, as shown in panels (b) and (c).

distribution provided by the pseudorandom number generator: despite the fact that a long
step in a very thin sample will generally cause the photon to exit the slab, those few photons
that happen to remain inside (because they are travelling parallel to the slab walls) will
survive at long times without having undergone many scattering events. This appears as an
oversampling of the step length distribution at long step length values. Notably, in the case
of refractive index contrasts very close to 1, the distribution of the step lengths features a
selective enhancement of the longer values, which is slightly more marked for n = 1.016. This
might be due to the fact that, for such a small refractive index contrast, total internal reflection
is already significant (θc = 79.8°). Consider as an example the case of a photon taking a very
long step: if internal reflections are absent, extremely narrow angular conditions must hold
in order for it not to exit the slab. Indeed, as soon as the photon “touches” the index-matched
interface, it is lost from the slab. Conversely, even a tiny contrast allows to largely relax such
condition, introducing a significant increase in the survival probability of a long-stepping
photon while only marginally affecting others (red curve). In other words there’s a positive
correlation between long steps and very oblique incidence angles at the interface, whose
effects become more apparent when such angles are the only ones undergoing total internal
reflection (which also explains why the enhancement is asymmetric around n = 1). On the
other hand, with increasing contrast, more photons will be held inside the slab irrespective
of their incidence angle (and hence of the length of their step), thus weakening the observed
boost in the MSW spreading and, consequently, diffusion (green curve).

The sampling of the angular variables is alsomodified at late times, as shown in figures 8.3b
and 8.3c. The cosine of the scattering (polar) angle θ and the azimuthal angle φ are generated
in the software by the pseudorandom number generator so as to be uniformly distributed in
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Figure 8.4.: (a) Time evolution of the ratio 〈l2〉/2〈l〉 appearing in equation (8.2) and of the effective
scattering anisotropy 〈cos θ〉 as obtained from the simulations. For each time bin, the two quantities
are calculated from the effective time-dependent distributions, retrieved from the trajectories of
photons transmitted within that time bin. Blue dashed lines represent the expected values for
the two distributions. (b) Time evolution of the step length distribution for n = 1 for photons
transmitted at t = 10 ps, 20 ps, 30 ps, 40 ps, 50 ps, 60 ps, 70 ps, 80 ps and 90 ps. Black and grey curves
show respectively the histograms of the lengths of the steps taken inside the sample and those drawn
through the PRNG. The two differ for the last step, whose length is actually travelled only up to the
intersection with the exit surface in the first histogram. At late times the two sets of curves become
indistinguishable since, as expected, the contribution of the last step to the whole trajectory becomes
eventually statistically negligible.

the intervals [−1, 1] and [0, 2π), respectively. On the contrary, the cos θ distribution at late
times exhibits a back and a forward peak, with a plateau around cos θ = 0. Further insight on
these features is gained by looking at the concurrent modifications in the φ statistics, which
exhibits two symmetric peaks around ±π/2. These two peaks correspond to a right/left
turn in the slab plane, which helps keeping the trajectory inside the sample irrespective of
the scattering angle θ. The two cos θ peaks can also be intuitively understood by considering
a typical step in a very long trajectory: this will generally be a long step (i.e. l & ls = L0)
mostly aligned with the slab plane. As such, scattering angles close to θ = 0° or 180° will
guarantee that the trajectory will continue within the slab, irrespective of what azimuthal
angle is drawn. Actually, since a typical step will not be in general perfectly parallel to the
interfaces, a scattering angle of θ ≈ 180° should provide higher chances of staying inside
the sample, hence its higher probability: indeed, the safest step a photon can take without
exiting the slab is to go back to the point where it came from. Interestingly, this results in a
cos θ distribution with a slightly negative average value (figure 8.4a), which is also able to
influence the effective diffusion properties exhibited by the sample.
In order to verify whether the definition of an effective diffusion coefficient based on

equation (8.2) makes sense, we plot the time dependence of 〈l2〉/2〈l〉 in figure 8.4a, along
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with its nominal value of 1 plotted as a dashed blue line. Each point is computed starting
from the empirical distributions registered for those photons that were transmitted within
that time bin. The obtained curves successfully validate our interpretation based on a
randomwalk picture of the diffusive process as expressed by equation (8.2), exhibiting good
qualitative agreement with the behaviour for D obtained from the mean square width slope.
Indeed, the red curve (n = 1.016) features an enhanced 〈l2〉/2〈l〉 ratio. In principle, the
overall observed diffusion process will be influenced by both the modified step length and
angular distributions, which in the investigated configurations appear to have opposite
effects. While the latter would indeed tend to slightly slow down diffusion (〈cos θ〉 < 0), the
predominant effect clearly originates from the step lengths being substantially increased,
leading to the observed enhanced in-plane diffusion especially for n = 1.016. Different
configurations might lead to a different overall balance between these two effects, which
also appear to saturate to their respective asymptotic values on slightly different time scales,
further illustrating the need for additional investigation even for the simple homogeneous
and isotropic single slab model.

