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1. INTRODUCTION 

 

1.1 Chemotherapy and chemoresistance 

1.1.1 Chemotherapeutic drugs 

 

Chemotherapeutic drugs are antineoplastic drugs given with the purpose of 

inhibiting tumor proliferation. Clinical experience has shown that in many cases the use 

of a single agent for the treatment of cancer does not provide long-term responses (He et 

al,.2015). Many improvements in cancer therapy have risen from the use of drug 

combinations, where the inhibition of parallel pathways with non-cross-resistant drugs 

improves treatment efficacy and reduces the occurrence of drug resistance (Bozic et 

al,.2013). 

 

 1.1.2 Chemoresistance 

 

Tumor resistance to chemotherapy is a complex clinical problem, hard to resolve 

for the intrinsic properties which define it. Innate or acquired resistance is a multi-

factorial event which leads to the failure of various therapeutic approaches. 

Administration of a chemotherapeutic drug can be seen, in darwinian model of 

population study, as an artificial selection which acts on a group of heterogeneous, both 

in terms of genotype and phenotype, neoplastic clones (Gerlinger and Swanton. 2010). 

Some of them can be selected by pharmacological treatment, survive and produce a new 

tumoral mass not-responsive to the therapy. There are many factors which can modulate 

chemotherapy sensibility, such as (1) the actual drug quantity which can reach the 

tumour mass, (2) a decrease of the levels of drug for improving excretion and/or 

reduction of cell membrane permeability, (3) possible inactivation or modification by 
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detoxification enzymes (at cellular, hepatic and kidney level), (4) target alteration in 

terms of its metabolic pathway and/or tumour microenvironment  (Figure I). 

 

 

 

Figure I. Drug metabolism in cancer cells  

 

 

1.1.2.1 Alterations of membrane mechanism of transports  

 

One of the critical elements for a drug to be effective is its ability  to  reach  the  

target  organ  at  an  efficacious  concentration. The   dynamic   interactions   among   

drug   absorption, distribution, metabolism and excretion determine  the  plasma  

concentration  of a  drug,  and  dictate  the  amount  of  free  drug  that  reaches  the  

target site,  and  therefore,  influence  the  ultimate  outcome  the  drug  may provide.  

Normal tissue morphology is altered in cancer tissues, limiting drug penetration and 

accumulation (Marcucci et al,. 2013). In the majority of cancers, vessel growth is not 



6 

only stimulated, but these vessels are also abnormal in almost all aspects of their 

structure and function (Shi et al,. 2013). This results in a hostile tumor 

microenvironment, characterized by hypoxia, low pH and high interstitial hostile fluid 

pressure that can alter the intrinsic characteristics of tumor cells and lead to selection of 

more malignant clones (Jain. 2005). Abnormal tumor vessels can also impede the 

function of immune cells in tumors, as well as the transport and/or distribution of 

chemotherapeutics and oxygen. As a result, the abnormal tumor vasculature can lead to 

a resistance of tumor cells to radiation therapy and many chemotherapeutics.  

One of the main forms of resistance against chemotherapeutic drugs is carried out, at a 

cellular level, by plasma membrane; given their lipophilicity, many drugs enter the cell 

by passive diffusion and the slow kinetics of this mechanism of transport is a first 

obstacle to the reach of their intended target. There are also active extrusion 

mechanisms, mediated by specific families of proteins, which limit the accumulation of 

a drug inside the cell. Among these there are ABC (ATP-binding cassette) 

transmembrane proteins, which carry out this efflux against gradient of concentration. 

There are seven subfamilies of codifying genes for ABCs: ABC1, MDR/TAP, MRP, 

ALD, OABP, GCN20, White. The members of these subfamilies, as P-glycoprotein, 

codified by MDR1 (multidrug resistance 1) gene (Hodges et al,. 2011) are involved in 

the extrusion of many kind of drugs as: etoposide, doxorubicin, vinblastine. An 

overexpression of P-glycoprotein can lead to chemoresistance by a decrease of 

concentration of drug at intracellular level  (Videira et al. 2014). The mechanism of 

action of this class of transporters is duplex, they are both associated to an ATP-

mediated extrusion of drug molecules from cells into biological fluids and, controlling 

ion balancing in kidney tissue, in the excretion of drugs from the body (Videira et al. 

2014).  
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Another class of extrusion proteins, involved in the excretion of chemotherapeutic drugs 

is MATE (Multidrug And Toxic Compound Extrusion) family. There were originally 

discovered in bacteria, where they mediate antibiotic resistance, but there were recently 

found human variants involved in the transport of numerous xenobiotic molecules, 

including several chemotherapy agents (Kuroda et Tsuchiya. 2009).    

 

1.1.2.2 Drug inactivation  

 

Mechanisms which inactivate a drug limit the active quantity that can actually 

bind to its intracellular target. At hepatic level the presence of several families of 

cytochrome proteins plays a crucial role, in particular P-450 family. These classes of 

proteins metabolize drugs usually by inserting an atom of oxygen on the non-activated 

carbon atoms by hydrolysis, oxidation and reduction. At the end of these modifications 

the drug molecule is often conjugated to glutathione, sulphates, glycine or glucuronic 

acid and excreted from the organism with one of the already described transporters.   

Platinum based drugs bind covalently to GSH and the resulting complex is extruded 

form the cell by ABC proteins (Liu et al,. 2012). High levels of GSH have been found 

in Cisplatin-resistant tumor cells and its variation during passage of time after exposure 

is also significant (Jamali et al,. 2015). This process of conjugation is catalyzed by the 

family of glutathione-S-transferase enzymes and an increase in the expression of certain 

their subtypes has been correlated with Cisplatin resistance in ovarian cancer (Sawers et 

al,. 2014).  
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1.1.2.3 Modification of drug targets 

 

It’s possible that during therapy the original target of a chemotherapeutic drug 

can undergo several modifications or a reduction of its expression level, so to be no 

longer a useful target to block tumor development. For example, tamoxifen, an estrogen 

inhibitor used for the treatment of breast cancer, can be inactivated by a reduction of 

estrogen receptors expression; beside that several tumoral clones can also become 

completely homone-independent for their development and invasiveness (Jiang et al,. 

2013). 

Another characteristic which can induce chemoresistance is the genetic instability of 

tumoral clones that lead to an accumulation of genetic mutations; this can alter the 

native structure of an oncogene or a tumor suppressor gene, inhibiting the actions of 

chemotherapeutic drugs if these mutations modify their target sequence. In CRC the 

occurrence of tumor somatic mutations in the RAS/RAF/MAPK and PI3K/PTEN/AKT 

pathways remains the main challenge for treatment with the new biological agents. It 

has been recently proposed to consider a quadruple negative profile for CRC, based on 

the status of KRAS, BRAF, PI3KCA and PTEN, as tumor markers of sensitivity to anti-

EGFR treatment (De Mattia et al,. 2015). 

Genetic instability may lead to the loss of an entire gene, a chromosome or to genomic 

alterations; this can induce acquired resistance not only for the disappearance of 

therapeutic targets but also because these processes can produce a chromosomic 

reshuffle capable of altering metabolic pathways and targets of other drugs as well 

(Kuznetsova et al,. 2015). 
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1.1.2.4 DNA-damage repair 

 

The DNA-damage repair capability of a tumoral cell is strictly linked to its 

resistance towards those chemotherapeutic drugs which have DNA as main target of 

their action. Following DNA-damage, a cell can proceed to its repair or, if it’s too 

severe and/or not repairable, to induce the activation of apoptosis.  

There are specific mechanisms to arrest cell cycle until the damaged is repaired, among 

which there are the nucleotide excision repair (NER), which removes the adducts DNA-

drug and the mismatch repair (MMR), which check the new DNA strands and remove 

single mismatch bases inserted during DNA replication.  

NER is a mechanism which involves 17 different proteins among which is ERCC1; 

ERCC1-XPF nuclease complex is crucial to repair double-strand breaks and crosslink 

damages; recently polymorphisms to this complex have been related to CRC risk (Yang 

et al,. 2015) and to Cisplatin resistance (McNeil et al,. 2015) as well. Mutations in 

MMR genes as hMLH1 and hMLH2 are common in ovary (Xiao et al,. 2014), breast 

(Alkam et al, 2013) and colon cancer (Wang et al,. 2014). A common characteristic in 

Cisplatin chemoresistance in head and neck squamous cell carcinoma (HNSCC) is 

linked to hMLH1 hypermethylation, while decitabine (DAC) was seen to restore 

Cisplatin sensitivity in in vitro and in vivo models of HNSCC (Viet et al,. 2014).  

 

1.1.2.5 Cell cycle arrest and apoptosis induction 

 

There is a critical balance between cell cycle arrest and programmed cell death; 

numerous proteins are involved as main actors of this equilibrium among which p53 has 

a central role, inducing cell cycle arrest, senescence and apoptosis under cellular stress. 

The progression of cell cycle is tightly controlled by cyclins and cyclin-dependent 
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kinases (CDK). p21(WAF1) is one member of CDK inhibitor family, which hinder cell 

cycle transition from G1 to S phase. p21(WAF1) is a well-characterized p53-

downstream gene and its promoter contains consensus p53-binding sequences. It has 

been shown that p21(WAF1) is one of the major mediator of p53-induced growth arrest. 

In response to DNA damage, p53 induces not only cell cycle G1 phase arrest, but also 

G2/M checkpoint arrest and at the same time activates DNA repairing mechanisms. 

Activation of p53 can trigger both the mitochondrial (intrinsic) and the death-receptor-

induced (extrinsic) apoptotic pathways (Ryan et al,. 2001). p53 induces the expression 

of pro-apoptotic Bcl-2 (B-cell lymphoma-2) family of proteins, mainly Bax, Noxa and 

PUMA, but downregulates the pro-survival Bcl-2, leading to permeabilization of outer 

mitochondrial membrane. Then cytochrome c releases from the mitochondria binds to 

Apaf-1, and induces the activation of the initiator caspase-9, eventually resulting in the 

activation of executioner caspase-3, -6 and -7. On the other hand, activated p53 also 

upregulates the expression of some DRs (death receptors), such as Fas (CD95/APO-1), 

DR5 (TRAIL-R2), and PIDD (p53-induced protein with death domain). Together with 

caspase-8, they form the death-inducing signaling complex, subsequently activating 

caspase-3 and inducing apoptosis (Ryan et al,. 2001). Different types of p53 mutations 

play a pivotal role in determining the biologic behavior of CRC, such as invasive depth, 

metastatic site and even the prognosis of patients. p53 mutations are associated with 

lymphatic invasion in proximal colon cancer, and show significant correlation with both 

lymphatic and vascular invasion in distal CRC (Russo et al,. 2005). p53 activity can be 

compromised by inactivation of its positive modulators as p14ARF, or for 

hyperexpression of its negative regulators as AKT. In combination with another tumor 

suppressor gene BRCA1, implicated in DNA repair, apoptosis and cell cycle control, 

p53 mutations, in breast cancer, contribute to resistance to chemo and radiotherapy, 

while BRCA1 dysfunction leads to enhanced sensitivity to DNA damaging therapeutic 
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agents (Scata et El-Deiry. 2007). BRCA1 is a part of a complex involved in DNA 

double strand breaks repair; its overexpression in ovarian cancer and NSCLC leads to 

an acquired resistance towards platium-based compounds (Cisplatin, oxaliplatin and 

carboplatin) which often exert this kind of lesions (Papadaki et al., 2012). 

 

Cancer can be viewed as the result of a succession of genetic changes during which a 

normal cell is transformed into a malignant one; evasion of cell death is one of the 

essential changes in a cell that cause this malignant transformation. The mechanisms by 

which evasion of apoptosis occurs can be broadly dividend into: 1) disrupted balance of 

pro-apoptotic and anti-apoptotic proteins, 2) reduced caspase function and 3) impaired 

death receptor signaling. 

The Bcl-2 family is comprised of pro-apoptotic and anti-apoptotic proteins which play a 

pivotal role in the regulation of apoptosis, especially via the intrinsic pathway as they 

reside upstream of irreversible cellular damage and act mainly at the mitochondria level. 

When there is disruption in the balance of anti-apoptotic and pro-apoptotic members of 

the Bcl-2 family, the result is dysregulated apoptosis in the affected cells. This can be 

due to an overexpression of one or more anti-apoptotic proteins or an underexpression 

of one or more pro-apoptotic proteins or a combination of both. In colorectal cancers 

with microsatellite instability, mutations in the BAX gene are quite common. Miquel et 

al. demonstrated that impaired apoptosis resulting from BAX frameshift mutations 

could contribute to resistance of colorectal cancer cells to anticancer treatments (Miquel 

et al,. 2005). 

Except for p53, there are other proteins inhibitor of apoptosis; IAPs are a group of 

structurally and functionally similar proteins that regulate apoptosis, cytokinesis and 

signal transduction. They are characterized by the presence of a baculovirus IAP repeat 

(BIR) protein domain. Eight IAPs have been identified, NAIP (BIRC1), c-IAP1 
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(BIRC2), c-IAP2 (BIRC3), X-linked IAP (XIAP, BIRC4), Survivin (BIRC5), Apollon 

(BRUCE, BIRC6), Livin/ML-IAP (BIRC7) and IAP-like protein 2 (BIRC8). IAPs are 

endogenous inhibitors of caspases and they can inhibit them by binding their conserved 

BIR domains to the active sites of caspases, by promoting degradation of active 

caspases or by keeping the caspases away from their substrates. Dysregulated IAP 

expression has been reported in many cancers (Fulda et Vucic. 2012). Livin was 

demonstrated to be highly expressed in melanoma and lymphoma while XIAP was 

found to be upregulated in osteosarcomas and was linked to Cisplatin resistance (Qu et 

al., 2015). 

 

1.1.2.6 Survival signals 

 

Tyrosine kinase proteins (PTK) can have a relevant effect on chemotherapy 

resistance, by the regulation of apoptotic balance. Among different protein kinases, 

RTKs comprise a well-known group and consist of a transmembrane receptor linked to 

the intracellular kinase domain. These proteins have emerged as key pharmacological 

targets in oncology (Choura et Rebaï. 2011). Among them we find the epidermal growth 

factor receptor (EGFR and HER2); in vitro experiments have demonstrated that 

overexpression of EGFR and HER2 increase tumor resistance to the therapy (Pegram et 

al,. 1998). In breast cancer this oncogene has become an important biomarker both for 

classification and target therapy; 15-30% of all breast cancers cases overexpress this 

gene (Mitri et al. 2012) and patients in this category usually receive monoclonal 

antibody therapy with trastuzumab, a monoclonal antibody directed against HER2; this 

is the mainstay of the treatment for early and metastatic HER2-positive breast cancers 

(Vogel et al,. 2002). His overexpression was found also in endometrial cancer (Santin et 

al., 2008). Trastuzumab binds to domain IV of the extracellular segment of the 
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HER2/neu receptor; cells treated with this monoclonal antibody (mAb) undergo arrest 

during the G1 phase of the cell cycle. In addition to that, trastuzumab suppresses 

angiogenesis both by induction of antiangiogenic factors and repression of 

proangiogenic ones. One of the most relevant proteins that is activated by it is tumor 

suppressor protein p27 by simultaneously inhibiting PI3K/AKT, Mirk and hKIS 

pathways.  

Tumor kinases (TK) targets can modulate AKT/PKB pathway and produce important 

effects on PI3K, mTOR and STAT pathways. Indeed, activated AKT phosphorylates 

and inhibits tuberous sclerosis 2 (TSC2), allowing Ras homolog enriched in brain 

(Rheb) to accumulate in the GTP-bound state and trigger activation of the mTOR 

complex1 (mTORC1) pathway. 

Although mTOR is frequently activated in human cancers, mutation of the mTOR gene 

has been found only occasionally (Robbins et al., 2011). This means that over-activation 

of the mTOR pathway is mostly due to signaling defects upstream of mTOR in the 

phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR pathway. Mutations in PI3K alpha 

catalytic subunit kinase domain (PIK3CA) generally arise late in tumorigenesis, and can 

be identified in 32% of CRC tumors (Samuels et al., 2004). Loss of heterozygosity 

(LOH) and mutations in Phosphatase and tensin homolog (PTEN), a negative regulator 

of PI3K activity, have also been reported in CRC (Zhou et al., 2002). Both PIK3CA 

mutations and PTEN loss lead to mTOR over-activation.   

 

AKT is one of the downstream targets of PI3K. It is a serine/threonine kinase that is 

activated due to the formation of PIP3 by PI3K. PIP3 binds the PH domains of AKT 

and aids in the recruitment of AKT to the plasma membrane, which alters the 

conformation of AKT to allow for subsequent phosphorylation by PDK1. AKT 

regulates many cellular processes, including differentiation, proliferation and 
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transformation by phosphorylating GSK-3 (Kim et Kimmel. 2000). Through the 

upregulation of the transcription repressor Snail, AKT modultes the induction of the 

epithelial-mesenchymal transition and tumor cell invasion. AKT/mTORC1 induces the 

expression of HIF-1 and VEGF, which are key elements involved in tumoral 

neoangiogenesis. 

STAT proteins are another class of proteins important in modulating tumorigenesis, 

they become activated by JAKs through phosphorylation of specific tyrosine residues; 

the receptors to which JAKs bound are cytokine receptors and their ligands include a 

series of extracellular proteins such as interferon (INF) and other cytokines, growth 

factors, hormones, and other polypeptides. The JAK/STAT signal transduction pathway 

plays key roles in normal physiological processes; however, during the multistep 

process of carcinogenesis, various pathological events result in constitutive activation of 

this pathway. This, during oncogenesis, up-regulates specific genes encoding functional 

proteins that are responsible for specific processes such as cell cycle regulation (cyclins 

D1/D2 and c-Myc), apoptosis inhibition (Bcl-xL and Mcl-1), and neoangiogenesis 

(VEGF) (Arumuggam et al., 2015). 

 

1.2 Cisplatin chemoresistance 

 

Cisplatin or cis-diamminedichloroplatinum(II) is currently part of many 

therapeutic approaches against numerous types of cancer (Non-small cell lung cancer, 

ovarian cancer, squamous cell carcinoma of the head and neck, bladder cancer, 

testicular cancer and cervical cancer and malignant mesothelioma) (NCI, 2015).  

 

Cisplatin undergoes aquation to form [Pt(NH3)2Cl(OH2)]+ and [Pt(NH3)2(OH2)2]2+ 

once inside the cell, while the low cellular concentration of chloride ions facilitates this 
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process; the aquated form is more reactive to the cellular targets. Although many 

cellular components interact with Cisplatin, DNA is the primary biological target of the 

drug (Jamieson et Lippard. 1999). The platinum atom of Cisplatin forms covalent bonds 

to the N7 positions of purine bases to afford primarily 1,2- or 1,3-intrastrand crosslinks 

and a lower number of interstrand crosslinks. 

Cisplatin modifications distort the structure of the DNA duplex. Intrastrand 1,2-

crosslinks bend it significantly towards the major groove, exposing a wide, shallow 

minor groove surface to which several classes of proteins bind. These include high-

mobility group (HMG) box proteins, repair proteins, transcription factors and other 

proteins such as histone H1 that preferentially recognize 1,2-intrastrand crosslinked 

platinum–DNA adducts (Jamieson et Lippard. 1999). 

DNA damage caused by Cisplatin modulates several signal transduction pathways 

already outlined, among which: AKT (v-AKT murine thymoma viral oncogene 

homologue), c-ABL (v-abl Abelson murine leukemia viral oncogene homologue 1), p53 

and MAPK (mitogen-activated protein kinase)/JNK (c-Jun NH2-terminal kinase)/ERK 

(extracellular signal-regulated kinase) (Wang et Lippard. 2005). 

 

Several mechanisms can limit Cisplatin efficacy in chemotherapy, leading to resistance 

as reported in Figure II:  

 

 Pre-target resistance (decrease of Cisplatin binding to its transporters); 

 On-target resistance (increase of efficacy and expression levels of DNA 

repairing mechanisms and related proteins); 

 Post-target resistance (disruption of apoptotic signaling pathways); 

 Off-target resistance (stimulation of survival signals which antagonize Cisplatin 

cytotoxicity). 
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Figure II. Molecular mechanisms of Cisplatin resistance 

 

 

1.2.1 Pre-target resistance 

 

There are two mechanisms by which cancer cells can elude Cisplatin 

cytotoxicity before it binds to cytoplasmic targets and DNA: (1) a reduced intracellular 

accumulation and (2) an increased sequestration by GSH, metallothioneins and other 

cytoplasmic proteins with nucleophilic properties. 
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For a long time, Cisplatin was believed to enter cells prominently by passive diffusion 

across the plasma membrane, mainly because the uptake of Cisplatin, which is highly 

polar, is relatively slow when compared with that of chemically similar anticancer 

agents that are actively transported; however several transporter were discovered to 

mediate Cisplatin influx and efflux from the cell. The two most important transporters 

involved in this process are the copper transporters CTR1 and CTR2 (encoded by the 

SLC31A gene, 1 and 2, respectively), whose altered levels of expression or 

functionality are associated with Cisplatin resistance (Katano et al,. 2002, Huang et al,. 

2014). Other transporters, involved in either the uptake or extrusion of Cisplatin from 

cells, have been indicated as possible mediators of Cisplatin resistance. They include 

members of ABC proteins (Cui Y. et al. 1999, Ohishi et al., 2002, Korita et al., 2010), 

solute carriers, such as members of the SLC22 family (Koepsell et Endou, 2004), or 

MATE (SLC47) transporters (Moriyama et al., 2008, Yonezawa et al., 2006; Yokoo et 

al., 2007). Particular attention also deserve two P-type ATPases, ATP7A and ATP7B, 

whose altered expression and localization has been linked to the occurrence of Cisplatin 

resistance in ovarian cancer (Kalayda et al., 2008).  

