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The paper deals with the structural analysis of polygonal masonry domes by taking into account the thickness. A 
numerical procedure is presented through which the actual behaviour of the material is considered in the analy-
sis. The structure is modelled as a discrete system of rigid blocks linked through elastic mortar layers. No-tension 
behaviour of the material is assumed to be totally concentrated in the mortar joints located between the adjacent 
blocks. Such a joint can therefore be assumed as a unilateral elastic contact constraint. The solution is achieved 
by a step by step algorithm in which the starting solution, relative to the standard material (linear elastic and 
bilateral), is subsequently corrected according to the actual material behaviour. The numerical procedure can be 
applied to the analysis of any type of polygonal masonry domes, with a spherical or pointed shape, subject to 
self weight loads, complete or with hole and lantern. As a particular case of analysis, some interesting remarks 
dealing with the case of Brunelleschi’s Dome are presented.
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Intoduction

The study of masonry domes has been the object of 
several research projects starting from some eighteenth 
century memoirs of the Academiae  Royale des Scienc-
es in Paris. One of the first aspects of the problem to 
be examined, was the search for the optimal shape to 
be given to a masonry dome. Pierre Bougure (Bouguer 
1734), while answering the question of what shape a 
masonry dome, subjected toself-weight, should have, 
proposed for the first time the equation of the funic-
ular meridian. He stated that in order to have equi-
librium, the meridian must have the same shape of 
the curve that represents the funicular of the loads 
which are relative to a slice of dome. Subsequently, 

a similar solution to the same problem was found by 
Charles Bossut[2], Lorenzo Mascheroni[3], and Gi-
useppe Venturoli[4]. All the solutions suggested by 
these authors have a common characteristic: the dome 
is considered, de facto, as a one-dimensional behaviour 
structure, composed of a series of distinct segments 
or slices or “lunes”, wider at the base and tapering to 
zero at the crown, placed in mutual contact with each 
other but without any interactions among them. In 
conclusion, since the equilibrium of each slice is in-
vestigated separately, if it can be shown that each ele-
ment of the sliced structure is stable, then it is argued 
that the original structure must be stable. Under these 
assumptions the analysis of masonry domes does not 
present any difference compared with the analysis of 
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masonry arches. It is interesting to note that the fact 
of not considering any action among the slices of the 
dome, corresponding to the hypothesis of zero hoop 
stresses, means that the problem lies, actually, in the 
field of modern limit analysis, as applied by J.Hey-
man (Heyman 1967) in his fundamental studies on 
masonry structures. Moreover, in his introductory as-
sumptions, Heyman himself makes explicit reference 
to the eighteen-century model, considering that it was 
still perfectly suitable to deal with the general solution 
of the problem. The model of limit analysis proposed 
by Heyman in any way differs from the analysis per-
formed by Poleni (Poleni 1734) or the Three Mathe-
maticians (Le Seur et al.1742) for evaluating the sta-
bility of the dome of St.Peter. The similarity between 
the “settore solido” of Poleni and the “orange slice” of 
Heyman is very clear.

Masonry dome. An appropriate three-dimensional  
finite element modelling

Following a typically eighteenth century idea, let us 
consider the general problem of a masonry structure 
consisting of rigid blocks linked through elastic mor-
tar layers. In such a model the no-tension behaviour 
of the material is totally supposed to be concentrat-
ed in the mortar joint located between two adjacent 
blocks. Such a joint, can therefore, be assumed as a 
unilateral elastic contact constraint.
In particular, the mortar joint can be idealized, in a 
Drucker’s way, through an interface device consisting of 
a set of elastic links, orthogonal to the contact surface, 
capable of transmitting only compressive forces between 
the blocks, and additional links, parallel to the interface, 
through which the shear forces can be transmitted. The 
behaviour of the orthogonal links is assumed to be uni-
lateral and linear elastic, whereas for the parallel ones 
further hypotheses can be added in order to specify 
either the shear strength and to calibrate, for instance, 
the influence of the friction between the blocks, or a 
bilateral rigid behaviour totally capable of preventing 
sliding (Fig. 1). In practice a reasonably low number of 
orthogonal bars is sufficient to describe, with significant 
expressiveness, the behaviour of the joint and to clearly 
appraise the location and depth of possible cracks.