The asymptotic nature of the observed distributions suggests that a well-defined diffusion
coefficient does still exist, albeit not the one given by the diffusion approximation. This is
further illustrated in figure 8.4b, where the time evolution of the step length distribution is
shown for n = 1 (black curves; the n = 1.016 and 1.1 cases are analogous). The time-resolved
distributions seem to converge towards a single asymptotic envelope distribution with a
well defined asymptotic decay which seems to be uniquely determined by the properties
of the sample. It is interesting to compare the histogram of the actual steps performed
inside the sample (black curves) with the histogram of the ones drawn from the PRNG
(grey curves). The two differ only for the last step, whose length is respectively considered
either partially (up to the intersection with the interface) or totally. Interestingly, once the
asymptotic diffusive regime is reached, the sample appears to be less scattering than it
actually is. Indeed, photons migrate as if the scatterers were further apart than they really
are, i.e. with an effective transport mean free path which is greater than the one intrinsic to
the material. It should be noted that such discrepancy — which we are now able to correctly
identify as the emerging of an effective transverse diffusion coefficient — has already been
reported experimentally in samples with an optical thickness as high as 8 [47], suggesting
that it can indeed represent an appreciable issue in a broad range of applications.

8.5. Conclusions

We have studied light transport in optically thin samples and shown that, at late times, a
diffusive regime corresponding to in-plane transport sets in, exhibiting peculiar features
especially for small refractive index contrasts. Indeed, we were able to follow the evolution
of light deeply into the multiple-scattering regime, where light is undoubtedly diffusing as
the radial intensity profiles and their linear variance expansion clearly demonstrate.
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The unprecedented scale of the Monte Carlo simulations that we performed allows us to
inspect transport properties on exceptionally long time scales. A subtle interplay occurring
between the actual thickness of the slab, the refractive index contrast and the scattering
anisotropy emerges from our data. This results in a regime that is properly diffusive but
which cannot be described in terms of the standard diffusion approximation. Such interplay
gives rise to a different diffusion coefficient which emerges naturally from the overall optical
and geometric boundary conditions of the sample, and is uniquely determined by them
through yet unknown relations. Following the usual approach based on the diffusion
approximation, it may be argued that it could be possible to take into account all the observed
effects by means of some refined extrapolated boundary condition. On the contrary, the
optical thickness must be regarded as one of the parameters actively and independently
affecting transport properties.
Our results show that the currently established theoretical framework linking radiative

transfer theory to diffusion needs to be further refined, especially for thin systems and more
generally for confined geometries. In particular, concerning microscopic optical properties
such as the scattering anisotropy or the mean free path, it seems appropriate to introduce a
distinction between an intrinsic and an effective counterpart, where the former is the one that
we are typically interested in retrieving while the latter might have a very different value and
nature (e.g. tensorial instead of scalar) depending on incidental geometric conditions. We
have shown in fact that a homogeneous, isotropic slice of a certain disordered material will
eventually reach an asymptotic, multiple-scattering regime characterized by different (and
possibly anisotropic) statistical distributions, depending on both sample size and boundary
conditions.
It is worth stressing that only a small fraction of incoming light is actually subject to

this effective transport mean free path. Indeed, in optically thin systems the vast major-
ity of transmitted light is ballistic, therefore only a few photons will reach the asymptotic
multiple-scattering regime. Nonetheless experimental techniques capable of detecting this
discrepancy are nowadays available [47]. Furthermore, other applications can be envi-
sioned where multiple-scattering in thin layers, even if limited to few photons, could play a
significant role (e.g. random lasers).

Finally, despite our case study is in the field of light transport, randomwalks are extremely
general models for a broad range of phenomena in complex systems, frommolecular kinetics
to social behaviours. Therefore our findings could apply also to other scenarios where tight
geometric confinement holds and analogous boundary conditions can be modelled. In
this respect we demonstrated how, depending on the application, the interplay between
transport properties and the environment geometry can give rise to sharp and unexpected
macroscopic migration features, which can be possibly exploited as an engineering degree
of freedom to enhance transport.
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Necklace states arise from the coupling of otherwise confined modes in disordered photonic systems
and open high transmission channels in strongly scattering media. Despite their potential relevance
in the transport properties of photonic systems, necklace-state statistical occurrence in dimensions
higher than one is hard to measure, because of the lack of a decisive signature. In this work we provide
an efficient prescription to tell apart in a single measurement a coupled-mode from a single localized
state in a complex scattering problem, exploiting the analogy with well-characterized coupled cavities
in photonic crystals. The phase spatial distribution of the electromagnetic field has been numerically
calculated and analyzed as a function of the coupling strength and of detuning between interacting
modes, respectively for coupled photonic crystal cavities and for partially disordered systems. Results
consistently show that when localized modes spectrally and spatially overlap only over a small surface
extent, synchronous oscillation does not build up and the phase spatial distribution splits in two
distinct peaks. Having established such bimodal distribution as a necklace hallmark, this paper
opens the possibility to assess and eventually tailor the role of necklace states in random systems,
e.g. by varying correlations.

Reprinted with permission from F. Sgrignuoli, G. Mazzamuto, N. Caselli, F. Intonti, F. S. Cataliotti, M.