 

1.2.2 On-target resistance 

 

The sensitivity of cancer cells to the genomic cytotoxic effects of Cisplatin is 

limited in the presence of a proficient DNA repair apparatus. In particular, the 

nucleotide excision repair (NER) system is believed to resolve the majority of DNA 

lesions provoked by Cisplatin although components of the mismatch repair (MMR) 

machinery have also been implicated in this process (Kunkel et Eire. 2005; Furuta et al., 

2002). 
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Cisplatin DNA adducts can engender double-strand breaks (DSBs), which are normally 

repaired along with DNA synthesis via homologous recombination (HR) (Smith et al., 

2010). Accordingly, HR-deficient neoplasms, such as those bearing loss-of-function 

mutations in the genes encoding breast cancer 1, early onset (BRCA1) or breast cancer 

2, early onset (BRCA2), are generally more susceptible to the genotoxic effects of 

Cisplatin than HR-proficient cancers of the same kind (Farmer et al,. 2005). 

It’s important to remember that Cisplatin exert important effect on cytoplasmic 

components (mitochondria, ER and lysosomes) that account for its extranuclear 

toxicity, these molecules, as well as the enzymatic systems that regulate their 

preservation/turnover, may also be involved in the development of on-target resistance 

(Sancho-Martínez et al,. 2012). 

 

While Cisplatin forms more stable adducts with DNA than with RNA (Nafisi et 

Norouzi. 2009), aquated Cisplatin was shown to react faster with hairpin RNA 

molecules than with analogous DNA hairpins or ssDNA in vitro (Papsai et al,. 2008). 

Still, Cisplatin-induced damage to the translational machinery appears to be more 

complex than simple platination of rRNAs. The results of in vitro experiments 

demonstrated that Cisplatin inhibited translation via its interaction with mRNA and 

formation of high-molecular weight adducts from cross-linked mRNA and rRNA 

species (Heminger et al,. 1997). These Cisplatin-RNA interactions are likely responsible 

for the inhibition of translation in its initiation and/or elongation phases (Heminger et 

al,. 1997). 

 

Due to their reactivity with sulfur-containing nucleophiles, Cisplatin and its aquated 

species form Pt-S adducts with various sulfur-containing amino acids, peptides and 

proteins, including glutathione and metallothioneins (Alderden et al., 2006), in which 
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the most relevant binding sites are represented by sulfur atoms of cysteine or 

methionine residues (Zimmermann et al,. 2009). High reactivity of thiol- and thioether-

containing amino acids, peptides and proteins combined with their high cellular 

abundance is responsible for the fact that Cisplatin-protein interactions account for the 

majority of adducts formed in Cisplatin-treated cells. Moreover, available evidence 

points out that these Cisplatin-protein interactions may be significantly involved in 

Cisplatin toxicity and resistance of cancer cells against this anticancer agent (Mezencev. 

2015). 

 

Exposure of cells to Cisplatin causes characteristic mitochondrial alterations leading to 

the activation of the intrinsic pathway of apoptosis and other signals leading to cell 

death (Servais et al., 2008). When mitochondria are appropriately primed by Cisplatin, 

the outer transmembrane potential is dissipated and the permeability of the outer 

membrane is increased. As a result cytochrome c, which then binds apoptosis protease-

activating factor-1 (apaf-1) and other proteins to form the complex known as 

apoptosome, is release into the cytosol and can activate apoptosis (Yuan et al., 2010). In 

addition to that, Cisplatin has also been linked to ROS over-production. Treatment with 

Cisplatin inhibits antioxidant enzymes, including superoxide dismutase (SOD), catalase, 

glutathione peroxidase, glutathione S-transferase and glutathione reductase (Kadikoylu 

et al., 2004) in kidney tissues, which may explain the depletion of GSH observed. 

Excessive ROS production leads to mitochondrial and cellular oxidative stress. Through 

the cell, ROS damage many macromolecules including DNA, proteins and lipids, which 

are associated to cell death (Masgras et al,. 2012). 

Lysosomes seem to play a significant role in Cisplatin cytotoxicity. This is supported by 

the relationship between lysosomal and endosomal trafficking, lysosomal handling of 

Cisplatin and Cisplatin cytotoxicity. This central role might be due to 1) primary deadly 
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signaling that originated in the lysosomes as a consequence of Cisplatin accumulation 

or targeting; or 2) delivery of Cisplatin to other subcellular structures or organelles from 

which deadly signaling starts. In this sense, it has been shown that Cisplatin causes 

lysosomal membrane permeabilization accompanied by apoptosis (Appelqvist et al., 

2011), and that cathepsin D is involved in this process (Emert-Sedlak et al., 2005). 

 

ER stress seems to be an important mechanism of Cisplatin cytotoxicity, at least in 

many cell types. Treatment with Cisplatin activates ER stress markers (Grp78, 

GADD153/CHOP, calpain, caspase 12/human caspase 4, cytosolic Ca2+ increase, etc.) 

in cultured cancer cells (Kim et al., 2011). Aquated forms of Cisplatin react with 

nucleophilic sites of macromolecules including proteins; it has been shown that 

Cisplatin can bind and disrupt the proper folding of many proteins, including albumin 

(Ahmed-Ouameur et al., 2006) by attacking disulphide bonds. Because Cisplatin 

accumulates in the ER, it is conceivable to think that some direct ER stress might arise 

from disturbing protein folding. 

 

1.2.3 Post-target resistance  

 

Intracellular stress conditions, such as those induced by Cisplatin, promote the 

rapid activation of an integrated adaptive response aimed at the re-establishment of 

cellular homeostasis. This is generally accompanied by the emission of anti-apoptotic 

signals and only when homeostasis cannot be restored (when stress conditions are 

excessive in intensity or duration) lethal signals are transmitted, leading to cell death. 

For Cisplatin, these signals consist in the switch of the DNA damage response from a 

cytoprotective to a cytotoxic mode, followed by the activation of BAX and BAK1163 

or the accumulation of ROS and consequent permeability transition pore complex 
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opening (Mandic et al,. 2001). Both these processes eventually promote the functional 

and physical breakdown of mitochondria followed by the activation of caspase-

dependent and independent mechanisms of cell death. Thus, post-target Cisplatin 

resistance has been associated not only with genetic and epigenetic alterations that 

impair p53 signaling but also with defects in several other pro-apoptotic signal 

transducers, including mitogen-activated protein kinase 14 (MAPK14, known as 

p38MAPK) and c-Jun N-terminal kinase 1 (JNK1) (Brozovic et al., 2004). Along 

similar lines, post-target Cisplatin resistance appears to be significantly influenced by 

the expression levels and functional status of BCL-2 family members and caspases 

which have a major role in the execution of apoptotic cell death (Tajeddine et al., 2008).  

 

1.2.4 Off-target resistance  

 

The susceptibility of cancer cells to Cisplatin can also be limited by molecular 

circuitries that deliver compensatory survival signals even though they are not directly 

activated by the drug. For example, the overexpression of v-erb-b2 avian erythroblastic 

leukemia viral oncogene homolog 2 (ERBB2) has been suggested to promote Cisplatin 

resistance not only by delivering pro-survival signals via AKT signaling axis, but also 

by finely regulating the transitory cell cycle arrest that is required for the repair of 

Cisplatin-induced DNA lesions (Fijołek et al,. 2006). 

Various components of the autophagic machinery and several chaperones of the heat-

shock protein (HSP) family are reported to impair the cytotoxic response of cultured 

cancer cells to Cisplatin (Yu et al,. 2011). Moreover, the expression levels of HSP27 

may constitute predictive biomarkers of clinical responses to Cisplatin in esophageal 

squamous cell carcinoma patients (Miyazaki et al,. 2005). 

 



22 

1.2.5 Role of ion channels in Cisplatin chemoresistance 

  

Ion channels are integral membrane proteins that mediate the influx/efflux of 

essential signaling ions into/from the cell or intracellular organelles, thereby controlling 

cytoplasmic/intraorganellar ion concentrations, membrane potential and cell volume. 

Numerous studies have demonstrated the involvement of different ion channels in the 

regulation of fundamental cellular processes, such as proliferation and apoptosis (Lang 

et al., 2005 ; Bortner et Cidlowski. 2014)  

Changes in cell volume and ion gradients across the plasma membrane play a pivotal 

role in the initiation of apoptosis. In Ehrlich ascites tumor cells (EATC) Poulsen and 

colleagues found that in wild type cells the induction of apoptosis after Cisplatin 

treatment leads to an apoptotic volume decrease (Poulsen et al., 2010). This 

phenomenon was coupled to net loss of Cl
−
, K

+
, Na

+
, and aminoacids. Comparing these 

results with EATC Cisplatin resistant cells, the authors found an increase cell viability, 

less caspase 3 activation, less pronounced AVD connected to a decrease in Cl
-
 loss and 

an increase NaCl uptake. All these data can be linked to a Cisplatin-induced 

malfunctioning of Na/K ATP-ase (Panayiotidis et al. 2006). A reduction of anion 

currents, like chloride channels, has proven to be a common characteristic of 

chemoresistance to Cisplatin and beyond, in various tumor cell lines (Poulsen et al,. 

2010; Hoffmann et Lambert. 2014). This volume reduction seems to play an important 

role in human epidermoid cancer KB cells while, in Cisplatin resistant KCP-4, which 

lack the expression of Cl
-
 channels, after a specific treatment with histone deacetilases, 

Cisplatin resistance can be reduced (Shimizu et al., 2008).    

Na
+
-dependent transporters for organic osmolytes contribute to the volume reduction 

connected to Cisplatin response, while overexpression of the taurine transporter TauT 

protects kidney cells against Cisplatin-induced apoptosis (Han et Chesney. 2009).  
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Recently also calcium modulated potassium channels like KCa3.1 have been correlated 

to modulating Cisplatin resistance; Lee and colleagues demonstrated that its block with 

clotrimazole and TRAM-34, or its suppression with a dominant-negative construct, is 

linked to a reduction in Cisplatin sensitivity in epidermoid cancer cell line KB-3-1 

while, in multi-drug resistant KCP-4, KCa3.1 presence was greatly reduced both as 

level of protein expressed and the related IK current (Lee et al. 2008).  

Another potassium channel, hERG1, has been correlated to Cisplatin induced apoptosis 

in gastric cancer; Cisplatin activity seem to induce an overexpression of this channel 

and its silencing promotes a reduction of Cisplatin effect of apoptotic proteins Bcl-2, 

Bax and on caspase-3 activation, reducing apoptosis  (Zhang et al. 2012). 

Cisplatin has been correlated to an induction of apoptosis also by increasing 

mitochondrial membrane permeability, modulating the expression level of MTP protein 

in cervical and colorectal human cell lines. This has been correlated with dissipation of 

mitochondrial electron membrane potential, with production of reactive oxygen species 

(ROS), with Bax translocation, with the release of apoptotic signals (ex. cytochrome C) 

and by caspase activation (Sharaf el dein O. et al., 2012). 

Aquaporin role in modulating Cisplatin resistance is still controversial, Shi and 

colleagues point out that AQP5 knockdown in HT-29 colorectal cell line, is linked  to 

an increase in MAP-kinase p38 activation and an acquired resistance (Shi et al,. 2014). 

However Trigueros-Motos and colleagues, examining AQP3 gene, (linked to a 

compensatory response to a volume decrease following doxifluridine and gemcitabine 

treatment) found an increase expression of this gene but this effect was not linked to 

Cisplatin treatment (Trigueros-Motos et al., 2012). Acquaporins seems to be affected by 

Cisplatin treatment in ovarian carcinoma: Xuejun and colleagues found that aquaporin 1 

levels were diminished after Cisplatin treatment while aquaporins 3 and 8 were 

upregulated in SKOV3 cell (Xuejun et al,. 2014). 
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TRP channels also seem to be involved in modulating chemoresistance; they normally 

mediate a flux of calcium and magnesium, but also of metallic bivalent cations as zinc, 

copper, cadmium and iron. Many studies found that they can mediate a relevant 

Cisplatin uptake and that this drug is even able to influence their expression levels 

(Bouron et al., 2015).  

 

Progressive understanding of the molecular mechanisms which regulate the 

establishment and progression of different tumors is leading to ever more specific and 

efficacious pharmacological approaches. In this picture, ion channels represent many 

unexpected, but very promising, different players even in understanding 

chemoresistance mechanisms in cancer and they can be efficacious players in 

overcoming this phenomenon.   

 

1.3 Cisplatin analogues 

 

Cisplatin is a very effective cancer drug and it’s still use in treatment of bladder 

cancer, cervical cancer, malignant mesothelioma, non-small cell lung cancer, ovarian 

cancer, testicular cancer and squamous cell carcinoma of the head and neck (NCI, 

2015). However it presents non only problems of resistance but of toxicity to kidney 

(nephrotoxicity), nervous system (neurotoxicity), to the ear (ototoxicity) and to bone 

marrow (myelotoxicity). Several analogues have been developed during the last 30 

years to overcome Cisplatin resistance, increase efficacy and to lower side effects, 

among which carboplatin, oxaliplatin, satraplatin and picoplatin have been identified as 

the most effective (Kelland. 2007). 

Carboplatin is a chemotherapeutic drug used for cancers of ovaries, lung, head and 

neck. In terms of its structure, carboplatin differs from Cisplatin because it has a 
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bidentate dicarboxylate ligand in place of the two chloride ligands, which are the 

leaving groups in Cisplatin. It exhibits lower reactivity and slower DNA binding 

kinetics, although it forms the same reaction products in vitro at equivalent doses with 

Cisplatin (Wheate et al,. 2010). Compared to Cisplatin, the greatest benefit of 

carboplatin is its reduced side effects, particularly the elimination of nephrotoxic 

effects; the main drawback of carboplatin is its myelo-suppressive effect which is very 

strong (Dasari et Tchounwou. 2014). 

Oxaliplatin is currently approved for the treatment of adjuvant and metastatic colorectal 

cancers when used in combination with 5-FU and folinic acid (FOLFOX regimen). 

Recent clinical trials have tried to extend its spectrum of activity to include the 

treatment of metastatic gastric and oesophago-gastric adenocarcinoma, and improve its 

effectiveness against colorectal cancers through its administration with different drugs 

such as irinotecan and capecitabine. Oxaliplatin has proven less ototoxicity and 

nephrotoxicity than Cisplatin and carboplatin (Passetto et al., 2006). 

Satraplatin is an  orally active platinum drug that has shown anti-cancer activity against 

several platinum sensitive and resistant cell lines including human lung, ovary, cervix 

and prostate and is undergoing a variety of Phase I, II and III clinical trials in 

conjunction with various drugs such as docetaxel in the treatment of prostate cancer, 

paclitaxel in the treatment of NSCLC and capecitabine to treat advanced solid tumors 

(http://www. clinicaltrials.gov). 

Picoplatin was designed  primarily  to  circumvent  glutathione-mediated  drug 

resistance mechanism. In vitro studies demonstrated picoplatin ability to overcome 

platinum drug resistance, showing anticancer activity in Cisplatin, carboplatin and 

oxaliplatin resistant cell lines (Wheate et al., 2010). Picoplatin is currently undergoing 

various Phase I and Phase II studies as a treatment for colorectal cancer in combination 



26 

with 5-FU and leucovorin, in combination with docetaxel for prostate cancer and as a 

treatment for patients with progressive or relapsed NSCLC (Wheate et al., 2010). 

 

While thousands of analogues of Cisplatin have been prepared and tested so far, quite 

surprisingly the immediate parent Pt compounds that are obtained through simple 

replacement of the two chlorides with different halides as metal ligands (in particular 

the diiodido and dibromido derivatives) have been poorly investigated. Most likely, this 

situation arises from the early misconception and/or generalization that chloride 

replacement with other halides will result into substantial loss of the anticancer activity 

(Wilson et Lippard. 2014). These arguments led us to explore this kind of modification 

in a more systematic way and analyze its chemical and biological consequences.  

 

 

1.4 Chemotherapeutic drugs used for CRC treatment  

 

The most used chemotherapeutic drugs for treatment of colorectal cancer are: 

 

o 5-Fluorouracil (5-FU): is an analogue of pirimidine, classified as an 

antimetabolite. It can alter DNA synthesis inhibiting thymidylate synthase. 

Interrupting the action of this enzyme blocks synthesis of thymidine, required 

for DNA replication. Thymidylate synthase methylates deoxyuridine 

monophosphate (dUMP) to form thymidine monophosphate (dTMP) 

Administration of 5-FU causes a scarcity in dTMP, so rapidly dividing 

cancerous cells undergo cell death (Longley et al,. 2003). The overproduction of 

the enzyme itself, the changings in the sequence of its target as well as the 

reduction of activating enzymes are the principle mechanisms of resistance 
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(Longley et al., 2003). The main collateral effect of 5-FU are: nausea, vomit, 

diarrhea, photosensitivity, headache, cardiotoxicity, mucositis and hear loss 

(Hwang, 2004). 5-FU is metabolized by the liver and excreted by the kidney; its 

half-life is very short, several minutes. It’s usually administrated in therapeutic 

combinations with folic acid. 

o Capecitabine: it’s a pro-drug which is converted in 5-FU and acts in the same 

way by inhibiting DNA synthesis; it’s used in combination with other 

chemotherapeutic drugs including Cisplatin and oxaliplatin (Gustavsson et al., 

2015).  

o Folinic acid (leucovorin): it’s a drug used in chemotherapy with methotrexate, 

otherwise in combination with 5-FU for treatment of CRC because of its pro-

inhibition effects of thymidylate synthase. It can be administrated by mouth, 

intravenous or intramuscular injection. In 2004, the Multicenter International 

Study of Oxaliplatin/5-FU/Leucovorin in the Adjuvant Treatment of Colon 

Cancer (MOSAIC) trial demonstrated that the addition of oxaliplatin to 5-

FU/Leucovorin improved both DFS and OS in patients with stage III colon 

cancer (André et al., 2004). 

o Irinotecan: it’s a chemotherapeutic pro-drug and it’s converted by the liver by 

hydrolysis in SN-38, the active form. Once activated, SN-38 inhibits the 

topoisomerase I and DNA replication, inducing apoptosis. it’s used in 

combination with 5-FU and irinotecan in the regimen FOLFIRI in CRC therapy 

(Gustavsson et al., 2015). 

o Oxaliplatin: it’s capable of interfering with all cell cycle phases and, being an 

alkylating antineoplastic agent, to bind to DNA and induce apoptosis. Cisplatin 

forms covalent adduct with purine DNA bases and induce double strand breaks 

of DNA stands; this interaction is the root cause for its cytotoxic effect (Yousef 
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et al., 2009). It can induce acute and delayed toxic effects as: myelotoxicity, 

nephrotoxicity, nephrotoxicity, nausea, vomit and hear loss (Tsang et al,. 2009).  

 

In CRC 5-FU, capecitabin, leucovorin are used in stages  II, III e IV (TNM), while 

oxaliplatin, the most common Cisplatin analogue with carboplatin, only in stages III and 

IV and the irinotecan only in stage IV (Ragnhammar et al,. 2001) (Table I). 

 

TNM Stage Chemotherapeutic drugs 

0 None 

I None 

II 5-FU, leucovorin and capecitabin 

III 5-FU, leucovorin and capecitabin, oxaliplatin 

IV 5-FU, leucovorin and capecitabin, oxaliplatin, irinotecan 

 

Table I. Chemotherapeutic drugs used in CRC cancer divided for TNM stages. 

 

 

1.5 Ion channels 

 

Ion channels are proteins formed by different transmembrane subunits 

assembled to form a pore for the selective entrance of a specific ion. They are involved 

in determining the cellular rest potential and have a crucial role in the insurgence of 

action potentials, in secretion of various neurotransmitters or specific proteins 

(hormones, mucins, enzymes, sebum), in regulating cell volume and in many other 

cellular processes.  
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They are located on cell membranes of all cellular types and, with ion transporters (e.g. 

sodium-potassium pump, sodium-calcium exchanger, etc), of the two classes of 

ionophore proteins. 

The play a crucial role for cancer cells in regulating cell volume, migration, cell cycle 

progression and apoptosis (Figure III). They can be regulated by many factors among 

which growth factors and hormones; their expression is in many cases altered in cancer, 

so they can be exploited as promising therapeutic targets.  

  

 

 

Figure III. Ion channels in regulating cellular homoeostasis  

 

1.5.1 Structure and classes of ion channels  

 

Ion channels are composed of different subunits that are organized to form a 

central pore in the cell membranes; inside it there are several amino acids which, thanks 

to their charge and spatial conformation, give to pore of the channel its selectivity to a 

specific ion. On the basis of what modulates the opening probability of an ion channel, 
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two different superfamilies are distinguished: voltage-gated and ligand-gated ion 

channels; the first type is modulated by changes in membrane potential, while the other 

opens after binding a specific molecule, which constitutes its ligand (Kunzelmann. 

2005). Another possibility is to classify ion channels by the ion which fluxes inside 

them; they can be distinguished: chloride channels, sodium channels, potassium 

channels, calcium channels, proton channels and non-selective cation channels. 

 

1.5.1.1 Ca2+channels 

 

Voltage gated Ca
2+ 

channels are tetrameters formed by four subunits: α1, α2, β, 

γ. Channel pore is located between the four homologous membrane-spanning domains 

(I–IV) of α subunit bridged intracellular loops (Van Petegem et Minor. 2006).  

Ca
2+

 is a ubiquitous second messenger, and is an important signalling molecule for 

several fundamental cell processes including cell cycle control, migration, and 

apoptosis. Regulation of intracellular Ca
2+

 involves both Ca
2+

 entry from the 

extracellular space and Ca
2+

 release from intracellular stores in the endoplasmic 

reticulum (ER) or mitochondria. Ca
2+ 

signalling is fundamental in wide range of cellular 

and tissue functions as cardiac potential, muscular contraction, secretion, learning 

processes and long term memory, depolymerization of actin filaments, inhibition of 

Na+/ H+ exchanger or co-transport of Na+, K+, 2Cl- with the consequential regulation 

of cell volume, fundamental in regulating cellular proliferation (Berridge et al. 2003).  

