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Maurice Lévy’s original contribution to the analysis of masonry domes
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In the fourth section of his book “La statique graphique et ses applications aux constructions”, Chapter II, Cupoles 
en maçonnerie, published in Paris in 1888, Maurice Lévy deals with the problem related to the stability of ma-
sonry domes provided with variable thickness. Lévy’s idea is based on the fact that in any type of dome there are 
two types of behaviour: the first refers to the portion of shell where, both along the meridians and parallels, there 
are only compressive stresses, the second relates to the part in which the parallels are intraction.The unknown 
of the problem is to determine the location of the parallel where the transition occurs between the two different 
conditions, that is, what Lévy calls the “point neutre”. Lévy suggests the use of an original graphical method, that 
he describes in detail, which initial setting is largely due to a previous work of H.T. Eddy.
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Introduzione

Some nineteenth-century scientific memoirs, published 
by the Academiae Royale des Sciences of Paris, formed 
the beginning of the studies concerning the equilibrium 
analysis of masonry domes. The problem was previous-
ly treated, from Vitruvio to Scamozzi, via Palladio and 
Leon Battista Alberti, only from a strictly geometrical 
point of view or, at most, only as a technical-construc-
tive problem. Indeed, for a scientific approach that 
deals explicitly with the static problem of the masonry 
domes, supported by a rigorous mathematical reason-
ing, one needs to wait for 1734, the year in which Pierre 
Bouguer presented his memoir entitled “Sur les lignes 
courbes qui sont propres a former les voutes en dôme”. 
The first the aspect of the problem to be examined was 
the search for the optimum shape to be given to a ma-
sonry dome loaded only by self-weight. The problem 
posed by Bouguer (defined as “first question” in the test 

of his memoir) can be described as follows: which is 
that curve such that the surface generated by its rota-
tion around a vertical axis, once it has been assigned 
an appropriate thickness, corresponds to a dome which 
is capable of supporting its own weight (fig. 1)? Im-
posing the assumption of complete absence of friction, 
Bouguer proposed for the first time the equation of the 
funicular meridian: he stated that, for the dome to be in 
equilibrium, the meridian curve must coincide with the 
funicular curve corresponding to the self-weight loads 
of a slice of the dome. In this regard, it should be re-
membered that some years earlier, in 1704, J. Bernoulli 
had shown that an arch with a shape of an inverted cat-
enary, whatever its thickness, resists its own weight: the 
argument developed by Bouguer relies on the fact that a 
dome, which shape is obtained by rotating the funicular 
meridian around a vertical axis, has the same property 
of the arch analysed by Bernoulli. Later, Charles Bossut 



Tempesta, Paradiso, Galassi, Pieroni8686

(Bossut 1778), Lorenzo Mascheroni (Mascheroni 1785) 
and Giuseppe Venturoli (Venturoli 1883) reached simi-
lar conclusions. All the solutions suggested by these au-
thors have a common characteristic: the dome is consid-
ered, de facto, as a one-dimensional behaviour structure, 
to be seen as composed of a series of distinct segments or 
slices or “lunes”, wider at the base and tapering to zero 
at the crown, placed in mutual contact with each other 
but without any interactions among them. In conclu-
sion, since the equilibrium of each slice is investigated 
separately, if it can be shown that each element of the 
sliced structure is stable, then it is argued that the orig-
inal structure must be stable. Under these assumptions 
the analysis of masonry domes does not present any dif-
ference compared with the analysis of masonry arches. 
The problem is, therefore, part of the investigations on 
the relationship between the shape of the thrust curve 
and the catenary curve, between the shape of a barrel 
vault and the velaria, between dome and the hanging 
veil  “… un velo lento pendente da un cerchio orizzontale 
che senza rughe si disponesse per il proprio peso nella forma 
di un catino”.
It is interesting to note that the fact of not considering 
any action among the slices of the dome, correspond-
ing to the hypothesis of zero hoop stresses, means that 
the problem lies, actually, in the field of modern limit 
analysis, as applied by J. Heyman (Heyman 1967) in 

