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Simplified Seismic Analysis of Disordered
Masonry Towers

Luca Facchini1 and Michele Betti2

Abstract: The structural assessment of existing masonry towers under exceptional loads, such as earthquake loads, requires reliable and
expedite methods of analysis. These approaches should take into account both the specific nonlinear behavior of the material (for instance, the
small tensile strength) and the randomness that affect the masonry material’s properties (in some cases the distribution of the elastic
parameters too). Considering the need of simplified but effective methods to assess the seismic response of such a class of structures,
the paper proposes an expeditious approach based on an equivalent Bouc and Wen model. As a prototype of masonry towers, a cantilever
masonry beam is analyzed assuming that the first mode shape governs the dynamic behavior. With this hypothesis, the nonlinear Bouc and
Wen model is employed to reproduce the system hysteretic response. Subsequently, assuming the material properties as random variables,
stochastic linearization and the perturbative approach are employed to evaluate the bounds of the seismic response. The results of the sim-
plified approach are compared with the results of finite-element models to show the effectiveness of the method. DOI: 10.1061/AJRUA6
.0000856. © 2015 American Society of Civil Engineers.

Author keywords: Bouc and Wen model; Masonry towers; Nonlinear dynamics; Reliability assessment; Stochastic linearization;
Perturbation methods; Disordered systems.

Introduction

The assessment of the structural response of masonry structures,
especially in case of severe excitations such as the ones due to
the seismic loading, must take into account the nonlinear mechani-
cal behavior of the masonry components (small tensile strength and
limited compressive strength). This nonlinear behavior is also char-
acterized by a hereditary nature and, as a result, the restoring force
that describes the mechanical behavior of the masonry structure
cannot be simply described as a function of the instantaneous dis-
placement or acceleration due to hysteresis phenomena (Casolo
1998; Betti et al. 2014). In addition, another element that needs
to be taken into account to perform a reliable assessment of the
structural response is the randomness that affects the masonry
material’s properties (in case of existing buildings, he spatial dis-
tribution of the elastic parameters as well).

Focusing on slender masonry structures, recent earthquakes
showed, once again, the high vulnerability of such a typology of
structure (Milani and Valente 2015; Decanini et al. 2012), high-
lighting the need of expeditious and effective methodologies of
seismic risk assessment in order to allow proper retrofitting strat-
egies. In this respect, in recent years, several simplified methods
have been proposed to analyze the structural response of such
mechanical systems. Betti et al. (2005) analyzed the response of
slender masonry walls under turbulent wind, proposing an

approach based on modal reduction. The material was assumed
as nontensile resistant (NTR), while the mechanical properties
as deterministic. Lucchesi and Pintucchi (2007) developed a one-
dimensional deterministic numerical model to perform nonlinear
dynamic analysis of slender masonry towers. The main mechanical
characteristics of the material, in all the sections along the height,
were taken into account by means of a nonlinear elastic constitutive
law formulated in terms of generalized stress and strain. The
material behavior was assumed NTR with limited compressive
strength. To describe the dynamic response of slender masonry
towers, a three-dimensional fiber model was proposed by Casolo
(1998) and employed in deterministic vulnerability analysis: the
structure consisted of a set of fibers aligned with the vertical axis
of the tower, and the constitutive behavior of each single fiber was
assumed hysteretic with damage. To account for the uncertainties
deriving from the nonlinear behavior of masonry (and forcing ac-
tions), a statistical approach to estimate the combined effects of the
most important factors governing the structural response (viscous
damping, height, strength, stiffness, strain-softening, and hysteretic
dissipating characteristics) was proposed and employed. An analy-
sis method to account for material uncertainties to solve this class
of mechanical problems was proposed by Facchini et al. (2005)
where, based on a Galerkin approach, the material properties were
assumed as a stochastic field. Other possible approaches to account
for the randomness that affects the material properties are pertur-
bation methods, originally proposed by Liu et al. (1986).

Despite many recent advances, the literature review still high-
lights the need of expeditious and effective approaches capable to
effectively analyze the seismic response of slender masonry towers
when the masonry is assumed as a random material. In this respect,
recent studies show the high flexibility of the hysteretic model pro-
posed by Bouc (1967), and subsequently improved by Wen (1976,
1980). The model has the advantage of its computational simplicity
(since it requires only one auxiliary nonlinear differential equation
to describe the hysteretic behavior) and, in addition, closed-form
expressions are available that simplify the employment of the
model in nonlinear random vibration problems. The Bouc and
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Wen model has been extensively employed to describe a plethora
of hysteretic behavior like degradation of stiffness and strength
(Marano and Greco 2006; Erlicher et al. 2008), and Bouc and
Wen (in the following, BW in short) models have been used in
an wide range of applications such as vibration of steel structures
(Oldfield et al. 2005), concrete structures (Wang et al. 2007; Bursi
et al. 2012), wood joints (Foliente 1995), or base isolation devices
for buildings (Ismail et al. 2010). The growing interest around this
model is testified by the ever-increasing number of researches that
employ such a model (Ismail et al. 2009).