In cancer, not only the proliferation of tumour cells stops depending solely on external 

growth signals via development of significant growth autonomy (Prevarskaya et al., 

2010), but Ca
2+

-signalling undergoes profound remodelling to favour activation of Ca
2+

-

dependent transcription factors, such as the nuclear factor of activated T cells (NFAT), 
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c-Myc, c-Jun, c-Fos which promote hypertrophic growth via induction of the expression 

of the G1 and G1/S phase transition cyclins (D and E) and associated cyclin-dependent 

kinases (CDK4 and CDK2) (Roderick et Cook. 2008). Calcium is also important in 

cancer cells in regulating apoptosis, cell migration and invasion as well as in promoting 

tumoral neo-vascularization. 

Many Ca
2+

-transporters have been implicated in all these processes, including SERCA, 

the Golgi network secretory pathway  and plasma membrane PMCA Ca
2+

-ATPases, the 

inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) as well as 

Ca
2+

 release channels of the endoplasmic reticulum as STIM and ORAI, T-type voltage-

gated calcium channels (VGCCs), various TRP-members, such as TRPV6, TRPC1, 

TRPC3 and TRPC6, TRPM2, TRPM7 and TRPM8 (Prevarskaya et al,. 2014).   

 

1.5.1.2 Na+ channels 

 

Voltage-gated sodium channels (VGSCs) are trimers  formed by 3 subunits: α, 

β1 and β2. The core of the channel is constituted by the α subunit, while the others have 

regulatory functions. VGSCs are responsible for the rising phase of the action potential 

in the majority of electrically excitable cells and are therefore important in impulse 

generation and propagation; they comprise a multi-gene family of at least nine different 

functional members (NaV1.1–1.9) coding for the pore-forming α-subunits. There are 

also four auxiliary β-subunits, of which one or two at a time can associate with an α-

subunit and modulate channel expression and activity in the plasma membrane. Several 

individual NaV isoforms are differentially expressed in different human cancers; these 

include NaV1.5 in astrocytoma, breast and colon cancers (Chioni et al., 2010; Brisson et 

al., 2013; Driffort et al., 2014), NaV1.6 in cervical cancer, and NaV1.7 in breast, prostate 
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and non-small cell lung cancers (Fraser et al., 2014).  

 

1.5.1.3 K+Channels  

 

Potassium channels
 
are formed by four α subunits, each of them composed by 

six transmembrane segments, assembled to form the tetrameric structure of the pore of 

the channel. Several β subunits can be associated with alpha subunits, sometimes in a 

α4β4 stoichiometry with regulatory functions. They can be classified according to 

several criteria, including the stimulus to which they respond and their biophysical and 

structural properties, into four main families: voltage-gated K
+

 channels, calcium-

activated K
+

 channels, inward-rectifier K
+

 channels and two-pore-domain K
+

 channels.  

Potassium currents play a key role in multiple cellular functions such as the 

maintenance of resting membrane potential and the active repolarization of the action 

potential, the regulation of cell volume, differentiation, proliferation, migration and 

apoptosis. Therefore, K
+

 channels control the electrical excitability of nerves and 

muscles, affect neurotransmitter and insulin release, and modulate the immune response 

and other physiological processes (Niemeyer et al., 2001). Potassium channels are 

widely distributed in a variety of healthy and cancer cells. They are involved in 

physiological cell proliferation and neoplastic growth as well as tumor progression and 

malignancy.  

Overexpression of KV1.1 has been reported in medulloblastoma (Northcott et al., 2012), 

elevated KV1.3 can be detected in multiple solid tumors as breast, colon, and prostate 

cancer (Comes et al., 2013). Altered expression of the intermediate-conductance 

calcium activated channel KCa3.1 has also been shown in glioblastoma (Catacuzzeno et 
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al., 2012). KV1.5 channels are dysregulated in different types of cancers including 

lymphomas, astrocytomas, oligodendrogliomas and glioblastomas (Comes et al., 2013). 

Expression levels of KV10.1 (EAG1, voltage gated eag related subfamily H, member 1) 

are lower in glioblastoma multiforme and in malignant brain tumors and its expression 

is inversely related to cancer malignancy (Patt et al., 2004). Human ether-a-go-go 

related gene (hERG) K
+

 channel, also known as KV11.1, is constitutively expressed in 

neuroblastoma, and a molecular complex between β1-integrins and hERG channels 

regulates adhesion-dependent differentiation of neuroblastoma cells (Cherubini et al., 

2005).   

 

1.5.1.4 Chloride channels 

 

Chloride channels are ubiquitously expressed, being localized both in plasma 

membrane and in intracellular organelles. They have many different functions as the 

regulation of electrical excitability, trans-epithelial fluid transport, ion homeostasis, pH 

levels, and cell volume regulation, the latter being particularly important for cancer cells 

migration and infiltration (Jentsch et al.,2002). 

ClC-3 is a member of the ClC chloride channels and transporters family and it has been 

suggested to be a molecular component involved in activation of volume-sensitive Cl
−

 

currents and to be closely related to cell proliferation, migration, apoptosis, and 

acidification of synaptic vesicles (Zhang et al., 2013). Volume-activated chloride 

channels play a crucial role in the process of regulatory volume decrease (RVD) 

induced by hypotonic stresses. RVD is a phenomenon that contributes to cell shape and 

volume changes required for cell migration, and so it also has an important role in 
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cancer progression (Lang. 2007) as well as in the neoangiogenic process (Manulopolos 

et al., 2000).  

Calcium-activated chloride channels (CaCCs) play several important roles including 

epithelial secretion, olfactory transduction, membrane excitability, regulation of 

vascular tone, and photoreception (Hartzell et al., 2009). Calcium-activated chloride 

channel regulator 2 (CLCA2) is normally expressed in trachea and lungs and it has been 

shown that loss of CLCA2 expression in human breast cancer appears to be closely 

associated with tumorigenicity and that the expression of CLCA2 was down-regulated 

in colon cancer (Peretti et al., 2015).  

Volume-regulated anion channel VRAC (also known as VSOR or VSOAC) seems to 

play an important effect in modulating Cisplatin resistance as well. Especially VRAC 

subunits, LRRC8A or LRRC8D, were found to increase resistance against carboplatin 

and Cisplatin. This finding can be explained by an unsuspected role of VRAC in drug 

transport. This transport required the obligatory channel subunit LRRC8A and also 

depended on LRRC8D, a subunit that strongly increased VRAC’s permeability to 

Cisplatin/carboplatin (Planells-Cases et al., 2015).  

 

1.5.1.5 Ion channels as drug targets 

 

There are many approved K
+

 channel blockers used in the clinic for various 

indications. Imipramine, for example, was initially known for its major inhibitory effect 

on serotonin reuptake, norepinephrine reuptake and acetylcholine at the neural synapses 

in central nervous system. In preclinical studies imipramine inhibited proliferation of 

melanoma cells (Gavrilova-Ruch et al., 2002) and induced apoptosis in ovarian cancer 
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cells (Asher et al., 2011). By using bioinformatics-based drug repositioning, Jahchan 

and colleagues re-proposed imipramine to treat incurable Cisplatin-resistant small-cell 

lung cancer (SCLC), moving the drug into clinical studies for this new indication 

(Jahchan et al.,2013). Antiarrhythmic verapamil is effective against prostate cancer 

(Rybalchenko et al., 2001) and neuroblastoma  (Chen et al., 2014). As verapamil is also 

a calcium channel inhibitor, the anticancer effects of verapamil can be attributed to its 

combined inhibitory activity against potassium and calcium channels. The major 

concern for repurposing such anti-psychotic drugs for cancer is that they modulate one 

or more than one neurotransmitters like serotonin, histamine, norepinephrine and 

acetylcholine with high potency. Hence, such drugs need to be screened for their higher 

anti-cancer potency over antipsychotic use or if they can be prescribed cautiously to 

cancer patients.  

Another case is nifedipine, a potent blocker of L-type Ca
2+

 channels, which is one of the 

drugs indicated for the management of angina and hypertension. In vitro studies 

indicated that nifedipine reduces mitogenic effect of endothelin 1 (ET1) by blocking 

Ca
2+

 channels in lung cancer (Zhang et al., 2008). However, its anticancer activity is 

disputed (Largent et al., 2010), and since primary indication of nifedipine is 

hypertension, it cannot be used in hypotensive cancer patients as it may cause 

hypotensive shock.  

In general, in order to target ion channels it is important to understand the expression 

pattern and significance of expression of each of those variants in a specific cancer type 

as well as in normal tissue to avoid dangerous adverse effects. 
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1.5.2 hERG: structure and expression 

 

Among the ion channels which are part of Eag-related potassium channels, 

hERG (Human ether-à-go-go-related channel) is the most studied. This ion channel is 

best known for the repolarizing IKr current in the cardiac action potential. When this 

channel's ability to conduct electrical current across the cell membrane is inhibited or 

compromised, either by application of drugs or by rare genetic mutations, it can result in 

the so called long QT syndrome, a potentially fatal aritmic disorder which has made 

hERG1 inhibition an important antitarget which must be avoided during drug 

development (Sanguinetti et Tristani-Firouzi. 2006).  

hERG potassium channel, encoded by KCNH2 gene, comprises four alpha subunits, 

which form the channel's pore through the plasma membrane. Each hERG subunit 

consists of 6 transmembrane alpha helices, numbered S1-S6, a pore helix situated 

between S5 and S6, and cytoplasmically located N- and C-termini. The S4 helix 

contains a positively charged arginine or lysine amino acid residue at every 3rd position 

and act as a voltage-sensitive sensor. Between the S5 and S6 helices, there is an 

extracellular loop and “the pore loop”, which begins and ends extracellularly but loops 

into the plasma membrane; the pore loop for each of the hERG subunits in one channel 

face into the ion-conducting pore and is adjacent to the corresponding loops of the other 

three subunits; together they form the selectivity filter region of the channel pore. Near 

N-terminus a PAS domain is located which slow the kinetic of inactivation of the 

channel. (Morais Cabral et al., 1998) (Figure IV).  
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Figure IV. Structure of  hERG1 channel. 

 

KCNH2 gene expresses at least two alternative transcripts, KCNH2a and KCNH2b, 

coding for hERG1a and hERG1b proteins, respectively. hERG1b presents a shortened 

and distinct N terminus, of 34 amino acid residues. This domain determines the faster 

deactivation gating typically observed in hERG1b (Larsen et al., 2008). The relative 

abundance of these isoforms determines the kinetic properties of the rapid delayed 

rectifying K1 current (Larsen et Olesen, 2010). In cardiac myocytes both isoforms 

contribute to the rapid delayed rectifying K1 current although hERG1a tends to 

predominate (Larsen et Olesen, 2010). 

 

1.5.2.1 hERG and cancer 

 

hERG may be utilized as a potential tumor marker, given its expression in a 

variety of tumor cells and its absence from most non-cancerous human tissues. 

Specifically, hERG was detected in endometrial cancer and in colon carcinomas and 

hERG mRNA was sensitive and specific indicator for tumor malignancy. The 

prognostic value of hERG expression in tumors has been evaluated in several tissues; in 
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acute myeloid leukemia (AML) blasts, hERG K
+

 channel expression is associated with 

a 50% reduction of relapse-free and overall survival time compared with patients with 

hERG-negative AML (Pillozzi et al., 2007). Patients with esophageal squamous cell 

carcinomas similarly exhibit reduced survival when hERG is detected (Ding et al., 

2008) and in colon adenocarcinomas, there is a significant correlation between hERG 

K
+

 channel expression and invasiveness or dissemination. hERG is not detected in 

normal colonic mucosa while substantial hERG was found in patients with non-

metastatic and metastatic adenocarcinoma (Lastraioli et al., 2004).   

 

1.5.2.2 hERG inhibitors 

 

Many drugs have the ability to block hERG channel as cyclosporin a, used in 

bone-marrow transplantation and to prevent rejection of kidney, heart, and liver 

transplants (Lee et al., 2011), endoxifen, the active metabolite of tamoxifen (Chae et al., 

2015), paroxetine, an antidepressant drug of the selective serotonin reuptake inhibitor 

(SSRI), blocks the hERG by binding to the open and inactivated states of the channels 

(Lee et al., 2014) as well as many others (Durdagi et al., 2010). A selective block after 

treatment with E4031 has been related to a decrease in tumor proliferation in many 

types of cancer (Smith et al. 2002). This mechanism is induced by a cell cycle arrest and 

was proven in the cell line model of FLG 29.1 which went in a permanent block in 

G0/G1 phase after a prolonged treatment with hERG1 inhibitors (Pillozzi et al. 2002).  

Other drugs which exhibited a comparable effect in several vitro models are: 

astemizole, eritromicyn e vincrastine (blockers of G2 phase), terazosine, WAY 123398 

and cesium chloride (Jehle J. et al. 2011). Interestingly a novel pyrimido-indole 

compound, CD-160130, seems to block hERG1 channels with a higher efficacy for the 
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isoform b, with less effect on cardiac repolarization and could be a promising target to 

study the effect of hERG1 block without incurring in the long QT syndrome (Gasparoli 

et al., 2015). 

 

1.5.3 KCa3.1: structure and expression 

 

In human genome there are eight voltage-independent calcium activated 

potassium channels, one of large conductance (KCa1.1), three of low conductance 

(KCa2.1, KCa2.2 and KCa 2.3), one of intermediate conductance (KCa3.1, whose structure 

is reported in Figure 9) and four others KCa4.1, KCa4.2 and KCa5.1. They are operated by 

intracellular calcium levels, through calmodulin binding; identical to KCa2.x channels, 

KCa3.1 is composed of six transmembrane domains (S1–S6), with the pore loop located 

between S5 and S6, as well as cytoplasmic N- and C-termini (Jensen et al., 1998). 

Another mechanism was shown by Gerlach et al., who demonstrated the role of kinases 

in the regulation of KCa3.1 by showing that hydrolyzable ATP analogues, but not other 

nucleoside triphosphates, activated the channel via an increase in PoMAX without 

changing the apparent Ca
2+

 sensitivity (Gerlach et al., 2000). 

KCa3.1 was originally identified in epithelial and endothelial tissues, including colon, 

lung, kidney, prostate, placenta and salivary gland, as well, as in the immune system 

where it is expressed in thymus, spleen, lymphocytes, mast cells, macrophages and bone 

marrow (Jensen et al., 1998; Bradding et Wulff 2009). More recently, KCa3.1 has also 

been identified within sensory neurons and microglia, leading to the proposal that this 

channel may constitute a therapeutic target in the central nervous system for acute and 

chronic neurodegenerative disorders and for treatment of secondary damage after spinal 

cord injury (Bouhy et al., 2011). 
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KCa3.1 plays a key role in red blood cells volume regulation as the loss of K
+
 and Cl

−
 

allows erythrocytes to shrink as it moves through the capillaries (Hoffman et al., 2003); 

it is also co-expressed in vascular endothelia with KCa2.3 where these two channels play 

a key role in the endothelial derived hyperpolarizing factor (EDHF) response (Félétou. 

2009). 

Another of its crucial role is the regulation of T- lymphocytes during their activation: 

along with Kv1.3 channel it plays an important role in cell activation, migration, and 

proliferation through the regulation of membrane potential and calcium signaling 

(Bradding et Wulff 2009). In tumor cells its higly expressed in clear cell renal 

carcinoma (Rabjerg et al., 2015), malignant glioma (Turner et al., 2014), prostate 

cancer, hepatocellular carcinoma and endometrial and mammary carcinoma (Rabjerg et 

al. 2015).  

 

 

 

 

Figure V. Structure of KCa3.1. 
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1.5.3.1 KCa3.1 modulators 

 

Among KCa3.1 activators we found NS309, potent and selective for this channels 

compared to other members of the family (EC50 for KCa3.1 =20 nM; EC50 for KCa2.3 

=600 nM); unfortunately it has a low in vivo half-life, and it has a strong effect on 

hERG inhibition at 1μM (Strøbaek et al. 2004). Riluzole is another activator of KCa3.1 

(EC50= 1.49 µM) widely in use from 1995 for ASL treatment which not only has a 

relevant effect on all KCa channels but is able to block hERG (IC50= 50µM) and several 

Nav channels (Bellingham. 2011). From Riluzole template several other KCa3.1 

activators have been developed with a  higher specificity for this channel and less 

unwanted effects on others; one of these compounds is SKA-31, which is 10 times more 

potent than Riluzole and activates KCa2.1 with EC50= of 2.9 µM, KCa2.2 with an 

EC50=1.9 µM, KCa2.3 with EC50 = 2.9 µM, and KCa3.1 with EC50 = 260 nM 

(Sankaranarayanan et al. 2009). 

KCa2.3 and 3.1 are important players in regulating arterial blood pressure, they are both 

expressed by endothelial cells and by associated smooth muscular tissue; activators like 

SKA-31 have therefore demonstrated a relevant decrease on systemic arterial blood 

pressure with vasodilatation and bradycardic effects with potential role in hypertension 

treatment (Sankaranarayanan et al. 2009; Radtke et al. 2013).  

KCa3.1 can be the target of several inhibitor compounds; in KB tumoral epidermoid 

Cisplatin-sensitive cells this channels, activated after ipotonic stress, can be inhibited by 

drugs as clotrimazole and TRAM-34. This inhibition has not been reported in KCP4 

cells a KB-derived Cisplatin resistant cell line (Lee et al. 2008).  
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1.6 Colorectal cancer 

1.6.1 Epidemiology 

 

Colorectal cancer (CRC) is the third most common malignant neoplasm 

worldwide and the second leading cause of cancer deaths (irrespective of gender) in the 

United States (American Cancer Society, 2015). It is the second most common cause of 

cancer in women (9.2%) and the third most common in men (10.0%)  with it being the 

fourth most common cause of cancer death after lung, stomach, and liver cancer (World 

Health Organization, 2014). The highest incidence is reported in countries of Europe, 

North America, and Oceania, whereas incidence is lowest in some countries of south 

and central Asia and Africa (MM Center et al, 2009). 

 

 

 

 

Figure VI. Estimated age-standardized colorectal cancer incidence for men in 2012 (Ferlay et 

al., 2012). 
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In Italy there are almost 40 new cases every 100.000 inhabitants every year and with a 

stronger incidence among the population between 50 and 70 years; it arises more 

frequently in proximal colon (38,8%), distal colon (29,6%) and rectum (28,5%) 

(Robbins and Cotran 9
th

 edition). The CNESP (Centro Nazionale di Epidemiologia, 

Sorveglianza e Promozione della Salute) has registered from the 2008 a constant 

reduction of mortality in both sexes and a constant reduction in mortality rates; despite 

that CRC remains the second cause for tumor death in 2014 with almost 19.000 deaths 

in Italy (Airtum et Aoim, 2014). For incidence rates, 52.000 new diagnoses have been 

estimated in 2014 with a prevalence of 350.000 units and a cure fraction of 30% in men 

and of 44% in women (Airtum et Aoim, 2014). 

 

Figure VII. Summary of prevalence data of colorectal tumor in Italy. (Airtum et Aoim 2014).  
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1.6.2 Etiology 

 

Colorectal cancer is the result of a complex interaction of genetic and 

environmental factors; about 75% of patients with CRC have sporadic disease with no 

apparent evidence of having inherited the disorder. The remaining 25% of patients have 

a family history of CRC that suggests a hereditary contribution, common exposures 

among family members, or a combination of both (National Cancer Institute, 2015) 

 

1.6.2.1 Risk factors 

 

 Alimentary: the main hexogen risk factor is diet; recently the World Cancer 

Research Fund and the American Institute for Cancer Research reported that an 

excessive intake of red meat and meat-based preparations (Oostindjer et al., 

2014) together with obesity are contributory causes for developing colon cancer 

(National Cancer Institute, 2015); on the other hand a high consume of dietary 

fibers could be associated with a reduced risk of colorectal cancer (Kunzmann et 

al., 2015). 

 Not alimentary: Based on solid evidence, tobacco smoke is associated with 

increased incidence and mortality from CRC (National Cancer Institute, 2015), 

as  long term high alcohol consumption (more than 50 g/day) (Wang et al, 2015; 

National Cancer Institute, 2015), while regular physical activity is associated 

with a decreased incidence.  

 Other intestinal inflammatory diseases like Crohn's disease or ulcerative colitis 

(Freeman. 2008; Lindström et al., 2011) seems to have also an impact on CRC 

development.  
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 As for nonsteroidal anti-inflammatory drugs (NSAIDs), there are evidences 

which indicate that they have a positive role in preventing the development of 

CRC (Cuzick et al,. 2009; Flossmann et Rothwell, 2007) although there is also 

proof of the harm of their use which includes: upper gastrointestinal bleeding, 

chronic kidney disease and serious cardiovascular events such as myocardial 

infarction, heart failure, and hemorrhagic stroke (National Cancer Institute, 

2015). Despite that, Burn and colleagues found that in the CAPP2 randomized 

trial, 600 mg aspirin per day for a mean of 25 months substantially reduced 

cancer incidence after 55.7 months in carriers of hereditary colorectal cancer 

(Burn et al., 2011). 

 

 Genetic: hereditary forms of CRC have been associated with polyposic and non-

polyposic syndromes and specific related tumor suppressor and stability genes 

among which the familial adenomatous polyposis (APC), Lynch syndrome 

(MLH1,  MSH2, MSH6, PMS2 and EPCAM), Junior polyposis syndrome, 

(BMPR1A, SMAD4, MUTYH-associated polyposis (MHY) and Peutz-Jeger 

syndrome (STK11) are the most relevant (Jasperson et Burt. 2015; National 

Cancer Institute, 2015). 

 

 

 Hormonal: administration of estrogens and progesterone/progestins in 

postmenopausal women seems to induce a decrease of CRC risk (Barzi et al., 

2013). For this reason hormone replacement therapies (HRT) have been 

developed and they proved, in Women’s Health Initiative Trial, to reduce colon 

cancer risk of 56%. Furthermore the length of HRT intake and the combined 

effect of progesterone/progestins and estrogens has been related to a reduction of 
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adenoma recurrence and to the improve of the survival rates of  CRC patients 

(Schindler, 2007). 

 

1.6.3 Pathogenesis 

 

Colorectal cancer develops by a series of sequential modifications which 

precede the developing of a real neoplasia which are: hyperplasia, metaplasia, low-

grade dysplasia and high-grade dysplasia (Figure VIII).  