his fundamental studies on masonry structures. More-
over, in his introductory assumptions, Heyman himself 
makes explicit reference to the eighteen-century mod-
el, considering that it was still perfectly suitable to deal 
with the general solution of the problem. The model 
of limit analysis proposed by Heyman does not differ 
in any way from the analysis performed by Poleni (Po-
leni 1734) or  by the Three Mathematicians (Le Seur et 
al. 1742) for evaluating the stability of the dome of St. 
Peter in the Vatican. The similarity between the “settore 
solido” of Poleni and the “orange slice” of Heyman is very 
clear.
Later, directing the analysis to the study of the equi-
librium of a spherical dome, Bouguer deals with the 
“second question”: how to determine the stress state in 
a dome with assigned thickness and shape. While the 
first problem mainly concerns the issue of the design of 
the dome, the latter is addressed to consider the aspects 
concerning the analysis of the stability of an existing 
dome. Both Bouguer and Venturoli, in this regard, in-
troduce, although in a qualitative way, the issue of two- 
dimensional  behaviour of the dome.
In 1888, the book “La statique graphique et ses appli-
cations aux constructions”, written by Maurice Lévy, is 
published. In the second chapter, entitled Cupoles en 
maçonnerie, Lévy deals with the stability of masonry 
domes provided with variable thickness (fig. 2). The 

Fig. 1. The funicular meridian of Bouguer (left) and the slice of dome analyzed by Bossut (right).
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proposed method of analysis, absolutely original, is 
developed using a fully graphical procedure. The gen-
eral hypotheses used by Lévy concern  the  absence  of  
friction between the stones  and  the  assumption  of  
masonry as a no-tension material. Although it should 
be remembered that a good part of the discussion (the 
author makes a fleeting mention of this in the text) 
draws profusely on what has already been dealt with 
and resolved by H. T. Eddy in his book “Researches in 
Graphical Statics,” published in New York a few years 
before (fig. 2), Levy suggests very clearly a new per-
spective in the analysis of masonry domes. Lévy’s idea 
is based on the fact that in any dome there are two 
types of behaviour: the first refers to the portion of 
shell where, both along the meridians and parallels, 
there are only compressive stresses; the second one 
relates to the part in which the parallels are subject 
to tensile stresses. The unknown of the problem is to 
determine the location of the parallel in which the 
hoop compressions vanish and the hoop tensions be-
gin to develop. This is what Lévy calls the “point neu-
tre”, because it is the hoop with zero tension. Since we 
must assume that the masonry cannot resist any hoop 
tensions, it follows that, below this point (i.e. in the 
lower portion of the dome) cracks will form and will 
be spread along the meridians.
Ultimately, the result is that the upper part of the dome 
will be carried, below this point, by the united action of 
a series of slices or masonry arch-lunes standing side by 
side (but acting independently from each other).
The double behaviour had already been hypothesized 

by J. Wilhelm Schwedler (Schwedler 1859). In fact, 
Schwedler, around the mid-nineteenth century, pro-
posed a graphical method for determining the state of 
stress in a dome (fig. 3).
Nevertheless, such a method does no more than to 
translate, in a graphical procedure, the solution that will 
be possible to obtain in general form, some years later, 
by the equations of the equilibrium of membranes, of 
membranes and also making the solution easier to ob-
tain in the case in which the shape of the dome is not 
regular or which has a more complex curvature. Also in 
this case the proposed method involves the identifica-
tion of to two parts of the dome that have a different 
behaviour. In the graphical procedure, we accept the 
coincidence between the geometrical axis of the struc-
ture and the surface of stress of that part of the dome 
in which we have a bi-dimensional stress state; the axis 
changes only in the lower part of the dome, where the 
parallels would result stretched.
It ‘would be nice to say that Schwedler was the first to 
introduce the double-masonry behaviour in the dome. 
However, the issue that had not yet been understood 
was that the inversion point of the hoop stresses is, actu-
ally, an unknown factor and can not be predetermined 
by saying, as Schwedler did, that it coincides with the 
point obtained by using the analysis of the membrane.

