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Abstract

Over the last decade, a growing digital universe of unstructured or semi-
structured human-sourced information, structured process-mediated data, and
well-structured machine-generated data, encourages the adoption of innovat-
ive forms of data modeling and information processing to enable enhanced
insight, decision making, and process automation applied to a variety of dif-
ferent contexts. Healthcare comprises a notable domain of interest, where the
availability of a large amount of information can be exploited to take relevant
and tangible benefits in terms of efficiency of the care process, improved out-
comes and reduced health system costs. However, due to the complex nature of
clinical data, a number of challenges needs to be faced, mainly related on how
data characterized by volume, variety, variability, velocity, and veracity can
be effectively and efficiently modeled, and how these data can be exploited for
increasing the domain knowledge and supporting decision-making processes.

The aim of this dissertation is to describe the crucial role played by soft-
ware architectures in order to overcome challenges posed by the healthcare
context. Specifically, this dissertation addresses the development and ap-
plicability of multi-level meta-modeling architectures to various scenarios of
eHealth, where flexibility and changeability represent primary requirements.
Meta-modeling principles are concretely exploited in the implementation of an
adaptable patient-centric Electronic Health Record (EHR) system to face a
number of challenging requirements, including: adaptability to different spe-
cialities and organizational contexts; run-time configurability by domain ex-
perts; interoperability of heterogeneous data produced by various sources and
accessed by various actors; applicability of guideline recommendations for eval-
uating clinical practice compliance; applicability of Activity Recognition tech-
niques for monitoring and classifying human activities in pervasive intelligent
environments.



Contents

Introduction iv

1 Meta-modeling architectures for adaptable systems 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Benefits and limits . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Pattern-based solutions . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 The Reflection architectural pattern . . . . . . . . . . . . 4
1.3.2 The Dynamic Object Model pattern . . . . . . . . . . . . 6
1.3.3 The Observations & Measurements analysis pattern . . . 8

2 Adaptable systems in healthcare 10
2.1 Exploiting adaptability for modeling heterogeneous clinical data . 10

2.1.1 Electronic Health Record systems . . . . . . . . . . . . . 11
2.1.1.1 Challenges of EHR systems . . . . . . . . . . . 12
2.1.1.2 Standards for EHR systems . . . . . . . . . . . 15

2.1.2 The Empedocle EHR system . . . . . . . . . . . . . . . 18
2.1.2.1 A typical outpatient scenario . . . . . . . . . . 19
2.1.2.2 A two-level meta-modeling EHR architecture . . 20

2.2 Exploiting adaptability for evaluating clinical practice compliance 26
2.2.1 Clinical Practice Guidelines . . . . . . . . . . . . . . . . 26
2.2.2 Computer-Interpretable Guideline models . . . . . . . . . 27
2.2.3 A guideline-driven EHR system . . . . . . . . . . . . . . 28

2.2.3.1 Integrating CPGs into the Empedocle EHR system 29
2.2.3.2 Experimental results . . . . . . . . . . . . . . . 31

CONTENTS ii



3 Adaptable systems in smart home environments 34
3.1 Exploiting adaptability for home care . . . . . . . . . . . . . . . 34

3.1.1 A typical home care scenario . . . . . . . . . . . . . . . 36
3.1.2 Towards a patient-centric EHR system . . . . . . . . . . 37
3.1.3 Challenges and strategies . . . . . . . . . . . . . . . . . 40

3.2 Exploiting adaptability for Activity Recognition . . . . . . . . . . 45
3.2.1 A reference dataset for AAL . . . . . . . . . . . . . . . . 48
3.2.2 Statistical abstraction . . . . . . . . . . . . . . . . . . . 50
3.2.3 Model formulation . . . . . . . . . . . . . . . . . . . . . 54

3.2.3.1 Syntax and semantics . . . . . . . . . . . . . . 54
3.2.3.2 Structure and enhancement . . . . . . . . . . . 56

3.2.4 Online classification of ADLs . . . . . . . . . . . . . . . 60
3.2.5 Computational experience . . . . . . . . . . . . . . . . . 63

3.2.5.1 Experimental setup . . . . . . . . . . . . . . . 63
3.2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . 65
3.2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . 65

4 Performance engineering of meta-modeling architectures 70
4.1 Relational solutions and inefficiencies . . . . . . . . . . . . . . . 70
4.2 Towards NoSQL technologies . . . . . . . . . . . . . . . . . . . 71

4.2.1 A data model for Neo4j . . . . . . . . . . . . . . . . . . 72
4.2.2 A data model for MongoDB . . . . . . . . . . . . . . . . 75
4.2.3 The information equivalence problem . . . . . . . . . . . 78
4.2.4 Computational experience . . . . . . . . . . . . . . . . . 80

4.2.4.1 Experimental setup . . . . . . . . . . . . . . . 80
4.2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . 84
4.2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . 87

Conclusions 88

Bibliography 91

CONTENTS iii



Introduction
Over the last decade, a growing digital universe of human-sourced information

(i.e. unstructured or semi-structured data produced by human interactions,

like social networks and blogs, personal documents, pictures and videos, In-

ternet searches, emails), process-mediated data (i.e. structured data produced

as a result of business activities by traditional ICT systems, like business and

medical records, e-commerce transactions, banking movements), and machine-

generated data (i.e. well-structured data produced on real-time by sensors and

computer systems, like sensor records, system logs, Internet of Things (IoT)

data) encourages the adoption of innovative forms of data modeling and in-

formation processing to enable enhanced insight, decision making, and process

automation applied to a variety of different contexts [19].

Healthcare comprises a notable domain of interest, where the availability

of a large amount of unstructured, semi-structured and structured information

(including untapped data collected but not yet analyzed, named dark data) can

be exploited to take relevant and tangible benefits, including: early identifica-

tion of comorbidities as well as worsening health states; improvement of oper-

ational efficiency and patient outcomes; evidence of effectiveness and safety of

therapeutic strategies; reduction of rehospitalization and, consequently, health

system costs; real enactment of predictive models for diagnosing, treating, and

delivering care.

However, a number of challenges needs to be faced, closely related to the
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complex nature of data to deal with, and whose characteristics can be sum-

marized in five “Vs” [80]:

• Volume: the number of concepts that comprise the whole medical onto-

logy and the number of related clinical observations to take into account

are huge. The Systematized Nomenclature of Medicine (SNOMED) [16]

contains a computer-processable collection of more than 350 000 medical

terms and over 1 million relationships, to provide definitions, codes, and

synonyms which cover various aspects of the medical domain, including

anatomy, diseases, findings, and procedures.

• Variety : clinical data are heterogeneous and come in a variety of different

formats, from unstructured to semi-structured and well-structured data.

• Variability : the medical domain is open-ended and constantly changing

due to the progressive literature review process. On the one hand, new

evidences on unknown or partially-documented research areas can be

discovered, leading to an in-breadth extension of the domain. On the

other hand, new finer-grained evidences on already documented fields can

become relevant, leading to a more in-depth extension of the knowledge.

• Velocity : it refers to the speed at which clinical data are produced and

the rate at which they should be evaluated. Digital sensors, medical

devices, and smart meters are driving the need to deal with continuous

streams of data in near-real time, lashing a mounting requirement for

instantaneous analytics and evidence-based arrangement [36].

• Veracity : the partial or complete absence of information, as well as the

existence of information derived from erroneous assessments, are exhib-

itions of the intrinsic untrustworthiness of some sources of data. Un-

certainty is frequently encountered in medical practice and needs to be

faced, notably in decision-making processes [116].

Data modeling and information processing definitely represent two of the

main challenges posed by the healthcare context. For this reason, they con-

stitute the key topics of this dissertation, and the rest of this introduction is
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focused on describing general aspects and personal contributions in both topics

under consideration.

A.1 Data modeling: challenges and personal contribution

Data modeling addresses, from a structural point-of-view, how medical con-

cepts and clinical data can be effectively and efficiently represented within a

software architecture, in order to fully exploit all the potentialities deriving

from the large amount of available information.

In the common practice of software development, consolidated object-

oriented systems generally represents domain concepts as distinct classes hard-

coded directly into software and database models [23, 38]. This so-called

single-level approach fits well the development of systems requiring bounded

complexity of the domain ontology, rapid development, with expected low rate

of change and limited evolutionary maintenance. However, it inevitably fails

when system requirements and domain concepts change very often, leading to a

continuous cycle of system re-coding, re-building, re-testing, and re-deploying.

Since adaptability and changeability [55] represent primary requirements in

the healthcare context, a more convenient and dynamic architectural solution

is needed. So-called meta-modeling architectures [134] can fulfill these require-

ments. In practice, they are designed for changing data structure and system

behaviour dynamically, providing a high level of flexibility and adaptability

to deal with the complex nature of data characterizing the medical domain.

These architectures are usually composed by different levels of abstraction [28]:

while one or more meta levels provide a self-representation of the system en-

coding knowledge about data type structures, algorithms, and relationships,

the base level models and implements the application logic, using information

provided by meta levels.

Concerning data modeling challenges, this dissertation addresses the devel-

opment and applicability of multi-level meta-modeling architectures to various

scenarios of eHealth, where adaptability and changeability represent primary
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requirements. Specifically, this work describes how meta-modeling principles

are concretely exploited in the implementation of an Electronic Health Re-

cord (EHR) system [56, 47], named Empedocle, to allow agile tailoring for the

needs of different healthcare scenarios, and to face a number of challenging re-

quirements, including: adaptability to different specialities and organizational

contexts; run-time configurability by domain experts; interoperability of het-

erogeneous data produced by a variety of sources and accessed by a variety

of actors; usability at different levels (from health professionals to subjects-

of-care). Experimentations on real outpatient and home care scenarios are

reported to demonstrate feasibility and effectiveness of adaptable EHR sys-

tems applied to eHealth, with a preliminary focus on performance issues that

can affect meta-modeling architectures.

A.2 Information processing: challenges and personal

contribution

Information processing addresses, from a functional perspective, how all avail-

able data can be exploited for supporting advanced mechanisms of data min-

ing, including inferring new information and knowledge from known facts and

evidences, and enabling decision-making processes.

This dissertation investigates information processing in two different scen-

arios, i.e. healthcare and Ambient Assisted Living (AAL) contexts.

A.2.1 Decision Support Systems and Clinical Practice Guidelines

In the healthcare context, Clinical Decision Support Systems (CDSSs) [58]

play a major role for their potential to efficiency improve the quality of med-

ical decisions, reducing medical errors and supporting all subjects involved in

the care process. Moreover, the use of CDSSs in combination with evidence-

based clinical practices promises to substantially improve healthcare quality,

leading to a real implementation and effective enactment of Clinical Practice

Guidelines (CPGs) in the organizational workflow [46, 31, 95].

Guidelines are designed to support decision-making processes in health-
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care, and clarify areas of consensus through a systematic revision of clinical

evidence, so as to improve health outcomes, reduce clinical risk, as well as

support clinical evaluation procedures for establish the degree of compliance

of courses of action with respect to the best practices established by CPGs.

In order to provide patient-specific advices based on existing clinical data

and support automated compliance evaluation of the quality of clinical pro-

cesses, this dissertation addresses the development and applicability of a CPG-

driven EHR system, in which recommendations extracted from medical guide-

lines (and clinical protocols) are integrated with clinical data collected within

an EHR system. A two-step process for automated compliance evaluation of

clinical processes is built on top of this architecture, and validated with respect

to real medical guidelines.

A.2.2 Information processing for Activity Recognition

Due to the increasing ageing of population and the prevalence of chronic

diseases, continuity and supportive care delivered at home assumes a grow-

ing relevance, providing a means to improve quality of life, to optimize costs

and services, and to delay or discontinue the access to hospitalization and

specialized health structures.

In this context, Ambient Assisted Living (AAL) [24] encompasses technical

systems, infrastructures, and services to support elderly people in their daily

routine, to allow an independent and safe lifestyle, as long as possible, via the

seamless integration of information and communication technologies within

homes and residences. AAL technologies are today being developed, aiming

to implement safe environments around assisted peoples [101], and help them

maintaining independent living. Most efforts towards the realization of AAL

systems are based on developing pervasive devices and use Ambient Intelligence

(AI) [36] to integrate these devices together.

Activity Recognition (AR) [67, 32] is an important area in the context of

AAL. The aim of AR is recognizing common human activities starting from

events generated by a variety of remote sensors deployed in a smart envir-
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onment [32, 91], in order to evaluate the health status of chronically ill and

ageing populations, and prevent adverse outcomes.

