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Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is a disorder of fatty acid oxidation characterized by hypoglycemic
crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical
acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS)
were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM) gene. Out of 324.000 newborns
screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense ¢.823G>T (p.Gly275")
and two new missense mutations: ¢.253G>C (p.Gly85Arg) and ¢.356T>A (p.Valll9Asp). Bioinformatics predictions based on both
phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings
confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn
screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed
that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients,
this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs) are especially critical when considering
screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their
medical consequences in newborns.

1. Introduction flavoprotein which catalyzes the first reaction in $-oxidation

of fatty acids with medium-chain length [1]. The enzymatic
Medium-chain  acyl-CoA  dehydrogenase  deficiency  defect results in a decrease of ketone production as well as
(MCADD) is the most common metabolic defect of fatty acid an increased concentration of medium-chain fatty acids. The
oxidation. MCAD (MCAD E.C. 1.3.99.3) is a mitochondrial =~ breakdown of such lipids is essential for energy production



during periods of prolonged fasting or physiological stress.
Illnesses associated with gastrointestinal symptoms such as
lost appetite with vomiting and diarrhea can precipitate an
acute metabolic crisis in affected individuals, resulting in the
accumulation of potentially toxic acylcarnitine, hypoketotic
hypoglycemia, Reye syndrome-like episodes, seizures, brain
damage, and death, including sudden unexpected death in
infancy [2-4]. If undetected, approximatively 20%-25% of
patients die during their first metabolic crisis or suffer devel-
opmental delay and permanent neurologic impairment [5].

Preventive measures, including avoidance of fasting and
rapid treatment of catabolic stress, have been shown to reduce
morbidity and mortality [5-7].

MCAD deficiency is inherited as an autosomal recessive
trait and is caused by mutations in the medium-chain acyl-
CoA dehydrogenase (ACADM) gene, which is located on
chromosome 1p31 and consists of 12 exons spanning 44
Kb [8]. The active enzyme has a homotetrameric form
[9-11]. Each subunit of MCAD enzyme is composed of
three structural domains: the N-terminal «-helix domain
(residues 1-129), the -sheet domain (residues 130-239), and
the C-terminal «-helix domain (residues 240-396). The N-
and C-terminal domains consist mainly of tightly packed «-
helices that form the tetramer core. The middle $-domains
are exposed at the surface of the molecule and comprise two
orthogonal f-sheets. The catalytic sites consist of the binding
sites for the substrate and the natural cofactor flavin adenine
dinucleotide (FAD) and are mainly formed by the interface
between the 3-domain and the C-terminal a-domain [12].

Newborn screening (NBS) for MCAD deficiency has
recently been implemented worldwide using liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS) to ana-
lyze blood spots from newborns for acylcarnitines thus
making the identification of asymptomatic patients and the
identification of a much wider spectrum of genetic lesions in
the ACADM gene possible [5, 13-16].

To date, more than 90 ACADM gene mutations have been
described, with most being missense (HGMD Professional
Database:  http://www.biobase-international.com/product/
hgmd). The most common mutation is the c.985A>G
(p.Lys329Glu) change, which in MCADD patients of Euro-
pean descent, is observed at the homozygous state in 80%
and at the heterozygous status in about 18%. The remaining
2% of MCADD patients carry other rare mutant alleles
[17,18].

Here, we report biochemical and genetic studies on
MCADD neonates identified through NBS by LC-MS/MS
performed on the whole newborns of central Italy (Tuscany
and Umbria regions).

2. Methods

2.1. Patients. Patients included in this study came to our
attention to confirm a biochemical suspicion of MCAD
deficiency as a consequence of abnormal NBS results. Patients
(Pts) reported here were twelve of Italian origin and two (Pt12
and Pt13) of Albanian origin. All patients were unrelated, and
Pt12 and -13 were found to be consanguineous.
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2.2. Biochemical Analysis. Blood acylcarnitines from new-
borns dried blood spots (DBSs) were quantified by LC-
MS/MS [25].