In the case of a masonry dome the structure is modelled 
by a set of discrete three-dimensional rigid elements which 
represent single or multiple blocks of stone. The element 
of the shell, considering the actual thickness, is cut out by 
two meridian planes and two sloping planes perpendicular 
to the generating curve of the middle surface of the shell.
Let us consider, therefore, the general problem of a ma-
sonry dome consisting of n three dimensional shell rigid 
elements linked through m unilateral elastic contact in-
terfaces. (Fig. 2).

Fig. 1. Behaviour of the joints: rigid-cracking behaviour of the links 
orthogonal to the interface (a) and tangential (b);  elastic-cracking 
behaviour of the links orthogonal to the interface (c) or (d) and tan-
gential (e).
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Figura 1 -  Modello di comportamento per i giunti di interfaccia: giunto rigido-fragile in direzione normale (a) e 
tangenziale (b) – giunto elastico fessurante in direzione normale (c) o (d) e tangenziale (e). 
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Assuming the structure subjected to the action of external loads represented by the vectors ∈F ℜ n6 ,
the problem can be expressed through a system of equilibrium and elastic-kinematical equations, 
whose variables, those which correspond to the unilateral links in the interface model, are subject to 
inequalities: 
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In the previous form (1) ∈X ℜ km  indicates the unknown vector of internal forces located on the
interface joints, where nX  includes the components orthogonal to the contact surface of the joint and 

tX  includes the shear components; x ∈ℜ n6  represents the unknown vector of components of

displacement related to the centroids of the elements; ∈K ℜ kmkm×  is the diagonal stiffness matrix of
the contact constraints.; ∈δ ℜ km  indicates the unknown vector whose components are internal
distortions which need for obtaining a solution capable of satisfying both the equilibrium equations, 
while respecting the sign conditions, and the elastic-kinematical compatibility of the actual reacting 
structure. On this subject, it is convenient to distinguish, within the vector δ , two types of entities, 
assuming for the former, related to the equilibrium aspects, the notation 1δ  and for the latter, related 
to the compatibility ones, the notation 2δ . Notice that the value k depends on the number of contact 
constraints chosen to characterize the interface device and defines the degree of statically 
indeterminacy of the structure. 
Of course the system of equations (1) could have no solution under the sign conditions expressed in 
the first inequality; in such a case it means that the structure cannot be equilibrated under the given 
system of the external actions. In this case there is no vector ∈X ℜ km  which satisfies,
simultaneously,  the n6 equations and the km  inequalities. 
However let us suppose that the system (1) in consistent. In such a case the general solution 

NXXX += 0 , that is able to satisfy the equilibrium problem and the first of the two inequalities, can 
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the two inequalities, can be obtained assuming, as the 
initial solution X0, which is relative to the bilateral linear 
elastic behaviour of the contact constraints:

Figure 2:  Internal forces and loads acting on the joint for each element 

Assuming the structure subjected to the action of external loads represented by the vectors ∈F ℜ n6 ,
the problem can be expressed through a system of equilibrium and elastic-kinematical equations, 
whose variables, those which correspond to the unilateral links in the interface model, are subject to 
inequalities: 





=+

=+

δKXxA
FAX

T
0

sub 


















≥

⋅≤

≤

∑
=

0

0

1

δ

k

j
njt

n

XfX

X

 (1) 

