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The rational use and management of energy is considered a key societal and technological challenge. Home energy management
systems (HEMS) have been introduced especially in private home domains to support users in managing and controlling energy
consuming devices. Recent studies have shown that informing users about their habits with appliances as well as their usage
pattern can help to achieve energy reduction in private households. This requires instruments able to monitor energy consumption
at fine grain level and provide this information to consumers. While the most existing approaches for load disaggregation and
classification require high-frequency monitoring data, in this paper we propose an approach that exploits low-frequency monitoring
data gathered by meters (i.e., Smart Plugs) displaced in the home. Moreover, while the most existing works dealing with appliance
classification delegate the classification task to a remote central server, we propose a distributed approach where data processing
and appliance recognition are performed locally in the Home Gateway. Our approach is based on a distributed load monitoring
system made of Smart Plugs attached to devices and connected to a Home Gateway via the ZigBee protocol. The Home Gateway is
based on the OSGi platform, collects data from home devices, and hosts both data processing and user interaction logic.

1. Introduction

Energy conservation is considered a main challenge to be
faced at national and international level. Several factors, such
as climate change, the growing resource consumption rate,
and availability of energy resources (raw materials), are
making this challenge a priority. Riveiro et al. argued that “the
challenge lies in finding technologies that reduce the energy
consumption, while guaranteeing or even improving cus-
tomer comfort levels and economic activity” [1]. Indeed, the
technological progress in power efficiency is expected to pro-
duce a remarkable reduction in energy consumption, in both
industrial and private home domains. In this context, the
residential sector plays a significant role. For instance, in the
European Union, it accounts for 30% of electricity usage.
Some studies [2, 3] report that significant results in the
energy consumption reduction in private households can be

achieved through fine-grained monitoring of energy con-
sumption and accurate provisioning of this information to
consumers.

Home energy management systems (HEMS) have been
introduced especially in private home domains to sup-
port users in managing and controlling energy consuming
devices. Most adopted home energy monitoring techniques
provide information on the whole energy consumption pro-
file. Although this approach has the advantage of minimizing
technological requirements and costs, it is hard to extract
significant information for recognizing and predicting user
habits and propose solutions for reducing energy wastage.

Fine-grained monitoring can provide more useful infor-
mation, such as the consumption profile of specific appli-
ances. In this way, customers could be kept informed of how
much the total energy consumption is affected by the usage
of a specific device and decide whether to replace it with a



more efficient one or just postpone its usage to a time with
a less expensive fare. Moreover, the analysis of an appliance
consumption for detecting anomalies could also help in
recognizing possible malfunctions and undertaking actions
to prevent additional appliance deterioration.

Fine-grained monitoring can be achieved through three
main approaches.

(1) Nonintrusive load monitoring (NILM) [4]: NILM
refers to a family of techniques that aim at recognizing
the power consumption of a specific device from the
whole-house consumption profile.

(2) Hardware-based submetering: this method consists in
attaching a metering hardware module (e.g., a Smart
Plug) onto each household appliance so that its energy
consumption can be easily collected. This implies that
a distributed system of low-cost metering devices
has to be deployed in the house and data should
be collected via the proper (wireless and/or wired)
network infrastructure.

(3) Use of smart appliances: this approach relies on the
adoption of household appliances equipped with
sensing, processing and communication resources.
Common examples are the last generation of so called
“white goods” (e.g., refrigerator, washing machine,
and oven) that can be remotely controlled and con-
figured.

Although the adoption of smart appliances is expected
to boost the effective and efficient implementation of energy
saving policies, this is not likely to take place in the short term.
In any case, regardless of the chosen technique both appli-
ances classification and identification are essential for under-
standing their consumption characteristics and producing
convincing energy saving applications.

As highlighted in two recent studies [2, 3], only very few
products are currently present on the market and consumers
tend to consider their prices too high. On the other hand,
NILM approaches which are based on whole-house con-
sumption information can be easily deployed by leveraging
existing and widely adopted smart meters. Several load dis-
aggregation and classification algorithms have been proposed
in literature [5] to extract more meaningful information from
the house aggregated load profile. Most of them need medium
or high frequency monitoring data (at least 1 Hz frequency) to
obtain accurate results. In real-world scenarios, this assump-
tion may be resource demanding. Indeed, only few works
have experimented the adoption of NILM algorithms in
real home settings [6]. Therefore, the second approach (i.e.,
distributed load metering through Smart Plugs) can be
considered a good candidate for gathering accurate per-
device consumption profiles while keeping costs and resource
requirements as low as possible [7].