Regarding the topic of applying information processing techniques to the

AAL context, this dissertation describes: first, how a meta-modeling architec-

ture can be exploited to deal with the variety of different sensed data produced

by a pervasive intelligent environment; secondly, how a continuous-time model-

based approach for recognizing human activities can be built on top of this

architecture, taking into account not only the sequencing and types of sensed

events but also the continuous duration of activities and of inter-events time.

The proposed approach is validated with reference to a public dataset widely

used in applications of AAL [125], providing results that show comparable

performance with state-of-the-art AR discrete-time approaches.
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The dissertation is organized in four chapters.

• Chapter 1 revises characteristics, peculiarities and limits of multi-level

meta-modeling architectures [28, 134], illustrating how adaptable sys-

tems underlying a meta-modeling approach make the difference in ap-

plication domains characterized by flexibility and run-time configuration

as primary requirements.

• Chapter 2 illustrates how meta-modeling architectures support design

and implementation of adaptable Electronic Health Record (EHR) sys-

tems [56, 47] in order to face a number of challenging requirements posed

by the healthcare context, and how automated compliance techniques

can be effectively modeled into a guideline-driven EHR system, and ex-

ploited for evaluating the quality of the clinical process [40].

• Chapter 3 discusses how patient-centric Electronic Health Record (EHR)

systems underlying a meta-modeling architecture can be efficiently cast

into the home care scenario for supporting personalized processes of care

[111, 48], and how adaptable systems can be exploited in combination

with Activity Recognition (AR) techniques [91, 67, 86, 125] for monit-

oring and classifying human activities starting from data generated by

sensors deployed in a smart environment [32].

• Chapter 4 explores meta-modeling architectures from a performance

point-of-view, investigating the performance impact that new persist-

ence approaches based on promising NoSQL technologies [115, 2, 3] can

bring in the model-driven re-engineering of a meta-modeling architecture

with respect to consolidated relational solutions.
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Chapter

1
Meta-modeling architectures for

adaptable systems

This Chapter revises characteristics, peculiarities and limits of multi-level

meta-modeling architectures [28, 134], illustrating how adaptable systems un-

derlying a meta-modeling approach make the difference in application domains

characterized by flexibility and run-time configuration as primary require-

ments.

1.1 Motivations

Support for variation is the key to sustainable architectures for long-lived ap-

plications, mainly in domains characterized by high volatility and flexibility,

where software requirements are not stable but evolve over time. Since the

need for variation can occur at any time and can affect structural as well

as functional aspects of a system, specifically during the production stage, it

is hard to forecast future requirements and interventions and how they can

impact on the overall architecture.
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Benefits and limits

As a result, designing a system that meets a wide range of different require-

ments a priori can be an overwhelming task (e.g. changing software is tedious,

error prone, and often expensive), resulting as an unrealistic solution in the

practice. This static approach inevitably fails when new and neglected require-

ments emerge, leading to a continuous cycle of system changing, re-building,

re-testing, and re-deploying. Therefore, it is clear that the complexity deriv-

ing from particular variations should be hidden from maintainers through a

uniform mechanism able to deal with different types of changes.

For this reason, a better solution is recurring to more abstract architectures

open to modification, extension and evolution over time. In the literature,

this kind of adaptable architectures are called meta-modeling architectures or

reflective architectures [28, 134]. Systems resulting from the exploitation of

opportunities offered by meta-modeling architectures can be easily adapted

to changing requirements on demand, reducing significantly the number of

interventions to accommodate requested variations, and making the whole

system more stable and maintainable.

The literature reports a number of real usages and examples application

of adaptable systems that emphasize flexibility and run-time adaptability via

a meta-modeling architectural style, covering a variety of different domains:

from generic frameworks for representing and manipulating attribute compos-

ite objects [59], to health information systems for collecting clinical observa-

tions [41], to versatile e-commerce platforms for managing a wide range of

business transactions [42].

1.2 Benefits and limits

Exploiting meta-modeling principles for the design and implementation of ad-

aptable systems provides various benefits.

On the one hand, the reference model, which defines structure and se-

mantic of system information, becomes more concise and stable, consisting

of a relative small number of classes that represent only non-volatile domain
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Benefits and limits

concepts. The whole development cycle is speeded up, reducing significantly

the number of required maintenance interventions. On the other hand, while

the reference model is developed and maintained by software engineers, know-

ledge concept definitions are directly provided by experts of the application

domain, overcoming misunderstandings between domain specialists and soft-

ware developers.

However, modeling systems that emphasize changeability and adaptability

[55] as primary requirements, and meeting a variety of current and future

requirements inevitably result in a more complex software architecture, with

various drawbacks.

First, the reference model becomes more indirect and than less intuitive

(e.g. more general and abstract concepts to deal with), adding extra complex-

ity to the design of the whole architecture [8]. In so doing, the system become

harder to understand, code, test, and maintain.

Secondly, developing adaptable systems implies some relevant implement-

ation challenges [134], that should be faced closely:

• mapping the high-level reference model into a low-level data layer, in

order to make the model persistent;

• adapting Graphical User Interfaces (GUIs) to volatile domain concepts

at run-time;

• supporting system maintenance for both software developers and domain

experts, through the use of specific tools and GUIs.

Last but not least, a meta-modeling architecture is often exposed to major

performance inefficiencies, due to the high degree of abstraction of the under-

lying meta-model, requiring extra processing and instantiation, at run-time,

of an increased number of objects (and relationships) for describing the whole

domain.
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1.3 Pattern-based solutions

A pattern-oriented architectural design can partially mitigate hurdles resulting

from the increased complexity induced by the application of meta-modeling

principles. Positive consequences are mostly linked to the quality of code,

and notably to maintainability, reusability, and consolidated understanding of

implementation choices and consequences. In addition, the reuse of general

solutions to commonly occurring problems in the design of adaptable systems

supports and helps software developers without any appropriate skills and

experiences regarding these kind of architectures.

A brief description of most notable pattern solutions for meta-modeling

architectures is provided as follows.

1.3.1 The Reflection architectural pattern

The Reflection pattern provides a mechanism for changing structure and be-

havior of software systems dynamically [28], addressing from an architectural

point-of-view how systems with a wide range of different requirements (usually

not investigated in advance) can be efficiently built. This can be achieved via

a two-layer architecture, as depicted in Fig. 1.1.

MetaObjectA MetaObjectB MOP

ComponentA ComponentB UserInterface

retrieves
information

uses

further
meta-objects

modifies

modifies

further
base-level
components

uses uses uses

provides
access to

Meta Level

Base Level

Figure 1.1. The general structure of a meta-modeling architecture as formalized
by the Reflection architectural pattern [28].

Specifically, while a meta level provides a self-representation of the system
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encapsulating information about aspects that are likely to change over time

(e.g. type structures, algorithms, function call mechanisms) into a set of so-

called meta-objects, and making, in this way, the system self-aware, a base

level implements the application logic using meta-objects to remain flexible

(i.e. not need to hard-code information). In so doing, changes to information

kept in the meta level affect subsequent base level behavior, leaving the base

level totally unaware of any variation.

The meta level also implements a Meta-Object Protocol (MOP), i.e. a spe-

cialized interface that can be used to dynamically configure and modify meta-

objects in well-defined way. In particular, the MOP performs modifications

and extensions to the meta-level code, re-compiling changed parts and linking

them to the application at run-time, and providing, in this way, a powerful

reflective mechanism with explicit control over system variations.

The Class-Responsibility-Collaboration (CRC) cards [129] of Fig. 1.2 sum-

marize dynamics of interaction and collaboration between base level, meta

level, and MOP components.

Responsibilities

▪ Implements the 
application logic.

▪ Uses information 
provided by the meta 
level.

Collaborators

▪ Meta Level

Class
Base Level

Responsibilities

▪ Encapsulates system 
internals that may 
change.

▪ Provides an interface 
to facilitate 
modifications to the 
meta-level.

Collaborators

▪ Base Level

Class
Meta Level

Responsibilities

▪ Offers an interface for 
specifying changes to 
the meta level. 

▪ Performs specified 
changes.

Collaborators

▪ Meta Level
▪ Base Level

Class
Meta-Object Protocol

Figure 1.2. Responsibilities and collaborations between Reflection components.
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Finally, note that the Reflection pattern enables to generalize from a two-

level architectural style to a multi-level meta-modeling approach, separating

meta-objects in different meta levels, and recursively introducing additional

meta levels on top of those that already exist.

1.3.2 The Dynamic Object Model pattern

The Dynamic Object Model pattern [106], also known as Type Square pattern

[133], is a compound pattern mainly composed by two structural patterns:

• the Type Object pattern [60];

• the Property pattern [105].

The intent of this pattern is achieving a flexible and adaptable architecture

through an agile manipulation of object types and properties at run-time,

including adding new types/properties, and changing existing types/properties

and relationships between objects.

One simple and consolidated way to model object types is as distinct hard-

coded classes. In so doing, as depicted in Fig. 1.3, adding new object types and

properties to the system means manually creating new subclasses and adding

new attributes to existing ones.

…

value: int
Quantity name: String

symbol: String

Unit

HeartRate BloodPressure

systolic diastolic

resting

Entity

1

Figure 1.3. A single-level architectural solution.
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However, this kind of solution (i.e. single-level approach) inevitably fails

in domains where:

• the number of subclasses is huge and unknown at the development stage;

• the number of class attributes is not stable and changes over time.

In order to avoid intensive maintenance interventions on software code, the

Dynamic Object Model pattern exploits the advantages offered by the combin-

ation of Type Object and Property to make the best use of both patterns.

On the one hand, the Type Object pattern provides a way to dynamic-

ally generate new object types (i.e. meta-objects according to the Reflection

formalism) just representing them as instances of a generic EntityType class

instead of creating new hard-coded classes. This pattern works very well when:

• instances of a class need to be grouped together according to their com-

mon attributes and/or behavior;

• a large number of subclasses is required and/or the variety of subclasses

is unknown;

• new groupings, not predicted during the design phase, needs to be cre-

ated at run-time;

• a new subclass needs to be created after its instantiation without having

to mutate it to a new class;

• groupings needs to be recursively nested.

On the other hand, the Property pattern provides a way to dynamically

generate new properties just representing them as instances of a generic Prop-

erty class instead of adding new attributes to existing classes.

The meta-modeling architecture of Fig. 1.4 is finally obtained applying

twice the Type Object pattern: the first time for splitting the Entity class from

its EntityType, and enabling dynamic instantiation of new object types at

run-time (e.g. new medical measurements like BloodPressure or HeartRate);
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1

*
1

Entity EntityType

PropertyTypeProperty

BloodPressure

Diastolic Systolic

*

…

HeartRate

value: int
Quantity

name: String
symbol: String

Unit

1

1

Resting

Meta LevelBase Level

…

Figure 1.4. The general structure of a meta-modeling architecture as formalized
by the Dynamic Object Model pattern [106].

the second time for splitting the Property class from its PropertyType, and

enabling dynamic instantiation of new object properties at run-time (e.g. new

parameters for BloodPressure like Diastolic or Systolic).

Summarizing, the Dynamic Object Model pattern offers significant benefits:

• supporting run-time creation and change of object types and properties;

• providing independent sub-classing;

• avoiding subclass explosion;

• delegating domain experts to actively contribute to maintain and keep

up-to-date the system.

1.3.3 The Observations & Measurements analysis pattern

The Observations & Measurements pattern [41] represents a real implementa-

tion of meta-modeling architectural principles as formalized by [28] and imple-

mented by [106, 133], applied to the clinical process. Specifically, this pattern
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comprises an embodiment of the Reflection pattern, where meta-objects are

used to create abstraction on the attributes carried by different object types.

As shown in Fig. 1.5, Measurement, that allows to record quantitative

information (e.g. heart rate, blood pressure), and CategoryObservation, that

extends the expressiveness of the pattern for taking into account qualitative

information (e.g. blood group, gender), are both represented in a so-called day-

to-day operational level. Otherwise, their configuration, in terms of semantic

definition of domain concepts (i.e. PhenomenonTypes), is constrained by a

so-called knowledge level, where changes are typically more infrequent.

ObservationPerson

Measurement Category
Observation

Protocol

Phenomenon
Type

Quantity

Phenomenon

0..1

*1 *1

*

1

*

1

Unit* 1

*
1

Operational Level Knowledge Level

Figure 1.5. The general structure of a meta-modeling architecture as formalized
by the Observations & Measurements analysis pattern [41].

Note that the Observations & Measurements pattern exploits Dynamic

Object Model principles to separate clinical Observations from their Phe-

nomenonTypes.
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Chapter

2
Adaptable systems in healthcare

This Chapter illustrates how meta-modeling architectures support design and

implementation of adaptable Electronic Health Record (EHR) systems [56, 47]

in order to face a number of challenging requirements posed by the healthcare

context, and how automated compliance techniques can be effectively modeled

into guideline-driven EHR systems and exploited for evaluating the quality of

the clinical process [40].