 

The probability that a polyp could evolve towards and invasive form of cancer depends 

on its histology type (tubulous or villous) and its dimensions. The risk is low (less than 

2%) for polyps inferior of 1.5 cm of diameter, intermediate for polyps of 1.5-2.5 (2-

10%) cm and high (>10%) for polyps larger than 2.5 cm of diameter 

(http://www.airc.it/tumori/tumore-al-colon-retto.asp). 

 

 

 

Figure VIII. Sequential modifications of colorectal mucosa which preceded the develop of 

CRC. 
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The most common histologic type of CRC is the adenocarcinoma (>90%) (Hamilton et 

al., 2010) and its invasiveness follow four different non consequential step: 

 Local invasion: from the mucosa the cancer can infiltrate connective and 

muscular tissue and then adjacent organs; 

 Lymphatic diffusion: Lymph node metastases are common when the primary 

tumor penetrates the muscolaris propria;  

 Hematic diffusion: the most affected organ is liver along with lungs, bones, 

adrenal glands, ovaries and brain; 

 Peritoneum: the second most frequent site of metastasis after the liver. 

 

1.6.4 Diagnosis  

 

The initial symptomatology of CRC is often aspecific, with modest alterations in 

bowel movements, followed by abdominal pains and sporadic intestinal bleeding. Right 

colon may increase its diameter and acquire a higher distensibility, while the faeces can 

have a more fluid consistency. Before giving clear signs of its presence, the tumor may 

grow very much in diameter with a continuous but not conspicuous bleeding; other 

symptoms may include, pain, anemia, bowel obstruction (less frequent unless the tumor 

arises near the ileocecal valve), and the presence of an abdominal mass. In left colon, 

which has a smaller diameter and contains more solid faeces, an eventual obstruction is 

more frequent and precocious, while a tumor which develops in the rectum produced a 

much more conspicuous bleeding and alterations of normal intestinal motility.  
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1.6.5 Prevention and staging 

 

An effective prevention is strongly suggested, especially after the age of 50, with 

a first level exam like the fecal occult blood test. According to the guidelines of the 

American College of Gastroenterology, the annual fecal immunochemical testing is the 

preferred colorectal cancer detection test (Lieberman et al,. 2012). If this exam will turn 

out to be positive the patients will undergo a colonoscopy as a second level 

examination. 

 

The main second level diagnostic exams for prevention of CRC are: 

 

 Endoscopy: may be executed for different segments of colorectal tract, with 

either a sigmoidoscopy or a colonoscopy. It’s the most reliable exam for CRC 

prevention, diagnosis and follow-up. With early detection and removal of 

intestinal polyps (benignus adenomas), it reduces the risk of developing 

colorectal cancer by up to 90 percent. In addition, early detection of cancer that 

is already present in the colon or rectum lead to better treatment outcomes and 

reduced chance of metastasis (Ro et al., 2015). 

 lower gastrointestinal series: also called barium enema, is a medical procedure 

used to examine and diagnose problems with the human colon. X-ray pictures 

are taken while barium sulfate fills the colon via the rectum.  

 computed tomography (CT): CT has high diagnostic value for the diagnosis of 

sporadic colon cancer using either water or carbon dioxide as intraluminal 

contrast agent, with sensitivity comprised between 82% and 96% (Ridereau-

Zins, 2014, Sibileau et al., 2014 and Soyer et al., 2012). It may be used to 

provide important information on tumor dimensions, diffusion to nearby tissues 



49 

and lymphnodes status and it’s equally used also to evaluate presence of a 

metastasis.  

 

 Nuclear magnetic resonance (NMR): NMR imaging has a major role for the 

local staging of rectal cancer (Hoeffel et al., 2014, Torkzad et al., 2014) although 

its use is not recommended to search for and to detect rectal cancer that has not 

been proven by rectoscopy.    

 

 Ecography: Abdominal ultrasound presents high sensitivity, specificity in the 

diagnosis of colon cancer and it’s used in combination with colonoscopy and 

rectoscopy to help the diagnosis (Martínez-Ares et al,. 2009).  

 

Correct staging is critical because treatment (particularly the need for pre-operative 

therapy and/or for adjuvant treatment, the extent of surgery) is generally based on this 

parameter. For colorectal cancer Duke’s classification, modified by Aster-Coller, is 

often used; it consist of six different stages:  

 

 A: tumor mass confined within the mucosa; 

 B1: tumor mass invading the muscolaris mucosae but not the muscolaris 

propria; 

 B2: tumor mass invading the muscolaris propria; 

 C1: as B1 stage but with positives regional lymph nodes; 

 C2: as B2 stage but with positives regional lymph nodes; 

 D: presence of metastasis 
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The most used tumor staging classification system however is TNM Classification of 

Malignant Tumors, a cancer staging notation system that gives codes to describe the 

stage of a person's cancer, when this originates with a solid tumor. For every kind of 

tumor four different stages exist (with the stage 0, referred to the “carcinoma in situ” 

phase), indicated with numbers from 1 to 4, in increasing level of graveness. 

The “T” parameter can vary from 1 to 4, depending on the extension of the primary 

tumor mass. It comprehends the “Tis” for an in situ carcinoma.  

The “N” parameter describes the regional lymph nodes status, if 0 they are free of 

neoplastic cells, otherwise the parameter may vary from 1 to 3 with an increasing 

invasiveness of tumoral cells.  

The “M” parameter indicates the presence (1) or the absence (0) of a distant metastasis. 

The following table compare the two systems and their stages.  

 

 

 

Table II. Principal methods of tumoral staging and their parameters  
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1.6.6 Therapy 

 

In the last ten years colon cancer therapy significantly improved and the median 

survival rates are nearly doubled as standard therapeutic options have been strictly 

linked to the stage of the carcinoma  (National Cancer Institute, 2015). 

 

1.6.6.1 Surgery 

 

Therapy for treatment of colorectal cancer always include a surgery intervention 

with the excision of the trait where the tumor has developed with or without 

anastomosis. Differently to what happened in the past, the surgery treatment nowadays 

tends to be a lot more conservative, with the preservation of bowel functionality (except 

for either older or high risk patients) and the OS rates are increased as well thanks to a 

more prompt diagnosis and the implementation of screening programs.  

In colon cancer, surgery is based on colectomy and resection of lymph nodes (West et 

al,. 2010) and in most cases, a laparoscopic intervention is possible (Lee et al., 2012). 

The evaluation of a minimum of 12 lymph nodes is considered a measure of surgery 

quality (Madoff, 2012). Resection must be complete to be curative, so other atypical 

nodes or ganglions outside the resection field should be biopsied or resected whenever 

possible (Binefa et al.,2014). 

 

1.6.6.2 Radiotherapy 

 

Radiation therapy uses high-energy radiation to shrink tumors and kill cancer 

cells. X-rays, gamma rays, and charged particles are types of radiation used for cancer 

treatment. The radiation may be delivered by a machine outside the body (external-
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beam radiation therapy), or it may come from radioactive material placed in the body 

near cancer cells (internal radiation therapy, also called brachytherapy). Systemic 

radiation therapy uses radioactive substances, such as radioactive iodine, that travel in 

the blood to kill cancer cells. It’s usually used in combination with chemotherapy with 

an adjuvant or neoadjuvant approach (Lawrence et al,. 2008). 

 

1.6.6.3 Chemotherapy 

 

Surgery is the main treatment for CRC cure, but in cases of stage III and IV, the 

administration of chemotherapy is often used for optimizing the chances of healing. 

Chemotherapy can be administrated prior to a surgery intervention to reduce the tumor 

mass (adjuvant therapy) or after to increase the survival rate by killing those cells could 

still be present and be undetected (neoadjuvant therapy). 
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2. AIM OF THE THESIS 

 

The aim of the present work was that of study two strategies to overcome 

Cisplatin chemoresistance in colorectal cancer: (1) to exploit K
+
 ion channels 

modulating agents as new therapeutic tools in order to increase Cisplatin therapeutic 

potential in colorectal cancer cells (2) to test two new Cisplatin-analogues, cis-Pt-I2 and 

cis-Pt-Br2, with increased selectivity in order to overcome resistance in a panel of tumor 

cell lines. 
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3. MATERIALS AND METHODS 

 

3.1 Cell culture  

 

Colorectal cancer (CRC) cell lines HCT-116, H630, HCT-8, HT29 and HCT-

116 p53-/- were cultured in RPMI-1640 medium (Euroclone; Milan, Italy), 

supplemented with 2mM L-Glut, 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin (complete medium). PANC-1, IGROV-1 and A549 were 

cultured in DMEM high glucose medium (Euroclone; Milan, Italy), supplemented 

with 4mM L-Glut, 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin 

(complete medium). HCT-116 and HT29 cells were kindly provided by Dr. R. 

Falcioni (Regina Elena Cancer Insitute, Roma). Cells were cultured at 37°C in a 

humidified atmosphere in 5% CO2 in air.  

 

3.2 Cell viability assay 

 

To evaluate the IC50 of each drug, cell viability was assessed through either the 

Trypan Blue exclusion test (Sigma-Aldrich) or the WST-1 cell viability assay (Roche 

Diagnostics, Mannheim, Germany). In any case, cells were seeded at 1x10
4
/well

 
in 96-

well plates (Costar Corning) in complete medium and incubated for 24h before drug 

addiction. Following drug addition, cells were further incubated for different times. 

When the Trypan Blue exclusion test was applied, cells were harvested and counted 

using a hemocytometer. For WST-1 assay, at the end of incubation the WST-1 reagent 

was added and absorbance was measured at 450 nm. All experiments were performed at 

least in duplicate. The IC50 values were calculated using Origin Software (Microcal 
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Origin 8.0 software; OriginLab Corporation, Nothampton, MA). To assess drug 

combinations, experiments were conducted following the diagonal constant ratio 

combination design, proposed by Chou and Talalay (Chou et Talalay. 1984).  

Briefly, cells were treated with mixtures of two drugs at their IC50 concentrations with a 

2-fold serial dilution (1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64) of the IC50s for 24h. Following 

incubation, cells were harvested and counted using a Bürker hemocytometer. All 

experiments were repeated at least in duplicate.  

 

3.3 Cell cycle analysis 

 

Cell cycle distribution was assessed by flow cytometry after staining the cells 

with propidium iodide (PI). Cells were seeded and treated with different drugs at their 

IC50 for 24h.  At the end of incubation, cells were harvested, washed with PBS and 

resuspended (5 × 10
5
 cells/ml) in 300 μl Propidium Iodide staining solution and 

incubated at 4°C in the dark for 20 minutes. The DNA content of the cells was 

measured by BD FACSCanto (Becton Dickinson, Franklin Lakes, NJ, USA) and the 

percentage of cells in each cell cycle phase was determined using ModFit LT 3.0 

analysis software (Verity Software House, Topsham, ME USA). 

 

3.4 Cell transfection  

 

HCT-116 cells were cultured as previously described. Twenty-four hours before 

transfection cells have been plated to be 50-70% confluent at the time of the 

experiment. Transfection has been performed using Lipofectamine 2000 reagent 

according to the manufacturer’s instruction with 1) KCNH2-siRNAs (44858 anti-herg1 

siRNA1 and 44762 anti-herg1 siRNA3, Ambion; Austin TX, USA) (100 nM final 



56 

concentration in total) 2) KCNN4-siRNAs (7801 anti-kcnn4 siRNA1 and 7803 anti-

kcnn4 siRNA3, Ambion; Austin TX, USA) (5 nM final concentration in total). As 

negative control cell lines has been transfected only with lipofectamine. 16 hours after 

transfection medium was changed and after 48 hours cells were collected for cell 

viability assay and proteins extraction as previously described.  

 

3.5 Annexin/PI assay 

 

Apoptosis was quantified using the Annexin V/propidium iodide test (Annexin-

VFLUOS staining kit; Roche Diagnostics, Mennheim, Germany). Cells, treated as 

above, were harvested after 24 hours of treatment with the different drugs (at their IC50 

value), washed with PBS, re-suspended in 100 μl of binding buffer and incubated with 

FITC-conjugated annexin V and propidium iodide for 15 min. Flow cytometry was 

performed using the BD FACSCanto (Becton Dickinson, Franklin Lakes, NJ, USA). 

Data were analyzed through the BD FACSDiva Software 6.1.3. Only for experiments 

concerning Cis-Pt-I2 the experiments were performed in the same conditions explained 

above, using Muse Annexin V and Dead Cell Assay (Merk Millipore, Billerica, MA) 

according to the manufacturer instructions and data were collected and analyzed with 

Muse Cell Analyzer (Merk Millipore, Billerica, MA). 

 

3.6 Immunofluorescence  

 

Immunofluorescence was performed applying the procedures detailed in 

Lastraioli et al., 2015, using the following primary antibodies: anti-hERG1 

(DivalToscana.Srl, dilution 1:1000), anti-KCa3.1 (Sigma –Aldrich AV35098, dilution 

1:1000), anti-KCa2.3 (Sigma –Aldrich P4747, dilution 1:1000). The secondary 
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antibodies used were the anti-mouse-Alexa-488 (Sigma –Aldrich, dilution 1:500) and 

anti-rabbit-Alexa-488 (Sigma –Aldrich, dilution 1:500). 

 

3.7 Total RNA extraction and Real time PCR 

 

Total RNA was extracted following the TRIzol® Reagent protocol. ATP7A, 

ATP7B, KCNA3, KCNH1, KCNH2, KCNMA1, KCNN3, KCNN4, SLC31A1 and 

SLC31A2 mRNAs were quantified by real-time quantitative polymerase chain reaction 

(RQ-PCR), using the PRISM 7700 sequence detection system (Applied Biosystems, 

Life Technologies, Carlsbad, CA, USA) and the SYBR Green PCR Master Mix Kit 

(Applied Biosystems) as in Pillozzi et al., 2007. 

Primers used are the following:  

ATP7A-F GCCTGCGTACGTGGATTTAT 

ATP7A-R TGGATCCATTTTGATTTCCTC 

ATP7B-F TCCAGACCACCTTCATAGCC 

ATP7B-R AGATCACAGCCAGAGAAGGG 

KCNA3-F TTGTCCTAGCAAAGCCACCT 

KCNA3-R CTCAGGATGGCCAGAGACAT 

KCNH1-F CCTGGAGGTGATCCAAGATG 

KCNH1-R CCAAACACGTCTCCTTTTCC; 

KCNH2-F ACGTCTCTCCCAACACCAAC 

KCNH2-R GAGTACAGCCGCTGGATGAT 

KCNMA1-F TCTTTGCTCTCAGCATCGGTG;  

KCNMA1-R CCGCAAGCCGAAGTAGAGAAG; 

KCNN3-F AAGCGGAGAAGCACGTTCATA 

KCNN3-R CTGGTGGATAGCTTGGAGGAA 
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KCNN4-F GCCTGTGCACTGGAGTCAT 

KCNN4-R CGTGCTTCTCTGCCTTGTTA 

SLC31A1-F GTGACGGGTTAAGATTCGGA 

SLC31A1-R TGGTGGGAATGATCCATTTT 

SLC31A2-F CAAACAGAAGCACCGCTGTA 

SLC31A2-R GAGGAGACCCGAGAGCAGAC 

 

 

3.8 Protein extraction and western blot (WB) 

 

Protein extraction and western blot (WB) were performed as described in 

Crociani et al., 2013. For the experiments 50 μg of total lysates were used. For hERG1 

and KCa3.1 detection, the anti-hERG1 (DivalToscana.srl, dilution 1:1000), anti-KCa3.1 

(Sigma -Aldrich AV35098, dilution 1:1000) and anti-KCa2.3 (Sigma -Aldrich P4747, 

dilution 1:1000) primary antibodies were used. Anti-rabbit peroxidase-conjugate 

(Sigma-Aldrich, dilution 1:10000) was used as secondary antibody. WB images were 

acquired with an Epson 3200 scanner, and the relative bands analyzed with ImageJ 

1.47v free software (developed at the National Institutes of Health). 

 

3.9 Patch-clamp experiments 

 

Membrane currents were recorded using the patch-clamp technique in the 

whole-cell configuration, at room temperature (25°C). Electrodes were pulled from 

borosilicate glass capillaries (i.d 0.86 mm, o.d. 1.5 mm; Harvard Apparatus, Holliston, 

MA, USA), using a PC-10 pipette puller (Narishige, Tokio, Japan). Electrodes typically 

had a resistance of 3-5 MΩ. Series resistance was always compensated up to 80%. 

Currents were amplified and filtered using a Axopatch-1D (Molecular Devices, 
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Sunnyvale, CA) equipped with pClamp hardware and software (pClamp 10.3). Currents 

were low-pass filtered at 5 kHz and digitized online at 10 kHz with pClamp (Axon 

Instruments) hardware and software. Data were subsequently analyzed with pClamp and 

Origin (Microcal Inc., Northhampton, MA, USA) software.  

For hERG1 currents recording pipettes contained (in mM): K
+
 aspartate 130, NaCl 10, 

MgCl2 2, CaCl2 2, Hepes-KOH 10, EGTA-KOH 10, pH 7.3. The extracellular solution 

contained (in mM): NaCl 95, KCl 40, CaCl2 2, MgCl2 2, Hepes-NaOH 10, Glucose 5, 

pH 7.4. High extracellular [K
+
] allows to increase the amplitude of inward hERG1 

currents, thus avoiding the necessity of applying excessively negative test potentials. 

The K
+
 equilibrium potential was -30mV. For Vrest measurement the extracellular 

solution contained (in mM): NaCl 130, KCl 5, CaCl2 2, MgCl2 2, Hepes-NaOH 10, 

Glucose 5, pH 7.4. 

For measurements of KCa3.1 channel currents, we used an internal pipette solution 

containing (in mM): K
+
aspartate 145, MgCl2 2, HEPES 10, K2EGTA 10, and CaCl2 

5.96 (250 nM free Ca
2+

) or 8.55 (1 μM free Ca
2+

), pH 7.2. Na
+ 

aspartate Ringer was 

used as an external solution: 160 mM Na
+
aspartate, 4.5 mMKCl, 2 mM CaCl2, 1 mM 

MgCl2, and 5 mM HEPES, pH 7.4 (as reported in Sankaranarayanan et al. 2009). 

KCa3.1 currents (250 nM free Ca
2+

)  were elicited by 200-ms voltage ramps from -120 

to +40 mV applied every 10 s, and the fold increase of slope conductance by drug was 

taken as an indication of channel activation, as reported in Sankaranarayanan et al. 

2009. hERG1 currents were elicited by a two-step protocol, pre-conditioning the cell for 

8 s at membrane potentials of 0 mV and  -70 mV and then testing the tail current at -120 

mV (for 450 ms). The effect of Riluzole was determined on maximal hERG1 tail 

currents (i.e. after conditioning at 0 mV). The current-voltage relationship for hERG1 

was determined from peak tail currents at 2120 mV (for 1.1 second), following 15 
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second conditioning potentials from 0 to270mV (10mVsteps). The time between 

consecutive trials in the same stimulating protocol was 4 seconds. The holding potential 

(VH) was 0 mV. The same stimulation protocol was used to determine the 

concentration-response relationships for Cisplatin, Riluzole and SKA-31. For clarity, in 

Figure 12 and 13, we only reported the drug effect on the tail currents elicited after 

conditioning at 0 mV. 

 

 

3.10 Cisplatin uptake measurement 

 

The determination of platinum concentration in the cellular pellets was 

performed in triplicate by a Varian 720-ES Inductively Coupled Plasma Atomic 

Emission Spectrometer (ICP-AES) equipped with a CETAC U5000 AT+ ultrasonic 

nebulizer, in order to increase the method sensitivity.  

Before the analysis, samples were weighted in PE vials and digested in a thermoreactor 

at 80 °C for 24 h with 2 mL of aqua regia (HCl suprapure grade and HNO3 suprapure 

grade in 3:1 ratio) and 0.2 mL of H2O2 suprapure grade. After digestion, the samples 

were diluted to about 5 mL with ultrapure water (≤18 M) and accurately weighed; 5.0 

mL of each sample were spiked with 1 ppm of Ge used as an internal standard, and 

analysed. Calibration standards were prepared by gravimetric serial dilution from a 

commercial standard solution of Pt at 1000 mg L−1. The wavelength used for Pt 

determination was 214.424 nm whereas for Ge was used the line at 209.426 nm. The 

operating conditions were optimized to obtain maximum signal intensity, and between 

each sample, a rinse solution constituted by HCl suprapure grade and HNO3 suprapure 

grade in 3:1 ratio was used in order to avoid any “memory effect”.   
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3.11   Patients 

 

The study cohort included 223 untreated patients who underwent radical surgery 

with curative intent for colorectal adenocarcinomas at the Department of General 

Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria, Careggi, Florence. 

This cohort represents a subgroup of the patients operated on at the Department in the 

period September 2001 to January 2015 who were selected without any bias. Patients 

affected by hepatitis C viral infection or who had undergone preoperative radiotherapy 

or chemotherapy for rectal cancer were excluded. Samples of tumor were collected 

during surgery, after obtaining 

an informed written consent, and immediately processed for the sample storing. The 

samples were classified as adenocarcinomas or adenomas and staged according to the 

American Joint Committee on Cancer classification by experienced pathologists. 

 

 

3.12 Immunohistochemical Staining 

 

IHC for KCa3.1 was carried out on 7-μm sections on positively charged slides. 

After dewaxing and dehydrating the sections, endogenous peroxidases were blocked 

with a 1% H2O2 solution in phosphate-buffered saline. Subsequently, antigen retrieval 

was performed by heating the samples in a microwave oven at 600 W in citrate buffer 

pH 6.0 for 20 minutes. The primary antibody used was anti-KCa3.1Sigma-Aldrich 

AV35098, dilution 1:2000. Incubation with the primary antibody was carried out 

overnight at 4°C and immunostaining was performed with a commercially available kit 

(Picture-MAX Polymer Kit, DAB, broad spectrum, Thermo Fisher Scientific, Waltham, 

MA, USA) according to the manufacturer’s instructions. Specimens were evaluated 
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using a quantitative assessment, using a scoring systems based on the determination of 

the percentage of positive cells (Score 0: 0% of positive cells, Score 1: 1-25% of 

positive cells, Score 2: 26-49% of positive cells, Score 3: ≥50% of positive cells). For 

all the other antigens we carried out the same protocols and applied the same scoring 

systems as reported in Lastraioli et al., 2012. 