The paper, analyzing the clarifying example of a disordered ma-
sonry cantilever beam, investigates the employability and the effi-
ciency of the BW model in order to account for the nonlinear
hysteretic phenomena that develop in slender masonry towers dur-
ing seismic loading. To discuss the proposed approach, the paper is
organized as follows: in the first part, two numerical models are
introduced, developed with the finite-element (FE) technique.
The numerical FE models were employed to perform nonlinear
static and nonlinear dynamic analyses aimed to assess the behavior
of a slender masonry tower under seismic loading. In the second
part of the paper, the results of the numerical nonlinear analyses
were employed as a reference to evaluate the parameters needed
to tune the simplified Bouc and Wen model and to assess the ef-
fectiveness of the obtained results. In the third part, an equivalent
linearization method and a perturbative approach were employed to
account for the material randomness, where average values and
bounds of the structural response were evaluated and discussed.

Nonlinear FE Reference Models

Two FE codes were employed to numerically evaluate and analyze
the nonlinear response of a slender masonry beam under seismic
load. The reference case study was a 10-m-wide (B), 40-m-high
(H), and 1-m-thick cantilever masonry beam. The behavior of
the masonry tower under seismic loads acting in the plane of the
structure was analyzed by means of static nonlinear pushover
analysis and dynamic nonlinear analysis. Results of the analyses
were first compared with each other to assess their effectiveness,
and subsequently employed to identify the parameters of the equiv-
alent Bouc and Wen model.

Numerical Modeling with Code Aster

The first numerical model of the cantilever masonry beam was built
by means of the open source software Code_Aster, a free finite-
element code (distributed under the GNU GPL license) for the
numerical simulation of materials and mechanical structures, devel-
oped by EDF (Électricité de France). The code was employed to
build two numerical models: (1) a model built with 8-node three-
dimensional (3D) elements having the dimensions of 0.5 × 0.5×
0.5 m, employed for the nonlinear static analyses; and (2) a model
(with the same typology of finite elements, but having the dimen-
sions of 1.0 × 1.0 × 1.0 m) employed for the nonlinear dynamic
analyses. The first model was characterized by 3,200 elements
and about 15,120 degrees of freedom (DOFs), while the second
one had 400 elements and about 2,640 DOFs.

In order to take into account the nonlinear behavior of the ma-
sonry, two types of mechanical damage models were considered.
The nonlinear static analyses were performed with the damage
model of Mazars (Mazars 1984; EDF R&D 2012), while for the
nonlinear dynamic analyses, the Endo Orth Beton (Godard
2005; EDF R&D 2011) damage behavior was adopted. The first
damage model is an isotropic scalar damage model, quite simple
and robust (from a computational point of view), which has the

limit of not taking into consideration the stiffness restoring due
to the cracks closing. The second one is an anisotropic model that
is able to take into account the cracks closing. Both mechanical
models were originally introduced for the numerical modeling
of concrete. Their effectiveness in order to reproduce the masonry
non-linear behavior was evaluated by comparing the numerical re-
sults obtained with Code Aster with those obtained with the second
FE code. The models need different parameters to identify the
damage threshold but, in general, they require a reduced number
of independent parameters to define the nonlinear behavior (Mazars
1984; Godard 2005). Both the Mazars and the Endo Orth Beton
parameters were identified in order to fit the uniaxial compressive
and tensile strength values reported in Table 1. Additional informa-
tion about the identification of the model parameters can be found
in Betti et al. (2012).

Numerical Modeling with ANSYS

As a second case, the masonry cantilever beam was modeled by
means of the commercial FE code ANSYS. The model was built
by means of 3D 8-node isoparametric finite-elements having the
dimensions of 1.0 × 1.0 × 1.0 m, and the final 3D model consisted
of 400 solid65 elements and about 2,640 DOFs.

To reproduce the nonlinear masonry behavior, the Drucker-Prager
(DP) plasticity criterion (Drucker and Prager 1952), originally
proposed for geomaterials, was employed. The material parameters
required to define the model, the cohesion c, and the internal angle of
friction φ, are usually introduced in such a way that the circular cone
yield surface of the DP model corresponds to the outer vertex of the
hexagonal Mohr-Coulomb yield surface (Fig. 1). The Drucker-Prager
constitutive law can be written as follows:

Table 1. Masonry Model Parameters

Parameter Value

Ew ðN=mm2Þ 1,500
ν (-) 0.25
c ðN=mm2Þ 0.24
θ (°) 38
δ (°) 15
fwc ðN=mm2Þ 5.00
fwt ðN=mm2Þ 0.24

Note: c = cohesion; Ew = elastic modulus; fwc = uniaxial compressive
strength; fwt = uniaxial tensile strength; v = poisson coefficient; θ =
angle of internal friction; δ = dilatancy.

σII

ξ
II

σI

ξ
I

σIII

ξ
III

Drucker-Prager cone

Hexagonal Mohr-Coulomb yield surface

Fig. 1. Drucker-Prager yield surface in the Haigh-Westergaard
stress space
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F ¼ αI1 þ
ffiffiffiffiffi
J2

p − k ¼ 0 ð1Þ
where I1 = first invariant of the Cauchy stress; J2 = second invariant
of the deviatoric part of the Cauchy stress; and α and k = two param-
eters required to define the yield DP surface. They are connected with
the cohesion c and the friction angle φ by the following equations:

α ¼ 2 sinφffiffiffi
3

p ð3 − sinφÞ ; k ¼ 6c cosφffiffiffi
3

p ð3 − sinφÞ ð2Þ

The cohesion c and the angle of internal friction φ are thus the
only two material parameters needed to define the yield surface. In
this application, the DP criterion was combined with the Willam
and Warnke (WW) failure criterion, originally proposed for con-
crete (Willam and Warnke 1975), which accounts for both cracking
and crushing failure modes through a smeared model. With these
assumptions, the masonry was modeled as an isotropic continuum
capable to exhibit plastic deformation, to crack owing to traction
and to crush owing to compression. Both the DP and WW criteria
have been frequently employed to model the mechanical behavior
of (complex) masonry structures. The WW criteria was used by
Adam et al. (2009) to model the cracking and crushing capabilities
of materials, and the comparison between numerical and experi-
mental results show a good agreement. Among others, Betti and
Vignoli (2008) combined the DP criterion with the WW failure
surface to discuss, through a macroelement approach, the seismic
vulnerability of an historic masonry church.