2.3. Genomic DNA Analyses. Molecular studies were per-
formed after receiving informed consent for genetic testing.
Genomic DNA was obtained from patients’ lymphocytes
using QIAsymphony instrument as recommended by the
manufacturer (Qiagen, Hilden, Germany). The minimum
amount of requested whole blood for each DNA extrac-
tion was 1.3mL. The entire ACADM coding region and
exon/intron boundaries were amplified using previously
described primers and conditions [26], and purified PCR
products were directly sequenced on ABI PRISM 3130
XL Genetic Analyzer using Big Dye Terminator chemicals
(Applied Biosystems, Foster City, CA, USA).

2.4. Screening of New Mutations and Bioinformatics Analysis.
The ACADM gene of 80 healthy control DNA samples was
analyzed by sequencing analysis of the fragments containing
the new missense mutations identified. Moreover, these
new mutations were examined in the recently available 1000
Genomes Project database (http://browser.1000genomes.org/
index.html). In addition, multiple sequence alignment
(MSA) of ACADM-related proteins was performed using
Muscle [27], and the MSA was visualized and sequence
conservation was analyzed by ConSurf [28]. The possible
impact of novel amino acid substitutions on MCAD structure
and function was evaluated by MutPred [29]. The effects of
mutations on protein stability were calculated by I-Mutant
2.0 [30].

2.5. Structural Analyses. 'To predict the structural effect of the
novel missense mutations on the resulting MCAD enzymes,
we visualized the mutations on the three-dimensional struc-
ture of MCAD based upon the crystal structure of the human
isoform (PDB: 1EFE) [31]. Mutation positions were visually
inspected by UCSF Chimera (ref. Pubmed ID 15264254) for
changes in structural properties, functional regions (such as
ligand binding), and electrostatics.

3. Results

3.1. Biochemical Analysis. The results of metabolite analyses
are given in Table 1. Blood acylcarnitine profile in affected
patients showed elevations of medium-chain acylcarnitines
(from C6 to C10) with predominance of octanoylcarnitine
(C8). In our data, C8/C6 and C8/Cl0 ratios were also
significantly elevated.

3.2. Molecular Characterization and In Silico Analysis. The
patients ACADM gene coding regions and the correspon-
dent exon/intron boundaries were amplified and directly
sequenced on both strands. Molecular data on all fourteen
MCADD patients identified in our unit since 2002 are sum-
marized in Table 1. All identified mutations were confirmed
in the parents’ genomic DNA, and all at-risk family members
were also screened.
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FIGURE 1: (a), (b) MCAD three-dimensional structure highlighting positions of the mutations. PDB structure IEGE (ref. Pubmed ID 8823176)
was downloaded and visualized in UCSF Chimera (ref. Pubmed ID 15264254). Sidechains of all amino acids with heavy atoms within 4
angstroms were displayed on a ribbon backbone. In (a), valine 119 is shown in its environment, whereas (b) shows glycine 85 in its environment.
The positions of the mutations are shown in violet. (c) Electrostatic surface potential of the wild-type form (on the left) and of the p.Gly85Arg
mutant form (on the right). The electrostatic surface potential is indicated in red (negative charge), white (uncharged), and blue (positive
charge). The figure is generated using the PYMOL Molecular Graphics System, Version 1.5.0.4 Schrodinger, LLC.

Three new ACADM nucleotide variants leading to two
new amino acid substitutions ¢.253G>C (p.Gly85Arg) and
¢.356T>A (p.Valll9Asp) and a new nonsense mutation
¢.823G>T (p.Gly275™) were identified.

The absence of the genetic lesions leading to the new
missense mutations in 160 control alleles and their absence
in the 1000 Genomes Project database suggest that their
incidence is <1% in the normal population consistent with
a possible pathogenetic role of the identified genetic lesions.
Both missense mutations are located in conserved positions
in the sequence alignment of 11 human MCAD-related
proteins. MutPred predicted all of the two mutations to be
damaging, with a score of 0.835 for p.Valll9Asp and 0.933 for
p-Gly85Arg. MutPred gives the mutations a probability score
that ranges from 0 to 1 by MS/MS (mutations with scores
>0.5 are considered likely pathogenic), so p.Valll9Asp and
p-Gly85Arg have especially high probability of pathogenicity.