2.1 Exploiting adaptability for modeling

heterogeneous clinical data

Adaptability and changeability [55] represent primary requirements in the

healthcare context, due to the complex nature of the medical domain. The

intrinsic complexities exposed by the health context are mainly derived by

the essence of clinical data to deal with. In order to efficiently represent and

process heterogeneous data, in which variability and variety are not-trivial
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characteristics, a meta-modeling architectural solution is strongly demanded,

mainly for driving the design and implementation of health information sys-

tems, like Electronic Health Record (EHR) systems, which scope is collecting

and processing clinical data to improve the clinical practice.

2.1.1 Electronic Health Record systems

In the systems perspective, an Electronic Health Record (EHR) system [56] is

a software for recording, retrieving and manipulating information in terms of

Electronic Health Records (EHRs), i.e. repositories of retrospective, concur-

rent, and prospective information regarding the health status of a subject-of-

care, in computer processable form.

In an architectural point-of-view, an EHR system is defined as a set of

components that form the mechanism by which EHRs are created, used, stored

and retrieved including people, data, rules and procedures, processing and

storage devices, and communication and support facilities.

The primary purpose of EHR systems is to share patient health informa-

tion between authorized users for supporting continuing, efficient and quality

integrated health care, facilitating communication among involved healthcare

professionals, and achieving better patient outcomes.

Secondary purposes include:

• quality of care management, in terms of outcome assessment (e.g. hos-

pitalization and death rate) and technical performance (e.g. competence

of clinicians, compliance to the best practices established by medical

guidelines and legislation);

• medical education and training related to the practice of being a medical

practitioner;

• research, in terms of experimentation and evaluation of new diagnostic

modalities, disease prevention measures and treatments, epidemiological

studies, population health analysis, ...;
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• public and population health monitoring, in terms of accessing to qual-

ity information for effective determination and management of real and

potential public health risks.

2.1.1.1 Challenges of EHR systems

Structured vs. free-text data Clinical information can be designed within

an EHR system as structured or free-text data [96].

The term structured data refers to data that are easily identifiable because

organized in a well-defined structure. Structured data have the advantage

of being easily entered, stored, and searchable by search engine algorithms,

providing interesting opportunities for decision support and information re-

trieval systems.

On the other hand, free-text or unstructured data have no identifiable struc-

ture, but they allow to represent clinical information in a more legible and ac-

cessible way that better suits human natural language, mainly when patients

are directly involved in the care process. But on the down side, unstructured

data are more prone to errors and misunderstandings, not paying enough at-

tention to machine-processable operations.

A mixed solution combining structured and free-text data is often a good

compromise between readability offered by a free-text representation, and re-

usability and completeness provided by structured data, mainly when clinical

information are subjected to changes over time.

Adaptability to different contexts-of-use Different types of EHR have

been formally defined [56, 47], some well-described by standards and organiza-

tions, some derived from specific contexts-of-use and health scenarios in which

they are largely employed. The main differences are in terms of which kind

of information is managed, which level of granularity is used for representing

clinical data, and which subjects-of-care are involved:

• Electronic Medical Record (EMR) is an EHR generally focused on med-

ical care, further specialized in:
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– departmental EMR, containing patient’s clinical information from a

specific hospital department [66];

– inter-departmental EMR, containing patient’s clinical information

shared between hospital departments [96];

– hospital EMR or Electronic Patient Record (EPR) or Computer-

ized Patient Record (CPR), containing patient’s clinical information

from a specific hospital;

– inter-hospital EMR, containing patient’s clinical information shared

between hospitals.

• Personal Health Record (PHR) contains information partly or totally

entered by the patient [118];

• Computerized Medical Record, an electronic version of paper-based med-

ical records, obtained by scanning original documents;

• Population Health Record (PopHR) is a repository of statistics, meas-

ures, and indicators regarding the state of and influences on the health

of a defined population, in computer-processable form, stored and trans-

mitted securely, and accessible by multiple authorized users [43].

Due to the variety of scenarios in which EHR systems operate, changeability

and adaptability [55] are qualities of primary relevance, that largely influence

the ability of a software product in fitting the needs of different specialities

and organizational contexts.

Inversion of responsibility Since medical domain is extensive and subject to

evolution over time, the healthcare context is characterized by high volatility

in terms of medical concepts needed to be taken into account, demanding agile

adaptability and run-time configuration from EHR systems.

These requirements are fulfilled empowering some qualified users in the

medical domain to directly contribute their knowledge for configuring the EHR

domain ontology, without requiring any programming skill. This realizes a
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powerful inversion of responsibility process, where medical experts can change

system structure and behavior, improving system maintainability and redu-

cing efforts and delays induced by the intermediation of ICT experts.

Foundational vs. functional vs. semantic interoperability Sharing

information between different users belonging to the same organizational con-

text or to different departments/hospitals is essential to achieve a high level

of quality about health services provided to a subject-of-care. To this end,

interoperability between EHR systems is mandatory, and can be achieved at

three different levels of abstraction [74]:

• foundational level is the basic level of interoperability, in which two or

more EHR systems are able to exchange clinical information, without

requiring any ability by receiving systems to interpret exchanged data;

• structural/functional level is an intermediate level that defines the format

(i.e. syntax) of data exchange, ensuring the ability by EHR systems to

make effective use of structured data;

• semantic level is the highest level of interoperability and provides the

ability for information shared by EHR systems to be interpreted at the

semantic level of domain concepts, enabling receiving systems to apply

automated computer processing and inference mechanisms.

Knowledge inference Decision Support Systems (DSSs) [98] are a specific

class of computerized information systems that supports business and or-

ganizational decision-making activities. A Clinical Decision Support System

(CDSS) is an adaptation of the DSS commonly used to support business man-

agement, helping health professionals make clinical decisions through the gen-

eration of case-specific advices (e.g. determining the nature of a patient’s

disease state or formulating a therapeutic plan), starting from patient clinical

data [113, 12]. There are two main types of CDSS [17]:

• knowledge-based CDSS, in which three parts can be easily identified:
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– a knowledge base, that consists of a set of deterministic conditions

defined starting from patient’s clinical information, and represen-

ted often in the form of IF-THEN rules (e.g. IF patient’s body

temperature is greater than 37.5 ◦C, THAN alert the physician

about fever), or probabilistic conditions that are IF-THEN rules

with probabilistic information [73, 26];

– a reasoning engine, that combines the rules from the knowledge

base with the patient’s data for inferring new clinical knowledge

and advices;

– a communication system, that allows the user to input patient’s

data into the system and to get output results.

• non knowledge-based CDSS exploits machine learning techniques to learn

from past experiences and/or to recognize patterns in the clinical data

[68, 72].

In the common practice of CDSS, patient’s data are no longer entered by

users, but they are already in electronic form and come directly from EHR

systems [64], where they were originally entered by health professionals, or

from other integrated systems as patient administration, laboratory, phar-

macy, Radiology Information System and Picture Archiving and Communica-

tion System (RIS/PACS).

2.1.1.2 Standards for EHR systems

The development and adoption of national and international standards in the

context of EHR systems is essential for sharing patient’s clinical information

between different health professionals and supporting interoperability between

information systems involved in the care process. A description of two of the

well-known standards for EHR systems (i.e. openEHR [4] and HL7 [1]) follows.

openEHR It is an open standard specification in health informatics that

describes the management and storage, retrieval and exchange of health data
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Base Types

Identification Resource

Data Structures

Definitions Terminology

Data Types

Versioning Audit Folder

Composition Entry

Demographics EHR EHR Extract

Archetype Query Language

Archetype Object
Model (AOM)

Archetype
Definition
Language

(ADL)

Archetype
Identification

vEHR Services Knowledge 
Services

Tool
Services

Health Resource APIs Application Services

Figure 2.1. openEHR architecture overview. Blue boxes represent the Reference
Model (RM), green boxes identify the Archetype Model (AM), and yellow boxes
constitute the Service Model (SM).

in EHRs [4] . The abstract openEHR architecture [15] consists of the following

key elements, depicted in Fig. 2.1:

• the Reference Model (RM) [13] is characterized by a two-level modeling

approach, where a stable Reference Information Model (RIM) constitutes

the information level, while formal definitions of clinical content in the

form of archetypes and templates represent the knowledge level. This

separation between knowledge and information levels allows openEHR

to overcome problems caused by the ever-changing nature of clinical

domain.

• the Archetype Model (AM) formalizes the bridge between information

models and knowledge resources. In [14], Beale et al. define archetype

and template concepts as follows:

– archetype is “a computable expression of a clinical concept in the
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form of structured constraint statements, based on a reference (in-

formation) model. openEHR archetypes are based on the openEHR

reference model. Archetypes are all expressed in the same formal-

ism. In general, they are defined for wide re-use, however, they can

be specialized to include local particularities. They can accommod-

ate any number of natural languages and terminologies”.

– template is “a directly locally usable definition which composes ar-

chetypes into larger structures often corresponding to a screen form,

document, report or message. A template may add further local

constraints on the archetypes it mentions, including removing or

mandating optional sections, and may define default values”.

• the Service Model (SM) defines access to key back-end services (e.g. EHR

Service and Demographics Service), while a growing set of lightweight

REST-based APIs based on archetype paths are used for application

access.

Health Level-7 (HL7) It refers to a set of international standards, guidelines,

and methodologies for the exchange, integration, sharing, and retrieval of elec-

tronic health information that supports clinical practice and the management,

delivery and evaluation of health services [1]. HL7 standards are classified in

two main categories:

• primary standards account for system integrations and interoperability,

such as:

– HL7’s Version 2.x Messaging Standard, where a series of electronic

messages to support administrative, logistical, financial as well as

clinical processes are defined. This messaging standard allows in-

teroperability of clinical data between systems, and it is designed to

support a central patient care system as well as a more distributed

environment where data reside in departmental systems. It sup-

ports two forms of message encoding, i.e. a custom delimiter-based

encoding and an XML encoding.
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– HL7’s Version 3 Messaging Standard, in which a Reference Inform-

ation Model (RIM) is introduced for providing an explicit repres-

entation of semantic and lexical connections that exist between in-

formation carried in the fields of HL7 messages.

– HL7 Version 3 Clinical Document Architecture (CDA), a document

mark-up standard that specifies the structure and semantics of clin-

ical documents for the purpose of exchange between healthcare pro-

viders and patients.

• foundational standards define tools and blocks used to build HL7 stand-

ards, such as:

– Reference Information Model, an information modeling foundation

for supporting the representation of all concepts in the HL7 domain

of interest;

– Arden Syntax, a formalism for representing and sharing procedural

clinical knowledge among health professionals, information systems

and institutions;

– HL7 Decision Support Service (DSS), for facilitating the implement-

ation of clinical decision support capabilities.

In addition, for the purposes of providing functional models and specifications

for the management of EHRs, some HL7 standards have been flowed into so-

called HL7 EHR profiles.

2.1.2 The Empedocle EHR system

In order to face a number of challenges and hurdles (see Sect. 2.1.1.1) posed

by the healthcare context for EHR systems, we show how meta-modeling prin-

ciples can be exploited for the design and implementation of an EHR system

characterized by adaptability and changeability as primary requirements [55].

The proposed EHR system, named Empedocle, combines the basic function-

alities that comprise the expected commodity level of any EHR system, with
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specific requirements posed by an outpatient scenario, where a variety of med-

ical specialities take part.

2.1.2.1 A typical outpatient scenario

The use case diagram of Fig. 2.2 summarizes tasks and responsibilities of major

actors involved in a typical outpatient scenario.

Health 
professional

Perform a 
medical 

examination

Access EHR 
content

Capture
clinical 

information

Make a 
diagnosis

«includes»

«includes»

Domain 
expert

Define 
EHR 

knowledge

Design a 
treatment 

plan

«includes»

Maintain 
Domain 
ModelICT 

expert

Outpatient environment

Define
medical 
concept

Define
examination

structure

«includes»«includes»

Add new 
feature

«includes»

Figure 2.2. A typical outpatient scenario, specifying the major actors involved in
the care process and their interaction with an EHR system.

Health professionals (e.g. general practitioner, medical specialist, registered

nurse) take part to the care process at the operational level in different ways,

in accordance with personal skills and specializations. Generally, a typical

outpatient scenario is characterized by the following clinical steps:

1. the complete review of the patient’s EHR content (e.g. clinical history,

allergies, active problems, test results);

2. the acquisition of clinical data through a medical examination;
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3. the formulation of a diagnosis;

4. the development of a specific treatment plan.