In this paper we propose an approach for identifying the
appliances in use within a home environment that analyzes
energy consumption data collected by a distributed load
monitoring system which is part of a home energy manage-
ment system (HEMS) proposed by the Energy@Home Asso-
ciation and deployed in some real households in Italy. The
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monitoring system is made of Smart Plugs attached to devices
and connected to a Home Gateway via the ZigBee protocol
[8]. The Home Gateway, based on the OSGi platform, collects
data from devices connected to the home wireless network
and hosts both data processing and user interaction logic.
The algorithms described in this paper aim at simplifying the
manual configuration phase of such a system, where the end
user usually needs to add a label and a description to each
Smart Plug to associate energy consumption data to a specific
monitored device (e.g., washing machine, refrigerator, and
dish-washing machine). Automatic appliance classification
techniques can be used when a smart plug is moved from one
device to one another to monitor different appliances in the
house: in this case the system could ask the user to provide a
description of the monitored device the first time it gets con-
nected to a Smart Plug and then use data collected from the
Smart Plug to automatically recognize the same device in a
second time. The initial training phase where the user needs
to add or confirm the label associated to a monitored device
can be reduced and sometimes totally avoided if a database
with energy consumption data associated to specific device
categories or models is provided as an input to the system.

While existing works dealing with appliance classification
delegate the classification task to a remote central server
[7,9], here we propose a distributed approach where data pro-
cessing and appliance recognition is performed locally in the
Home Gateway. Although this approach has the advantage of
minimizing the communication requirements between local
home premises and a central server, preserving privacy on
user sensitive data and simplifying the user profile manage-
ment, design and implementation choices should carefully
take into account the peculiarities of the Energy@Home
HEMS, especially in terms of storage and processing con-
straints. A major constraint of our application is the low
frequency of data (1 sample collected every 2 minutes) which
limits both type and number of features that can be extracted
for analysis purposes. Thus, the original contribution of this
work consists of a supervised classification algorithm based
on artificial neural networks (ANN) [10] conceived for pro-
cessing low-frequency monitoring data for recognizing appli-
ances in use and their consumption profile. We also present
a Java-based prototype implementation running as an OSGi
bundle in the local Home Gateway.

This paper is structured as follows. In Section 2 we discuss
related work and motivate our contribution. Section 3 intro-
duces the architecture of the home energy management gate-
way, called Energy@Home. In Section 4 we describe the pro-
posed ANN-based appliance classification algorithm and in
Section 5 we describe its implementation in the OSGi-based
Energy@Home system. Section 6 describes the test activi-
ties carried out to evaluate the performance of the imple-
mented algorithm as well as its possible adoption in real-
world settings.

2. Related Work

In the context of Smart Home, energy consumption mon-
itoring is one of the most challenging topics. Basically,
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the objective is to track individual appliances consumption
to gain awareness of actual energy demands of household
devices. This knowledge is found to be critical for strategic
energy management while aiming at improving consumption
efficiency.

In literature, two strategies are mainly adopted for pur-
suing load monitoring: intrusive and nonintrusive. Intrusive
load monitoring, or ILM, requires the installation of a meter
in association with the appliance to be monitored. An exam-
ple is the so-called Smart Plug, which is placed in between
the appliance plug and the wall socket. This strategy requires
some kind of user involvement because household appliances
must be properly equipped with meters. A different approach
is nonintrusive load monitoring, or NILM, which is based
on a meter that detects the whole-household consumption.
Because of this, NILM techniques focus on discriminating
the individual contributions by leveraging disaggregation
strategies.

Nonintrusive load monitoring techniques have been the-
orized since the late 80s when Hart [4] proposed to measure
the total power consumption of a household through the use
of an electricity meter and disaggregate the measurement into
partial consumptions due to various devices in use. In the
last decade, several NILM techniques based on the use of
machine learning approaches have been proposed, such as
artificial neural networks (ANN) [6, 11], k-Nearest Neighbor
Clustering, and Support Vector Machines [12]. In 2012 Kolter
and Jaakkola [13] proposed a disaggregation technique based
on unsupervised learning. This technique combines the use
of Additive Factorial Hidden Markov Models for modeling
the appliances behavior and the authors proposed a new
inference algorithm, called additive factorial approximate
MAP (AFAMAP), to separate appliances traces from the
aggregated load data.

The advantage brought by the nonintrusiveness of NILM
techniques methods decreases as the devices to be identified
increase in number and type, due to several factors: low-
consumption devices cannot be detected correctly [7], the
proposed algorithms become increasingly computationally
expensive, and devices with similar behavior are difficult to
distinguish [5]. Thus, we have focused our research on the
ILM category which, in our opinion, can suitably deal with
the home energy management topic by achieving a compro-
mise between satisfying classification accuracy results and
low installation costs.

ILM approaches require the deployment of distributed
sensors, such as the Plug [14], Plugwise [15] and Smart-
Meter. KOM [16] platforms. These distributed sensing plat-
forms support the fine-grained monitoring and control (e.g.,
switch on/off) of the connected devices but do not offer
capabilities for identifying the type of attached device [7].