 

 

 

3.13 Chemicals 

 

Riluzole, SKA-31 and TRAM-34 (Sigma-Aldrich) were dissolved in DMSO at a 

concentration of 5 mM while E4031, Cisplatin and Oxaliplatin (Sigma-Aldrich) were 

dissolved in bidistilled water at the concentration of 5 mM. cisPtI2 and cisPtBr2 were 

dissolved in bidistilled water at the concentration of 1mM. All stock solutions were 

stored at -20°C. The effect of DMSO was subtracted from the effect of the relative drug 

in each experiment performed. 

 

3.14 Chemistry of cis-PtBr2(NH3)2 and cis-PtBr2(NH3)2: synthesis and 

characterisation. 

 

The synthesis of this Pt complex was performed through a slight modification of 

Dhara’s synthesis for Cisplatin (Dhara. 1970). A solution of 400 mg (2.4 mmol) of KI 

in 3 mL of water was added to an aqueous solution (5 mL) of 250 mg of K2[PtCl4] (0.6 

mmol) which was quantitatively converted into a dark solution containing K2[PtI4] after 

five minutes of stirring at room temperature. Then the addition of two equivalents of 

ammonium hydroxide as a 40% solution results in the separation of cis-PtI2(NH3)2 as a 



63 

bright yellow  compound, leaving behind a colorless solution. The solid was filtered off 

and thoroughly washed with water (Yield 90%).   

A suspension of 200 mg of cis-PtI2(NH3)2  (0.41 mmol) in water (5mL) was mixed with 

a solution of AgNO3 (0.82 mmol) in water (1,5 mL) and stirred in the dark (40ºC) until 

a pale yellow solution was formed over the suspension. The AgI formed was then filter 

off using neutral celite over a solution of two equivalents of KBr in 7 mL of water. The 

colorless solution was stored until orange crystalline precipitation was observed. The 

bright orange crystals of cis-PtBr2(NH3)2 are filtered off and  washed with water and 

dried in air. Yield was 25%.  Purity of the product was assessed through elemental 

analysis of C, N and H [calculated C: 0%, H: 1.45%, N: 7.20%, experimental: C: 

0,54%, H: 1.45%, N: 7.18%], 
1
H, 

195
Pt NMR and IR analysis (see SI). Cis geometry 

checked as describe in the literature (Infrared and Raman Spectra of Inorganic and 

Coordination Compounds, 6th Edition). Solution behaviour of cis-PtBr2(NH3)2 and cis-

PtI2(NH3)2  was assessed through spectrophotometric experiments performed with a 

Varian Cary 50 Bio UV-Vis spectrophotometer in buffered solutions without the use of 

DMSO and of NaCl. A solution of the complex (10
−4

 M) was prepared in 50 mM 

phosphate buffer  at pH = 7.4.  The absorbance was monitored in the wavelength range 

between 200 and 800 nm for 72 h at 25° C.  

 

3.15  Log P determination 

 

The octanol–water partition coefficients for cis-PtBr2(NH3)2 and cis-PtI2(NH3)2   

was determined by modification of the reported shake flask method (Marzo et al., 

2015). Water (50 mL, distilled after Milli-Q purification) and n-octanol (50 mL) were 

shaken together for 72 h to allow saturation of both phases. Solution of the complex was 

prepared in the aqueous phase (3 × 10
−3

 M) and an equal volume of octanol was added. 
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Biphasic solutions were mixed for ten minutes and then centrifuged for five minutes at 

6000 rpm to allow separation. Concentration in both phases was determined by UV-

VIS. Reported log P is defined as log[complex]oct/[complex]wat. Final value was 

reported as the mean of three determinations. 

 

 

3.16 Circular Dichroism experiments, interaction with ctDNA 

 

CD spectra were measured with a Jasco J-715 spectropolarimeter with the 

following conditions: scan speed 50 nm/min; response 1 sec; data pitch 0.1 nm; 

bandwidth 2.0 nm; 8 accumulations. Calf thymus DNA (ctDNA) 52.0 µM in phosphate 

buffer 50 mM, pH=7.4 was additioned with cis-PtBr2(NH3)2 2.3 mM in H2O or 

Cisplatin 1.0 mM in H2O, to 0.5:1 and 1:1 molar ratio directly in a 1-cm quartz 

cylindrical cell, volume 2.5 ml. Concentrations and molar ratios are indicated per base. 

All samples (except one, see results) were incubated at room temperature (22°C) for 

72h before measurement. The ctDNA had a base-pair length of ca. 800, obtained with a 

standardized procedure by sonication. The DNA concentration was checked by 

absorbance measurement at 260 nm (0.34 u.A., 1 cm cell). Phosphate buffer was used in 

all case to measure the blank spectrum. 
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3.17 Quantitative evaluation of binding of cis-PtI2(NH3)2 and Cisplatin to 

mammalian DNA in a cell-free medium.  

 

Solutions of double-helical calf thymus (CT) DNA (42% G + C, mean molecular 

mass approximately 2 × 107) at a concentration of 0.032 mg mL−1 (1 × 10−4 M related 

to the phosphorus content) were incubated with cisPtI2 (8 μM) or Cisplatin (8 μM) at a 

value of rf = 0.08 in 0.1 mM KI or KCl, respectively, at 37 °C (rf is defined as the molar 

ratio of free platinum complex to nucleotide phosphates at the onset of incubation with 

DNA). Two different stock solutions of cisPtI2 (0.1 mM) or Cisplatin (0.1 mM) were 

prepared. One contained the PtII complex incubated for 7 days in unbuffered KI or KCl, 

respectively (0.01 M, pH 6) at 37 °C in the dark, whereas the other contained PtII 

complexes incubated for 7 days in double distilled water at 37 °C in the dark. Fifty 

microliters of the PtII complex aged in KI/KCl (0.01 M) or in water were quickly mixed 

with 4950 μL of DNA dissolved in NaClO4 (10 mM), and the reaction mixture was 

maintained at 37 °C. In the experiments in which the PtII complex aged in water was 

used, the final reaction mixture was still supplemented at the onset of the reaction with 

KI or KCl so that the resulting concentration of KI or KCl in the reaction mixtures was 

always 0.1 mM. At various time intervals, an aliquot of the reaction mixture was 

withdrawn and assayed by differential pulse polarography (DPP) for platinum not 

bound to DNA (Kim et al., 1990). 

 

3.18 Statistic analysis 

 

To evaluate statistical differences, the Student t-test was applied, unless 

otherwise indicated. p-values lower than 0.05 were considered statistically different. 
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4. RESULTS 

 

4.1 Characterization of an in vitro model for the study of Cisplatin resistance in 

CRC 

 

4.1.1 Effects of Cisplatin on different CRC cell lines. 

 

We investigated the response of five CRC cell lines, HCT-116, HCT-116 p53
-/-

, 

HCT-8, HT-29 and H-630 to Cisplatin treatment by measuring their IC50 values (Figure 

1). HCT-116 cells turned out to be the most resistant, whereas HCT-8 the most sensitive 

(IC50 22.0 ± 1.1 µM and 5.3 ±0.5 µM, respectively). 

(A) 
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(B) 

 

 
 

 

Figure 1. (A) Dose-response curve of Cisplatin effect on cell viability, assessed through the 

Trypan blue exclusion test after 24 hours of treatment, in different CRC cell lines. (B) 

Histogram of IC50 values determined on a panel of CRC cell lines. 
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The different sensitivity to Cisplatin of HCT-8 compared to HCT-116 was also 

confirmed when apoptosis (Figure 2), cell cycle distribution (Figure 3) and cell 

proliferation (Figure 4) were analysed. 

 

 

Figure 2 Representative dot plots of HCT-8 and HCT-116 cells treated for 24h at their IC50 for 

Cisplatin. Cells in Q3 (annexin
-
/PI

-
) were viable, cells in Q4 (annexin

+
/PI

-
) were in early stages 

of apoptosis, cells in Q2 (annexin
+
/PI

+
) were in late stages of apoptosis while cells in Q4 

(annexin
-
/PI

+
) were dead. 

 

 

 
 

Figure 3 Representative histograms of HCT-8 and HCT-116 cell cycles after 24h of treatment 

at their Cisplatin IC50. 
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Figure 4 Effects of Cisplatin on proliferation of HCT-8 and HCT-116 cells. Cells were treated 

with different Cisplatin doses (1, 10 and 20  µM) and the number of live cells was determined in 

triplicate, and expressed as the number of Trypan Blue negative cells. Data are means ± SEM of 

six independent experiments. White circle=control, black circle= 1µM Cisplatin, black triangle= 

10µM Cisplatin, black rhombus=20 µM Cisplatin. All the data relative to Cisplatin treatment 

turned out to be significantly different compared to the Control condition.  

 

 

In all the experiments, Cisplatin was used at the IC50 of the two different cell lines; 

apoptosis and cell cycle phases were analyzed after 24 hours of treatment. Although 

used at lower concentration (5 µM), Cisplatin induced a greater apoptosis of HCT-8 

cells (8.9% of cells in early and 36% of cells in late apoptosis), whereas it was less 

effective on HCT-116 cells (3.6% of cells in early apoptosis and 5.8 % of cells in late 

apoptosis (Figure 2 and Table 1) and produced a substantial increase in the percentage 

of G0/G1 cells in both HCT-8 and HCT-116 cells, accompanied by a decrease of cells 

in either G2/M (in HCT-8 cells) or S phase (in HCT-116 cells) (Figure 3 and Table 1). 

Consistent with all the above data, Cisplatin decreased HCT-8 cell proliferation, 

blocking cell proliferation even at 1 µM and producing a severe cell loss at 10 and 20 

µM (Figure 8); on the contrary, it slowed down HCT-116 cell growth at 1 µM, but 

blocked cell growth only at 20 µM.   
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 IC50 (TB) (µM) 
mean±SEM  

IC50 (W-1) (µM) 
mean±SEM 

Early apoptosis   

(%) 

Late apoptosis 

 (%) 

HCT-8     

Control -  Undetectable 1.6±0.3 

Cisplatin 6.4±0.7 

 

7.3±0.9 8.9±0.2 35.5±6.0 

     

 G0/G1  

(%) 

S 

(%) 

G2/M 

(%) 

 

HCT-8     

Control 32.9±1.1 53.7±4.4 15.3±3.4  

Cisplatin 48.2±0.2  45.1±1.1 6.7±1.2   

     

 IC50 (TB) (µM) 
mean±SEM  

IC50 (W-1) (µM) 
mean±SEM 

Early apoptosis   

(%) 

Late apoptosis 

 (%) 

HCT-116     

Control - - Undetectable Undetectable 

Cisplatin 21.8±0.6 

 

20.5±2.8 3.6±0.4 5.8±0.7  

     

 G0/G1  

(%) 

S 

(%) 

G2/M 

(%) 

 

HCT-116     

Control 20.1±2.2 57.0±5.7 22.9±3.6  

Cisplatin 43.5±0.2  40.8±3.2  15.7±3.0  

 

 

Table 1 IC50 of Cisplatin was determined after 24 hours of treatment by Trypan Blue and WST-

1 assays (IC50 (TB) and IC50(W-1) respectively). The IC50 values were calculated using Origin 

Software (Microcal Origin 8.0 software; OriginLab Corporation, Nothampton, MA). All 

original IC50(TB) are displayed in Figure 1.  
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4.1.2 Characterization of K
+
 channel expression in HCT-116 and HCT-8 CRC cell 

lines  

 

We then studied the relationships between K
+
 channel expression and the effects 

of Cisplatin, using HCT-8 and HCT-116 cells as a model of Cisplatin-sensitivity and 

Cisplatin-resistance, respectively. We first analyzed the expression levels of different 

K
+
 channels encoding genes, focusing on those reported to be expressed in CRC 

(Spitzner. 2007; Arcangeli et al, 2009; Huang et Jan. 2014): the voltage dependent 

potassium channels Kv10.1 or EAG1 (KCNH1), Kv11.1 or hERG1 (KCNH2) and Kv1.3 

(KCNA3), the intermediate-conductance calcium-activated potassium channel KCa3.1 

(KCNN4), the small-conductance KCa2.3 (KCNN3) and the big conductance KCa1.1 

channels (KCNMA1). RQ-PCR data, expressed as Ct values of the gene under study as 

well as of the reference gene (GAPDH), are shown in Table 2. Only transcript with Ct 

values higher than 30 were considered to be positively expressed. KCNH2 was 

expressed in both cell lines, but at higher level in HCT-116 cells, as previously reported 

(Lastraioli et al., 2004). KCNN4 (high expression level) and KCNN3 (medium 

expression level) were present almost exclusively in HCT-116 cells. All other 

transcripts, were negligible in both cell lines.  

Table 2 also shows data relative to the expression of the main Cisplatin transporters 

found to be expressed in cancer cells: the copper transporters CTR1 (SLC31A1) and 

CTR2 (SLC31A2) as well as the two P-type ATPases ATP7A (ATP7A) and ATP7B 

(ATP7B). Three of them, SLC31A1, ATP7A and ATP7B, were expressed and the 

expression levels did not differ between the two CRC cell lines. 
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HCT-8  HCT-116 

Ct value (mean±SEM) Ct value (mean±SEM) 

KCNH1 37.19±0.95 39.01±0.99 

GAPDH 17.13±0.40 18.19±0.22 

KCNH2 28.04±0.53 26.51±0.84 

GAPDH 17.17±0.01 17.65±0.77 

KCNA3 30.43±0.14 33.81±0.29 

GAPDH 17.93±0.21 18.19±0.22 

KCNMA1 32.04±0.62 31.77±1.91 

GAPDH 16.99±0.17 17.06±0.04 

KCNN3 37.09±1.63 28.34±0.55 

GAPDH 17.16±0.01 17.10±0.02 

KCNN4 
 

GAPDH 

32.22±0.87 
17.93±0.21 

23.74±0.42 
18.19±0.22 

SLC31A1 22.78±0.15 22.37±0.18 

GAPDH 17.09±0.07 16.96±0.14 

SLC31A2 31.18±0.34 32.86±0.22 

GAPDH 17.09±0.07 16.96±0.14 

ATP7A 23.94±0.18 25.06±0.28 

GAPDH 17.09±0.07 16.96±0.14 

ATP7B 25.21±0.06 26.45±0.10 

GAPDH 17.09±0.07 16.96±0.14 

 

Table 2 Gene expression levels were evaluated by RQ-PCR using the primer pairs reported in 

Materials and Methods. Table shows the mean ± SEM of Ct values of the different transcripts 

(in bold italics) as well as of the housekeeping gene GAPDH (in italics) obtained in three 

different experiments. Name of the ion channel/transporters encoding gene are given using the 

HGNC nomenclature. 

 

Based on the above transcription data, we evaluated the expression of hERG1 and 

KCa3.1 and KCa2.3 proteins in HCT-8 and HCT-116 cells, by Western Blot (Figure 5) 

and immunofluorescence (Figure 6). Both these techniques showed a higher expression 

of hERG1 in HCT-116 compared to HCT-8 cells. These results fully agree with what 

was previously shown (Lastraioli et al., 2004). HCT-116 cells also expressed a very 
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high amount of KCa3.1 and KCa2.3 proteins, whereas HCT-8 showed a  smaller 

KCa3.1 and KCa2.3 bands (Figure 5) and a lower IF signal as well (Figure 6). 

 

 

Figure 5 Western blots of hERG1, KCa3.1 and KCa2.3 protein expression in HCT-8 and HCT-

116 cells. Cell lysates from HCT-8 and HCT-116 cells were probed with the anti-KCa3.1 and 

anti-KCa 2.3 antibodies and anti-pan hERG1 antibody. Reprobing of the membranes with anti-

tubulin antibody is reported in the bottom panels. The arrows indicate the bands corresponding 

to hERG1 (panel on the left), KCa3.1 (central panel) and  KCa2.3 respectively (panel on the  

right).  

 

 

Figure 6  Immunofluorescence of hERG1, KCa3.1 and KCa2.3 proteins in HCT-8 and HCT-

116 cells seeded onto glass slides. For HCT-116 cells antigen colocalization was also evaluated. 

The anti-hERG1mAb antibody (Dival Toscana Srl) (and the Alexa488-conjugated secondary 

anti mouse antibody) (left panels) , the anti-KCa3.1 polyclonal antibody (Sigma Aldrich - 

AV35098) (and Alexa488-conjugated secondary anti rabbit antibody) (central panels) and the 

anti-KCa2.3 polyclonal antibody (Sigma Aldrich - P4747) (and Alexa488-conjugated secondary 

anti rabbit antibody) (right panels) were used. Magnification was 60X. 
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Then we evaluated the presence of selective hERG1 and KCa3.1/KCa2.3 currents on 

both  cell lines. Traces for hERG1 channel on HCT-116 and HCT-8 cells obtained after 

application of a “ramp” protocol at either -70 or 0 mV holding potential are shown in 

Figure 7. The difference in hERG1 current (i.e. the inward inactivating current elicited 

at -120 mV starting from a 0 mV holding potential) between the two cell lines is 

evident.  

 

 

Figure 7 Exemplificative hERG1 current traces elicted with the outlined protocol in HCT-8 

(left) and HCT-116 (right) cells. 
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This protocol does not allow to elicit “pure” KCa3.1 or 2.3 currents and since it was 

difficult to discriminate between KCa2.3 and KCa3.1 currents elicited after applying the 

protocol as in Sankaranarayanan et al. 2009 without using additional pharmacological 

tools, we address the currents recorded in these conditions as KCa2/3 currents.  

 

We finally evaluated the membrane potential (Vrest) of the two cell lines. HCT-116 

cells showed a significantly more hyperpolarized Vrest compared to HCT-8 cells, 

consistent with their higher expression of K
+
 currents (Table 3). 

 

 

 Vrest 

HCT-8 -13.08±2.55 (n=12) 

HCT-116 -33.50±3.19 (n=6) 

 

 

Table 3 Membrane potential (Vrest) of HCT-8 and HCT-116 cells. 

 

 

 

4.2 Effect of Cisplatin and K
+
 channel modulators on CRC cells. 

 

We then tested the effects of different K
+
 channel modulators targeting the main 

K
+
 channel proteins expressed in CRC cells (i.e. KCa3.1, KCa2.3 and hERG1) on cell 

vitality (Table 4, Table 5 and Figure 8), apoptosis (Table 4 and Figure 9), cell cycle and 

proliferation (Table 4, Table 5 and Figure 10) of HCT-8 and HCT-116 cells. For some 

compounds, the effects on selected currents was tested (Figure 12). Overall, the 

following compounds were tested: (1) Riluzole, a broad modulator of ion channels 
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(Sankaranarayanan et al. 2009; Bellingham et al. 2011) capable to activate both KCa2.3 

and KCa3.1 channels, as well as to inhibit hERG1 and voltage-gated sodium channels; 

(2) SKA-31, a more potent and selective activator of KCa3.1 currents; (3) TRAM-34, 

an inhibitor of KCa3.1 channels, (4) E4031, a specific hERG1 inhibitor. We also 

evaluated the viability effect of Oxaliplatin, the Cisplatin analogue currently used in 

CRC therapy; this drug exhibited a less efficacy at 24h in our in vitro model for both the 

cell lines tested. 

 

 

 IC50 (TB) (µM) 
mean±SEM 

IC50 (W-1) (µM) 
mean±SEM 

Early apoptosis   

(%) 

Late apoptosis 

 (%) 

HCT-8     

Control -  Undetectable 1.6±0.3 

Oxaliplatin 24.1±3.0 21.5±0.3 ND ND 

Riluzole 12.9±0.2 11.9±0.7 2.6±0.2 7.9±0.2 

SKA-31 49.3±4.0 31.6±1.5 3.8±0.5 25.5±4.2  

TRAM-34 20.1±0.7 22.0±0.8 0.8±0.1 1.5±0.5 

E4031 11.7±0.5 12.5±0.3 0.8±0.2 5.1±0.7 

     

 G0/G1  

(%) 

S 

(%) 

G2/M 

(%) 

 

HCT-8     

Control 32.9±1.1 53.7±4.4 15.3±3.4  

Riluzole 1.6±0.3  5.5±0.3  93.0±0.1   

SKA-31 50.9±0.2  48.5±0.6 0.6±0.6   

TRAM-34 66.1±0.7  33.3±1.3 0.6±0.6  

E4031 25.4±0.7  55.5±2.6  19.1±3.3   

 
Table 4 IC50 of Oxaliplatin, Riluzole, SKA-31, TRAM-34 and E4031 were determined after 24 

hours of treatment by Trypan Blue and WST-1 assays (IC50 (TB) and IC50 (W-1) respectively. The 

IC50 values were calculated using Origin Software (Microcal Origin 8.0 software; OriginLab 

Corporation, Nothampton, MA). Apoptosis and cell cycle distributions were evaluated by 

treating HCT-8 cells with IC50 values of each drug for 24h. Data of means±ESM of two 

independent experiments. ND = not determined. Percentage of cells in early (Annexin +/PI-
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cells) and late apoptosis (Annexin +/PI+ cells) was determined by Annexin/PI assay. Cell cycle 

distribution (percentage of cells in each phase of the cell cycle) was assessed by flow cytometry 

after staining cells with propidium iodide (PI).  