In the previous form (1) ∈X ℜ km  indicates the unknown vector of internal forces located on the
interface joints, where nX  includes the components orthogonal to the contact surface of the joint and 

tX  includes the shear components; x ∈ℜ n6  represents the unknown vector of components of

displacement related to the centroids of the elements; ∈K ℜ kmkm×  is the diagonal stiffness matrix of
the contact constraints.; ∈δ ℜ km  indicates the unknown vector whose components are internal
distortions which need for obtaining a solution capable of satisfying both the equilibrium equations, 
while respecting the sign conditions, and the elastic-kinematical compatibility of the actual reacting 
structure. On this subject, it is convenient to distinguish, within the vector δ , two types of entities, 
assuming for the former, related to the equilibrium aspects, the notation 1δ  and for the latter, related 
to the compatibility ones, the notation 2δ . Notice that the value k depends on the number of contact 
constraints chosen to characterize the interface device and defines the degree of statically 
indeterminacy of the structure. 
Of course the system of equations (1) could have no solution under the sign conditions expressed in 
the first inequality; in such a case it means that the structure cannot be equilibrated under the given 
system of the external actions. In this case there is no vector ∈X ℜ km  which satisfies,
simultaneously,  the n6 equations and the km  inequalities. 
However let us suppose that the system (1) in consistent. In such a case the general solution 

NXXX += 0 , that is able to satisfy the equilibrium problem and the first of the two inequalities, can 

(1)

be obtained assuming, as initial solution 0X , that is relative to the bilateral linear elastic behaviour of 
the contact constraints: 
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Such an initial solution is then modified through the vector: 

11
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which, added to 0X , satisfies the first of the (1) while respecting the sign conditions. 
Computing the Moore-Penrose generalized inverse of iC , it is easily possible to evaluate the vector 

iii XC 01 −=δ , where iX 0  are  the components of the interactions those in the joint do not respect the
inequalities conditions of (1). If the solution of the unilateral problem exists, the vector solution which 
satisfies simultaneously the equilibrium equations and the first and the second inequality of (1), 
assumes the form : 
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Since the final vector X is different from the first elastic vector solution 0X , it cannot satisfy the 
kinematical compatibility expressed through the second set of equations in the system (1). A very easy 
way to build up again such a compatibility is to consider the second set of equations in the system (1) 
in the form: 

ccc
T
cc XKAAAx 1)( −−= (5) 

which represents the vector of the displacements of the centroids of the elements only due to the actual 
reacting structure. Finally we can determine the vector 2δ , so that the compatibility of the second of 
the (1) is already reached : xAT

i=2δ  .

The components of the vector 02 ≠δ  give the position and width of the cracks located in the mortar
joints. 

3. A FIRST NUMERICAL APPLICATIONS
The numerical procedure described in the previous paragraph can been applied to the analysis of two 
types of axial-symmetrical masonry domes provided of thickness, respectively hemispherical ad 
ogival, subject to self weight loads, with three different conditions at the crown: complete, with hole 
and lantern. In any case, with assigned radius R, the thickness s  has been considered as a constant. 
According to axial symmetry of the structure the internal shear forces acting along the rings and on the 
planes of the meridians become zero. The stiffness in the contact devices, which simulates the 
behaviour of the mortar layers, has been considered uniform. The procedure allows us to define the 
limit configuration of equilibrium and, correspondently, the collapse mechanism that is due to the 
formation of cracks along the meridian and parallel interface sections. With reference to the limit 
configuration of equilibrium the minimum thickness of the dome is pointed out and the corresponding 
ratio Rs /  is performed. 
Afterwards an interesting comparison is presented between the numerical method described here and 
two different solutions of the same cases (Table 1). 
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which represents the vector of the displacements of the centroids of the elements only due to the actual 
reacting structure. Finally we can determine the vector 2δ , so that the compatibility of the second of 
the (1) is already reached : xAT

i=2δ  .

The components of the vector 02 ≠δ  give the position and width of the cracks located in the mortar
joints. 

3. A FIRST NUMERICAL APPLICATIONS
The numerical procedure described in the previous paragraph can been applied to the analysis of two 
types of axial-symmetrical masonry domes provided of thickness, respectively hemispherical ad 
ogival, subject to self weight loads, with three different conditions at the crown: complete, with hole 
and lantern. In any case, with assigned radius R, the thickness s  has been considered as a constant. 
According to axial symmetry of the structure the internal shear forces acting along the rings and on the 
planes of the meridians become zero. The stiffness in the contact devices, which simulates the 
behaviour of the mortar layers, has been considered uniform. The procedure allows us to define the 
limit configuration of equilibrium and, correspondently, the collapse mechanism that is due to the 
formation of cracks along the meridian and parallel interface sections. With reference to the limit 
configuration of equilibrium the minimum thickness of the dome is pointed out and the corresponding 
ratio Rs /  is performed. 
Afterwards an interesting comparison is presented between the numerical method described here and 
two different solutions of the same cases (Table 1). 
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tic vector solution X0, it cannot satisfy the kinematical 
compatibility expressed through the second set of equa-
tions in the system (1). A very easy way to again build 
up such a compatibility is to consider the second set of 
equations in system (1) in the form:

which represents the vector of the displacements of the 
centroids of the elements only relative to the actual re-
acting structure. Finally, one can determine the vector 
δ2, in such a way that the compatibility of the second of 
system (1) is again obtained : δ2 = Ai

T x.
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The components of the vector δ2 ≠ 0 give the position 
and width of the cracks located in the mortar joints.

First numerical applications
The numerical procedure described in the previous 
paragraph can be applied to the analysis of two types 
of axial-symmetrical masonry domes, respectively hemi-
spherical and ogival, subject to self weight loads, with 
three different conditions at the crown: complete, with 
hole and lantern. In any case, with assigned radius R, 
the thickness s has been considered as a constant. Ac-
cording to the axial symmetry of the structure the inter-
nal shear forces acting along the rings and on the planes 
of the meridians become zero. The stiffness in the con-
tact devices, which simulates the behaviour of the mor-
tar layers, has been considered uniform. The procedure 
allows one to define the limit configuration of equilibri-
um and, correspondently, the collapse mechanism that 
is due to the formation of cracks along the meridian and 
parallel interface sections. With reference to the limit 
configuration of equilibrium the minimum thickness of 
the dome is identified and the corresponding ratio s / R 
is performed.
Afterwards an interesting comparison is presented be-
tween the numerical method described here and two 
different solutions of the same cases (Table 1).
The first solution concerns Heyman’s hypothesis, also 
used by Hoppenheim, based on the assumption that the 
resultant hoop stress between contiguous lunes of the 
dome is zero. This means that one considers the dome 
as a one-dimensional behaviour structure, to be seen as 

Table 1: Comparison between different approaches. 

Heyman’s  hypothesis 
 limit thickness 

Method presented  here 
 limit thickness 
 last compressive ring 

complete  0.044 R  0.043 R 
 ϕ = 29.59°Hemispherical dome 

hole and lantern  0.050 R  0.044 R 
 ϕ = 24.00°

complete  0.085 R  0.050 R 
 ϕ = 48.00°

Ogival dome 
hole and lantern  0.032 R  0.022 R 

 ϕ = 40.00°

The first solution is concerned with the Heyman’s hypothesis, used by Hoppenheim too, based on the 
assumption that the hoop stress resultant between contiguous lunes of the dome is zero. This means to 
consider the dome as a one-dimensional behaviour structure, to be seen as composed of a series of 
distinct segments or slices or “lunes”, wider at the base and tapering to zero at the crown, placed in 
mutual contact with each other but without any interactions among them: of course such a solution 
must be understood as limit solution. 

4. BRUNELLESCHI’S DOME IN FLORENCE
The numerical procedure described above has been applied to the analysis of the Dome of S. Maria del 
Fiore. The first aspect to tackle was that of the definition of the overall geometrical model of the 
structure. The Dome, formed from two shells divided by a space of about 1.2 m, is made up of eight 
lunes that represent segments of an elliptical cylinder.  For better understand the spatial location of the 
volume of the building see the figures shown below (fig 3) . 

Figure 3 -  Axonometric view of the general geometry of the segment of dome relating to the elliptical cylinder. 