Reinhardt et al. [7] support autonomous configuration
by presenting means to identify appliances based on their
electric current consumption. Their distributed load mon-
itoring system is based on embedded current monitoring
devices, which collect current readings at a sampling rate of
1.6kHz and extract ten features from them. A machine
learning implementation maintains a model which matches
these fingerprints to the learned appliance types. Results of

the evaluations show that a very high classification accuracy
of more than 98% can be achieved when the fingerprint of
the in-rush current is regarded in addition to the features
extracted from the steady state current waveforms. In a con-
temporary work [17] the same authors evaluate the accuracy
of appliance identification based on the characteristic features
of traces collected during the 24 hours of a day. They evaluate
nine different classifiers using more than 1,000 traces of
different electrical appliances’ power consumptions achieving
up to 95.5% accuracy rate for the Random Committee
algorithm.

In 2011 Chen et al. [18] propose a statistical framework
for disaggregation on coarse granular smart meter readings
by modeling fixture characteristics, household behavior, and
activity correlations. This framework has been implemented
into two approaches for different application scenarios and
has been deployed to serve over 300 pilot households in
Dubugque, IA.

Ridi et al. [9] adopted a system based on low-cost
Smart Plugs periodically measuring the electricity values
and producing low-frequency (10~" Hz) time series of mea-
surements. They propose to use dynamic features based
on time derivative and time second derivative features and
they compare different classification algorithms including k-
Nearest Neighbor and Gaussian Mixture Models. The best
combination of features and classifiers shows 93.6% accuracy.

In [19], Gisler et al. present an open database of appliance
consumption signatures populated with the power consump-
tion signatures obtained using plug-based low-end sensors
placed between appliance power plugs and electricity sockets.
The database has been populated through two acquisition
sessions of one hour for 100 different appliances distributed
among 10 categories. In addition they propose two test
protocols intended to compare the performance of differ-
ent machine learning algorithms for appliance recognition
where researchers can work on common data. In the first
protocol, first session instances are used for the training set
and the second session instances for the test set. In the second
protocol, all instances of both acquisition sessions are succes-
sively taken in training and test sets by performing a k-fold
crossvalidation.

Our work aims at proposing a classification algorithm
capable of returning high accuracy levels taking advantage
of very low-frequency metering data (about one real power
value every two minutes). These data have been collected by
a distributed metering system of Smart Plugs which is part of
a home energy management system (HEMS) proposed by the
Energy@Home Association [20] and promoted, among other
companies, by Telecom Italia.

The low-frequency constraint has led us to design a classi-
fication system which finds its originality in the minimization
of resources required for managing and storing energy
data and in the use of low-cost monitoring devices. More-
over, while the majority of the proposed approaches carry
experimentation activities in centralized servers, we present a
Java-based implementation of the classification approach that
runs directly in a HEMS at a customer home.
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FIGURE 1: Appliance Classification System architecture.

3. ANN-Based Algorithm for
Appliance Recognition

The logical architecture of our classification system is shown
in Figure 1. Raw power data are acquired by Smart Plugs—
that is, metering devices standing in between the appliance
power plug and the wall outlet—and collected by the home
energy management system, described in the following Sec-
tion.

The proposed Appliance Classification System is made
of three main blocks: “preprocessing,” “feature extraction,”
and “artificial neural network” An artificial neural network
(ANN) is a massively parallel distributed processor that has a
natural propensity for storing experimental knowledge [10].
In the context of this work we preferred a neural network
approach with respect to other methods because of the low
frequency, low numerosity, and jagged typology of available
data. The algorithm is implemented in the “artificial neural
network” block of Figure 1. The “feature extraction” block is
the module where the experimental observation is processed
in order to catch its most discriminating features (and labeled
during the training phase), while the “preprocessing” block
process raw or incomplete data to feed the feature extraction
block with a uniform data structure.

The preprocessing block is responsible for collecting
power data samples and for extracting significant power mea-
sures that will be given as input to the classification system.
In order to obtain reliable results, we excluded all the power
traces containing measuring faults (i.e., missing samples
caused by disconnections). In addition, to fully exploit all the
remaining traces, we configured an observation window set
to the number of samples of the longest nonperiodic trace
(100 samples). Consequently, devices characterized by hourly
activities such as washing machines or dishwashers will
often be represented with a full-length load trace; conversely,
devices with a short or highly variable duration, such as
microwave ovens or coffee machines, will have their power
traces padded with zeros as observed in the original daily
trace.

The feature extraction block processes the 100-sample
trace provided by the preprocessing block to build a vector
of features catching the peculiar characteristics of the power
trace (e.g., the shape of the consumption profile, maximum
peak, ascending or descending consumption steps, and dura-
tion). Table 1 shows the features selected by the empirical
analysis of available measurement datasets.
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TABLE 1: Feature extraction.

Extracted features

(1) Maximum power value.

(2) Minimum nonzero power value.

(3) Number of samples equal to zero.

(4) Number of samples less than or equal to 30 W.
(5) Number of samples between 30 and 400 W.
(6) Number of samples between 400 and 1000 W.
(7) Number of samples greater than 1000 W.

(8) Number of steady state consumption changes greater than
1000 W.

(9) Number of steady state consumption changes between 10 and
100 W.

(10) Average value of the nonzero power samples.

The extracted features are provided in input to the ANN-
based classification algorithm, which returns the recognized
type of device.