 

 

 

 

 

 IC50 (TB) (µM) 
mean±SEM 

IC50 (W-1) (µM) 
mean±SEM 

Early apoptosis   

(%) 

Late apoptosis 

 (%) 

HCT-116     

Control - - Undetectable Undetectable 

Oxaliplatin 57.4±9.4 51.8±2.9 ND ND 

Riluzole 8.5±0.1 8.1±1.1 24.5±1.5 22.8±1.7  

SKA-31 4.6±0.1 4.7±0.1 5.7±1.7 1.9±0.6  

TRAM-34 27.6±0.4 24.8±3.6 8.3±2.1 4.0±1.0  

E4031 4.5±0.5 3.6±0.2 1.8±0.3 2.4±0.2 

     

 G0/G1  

(%) 

S 

(%) 

G2/M 

(%) 

 

HCT-116     

Control 20.1±2.2 57.0±5.7 22.9±3.6  

Riluzole 57.5±0.9  17.4±1.4  25.2±2.2  

SKA-31 57.4±2.0  23.7±0.2  18.9±1.7   

TRAM-34 47.4±1.8  29.7±3.8  23.0±2.0  

E4031 47.6±3.4  24.3±6.1  28.2±2.7   

 

 

Table 5 IC50 of Oxaliplatin, Riluzole, SKA-31, TRAM-34 and E4031 were determined after 24 

hours of treatment by Trypan Blue and WST-1 assays (IC50 (TB) and IC50 (W-1) respectively. The 

IC50 values were calculated using Origin Software (Microcal Origin 8.0 software; OriginLab 

Corporation, Nothampton, MA). Apoptosis and cell cycle distributions were evaluated by 

treating HCT-116 cells with IC50 values of each drug for 24h. Data of means±ESM of two 

independent experiments. ND = not determined. Percentage of cells in early (Annexin +/PI-

cells) and late apoptosis (Annexin +/PI+ cells) was determined by Annexin/PI assay. Cell cycle 

distribution (percentage of cells in each phase of the cell cycle) was assessed by flow cytometry 

after staining cells with propidium iodide (PI).  
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Figure 8 IC50 values of Oxaliplatin, Riluzole, SKA-31, TRAM-34 and E4031 on HCT-8 and 

HCT-116 CRC cell lines. Cell viability was assessed through the Trypan blue exclusion test 

after 24 hours of treatment. 
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Figure 9 Effects of Cisplatin, Riluzole, SKA-31, TRAM-34 and E4031 on apoptosis 

distribution of HCT-8 and HCT-116 cells. Apoptosis was evaluated after 24 hours of treatment 

through the Annexin/PI assay. The figure shows dot plots of control and treated cells at the 

same experimental time point. 
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Figure 10 Plot of the number of cells labelled with Propidium Iodide determined by flow 

cytometry, in Control conditions and after 24 hours of treatment at IC50 concentrations of 

Riluzole, SKA-31, TRAM-34, E4031 and NS-1643 on cell cycle distribution of HCT-8 and 

HCT-116 cells .  
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All the K
+
 channel modulators were cytotoxic for CRC cells but, in contrast to 

Cisplatin, their IC50 values were generally lower (and hence the drug more effective) on 

HCT-116 compared to HCT-8 cells. TRAM-34 displayed high IC50 values in both cell 

lines. Overall, the HCT-116 cells, which are more resistant to Cisplatin turned out to be 

sensitive to KCa3.1 (and KCa2.3) activation or hERG1 inhibition.  

Riluzole induced 23% of HCT 116 cells to undergo apoptotic death, and a lower 

percentage (8%) of HCT-8 cells, whilst it produced a G0/G1 block only in HCT-116 

cells. Also SKA-31 produced a significant G0/G1 block in HCT-116 cells, whilst it 

induced significant apoptosis in HCT-8 cells, with a minimal effect on HCT-116 cells. 

It is however worth noting that SKA-31 concentration used in HCT-8 cells was ten 

times higher than in HCT-116 cells. The inhibition of KCa3.1 currents by TRAM-34 

did not induce any apoptotic effect in either cell line. hERG1 inhibition triggered only a 

low level of apoptosis (only 5 % late apoptotic cells after 24 hours of treatment in HCT-

8 cells); but induced a significant G0/G1 block in HCT-116 cells. 

 

A set of experiments was then conducted in which the different K
+
 channel modulators 

were added at time 0, and cell growth was measured at different times of incubation in 

the absence or in the presence of the drug. No further re-addition of the compounds was 

performed. The analysis of cell proliferation showed that all the K
+
 channel modulators, 

when tested at the IC50 value, inhibited the growth of both HCT-8 and HCT-116 cells. 

In HCT-116 the inhibitory effect of SKA-31 and E4031, which induced scarce 

apoptosis, tended to decline at longer incubation times (Figure 11). 
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Figure 11 Effects of Cisplatin, Riluzole, SKA-31, E4031 and TRAM-34 (at the IC50 value) on 

the proliferation of HCT-8 and HCT-116 after a single treatment (arrow) given as the number of 

Trypan Blue negative cells. Data are means ± SEM of two independent experiments. All the 

data relative to treatment with the different K
+
 channel modulators turned out to be significantly 

different compared to the Control condition. 
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4.2.1  Effects of Riluzole, SKA-31 and Cisplatin on K+ currents 

 

We tested the effects of Riluzole and SKA-31 on K
+ 

currents (calcium-

dependent K
+
 and hERG1 currents) of HCT-116 cells (Figure 18). Both drugs were 

tested at the IC50 value, unless otherwise indicated. The effects of both E4031 and 

TRAM-34 on hERG1 and KCa3.1 currents in such cells has been previously reported 

(Crociani et al., 2013; Wulff et al. 2007, respectively). Since it was difficult to 

discriminate between KCa2.3 and KCa3.1 currents elicited in HCT-116 cells after 

applying the protocol as in Sankaranarayanan et al. 2009 without using additional 

pharmacological tools, we address the currents recorded in these conditions as KCa2/3 

currents. Both Riluzole and SKA-31 activated KCa2/3 currents (Figure 12), with a fold 

increase over control of 2.11 ± 0.46 n=9 and 4.46 ± 1.74 n=10, respectively (Table 6). 

Riluzole also inhibited hERG1 currents, as expected (Sankaranarayanan et al. 2009), 

with a 23 % inhibitory effect at 10 µM (close to IC50 values) which reached 44% at 45 

µM concentration (Table 6). We also tested the effects of Cisplatin on the same K
+
 

currents: Cisplatin did not significantly affect KCa2/3 currents neither in control 

conditions or after SKA-31 stimulation (Figure 13), and displayed a small inhibitory 

effect on hERG1 currents (Figure 13 and Table 6). All the drugs used didn't exhibit a 

relevant change in HCT-116 resting potential compared to the control (Table 7). 
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Figure 12: Effect of Riluzole and SKA-31 at IC50 values on native KCa3.1 (top) and hERG1 

(bottom) currents on HCT-116 cell line. In comparison with controls, Riluzole and SKA-31 

significantly increased KCa3.1 currents (paired t-test respectively p= 0.00511, n=9 and 

p=0.0183, n=10), with the latter exerting a higher activity on KCa3.1 channels.  

 

 

Figure 13: Effect of Cisplatin at near IC50 concentrations on KCa2/3 and hERG1 currents. 
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Drug (µM) KCa 2/3 slope fold 

variation 

(mean ± SEM) 

hERG1 current inhibition 

(%) 

(mean ± SEM) 

Cisplatin (20) 1.04 ± 0.25 (n=9) 5.75 ± 2.16 (n=10) 

Cisplatin (20) after SKA-31 

(5) 

1.10 ± 0.12 (n=10) ND 

Riluzole (10) 2.11 ± 0.46 (n=9) * 23.26 ± 4.49 (n=6) * 

Riluzole (45) 6.74 ± 7.74 (n=6) 43.83 ± 7.02 (n=6) * 

SKA-31 (5) 4.36± 1.67 (n=10) * 7.53 ± 1.81 (n=11) 

 

Table 6: Effect of Cisplatin, SKA-31 and Riluzole at different concentrations on KCa2/3 and 

hERG1 currents. The “*” indicate a statistical significance (paired t-test >0.05).  

 

 

 

Drug (µM) Vrest24h (mean ± SEM) 

Riluzole (8) -41.40±5.78 (n=5) 

SKA-31 (5) -30.83±3.57 (n=6) 

TRAM-34 (28) -36.50±3.21 (n=6) 

E4031 (4) -35.29±4.67 (n=7) 

 

Table 7: Effect of  Riluzole, SKA-31, TRAM-34 and E4031, at IC50 values, after 24h of 

treatment on resting potential of HCT-116 cells.  

 

 

 

4.3 Effects of Cisplatin in combination with K
+
 channel modulators. 

 

The above reported effects of the different K
+
 channels modulators on CRC 

cells, as well as the ability of Riluzole to increase the cytotoxic effect of Cisplatin in 

epidermoid cancer cells (Lee et al., 2008) prompted us to test their combination with 

Cisplatin in both HCT-8 and HCT-116 cells. We followed the procedure already applied 

in Pillozzi et al., 2011 and calculated the combination index (CI) to assess synergic, 
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antagonistic or additive effect of the different combinations. Data in Table 8 show the 

CI values at the IC50, whereas data relative to CI values at IC75 and IC90 are in Table 9.  

 

 

 Combination index 

at IC50 
mean±SEM 

(Tripan Blue) 

Combination index at 

IC50 
mean±SEM 

(WST-1) 

HCT-8   
Cisplatin + Riluzole 2.75±0.45 ND 

Cisplatin + SKA-31 2.00±0.10 ND 

Cisplatin + TRAM-34 1.90±0.06 ND 

Cisplatin + E4031 1.84±0.08 ND 

   

HCT-116   

Cisplatin + Riluzole 0.87±0.14 0.88±0.09 

Cisplatin + SKA-31 0.50±0.25 0.74±0.07 

Cisplatin + TRAM-34 4.39±1.02 2.89±0.24 

Cisplatin + E4031 0.60±0.01 0.78±0.10 

   

Oxaliplatin + Riluzole 0.98±0.01 0.97±0.01 

Oxaliplatin  + SKA-31 0.71±0.05 0.82±0.09 

Oxaliplatin  + TRAM-34 3.36±0.34 3.13±0.18 

Oxaliplatin  + E4031 0.83±0.01 0.57±0.04 

 

 

Table 8: HCT-8 and HCT-116 cells were exposed to concentrations of Cisplatin and 

Oxaliplatin corresponding to  their IC50(TB) value in combination with IC50 of Riluzole, SKA-31, 

TRAM-34 and E4031 with a 2-fold serial dilution (1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64) for 24 

hours and then cell viability was evaluated using Trypan blue exclusion assay. For HCT-116, 

also the WST-1 assay was used. Means±ESM are relative to two independent experiments.  CI 

values were calculated using Calcusyn software Version 2 (Biosoft). CI > 1, antagonisms; CI = 

1, additivity; CI < 1, synergy. ND= Not Determined 
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 Combination 

index at IC75 
mean±SEM 

(Trypan blue) 

Combination 

index at IC75 
mean±SEM 

(WST-1) 

Combination 

index at IC90 
mean±SEM 

(Trypan blue) 

Combination 

index at IC90 
mean±SEM 

(WST-1) 
HCT-8     

Cisplatin + Riluzole 3.99±0.11 ND 6.13±0.63 ND 
Cisplatin + SKA-31 4.11±0.21 ND 8.73±0.43 ND 

Cisplatin + TRAM-34 3.86±0.74 ND 8.37±2.74 ND 
Cisplatin + E4031 2.92±0.08 ND 5.01±0.06 ND 

     

HCT-116     

Cisplatin + Riluzole 1.43±0.26 0.98±0.13 2.42±0.49 1.08±0.16 
Cisplatin + SKA-31 0.91±0.25 0.68±0.06 1.86±0.12 1.28±0.70 

Cisplatin + TRAM-34 4.78±0.21 2.13±0.07 7.24±1.06 1.62±0.23 
Cisplatin + E4031 0.92±0.19 0.87±0.08 1.63±0.63 0.98±0.05 

     

Oxaliplatin + Riluzole 1.21±0.29 0.92±0.01 2.07±0.94 0.89±0.01 
Oxaliplatin  + SKA-31 0.74±0.13 1.03±0.13 1.00±0.28 1.30±0.18 

Oxaliplatin  + TRAM-34 2.08±0.35 5.12±0.15 1.40±0.58 8.99±0.01 
Oxaliplatin  + E4031 0.41±0.05 1.23±0.29 0.23±0.08 2.74±1.05 

 

Table 9: HCT-116 cell line was exposed to IC50 of Cisplatin and Oxaliplatin (while HCT-8 only 

to IC50 of Cisplatin) in combination with IC50 of Riluzole, SKA-31, TRAM-34 and E4031 with 

a 2-fold serial dilution (1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64) for 24 hours and then cell viability 

was evaluated using Trypan blue exclusion assay and, for HCT-116, also by WST-1 assay. The 

means are relative to two independent experiments.  CI values were calculated using Calcusyn 

software Version 2 (Biosoft). CI > 1, antagonisms; CI = 1, additivity; CI < 1, synergy.  

 

 

 

Riluzole, SKA-31 and E4031 had a synergic effect with Cisplatin. On the contrary, 

TRAM-34 was antagonistic. The synergy of Cisplatin with Riluzole, SKA-31 or E4031 

occurred only in Cisplatin-resistant HCT-116 cells, and was also observed when cells 

were treated with Oxaliplatin.  

Riluzole, SKA-31 and E4031 significantly increased the pro-apoptotic effect of 

Cisplatin in HCT-116 cells (Table 10 and Figure 14). The strongest effect was obtained 

with Riluzole. Both Riluzole and SKA-31 also induced an increase in the percentage of 
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cells in G2/M phase, while E4031 induced a G0/G1 block in HCT-116 cells (Table 10 

and Figure 15). TRAM-34 only significantly increased in HCT-116 the percentage of 

G2/M cells. On the contrary, the antagonistic effect of K
+
 channel modulators with 

Cisplatin in HCT-8 cells could be explained by an overall decrease of apoptosis (Table 

10). 

 

 

 

HCT-116 Late apoptosis 

(%) 

G0/G1  

(%) 

S  

(%) 

G2/M  

(%) 

Cisplatin 5.75±0.65  43.54±0.22  40.81±3.22  15.63±3.01 

Cisplatin + Riluzole 22.00±5.10 38.34±3.40  23.00±12.89 38.67±9.49  

Cisplatin + SKA-31 12.15±2.25  43.14±3.38  26.15±14.06  30.72±10.67  

Cisplatin + E4031 17.85±3.85  49.12±0.41  30.39±1.21  20.50±0.81 

     

Cisplatin + TRAM-34 8.65±1.85 47.98±2.28  8.35±5.15  43.66±2.87  

     

HCT-8 Late apoptosis 

(%) 

G0/G1  

(%) 

S  

(%) 

G2/M  

(%) 

Cisplatin 35.45±5.95  48.20±0.16  45.15±1.08  6.66±1.24 

Cisplatin + Riluzole 55.95±3.45 7.27±3.95  45.01±4.86 47.73±0.91  

Cisplatin + SKA-31 11.30±3.80  31.38±0.83  56.29±2.43  12.34±1.31  

Cisplatin + E4031 28.45±9.15  38.96±2.62  57.11±0.39  3.93±3.01 

     

Cisplatin + TRAM-34 21.00±7.20 45.58±0.77  50.29±3.47  4.13±2.69  

 

 

Table 10: HCT-116 and HCT-8 cells were exposed to IC50 concentrations of either Cisplatin 

alone or in combination with IC50 concentrations of Riluzole, SKA-31, TRAM-34 and E4031. 

Data are means ± SEM relative to two independent experiments, each carried out in triplicate. 

The percentage of cells in early late apoptosis (Annexin +/PI+ cells) was determined by 

Annexin/PI assay. Cell cycle distribution (expressed as percentage of cells in each phase of the 

cell cycle) was assessed by flow cytometry after staining cells with propidium iodide. 
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Figure 14 Effects of Cisplatin in combination with Riluzole, SKA-31, TRAM-34 and E4031 on 

apoptosis distribution of HCT-8 and HCT-116 cells. Apoptosis was evaluated after 24 hours of 

treatment through the Annexin/PI assay. The figure shows dot plots of control and treated cells 

at the same experimental time point. 
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Figure 15: Plot of the number of cells labelled with Propidium Iodide determined by flow 

cytometry, in Control conditions and after 24 hours of treatment at IC50 concentrations of 

Cisplatin in combination with Riluzole, SKA-31, TRAM-34 and E4031 on cell cycle 

distribution of HCT-8 and HCT-116 cells. 
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4.3.1 Effects of Riluzole, SKA-31 and E4031 in combination with Cisplatin on HCT-

116 cell proliferation  

 

 Finally Riluzole, SKA-31 and E4031 were added to HCT-116 cells in 

combination with different Cisplatin concentrations (1, 10 and 20 µM) and the effects 

on cell proliferation analysed. Figure 16 shows that the three K
+
 channel modulators 

indeed cooperate with Cisplatin in inhibiting HCT-116 cell proliferation. In particular, 

in the presence of either Riluzole, SKA-31 or E4031, even low concentrations of 

Cisplatin (1 and 10 µM), which had only a slight effect on these cells, slowed down or 

even completely blocked cell proliferation when added in conjunction with the K
+
 

channel modulators. The strongest effect was obtained with E4031. Raw data of the 

single experiments are in Figure 17. 

 

 

 

 

Figure 16: Effects of the combination of Cisplatin (at 1, 10 and 20 µM) with the following 

drugs: Riluzole, SKA-31 and E4031 (at the respective IC50 values) on HCT-116 proliferation 

after a single treatment (see arrow) given as the number of Trypan Blue negative cells. Data are 

means ± SEM of three independent experiments Statistically significant data are indicated with 

an asterisk. White circle = 1 µM of Cisplatin, white triangle = 10 µM of Cisplatin, white 

diamond=20 µM of Cisplatin; black circle 1 µM of Cisplatin + IC50 of relative combined drug, 

black 10 µM Cisplatin + IC50 of relative combined drug, black diamond= 20 µM of Cisplatin+ 

IC50 of relative combined drug). 
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Figure 17: Effects of the combination of Cisplatin (at 1, 10 and 20 µM) with the following 

drugs: Riluzole, SKA-31 and E4031 (at the respective IC50 values) on HCT-116 proliferation 

after a single treatment (see arrow) given as the number of Trypan Blue negative cells. Data are 

means ± SEM of three independent experiments Statistically significant data are indicated with 

an asterisk. White circle = 1 µM of Cisplatin, white triangle = 10 µM of Cisplatin, white 

diamond=20 µM of Cisplatin; black circle 1 µM of Cisplatin + IC50 of relative combined drug, 

black 10 µM Cisplatin + IC50 of relative combined drug, black diamond= 20 µM of Cisplatin+ 

IC50 of relative combined drug). 
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4.3.2 Effects of Riluzole, SKA-31 and E4031 in combination with low doses 

of Cisplatin on HCT-116WT, HCT-116 hERG1-Sh and HCT-116 KCa3.1-Sh. 

 

We then tested whether the various K
+
 channel modulators could be 

interchanged. We thus performed a set of experiments in which 1 µM Cisplatin was 

added either alone, or with Riluzole, SKA-31 or E4031 at their IC50 or IC25 values, or 

with a combination of two K
+
 channel modulators (Riluzole+E4031, Riluzole+SKA-31 

or SKA-31 + E4031) at their IC50 or IC25 values. Figure 18 shows that the combination 

of two K
+
 channel modulators at the IC25 values had additive effects on cell viability 

giving rise to an inhibition even greater than that obtained with the single K
+
 channel 

modulators at the IC50 value. This effect was even stronger when two K
+
 channel 

modulators were added at the IC50 value. In any case, the most effective combination 

was Riluzole+E4031. 

Figure 18: HCT-116 cells were treated with Cisplatin (at 1µM), alone (black bar) or in 

combination with Riluzole (R), SKA-31 (S) or E4031 (E) at either the IC50 or IC25 values, as 

well as with combinations of two of the three drugs (R+E; R+S; S+E) at either the IC50 or IC25. 

Cells were counted after 24 hours of treatment and are reported as the number of Trypan Blue 

negative cells. Data are means ± SEM of two independent experiments. Statistically significant 

comparisons are indicated with an asterisk. Besides those graphically indicated in the figure, the 

following comparisons turned out to be statistically significant: all single drugs (at IC25) vs all 

single drugs (at IC50), all drugs in combinations (at IC25) vs all drugs in combinations at (IC50), 

all single drugs (at IC25) vs all drugs in combinations (at IC25), all single drugs (at IC50) vs all 

drugs in combinations (at IC50), all single drugs (at IC25) vs all drugs in combinations (at IC50), 

Ril-IC25 vs Ska-IC25, all drugs in combinations (at IC25) vs all drugs in combinations (at IC25), 

R+S (at IC50) & R+E (at IC50), S+E (at IC50) & R+E (at IC50), all single drugs (at IC25) vs 1µM 

of Cisplatin. 
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We then, after having conducted a WB analysis to ensure a proper gene silencing 

(Figure 19), proceeded to test the same type of experiment on HCT-116 cells silenced 

with specific siRNAs for hERG1 (Figure 20) and KCa3.1 (Figure 21).  

hERG1 silenced HCT-116 cells showed a marked decreasing effect of E4031 on cell 

proliferation, in particular when given at IC25 both alone and in combination with 

Riluzole and SKA-31, E4031 didn’t exerted a significant reduction in cell number 

compared to cells treated only with lipofectamine; when given at IC50 the number of 

cells didn’t show a significant reduction either and in two conditions (E4031 alone and 

Riluzole+E4031) a little increase in cell number was observed although not statistical 

significant (Figure 20). KCa3.1 silenced HCT-116 cells treated with IC25 of Riluzole, 

SKA-31 and E4031 showed no appreciable decrease of proliferation, IC50 doses on the 

other exerted a slight increase in cell number compared to cells treated only with 

lipofectamine while no variation was found on cells treated with E4031. The same 

augment in cell proliferation compared to lipofectamine treated cells was observed 

when Riluzole, SKA-31 and E4031 were used in combination both at IC25 and IC50 

(Figure 21). 

From this experiments we outlined how hERG1 silencing abolished E4031 effect on 

HCT-116 cells proliferation, confirming its specific role as a modulator on cell viability. 