The geometrical model adopted for the analysis is based the studies, published in 1977, by Salvatore 
Di Pasquale, for the contents of which, refer for brevity to the specific bibliography. The principal 
aspect is that every laying bed of bricks is lying on a conic surface, easily obtaining by the intersection 
between the cylindrical segment of the dome, with elliptical directrix, and the surface of ideal cone, 
defined by rotating e generatrix line with a variable angle and a vertex, whose level moves 
progressively  upwards, located on the axis of the dome (fig. 4 - 5). 
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The geometrical model adopted for the analysis is 
based on the studies, published in 1977, by Salvatore 
Di Pasquale; for the contents refer to the bibliography. 
The principal aspect is that every laying bed of the bricks 
is lying on a conic surface, and is easily indentified by 
the intersection between the cylindrical segment of the 
dome, with elliptical directrix, and the surface of ideal 
cones, defined by rotating a generatrix line with a vari-
able angle and a vertex, whose level moves progressively  
upwards, located on the axis of the dome (fig. 4 - 5).

Figure 4 -   Brunelleschi’s Dome. Geometry and structure. 

Figure 4 -   Brunelleschi’s Dome. Geometry and structure. 
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Figure 5 - Axonometric view of geometrical model of conic laying bed of the bricks. 

Below are some mathematical notations for the analytic reading of the problem: 

a = 11C = radius of curvature of the big corner rib ( 36
5
4

== Da m ) 

ϖcos⋅= ab  (where 
8
π

ϖ = )

βsenah ⋅=  ( z  of P on the big corner rib – with °≤≤ 620 β ) 

βtgak ⋅=
8
3  ( z  of the vertex V of the cone) 
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8
3(cos −= βar  ( radius of the circle at the base of the generic cone) 

Equation of the cone ( zyx ,, ) : 
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The equation of the elliptical cylinder is: 
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5. NUMERICAL REMARKS
The structure of the Dome has been analyzed using the numerical model presented above. The 
numerical tests have focused on the general stability of the Monument despite the presence of 
inevitable and manifest cracks along the meridians in the middle of the lune and on the big corner ribs.  
The numerical results, obtained under no-tension hypothesis for the material, confirmed in any case, 
the actual behaviour of the structure.  
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Numerical remarks

The structure of the Dome has been analyzed using the 
numerical model presented above. The numerical tests 
have focused on the general stability of the Monument 
despite the presence of inevitable and manifest cracks 
along the meridians in the middle of the lune and on 
the big corner ribs (Figures 7 and 8). The numerical re-
sults, obtained under the no-tension hypothesis for the 
material, confirmed in every case, the actual behaviour 
of the structure (Table 2).
In Figure 6 a series of synthesized images of the various 
models tested is shown. In the construction of the geo-
metrical shape the conical laying beds of the bricks has 
been taken into account: this has influenced the mesh of 
the finite element model.

Below are shown a series of synthesized images of the various models tested. In the construction of 
the geometrical shape has taken into account of the conical laying beds of the bricks: this has 
influenced the mesh of the finite element model. 

Figure 6 - Views of geometrical model and mesh. 

Figure 7 – Axonometric view. Location and spreading of cracks. 
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the geometrical shape has taken into account of the conical laying beds of the bricks: this has 
influenced the mesh of the finite element model. 
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Fig. 6 . Views of the geometrical model and mesh.

Fig.7.  Axonometric view. Location 
and spreading of cracks.
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Figure 8 - Location and spreading of cracks. Cross section on corner big rib (left) and on the middle meridian of 
the lune (right). 

Following Di Pasquale’s idea, a significant test was performed by modeling the structure in order to 
obtain, within the actual structure, a circular dome that, while keeping the ribs, has a possible 
thickness of only 48 cm (fig. 9). The Dome is still stable also in this case (fig.  10) 

Table 2 : Values of compressive stress at the base of the Dome. 
Maximum compressive stress (MPa) at the base of the Dome 

Corner big rib Medium rib Middle of the lune 
0.79 0.78 0.47

Figure 9 – Ideal circular dome within the actual thickness.

Fig. 8. Location and spreading of 
cracks. Cross section on corner big 
rib (left) and on the middle 
meridian of the lune (right).
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Following the idea of Di Pasquale, a significant test was 
performed by modeling the structure in order to obtain, 
within the actual structure, a circular dome that, while 
keeping the ribs, has a  possible thickness of only 48 cm 
(fig. 9). The Dome is still stable also in this case (fig. 10)
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