The assignment of the mechanical parameters required by the
DP and WW criteria requires a careful calibration and, in the
present study, being the analyses mainly aimed to assess the effec-
tiveness of an equivalent BW hysteretic system, these parameters
were assumed on the basis of available literature results for a
stone masonry wall (Chiostrini et al. 1998). The adopted values
are reported in Table 1 for both the linear (Young’s modulus E
and Poisson coefficient ν) and the nonlinear parameters of the ma-
sonry materials. The ANSYS model was employed to perform both
static pushover and dynamic nonlinear analyses. The nonlinear sys-
tem of equations was solved by an incremental Newton-Raphson
method with arc-length control.

Code Aster—ANSYS Comparison

As a first comparison between the two FE codes, a static nonlinear
pushover analysis was performed assuming a uniform distribution
of horizontal loads along the height of the cantilever beam. The
results were consequently compared analyzing both the damage
(Code Aster) versus cracking/crushing (ANSYS) patterns and the
corresponding capacity curves. Fig. 2 compares the capacity curves
(resultant load versus displacement). Despite the different mechani-
cal laws adopted to account for the nonlinear modeling of masonry,
both codes offered a reliable estimation of the collapse load. A mi-
nor difference is instead observable in the maximum displacement
(the horizontal displacement of the center of mass of the beam’s top
section is about 550 mm with the Code Aster model and about
320 mm with the ANSYS model). This is due to the fact that the
nonlinear system of equations in Code Aster were solved by
a displacement control method while a force control (Newton-
Raphson) approach was employed with ANSYS.

A second comparison was made by means of nonlinear time-
history analyses. As base input, the natural acceleration record
of Colfiorito NS (North–South) 1997, scaled at PGA (peak ground
acceleration) = 0.1 g, was employed (Fig. 3). Fig. 4 compares
the time-histories of the base shear obtained with both codes, at
increasing PGA of the scaled Colfiorito record (PGA ¼ 0.20g
and PGA ¼ 0.26g). Fig. 5 reports, for both codes, the numerical

time-histories of the displacement of the center of mass of the
top section (again at increasing PGA). It is still possible to observe
that, despite few differences (between 8 and 12 s), both codes
offered consistent results.

Additional assessments of the employed numerical models are
reported in a paper recently published by Bartoli et al. (2013). The
authors, investigating the collapse behavior of masonry structures,
analyzed the consistency of the results (collapse load, collapse dis-
placement, and the load-displacement equilibrium path) obtained
using 10 different numerical approaches, including the models
herein adopted. The comparison of the results confirms the robust-
ness and the effectiveness of the employed models.

Approximation of the Tower Response with the
Bouc and Wen Model

The cantilever masonry beam was analyzed assuming that the first
mode shape governs the whole dynamic behavior. Based on this
hypothesis, the ability of the nonlinear hysteretic Bouc and Wen

0 100 200 300 400 500 600

dx [mm]

0

0.05

0.1

0.15

0.2

0.25

V x / 
W

 [-
]

ANSYS
Code Aster

Fig. 2. Load-displacement curve Code Aster (Mazars model) and
ANSYS comparison (B ¼ 10 m, H ¼ 40 m)
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2 4 6 8 10 12 14 16 18 20
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-0.1
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0.05
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Fig. 3. Colfiorito NS 1997 acceleration: (a) time history; (b) FFT
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model to reproduce the system response was investigated and the
results of the proposed approach were compared with the results of
the finite-element (FE) models to discuss the effectiveness of the
approximation.

When a BW model is employed in practical applications, the
first step is to identify (tune) the model parameters. By appropri-
ately choosing a set of parameters, it is possible to reproduce the
actual hysteresis loop of a plethora of mechanical systems. Given
a set of experimental or numerical input/output data, the model
parameters must be tuned so that the output of the BW model
matches as well as possible the reference data. Once the BW
model parameters have been identified, the resulting model can
be considered as a good approximation of the original investigated
hysteretic system. Herein, the BW model parameters were identi-
fied by comparing the behavior of the BW model with the response
of the masonry cantilever beam subjected to a static horizontal
load (evaluated through the FE analysis developed in the previous
section). The horizontal displacement of the center of mass of the

cantilever beam’s top section, shown in Fig. 6 (the applied force—
computed displacement curve is obtained with the ANSYS FE
model) exhibits slight but clearly-visible hysteretic behavior.