The same was found if we silenced KCa3.1, abolishing Riluzole and SKA-31 effect on 

cell proliferation but not E4031. 
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Figure 19: Western blots of hERG1(left) and KCa3.1(right) protein expression in HCT-116 

cells treated only with lipofectamine (HCT-116 Lipo), silenced for hERG1(left) or KCa3.1 

(right) (HCT-116 Sh). Cell lysates from HCT-116 cells were probed with the anti-KCa3.1 and 

and anti-pan hERG1 antibody. Reprobing of the membranes with anti-tubulin antibody is 

reported in the bottom panels. The arrows indicate the bands corresponding to hERG1 and 

KCa3.1.  
 

 

 

 

Figure 20: HCT-116 cells treated only with lipofectamine (black) or silenced for hERG1 

(white) were treated with Cisplatin (at 1µM) alone or in combination with the following drugs: 

Riluzole (R), SKA-31 (S) or E4031 (E) at either the IC50 or IC25 values, as well as with 

combinations of two of the three drugs (R+E; R+S; S+E) at either the IC50 or IC25. Cells were 

counted after 24 hours of treatment and are reported as the number of Trypan Blue negative 

cells. Data are means ± SEM of two independent experiments. 
 



96 

 

 

 

 

Figure 21: HCT-116 cells treated only with lipofectamine (black) or silenced for 

KCa3.1 (white) were treated with Cisplatin (at 1µM) alone or in combination with the 

following drugs: Riluzole (R), SKA-31 (S) or E4031 (E) at either the IC50 or IC25 

values, as well as with combinations of two of the three drugs (R+E; R+S; S+E) at 

either the IC50 or IC25. Cells were counted after 24 hours of treatment and are reported 

as the number of Trypan Blue negative cells. Data are means ± SEM of two independent 

experiments. 

 

 

 

We found that KCa3.1 activation, exerted with  Riluzole and SKA-31, and hERG1 

block, exerted with E4031, in modulating with low doses of Cisplatin cell proliferation 

in HCT-116 cells produced comparable effects. Having confirmed the specific role of 

the two ion channels, we investigated if their activity on cell proliferation could be 

explained by a modulation of Cisplatin cellular uptake. 
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4.3.3 Cisplatin uptake in HCT 116 cells: modulation by Cu transporters 

inhibitor and K+ channels modulators. 

 

 

First, we investigated Platinum (Pt) uptake in HCT-116 cells treated with either 22μM 

or 200 μM Cisplatin and after either 6 or 24h of treatment (Figure 23). For all the 

conditions tested cells were collected by either tripsinization or gentle scraping. The 

number of cells, determined by Trypan Blue exclusion test, and the corresponding 

protein concentration are reported in Figure 22A. When plotted, a clear linear 

relationship is evident (Figure 22B). Therefore we determined a conversion factor 

which allowed us to report our data on Pt intracellular concentration as either 

nanomoles (or nanog) per 10
6
 cells or per mg of proteins.  

 

 

(A) 

Condition no. of cells mg of protein 

      

Contr - 6h tripsin 840000 0,24 

Cisplatin 22μM 6h tripsin 780000 0,23 

Cisplatin 200μM 6h tripsin 700000 0,21 

Contr - 24h tripsin 2200000 0,65 

Cisplatin 22μM 24h tripsin 1100000 0,34 

Cis 200μM 24h tripsin 300000 0,11 

Contr - 6h scraper 880000 0,26 

Cisplatin 22μM 6h scraper 820000 0,25 

Cisplatin 200μM 6h scraper 740000 0,22 

Contr - 24h scraper 2600000 0,69 

Cisplatin 22μM 24h scraper 1100000 0,33 

Cis 200 μM 24h scraper  380000 0,12 
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(B) 

 
 

 

 

Figure 22: (A) Number of  Trypan blue cells counted and relative amount of extracted proteins 

after exposure for 6 or 24 hours of HCT-116 cells to Cisplatin. Cells were seeded at time 0 at 

4*10
5
 in each well of a 6-well cluster. At the end of  6h or 24h treatment supernatant was 

recovered, cells were washed five times in cold PBS and collected by either tripsinization or 

gentle scraping. Cells was centrifuged at 1200g for 5 minutes. Pellets were resuspended in 1ml 

of PBS and 1/10 of the solution was centrifuged at 1200g and pellet was used for protein 

extraction, the others 9/10 were centrifuged at 1200g and pellet was used for ICP-AES. 

(B) Linear correlation between number of cells counted and mg of protein extracted 
after exposure for 6 or 24 hours of HCT-116 cells to Cisplatin. Data were linearly fitted with 

Origin Software (Microcal Origin 8.0 software; OriginLab Corporation, Nothampton, MA). 

We then determined the amount of Cisplatin in all the experimental conditions 

described above. Raw data, expressed as either nmol Pt or ng Pt, are reported in Figure 

28A. 

 

From a paper recently published by Planells-Cases and colleagues, it was found that, 

under isotonic condition, half of Pt uptake in HCT-116 cells is modulated by VRAC 

anion channel while the other half is mediated by passive diffusion through cell 

membrane (Planells-Cases et al., 2015). 

Our experiment outlined that, for short Cisplatin exposition, our data of Pt uptake are in 

line, among tripsin and scraper method of cells collection, to what reported by them 

(dashed light gray bars in Figure 23B, relative to HCT-116 and HEK-293 cells exposed 

to 40μM and 200 μM of Cisplatin either for 6 or 24h.) while for longer incubation times 

we observed a higher Cisplatin uptake compared to their data.  
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(A) 

Condition nmol Pt ng Pt 

      

Contr - 6h tripsin 0,009844166 1,9204 

Cisplatin 22μM 6h tripsin 0,115555926 22,54265 

Cisplatin 200μM 6h tripsin 0,615926287 120,1549 

Contr - 24h tripsin 0 0 

Cisplatin 22μM 24h tripsin 0,093706684 18,2803 

Cis 200μM 24h tripsin 1,052429772 205,308 

Contr - 6h scraper 0 0 

Cisplatin 22μM 6h scraper 0,19852804 38,72885 

Cisplatin 200μM 6h scraper 3,51640609 685,9805 

Contr - 24h scraper 0 0 

Cisplatin 22μM 24h scraper 0,114542239 22,3449 

Cis 200μM 24h scraper  0,626373795 122,193 
 

 

 

 

(B) 

 
 

Figure 23: (A) nmol Pt and ng of platin after exposure for 6 or 24 hours of HCT-116 cells to 

Cisplatin. Cells were seeded at time 0 at 4*10
5
 in each well of a 6-well cluster. At the end of  6h 

or 24h treatment supernatant were recovered and cells were washed five times in cold PBS and 

cells collected by either the addition of Tripsin-EDTA solution or by gentle scraping. Cells was 

centrifuged at 1200g for 5 minutes and the supernatant discarded. Pellet were resuspended in 

1ml of PBS and 1/10 of the solution was centrifuged at 1200g and the supernatant discarded and 

pellet was used for protein extraction, the others 9/10 were centrifuged at 1200g, the supernatant 

discarded and pellet was used for ICP-AES. (B) Data from table in A: (black bars) cell collected 

with tripsin, (grey bars) cell collected with scraper, (light grey bars) data of Cisplatin uptake 

reported in Planells-Cases et al., 2015. HCT-116 cells (116), HEK-293 cells (293). 
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Then we tested the contribution of CTRs transporters, known in literature to be the main 

proteins involved in Cisplatin uptake (Harrach et Ciarimboli. 2015) and expressed in 

HCT-116 as well (Table 2), in modulating Pt uptake after 3h of exposition; CuSO4, a 

known CTRs inhibitor (More et al., 2010), was added with 6µM, 22µM and 67µM of 

Cisplatin on HCT-116 cells. As reported in Figure 24, the addition of CuSO4 decreased 

the amount of Pt uptake compared to cells treated  only with Cisplatin;. We concluded 

that the uptake of Pt, in HCT-116 treated with 22μM of Ciplatin, is independent from 

CTRs expression while only for higher concentrations CTRs contribution becomes 

relevant. 

 

 

 

 
 

Figure 24: Effect on platinum uptake and extracellular platium concentration on HCT-116 cells 

after 3h of treatment with Cisplatin at IC25, IC50 and IC75 doses (black squares) and of Cisplatin 

at 6µM, 22µM and 67µM in combination with 1mM of CuSO4 (gray dots). 

 

 

We then proceeded to evaluate the role of TRAM-34, a known KCa3.1 inhibitor 

(Sankaranarayanan et al., 2009), in modulating Cisplatin uptake at 3h. When given at 

100μM with 6µM, 22µM and 67µM of Cisplatin we registered a marked decrease on 

intracellular platinum compared to Cisplatin-treated cells (Figure 25). This data 

suggested that a KCa3.1 block is related to a decrease in Cisplatin uptake in HCT-116. 
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Figure 25: Effect on platinum uptake and extracellular platinum concentration on HCT-116 

cells after 3h of treatment with Cisplatin at 6µM, 22µM and 67µM in combination with 100µM 

of TRAM-34. 

 

 

Finally we treated HCT-116 with IC50 of Cisplatin (22μM) in combination with IC50 of the 

Riluzole, SKA-31, TRAM-34 and E4031 to assess the effect of K
+
 channel modulators on 

Cisplatin uptake. We found that in HCT-116 cells Riluzole, when given in combination with 

Cisplatin, increases Pt cellular uptake, although this augment is very variable, as SKA-31 and 

E4031 do with less variability among the three experiments performed, while combination 

between Cisplatin and TRAM-34 decreases Cisplatin uptake (Figure 26), confirming even for 

longer times of exposition our data previously obtained (Figure 25)  . 
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Figure 26: Fold variation in platinum levels over Cisplatin measured after exposure for 24 

hours of HCT-116 cells to Cisplatin alone, or in combination with Riluzole, SKA-31, TRAM-34 

and E4031.  All the drugs were added at their IC50 doses.  

 

 

 

4.4 Expression of KCa3.1 in precancerous and cancerous lesions of colon and 

rectum. 

 

Given the importance outlined of KCa3.1 in regulating tumour cell proliferation and in 

modulating Cisplatin resistance in HCT-116 cells we decided to evaluate its expression 

on primary CRC tumour specimen and to assess if this could be correlated to other 

colorectal tumour markers as well.. We studied its expression levels on colorectal 

precancerous and cancerous lesions: 21 paraffin-embedded colorectal adenomas, 223 

adenocarcinomas and 30 normal mucosa samples. 

Examples of IHC for KCa3.1 on colorectal adenomas are reported in Figure 27, 

summary of analysis is reported in Figure 28 and the complete cohort of samples 

examined is listed in Table 11.  
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Figure 27. IHC analysis for KCa3.1 on colorectal adenoma samples. Explicative negative 

sample (Left), Positive sample (right). Magnification 20x. 

 

 

 

 
SAMPLE  SEX AGE HISTOLOGY GRADING hERG1  KCa3.1 

CR 13 F 81 ADENOMA 0 0 

CR71P M 81 ADENOMA 0 0 

CR87 M 55 HIGH GRADE DISPLASIA 0 1 

CR142 M 68 HIGH GRADE DISPLASIA 1 0 

CR164P M 73 ADENOMA 0 0 

CR196 P F 54 ADENOMA 0 0 

CR219  F 59 HIGH GRADE DISPLASIA 0 1 

CR 256 F 62 HIGH GRADE DISPLASIA 0 0 

1322638 A1 M 66 HIGH GRADE DISPLASIA 0 1 

1322638 B2 M 66 LOW GRADE DISPLASIA 1 1 

1322671 B1 F 72 LOW GRADE DISPLASIA 0 0 
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SAMPLE  SEX AGE HISTOLOGY GRADING hERG1  KCa3.1 

1322576 A1 M 58 LOW GRADE DISPLASIA 0 1 

1322492 A1 M 54 LOW GRADE DISPLASIA 0 0 

1322492 B1 M 54 LOW GRADE DISPLASIA . 0 

1322666 A1 M 79 HIGH GRADE DISPLASIA 0 1 

1322666 A2 M 79 HIGH GRADE DISPLASIA 0 0 

1322582 A1 F 67 LOW GRADE DISPLASIA 1 1 

1322582 A2 F 67 LOW GRADE DISPLASIA 1 1 

1322659 1 M 54 LOW GRADE DISPLASIA 1 1 

1322659 2 M 54 LOW GRADE DISPLASIA . 1 

1322659 3 M 54 LOW GRADE DISPLASIA 1 1 

 
 

 

Table 11. Markers and clinical-pathological data of colorectal adenoma samples examined via 

IHC for KCa3.1 staining.  

 

 

 

Figure 28. Pie chart of IHC analysis on colorectal adenoma sample. Green slice: negative 

samples (9/21); Yellow slice: positive samples (11/21). 
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KCa3.1 was found expressed on the plasma membrane and in the cytoplasm of 

neoplastic cells (Figure 27), with a diffuse pattern of labelling and a particular staining 

pattern in the tumour stroma on red white blood cells according to what reported in 

literature (Wulff et al. 2007). 

 

An univariate statistical analysis was conducted with software Stata (v.9.2 StataCorp 

USA) with the application of Fisher Exact Test  to evaluate correlations between KCa3.1 

expression and other clinical-pathological parameter and the expression of hERG1 

channel, following what published in Translational Oncology  for the research of 

prognostic indicators in CRC (Lastraioli et al. 2012).  

 

The analysis didn't outlined significant correlations between KCa3.1 and any of the other 

parameters examined but from our analysis we point out that, in the majority of 

adenoma samples examined in our small cohort of patients, KCa3.1 was found over-

expressed compared to normal tissue. 

 

As an enrichment of what already reported in Lastraioli et al., 2012 we investigated 

KCa3.1 expression and its correlation with other markers as well as clinical-pathological 

data on our cohort of  patients.  

An example of IHC staining of KCa3.1 is reported in Figure 29 while the summary of 

the analysis is reported in Figure 30. The complete clinical-pathological data and the 

statistical significant correlation form Fisher Exact Test with other markers are outlined 

in Table 12 and Table 13. 
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Figure 29. IHC analysis for KCa3.1 on colorectal adenocarcinoma samples. Explicative 

negative sample (Left), Positive sample (right). Magnification 20x. 

 

 

 

 

 

 

 

Figure 30. Pie chart of IHC analysis on colorectal adenocarcinoma samples. Blue slice: 

negative samples (82/184); Red slice: positive samples (102/184). 
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Table 15. Markers and clinical-pathological data of colorectal adenocarcinoma samples 

examined via IHC for KCa3.1 expression. (COLL: Colloid presence, GRAD: tumour 

grading, MTX: metastasis status)  



108 

 

Table 16. Statistical significant correlations between markers and clinical-pathological data of 

colorectal adenocarcinoma samples examined via IHC for KCa3.1.  

 

 

 

From the univariate statistical analysis conducted to evaluate the correlations between 

KCa3.1 expression the clinical-pathological parameter, the expression of hERG1 

channel as well as angiogenic markers (EGFR and VEGF), hypoxia factors (HIF1α and 

CAIX), transporters (GLUT-1) and classical tumour markers (p53), significant 

correlations emerged for KCa3.1. Not only KCa3.1  was found over-expressed in the 

majority of the samples examined while its expression was not found in normal mucosa, 
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but its expression was correlated with hERG1 expression as well as with several 

important angiogenic factors (VEGF, EGFR and CAIX).  

 

 

 

4.5 Effects of new Cisplatin analogues in tumour cells. 

 

We evaluate another possible strategy to overcome Cisplatin resistance, in creating and 

testing, in collaboration with Prof. Luigi Messori and Dr. Tiziano Marzo – Department 

of Chemistry “Ugo Schiff” – University of Florence, the cytotoxic effect of two new 

Cisplatin-analogue compounds, cis-Pt-I2 and cis-Pt-Br2 (Figure 31).  

 

 

 

Figure 31: Structure model of cis-Pt-I2 and cis-Pt-Br2. 

 

 

4.5.1 Solution chemistry of cis-Pt I2(NH3)2 and cis-PtBr2(NH3)2: activation profiles 

and their logP determination. 

 

Firstly Dr. Tiziano Marzo determined the UV-Vis analysis of both the complexes 

(Figure 34); cis-PtBr2(NH3)2 manifest typical absorption bands in the UV-visible, with a 
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main band at 330 nm and a pronounced shoulder at 300 nm (Figure 32). These bands 

are tentatively assignable to a d-d and LMCT transitions respectively in analogy with 

other Cisplatin derivatives (Marzo et al., 2015). After dissolution of the study 

compound in the reference buffer, progressive spectral changes are observed that are 

assigned to the progressive release of the two bromide ligands. The process is similar to 

what observed in the case of Cisplatin with a comparable kinetics (Marzo et al., 2015). 

By comparison of the spectral profiles of cis-PtBr2(NH3)2 and Cisplatin recorded after 

24 h of analysis, a good agreement was found, indicating that final species are the same 

for both the drugs.  

For cis-PtI2(NH3)2 some important spectral changes are slowly detected consisting of 

the progressive and regular decrease of the two main bands and in the appearance of a 

new band, of lower intensity, around 280 nm. The observed spectral changes are 

tentatively traceable to the progressive release of the two iodido ligands and to their 

replacement by water molecules according to a moderately biphasic kinetics. This 

would mean that the aquation process of cisPtI2 is quite close to that of Cisplatin, 

involving the progressive detachment of the two halide ligands while both ammonia 

ligands are retained as confirmed by some further experiments. In particular, addition of 

KI at increasing concentrations completely eliminated and even reverted the above 

described spectral changes strongly supporting the proposed interpretation. In any case, 

the rate of the aquation process for cisPtI2 is appreciably slower than that for Cisplatin 

(by at least a factor 2) possibly because of the greater strength of the Pt–I bond and/or 

greater inertness related to the increased “soft” character of iodide over chloride. 

Furthermore, log P determination was carried out on cisPtBr2 and cisPtI2. Values of -

1.04 and -0.13 were found. Remarkably these indicates a higher lipophilicity than 

Cisplatin itself (logP: -2.04). It is conceivable that these differences may have some 

effect in term of pharmacological activity of these new compounds. 
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Figure 32: Time course spectra of cisPtBr2 (left) and cisPtI2 (right) 10
-4

 M in 50mM phosphate 

buffer over 24 h at RT. 

 

 

4.5.2 CD experiments and interaction with ctDNA 

Since nuclear DNA is believed to be the primary target for the pharmacological effect of 

Cisplatin, (Siddik. 2003) Dr Tiziano Marzo characterized the interaction of cis-

PtBr2(NH3)2 with calf thymus DNA through CD experiments, and compared the results 

with Cisplatin. The CD spectrum of ctDNA, before addition of the drugs is in line with 

literature (Tamburro et al. ,1977; Srivastava et al., 1978) (Fig. 33).   
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Figure 33. CD spectra of ctDNA without and with cis-PtBr2(NH3)2, 0.5 and 1 equiv, after 72h 

incubation. 

 



112 

 

 

Addition of 0.5 equiv of cis-PtBr2(NH3)2 did not lead to any immediate change in the 

CD spectrum (data not shown). However, after incubation at 22°C for 72 h, the 

spectrum changed  showing clear differences on the whole wavelength range (Fig. 33). 

In particular, both CD bands at 280 and 250 nm increased in intensity, the first by about 

15%. From inspection of CD spectra it is apparent that the CD profiles measured after 

addition of 0.5 or 1 equivalents of cis-PtBr2(NH3)2 were consistent and no significant 

changes in the spectral profiles were detected. Evidence that cis-PtBr2(NH3)2 interacts 

with ctDNA very similarly to Cisplatin derive from the comparative analysis of the CD 

spectra of ctDNA after incubation with 1 equivalent of cis-PtBr2(NH3)2 or Cisplatin 

(Fig. 34). 
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Figure 34. CD spectra of ctDNA with cis-PtBr2(NH3)2 and Cisplatin, 1 equivalent, after 72h 

incubation. 
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Modification in the CD spectral profiles are well detectable, consistent and 

superimposable for the two complexes. A direct comparison with previous CD 

investigations on the ctDNA/Cisplatin system (Cleare et Hoeschele. 1973; Srivastava et 

al., 1978) is complicated by different experimental conditions and ctDNA samples (non-

sonicated vs. sonicated). Qualitatively speaking, the differences observed upon binding 

occur in the same spectral regions and at a similar extent. However, our fragmented 

ctDNA (800 bp) shows a full enhancement of the main CD bands and already with 0.5 

equivalent of ligand per base. 

 

To determine the nature of the DNA interactions of cisPtI2, the DNA binding properties 

of this complex were examined through a variety of methods and compared with those 

of Cisplatin. First, we aimed at quantifying the binding of cisPtI2 to mammalian (CT) 

double-helical DNA in a cell free medium. The amount of platinum bound to DNA 

increased with time and the times at which the binding reached 50% (t50%) are 

summarized in Table 17. 

 

Compound t 50%  (min) * 

cis-PtI 2(NH3)2 aged in H2O 105 ± 11 

Cisplatin aged in H2O 64 ± 5 

cis-PtI 2(NH3)2 aged in 10 mM KI 390 ± 24 

Cisplatin aged in 10 mM KCl 136 ± 19 

 

 

Table 17 Binding of cis-PtI2(NH3)2 and Cisplatin to calf thymus DNA. * The time at which the 

binding reached 50%. Values shown in the table are the means ± SEM of three separate 

experiments. 
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Importantly, after 24h, cisPtI2 and Cisplatin aged in water or in 10 mM KI/KCl were 

quantitatively bound. As expected, the PtII complexes preincubated in water reacted 

with DNA significantly more rapidly than those preincubated in KI/KCl (10 mM), but 

the rate of the reaction of Cisplatin was considerably higher than that of cisPtI2. 