Medical concepts related to clinical data collected into the EHR system are

identified and steadily maintained at knowledge level by one or more domain

experts, who are health professionals with specific domain expertise as well as

aware about governmental and hospital directives, and about factors depending

on specialization of activities and scientific aims.

Finally, ICT experts play a lead role in bridging medical and informatics

domains, in cases where technical skills are required for supporting health

professionals through the implementation of additional system requirements

that demand structural changes in the domain model, at the operational as

well as the knowledge levels.

We do not report here on the characteristics of other complementary roles

which are involved in the organization and enactment of the clinical process

(e.g. from health direction and administrative support), but that are not

directly concerned with the topic addressed in this dissertation.

2.1.2.2 A two-level meta-modeling EHR architecture

The UML class-object diagram of Fig. 2.3 provides a high-level specification

of the domain model implemented in the core of the Empedocle EHR system.

As can be seen, the architecture of Empedocle is based on an underlying meta-

modeling scheme, where medical concepts, represented in a so-called knowledge

level, are separated from clinical data, represented in a so-called operational

level. These principles are obtained through a pattern-oriented design, ad-

dressed in the architectural perspective by the Reflection pattern [28], and in

the conceptual perspective by the Observations & Measurements pattern [41]

(see Chapter 1 for more details about pattern-based solutions).

At the operational level, an EHR represents a structured collection of health

information items about a Patient, derived through a set of clinical Examin-

ations. Specifically, during each Examination, a series of clinical information

items like signs (i.e. objective evidences noticed), symptoms (i.e. subjective
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evidences reported by patient), and other clinical observations are captured

by health professionals as instances of the Fact class.

Conversely, the knowledge level must be designed so as to accommodate

the intrinsic variability of the medical domain, which depends on the evolution

over time as well as on differences among medical specialities. To this end, all

medical concepts can be defined directly by domain experts as instances of the

FactType class. Four different categories of knowledge can be identified:

• TextualType, for free-text information (e.g. patient’s anamnesis);

• QualitativeType, for values in a finite range of acceptable Phenomena

(e.g. blood type with groups A, B, AB, and 0);

• QuantitativeType, for quantities with a specified set of acceptable Units

(e.g. heart rate, measured in beats-per-minute);

• CompositeType, for composing FactTypes in a hierarchical structure

through a Composite pattern [44] implementation (e.g. vital sign includ-

ing temperature, blood pressure, heart and respiratory rate).

The same categories can be identified at the operational level, in terms of

TextualFact, QualitativeFact, QuantitativeFact, and CompositeFact.

The resulting high-level model abstraction allows to separate the repres-

entation of medical knowledge (i.e. the semantic of medical phenomena) from

clinical data (i.e. the value assumed by a specified medical phenomenon in a

specified time for a specified patient), and empowers domain experts to con-

tribute to this knowledge in the course of system life. In so doing, the two-level

separation allows a new medical concept to be accounted just through the in-

stantiation of a new object from the FactType class, avoiding the need of

programming new classes or class members and without any impact on the

database schema or on its records. In the same manner, new clinical obser-

vations are generated as Fact instances, starting from the definition given by

related FactType instances.

In this model, ExaminationType class represents the structure of an Ex-

amination in terms of which FactTypes (and related Facts) have to be con-
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sidered during a medical examination; moreover, it specifies, through TypeLink

and FactLink associations, the multiplicity of occurrence of each Fact in order

to dynamically adapt the structure to multiple contexts-of-use that require a

different number of instances to be recorded.

The model supports the reuse of already defined (i.e. named) FactTypes,

in order to avoid type proliferation, just referencing named types in multiple

parts of the structure. Alternatively, anonymous FactType instances (i.e.

FactTypes that do not need to be referenced by others) can be used, and

the definition of their structure is included inside the parent structure. As

relevant consequence, as depicted in Fig. 2.4, the FactType structure results

in a direct acyclic graph, while the derived Fact structure results as a tree,

usually with an increased number of nodes, due to the multiplicity attribute.

CompositeType_2CompositeType_1

TypeLink_24

TextualType_3

TypeLink_13

TextualType_4

TypeLink_14

CompositeFact_X

FactLink_XY

TextualFact_Y TextualFact_Z

FactLink_XZ

Knowledge Level Operational Level

2

1

11

1

Figure 2.4. An example of Examination structure as represented using the do-
main model shown in Fig. 2.3: on the left, a direct acyclic graph obtained com-
posing FactTypes and TypeLinks; on the right, a tree-like structure as resulting
from the composition of Facts and FactLinks. Note that boxes represent in-
stances of FactType and Fact classes and define, respectively, medical concepts
and clinical observations that need to be taken into account during a clinical
examination. Rounded boxes represent instances of TypeLink and FactLink
classes and are used to increase the expressiveness of each Type-to-Type and
Fact-to-Fact association, adding a multiplicity attribute to each relationship.

This implies a more complex data model, with various drawbacks.

On the one hand, while the number of Facts concretely recorded at run-

time during a clinical session is bounded in semantic and multiplicity by the

FactType definition, the real depth of an Examination cannot be known in
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advance, precluding the possibility to exploit optimized ad-hoc mechanisms

for retrieving all the data, requiring instead to explore the entire structure.

On the other hand, since the model is split in two levels, the whole Ex-

amination will be completely known only when both parts will be provided.

For this reason, retrieving all the data collected during an Examination is

not restricted to exploring the Fact tree, but requires to explore the related

FactType graph, affecting system performance.

Finally, the resulting model consists of a relative small number of classes

for representing only concrete concepts; nevertheless, the high degree of ab-

straction is counterbalanced by the instantiation, at run-time, of an increased

number of objects required for describing the actual domain. Usually, this does

not represent a problem in small and static domains, but it becomes evident

in terms of performance inefficiencies in domains characterized by complexity

and volatility (performance issues affecting meta-modeling architectures will

be described in more detail in Chapter 4).

Fig. 2.5 shows the software architecture of the Empedocle EHR system,

as currently deployed in various outpatient clinics of the Careggi Hospital in

Florence, the major hospital of Tuscany Region.

The scheme corresponds to a typical 3-tier web application, with an added

Mapping Layer between the Domain Layer and the Persistence Layer. While

the Persistence layer deals with data storing and persistence, and the Domain

Layer encodes the real-world business rules that determine how data can be

created, displayed, stored, and changed, the Mapping Layer reconciles the

object-relational impedance mismatch between objects and relational data [54].

The Presentation Layer implements interfaces and logic for the interaction

with system users through suitable GUIs.

Fig. 2.6 depicts a static view of the run-time configuration of the Empedocle

EHR system, in terms of processing nodes and software components.
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Figure 2.5. The 3-tier architecture of the Empedocle EHR system. The Reflection
model component implements the two-level domain logic of Fig. 2.3.
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Figure 2.6. A general overview about hardware and software components and
their connections for the Empedocle EHR system, as currently deployed at the
Careggi Hospital in Florence.
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2.2 Exploiting adaptability for evaluating clinical

practice compliance

In the clinical practice, evaluating the quality of clinical processes is essential

for improving outcomes and mitigating the clinical risk deriving from erroneous

medical behaviours. Clinical Practice Guidelines (CPGs) play a fundamental

role to standardize good practices and can become important reference points

for supporting automated compliance evaluation of the quality of clinical pro-

cesses.

2.2.1 Clinical Practice Guidelines

Clinical Practice Guidelines (CPGs) are systematically developed statements

to assist practitioners and patient decisions about appropriate health care for

specific circumstances [39]. Guidelines are designed to support decision-making

processes in patient care, and clarify areas of consensus through a systematic

revision of clinical evidence (i.e. evidence-based medicine), so as to deliver the

best possible guidance to practising physicians. The intent of CPGs is to [130]:

• provide appropriate care, based on the best available scientific evidence

and broad consensus;

• improve the quality of clinical decisions, reducing medical errors and

clinical risk;

• improve health outcomes, reducing morbidity and mortality and increas-

ing quality of life;

• support clinical evaluation processes, with particular attention to com-

pliance assessment of specific courses of action with respect to clinical

guidelines;

• improve consistency of care;
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• empower subjects-of-care to be more informed about recommendations

or treatment options;

• focus attention on key research questions and highlight gaps in the known

literature;

• promote an efficient and optimized use of resources, reducing outlays for

hospitalization, prescription drugs, surgery, and other procedures.

In a different way, clinical protocols provide more rigid criteria than CPGs,

specifying how guidelines must be implemented within a specific organizational

context.

In the clinical practice, real implementation and effective enactment of

CPGs and local protocols may largely benefit from Decision Support Systems

(DSSs) [46, 31, 95]. Since accessing information contained in conventional

paper-based guidelines may be difficult, and applying it to a specific clinical

case can result in a time-consuming task, a widely accepted solution is given by

the creation of computer-interpretable representations of the clinical knowledge

contained within CPGs, enabling guideline-based DSSs to directly operate on

recommendations, and support health professionals during the decision-making

process.

2.2.2 Computer-Interpretable Guideline models

In the literature, various works provide specific contributions in the formal-

ization of models for translating CPGs in Computer-Interpretable Guidelines

(CIGs). These formal models can be classified in three main categories [92]:

• document models, which scope is storing and organizing heterogeneous

information contained in practice guideline documents into a computer-

processable format (e.g. the Guideline Elements Model (GEM) [112]);

• probabilistic models, that apply probabilities and utility functions for

analysing which decision options are most suitable for clinical cases under

consideration [108, 84];
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• task-network models, that decompose CPG algorithms into networks of

component tasks that unfold over time (e.g. Asbru [78], EON [120],

GLIF3 [93], GUIDE [99], PROforma [117]).

2.2.3 A guideline-driven EHR system

In order to provide patient-specific advices based on existing clinical data and

support automated compliance evaluation of the quality of clinical processes,

integration of guideline-based DSSs in working EHR systems is recommen-

ded. However, this implies mapping CIG concepts to EHR data with several

inherent challenges [94]. Moreover, solving the trade-off problem about data

completeness and system usability is equally important [89]: on the one hand,

an EHR system designed to fit a restricted set of guidelines inherently induces

a bias towards specific pathologies; on the other hand, representing into the

EHR knowledge all medical concepts pertaining to any applicable guidelines

(belonging to different specialities involved in the care process) definitely im-

pairs the practical feasibility and usability needed by health professionals.

We report on the integration of recommendations extracted from CPGs

(and clinical protocols) with clinical data collected within an EHR system,

through a two-step process that jointly fulfill usability, completeness, and bias

avoidance requirements [88].

In the first step, clinical information is collected within the EHR system

through an unbiased general structure, adapted to a specific context-of-use

(e.g. specific speciality) but not tailored to a particular guideline.

In the second step, after the formulation of a diagnostic hypothesis, CPGs

applicable to the case are automatically identified, in order to evaluate the

compliance of the formulated diagnosis (and the course of action leading to

that diagnosis) with respect to identified guidelines. The EHR content is thus

automatically adapted to focus only on medical concepts and clinical inform-

ation referred into applicable CPGs. In so doing, clinical data not relevant for

the diagnosis are hidden and missing information are requested.
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The proposed approach is validated on top of the Empedocle EHR system

(see Sect. 2.1.2), with reference to the ESC/EACTS guidelines for the man-

agement of valvular heart disease [121], providing preliminary results about

feasibility and benefits.

2.2.3.1 Integrating CPGs into the Empedocle EHR system

In the proposed approach, diagnostic constraints included in CPG recommend-

ations are manually extracted and represented within the Empedocle EHR

system in terms of decision rules.

A decision rule [58] is a statement that encapsulates domain knowledge

and logical flow employed in deterministic reasoning to make a decision. In a

CDSS, decision rules are often represented in the form of production rules [57],

or so-called condition-action rules, where the IF-THEN statement constitutes

the conventional syntax:

IF < condition >

↪→ THEN < action >

where < condition > represents a logical statement that, if evaluated to true,

leads to the firing of the rule, i.e. the execution of the specified < action >.

For our CPG-driven EHR system, we adopted a variation on the condition-

action formalism named Event-Condition-Action (ECA) rule, specifying which

action is triggered by the satisfaction of which condition at the occurrence of

which event [85]:

ON < event >

↪→ IF < condition >

↪→ THEN < action >

This has a number of relevant advantages:

• understandability : rules are represented in a way that resembles the nat-

ural language making the knowledge expressed within diagnostic con-

straints easier to understand by domain experts;
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• configurability : acquisition and manipulation of CPG knowledge can be

delegated to domain experts without requiring the intervention of ICT

developers;

• maintainability : guidelines and their local adaptations need to be peri-

odically updated due to the progressive literature review process;

• reasoning : the independent representation of domain knowledge and con-

trol flows stimulates the adoption of production rules by CDS systems,

instead of alternative procedural solutions.