The chosen neural paradigm for this application is a
multilayer perceptron neural network with backpropagation
algorithm (commonly called MLBPNN) [10], a well-known
supervised model, used because of its simplicity and guaran-
teed convergence. This type of network is a universal approx-
imator [21] based on the perceptron elementary neuron, that
is, an information-processing unit that takes its origin in
the biological counterpart and that can be mathematically
described by the following pair of equations:

m
net, = Zwijj,
=1 @

O = v (net; + ;)

where Oy is the output of the kth neuron (if the used neurons
are more than one, in the given number N ,); x,,..., x,, are
the input signals (with dimension given by m); wy,, ..., wy,,
are the synaptic weights of the neuron k; net;, is the weighted
sum of the input signals; b, is an external bias and v is the
“activation function”; in this application the activation func-
tion is the bipolar sigmoid:

k=1,...,N,

>~ Yout>

2
1+ e*)Lnetk

v (nety) = -1, (2)
which is chosen because of a couple of main reasons: (i) sig-
moid is a nonlinear activation function that allows to quickly
perform a classification of nonlinearly separable problems
when used in multilayer structures; (ii) in addition, sigmoid
allows to use well-known always convergent backpropagation
algorithm as steepest descent [22] or Levenberg-Marquardt
[23] during the learning process. The multilayer structure
is a three-layer network with a number of neurons 10-30-8,
respectively, in the input-hidden-output layers; the number
of neurons in input and output layers is imposed by the nature
of the problem, whereas the number of neurons in the hidden
layer (30) is coming from an empirical choice, motivated by
the best “trial and grow” result. In other words, the number
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Output

FIGURE 2: The artificial neural network configuration adopted for
the experiment.

of neurons starts from a medium low number (around 10)
and is increased until no further results improvement is
observed. The ANN configuration is represented in Figure 2.
The adopted error function is the classical mean squared of
errors (MSE). As discussed in Section 5.2, we also performed
some tests using Bayesian regularization; in this case the
error function specified above is corrected with the mean
squared of the network weights as regularization term. In
order to avoid the generalization drawback, an early stopping
approach is used [24] during the learning phase. Once the
ANN block has been trained with the proper knowledge base,
the ANN Recognition Model is ready to classify new power
consumption traces. As detailed in the evaluation section, we
exploited to this purpose the measurement data sets collected
during the trials in the Telecom customers’ sites.

4. Prototype Implementation

In this work we extended the home energy management sys-
tem (HEMS) proposed and developed by the Energy@Home
Association [25] with device load classification capabilities
provided by the ANN-based Appliance Classification Sys-
tems. Energy@Home is a no-profit association participated
by some major Italian companies (i.e., an electric utility com-
pany, telecommunications operators, and manufacturers)
and research bodies that aim at developing and promoting
technologies and services for energy efficiency at home based
upon device to device communication.

4.1. Energy@Home Home Energy Management System. The
Energy@Home HEMS (shown in Figure 3) is an OSGi-based
software infrastructure for home automation and energy
management based on a home area network (HAN) of
objects that cooperate and communicate through the the
ZigBee protocol [8]. Main cooperating objects are Smart
Plugs, which have both sensing and actuating capabilities,
and various types of smart devices and actuators, ranging
from simple on-off devices (e.g., a TV-set) to configurable
devices (e.g., air-conditioner) and smart appliances.

The OSGi [26] standard specifications define a Java-
based service platform made by software modules (i.e., OSGi
bundles) that can be installed, stopped, started, updated, and
uninstalled at runtime. The OSGi Service Platform is made of
a service execution framework and a set of standard service
definitions that support the development of service-oriented
applications in networked environments. This motivates its
widespread adoption in the development of Home Energy
Manamegement Systems, such as PeerEnergyCloud [27] and

Ogema [28]. The OSGi framework provides a simple compo-
nent model, a service registry, and utilities for dynamic ser-
vice deployment, while the standard service definitions spec-
ify the interfaces and semantics for some reusable services
(e.g., a logging service and an HT TP service) [29]. Services
are implemented as bundles, which are Java archives that con-
tain code, resources, and a manifest file with metainformation
such as dependencies and activation. When the bundle is
active, it can publish its services or discover and bind itself
to services provided by other bundles through the service
registry. The HEMS OSGi Service Platform hosts a set of
web applications providing users with home automation and
energy consumption awareness capabilities.

A typical home-based deployment of the Energy@Home
system is made of the following hardware components.

(1) A Smart Info device provides end users with the certi-
fied information on electricity consumption managed
by the electronic smart meter. It can be plugged
in every domestic socket to collect data from the
smart meter leveraging powerline communication.
The Smart Info can be provided by the distribution
system operator (DSO). Published data are a subset of
those already made available by the home electricity
meter; hence the Smart Info acts like a proxy in
respect of the meter.