Single Degree-of-Freedom Model Assumption

From the results of the structural analyses performed by means
of Code Aster and ANSYS, it can be inferred that the dynamic
behavior of the cantilever beam can be accurately modeled by
means of its first mode shape. The first three mode shapes (obtained
with the ANSYS code) are reported in Fig. 7; the first one activates
about the 76% of the total mass. Therefore, an equivalent nonlinear
single degree-of-freedom (SDOF) system can be defined, whose
degrading stiffness can be determined by means of the performed
nonlinear numerical analyses. Taking into account that Code Aster
and ANSYS give the same results, the ones obtained with ANSYS
were considered as reference. Fig. 6 reports the results (load versus
displacement) of the static nonlinear analyses performed with
ANSYS by applying a monotonically increasing/decreasing hori-
zontal displacement at the top section of the masonry beam, in such
a way to obtain the first-loading curve and the subsequent unload-
ing curve. This result was taken into consideration to approximate
the system behavior with the BW model, as reported next.

Identification of the Bouc and Wen Model Parameters

The behavior of the equivalent BW oscillator can be described by
an incremental equation of motion of the form

mẍðtÞ þ cẋðtÞ þ kgðtÞ ¼ fðtÞ ð3Þ

where m = mass of the system; c = viscous linear damping coef-
ficient; xðtÞ = displacement; kgðtÞ = nonlinear restoring force (k
denotes the stiffness of the system); and fðtÞ = external excitation.
The overdots in the xðtÞ variables represent the derivative with
respect to time.

According to the BW model, the restoring force function was
assumed as a linear combination of a linearly-elastic force and a
history-dependent term
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Fig. 4. Base shear time history at different PGA
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Fig. 6. Applied force–computed displacement curve (ANSYS analysis
under cyclic loading)
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Fig. 5. Displacement time history (center of mass of the upper section
of the masonry beam) at different PGA
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kgðtÞ ¼ kαxðtÞ þ kð1 − αÞzðtÞ ð4Þ

In Eq. (4) kαxðtÞ = elastic component (instantaneous response)
while kð1 − αÞzðtÞ = hysteretic component (which depends on the
past history of stresses and strains); α = relation between the final
and the initial stiffness (0 < α < 1); and zðtÞ = so-called hysteretic
displacement (a fictitious displacement). This hysteretic displace-
ment is given by the following differential equation (with initial
condition zð0Þ ¼ 0):

żðtÞ ¼ ẋðtÞfA− ∣ z ∣n· ½β þ γsgnðẋÞsgnðzÞ�g ð5Þ

where sgnð·Þ = signum function.
The differential Eqs. (3)–(5) contain five nondimensional

unspecified parameters that can be chosen to generate a broad range
of different hysteresis loops. According to this representation, the
first set of parameters, which controls the shape and the size, of the
hysteresis loop to be identified, is composed by {A, k, α, n, β, and
γ}. Several studies have been conducted to quantify the importance
of each parameter on the overall response of different hysteretic
structures in the BW model, and to classify the parameters accord-
ingly. The manner in which the parameters of the BW model in-
fluence the shape of the hysteresis loop was recently analyzed by
Ikhouane et al. (2007). In their research, the authors study in depth
the relationship between the parameters that appear in the differ-
ential equation and the shape of the obtained hysteresis loop.

To identify the nondimensional parameters, several methods
have been proposed in literature based on simulated or experimen-
tal input/output data. According to Ismail et al. (2009) and Ortiz
et al. (2013), the procedures employed in literature to identify
the parameters of the BW models can be classified into two major
families: (1) methods based on the minimization of a loss function,
and (2) methods based on nonlinear filtering. In this paper, the
identification of the BW model used a method included in the first
category, and based on a mixed two-step procedure. The method
combines results coming from both static and time-history numeri-
cal analyses, with the BW parameters optimized so that xðtÞ may
approximate the displacement of the center of mass of the canti-
lever tower’s top section. In particular, results obtained by means

of the pushover analysis were employed to identify the six param-
eters {A, k, α, n, β, and γ}. The remaining ones (mass m and vis-
cous linear damping coefficient c of the equivalent BW system)
were obtained by means of the calibration of the dynamic response
of the BWmodel with respect to the dynamic simulated response of
the FE model.

Among the six parameters that must be identified, it was shown
(Cunha 1994; Facchini et al. 2012) that parameter A in Eq. (5) can
be considered redundant, and hence next it was considered as
unitary (A ¼ 1) without loss of generality.

The second parameter, k, the stiffness of the equivalent oscilla-
tor, can be obtained by finding the derivative of the nonlinear re-
storing function kgðtÞ with respect to the displacement x, obtaining
the following expression for the tangent stiffness kt:

kt ¼ k
∂g
∂x ¼ k

�
αþ ð1 − αÞ ∂z∂x

�
¼ k

�
αþ ð1 − αÞ ż

ẋ

�

¼ kfαþ ð1 − αÞ½A − ðβ þ γsgnðẋÞsgnðzÞÞ ∣ z ∣n�g ð6Þ

Having assumed the parameter A as unitary, and considering the
initial conditions zð0Þ ¼ 0, parameter kt reduced to the initial stiff-
ness ki of the system, and the initial stiffness can be computed
through Eq. (6) obtaining:

fzð0Þ ¼ 0;A ¼ 1g ⇒ ki ¼ ktjz¼0 ¼ k½αþ ð1 − αÞ� ¼ k ð7Þ

The postelastic stiffness, kf, according to Marano and Greco
(2006), is given as kf ¼ αk; hence the following relation holds
asymptotically:

ż ¼ 0 ⇒ kt ¼ kf ¼ αk ⇒ α ¼ kf
ki

ð8Þ

When the maximum displacement is reached and the unloading
process begins, the following expression holds for the unloading
initial stiffness ku:

z ¼ ẑ ¼ 1=ðγ þ βÞ1=n
sgnðzÞ ¼ 1; sgnðẋÞ ¼ −1

�
⇒ ku ¼ k

�
αþ ð1− αÞ

�
1− β − γ

β þ γ

��

ð9Þ

and

β − γ
β þ γ

¼ 1 − ðku=kÞ
1 − α

¼ ki − ku
ki − kf

ð10Þ

Finally, the elastic limit displacement can be expressed,
according to Cunha (1994), as

β þ γ ¼ x−nY ð11Þ

Therefore, only one parameter, n, or alternatively β or γ,
remained undetermined: the parameter n influences the transition
from elastic to postelastic behavior and the distance of the
unloading path from the first loading, while the ratio β=γ affects
the transition from the loading to the unloading curve (Ikhouane
et al. 2007).

The numerical analyses enable direct estimation a few of the
BW parameters: the initial stiffness ki ¼ 5,654 N=mm, the ratio
α ¼ kf=ki ¼ 0.1395, and the limit elastic displacement xY ¼
90mm (Table 2). These values were assumed as fixed, and con-
sequently the remaining parameters to be identified were {n, or
β, and γ}.

As a first attempt, the value of the exponent n was assumed
equal to 5. With this assumption, the hysteresis loop shown with

Fig. 7. First three mode shapes of the cantilever masonry beam: (a) first
mode (f1 ¼ 0.88 Hz); (b) second mode (f2 ¼ 4.59 Hz); (c) third mode
(f3 ¼ 10.73 Hz)
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a thick line in Fig. 8 was obtained. It is possible to observe that
n ¼ 5 reproduced correctly the transition from the elastic to the
postelastic branch, but the overall behavior of the oscillator
was very poor. As a second attempt, n and the unloading initial
stiffness ku were both lowered (Table 2), obtaining the behavior
reported in Fig. 9. This choice gave better results, with an energy
dissipation cycle very close to the reference one (obtained with the
FE code).

Once the restoring function gðtÞ was modeled (i.e., the param-
eters {k, α, A, n, β, and γ} were identified), the two subsequent
parameters that needed to be evaluated were the mass m and the
damping c of the equivalent systems reported in Eq. (3). A hint
can be drawn from the FE model. Assuming the participating mass
associated with the first mode shape, the dynamic response of the
identified BW oscillator was compared with the dynamic response
of the cantilever beam (evaluated with ANSYS), and the comparison
is shown in Fig. 10. The nonlinear dynamic analyses were
performed employing the El Centro NS 1940 earthquake. It is pos-
sible to observe that the equivalent SDOF BW oscillator agrees
quite well with the more complex, and computational demanding
FE model elaborated with ANSYS (Fig. 10); however, the worst er-
ror committed on the response peaks was about 20%.

To overcome this error, a possibility is to identify mass and
damping of the equivalent BW system by means of the analysis
of the overall seismic response of the cantilever beam. To perform
this optimization, the following error function (to be minimized
over the whole time history) was considered:

ε ¼
Z

T

0

jwðxrefÞ · ðxBW − xrefÞj
jwðxrefÞ · xref j

dt ð12Þ

where xBW = BW model displacement response; xref = FE model
response; and w = weight function defined as follows:

wðxrefÞ ¼
exp½Kwjxref j=ðjxref jÞmax�

expðKwÞ
ð13Þ

The weight function wðxrefÞ decreases exponentially for de-
creasing values of jxref j. In particular, if the reference response
xref → 0, then wðxrefÞ → expð−KwÞ; on the other hand, when
the response jxref j → ðjxref jÞmax, then the weighting function tends
to 1 and therefore the errors on the peaks of the response are much
more important than the errors committed when the displacement
of the system is small. The parameter Kw calibrates the importance

Table 2. BW Model Parameters Identification

Parameter First Second

ki (N=mm) 5,654 5,654
kf (N=mm) 789 789
ku (N=mm) 1,171 793
xY (mm) 90 90
n (-) 5.0 4.0
α (-) 0.1395 0.1395
β (-) 1.627 × 10−10 1.523 × 10−8
γ (-) 6.656 × 10−12 6.646 × 10−12
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Fig. 8. Comparison of the identified BW model with the ANSYS
results (first attempt)
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Fig. 9. Comparison of the identified BW model with the ANSYS
results (second attempt)
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Fig. 10. Displacement time history: comparison between BW
identified model and ANSYS results (second attempt)
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of the errors committed near the response peaks (with respect to the
other configurations of the system). If Kw ¼ 0 then the weight
function is 1 for any value of jxref j, while for increasing values
of Kw the errors near the peaks of the reference response become
more and more significant. Herein, Kw ¼ 5 was assumed.

According to this approach, the optimized system mass m and
damping c were obtained, and results of this optimization, illus-
trated in Fig. 11, show a good agreement between the simulated
FE results and the identified BW oscillator.