Fig. 2. Cover pages of the original texts of Lévy (left) and Eddy (right).
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is, actually, an unknown factor and not can be predetermined by saying, as Schwedler does, that it  

coincides with point obtained by using the analysis of membrane.

Figure 3 – Schwedler’s graphical construction. The part of dome not considered is subject to not admissible 

hoop stresses.

3 LÉVY’S GRAPHICAL SOLUTION 

As previously stated, the fundamental idea behind this procedure is based on the awareness of  the 

existence of two unknown elements within the problem: the actual reacting structure and the location 

of the “point neutre” to which a “parallele neutre” corresponds. Since masonry, for instance, is not 

capable of carrying tensile stresses, Lévy claims that the portion of the dome which is located above  

the  “point  neutre” tolerates  the  ϑdq'  horizontal  compressive  stresses  that  are  transmitted  by the 

adjacent sections of the vault, while the one located below such a point, cannot tolerate any hoop  

stress. In this instance,  we do not  assume an entirely one-dimensional  behaviour on behalf of  the 

dome, since we do not presumptively impose that the hoop stresses be neutral everywhere; Lévy takes 

into account the contribution that the hoop stresses give to stability for the entire section of dome  

where such stresses are admissible, according to the mechanical characteristics of masonry material.  

By  imposing  the  admissibility  of  such  a  solution  in  every  area  we  obtain,  as  a  fundamental  

consequence,  the  variation  in  distribution  of  the  stress  inside  the  entire  vault.  From  this  

indetermination follows the inability to point out the location of the cracking joint, that is the “point  

neutre”. The latter is therefore the principal unknown factor regarding the analysis of a masonry dome: 

"Il en résulte une tout autre répartition des pressions et, pour le point neutre, une position égalment  

autre  que  celle  qui  existerait  dans  une  couple  métallique  de  même  forme.  Il  faut  détarminer  la  

nouvelle position de ce point".

Lévy also points out that the thrust line of that portion of the dome which is located below the "point  

neutre", can be nothing but the funicular curve associated to each sliced sector of dome located under  

that point. This of course depends on the fact that underneath the “point neutre”, the hoop stresses 

must be disregarded because they are inadmissible. In This regard Lévy states “"La partie de la Voûte  

comprise entre ce point et le joint de naissance ne supportant pas d'action sur ses têtes et étant, par  

suite, de tous points assimilable à une voûte en berceau ordinaire, sa courbe des pressions ne peut  

être qu'une courbe funiculaire des charges agissantes, tandis que la courbe des pressions de la partie  



Tempesta, Paradiso, Galassi, Pieroni88

Lévy’s graphical solution

As previously stated, the fundamental idea behind this 
procedure is based on the awareness of the existence of 
two unknown elements within the problem: the actual 
reacting structure and the location of the “point neutre” 
to which a “parallele neutre” corresponds. Since mason-
ry, for instance, is not capable of carrying tensile stresses, 
Lévy claims that the portion of the dome which is located 
above the “point  neutre”  tolerates the q’ dϑ horizontal 
compressive stresses that are transmitted by the adjacent 
sections of the vault, while the one located below such a 
point, cannot tolerate any hoop stress. In this instance, 
we do not assume an entirely one-dimensional behaviour 
on behalf of the dome, since we do not presumptively 
impose that the hoop stresses be neutral everywhere; Lévy 
takes into account the contribution that the hoop stresses 
give to the stability of the entire section of dome where 
such stresses are admissible, according to the mechanical 
characteristics of masonry material. By imposing the ad-
missibility of such a solution in every area we obtain, as 
a fundamental consequence, the variation in distribution 
of the stress inside the entire vault. From this indeter-
mination follows the inability to identify the location of 
the cracking joint, that is the “ point neutre”. The latter 
is, therefore, the principal unknown factor regarding the 
analysis of a masonry dome: «Il en résulte une tout autre 