(2) Smart Appliances are white goods (e.g., dishwasher
and washing machine) that have local intelligence and
networking capabilities. They can provide informa-
tion on their energy consumption (e.g., used energy
and instant power), respond to remote commands,
and interact with the user through a GUIL

(3) The Home Gateway is the core of the Energy@Home
HEMS. 1t is the centralized management component
that connects the home area network with external
application services via wide area network (WAN)
connectivity. It is based on a modular and highly
configurable OSGi framework and hosts application
logic modules. It offers multiple network interfaces,
including a HAN interface to communicate with the
abovementioned home devices via the ZigBee proto-
col, a home network (HN) interface to interconnect
additional local devices, such as PCs and TV via
wired and wireless LAN, and a WAN interface used to
communicate with remote service providers’ systems
(through xDSL connection). In addition, it provides
local service logic and remote services with high-
level APIs for discovering, managing, and communi-
cating with HAN devices. The protocol used for the
communication between the HAN devices and the
Home Gateway is based on ZigBee, since it is a
low-cost, low-power-consumption, two-way, wireless
communication standard [30]. ZigBee can be used in
different application domains (e.g., home automation,
healthcare, energy management, and telecom ser-
vices) and a set of extensions have been designed for
the Energy@Home system [31] and integrated in the
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version 1.2 of the Home Automation profile specifica-
tion, ratified by the ZigBee Alliance in the second half
of 2013.

(4) Cloud Services: the Home Gateway interacts with a
remote Service Platform hosted in the telecommu-
nication operator data centers providing storage and
processing capabilities. The Service Platform collects
and stores the data sent by the Home Gateway. It can
host applications that perform statistical and analytics
processing on historical data for providing users with
consumption awareness, predictions, and possible
suggestions for consumption reduction. The Service
Platform can also host downloadable application
bundles that can be selected by users and eventually
run on a local home service gateway.

This HEMS has been deployed in 20 private homes in Italy
and both experimentation and data collection are currently
ongoing. Several types of monitoring approaches (whole-
house monitoring, real-time monitoring of identified devices
through smart appliances, and low-frequency monitoring of
unidentified devices) are in place, thus allowing the experi-
mentation of different data analysis and service provisioning
approaches.

4.2. Home Gateway Architecture. The Home Gateway is
an OSGi-based system made by several bundles, whose

interaction is realized through service provision and con-
sumption. It is made of a set of key bundles (i.e., the Java-
Gateway Abstraction Layer, the Home Automation Core, and
the Local Gateway Service Logics bundles) supporting the
development and deployment of energy monitoring and
management applications. Hereafter we will briefly describe
the features provided by these Home Gateway components
and subsequently we will focus on the classification algorithm
implementation.

The Java-Gateway Abstraction Layer (Java-GAL) imple-
ments the ZigBee Gateway Device specifications for manag-
ing ZigBee Networks and guaranteeing interworking with IP
[32]. Java-GAL implements the features required to perform
active nodes discovery in order to keep a constantly updated
image of the current ZigBee network. It also provides an
abstraction layer that allows applications to control and access
ZigBee devices hiding low-level implementation details. To
this purpose, it translates the ZigBee product-dependant low
level APIsinto a set of HTTP/REST and local APIs that can be
invoked by other bundles as well as by external applications
to control ZigBee devices.

The Home Automation Core offers a high-level API
exposing attributes and commands defined by ZigBee Home
Automation 1.2 Service Clusters. It also implements a basic
web-based interface allowing the users to configure and test
the home automation system (e.g., for adding and configuring
new ZigBee devices).
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Local Gateway Service Logics: application bundles that
exploit the high-level Home Automation Core APIs for
providing users with value-added services for energy man-
agement and home automation.

The Home Gateway has been implemented by leveraging
the OSGi Equinox 3.5.2 Framework. More detailed speci-
fications of the Home Gateway supported ZigBee Service
Clusters can be found at [31] and the Home Gateway source
code is available online [33].

4.3. Classification Algorithm Implementation. We imple-
mented the ANN-based classification algorithm as an OSGi
bundle, called Classifier bundle, deployed in the Home Gate-
way as one of the Local Gateway Service Logics OSGi bundles.

The software logic that implements the classification
algorithm contains the following main classes.

(1) ILM _Model: it is the class that handles the information
used to configure the neural network. This informa-
tion can be provided as input as an xml file and
specifies the number of inputs, hidden nodes, and
outputs of the network and, for each input row, the
minimum and maximum values of the allowed range
values, which are used in the preprocessing phase to
normalize data entering the ANN.

(2) ILM _Classifier: it is the class that implements the
ANN-based classification capability. The class offers
the methods for training and testing the ANN, saves
it as a file, and, finally, classifies input data. The class
has been implemented by relying on a Java-based
framework for neural networks, Neuroph [34], that
we wrapped in an OSGi bundle and deployed in the
Home Gateway.

5. Evaluation

In this section we describe the testing activities carried out
for evaluating the proposed ANN-based approach for low-
frequency distributed load monitoring.

This section is structured as follows: first, we introduce
the dataset used for testing and explain how data have been
acquired from an experimentation campaign in real house-
holds, subsequently, we explain the performance evaluation
procedure of the proposed algorithm.