 

The lower rate of the reaction of cisPtI2 with double-helical DNA in comparison with 

that of Cisplatin can be interpreted as the rate of the aquation of the leaving ligands in 

cisPtI2 is significantly lower than that in Cisplatin. Since interstrand and intrastrand 

cross-links formation are believed to be responsible for anticancer activity of 

bifunctional platinum compounds, we have quantitated the interstrand cross-linking 

efficiency of cisPtI2 in the linear pUC19 DNA (linearized with EcoRI restriction 

enzyme). Results point out that interstrand cross-linking efficiency of cisPtI2 (5 ± 2%) 

was similar to that of Cisplatin (6%). 

 

 

4.5.3 Cellular studies 

 

We examined the cytotoxic effect of cis-Pt-I2 and cis-Pt-Br2 on a panel of tumour cell 

lines in order to evaluate their IC50 (Table 18) and, on the most effective cell line, HCT-

116 for cis-Pt-I2 and FLG 29.1 for cis-Pt-Br2, we evaluated cell cycle distribution 

(Figure 35) in comparison with Cisplatin. 

 

We then proceeded to measure the amount of platin uptake exerted on HCT-116 in 

comparison with HCT116 p53-/- cells both for Cisplatin and for the di-iodioanalogue 

(Table 19) and for cis-Pt-Br2 to assess apoptosis induction compared to Cisplatin 

(Figure 36). 



115 

 

 

Cell Line Cisplatin IC50 (µM) cis-Pt-I2 IC50 (µM) 

HCT-116 21.96±1.11 4.15±0.23 

HCT-116 p53-/- 7.65±0.63 13.42±0.49 

HT-29 13.39±1.10 11.69±1.45 

A549 5.77±0.60 3.54±0.49 

IGROV-1 25.30±0.40 7.36±0.31 

PANC-1 2.48±0.11 0.91±0.10 

   

Cell Line Cisplatin IC50 (µM) cis-Pt-Br2 IC50 (µM) 

A549 8.61±0.73 10.08±0.73 

FLG 29.1 24.33±0.75 14.66±0.63 

HCT-116 20.04±0.95 28.28±3.11 

IGROV-1 24.12±0.49 25.63±0.25 

 

 

Table 18: A549,FLG 29.1,HCT-116 and IGROV-1 cell lines were exposed to IC50 

concentrations of Cisplatin and cis-Pt-Br2, while HCT-116, KCT-116 p53-/-, HT-29, A549 and 

IGROV-1 to IC50 concentrations of Cisplatin and cis-Pt-Br2 for 24 hours. Cell viability was 

evaluated via Trypan Blue exclusion assay. Means and SEMs are relative to one experiment 

mounted in triplicate. 
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Cisplatin         Cis-Pt-I2 

 

 

Figure 35: Plot of the number of cells labelled with Propidium Iodide determined by flow 

cytometry, after 24 hours of treatment at IC50 concentrations of Cisplatin and cis-Pt-I2/cis-Pt-Br2 

on cell cycle distribution of HCT-116/FLG 29.1 cells.  

 

 

 

 

Cell line Drug Platinum level (fg) Internalized Pt (%) 

HCT-116 p53-/- Cisplatin 25.3 0.98 

HCT-116 p53-/- Cis-Pt-I2 53.7 1.91 

HCT-116  Cisplatin 14.6 0.50 

HCT-116 Cis-Pt-I2 66.6 2.41 

 

Table 19: Platinum level (per cell) measured after exposure (3 hours) of HCT-116 and HCT-

116 p53-/- to 20 µM of Cisplatin and cis-Pt-I2. 
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Figure 36: Effects of Cisplatin and cis-Pt-Br2  on apoptosis distribution of FLG 29.1 cells. 

Apoptosis was evaluated after 24 hours of treatment through the Annexin/PI assay. The figure 

shows dot plots of control and treated cells at the same experimental time point. The results are 

the Means±ESM of two independent experiments. 

 

 

Finally we mounted an experiment to assess the different cytotoxic effect of Cisplatin 

and cis-PtBr2(NH3)2 during the passage of time; FLG 29.1 were exposed to 19µM of 

both the drugs, given singularly for 72h. As reported in Figure 37 treatment of cells with 

the dibromido analogue significantly diminished the percentage of living cells during 

the passage of time, both at 48h and at 72h, compared to Cisplatin.   

 

 

 

Figure 37: Effects of Cisplatin (black dots) and  cis-PtBr2 (black triangles) on FLG 29.1 cell 

line proliferation during the passage of time given as the number of Trypan Blue negative cells. 

Drugs were added once a t=0. Data are means ± SEM of two independent experiments. 

Statistically significant data compared to Cisplatin treatment, accordingly to paired t-student 

test, are indicated with an asterisk. 
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Taken together these results confirmed the potential value of cis-Pt-Br2 on FLG29.1 cell 

line as, in comparison with Cisplatin, it exerted a higher induction of apoptosis (% of 

cell in early apoptosis 41.2±2.8% vs 51.9±4.5%) and a stronger accumulation of cells in 

S phase while cis-Pt-I2 exhibited for all the cell lines of the panel, except for HCT-116 

p53-/- a stronger effect compared to Cisplatin, a higher platin internalization and a 

higher block on HCT-116 cells on the transition between G0/G1 and S phase, resulting 

in a decrease of cell proliferation. 

Finally we decided then to test cis-Pt-I2 in our model of Cisplatin resistance colorectal 

cell line, the HCT-116 cells, in combination with K
+
 channel modulators, to see if its 

higher efficacy could be improved by the specific modulation of selective ion channels. 

We performed a series of CI experiments which revealed an additive effect at IC50 

values of this new Cisplatin analogue with Riluzole, but not with the other modulators 

(Table 20). 

 

 

HCT-116 Combination 

index at IC50 
mean±SEM 

Combination 

index at IC75 
mean±SEM 

Combination 

index at IC90 
mean±SEM 

Cis-Pt-I2+Riluzole 1.00±0.01 1.44±0.16 2.33±0.49 

Cis-Pt-I2+SKA-31 1.64±0.24 1.59±0.20 1.67±0.17 

Cis-Pt-I2+TRAM-34 2.27±0.39 1.95±0.64 2.16±1.49 

Cis-Pt-I2+E4031 1.43±0.04 1.29±0.01 1.17±0.04 

 

Table 20: HCT-116 cell line was exposed to IC50 Cis-Pt-I2 in combination with IC50 of 

Riluzole, SKA-31, TRAM-34 and E4031 with a 2-fold serial dilution (1/1, 1/2, 1/4, 1/8, 1/16, 

1/32, 1/64) for 24 hours and then cell viability was evaluated using Trypan blue exclusion assay. 

The means are relative to two independent experiments. CI values were calculated using 

Calcusyn software Version 2 (Biosoft). CI > 1, antagonisms; CI = 1, additivity; CI < 1, synergy.  
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5. DISCUSSION 

 

Chemoresistance is a major problem in clinical oncology. Cisplatin, one of the drugs 

most widely used in the therapy of solid cancers, often triggers the development of 

resistance to its pro-apoptotic effects (Kartalou et Essigmann., 2001; Siddik et al., 2003; 

Wang et al., 2005).  Hence, the development of new protocols capable of overcoming 

Cisplatin chemoresistance could have a great clinical significance.  

We studied two possible ways of overcoming this problem: (1) using ion channels as 

targets in an in vitro model of Cisplatin resistance in colorectal cancer (CRC) with the 

aim to test the possible use of K
+
 channel modulating agents and (2) test two new 

Cisplatin-analogues with the intent of characterizing their activation properties in 

aqueous solutions, their reactivity with DNA and their cytotoxic effect on a small panel 

of tumor cell lines in comparison with Cisplatin. 

 

 

(1) Starting from analyzing a panel of CRC cell lines we found that Cisplatin resistant 

CRC cells (HCT-116) have a higher expression of K
+ 

channels compared to the most 

sensitive cell line (HCT-8) while there was no appreciable difference in the expression 

levels of the main transporters known in literature to mediate Cisplatin uptake and 

efflux.  

We analyzed the expression levels of different K
+
 channels encoding genes, focusing on 

those reported to be expressed in CRC (Spitzner, 2007; Arcangeli et al, 2009; Huang. et 

al 2014; Planells-Cases et al., 2015): the voltage dependent potassium channels Kv10.1 

or EAG1 (KCNH1), Kv11.1 or hERG1 (KCNH2) and Kv1.3 (KCNA3), the 

intermediate-conductance calcium-activated potassium channel KCa3.1 (KCNN4), the 
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small-conductance KCa2.3 (KCNN3) and the big conductance KCa1.1 channels 

(KCNMA1). 

 

From our analysis KCNH2 was found expressed in both cell lines, but at higher level in 

HCT-116 cells, as previously reported (Lastraioli et al., 2004). KCNN4 (high expression 

level) and KCNN3 (medium expression level) were present almost exclusively in HCT-

116 cells. All other ion channels transcripts were negligible in both cell lines. 

Our data are consistent to what found by Spitzner et al., 2007 in T84 colon carcinoma 

cells for the RT-PCR expression levels of hERG1 and KCa3.1 while we didn’t detect in 

both our cell lines studied considerable expression levels of KCa1.1, Kv1.3 and EAG 

channels. Lee and colleagues also found high expression KCa3.1 in KB colon cell line 

(Lee et al., 2008) which was also reported to be expressed in HCT-116 mitochondria 

(De Marchi et al., 2009). As for the main Cisplatin transporters found to be expressed in 

cancer cells (Harrach et Ciarimboli 2015; Spreckelmeyer et al.,2014), the copper 

transporters CTR1 (SLC31A1) and CTR2 (SLC31A2) as well as the two P-type ATPases 

ATP7A (ATP7A) and ATP7B (ATP7B), three of them, SLC31A1, ATP7A and ATP7B, 

were found expressed in both HCT-116 and HCT-8 but their expression levels did not 

differ between the two CRC cell lines. The high expression levels of CTR1 are known 

in literature to be associated with several tumour cancer lines and, given its almost 

ubiquitously expression, it may not be the decisive transporter for specific Cisplatin 

toxicities (Harrach et Ciarimboli. 2015) while, given ATP7A and ATP7B role in 

mediating Cisplatin efflux from the cell or its distribution to specific sub-cellular 

compartments, our data suggests that in our in vitro model other mechanisms of efflux 

could be implicated in a different cytoxicity, like organic cation transporters and 

multidrug and toxin extrusion proteins (Spreckelmeyer et al., 2014).   
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Consistently with the abundance of K
+
 channels we found that HCT-116 have a more 

hyperpolarized membrane potential (Vrest) value compared to sensitive HCT-8.  

Liang et colleagues, using the same KB-3-1 cell line (Cisplatin sensitive) and a similar 

derived clone KB-CP1 (Cisplatin-resistant) used by Lee and his collaborators, found 

that Cisplatin-resistant clones displayed a more hyperpolarized cell membrane potential 

compared to the sensitive one, in accordance to what we found in our model (Liang et 

al., 2005).  

These results indicated to us that the ion homeostasis of Cisplatin-resistant cells is 

different than that of the sensitive one. In addition, several other data in literature 

indicated that altered K
+
 fluxes and the expression of K

+
 channels on plasma 

membranes are associated with Cisplatin resistance (Liang et al., 2004; Mahaswari et 

al., 2000) and that hERG1 upregulation is often present in the acquisition of this 

characteristic (Liang et al., 2005). All this considered, we focused our interest on the ion 

channels found differently expressed between our Cisplatin-sensitive (HCT-8) and 

Cisplatin-resistant colorectal cell line (HCT-116).  

From our work different K
+
 channel modulators (Riluzole, SKA-31 and E4031) 

displayed a relevant inhibition of HCT-116 cell growth; this is consistent to what 

reported in literature. Riluzole, an activator of KCa3.1 and an hERG1 inhibitor 

(Sankaranarayanan et al. 2009), known for being already approved for human use for 

ALS treatment, recently demonstrated to reduce human prostate cancer cells viability, 

inducing apoptotic cell death following endoplasmic reticulum stress (Akamatsu. 2009) 

as well as migration, invasion, and proliferation of melanoma cells (Le et al., 2010).  

Although there are no evidence in literature for SKA-31, a known selective KCa3.1 

activator, effect of cancer cells proliferation we speculate a similar mechanism 

compared to Riluzole, given its selectivity of action for KCa3.1 channel. E4031, an 

experimental class III antiarrhythmic drug able to selectively block hERG1 channel, is 
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known to inhibit cell proliferation and invasion in neuroblastoma cell lines (Crociani et 

al., 2003), gastric cancer cells (Lastraioli et al., 2005) and Acute B Lymphoblastic 

Leukemia cell lines (Pillozzi et al., 2007). All these data confirmed to us the strong 

effect we reported on reduction of cell proliferation both on HCT-8 and HCT-116 cell 

lines. When given in combination with Cisplatin, Riluzole, SKA-31 and E4031 

exhibited a synergic effect. This could be traced back to an increase in the percentage of 

apoptotic cells (Table 10).  

 The K
+
 channel modulators we tested could at least exert part of their efficacy by 

affecting cell volume homeostasis and could have a prominent role in the induction of 

apoptotic volume decrease (AVD). In cancer a hallmark of apoptosis is a marked cell 

shrinkage (Kerr et al., 1972), which is AVD (Maeno et al., 2000). AVD is an early 

event required for triggering of full apoptosis (Poulsen et al., 2010), and there is strong 

evidence that preventing cell volume regulation after shrinkage is associated with 

induction of apoptosis (Lang et Hoffmann, 2012). AVD results from a loss of KCl via 

K
+
 and Cl

−
 channels and concomitant loss of water; this is linked with both hERG1 and 

KCa3.1 channels as well as VRAC anion channel (Pedersen et al., 2011).  

During AVD, cells lose the capacity for counteracting cell shrinkage by triggering a 

regulatory volume increase (RVI) response (Maeno et al., 2006), which would be 

normally operating in a healthy cell. It important to note that in MCF-7 cells hERG1 

was found to be related to RVD; in particular its inhibition with E4031 has been linked 

to the complete abolition of RVD (Roy et al., 2008).  

Although there is no evidence in literature that Cisplatin can alter KCa3.1 mRNA 

levels, it is involved in altered calcium homeostasis and extracellular Ca
2+

 has been 

observed to be necessary for Cisplatin-induced activation, in human carcinoma HeLa-

S3 cells, of a Ca
2+-

dependent K
+
 conductance inhabitable by charybdotoxin 

(Splettstoesser et al., 2007). 
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Calcium signaling is involved in various tumorigenic pathways, and the inhibition or 

activation of specific Ca
2+

channels or pumps can reduce cellular proliferation and/or 

induce apoptosis (Monteith et al., 2007; Lipskaia et Lompré, 2004; Florea et 

Büsselberg, 2013). Al-Taweel and colleagues correlated an increased cytosolic calcium 

levels to treatment with Cisplatin in MFC-7 cells, while in a Cisplatin-resistant MCF-7 

clone, this response, following Cisplatin treatment, was far less evident (Al-Taweel et 

al., 2014). 

Riluzole activity has been also related to a disruption in calcium homeostasis, in 

particular it was found to reduce prostate carcinoma cells viability by a reduction in 

DNA synthesis, induction of apoptosis following endoplasmic reticulum stress, 

abnormal release of calcium in the cytoplasm and caspase-4 induction (Akamatsu et al., 

2009). 

Additionally, reactive oxygen species (ROS), which are produced upon Cisplatin 

treatment (Casares et al., 2012) may have also a role in KCa3.1 activation. One report 

provides evidence that ROS stimulate the KCa3.1 conductance in the Calu-3 airway 

epithelial cell line (Cowley et Linsdell. 2002) and also VRAC channel was activated by 

ROS in apoptosis of HeLa epithelial cancer cells (Shimizu et al. 2004) suggesting a 

common role of both the channels in apoptosis modulation. 

We also reported that treatment of HCT-116 cells for 24h with Riluzole, SKA-31 and 

E4031 was accompanied by an augment of intracellular Cisplatin concentration (Figure 

26) but not with a significant modulation of cell membrane potential (Table 7) and that 

the combination of Riluzole, SKA-31 or E4031 with low Cisplatin doses strongly 

reduced HCT-116 cell growth.  

Concerning Cisplatin uptake measurements our investigation outlined that data could be 

either expressed by number of cells or by mg of proteins, given the linearity of their 

correlation (Figure 22). Compared to what reported by Planells-Cases and colleagues on 
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both HEK-293 and HCT-116 cells our analysis outlined consistency for short exposure 

times treatment while differed for prolonged times (Figure 23). At 3h we clearly 

demonstrated that CTRs are not relevant on Cisplatin uptake in  HCT-116 (Figure 24) 

and that TRAM-34, given in combination with Cisplatin, is able to decrease its uptake. 

These data suggest that other transporters are involved in Cisplatin uptake in HCT-116 

as anion channel VRAC which, was recently found to be responsible for half of its 

uptake under isotonic condition (Planells-Cases et al., 2015). TRAM-34 effect could be 

related to the block of KCa3.1 in regulating VRAC activity, following K
+
 and Cl

-
 ion 

lost during AVD induction and consequently Cisplatin uptake through VRAC channel. 

The high variability affecting our data at 24h could be explained by the relative small 

number of cells seeded compared to the high effect of Cisplatin and K
+
 channels 

modulators on cell viability at longer incubation times, which could also have affected 

manual and instrumental difficulties in sample preparation.  

Despite this technical bias, we were able to assess at 24h, in three independent 

experiments, the effect of K
+
 channel modulators in affecting Cisplatin uptake levels in 

HCT-116 cells. We found that Riluzole, SKA-31 and E4031, given in combination with 

Cisplatin, were able to increase its intracellular levels while TRAM-34 induced a 

decrease in its concentration (Figure 26). 

To explain how potassium channels modulators can exert all their effects on cell 

viability through a modulation of Cisplatin uptake, we propose a mechanism consistent 

to what reported by Planells-Cases and colleagues concerning VRAC ability to 

modulate platinum uptake in HCT-116 cells (Planells-Cases et al., 2015).  

In their article the authors pointed out how VRAC is the main Cisplatin transporter and 

that a downregulation of two specific VRAC subunits, LRRC8A and LRRC8D, is 

directly linked to a significant decrease of Cisplatin uptake at 24h, both in HEK-293 and 

HCT-116 cell lines (Planells-Cases et al., 2015).  
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We speculate that Riluzole and SKA-31 activation of KCa3.1 in HCT-116 cells could 

result in a volume decrease by potassium and consequent chloride ions lost, not 

affecting cellular Vrest. This reduction in cell volume could lead not only to AVD, but 

also to induce an increase in Cisplatin uptake through VRAC channel (Planells-Cases et 

al. 2015). This could lead to a more severe AVD as Cisplatin is known to induce 

apoptotic volume decrease as a first step during the induction of apoptosis (Cai et al., 

2015). 

We speculate that hERG1 block by E4031 could operate on the other hand by a 

decrease in cell proliferation by modulation of AKT signaling pathway as already 

reported in HCT-116 (Crociani et al. 2013). Although this hypothesis will need further 

confirmation we suggest the possibility that this could cooperate with Riluzole and 

SKA-31 in affecting cell viability, resulting in a global decrease of cell proliferation, 

enhancing Cisplatin cytotoxic cellular concentration and apoptosis induction. This 

model is summarized in Figure 38. 

 

 

 

Figure 38: Schematic model of interaction of synergic potassium channel modulators with their 

targets and effect on cell proliferation in HCT-116 cell line. Cis-Pt: Cisplatin 
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(2) The test of cis-Pt-I2 and cis-Pt-Br2 properties in aqueous solution outlined how the 

diiodio analogue display a higher binding time compared with Cisplatin (Table 17) 

while the dibromo analogue displayed no significant difference (Figure 34).  Despite 

these initial results cis-Pt-I2 and cis-Pt-Br2 were found to be more lypophilic compared 

to Cisplatin. 

From our cytotoxicity studies cis-Pt-I2 and cis-Pt-Br2 resulted in a higher efficacy 

compared to Cisplatin, particularly in HCT-116 and FLG29.1 cell lines respectively. To 

explain the higher effect of cis-Pt-I2 compared to Cisplatin in our panel of cell lines 

tested, we point out that, in spite of its lower reactivity with DNA, an unconventional 

off-target reactivity toward the model protein cytochrome c has been highlighted, 

unexpectedly characterized by the loss of the amino ligands and retention of iodido 

ligands (Messori et al., 2012; Messori et al., 2010). Furthermore, Messori and his 

colleagues structurally described the reaction of cis-Pt-I2 with lysozyme, confirming the 

peculiar and different interaction mode toward this model protein in comparison to 

Cisplatin (Messori et al., 2013). Another aspect which can evidence cis-Pt-I2 as well as 

cis-Pt-Br2 effectiveness is their higher lipophilicity compared to Cisplatin which can 

assess an increase in their cellular uptake and advocate for a higher cell cycle block (in 

G0/G1 phase for cis-Pt-I2 and in S phase in cis-Pt-Br2) compared to Cisplatin (Figure 

36). In particular the higher efficacy of cis-Pt-Br2 was more evident during the passage 

of time, suggesting a more effective role in inhibiting cellular growth compared to 

Cisplatin, possibly linked to its higher lipophilicity (Figure 37). 

The lesser efficacy we found on HCT-116 p53
-/-

 is quite puzzling but data from 

literature on p53 role in Cisplatin resistance are mixed; several authors indicates how a 

mutation of p53 results in an increase of Cisplatin resistance (Boulikas et Vougiouka. 

2003) while others points out how an augment of cytoplasmic p53 expression levels is 
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correlated with an increase Cisplatin resistance, for its role in negatively modulating 

caspase 9 (Chee et al., 2013). 

Finally we report that when cis-Pt-I2 was tested with the same K
+
 channels modulators 

instead of Cisplatin, its effect were quite different; only Riluzole remained synergic 

with the diiodio-analogue (Table 20), confirming not only different potential off-target 

effects but, we speculate, different effects on VRAC modulation as well. 

 

Taken together both the approaches followed in this thesis demonstrated capability in 

overcoming Cisplatin resistance, either with the exploit of K
+
 channels modulators 

drugs in combination with Cisplatin or through the increase selectivity of new platinum 

based compounds, as cis-Pt-I2 and cis-Pt-Br2.  
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