répartition des pressions et, pour le point neutre, une posi-
tion égalment autre que celle qui existerait dans une couple 
métallique de même forme. Il faut détarminer la nouvelle 
position de ce point».
Lévy also points out that the thrust line of that portion 
of the dome, which is located below the «point neutre”, 
can be nothing but the funicular curve associated to each 
sliced sector of the dome located under that point. This, 
of course, depends on the fact that underneath the “point 
neutre” the hoop stresses must be disregarded because 
they are inadmissible. In this regard Lévy states  “«La par-
tie de la Voûte comprise entre ce point et le joint de naissance 
ne supportant pas d’action sur ses têtes et étant, par suite, de 
tous points assimilable à une voûte en berceau ordinaire, sa 
courbe des pressions ne peut être qu’une courbe funiculaire 
des charges agissantes, tandis que la courbe des pressions de 
la  partie supérieure peut, sans que les conditions statiques 
d’équilibre cessant d’être satisfaites, être prise à volonté à l’in-
terieur de la voûte”.
The funicular curves are determined by using graphical 
static methods and, as mentioned above, an important 
part of the graphical procedure refers to the studies pub-
lished in the United States some years before by H. T. 
Eddy. In brief, with referring to figure 4, the steps of the 
graphical procedure are:
-	 compute the weight of the blocks obtained by div-

ing the meridian cross section in a arbitrary num-supérieure peut, sans que les conditions statiques d'équilibre cessant d'être satisfaites, être prise à  

volonté à l'interieur de la voûte".

Figure 4  - Lévy’s method. Graphical construction taken from “La statique graphique et ses applications aux  

constructions”, second chapter, Cupoles en maçonnerie.

The funicular curves are determined by using graphical statics methods and, as mentioned above, an  

important part of the graphical procedure refers to the studies published in the United States some  

years before by H. T. Eddy. In brief, with referring to the figure 4, the steps of the graphical procedure  

are:

- compute the weight of the blocks obtained by diving the meridian cross section in a arbitrary 

number of elements. The weights, for the calculation of which Guldino’s Theorem is used, are 

acting on the vertical axes passing through centre of each element;

- draw a tentative funicular polygon which is satisfactory only as long as it passes through the 

extrados of the third middle at the base of the dome;

- draw the horizontal lines for the ordinates of the extrados of the third middle to meet the bO
0  

line of tentative polygon;

- draw the vertical lines passing through the points determined above to meet the respective 

vertexes of the tentative funicular polygon; in such a way a curve which passes through the  

point n
'β  is obtained;

- draw, passing through n
'β , a tangent to the curve: the point of tangency is 0

't ; from that point; 

draw the horizontal line to meet the tentative funicular polygon in 0
t ;

- the vertical line, drawn from 0
t , intersects the extrados curve of the third middle in 0

σ : this 

point represents the location of the parallel in which the hoop stresses are zero (point neutre), 

identifying the passage between the two parts of the dome that have different behaviour.

In order to draw the funicular curve relating to the lower portion of the dome, it is convenient to find 

the new polar distance. To identify this distance, let us draw, from O , a segment whose length 0'OO  

is equal to the aO
0  polar distance. Then let us draw the horizontal line from this point until it reaches  

the line bO
0  in K . Then Let us draw, from K , the vertical line that intercepting the line 0

'' t
n

β  in 

Fig. 4. Lévy’s method. 
Graphical construction 
taken from “La statique 
graphique et ses applica-
tions aux constructions”, 
second chapter, Cupoles 
en maçonnerie.
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ber of elements. The weights, for the calculation of 
which Guldino’s Theorem is used, are acting on the 
vertical axes passing through the centre of mass of 
each element;

-	 draw a tentative funicular polygon which is ob-
ligated to pass through the extrados of the third 
middle at the base of the dome;

-	 draw the horizontal lines for the ordinates of the 
extrados of the third middle to meet the line O0b of  
the tentative polygon;

-	 draw the vertical lines passing through the points de-
termined above to meet the respective vertexes of the 
tentative funicular polygon; in such a way a curve 
which passes through the point β’n  is obtained;

-	 draw, passing through β’n , a tangent to the curve: 
the point of tangency is t’0; from that point; draw 
the horizontal line to meet the tentative funicular 
polygon in t0;

-	 the vertical line, drawn from t0, intersects the ex-
trados curve of the third middle in  σ0:  this point 
represents the location of the parallel in which the 
hoop stresses are zero (point neutre), identifying the 
passage between the two parts of the dome that 
have different behaviour.