5.1. Data Collection from Home Trials. Data collected from a
trial of the Energy@Home system carried out in 2012 have
been put together to form the datasets used for the test.
The trial included 10 private houses of collaborating italian
customers where the Energy@Home HEMS was deployed in,
with the following configuration: (i) a Smart Info device con-
nected to the home electricity meter; (ii) many Smart Plugs
to collect consumption information from connected loads,
such as washing machine; refrigerator; dishwashing machine;
smart TV; iron; microwave oven; lighting stuff; coffee
machine.

Energy consumption data extrapolated from the activity
of these devices are used by the Home Gateway and the

Service Platform to implement use cases with the aim of
enhancing customer awareness of energy consumption [35].
In order to meet the trial application requirements, energy
and instantaneous power data are collected from HAN
devices and stored in the remote Service Platform database so
that customers are provided with historical and statistical
information on their energy consumption. Stored data
include whole in-house consumption from the power meter
(Smart Info) and single device energy information coming
from Smart Appliances and Smart Plugs.

The HAN devices are connected to the Home Gateway via
ZigBee protocol and the Home Gateway uses the reporting
strategy defined in the ZigBee Cluster Library specification
[36] to receive from each of them the following consumption
information: (i) the summed value of energy delivered and
consumed in the premise (Smart Info) or by a specific device
(Smart Plugs and Smart Appliances); (ii) the instantaneous
real power absorbed by the whole house (Smart Info) or by a
specific device (Smart Plugs and Smart Appliances).

The reporting parameters configured on each Smart
Plug and Smart Appliance provide real-time instantaneous
power information: every change in instantaneous power
that is greater than or equal to 5W is notified to the Home
Gateway with a maximum configured delay of 2 seconds.
Subsequently, the Home Gateway processes these data to
provide users with real-time information. Please note that all
these measurements are not directly stored in the platform
database. Indeed, to avoid storage overloads, only a subset of
these data filtered by the Home Gateway is retained. Infor-
mation is stored on the basis of the reporting of summed
energy values sent every 2 minutes by each device: for each of
these time intervals, the gateway calculates the device’s energy
consumption (Wh) and stores this value along with the
minimum and maximum instantaneous power values (W)
pertaining to the same time interval.

These low-frequency measurements are stored in the
remote Service Platform database and are used to test and
validate the appliance identification algorithm described in
this paper. Table 2 shows an excerpt of the database records
whose labels have the following meaning:

(1) appliance_id: a unique identifier of the monitored
appliance, associated to a specific appliance category.
This information is required in the dataset to test and
evaluate the accuracy of the proposed classification
algorithm and has been manually provided by the
users involved in the trial. In real-world cases it is
obviously unknown;

(2) start_time: the start time of the time interval associ-
ated to this record, expressed as the difference (in mil-
liseconds) between the current time and midnight,
January 1, 1970 UTG;

(3) duration: the time interval duration (in milliseconds);

(4) energy: the energy consumption (Wh) of the device in
the time interval;

(5) min_power and max_power: minimum and maximum
values of the instantaneous power measures (W)
reported by the device in time interval;
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TABLE 2: Excerpt of a refrigerator’s records stored in the database.
appliance_id start_time duration energy min_power min_power_time max_power max_power_time
746 1361752107117 120258 0 0 1361752167156 0 1361752167156
746 1361752227375 120733 0 0 1361752287691 0 1361752287691
746 1361752348108 120598 0 1 1361752408367 1 1361752408367
746 1361752468702 120754 0 1 1361752529172 1 1361752529172
746 1361752589456 120698 0 0 1361752649774 0 1361752649774
746 1361752710154 120717 0 0 1361752770566 0 1361752770566
746 1361752830871 120682 1 0 1361752891322 0 1361752933525
746 1361752951553 120743 2 58 1361752951649 72 1361752985833
746 1361753072296 120821 2 70 1361753106463 70 1361753106463
746 1361753193117 120585 3 69 1361753227186 69 1361753227186
746 1361753313702 120764 2 69 1361753347915 69 1361753347915
746 1361753434466 120628 2 69 1361753468611 69 1361753468611
746 1361753555094 120866 1 0 1361753603392 68 1361753589449
746 1361753675960 120658 1 0 1361753724209 0 1361753724209
1800 T T T T T T T T T 120 T T T T T T T T T
1600 ] F—_‘ B
100 B
oo _ " m N
1200 E 80 H B
Z 1000 | - z
o) 5 60H i
E 800 . fg
600 - - 40 H i
400 B
20 { B
200 + . J
o L=, —vJ . L L ol L T I Ee
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 8 90 100

2-minute samples (t)

FIGURE 4: A dishwasher power consumption trace.

(6) min_power_time and max_power_time: the time of
sampling of the associated power field (same format
as start_time).

As an example, Figures 4 and 5 show the average energy/
power consumption evaluated every 2 minutes interval for a
dishwasher and a refrigerator, respectively.