Fig. 2.7 shows how the ECA paradigm is conveniently cast into the Empe-

docle EHR model of Fig. 2.3.

Qualitative
Condition

Quantitative
Condition

Boolean
Condition

Condition Rule

RuleContext

Event

Action

QuantitativeType QualitativeType

Guideline

Report

Protocol

FactType

«generates»
1

1

1

1

*

*

1 1

1

*
1

Figure 2.7. The ECA rule model as represented in the Empedocle EHR system.

In this model, a Rule represents an ECA rule in a specified Guideline or

Protocol context, and it is composed by three elements:
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• an Event, associated with a FactType that identifies a diagnostic hypo-

thesis;

• a Condition, that specifies a logical statement starting from diagnostic

constraints;

• an Action, performed in two steps:

1. generation of a Report about outcomes achieved by the compli-

ance process on evaluating the formulated diagnosis with respect to

applicable Guidelines;

2. automated adaptation of the EHR content on the basis of the for-

mulated diagnosis.

Note that three different types of Condition can be expressed:

• a QuantitativeCondition is formulated starting from a Quantita-

tiveType, and, at run-time, compares (=, 6=, <,>,≤,≥) the correspond-

ing QuantitativeFact value with a fixed quantity as established by CPG

recommendations (e.g. temperature > 38 ◦C);

• a QualitativeCondition is formulated starting from a Qualitative-

Type, and, at run-time, compares (=, 6=) the corresponding Qualita-

tiveFact value with a fixed Phenomenon as established by CPG recom-

mendations (e.g. throat = sore);

• a BooleanCondition is formulated composing multiple atomic condi-

tions through boolean operators (e.g. temperature > 38 ◦C ∧ throat =

sore).

2.2.3.2 Experimental results

Experiments were performed on the ESC/EACTS guidelines for the manage-

ment of valvular heart disease (VHD) [121], focusing on diagnostic criteria

for aortic stenosis (AS) and mitral regurgitation (MR), which are the most

frequent types of VHDs in the clinical practice [82], and more specifically, in
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various outpatient cardiological clinics of the Careggi Hospital in Florence,

where the Empedocle EHR system is currently in use.

Echocardiography is the key technique used to confirm the diagnosis of

VHD and to assess the degree of severity. Since VHD severity influences the

prognosis and therapeutic strategy, even providing indication to surgery, we

focused our investigation on severe-AS and severe-MR.

The integrative approach recommended by [121] describes a series of quant-

itative, semi-quantitative and qualitative echocardiography criteria to be eval-

uated for the diagnosis of severe-AS and severe-MR. In order to provide a

specific selection of necessary and sufficient conditions for formulating a dia-

gnostic hypothesis, an internal protocol intended as a partial implementation of

[121] was formulated by the cardiological department of the Careggi Hospital.

In so doing, we realized that some medical concepts involved in diagnostic con-

straints were not accounted by the standard cardiological examination struc-

ture as represented in the Empedocle EHR system, despite the high number

of fields (≈ 500) composing the examination form. For these reasons, we first

extended the EHR knowledge with new medical concepts required to imple-

ment the internal protocol. For the severe-AS case, this includes the following

quantitative measurements:

• Aortic Valve Area (AVA);

• Mean Gradient (MG);

• Left Ventricular Ejection Fraction (LVEF);

• AVA after Low Dose Dobutamine Echocardiography (AV AafterLDDE);

• MG after Low Dose Dobutamine Echocardiography (MGafterLDDE);

• LVEF after Low Dose Dobutamine Echocardiography (LV EFafterLDDE).
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Than, a decision rule R = 〈E,C,A〉 for severe-AS is formulated as:

E = {Aortic stenosis = severe}

C = {(C1 ∧ C2) ∨ (C1 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7)}

A = {report generation and dynamic adaptation

w.r.t. the local implementation of [121]}

where:
C1 = {AV A < 1 cm2}

C2 = {MG > 40 mmHg}

C3 = {MG < 40 mmHg}

C4 = {LV EF < 40%}

C5 = {LV EFafterLDDE > 1.2 ∗ LV EF}

C6 = {AV AafterLDDE < 1 cm2}

C7 = {MGafterLDDE > 40 mmHg}

In a similar manner, more than 20 constraints for the severe-MR diagnosis

were encoded, extending the standard cardiological examination structure for

accounting missing fields.

Preliminary experimentation shows the feasibility of the proposed approach

and the benefits of dynamic adaptation of the EHR content according to for-

mulated diagnostic hypotheses, so as to support health professionals during

the decision-making process, and evaluate their compliance (in terms of dia-

gnosis and course of action leading to that diagnosis) with respect to applicable

guidelines.

Ongoing activity is directed to exploit the proposed approach in the auto-

mation of compliance evaluation processes driven by retrospective analyses of

large EHR databases.
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Chapter

3
Adaptable systems

in smart home environments

This Chapter discusses how patient-centric Electronic Health Record (EHR)

systems underlying a meta-modeling architecture can be efficiently cast into

the home care scenario for supporting personalized processes of care [111, 48],

and how adaptable systems can be exploited in combination with Activity

Recognition (AR) techniques [91, 67, 86, 125] for monitoring and classifying

human activities starting from data generated by sensors deployed in a smart

environment [32].

3.1 Exploiting adaptability for home care

The increasing ageing of population and the prevalence of chronic diseases

push the adoption of home care processes [70] that can delay or discontinue

the access to hospitalization and specialized health structures. Continuity and

supportive care delivered at home assumes a growing relevance, providing a

means to improve quality of life, to optimize costs and services, to reduce
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differences in the quality of care across wide areas far from sites of clinical

excellence [103, 97]. To this end, ICT plays a crucial role through the creation

of a growing ecosystem of diagnostic and monitoring devices [69, 5], commu-

nication networks, and information management applications [71], enabling

novel processes of care that better fit the specific needs of patients, and ef-

fectively integrate multiple cooperating actors and multiple sources of clinical

information.

Effective deployment of processes of home care and, in particular, the integ-

ration of multiple sources of clinical information emphasize the responsibility

of EHR systems, which become accountable for providing effective answers to

various new additional challenges [53, 118]:

• patient-centric EHR content, to realize advanced mechanisms of person-

alized medicine, and to adapt the EHR structure and behavior to the

patient’s health status;

• integration of heterogeneous clinical data, produced by a variety of sources

(from humans to remote monitoring devices) and accessed by a vari-

ety of actors (e.g. healthcare professionals like general practitioners

(GPs), licensed practical nurses (LPNs), physical therapists (PTs); non-

healthcare professionals like patients, caregivers; support systems like

human activity monitoring systems, medical alert systems);

• support for automated compliance evaluation techniques, in order to mit-

igate the clinical risk deriving from the involvement of non-healthcare

professionals and also from the hurdled communication among remote

subjects;

• user-adapted EHR content, through different yet coherent views depend-

ing on the level of competence, speciality expertise, and proximity to the

patient, of each subject involved in the process;

• interoperability of clinical data, pertaining to different medical domains

and organizational contexts.
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In the software engineering perspective, most of this amounts to the achieve-

ment of a high level of adaptability and changeability [55], extending the ex-

pected commodity level of any EHR system so as to fit the specific needs posed

by the home care context.

For these reasons, we faced home care challenges by adding new features

to the architecture of the Empedocle EHR system (see Sect. 2.1.2).

3.1.1 A typical home care scenario

Fig. 3.1 summarizes the major actors partaking in the home care process.

Health 
professional

Non-health 
professional

Remote 
monitoring

device

Acquire data

Send data to 
EHR system

Access EHR 
content

EHR
system

Receive data 
from remote 
monitoring 

device

Define
EHR 

knowldge

Domain 
expert

Patient Caregiver

Home environment

Enter EHR 
basic data

Enter EHR 
clinical data

«invoke»

Environmental
device

Wearable
device

Enter EHR 
sensor data

Figure 3.1. A use case diagram specifying the major actors involved in the home
care process and their interaction with the EHR system.

The central role is the patient, for whom supportive and continuity care is

provided at home. The patient can be supported during his/her Activities of

Daily Living (ADLs) [65] and others activities by one or more caregivers.

Various healthcare professionals (e.g. GPs, LPNs, PTs) provide care, with
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the support of an integrated system of diagnostic and monitoring devices,

communication networks, and information management applications. In this

framework, an EHR system is responsible for the fusion of clinical information

regarding the delivery of care (e.g. medical examinations, therapeutic proced-

ures, prescriptions, treatments administration) provided by different health-

care professionals, in different fields of interest, at different times.

Remote monitoring devices for health status monitoring often comprise a

primary source of information for the EHR system, specially in chronic disease

management. They can be installed in the living place as environmental devices

(e.g. for monitoring specific ADLs through the interaction of the patient with

the environment), or placed directly on the patient’s body as wearable devices

(e.g. for monitoring vital signs and other health parameters like body tem-

perature, heart rate, blood pressure), so as to realize a so-called Body Area

Network (BAN) [61]. These devices and sensor nodes periodically send ac-

quired data to a base station node or sink node, connected to the Internet by

a home gateway, so as to feed the EHR system with these remote data.

Finally, note that the patient and other non-healthcare professionals can

also access themselves the EHR content in order to consult clinical data pro-

duced by health professionals and devices, but also to report symptoms or to

enter personal annotations.

3.1.2 Towards a patient-centric EHR system

The software architecture of the Empedocle EHR system is mainly driven by

an intent of adaptability of the EHR content to clinical data characterized

by changeability and volatility, that are typical requirements posed by the

outpatient care context. We extended this architecture so as to fit the needs

for applicability of home care practices, as depicted in Fig. 3.2.

In this model, medical concepts continue to be represented as instances

of the FactType class, while patient’s clinical data are captured as instances

of the Fact class, acquired from different kind of Sources: system Users

contribute, at the operational level, through the acquisition of clinical data
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during medical sessions carried out by health professionals, or during non-

medical sessions carried out by non-health professionals; remote monitoring

Devices feed the system with external sensed data.

Due to the variety of specialities and expertises involved in the care process,

classifying medical concepts (i.e. FactTypes) to specific medical specialities is

essential so as to support the connection and interoperability of clinical data

pertaining to different medical domains. Moreover, this can be useful also for

associating Users with organizational contexts (e.g. GP to general practice

medicine, medical specialists to different medical specialization, patient and

caregivers to the personal circle of the patient). To do that, a tree-like taxo-

nomic classification, obtained through the composition of instances of the Tax-

onomyElement class, is used for tagging FactTypes and Users together. Note

that, in so doing, some FactTypes may be tagged with multiple Taxonomy-

Elements, and this means that some Facts may be declared to be relevant

for more than one medical speciality (e.g. the observation of a left ventricular

dysfunction can be relevant in the Cardiology context as well as in the On-

cology case for starting or continuing a chemotherapy treatment) or for more

than one category of Users (see Fig. 3.3).

«composite»
FactType

Taxonomy
Element User

Left ventricular
disfunction

Medical
specialty

Oncology Cardiology

A 
cardiologist

An 
oncologist

* *
*

Figure 3.3. A taxonomic classification about medical specialities used for con-
necting medical concepts with users belonging to different specialities.

Access privileges to clinical data are established by Permissions that en-

able Users for all Facts that are tagged by some TaxonomyElements: in other
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words, only Facts for which a user has permissions are accessed. In addition,

this allows to personalize the way in which clinical data are shown through

the definition of customizable Viewers for each category of system Users, ex-

ploiting a focused selection (i.e. FactSelector) for identifying which Facts

in which FactTypes are to be shown.

Finally, the model allows the definition of decision Rules based on the

Event-Condition-Action paradigm [90] (see Sect. 2.2.3.1 for more details), that

enables mechanisms of clinical decision support (e.g. alert messages, sugges-

tions, deduction of new information, compliance verification) applied directly

on the EHR content.

Fig. 3.4 shows the software architecture of the Empedocle EHR system ad-

apted to the home care context. The 3-tier scheme is preserved, as previously

depicted in Fig. 2.5 referring to the scenario of an EHR system applied to an

outpatient context. Differently from the previous scenario, the Domain Layer

now implements the domain model of Fig. 3.2, and includes a Rule Engine for

supporting the execution of decision rules applied directly to the Reflection

model : it accepts Rules and Facts as input, checks which Conditions are

satisfied at the occurrence of which Events, and produces Actions as output.

On top of this architecture, the Presentation Layer implements interfaces and

logic for the interaction with users, and includes a Viewer Engine for auto-

mated adaptation of the EHR content to different category of users. Finally,

note that Presentation Layer is not the only way to access the system, but is

essential for human interaction. The other way to interact with the system is

through an Application Interface that enables the system to receive data from

external sources (e.g. remote monitoring devices).