Gurioli, and C. Toninelli. Necklace state hallmark in disordered 2D photonic systems. In: ACS Photonics 2,

11 (2015), pp. 1636–1643. © 2015 American Chemical Society.

Transport properties in complex systems depend criti-
cally on the interplay between disorder, correlations and
interaction. Communication, i.e. transport of informa-
tion through physical carriers, is described in the same
parameter space. Photons are ideal candidates for this
purpose, both for fundamental and practical reasons. In-
deed, they are inherently characterized by a negligible
interaction cross section and well-established technologies,
from self assembly to the most complex lithographic pro-
cesses, enable efficient manipulation of the light flow in
artificial photonic structures [1].

Photonic crystal fibers are perhaps the first example
of a commercial product along this line. Fabrication im-
perfections however induce unwanted scattering and hin-
der performances, typically determining an upper bound
to the propagation length in one-dimensional photonic
waveguides [2, 3]. However, scattering of light should

∗ sgrignuoli@lens.unifi.it

not be regarded as a simple linear loss channel. As thor-
oughly discussed in Ref. [4], propagation is inhibited as
the sample length exceeds a critical length scale, dubbed
localization length, because of the forming of trap states
trough interference. This phenomenology is related to the
halt of diffusion determined by the localization of the elec-
tronic wave-function in certain semiconductors [5]. Such
apparently detrimental factor has been exploited, e.g by
Sapienza and co-workers, to modify the optical properties
of solid-state quantum emitters coupled to confined opti-
cal modes in 1D disordered systems [6], suggesting that
Anderson localized modes might offer an unconventional
platform for cavity quantum electrodynamics applications.
As a matter of fact, the progress in optical communica-
tions relies on the understanding of transport mechanisms
in presence of disorder.

Consider, as an example, the case of light control on
a chip, in two dimensional photonic crystal structures,
affected by random imperfections. Due to the strong
dispersion in the density of states, disorder induces the
formation of localized modes preferentially at the band-
edge [7]. The transport properties are strongly related
to the nature of such states. Indeed, in the language of
eigenchannel statistics, localization corresponds to the
single-channel regime [8], where every transmission chan-
nel is univocally related to the formation of a quasi-mode
in the structure [9]. Interestingly, these states can be ei-
ther single localized ones, featuring exponentially decaying
tails, or multi-peaked states, formed by the hybridization
of two or more separate modes. Besides robust confine-
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ment hence, the complexity of light transport allowing
for high transmission channels generally impacts the con-
nectivity between distant points, defined as the number
of eigenchannels connecting them [10].

The occurrence of so-called necklace states has been
originally predicted by Pendry [11], then observed in
time-resolved experiments [12] and by measuring cumu-
lative phase lag of the transmitted light field [13] in one-
dimensional systems. In 2D however, where the output
in transmission is a complex speckle pattern, phase lag
in not easily defined and a different approach is required
to single out coupled modes. Such states in 2D disor-
dered structures have been experimentally induced and
monitored by means of a local control of the refractive
index, which gradually varied the coupling strength [14].
However, the probability of their natural occurrence is
not yet known, especially because of the lack of a decisive
signature, enabling a statistical study over ensembles of
realizations. Information about spectra, even if spatially
resolved, is indeed not sufficient for this purpose, since
two modes which are accidentally resonant cannot be
discriminated from a single more extended mode. In Ref
[15], the phase spatial probability distribution has been
suggested as a key to the problem, although remaining a
single case-study.

Here we present an extensive numerical analysis and
data interpretation for the connectivity of an integrated
optical system, where scattering occurs in 2D photonic
crystals with a small amount of disorder. In particular, we
define and test an indicator, which combines the near-field
spectral information with the phase spatial probability
distribution, allowing to assess necklace states on a very
general basis. It will hence enable to extract the internal
coupling/transport mechanism of complex modes in the
localized regime from a single static measurement of the
field distribution. Our work provides a general result,
which is not restricted to a small sample size, and does
not depend on the specific type of disorder or degree of
correlations.

TRANSPORT THROUGH HYBRID MODES IN
2D DISORDERED PHOTONIC CRYSTALS

Let us consider a 230 nm-thick photonic crystal (PhC)
membrane of air holes arranged in a triangular lattice with
lattice constant 325.5 nm, lateral dimension 12.1×13.7
µm2, made of Si3N4, hence characterized by a refractive
index of 2.1 and vanishing absorption in the near infrared,
around 800 nm. Disorder is introduced in a controlled
manner by shifting the holes position by a small, normally
distributed, displacement with respect to the position of
the perfect periodic lattice, with a given σ, measured in
units of the lattice constant. Enhanced multiple scat-
tering with respect to an equivalent system without the
underlying periodic backbone [16] induces the formation
of localized modes at random position in space but in a
restricted frequency range, i.e. near the photonic band

edges where the density of states is higher [4, 7, 17]. We
have considered disordered platforms with σ = 5%. This
value guarantees an optimal interplay between order and
disorder. Simulations were performed studying the depen-
dence of the cavity-like quality factor Q on the amount of
disorder: modes appear near the photonic band edge in a
controllable fashion with the highest Qs appearing closer
to the photonic gap. Furthermore, Q values decrease in-
creasing the disorder σ from 1% to 5% pulling the modes
inside the band gap. On the other hand, σ values lower
than 5% generate modes very similar to the Bloch ones
not enabling the formation of the mode zoology typical
of random systems. In the chosen configuration, modes
result from multiple scattering and hence occur at unpre-
dictable positions, making the structure behaving as a
disordered one for our purposes.