3.3. Three-Dimensional Analyses. To further elucidate the
effects of the new amino acid changes, we interrogated

the mutant MCAD structures (Figures 1(a) and 1(b)). The
mutation p.Gly85Arg is not positioned in ligand-binding or
catalytic residues.

p-Valll9 is located in an alpha helix further away from
the catalytic site. The p.Valll9Asp mutation likely destabi-
lizes the protein structure, because the wild-type residue
is hydrophobic and buried in the protein structure, while
the mutant residue (Asp) brings charge to the hydrophobic
environment where residue 119 is located. Also, p.Valll9 only
makes hydrophobic contacts (calculated with CSU [32]). The
program I-Mutant 2.0 [30] also predicts this mutation to
be destabilizing. There is no notable change in the surface
electrostatics even though the mutation causes a local charge
change.

p.Gly85Arg islocated in the loop right after helix 3, which
is far apart from the catalytic site, on the opposite surface
of the protein. The mutation causes a charge change, and
also the mutation causes an amino acid change from no
sidechain to a long and bulky sidechain. The large sidechain
can be accommodated in the structure; however, because
the residue is positioned on the protein surface, p.Gly85Arg
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causes a change in the electrostatic surface potential of the
more positive protein, while the more favorable conforma-
tional flexibility of the glycine backbone is perhaps further
stabilizing (Figure 1(c)).

None of the missense mutations is located at the electron
transfer flavoprotein binding surface, but residues after 275
are. Therefore, p.Gly275P" might cause loss of electron trans-
fer from MCAD.

4, Discussion

The risk of sudden death or severe and persistent neurological
damage in undiagnosed MCADD patients and the possibil-
ity of treating this metabolic disorder with simple dietary
measures were the reasons driving the expansion of newborn
screening using LC-MS/MS.

This methodology has been successfully implemented
worldwide thus revealing a higher incidence of MCADD than
clinically suspected, making it the most frequently diagnosed
disease using DBSs, alongside phenylketonuria [5, 14-16].

Indeed, before the advent of NBS using LC-MS/MS,
the clinically ascertained incidence of MCADD was roughly
1:30,000 to 1: 135,000 [13, 33], while population-based NBS is
revealing a much higher incidence of MCADD in newborns,
ranging from 1in 10,000 to 1in 20,000 in different populations
[19, 20, 33-37]. In particular, based on newborn screening
programs worldwide, the highest incidence of MCADD
seems to be in Northern Germany (about 1:5000) and the
lowest in Far East populations (Japan and Taiwan) [38-40].

In our laboratory, the neonatal screening program based
on expanded LC-MS/MS-NBS has been performed since
2002 in central Italy. After screening 324,000 newborns, we
uncovered 14 MCAD deficiency cases. These findings reveal
an increased rate of diagnosis of 1: 23,000, in agreement with
published data.

MCADD undiagnosed individuals are asymptomatic
until an episode of increased energy demand and fasting
occurs, resulting in metabolic crisis or even sudden death.
Prior to the advent of expanded newborn screening, sudden
and unexplained death was often the first and only occur-
rence of MCADD (3, 41, 42].

The great potential of NBS by LC-MS/MS is to identify
asymptomatic patients thus allowing newborns preventive
care that may prevent crises and neurological damage. Molec-
ular analysis of ACADM gene in newborns with altered acyl-
carnitines profile can provide appropriate genetic counseling
as well as prenatal diagnosis to affected families.

The importance of early diagnosis is confirmed by the
observation that during followup none of our patients suf-
fered episodes of acute metabolic decompensation, likely due
to the preventive role of avoiding fasting and by intravenous
glucose therapy in the course of infectious or gastrointestinal
episodes.