3.1.3 Challenges and strategies

Personalized EHR content In principle, the meta-modeling architecture of

Fig. 3.2 makes viable a full tailoring of the EHR structure to specific primary

pathologies and comorbidities of each patient, up to realize advanced mechan-

isms of personalized medicine, and to adapt the structure on the basis of pa-
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Empedocle
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«component»
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Figure 3.4. The 3-tier architecture of the Empedocle EHR system, extended so as
to fulfill home care requirements. The Reflection model component implements
the home care domain model of Fig. 3.2.

tient’s health status. In practice, by relying on a meta-modeling architecture,

all these adaptations are implemented as configurations performed through a

Graphical User Interface (GUI), supporting:

• the definition of medical concepts that have to be taken into account on

the basis of a specific patient’s clinical condition;

• the definition of user roles and types involved in the care process;

• the definition of patient-specific decision rules;

• the definition of user-adapted views providing different EHR contents to

different users.

The personalization of the EHR content is done through actions that do

not require programming skills, but that can be easily delegated to experts in
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the medical domain. The ability to delegate to medical experts changes on the

system structure and behavior comprises a major property of maintainability

(requirement especially relevant in the home care context, in which a vari-

ety of subjects are involved at the same time), facilitating dissemination and

personalization for the specific subject-of-care and the specific organizational

context.

In addition, the capability of an EHR system to combine together struc-

tured and free-text fields for representing clinical data provides a mean to

set the necessary trade-off between accuracy, consistency and automated pro-

cessing provided by a structured representation and needed by health profes-

sionals, and legibility and accessibility provided by a semi-structured or com-

pletely unstructured narrative representation more close to non-professional

subjects (i.e. patient and caregivers).

However, in a more practical and centralized organization, a selected set of

configurations for specific chronic diseases and related medical specialities is

more advisable, where predefined structures are built by domain experts with

the support of ICT facilitators, and then activated and composed directly by

health professionals on the basis of patient’s clinical conditions.

Integration of heterogeneous clinical data The organizational context in

which the problem of home care is defined gives emphasis to the integration

of clinical data produced by a variety of sources and accessed by a variety of

subjects. While one of the main functional requirements of an EHR system is

collecting and maintaining EHR data, interoperability with remote monitoring

devices represents a new challenge for this kind of systems.

The main barrier is represented by the fact that, usually, devices vary

not only in relation to the observed phenomenon or measurement, but also

in relation to the model manufacturer, with differences in data format and

interface protocols (due to specific legacy constraints).

To overcome this problem of data adaptation, an EHR system needs the

ability to be easily integrated with different technological solutions, without

requiring the creation of unified bases, leveraging instead on adequate enter-
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prise integration schemes [49]. Fig. 3.5 illustrates these concepts through the

exploitation of an interfacing middleware used for implementing the transmis-

sion of sensed data from remote monitoring devices to the EHR system, so

as to achieve loose coupling between software components and services. The

Event-Driven Bus acts as an integration broker and mediator, able to:

1. receive events from devices, represented as event emitters ;

2. apply format data transformations in order to mapping device legacy

format to the EHR content structure;

3. marshal transformed events in requests to an Application Interface ex-

posed by the EHR system (represented as event consumer) for receiving

sensed data.

«component»
Device

«component»
Device

«component»
Device

«component»
Event-driven Bus

«component»
EHR system

…
1 2 n

Figure 3.5. An Event-Driven Bus as integration middleware and mediator for
interoperability between EHR system and remote monitoring devices.

Automated support for compliance evaluation The context of home care

emphasizes the importance of control functions designed to mitigate clinical

risk, aggravated in various aspects including the adoption of self-medication

practices implemented directly by the patient him/herself, the involvement of

non-professionals as participants in the care process, as well as hurdles induced

by communication and interaction across distance. This increases the relevance

of features for automatic detection of not compliant conditions in the courses of

action applied to the patient with respect to expected protocols or guidelines,

and for supporting efficacy and efficiency of the assistance quality control.
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The integration of Clinical Practice Guidelines (CPGs) in the home care

process, and their representation as decision rules within an EHR system, as

described in Sect. 2.2.3.1, enables automated mechanisms of compliance eval-

uation of courses of action performed by a variety of actors involved in the

care process, from health professionals to non-professional subjects.

User-adapted EHR content presentation As has already been mentioned,

the home care model implies the involvement of a variety of subjects, including

the patient him/herself, for which professional competences are not requested.

This emphasizes the importance of system usability requirements, as a major

means for the reduction of clinical risk.

An EHR system requires a user-adapted content presentation for each of

the different roles involved, showing only the content for which the logged user

has access privileges. In so doing, the patient and non-professional caregivers

are introduced to the EHR system through the support of more personalized

and simplified views, focusing the attention only on content of their interest,

and reducing the risk of difficulty on understanding. Moreover, a further im-

provement in usability can be achieved through refinements and simplification

of the look-and-feel of the user interface, often exposed to non-professional or

occasional users. From an architectural perspective, this adaptation should

be largely facilitated by exploiting the Model-View-Controller (MVC) archi-

tectural pattern [28], which allows to separate internal representations of data

from the way in which data is presented to the users.

Interoperability of different medical domains The domain model of an

EHR system for home care needs a unified ground for representing medical

concepts pertaining to different specialities and provided by actors with dif-

ferent levels of expertise. This unified ground is achieved through a shared

information model that enables and encourages communication between all

subjects involved in the care process.

As depicted in Fig. 3.2, the tagging mechanism provided by TaxonomyEle-

ments facilitates the representation of knowledge about relevant connections
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among different medical concepts (i.e. FactTypes) and Users with different

roles and qualifications. Moreover, Rules and their composing Events, Con-

ditions and Actions, provide a means to implement triggering conditions on

shared clinical data that can be used to execute some shared actions (i.e. rais-

ing warnings to all involved users or suggesting possible connections between

users interested in the same topics, like the evolution of the patient’s health

status, or how a specific clinical observation varies over time).

3.2 Exploiting adaptability for Activity Recognition

Ambient Assisted Living (AAL) is becoming a well-recognized domain to help

address the ageing of the population. AAL relates to the use of ICT technolo-

gies and services in both daily living and working environments aiming to help

inhabitants by preventing health conditions and improving wellness, in addi-

tion to assisting with daily activities, promotion of staying active, remaining

socially connected and of living independently.

Activity Recognition (AR) [67, 32] is an important area in the context of

AAL. The goal of AR is to recognize common human activities, or so-called

Activities of Daily Living (ADLs) [65], in real life settings, with the primary

aim of evaluating the status of chronically ill and ageing populations, in re-

lation to monitoring effectiveness of treatment over time, tracking dynamics

of disabilities and preventing adverse outcomes. Accurate AR is challenging

because human activities are complex (e.g. sequential vs. interleaved vs. con-

current activities; single person vs. multiple subjects) and highly different (e.g.

toileting, eating, dressing).

The problem of inferring high-level activities starting from low-level sensed

data generated by remote monitoring devices deployed in a pervasive intelligent

environment has been investigated in many studies [32, 62, 86]. Different

approaches that have been explored can be roughly categorized in data-driven,

knowledge-driven and merged methodologies.

In the data-driven categorization, the most popular techniques which have
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been considered are classification models based on probabilistic reasoning (e.g.

Naive Bayes (NB) classifiers, Dynamic Bayesian Networks [91], Hidden Markov

Models (HMMs) [125], and Conditional Random Fields (CRF) [125]). Stochas-

tic approaches have the advantage to be able to deal with uncertainty of sensor

data, but they require a large number of training examples to provide good

levels of generalization, and they need some assumptions that can limit the

capability to recognize complex activities.

In the knowledge-driven categorization, logical modeling [33] and evidential

theory [77] are the most popular techniques. They do not require a large

amount of data for training because incorporate knowledge, and can handle

noise and incomplete sensor data, but it may be difficult to define specifications

of activities by applying only expert knowledge.

In the merged categorization, multiple classifiers are combined in a classifier

ensemble, and individual decisions are merged in some manner to provide, as

an output, a consensus decision [62].

A large part of techniques applied for AR [132] rely on or compare with

Hidden Markov Models (HMM) [100], where:

• the current (hidden) activity is the state of a Discrete Time Markov

Chain (DTMC), and the observed event depends only on the current

activity, as depicted in Fig. 3.6;

• stochastic parameters of the model can be determined through super-

vised learning based on some given statistics;

• efficient algorithms are finally available to determine which path along

hidden activities may have produced with maximum likelihood a given

trace of observed events.

While the ground truth is often based on datasets annotated with respect to

predefined activities [125, 101], more data driven and unsupervised approaches

have been advocated where activities are identified through the clustering of

emergent recurring patterns [102, 11]. Various extensions were proposed to en-

code memory in HMM by representing sojourn times through discrete general
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X1 X2 X3

y1 y2 y3

a1,2 a2,3

b1,1

b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2

b3,3

a2,1 a3,2

hidden states

observations

Figure 3.6. An example of Hidden Markov Model. The random variable
X(t) ∈ {X1, X2, X3} represents the hidden state at time t. The random variable
y(t) ∈ {y1, y2, y3} represents the observation at time t. The arrows in the dia-
gram denote conditional dependencies: ai,j are the state transition probabilities,
while bi,j represent the output probabilities.

or phase type distributions [79]. However, also in these cases, the discrete-time

abstraction of the model prevents exploitation of continuous time observed

between event occurrences.

To overcome this limitation, [27] proposes that the evolution of the hidden

state be modeled as a non-Markovian stochastic Petri Net emitting randomized

observable events at the firing of transitions. Approximate transient probab-

ilities, derived through discretization of the state space, are then used as a

measure of likelihood to infer the current hidden state from observed events.

To avoid the complexity of age memory accumulated across subsequent states,

the approach assumes that some observable event is emitted at every change

of the hidden state. Moreover, the structure of the model and the distribution

of transition durations are assumed to be given.

Automated construction of an unknown model that can accept sequences

of observed events is formulated in [122] under the term of process elicitation,

and solved by various algorithms [124] supporting the identification of an (un-

timed) Petri Net model. Good results are reported in the reconstruction of

administrative workflows [123], while applicability appears to be more difficult

for less structured workflows, such as healthcare pathways [75]. As a part of

the process mining agenda, process enhancement techniques have been pro-
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posed to enrich an untimed model with stochastic parameters derived from

the statistics of observed data [107].

In this dissertation, we propose a continuous-time model-based approach

to online classification of ADLs that takes into account not only the type of

events but also the continuous duration of activities and of inter-events time

[29]. Given a stream of time-stamped and typed events, transient probabil-

ities of a continuous-time stochastic model are used to derive a measure of

likelihood for online classification of performed activities. Transient analysis

based on transient stochastic state classes [51] maintains the continuous-time

abstraction and keeps the complexity insensitive to the actual time between

subsequent events. While the structure of the model is predefined, its actual

topology and stochastic parameters are automatically derived from the stat-

istics of observed events. Applicability to the context of AAL is validated

by experimenting on a reference annotated dataset [125], and results show

comparable performance with respect to offline classification based on Hidden

Markov Models (HMM) and Conditional Random Fields (CRF).

3.2.1 A reference dataset for AAL

We base our experimentation on a well-known and publicly available annotated

dataset for AR [125] containing binary data generated by 14 state-change

sensors installed in a 3-room apartment, deployed at different locations (e.g.,

kitchen, bathroom, bedroom) and placed on various objects (e.g., household

appliances, cupboards, doors). Seven activity types derived from the Katz

Activities of Daily Living (ADL) index [65], i.e., Γ = {Leaving house, Preparing

a beverage, Preparing breakfast, Preparing dinner, Sleeping, Taking shower,

Toileting}, were performed and annotated by a 26-year-old subject during a

period of 28 days. The annotation process yielded a ground truth consisting of

a stream of activities a1, a2, . . . , aK , each being a triple ak = 〈γk, tstartk , tendk 〉
where γk ∈ Γ is the activity type, tstartk is the activity start time, and tendk is

the activity end time. An additional activity (not directly annotated) named

Idling is considered, consisting of the time during which the subject is not
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performing any tagged activity. The dataset includes 245 activity instances,

plus 219 occurrences of Idling. Activities are usually annotated in a mutually

exclusive way (i.e., one activity at a time), with the only exception of some

instances of Toileting which was annotated so as to be performed concurrently

with Sleeping (21 times) or with Preparing dinner (1 time).