In order to draw the funicular curve relating to the low-
er portion of the dome, it is convenient to find the new 
polar distance. To identify this distance, let us draw, 
from  O, a segment whose length OO’

0
 is equal to the  

O
0 a polar distance. Then let us draw the horizontal line 

from this point until it reaches the line O0b in K . Next, 
let us draw, from  K , the vertical line that intercepts 
the line β’n t’0  in K’ and the segment Oβ’

n in K’’. The 
distance K’K’’, corresponding to the segment Oa, rep-
resents, in the polygon of forces, the final polar distance.
The funicular curve of the complete dome consists of 
two distinctive parts, one located above and one below 
the section in which the hoop stresses are zero. The ac-
tions exerted beyond σ0  

along the meridians are ex-
pressed by the polar radii drawn from O; those exerted 
above σ0 are expressed by the parallel lines to the edge  
β0σ0

.
The graphical construction proposed by Eddy, to whom 
Lévy is largely in debt to, is not much different from 
that described above. Figure 5 shows the graphical con-
struction in the case of a spherical dome with a constant 
thickness (Eddy 1878).

The analytical meaning of Levy’s method

Analytically  the  solution  may  be  obtained  by  defin-
ing  two  equations:  the function H1 (ϕ) which expresses 
the thrust of the upper part of the dome, and the func-
tion.
H 2 (ϕ) which expresses the thrust (or funicular meridi-
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Fig. 6. The curves which represent the analytical functions H1  and H2.

the point 0 and a non-specified parallel identified by 
the ϕ angle.

(specific weight of the material set equal to 1) of the cup comprised between  the point  0  and a non 
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The equation of the thrust line in this lower part of the 
dome assumes the form:

(specific weight of the material set equal to 1) of the cup comprised between  the point  0  and a non 

specified parallel identified by the ϕ angle.
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tersection between the curves represented by the two 
equations (fig. 6).
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Fig. 7. Lévy’s method. Example of 
graphical construction using Auto-
Cad application.

5 CONCLUSIONS

In  general  we  can  say  that  modern  graphics  editors  make  again  current  the  graphical  methods  

developed in the eighteenth and nineteenth centuries.

In the case of the graphical constructions proposed by Lévy and Eddy it is possible to obtain very 

accurate results for any masonry dome with any shape and curvature, considering also external loads  

due, for example, to the presence of a lantern on the top on the dome.

The figure below (fig. 7) shows a simple application of the graphical procedure for searching the limit 

thickness in the case of a spherical dome subject to self weight loads. The result is expressed in term 

of ratio  Rt / , where s is the thickness and R  is the medium radius of curvature of the dome.

It is obtained that the limit  thickness is  044.0=t R  and the “point neutre” is located at an angle 

°= 59,29ϕ . Such a solution in equivalent to that achievable using very sophisticated and complex 

numerical methods under the no-tension hypotheses.

Figure 7  - Lévy’s method. Example of graphical construction using AutoCad application. 
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Conclusions
In general, one can say that modern graphics editors 
make the graphical methods developed in the eigh-
teenth and nineteenth centuries current again.
In the case of the graphical constructions proposed by 
Lévy and Eddy it is possible to obtain very accurate re-
sults for any masonry dome of any shape and curvature, 
considering also external loads due, for example, to the 
presence of a lantern on top of the dome.
Figure 7 shows a simple application of the graphical pro-
cedure for searching the limit thickness in the case of a 
spherical dome subject to self weight loads. The result is 
expressed in term of a ratio s/R , where s is the thickness 
and  R  is the medium radius of the curvature of the dome.
It is obtained that the limit  thickness is s = 0.044 R  
and the “point neutre” is located at a ϕ angle egual to 
29.59°. Such a solution is equivalent to that which one 
can achieve by using very sophisticated and complex 
numerical methods under the no-tension hypotheses.
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