A schematic of the disorder-nanostructured film with
pore diameter size of 102 nm is reported in Fig.1a. The
electromagnetic field is confined in the orthogonal direc-
tion due to the discontinuity in the dielectric function,
whereas the average periodic arrangement of holes in a
triangular lattice defines the photonic band gap in the
xy-plane.

Mimicking a relevant experimental configuration, we
probe the quasi-modes of this structure by continuous ex-
citation of dipolar sources, parallel oriented and randomly
located in the azimuthal plane. From the time-dependent
response of the electromagnetic field after the dipoles
have been switched off, we extract the spectral response
of the system in any point of the structure by a Fourier
transform analysis, yielding an amplitude (A(x, y, λ)z)
and a phase (Φ(x, y, λ)z) map for each wavelength (λ).
The subscript z refers to the Hz polarization of the electro-
magnetic field. The normalized spectral response (IN (λ))
of a 2D photonic structure, shown in Fig.1b, is defined as
the integral:

I(λ) =

∫∫
A(x, y, λ) dx dy (1)

where the normalization is performed with respect to the
maximum value of I(λ), i.e IN (λ) = I(λ)/max(I(λ)).
More details about the simulation methods are given in
the Supporting Information.

Several modes, with high degree of spatial localization,
are identified by the peaks in Fig.1b. In Fig.1c we report
the spatial distribution of the amplitude for the Hz field
component of three different modes labeled J, K and
W, corresponding to the green square (λJ = 788.6 nm),
grey diamond (λK = 785.1 nm) and red star marker
(λW = 783.4 nm) in the calculated intensity spectrum
(Fig.1b). It is worth noting that, although these
simulations require the combination of high spatial and
spectral resolution, the extracted information would
not be sufficient to tell the dynamics of transport for
different calculated photonic modes. Indeed, the mode J
has a quality factor of ∼ 5700, defined as Q = λpeak/∆λ
[18], while the mode K and the mode W have similar Qs
(∼ 2800 and ∼ 2400 respectively). In order to estimate
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Figure 1. a) Schematic view of the nanostructured film with gaussian disorder in the hole positions. b) FDTD intensity spectrum
for the Hz field component of a typical 2D disordered realization. c) Spatial distribution of the amplitude for the Hz field
component of three modes, labeled J (λJ = 788.6 nm), K (λK = 785.1 nm), and W (λW = 783.4 nm), identified by a green
square, a gray diamond, and a red star in the spectrum b), respectively. d) and e) Phase map and spatial probability distribution
of the phase for mode J, K, and W, respectively.

the spatial extent of the photonic mode, we use the
inverse participation ratio as defined in [19]:

RIP =

∫
|H(r)|4 d2r

(
∫
|H(r)|2 d2r)2

(2)

where the integral is performed over the detector plane
while H expresses the magnetic field. In particular,
the mode J is very localized, i.e. 1/RIP ∼ 1.5µm2.
On the other hand, concerning the mode K and W,
we find similar spatial extent of 1/RIP ∼ 5.3µm2

and 1/RIP ∼ 6.7µm2 for the λK = 785.1 nm and
λW = 783.4 nm resonance, respectively. However, as
we will demonstrate below, light at 785.1 nm tunnels
through a single mode, whereas transport at 783.4 nm
relies on a two-step process, more similar to what would

happen in a network of connected nodes. When the state
results from the hybridization of two originally isolated
modes, another timescale adds to the resonance lifetime
τ = 1/Γ and that is the inverse of the coupling constant g.
Note that, in the limiting case of g � Γ, strong coupling
occurs and the state recovers a single mode character,
although spatially extended over a superposition of the
uncoupled field profiles. The difference in quality factors
and spatial extents associated to these three states is
not surprising and reflects the statistical character of the
multiple scattering underlying phenomenon.

In order to spot the different behaviors we analyze not
only the amplitude but also the spatial phase map and
extract its spatial probability distribution (PSPD), as
shown in Fig.1d and Fig.1e. As pointed out in Ref. [15],
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the probability distribution of detecting a certain phase is
a complexity index, which turns out to be single-peaked
for standing waves and broad for traveling waves. On the
other hand, two weakly coupled modes (g . Γ), although
oscillating at the same frequency (within the resonance
spectral width) might be not synchronized, thus exhibiting
a double peak in the phase distribution. Such distinct
features are clearly visible in Fig.1e. In fact, PSPD shows
a single-peaked profile, for the eigenmodes J and K (green
square and grey diamond marker), or a double-peaked
profile for the W resonance at 783.4 nm (red star marker).