Disordered BW Oscillator

After calibration of the parameters {k, α, A, n, β, γ, m, and c} of
the equivalent BWoscillator, the hysteretic model was employed to
analyze the behavior of the disordered oscillator to evaluate the in-
fluence of the random stiffness on the tower response. The problem
may have relevant impact on seismic assessment since masonry
mechanical parameters, such as Young’s modulus, are often diffi-
cult to estimate, especially for historic buildings. Possibilities can
be in situ tests (by means of flat jacks) and even laboratory tests on
small samples of the examined masonry, but the results can only
give a local estimate of the parameters, which are necessarily
affected by a more or less pronounced randomness.

To analyze the disordered system, two approaches were herein
assumed. A first one considered a stochastic equivalent lineariza-
tion of the equivalent BW model; the second one employed a
perturbation approach directly on the equation of motion. The
two approaches are next introduced and discussed.

Equivalent Disordered Linear System

The stochastic equivalent linearization method is considered to be
one of the most powerful (approximate) techniques to analyze the
nonlinear random response of mechanical systems (Wen 1980;
Faravelli et al. 1988; Cunha 1994). To build the stochastic equiv-
alent system, an energetic criterion was herein employed. Imposing
a harmonic loading to the system, the energy dissipation due to the
hysteretic cycles was negligible until the amplitude of the displace-
ment reached a limit value xM; above this threshold, the dissipated

energy depended linearly on the amplitude of the actual displace-
ment and was approximated by means of the following relation:

Ed ≈ maxf0;Kd · ðX − xMÞgNmm ð14Þ

where X > 0 = actual displacement amplitude (and Kd is a
coefficient depending on the system properties). The energy
dissipated by the equivalent system can be written as follows:

Ed;e ¼
I

ceẋdx ð15Þ

By equating Eqs. (14) and (15), it was possible to estimate the
equivalent damping ce. The equivalent stiffness ke was evaluated
by computing the actual secant stiffness. The probabilistic structure
of the response of the equivalent linear system was consequently
evaluated numerically through an iterative procedure by using the
standard techniques for linear systems. The iteration loop consisted
in solving the equation of motion of the equivalent linear system
from given values of the equivalent damping ce and the equivalent
stiffness ke, and then, iteratively, computing updated values for ce
and ke.

After setting up the equivalent linear system, the dependence of
the equivalent stiffness and damping coefficients on the parameters
of the BW model was first analyzed, and the disordered equivalent
linear system was next computed. The Young’s modulus of the
masonry was considered a normally distributed random parameter
with c.o.v. (coefficient of variation) = 0.1; this leads to a random-
ness of the initial stiffness, which can be considered normally
distributed as well, with mean μki ¼ 5,654 N=mm and c.o.v. = 0.1.
The final (postyielding) stiffness was assumed to be strictly depen-
dent on the initial stiffness: kf ¼ αki.

The forcing process taken into consideration in the simulations
was the NS component of the 1940 El Centro earthquake, which
can be modeled as a time-modulated stationary acceleration with
the following parameters:

agðtÞ ¼ χðtÞagsðtÞ χðtÞ ¼ e−at − e−bt
e−at0 − e−bt0

t0 ¼
logðaÞ − logðbÞ

a − b
SaaðωÞ ¼ S0

ω4
0 þ 4ξ20ω

2
0ω

2

ðω2 − ω2
0Þ2 þ 4ξ20ω

2
0ω

2
ð16Þ

where χðtÞ = time envelope; and agsðtÞ = stationary part of the
ground acceleration, defined by the Kanai-Tajimi PSDF (Power
Spectral Density function) SaaðωÞ with parameters ω0¼12.5 rad=s,
damping ξ0 ¼ 0.60, and intensity S0 ¼ 5.3 · 105 mm2=s3. The
parameters a and b calibrate the shape of the time envelope of
the accelerogram (they influence the build-up of the seismic action
as the instant of maximum intensity is given by t0, as well as the
decay of the ground acceleration). The obtained values are:
a ¼ 0.058 s−1; b ¼ 2.511 s−1; and t0 ¼ 1.533 s.

Introducing the variation on the initial stiffness ki of the BW
model, and accordingly on the final stiffness kf, the stiffness ke
of the equivalent linear system was found to vary linearly and
the damping hyperbolically. The empirical relations found were
(Fig. 12)

ke ≈ ð0.411ki − 73Þ N=mm ξe ≈ 4270

k1.2879091i
ð17Þ

In this way, the equivalent linear system with random stiffness
and damping can be studied, subjected to the El Centro NS 1940
acceleration:
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Fig. 11. Displacement time history: comparison between BW identi-
fied model and ANSYS results (optimization of mass and damping of
the BW SDOF system)
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ẍe þ 2ξeωeẋe þ ω2
exe ¼ −χðtÞagsðtÞ ð18Þ

To solve the problem, a further approximation was introduced.
The envelope of the ground acceleration was assumed to vary
slowly with respect to acceleration itself. Under this assumption
and taking into account the values obtained for the equivalent
stiffness, the equivalent response xe can be modeled as well as a
stationary noise modulated by an envelope which, after some cal-
culations, turns out to be the same as χðtÞ; therefore

xeðtÞ ¼ χðtÞxesðtÞ ⇒ ẍes þ 2ξeωeẋes þ ω2
exes ¼ −agsðtÞ ð19Þ

Following a perturbation approach (Liu et al. 1986), the mean of
the response vanishes, while the variance can be approximated by
the following first-order expansion:

σ2
xe ≅

�∂x̄e
∂ki

�
2

σ2
ki

¨̄xe þ 2ξ̄eω̄e ˙̄xe þ ω̄2
ex̄e ¼ −agðtÞ

¨̄xe;ki þ 2ξ̄eω̄e ˙̄xe;ki þ ω̄2
ex̄e;ki ¼ −ðξ̄e;ki ω̄e þ ξ̄eω̄e;kiÞ ˙̄xe − ðω2

eÞ;ki x̄e
ð20Þ

where the overbar denotes the quantity evaluated for the mean
value of ki.