Among our MCADD cohort patients, we found three new
ACADM mutations: two missense ¢.253G>C (p.Gly85Arg)
and ¢.356T>A (p.Valll9Asp), and one nonsense ¢.823G>T
(p.Gly275"), which contribute to delineate the molecular
genetic heterogeneity of MCADD. As described in Table 1,
we identified 14 MCADD patients overall in our unit. Out of

the 28 mutated alleles they carried, only 9 are represented by
the common p.Lys329Glu mutation (32% of defective alleles),
which we detected at the homozygous level in three newborns
and at heterozygous level in the remaining three. p.Lys329Glu
accounts for 90% of defective alleles in patients diagnosed
after metabolic decompensation [43]. Examples of reference
data on acylcarnitine thresholds for NBS are available from
the National Institute for Public Health and Environment of
the Netherlands [44]. The ACADM gene sequencing analysis
can help to discriminate healthy heterozygous carriers from
affected individuals [45]. However, the validation of MCADD
newborn screening programs, that is, cutoff policies, and
the natural course of milder affected neonates have been
strongly discussed in the recent years [44-50]. Insights
on risk assessment and counseling of patients have been
proposed by mapping mutations onto structural models [51]
and by the evaluations of stability and enzyme kinetics
[46, 48, 51]. However, unless subjects with MCAD enzyme
activities >10% were proposed to be considered as normal
individuals, emergency regimen and parental instructions
remain necessary also for these subjects [50].

All our 14 patients are still asymptomatic; thus, bioinfor-
matics analysis may be particularly useful for the character-
ization of the new mutations. This type of analysis showed
that p.Gly85 is conserved among species, suggesting that
replacement of this residue has a significant fallout on enzyme
functionality.

p-Valll9 is not conserved among species (data not shown),
but its substitution to Asp is a major amino acid change
which is also predicted by three-dimensional analysis as
destabilizing. Since in Pt2 the other allele is a null allele,
p-Valll9 amino acid change certainly affects MCAD protein
function. The severity of the p.Vall19Asp can also be estimated
comparing the blood content of acylcarnitines in Pt2 with
that of Pt4 who carries two null alleles: C8-acylcarnitine level
in Pt2 was indeed even higher than that of Pt4.

In this regard, it has been demonstrated that patients with
MCADD are at risk of a symptomatic episode regardless of
their genotype or of the initial C8 level on NBS. Neither
genotype nor metabolite levels protect from a potentially
poor outcome. However, the significantly higher NBS C8
level in patients reporting symptomatic episodes suggests
that neonates having high initial C8 levels may exhibit a
reduced ability to sustain later metabolic stress. These infants
more likely carry severe mutations as deletions, nonsense, or
splice defects and the common p.Lys329Glu mutation [46].
However, it must be considered that during the first hours of
life the level of blood acylcarnitines may also vary due to the
extent of neonatal weight loss, to the possible administration
of glucose-containing solutions, and to the time between the
birth of the baby and the occurrence of breast milk. These
events may retard the occurrence of fasting and hypoglycemia
and explain the wide range of blood acylcarnitines (C8 and
C8/C10 levels) in affected patients even if such levels are
compared in different patients (Pt12 and Ptl4) carrying the
same (c.985A>G, p.Lys329Glu) ACADM gene mutation.

The three new alleles we identified are correlated with
high (p.Gly85Arg) or very high levels (p.Valll9Asp and
p.Gly275) of C8-carnitines; it is likely that they can be



defined as severe mutations, as our in silico analysis con-
firmed.

5. Conclusions

Our data confirm the high incidence of MCADD due to the
sensibility and reliability of acylcarnitines analysis by LC-
MS/MS analysis, making possible early specific therapies that
can prevent possible crises in at-risk infants.

NBS by LC-MS/MS is revealing a wider spectrum of
ACADM mutations than what had previously emerged from
molecular investigations of clinically ascertained patients.

Molecular studies supported by in silico analysis can be
important to confirm the MCADD diagnosis. Along with
deepening the pathophysiology of MCAD deficiency, the
evaluation of the natural course of milder variants will serve
to provide or integrate a general model of MS/MS-based
newborn screening program.

Abbreviations

C8: Octanoylcarnitine
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