Therefore, we raise the question: can the double-peaked
phase profile be considered as an unique indicator of a
transport mechanism based on a two-step process charac-
terized by weakly coupled eigenmodes ? In this article,
such hypothesis is tested on a well known system of cou-
pled PhC based nano-cavities in which the coupling be-
tween resonant modes can be controlled. We then extend
the concept to disordered structures where we varied the
spectral overlap between modes. Coherent results confirm
the hypothesis here presented.

COUPLED PHOTONIC CRYSTALS CAVITIES: A
TEST BED CONFIGURATION.

Photonic crystal cavities (PCCs) are dielectric point
defects in the photonic crystals periodic lattice that gener-
ate electromagnetic localized states in the photonic band
gaps [1]. Coupled PCCs are also denominated photonic
crystal molecules (PCMs) due to the analogy with atomic
states. The molecular-like interaction, characterized by
an energy splitting of the normal modes [20], is achieved
by an evanescent tunneling between each single PCC res-
onant mode whenever the frequency matching and spatial
overlap between them are fulfilled [21–23].

Recently, a way to engineer the design of PCMs has
been proposed allowing an accurate control of the ground
state parity [24, 25]. The coupling constant g between
the atomic modes can be tuned and even changed in sign
by adjusting the hole diameter of the five central pores
between two cavities, highlighted in green in Fig.2a. In
more details, this diameter reduction produces a continuos
decrease of g, given by the overlap integral between the
two atomic modes weighted over the dielectric function
of the photonic system [26], reaching the weakly coupling
regime (g . Γ) and also a degenerate condiction (g ∼ 0).

Photonic crystal molecule characterization.

In order to test our conjecture about the phase be-
haviour in the weak coupling regime, we have considered
the same structure analyzed in Ref. [25]: a 320 nm-thick
GaAs (n=3.484) membrane with lateral dimension of
7.2×7.3 µm2. The photonic structure is composed by a
two dimensional triangular lattice of air-holes with lattice
constant of 308 nm. The pores have a diameter of 193.2

nm, leading to a 35% filling fraction. The single cavity is
formed by four missing holes and it has largely character-
ized in Ref. [27]. We have considered photonic molecules
resulting from the coupling of two cavities (labeled C1

and C2) aligned along the principal K-axis of the photonic
crystal, as shown in Fig.2a. We will use the label M1 and
M2 to indicate the two main modes of the single cavity.

Fig.2b reports the spectrum of the photonic structure
depicted in panel a) in which the five central holes size
was set equal to 175 nm. The label Pj was used to
enumerate the four different eigenmodes with increasing
index for decreasing wavelength. The pairs P1, P2 and
P3, P4 can be modeled in term of two coupled oscillators
with almost the same free frequency, whose interaction
is mediated by the coupling strength g [20, 22]. The
molecular mode splitting between the lower and the ex-

cited state is given by
√

∆2 + 4g2, where ∆ expresses
the detuning [20]. Hence, assuming a vanishing detuning
(nominally identical cavities), the wavelength splitting
between the peaks P1, P2 and P3, P4 gives a direct
estimation of the coupling strength absolute value. Each
peak is a hybrid mode, whose spatial distribution is delo-
calized over the molecule [24] (for more details see also
Fig.3). In particular, P1 and P2 modes result from a
small but sizeable coupling between the two M1 modes
of C1 and C2. Whereas P3 and P4 are generated by
the large coupling between the two M2 modes of the sin-
gle cavity. Indeed, due to the spatial properties of the
modes M1 and M2 [27, 28], the coupling between M1
modes is smaller with respect to the interaction between
the field in M2, i.e λP1 − λP2 = 1.7 nm & ∆λ while
λP3 − λP4 = 16.4 nm� ∆λ, where ∆λ is the resonance
linewidth, estimated to be of the order of 1 nm.

From strong to weak coupling

Following the seminal work of Ref. [25], the dynamics
of the four molecular-like modes is summarized in Fig.3.
Let us now focus only on the dynamics of the resonant
states P3 and P4. Starting from a modified pore di-
ameter size (dc) of 160 nm, corresponding to 19 nm of
wavelength splitting, we observe that an increase of the
central holes diameter size produces a continuous decrease
of the photonic coupling up to zero splitting (red diamond
in Fig.3a). Indeed, the spectrum shows a single resonant
mode for dc = 255 nm, as evident from the red curve in
Fig.3b, meaning that the photonic coupling is decreased
down to a value below the mode broadening. This leads
to a degeneracy of the P3 and P4 modes. With a further
increase, a clear crossing is observed: the lower energy
state P3 changes as a function of dc. In more details, Fig.3
panel c) and d) report the spatial distribution of the real
part of the Hz component before (blue diamond marker
in the panel a) and after (green diamond marker in the
panel a) the degenerate point (red diamond marker in the
panel a): the field distribution of P3 and P4 interchanges
passing trough the degenerate condition. This is due to a
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Figure 2. a) Scheme of the modified PCM (in green, five central pores with reduced diameter 175 nm) used to tune the coupling
strength between the two PCCs labeled C1 and C2. The K-axis is identified by the x coordinate. b) FDTD spectrum for the Hz