The integration of the perturbed equations (20) leads to the
evaluation of the peak response of the equivalent linear system
as the sum of the mean response, plus a peak factor times the stan-
dard deviation of the response itself. The peak factor, a simplified
expression of the expected value of the envelope of a stationary
narrow-band Gaussian process (Crandall and Mark 1963), was as-
sumed as g ¼ pðπ=2Þ. Fig. 13 reports the computed bounds of the
response of the disordered equivalent linear system subjected to the
El Centro NS 1940 earthquake; while Fig. 14 reports the results
obtained assuming the Colfiorito NS 1997 earthquake.

An attracting feature of the equivalent linearization approach is
that it allows, in a straightforward manner, to obtain the inelastic
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Fig. 12. Variation of the stiffness and the damping coefficient of the
equivalent linear system caused by a variation in the initial stiffness of
the BW model (final stiffness of the BW model is varied accordingly)
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Fig. 13. Computed σ-bounds of the response of the disordered
equivalent linear system to El Centro 1940 earthquake (North–South
component)
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Fig. 14. Computed σ-bounds of the response of the disordered
equivalent linear system to Colfiorito 1997 earthquake (North–South
component)
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response spectrum (IDRS) of the examined structure through the
direct combination of the equivalent linear system parameters with
the linear response spectrum of a given site (Roberts and Spanos
2003; Giaralis and Spanos 2013). This can lead to the definition of
the seismic vulnerability of a group of towers that lie in a seismi-
cally homogeneous area.

Direct Perturbative Approach

As a second method, a perturbative approach, was directly em-
ployed and, also in this case, a randomness of the material stiffness
was considered (a normal distribution with c.o.v. = 0.1). Based
on this perturbative approach [Liu et al. (1986), and successively
improved by Chiostrini and Facchini (1999)] the system response
xðtÞ and the history-dependent term zðtÞ were directly approxi-
mated by means of a series expansion on the random parameter k

xðt; kÞ ≃ x̄þ ðk − k̄Þx̄k þ 1=2ðk − k̄Þ2x̄kk
zðt; kÞ ≃ z̄þ ðk − k̄Þz̄k þ 1=2ðk − k̄Þ2z̄kk ð21Þ

The terms x̄k and z̄k representhe so-called sensitivity vectors
(Liu et al. 1986) and must be computed with their derivatives.
The solving equations are the derivatives of the equation of motion
with respect to the random parameter k

m ¨̄xðtÞ þ c ˙̄xðtÞ þ kg0ðtÞ ¼ fðtÞ
g0ðtÞ ¼ αx̄ðtÞ þ ð1 − αÞz̄ðtÞ
˙̄zðtÞ ¼ ˙̄xðtÞf1 − jz̄jn · ½β þ γsgnð ˙̄xÞsgnðz̄Þ�g ð22Þ

and

m ¨̄xkðtÞ þ c ˙̄xkðtÞ þ kg1ðtÞ ¼ −g0ðtÞ
g1ðtÞ ¼ αx̄kðtÞ þ ð1 − αÞz̄kðtÞ

˙̄zkðtÞ ¼ ˙̄xkðtÞf1 − jz̄jn · ½β þ γsgnð ˙̄xÞsgnðz̄Þ�g
þ ẋðtÞð1 − njz̄jn−1sgnðz̄Þz̄k · ½β þ γsgnð ˙̄xÞsgnðz̄Þ�
− jz̄jn · fβ þ γDk½sgnð ˙̄xÞsgnðz̄Þ�gÞ ð23Þ

In Eqs. (21)–(23), the overbar indicates that the corresponding
variable was evaluated in correspondence of the mean value of the
uncertain structural parameters (stiffness k). The overdot indicates
differentiation with respect to time; xk, zk, xkk, and zkk indicate the
first and second derivatives of x and z with rpect to stiffnes k. The
computation of the sensitivity vectors requires the solving of
Eqs. (22)–(23), where a derivative (Dk) of the signum function
appears: it implies differentiation with respect to k of a product
of two signum functions, which involves considerable numerical
difficulties.

To overcome this problem, the signum function was approxi-
mated with

sðxÞ ¼ 2

π
tan−1ðcxÞ ð24Þ

where the parameter c was assumed as c ¼ 5.5 · 10−4.
The replacement of the signum function with the approximation

sðxÞ causes the cycle of the identified equivalent BW oscillator to
enlarge (Fig. 15), thus missing the match with the reference re-
sponse (Fig. 6); on the other hand, it was seen that the reintroduc-
tion of the condition upon the unloading stiffness caused the cycle
of the BW system to match the reference response again (Fig. 16).
A global check of the dynamic response of the modified deter-
ministic BW model was made analyzing the dynamic response
of this updated version of BW system to the El Centro NS 1940

earthquake. The comparison with the FE results, shown in Fig. 17,
is satisfactory.