The dataset includes 1319 sensor events, classified in 14 event types, and

encoded in the so called raw representation, which holds a high signal in the

interval during which the condition detected by a sensor is true, and low other-

wise (see Fig. 3.7-left). In this case, each event is a triple en = 〈σn, tstartn , tendn 〉
where σn ∈ Σraw is the event type, tstartn is the event start time, and tendn is the

event end time. As suggested in [10] for the handling of datasets with fre-

quent object interaction, raw events were converted into a dual change-point

representation, which emits a punctual signal when the condition goes true

and when it goes back false (see Fig. 3.7-right). In this encoding, observations

are a stream of punctual events e1, e2, . . . , eN (doubled in number with respect

to the raw representation, and sub-typed as start and end ), each represented

as a pair en = 〈σn, tn〉, where σn ∈ Σ is the event type, and tn is the event oc-

currence time. In so doing, the number of events and event types has doubled,

i.e., N = 2638, and |Σ| = 28.

tn
start tn

end

e(!"="microwave)n n

tn tn+1

e(!"="start_microwave)n n e (!"""="end_microwave)n+1 n+1

Figure 3.7. Sensor representation: raw (left) and dual change-point (right).

Also for the limited accuracy of the tagging process (in [125], annotation

was performed on-the-fly by tagging the start time tstartk and the end time tendk

of each performed activity ak using a bluetooth headset combined with speech

recognition software), the starting and ending points of activities are often

delayed and anticipated, respectively. As a result, as shown in Fig. 3.8, the

start (end) time of an activity does not necessarily coincide with the occurrence

time of its first (last) event.
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Figure 3.8. A fragment of an events stream together with annotated activities.

3.2.2 Statistical abstraction

We abstracted the dataset content so as to capture four aspects of its statistics

[87]: the duration of each activity; the time elapsed between subsequent events

within each activity; the type of events occurred in each activity; and, the type

of events occurred as first events in each activity.

Let {en = 〈σn, tn〉}Nn=1 and {ak = 〈γk, tstartk , tendk 〉}Kk=1 be the streams of ob-

served events and tagged activities, respectively. The duration δk of an activity

instance ak is computed as the time elapsed from the first to the last event

observed during ak, i.e., δk = maxn|tstartk ≤tn≤tendk
{tn} − minn|tstartk ≤tn≤tendk

{tn}
(e.g., in Fig. 3.8, δk = tn+h − tn). The duration δk−1,k of an instance of Id-

ling enclosed within two activities ak−1 and ak is derived as the time elapsed

from the last event observed during ak−1 to the first event observed during ak,

i.e., δk−1,k = minn|tstartk ≤tn≤tendk
{tn} − maxn|tstartk−1 ≤tn≤t

end
k−1
{tn} (e.g., in Fig. 3.8,

δk−1,k = tn − tn−u). The duration statistic provides mean value µ and Coef-

ficient of Variation (CV ) of the duration of each activity type, as shown in

Table 3.1.

The inter-events time statistic evaluates the time between consecutive events

occurring within an activity. In so doing, we do not distinguish between event

types, and we only consider times between events. The inter-events time of

Idling is computed taking into account orphan events, i.e., events not belong-

ing to any tagged activity (e.g., en−1 in Fig. 3.8), and the first event of each

activity (e.g., en in Fig. 3.8). Also the inter-events time statistic provides µ

and CV for each activity type, as shown in Table 3.1. Most of measured time

spans have a CV higher than 1, thus exhibiting a hyper-exponential trend,
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Duration Inter-events time

µ (s) CV µ (s) CV

Idling 1793.102 2.039 3906.167 3.292

Leaving house 40261.455 1.042 9354.190 2.810

Preparing a beverage 35.667 1.361 7.643 2.613

Preparing breakfast 108.684 0.713 9.928 1.844

Preparing dinner 1801.889 0.640 77.966 2.589

Sleeping 26116.571 0.442 1871.836 3.090

Taking shower 485.910 0.298 102.788 1.969

Toileting 88.742 1.175 14.814 2.449

Table 3.1. Activity duration and inter-events time statistics (trained on all days
but the first one).

as expected in ADL where timings may follow different patterns from time to

time. Only the duration of Leaving house has a CV nearly equal to 1.

Table 3.2 shows the event type statistic, which computes the frequency ψσ,γ

of an event of type σ within an activity of type γ, ∀ σ ∈ Σ, ∀ γ ∈ Γ, i.e., ψσ,γ =

Prob{the type of the next event is σ | the type of the current activity is γ}.
Table 3.3 shows the starting event type statistic, which evaluates:

i) the frequency θσ of an event type σ either as the first event of an activity

(regardless of the activity type) or as an orphan event, ∀ σ ∈ Σ, i.e.,

θσ = Prob{the type of an event e is σ | e is either the first event observed

during the current activity or an orphan event};

ii) the frequency φσ,γ of an event of type σ as the first event of an activity

of type γ, ∀ σ ∈ Σ, ∀ γ ∈ Γ, i.e., φσ,γ = Prob{an activity of type γ is

started | an event of type σ is observed and the subject was idling before

the observation}.

As a by-product, ∀ σ ∈ Σ, the statistic also computes Prob{the subject re-

mains idling | an event of type σ is observed and the subject was idling before

the observation} = 1−
∑

γ∈Γ φσ,γ.
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start front door 0.497 - - - - - -

end front door 0.503 - - - - - -

start hall-bathroom door - - - 0.018 0.111 0.008 0.261

end hall-bathroom door - - - 0.023 0.115 - 0.261

start hall-bedroom door - - - - 0.274 - 0.019

end hall-bedroom door - - - - 0.280 - 0.013

start hall-toilet door - - 0.004 - 0.041 0.540 0.057

end hall-toilet door - - 0.004 - 0.045 0.452 0.063

start cups cupboard - 0.176 0.009 0.018 - - -

end cups cupboard - 0.176 0.009 0.018 - - -

start groceries cupboard - - 0.119 0.055 - - -

end groceries cupboard - - 0.123 0.055 - - -

start pans cupboard - - 0.009 0.115 - - -

end pans cupboard - - 0.009 0.111 - - -

start plates cupboard - - 0.106 0.083 - - -

end plates cupboard - - 0.106 0.083 - - -

start dishwasher - 0.010 0.004 0.005 - - -

end dishwasher - 0.010 0.004 0.005 - - -

start freezer - 0.020 0.049 0.070 - - -

end freezer - 0.020 0.049 0.070 - - -

start fridge - 0.294 0.167 0.106 - - -

end fridge - 0.294 0.167 0.106 - - -

start microwave - - 0.031 0.023 - - -

end microwave - - 0.031 0.018 - - -

start toilet flush - - - 0.009 0.067 - 0.163

end toilet flush - - - 0.009 0.067 - 0.163

Table 3.2. Event type statistic (trained on all days but the first one): frequency
ψσ,γ of each event type σ ∈ Σ (rows) within each activity type γ ∈ Γ (columns).
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3.2.3 Model formulation

In the proposed approach, a continuous-time stochastic model is constructed

so as to fit the statistical characterization of the dataset. Activity recognition

is then based on a measure of likelihood that depends on the probability that

observed time-stamped events have in this model.

3.2.3.1 Syntax and semantics

The stochastic model is specified as a stochastic Time Petri Net (sTPN) [126].

As in [119], the formalism is enriched with flush functions which permit the

marking of a set of places be reset to zero upon firing of a transition. This

improves modeling convenience without any substantial impact on the com-

plexity for the analysis.

Syntax An sTPN is a tuple 〈P ;T ;A−;A+;A·;m0; EFT ; LFT ;F ; C;L〉 where:

• P is the set of places;

• T is the set of transitions;

• A− ⊆ P × T , A+ ⊆ T ×P , and A· ⊆ P × T are the sets of precondition,

postcondition, and inhibitor arcs, respectively;

• m0 : P → N is the initial marking associating each place with a number

of tokens;

• EFT : T → Q+
0 and LFT : T → Q+

0 ∪ {∞} associate each transition

with an earliest and a latest firing time, respectively, such that EFT (t) ≤
LFT (t) ∀ t ∈ T ;

• F : T → F s
t associates each transition with a static Cumulative Distri-

bution Function (CDF) with support [EFT (t),LFT (t)];

• C : T → R+ associates each transition with a weight;
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• L : T → P(P ) is a a flush function associating each transition with a

subset of P .

A place p is termed an input, an output, or an inhibitor place for a transition

t if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A·, respectively. A transition t is called

immediate (IMM) if [EFT (t),LFT (t)] = [0, 0] and timed otherwise. A timed

transition t is termed exponential (EXP) if Ft(x) = 1 − e−λx over [0,∞] for

some rate λ ∈ R+
0 and general (GEN) otherwise. A GEN transition t is called

deterministic (DET) if EFT (t) = LFT (t) and distributed otherwise. For each

distributed transition t, we assume that Ft is absolutely continuous over its

support and thus that there exists a Probability Density Function (PDF) ft

such that Ft(x) =
∫ x

0
ft(y)dy.

Semantics The state of an sTPN is a pair 〈m, τ〉, where m : P → N is a

marking and τ : T → R+
0 associates each transition with a time-to-fire. A

transition is enabled if each of its input places contains at least one token and

none of its inhibitor places contains any token; an enabled transition is firable

if its time-to-fire is not higher than that of any other enabled transition. When

multiple transitions are firable, one of them is selected to fire with probability

Prob{t is selected} = C(t)/
∑

ti∈T f (s) C(ti), where T f (s) is the set of firable

transitions in s. When t fires, s = 〈m, τ〉 is replaced by s′ = 〈m′, τ ′〉, where

m′ is derived from m by:

i) removing a token from each input place of t and assigning zero tokens to

the places in L(t) ⊆ P , which yields an intermediate marking mtmp;

ii) adding a token to each output place of t.

Transitions enabled both by mtmp and by m′ are said persistent, while those

enabled by m′ but not by mtmp or m are said newly-enabled; if t is still enabled

after its own firing, it is regarded as newly enabled [18]. The time-to-fire of

persistent transitions is reduced by the time elapsed in s, while the time-to-fire

of newly-enabled transitions takes a random value sampled according to their

CDF.
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3.2.3.2 Structure and enhancement

Structure The model used to evaluate the likelihood of observed events is

organized by composition of 7+1 submodels, which fit the observed behavior

in the 7 activities classified in [125] and in the remaining Idling periods. Fig. 3.9

shows a fragment focused on Idling and Preparing a beverage activities.

p_IDLE_eventWait

p_GET_DRINK_eventOccurred

t_IDLE_interEventsTimet_skip_START_FRIDGE

t_GET_DRINK_duration

t_IDLE_duration

p_START_FRIDGE_occurred

t_GET_DRINK_interEventsTime

t_GET_DRINK_END_FREEZER

t_START_FRIDGE_starts_PREPARE_DINNER

t_START_FRIDGE_starts_PREPARE_BREAKFAST

p_GET_DRINK_eventWait

p_IDLE_eventOccurred

t_GET_DRINK_END_FRIDGE

p_IDLE_durationStart

t_START_FREEZER

t_START_FRIDGE

p_GET_DRINK_durationStart

t_START_FRIDGE_starts_GET_DRINK

Preparing a beverage submodel

...

...

...
...

...

Idling submodel

Figure 3.9. A fragment of the stochastic model used to evaluate the likelihood
measure.

In the Idling submodel, places p_IDLE_durationStart and p_IDLE_event

Wait receive a token each when the Idling starts, on completion of any activ-

ity. The token in p_IDLE_eventWait is removed whenever an event is ob-

served (firing of the GEN transition t_IDLE_interEventsTime); in this case,

different IMM transitions are fired depending on the type of the observed

event (t_START_FRIDGE, t_START_FREEZER, . . . ), and then for each different

type, a choice is made on whether the event is interpreted as a continuation
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of the Idling period (e.g., t_skip_START_FRIDGE) which will restore a token

in p_IDLE_eventWait, or as the starting of each of the possible activities

(e.g. t_START_FRIDGE_starts_GET_DRINK, t_START_FRIDGE_starts_PREPARE_

DINNER,...). In parallel to all this, the token in p_IDLE_durationStart will

be removed when the duration of Idling expires (at the firing of the GEN

transition t_IDLE_duration) or when an observed event is interpreted as the

beginning of any activity (e.g., at the firing of t_START_FRIDGE_starts_GET_

DRINK); note that the latter case is not shown in the graphical representation

and it is rather encoded in a flush function. Similarly, when the duration

of Idling expires, the token in p_IDLE_eventWait will be removed by a flush

function associated with transition t_GET_IDLE_duration.