field component of the system in the panel a). It shows four fundamental modes. The label Pj was used to enumerate the four
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Figure 3. a) Spectral shift of the peaks P3 and P4 as a function of the hole diameter of the five central pores (dc). b) Evolution
of the resonant modes P3 and P4 near to the degenerate point dc = 255 nm (red curve) as a function of the wavelength (Hz

field component shown). c) and d) spatial distributions of the real part of the Hz component of P3 and P4 when dc = 250 nm
(blue curve in panel b) and dc = 260 nm (green curve in panel b). Panels e) and f) show the spectral shift and the evolution for
the Hz field component of the normalized intensity spectra near the degenerate point (dc = 193 nm) of the peaks P1 and P2.
g) and h) spatial distributions of the real part of the Hz component of the modes P1 and P2 before (dc = 185 nm, blue curve in
panel f) and after (dc = 200 nm, green curve in panel f) the degenerate point.

dielectric induced tuning. Moreover, increasing the holes
diameter size means subtracting dielectric material, ac-
cordingly with the observed blue shift of both modes. A
local change of the dielectric environment in the central
region between C1 and C2 produces a modification of the
lower energy state. The evolution of the resonant modes
P1 and P2 shows similar behaviour (see Fig.3 bottom
panels) [25].

Spatial probability distribution of the phase as
indicator for the different coupling regime.

We are now in the position to explore the PSPD both
in the strong and in the weak coupling regime between
nominally identical cavities. The phase distribution, cal-
culated as described in the previous sections, shows a
double-peaked profile when two PCC modes are weakly
coupled (Fig.4a and Fig.4c). On the other hand, it dis-
plays a single-peaked profile when the two PCC modes are
strongly coupled, as shown in the insets of Fig.4 panel b)
and d). Moreover, to identify each of the two components
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Figure 4. a) Spatial probability distribution of the phase (PSPD) for the Hz field component of the modes P1 and P2 when
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splitting between the molecular modes P1-P2 before and after the crossing point (λP1 − λP2 = 0). The inset shows the
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crossing point (λP3 − λP4 = 0). The inset shows the single-peaked PSPD when the strong coupling regime is reached. The error
bars are evaluated as the standard deviation between different fitting procedures. The red-dashed rectangles identify the space
parameter in which g ≤ Γ, i.e. the weak coupling zone. Note that the reported probability distributions have π-periodicity.

of the double-peaked profile, we have isolated the contribu-
tion of the two PCCs, evaluating the PSPD only on a rect-
angular detector centered on C1 (red-shaded areas) and
C2 (green-shaded areas) respectively. A finite phase shift
∆ϕ, equal to the distance between the two peaks forming
the double-peaked profile (blue-shaded area), arises as the
cavity modes are weakly coupled, i.e. in the range g ≤ Γ.
This leads to a double peak in the PSPD produced by the
weak coupling of the two M1 modes (Fig.4a) and of the
two M2 modes (Fig.4c) when the modified hole diameters
are equal to 193 nm and 255 nm, respectively. On the
contrary, the field oscillates in phase when the cavity
modes are strongly coupled (g � Γ), hence a single peak
appears in the PSPD for the P1 and P2 resonances (P3
and P4 peaks), as shown in the inset of Fig.4b (Fig.4d).

∆ϕ as a function of the wavelength splitting between
the molecular modes P1 and P2 (P3 and P4), is reported
in Fig.4b (Fig.4d). The phase difference between the two
single cavities becomes relevant only in a range in which
the coupling constant is equal or lower with respect to the
radiative losses, red-dashed rectangles zone in the figures.
In our case, ∆ϕ vanishes when the coupling constant
exceeds Γ. Interestingly, in the weak coupling regime
the phase lag ∆ϕ is finite but is not well defined as it
strongly depends on the excitation or initial conditions.
On the other hand, ∆ϕ is completely insensitive to initial
conditions when the coupling constant increases.

In summary, two weakly coupled modes, although oscil-
lating at the same frequency with some non-zero spatial
overlap, are not synchronized, hence exhibit a double-
peaked profile in the spatial probability distribution of
the phase.

SIGNATURES FOR HYBRID MODE
FORMATION IN DISORDERED PHOTONIC

CRYSTAL STRUCTURES.

Let us now apply such numerical analysis to a disor-
dered configuration that is different with respect to the
one discussed in the second section. The difference is only
on the arrangement of the air-holes inside the membrane.
Following the discussion of the previous sections, we make
the hypothesis that a hybrid state results from the cou-
pling of distinct localized ones and that this results in a
double peak for the PSPD parameter. We further confirm
this assumption by combining this information with the
mode profile as a function of a controlled detuning of one
of the mode with respect to the other. In particular, we
locally change the refractive index of a single scatter (ns)
around the maximum value of the field distribution, black-
dashed circle in Fig.5a. This single scatter was varied
from ns = 1 to ns = 2 with a step of 0.05. For each value
of ns, the procedure presented in the second section was
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applied. As most of the modes are localized away from the
scatterer, they are insensitive to this local perturbation.