The proposed approximation for the signum function allows
Eqs. (22) and (23) to be written as follows:

m ¨̄xðtÞ þ c ˙̄xðtÞ þ kgðx̄; z̄Þ ¼ fðtÞ
gðx1; x2Þ ¼ αx1 þ ð1 − αÞx2
˙̄zðtÞ ¼ ˙̄xðtÞ½1 − hð ˙̄x; z̄Þ�
where∶ hðx1; x2Þ ¼ jx2jn · ½β þ γsðx1Þsðx2Þ� ð25Þ

and

m ¨̄xkðtÞ þ c ˙̄xkðtÞ þ kgðx̄k; z̄kÞ ¼ −gðx̄; z̄Þ
˙̄zkðtÞ ¼ ˙̄xkðtÞ½1 − hð ˙̄x; z̄Þ� − ˙̄xðtÞ½h;1ð ˙̄x; z̄Þ ˙̄xk þ h;2ð ˙̄x; z̄Þz̄k� ð26Þ
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Fig. 15. Comparison of the identified BW model with the ANSYS
results (signum function approximated with s)
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Fig. 16. Comparison of the identified BW model with the ANSYS
results
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A further differentiation with respect to k of the equation of
motion gives the equation of motion of the second derivative of
the BW response to the earthquake:

m ¨̄xkkðtÞ þ c ˙̄xkkðtÞ þ kgðx̄kk; z̄kkÞ ¼ −2gðx̄k; z̄kÞ
˙̄zkkðtÞ ¼ ˙̄xkkðtÞ½1 − hð ˙̄x; z̄Þ� − 2 ˙̄xkðtÞ½h;1ð ˙̄x; z̄Þ ˙̄xk þ h;2ð ˙̄x; z̄Þz̄k�

− ˙̄xðtÞ½h;11ð ˙̄x; z̄Þ ˙̄x2k þ 2h;12ð ˙̄x; z̄Þ ˙̄xkz̄k þ h;22ð ˙̄x; z̄Þz̄2k
þ h;1ð ˙̄x; z̄Þ ˙̄xkk þ h;2ð ˙̄x; z̄Þz̄kk� ð27Þ

In Eqs. (26) and (27), the notations h;1 and h;2 = the partial
derivatives of function h with respect to x1 and x2, respectively.
By means of the integration of Eqs. (25)–(27), which constitute
a set of coupled deterministic nonlinear equations, it was possible
to evaluate the sensitivity vectors and to estimate (1) the response
x̄ðtÞ evaluated for k̄ ¼ E½k� (Fig. 18); (2) the sensitivity of the re-
sponse x̄kðtÞ (Fig. 19), and (3) the derivative of the sensitivity
x̄kkðtÞ (Fig. 20).

The approximations for the expected value of the response, and
its standard deviation, were obtained by means of a second-order
expansion for the mean displacement and a first-order expansion
for the variance, by

E½xðtÞ� ≃ x̄ðtÞ þ 1=2x̄kkðtÞσ2
k σxðtÞ ≃ x̄kðtÞσk ð28Þ

The evaluated expected response, together with the 3σ bounds,
is shown in Fig. 21.

This approach works well with a single accelerogram but,
compared with the stochastic equivalent linearization, it cannot
be applied in its present form with a seismic stochastic process.
Further improvements will take into account the response of the
disordered system to a stochastic process, instead of only one
accelerogram, together with the dependence of the response
on the randomness of other parameters, such as the yielding
point.
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Fig. 17. Displacement time history: comparison between BW identi-
fied model and ANSYS results (El Centro NS 1940 earthquake)
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Fig. 18. Response x̄ðtÞ evaluated for k̄ ¼ E½k�
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Fig. 19. Sensitivity of the response x̄kðtÞ
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Fig. 20. Derivative of the sensitivity x̄kkðtÞ
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Concluding Remarks

The paper reports on a simplified and expeditious approach for the
seismic analysis of disordered masonry towers and, as a clarifying
example, a masonry cantilever beam was analyzed. The method,
based on the assumption that the dynamic response of such class
of structures is mainly ruled by its first mode shape, takes into ac-
count the randomness of the tower parameters and proposes a
SDOF Bouc and Wen hysteretic model to reproduce the structural
response. The parameters of the equivalent BW model were iden-
tified on the basis of nonlinear static and time-history simulations,
and the paper demonstrates that the tower seismic response can be
efficiently approximated by the SDOF Bouc and Wen system, pro-
vided that a proper identification of the parameters is performed.
The results of the simplified approach were compared with the re-
sults of FE model to show the effectiveness of the method. The
influence of a random initial stiffness of the Bouc and Wen model
on its seismic response was subsequently analyzed by means of
stochastic linearization and the perturbation approach to evaluate
the expected response and its bounds. The perturbative approach
works well with a single accelerogram, but it could not be applied
with a seismic stochastic process. On the contrary an attracting fea-
ture of the equivalent linearization is that the linear response spec-
trum of a given site can be combined with the equivalent linear
system parameters in order to obtain a inelastic response spectrum.
Further improvements of the research will take into account the
response of the disordered system to a stochastic process analyzing
the dependence of the response on the randomness of additional
parameters such as the yielding point. In addition, a thorough
sensitivity analysis of the whole set of parameters of the Bouc and
Wen model shall be carried out considering towers with varying
slenderness in order to develop a robust model that can be em-
ployed without having pretuned parameters.
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