5.2. Performance Test. In this section we present the test cases
carried out for the accuracy estimation of our classification
algorithm. The software used for testing is Matlab version
R2012a running on a machine having an Intel Core2 Duo
CPU T7500 at 2.20 GHz, 2 GB RAM.

The test cases have been led using a new dataset created
from a subset of the data collected during the Energy@Home
trials. Of all the available devices, we selected the ones that
were present in all of the three houses (washing machine;
refrigerator; dishwashing machine; smart TV; iron;

2-minute samples ()

FIGURE 5: A refrigerator power consumption trace.

microwave oven; lighting stuff; coffee machine) and for each
type of device we extracted the same number of traces.

This new dataset is made of 528 examples (66 for each of
the 8 monitored devices) and contains the first 100 samples of
each device load curve of power, measured in Watt. Signa-
tures are entered according to the following criterion: given
a device, we consider as a signature the trace starting from
the first nonzero sample of the daily consumption curve and
ending with the hundredth sample, regardless of the duration
of the consumption itself. If the consumption trace exceeds
the hundredth sample, it is simply trimmed, while shorter
traces are expanded by padding them with zero samples.
Finally, these signatures undergo the features extraction
process.

This criterion has been defined in order to preserve the
nature of the original daily traces belonging to the dataset
collected in the home trials; in fact, the appliances con-
sumption is represented by power samples separated by
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TaBLE 3: Classification accuracy for each device type and test iteration.

Correct classification percentage (true positive)

Test 1 Test 2 Test 3 Test 4 Test 5 Total
Washing machine 100 100 100 100 98.48 99.70
Refrigerator 92.42 100 100 100 96.96 97.88
Dishwasher 100 100 100 100 100 100
Smart tv 69.69 84.84 84.84 90.90 81.81 82.42
Iron 90.90 89.39 95.45 90.90 86.36 90.60
Microwave oven 100 100 100 100 100 100
Lighting 90.90 90.90 93.93 93.93 90.90 92.11
Coffee machine 98.48 100 100 98.48 100 99.39
Overall accuracy 92.80 95.64 96.78 96.78 94.31 95.26
zeros (no consumption detected). Moreover, we considered Target class
that a 100-sample window (the longest nonperiodic trace A B C D E F G H TOT
duration.) corresponding toa 200—minu.te time in.tervgl would <les!l ololololololo |00
be sufficient for exhaustively representing a device signature
of the dataset. Zero-padding has been performed on traces 2wl les!l ol 113110l 0ol o loas
characterized by less than 100 samples for keeping them
accordant with the original and isolating them for proper Ol o o |6 | o 0 0 0 o | 100
classification. The trimming operation has been basically
performed on “always-on” devices traces characterized by 2 Bl o | oo [52 |7 |0 | 4]0 |85
a periodical consumption (i.e., fridge and refrigerator); for ?
such devices zero-padding the end of a single signal period 2[00 [0 12560 |0 | 0 |84
could cause a significant loss of information while using 3
a properly set trimming frame contributes to maintain the Lo oo oo 66 0 | 1 985
original signature shape. ol o lololilole Falo loss

This dataset was divided into three parts; the 70% of the )
examples have be.en a'llocated to train the ANN, the 15% have =l o lolololololo leslioo
been used for validation, and the last 15% have been used for
testing purposes. In order to validate the effectiveness of the 51100 | 100 | 100 | 78.8 | 84.4 | 100 | 93.9 | 98.5 | 94,5
algorithm we have used the “overall accuracy” index in terms =
of percentage.
Figure 6 shows the overall confusion matrix resulted A: washing machine E: iron

from a single classification test of the abovementioned 528-
sample dataset (66 per device). The matrix rows and columns
represent the output and the target classes, respectively; in the
diagonal the correctly classified samples for each device are
reported. Observing the iron (E) as an example, the ANN has
correctly classified 56 out of the 66 samples; the remaining 10
samples have been misclassified 7 times with the smart TV
(D) and 3 times with the refrigerator (B).

Table 3 shows the classification results for each device
and for five test iterations, where each iteration includes an
independent training phase and, consequently, a different
ANN configuration. The final column shows the average
accuracy value for each device. The overall accuracy row
shows the algorithm’s successful recognition percentage for
all the devices.

The relevant fact that emerges from Table 3 is the high
accuracy achieved for each device mostly regarding the
dishwasher, washing machine, and coffee machine. Con-
versely, devices such as smart TV, iron, and lighting can be
misclassified because of their usage duration variability.

The results presented so far have been achieved while
trying to classify traces belonging to devices whose signatures

F: microwave oven
G: lighting
H: coffee machine

B: refrigerator
C: dishwasher
D: smart TV

FIGURE 6: A confusion matrix sample resulting from a single
classification test.

have been used in the training phase. From an application
point of view, this would call for a preliminary collection
activity where the user is requested to associate a signature
with the proper label. Unfortunately, such procedure cannot
be implemented when electric power consumption data are
used for autonomous classification of appliances in different
categories. Therefore, we tried to evaluate the accuracy of the
ANN in recognizing devices whose signatures were not used
in the training phase.