Nevertheless, Fig.5b shows the evolution for the Hz

field component of the normalized intensity as a function
of wavelength for two modes (A1 and A2) as a function
of ns. These two modes are spatially close and detuned
in frequency (Fig.5a and blue curve in Fig.5b). A
degenerate condition or a spectral overlap is observed
for ns = 1.43, corresponding to the red curve in Fig.5b.
Increasing the dielectric perturbation (ns = 1.45), the
peak position of mode A1 and A2 are inverted with
respect to the situation depicted in Fig.5a: a crossing
feature is observed between these two resonances.

This is demonstrated in the bottom panels of Fig.5.
At the crossing condition, when ns = 1.43, the spatial
field distribution has a bi-lobated profile, clearly formed
by the combination of the mode A1 and mode A2

(Fig.5c. Moreover, the spatial probability distribution
of the phase shows a double-peaked profile with a
splitting of δφ = 0.4π (Fig.5d). In order to identify
the underlying localized modes, we have calculated the
phase contribution from two spatially isolated areas,
identified with dashed rectangles in Fig.5c and reported
it as red and green shaded curves in panel 5d. The area
interested by mode A1 and A2 is clearly evident when we
calculate the two binary phase maps reported in Fig.5e:
black color denotes points with phase between 0.44 π
and 0.57 π and in the range 0.59 − 0.72 π for mode A1

and A2, respectively. These two spatial distributions
identify two distinct spatial regions associated with the
standing components of the two modes, which oscillates

at the same frequency but with a non zero phase lag.
Moreover, a small spatial overlap zone, compatible with
the weak coupling condition, can be recognized in the
red-highlighted area. This supports the picture of two
weakly coupled eigenmodes, overlapping both spectrally
and spatially, to form a hybrid state in which light
transport relies on a two-step process. In analogy to the
one-dimensional case, we dub these modes necklace states.

A similar analysis performed on mode K of the disor-
dered realization depicted in Fig. 1 and reported in the
Supporting Information confirms instead that a single
peak in the PSPD corresponds to a shift without splitting
of the spectrum upon perturbation.

SUMMARY

In summary, this work numerically investigates the for-
mation of localized and hybrid modes, due to symmetry
breaking in partially disordered photonic crystals. In
order to establish the role of so-called necklace states in
the transport properties, we define a unique signature
for weakly coupled modes, based on the near-field spatial
distribution of the phase. This establishes a benchmark
in the study of 2D disordered systems. The phase spatial
probability distribution has been analyzed on a test bed
architecture of coupled photonic nano-cavities, as a func-
tion of their coupling strength. Similar results showing a
double-peaked profile have been produced in a simulated
experiment, where the relative detuning between isolated
localized modes was brought to zero.
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The prescription here discussed in order to assign a
necklace state character from the phase spatial modula-
tion of a given mode, could be meaningfully extended to
experimental cases. In fact, many near-field methods have
shown high resolution phase imaging in different nanores-
onators, such as plasmonic nanorods and photonic crystal
cavities [29–31]. These experimental methods exploit
scattering SNOM in combination with pseudo-heterodyne
detection or with the analysis of the spatial modulation
of Fano lineshapes to retrieve the phase information along
the sample surface. Therefore, they could be easily ex-
tended also to photonic modes localized in disordered
systems, as the ones presented theoretically in our paper.

Our conclusions provide a tool to tell apart necklace
states form single isolated modes and will be relevant
to assess their role in the transition between diffusion
to Anderson localization in random systems. Given the
simplicity of the proposed analysis, a systematic study of
necklace-state occurrence as a function of correlations in
random media can be envisaged.

ASSOCIATED CONTENT

Supporting Information

Details on the implemented simulation tool. Detuning
analysis of the mode K introduced in section Transport
through hybrid modes in 2D disordered photonic crystals.
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[4] P. Garćıa, S. Smolka, S. Stobbe, and P. Lodahl, Phys.
Rev. B 82, 165103 (2010).

[5] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[6] L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia,

S. Smolka, and P. Lodahl, Science 327, 1352 (2010).
[7] S. John, Phys. Rev. Lett. 58, 2486 (1987).
[8] A. Chabanov, M. Stoytchev, and A. Genack, Nature 404,

850 (2000).
[9] A. Peña, A. Girschik, F. Libisch, S. Rotter, and A. Cha-

banov, Nat. Commun. 5 (2014).
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SIMULATION METHOD

To generate the photonic architectures discussed in the manuscript, we have developed a software tool to design,
preview and export a photonic structure with a full control on parameters, such as the sample size and the lattice
constant [1]. This program allows to design, starting from a perfect lattice, photonic crystal cavities as well as random
realization of disordered holes’ arrays, simply applying a normally distributed displacement with respect to the position
in the perfect periodic lattice.

Simulations for the disordered configurations have been performed in 2D, as the the size of the computational
domain and the required high spatial resolution prevent the possibility to perform a full 3D modeling of the structures.
Yet, we have taken into account the finite size of the membrane by studying guided modes of a 230 nm-thick Si3N4

waveguide and extracting an effective refractive index.

The time evolution of the electromagnetic field was calculated with the finite-different-time-domain method (FDTD)
using a freely available software package (MEEP [2]). The mesh grid resolution was set to have at least ten grid
points per wavelength in the higher refractive index material for both ordered and disorder configurations. We have
performed convergence checks on the field distributions to confirm the proper discretization of the grid. In particular
the spatial resolution was set equal to 22 nm and 16 nm for the PCM and disordered structures, respectively. Perfect
matched layer conditions were used in all calculations.

In order to probe the eigenmodes of both configurations, an ensemble of electric oscillating dipoles, located in the
xy plane, is used. The dipole emission is simulated assuming a gaussian shape profile [2]. For the PCM simulations,
we have defined four different gaussian functions centered at 1250 nm, 1278 nm, 1295 nm, and 1300 nm with a
width equal to ≈ 100 nm, respectively. A total of 40 dipoles are used. Concerning the disordered configurations,
since we do not know a priori the eigenmode features, we have excited a broadband frequency spectrum defining a
gaussian centered at 785 nm with a width equal to ≈ 300 nm. A total of 400 dipoles, randomly located and uniformly
distributed throughout the central part of the sample, was used.

In order to detect the field components, a square (3.1 × 3.1 µm2) and a rectangular (8 × 9 µm2) plane-detector
were used for the PCM and disordered setup, respectively. In the latter case, in order to limit the size of the
simulation-output, we recorded only the Hz components. This is not believed to have influence on the results, as it
was checked extensively on the test-bed configuration. The simulation time was defined 65 and 150 times longer than
the pulse-excitation length for the ordered and disordered configurations respectively. In this way, we detect only
the field components resonant with the relevant modes of the structure. More precisely, we have considered a long
observation time window resulting in a spectral resolution of around 0.17 nm and around 0.1 nm for the photonic
crystals molecule and disordered simulations respectively. From the time-dependent response of the electromagnetic
field after the dipoles have been switched off, we have extracted the spectral response of the system in any point of the
structures developing a Fast-Fourier-transform (FFT) simulation tool, based on a multicore computer architecture [1].
Moreover, we have carefully verified that the phase spatial information does not depend on the delay between the
Fourier transform reference time and the free decay starting time.

∗ sgrignuoli@lens.unifi.it
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Figure 1. a) Spatial distribution of the amplitude for the Hz field component of the mode K (λK = 785.1 nm ) as reported in Fig.1
panel c) of the manuscript. The white circles, labeled α, β, and δ, identify the positions in which we have varied the refractive
index profile ns from 1 to 1.6. b), c), and d) Evolution of the calculated Hz-normalized intensity spectra as a function of the
wavelength and for different ns values when we infiltrate the α, β, and δ position, respectively. e), f), and g) Spatial distribution
of the amplitude for the Hz component of the mode K evaluated for the maximum peak spectral shift for the different cases.

TRANSPORT THROUGH HYBRID MODES IN 2D DISORDERED PHOTONIC CRYSTALS: MODE K

As discussed in the section “Transport through hybrid modes in 2D disordered photonic crystals”, we have analyzed
three different states, called J (λJ = 788.6 nm), K (λK = 785.1 nm), and W (λW = 783.4 nm). While mode J is a
localized one due to the small spatial extent and the high quality factor, the differences between the K (reported in
Figure 1a and W modes can be understood only through the phase spatial probability distribution (PSPD): light at
785.1 nm tunnels trough a single mode (PSPD has a single-peak), whereas transport at 784.4 nm relies on a two-step
process (PSPD shows a double peaked profile).

In order to further validate this statement and confirm our claim, we applied the study presented in section
“Signatures for hybrid mode formation in disorder photonic crystal structures” also to the specific case of mode K. In
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particular, we locally changed the refractive index of a single scatterer around different positions, identified by the
white circles and labeled α, β, and δ in Figure 1a, and we monitor the spectrum around the original peak position at
785.1 nm. The positions α, β, and δ were chosen at the edges of the mode to guarantee the correct detuning of the
mode.

The evolution of the Hz-normalized intensity as a function of the wavelength and for different ns values is reported
in Figure 1 panels b), c), and d) relative to the α, β, and δ infiltration respectively. Independently from the detuning
position, the spectrum evolution of the mode K does not show any splitting features: the mode K red shifts due to the
dielectric-induced tuning. Figure 1 panels e), d), and f) display the spatial distribution of the amplitude for the Hz

component of the mode K for the maximum peak spectral shift of the different cases. Excluding very little differences
due to the different scattering conditions, the detuned mode K is similar to the original one (Figure 1a). Moreover, the
spatial probability distribution of the phase of all the peaks identifying the mode K in Figure 1 shows a single peaked
profile independently from the ns value (data not shown). In other words, the mode K is a broad but single localized
mode.

[1] “Quantum-nanophotonics group, LENS.” http://www.lens.unifi.it/quantum-nanophotonics.
[2] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, Comput. Phys. 181, 687 (2010).
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