A second test case consisted of testing the ANN using
both a Levenberg-Marquardt (LM) and Bayesian regulariza-
tion (BR) configurations with power traces collected from a
new house. To this purpose, we selected the devices moni-
tored in all the houses, that is, washing machine, refrigerator,
dishwasher, and microwave oven.
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TaBLE 4: Classification accuracy for previously unknown devices.

Average correct classification %

10 features 6 features
LM BR LM BR
Washing machine ~ 56.93 8.3 98.4 98.32
Refrigerator 4.38 115 8373  99.52
Dishwasher 6.32 1.5 16.13 24
Microwave oven 3747 11.6 44.15 0

Table 4 shows the test results: although these appliances
are completely unknown to the ANN, the washing machine
and the smart TV have been detected albeit with medium
and low accuracy values, which decrease dramatically for
both refrigerator and dishwasher. While comparing results
obtained with a LM network with the ones coming from a
BR network, it is evident how the latter slightly improves the
identification of those appliances whose time of use is con-
siderable, while dramatically worsens the identification of the
ones whose consumption has typically a short duration and
an on/off behavior and thus cannot be easily characterized at
such low monitoring frequency (e.g., microwave oven).

The result of the second test case helped us in improving
the features extraction criterion. According to the results in
Table 4, the ten features chosen to characterize the load curve
appear to be overspecific. Therefore, we reduced their number
to six, by choosing the more general ones (i.e., features 1-2
and 7-10 in Section 3). Overly specific features, such as the
number of samples between a minimum and a maximum
value (features 3-6 in Section 3), could in fact overdescribe
a power consumption signal worsening in generalization. In
other words, we selected those features that better describe
device classes rather than particular usage patterns: for exam-
ple, two smart TV traces can differ significantly with respect
to the usage time, still preserving typical characteristics. If we
include the number of zero samples (feature 3) as a feature,
we will force the ANN to consider a usage pattern as a possible
discriminating characteristic resulting in an unnecessary
complication of the classification task.

Since the classification OSGi bundle has been designed
to be executed on the Home Gateway, we carried out some
tests for estimating its time performance on a typical HEMS
deployment.

The Home Gateway used for these tests is equipped with
an ARM Processor 400 MHz, 1 GB DDR 200 MHz RAM and
2 Gbit NAND Flash memory. The operating system is Linux
2.6.35 with Java SE for Embedded 6 (Java ARMv5 Linux
Headless) and the Equinox 3.5.2 OSGi Framework installed.

Regarding the machine learning part, the ANN has the
same configuration as the one detailed above. The tests have
been carried out using the measures coming from the Smart
Plugs preprocessed by taking 100 samples and trimming or
zero-padding the curves as needed. Again, the signatures
obtained at this stage undergo a feature extraction process to
obtain a vector of 10 discriminating features.

For each type of device (washing machine; refrigerator;
dishwashing machine; smart TV; iron; microwave oven;
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lighting stuft; coffee machine), 10 preprocessed power traces
are entered in the system to measure the output time. The
average classification time was found to be 4 ms. Moreover,
the average time needed to load and run the ANN has been
measured to be 269 ms. This is meaningful because the ANN
could also be changed when a new neural network trained
with more examples is available, and this would require a
complete reload.

6. Conclusions

In this paper we presented a neural network based system for
appliance classification. With respect to the state of the art,
our contribution is focused on the following: (1) the analysis
of low frequency metering data (i.e., 1 active power sample
every 2 minutes) and (2) the implementation and testing
of the algorithm in a Home Gateway. Adopting low frequency
data has the major advantages of allowing the exploitation
of cheap Smart Plugs and saving resources for storing,
processing, and transmitting data. The latter is even more
appealing if we consider to run the algorithm in the Home
Gateway instead of a central server.

The algorithm was tested using data coming from real
households with encouraging results. We experimented good
classification accuracy for the ANN trained with examples
coming from similar devices (i.e., from same device, pro-
ducer, and model). From the user perspective, this approach
can cause a significant discomfort due to the mandatory
manual labeling of household appliances. To overcome this
problem we envision a remote repository storing devices load
profiles for future uses. In this way, a knowledge base is incre-
mentally built and maintained thanks to users contributions.
A possible use of the knowledge base is at configuration time:
when a new system is deployed in a house, the knowledge
base is queried to find the models of appliances present
in the house. Therefore, the ANN training can be personal-
ized selecting the best power trace examples for that case. In
the long run, when the knowledge base contains a significant
number of different traces, this solution would require only a
minimum configuration effort for the user (who should just
list the brand and model of the appliances to be monitored).

In the future, it would be useful to evaluate the use of
different neural models characterized by dynamic retrain-
ing mechanisms in order to improve the balance between
efficiency and complexity [37]. Another direction for future
work would be to extend the proposed approach by exploiting
information about user habits and daily activity patterns
that can be extracted from sensors observation data through
complex event processing techniques [38, 39].
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