In the Preparing a beverage submodel, places p_GET_DRINK_durationStart

and p_GET_DRINK_eventWait receive a token each when an event observed

during the Idling period is interpreted as the beginning of an instance of

the Preparing a beverage activity. The token in p_GET_DRINK_eventWait is re-

moved whenever an event is observed (firing of the GEN transition t_GET_DRINK_

interEventsTime), and restored after the event is classified according to its

type (IMM transitions t_GET_DRINK_END_FRIDGE, t_GET_DRINK_END_FREEZER,

. . . ). In parallel to this, the token in p_GET_DRINK_durationStart will be re-

moved when the duration of the Preparing a beverage activity expires (at the

firing of the GEN transition t_GET_DRINK_duration). Note that, in this case,

also the token in p_GET_DRINK_eventWait will be removed: this is performed

by a flush function associated with transition t_GET_DRINK_duration.

In so doing, in any reachable marking, only the submodel of the current

activity contains two non-empty places, one indicating that the activity dura-

tion is elapsing (e.g., p_GET_DRINK_durationStart) and the other one mean-

ing that the inter-events time is expiring (e.g., p_GET_DRINK_eventWait).

Note that, as a naming convention, any transition named t_EVENT (where

EVENT is an event type that may start an activity) or t_ACTIVITY_EVENT

(where EVENT is an event type that may occur within ACTIVITY) accounts

for an observable event, while all the other transitions correspond to unobserv-

able events. Finally, note that the general structure of the model is open to
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modifications in various directions. For instance, in the submodels of activities,

the choice between events might be easily made dependent on the duration of

the inter-event time, which would allow a more precise classification without

significantly impacting on the analyzability of the model. The viability of

such evolutions mainly depends on the significance of the statistics that can

be derived from the dataset.

Enhancement The actual topology of the model and its stochastic temporal

parameters are derived in automated manner from the statistical indexes ex-

tracted in the abstraction of the dataset (Sect. 3.2.2).

The event types that can start an activity (e.g., in the model of Fig. 3.9,

t_START_FRIDGE_starts_GET_DRINK, t_START_FRIDGE_starts_PREPARE_DIN-

NER, . . . ) and the discrete probabilities in their random switch are derived from

the starting event type statistic. The event types that can be observed during

each activity (e.g., t_GET_DRINK_END_FRIDGE, t_GET_DRINK_END_FREEZER, ...)

or can continue an Idling period and the discrete probabilities in their random

switch are derived from the event type statistics.

The distribution associated with GEN transitions is derived from the dur-

ation statistic and the inter-events time statistic by fitting mean value µ and

Coefficient of Variation CV as in [128]:

• if 0 ≤ CV ≤ 1√
2
, we assume a shifted exponential distribution:

f(x) = λe−λ(x−d) over [d,∞),

λ = σ−1,

d = µ− σ,

where σ2 is the variance.

• if 1√
2
< CV < 1, we use a hypo-exponential distribution:

f(x) = λ1λ2/(λ1 − λ2)(e−λ2x − e−λ1x) over [0,∞),

λ−1
i = (µ/2)(1±

√
2CV 2 − 1), with i = 1, 2.
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• if CV ≈ 1, we adopt an exponential distribution:

f(x) = λe−λ(x) over [0,∞),

λ = 1/µ.

• if CV > 1, we consider a hyper-exponential distribution:

f(x) =
2∑
i=1

piλie
−λix over [0,∞),

pi = [1±
√

(CV 2 − 1)/(CV 2 + 1)]/2,

λi = 2piµ
−1,

with i = 1, 2.

For instance, the duration and the inter-events time of Preparing a beverage

are associated with a hyper-exponential distribution with parameters p1 =

0.773, p2 = 0.227, λ1 = 0.043358, λ2 = 0.012717, and p1 = 0.931, p2 = 0.069,

λ1 = 0.243733, λ2 = 0.017949, respectively. In the sTPN model of Fig. 3.9, a

GEN transition approximated by a hyper-exponential distribution is modeled

as a switch between IMM transitions, each followed by an EXP transition (see

Fig. 3.10). In a similar manner, a hypo-exponential distribution is represented

by a sequence of EXP transitions, as depicted in Fig. 3.11, and a shifted

exponential distribution is accounted by a sequence made of a DET transition

and an EXP transition (see Fig. 3.12).

p0

t0_1

t0_2

p1

p2 t2

t1

p3
λ2

λ1

p1

p2

Figure 3.10. STPN formalism for hyper-exponential distribution.
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p0 t0 t1p1 p2

λ λ1 2

Figure 3.11. STPN formalism for hypo-exponential distribution.

p0 t0 t1p1 p2

λd

Figure 3.12. sTPN formalism for shifted-exponential distribution.

3.2.4 Online classification of ADLs

We use the transient probability πγ(t) that an activity of type γ ∈ Γ is be-

ing performed at time t as a measure of likelihood for γ at t. A classific-

ation P(t) emitted at time t consists of the set of activity types that may

be performed at t, each associated with the likelihood measure, i.e., P(t) =

{〈γ, πγ(t)〉 | πγ(t) 6= 0}. Between any two subsequent events en = 〈σn, tn〉
and en+1 = 〈σn+1, tn+1〉, a classification P(t) is emitted at equidistant time

points in the interval [tn, tn+1], i.e., ∀ t ∈ {tn, tn + q, tn + 2q, . . . , tn+1}, with

q ∈ R+. In the experiments, we assume the activity type with the highest

measure of likelihood as the classified class to be compared against the actual

class annotated in the ground truth, i.e., at time t, the classified activity is

γ | πγ(t) = maxa∈Γ|〈a,πa(t)〉∈P(t){πa(t)}.
As a result of the prescribed model structure and the specific enhancement,

the stochastic model subtends a Markov Regenerative Process (MRP) [34, 35,

22] under enabling restriction, i.e., no more than one GEN transition is enabled

in each marking (only the duration of four activities is modeled by a shifted

exponential distribution, thus no more than one DET transition is enabled in

each marking). According to this, online classification can be performed by

leveraging the regenerative transient analysis of [51]. The solution technique
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of [51] samples the MRP state after each transition firing, maintaining an

additional timer τage accounting for the absolute elapsed time; each sample,

called transient class, is made of the marking and the joint PDF of τage and

the times-to-fire of the enabled transitions. Within a given time limit T ,

enumeration of transient classes is limited to the first regeneration epoch and

repeated from every regeneration point (i.e., a state where the future behavior

is independent from the past), enabling the evaluation of transient probabilities

of reachable markings through the solution of generalized Markov renewal

equations.

In the initial transient class of the model, the marking assigns a token

to places p_IDLE_durationStart and p_IDLE_eventWait, all transitions are

newly enabled, and τage has a deterministic value equal to zero. After n ob-

served events e1 = 〈σ1, t1〉, . . . , en = 〈σn, tn〉, let Sn = {〈sin, ωin〉} be the set of

possible transient classes sin having probability ωin, where
∑

i|〈sin,ωin〉∈Sn
ωin = 1.

Regenerative transient analysis [51] of the model is performed from each pos-

sible transient class 〈sin, ωin〉 ∈ Sn up to any observable event within a given

time limit, which is set equal to 48 h to upper bound the time between any

two subsequent events. This allows one to evaluate transient probabilities of

reachable markings, i.e., pn,im (t) = Prob{Mn,i(t) = m} ∀ t ≤ T , ∀ m ∈ Mn,i,

where Mn,i = {Mn,i(t), t ≥ 0} is the underlying marking process, and Mn,i is

the set of markings that are reachable from sin. Since in any reachable marking

only the submodel of the ongoing activity contains non-empty places, transi-

ent probabilities of markings are aggregated to derive transient probabilities of

ongoing activities πγ(t) =
∑
〈sin,ωin〉∈Sn

ωin
∑

m∈Mn,i
γ
pn,im (t) ∀ γ ∈ Γ, where Mn,i

γ

is the set of markings that are reachable from sin and have non-empty places

in the submodel of the activity type γ.

Whenever an event en+1 = 〈σn+1, tn+1〉 is observed, any tree of transient

classes enumerated from class 〈sin, ωin〉 ∈ Sn is explored to determine the pos-

sible current classes and their probability. More specifically:

• the possible current classes are identified as those classes that can be

reached after a time tn+1− tn through a sequence of unobservable events

followed by the observed event en+1;
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• any possible current class sjn+1 is a regeneration point since, by model

construction, each GEN transition is either newly enabled or enabled by

a deterministic time (i.e., the timestamp tn+1 − tn);

• the probability ωjn+1 of sjn+1 is obtained as limt→t−n+1
ζspn+1

(t) · ρ, where

spn+1 is the last class where the model waits for the arrival of the next

event en+1, ζspn+1
(t) is the probability of being in class spn+1 at time t, and

ρ is the product of transition probabilities of the arcs encountered from

spn+1 to sjn+1;

• in the limit case that spn+1 is vanishing, ωjn+1 is obtained as the product

of transition probabilities of the arcs encountered from the root class to

sjn+1.

Hence, the approach is iterated, performing transient analysis from any

new current class up to any observable event, still encountering regeneration

points after each observed event.

By construction, the approach complexity is linear in the number of ob-

served events. For each observed event en = 〈σn, tn〉, the number of transient

trees to enumerate is proportional to the number of possible parallel hypo-

theses |P(tn)|, i.e., the number of activity types that may be performed at

time tn; moreover, the depth of each transient tree is proportional to the num-

ber of events that may occur between two observations (which is bounded

in the considered application context), and relatively insensitive to the time

elapsed between observed events.
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3.2.5 Computational experience

Applicability of the proposed approach was validated by experimenting on a

reference annotated dataset [125].

3.2.5.1 Experimental setup

Experiments were performed on the dataset [125], using a dual change-point

representation for sensor events as detailed in Sect. 3.2.1. We split data

provided by the computed statistics and event logs into training and test sets

using a Leave One Day Out (LOO) approach, which consists of using each

instance of one full day sensor readings for testing and the instances of the

remaining days for training. Since, in each test, classifications are emitted

starting from the first observed event of the day, we extended online analysis

up to the first event of the next day. To avoid inconsistencies in the character-

ization of Leaving house, during which all the event types were observed, we

removed from the training sets all events occurring during Leaving house that

are not of type start front door and end front door. Moreover, whenever the

ground truth includes concurrent activities, we considered our classification

correct if the classified activity type is equal to any of the concurrent activity

types.

We performed experiments using two fitting techniques in the evaluation

of the duration and the inter-events time statistics:

• only exponential distributions (i.e., exponential case);

• different classes of distributions based on the CV value, as discussed in

Sect. 3.2.3.2 (i.e., non-Markovian case).

On a machine with an Intel Xeon 2.67 GHz and 32 GB RAM, the evaluation

for a single day took on average 43 s for the exponential case and 18 minutes

for the non-Markovian case.

We evaluated the performance of our approach computing, for each activity

class, three measures, derived from the number of true positives (TP), false

positives (FP), and false negatives (FN):
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• Precision

Pr = TP/(TP + FP ),

which accounts for the accuracy provided that a specific class has been

classified;

• Recall

Re = TP/(TP + FN),

which represents the ability to select instances of a certain class from a

dataset;

• F-measure

F1 = 2 ∗ Pr ∗Re/(Pr +Re),

which is the harmonic mean of precision and recall.

We also compared the outcome of our experiments with the results reported

in [125], obtained using a generative model (i.e., an HMM) and a discriminative

one (i.e., a CRF) in combination with offline inference and the change-point

representation. To make this comparison possible, we sampled the result of

our classification using a time-slice of duration ∆t = 60 s and we considered

two additional measures:

• Accuracy

A = 1/N
Nc∑
i=1

TPi,

which is the average percentage of correctly classified time-slices, with

N being the total number of time-slices, Nc the total number of activity

classes, and TPi the number of TP of class i;

• Average recall

R̄e = 1/Nc

Nc∑
i=1

Rei,

which is the average percentage of correctly classified time-slices per

class, with Rei being the recall of class i.
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3.2.5.2 Results

Table 3.4 shows the confusion matrix for the exponential and the non-Markovian

cases, which reports in position i, j the number of time-slices of class i classi-

fied as class j; Table 3.5 shows precision, recall and F1 score as derived from

the confusion matrix. Results show that Idling, Leaving house, and Sleep-

ing are the activities with the highest F1 score. In terms of F1 score, the

non-Markovian case outperforms the exponential one for all activity classes

except for Preparing a beverage and Taking shower. In terms of precision, the

non-Markovian case performs worse only for Sleeping. Conversely, in terms of

recall, the exponential case outperforms the non-Markovian one for Preparing

a beverage, Preparing breakfast, Taking shower, and Toileting, and performs

worse for Idling, Preparing dinner, and Sleeping. Note that the precision,

recall, and F1 score of Leaving house are identical in both cases.

Accuracy and average recall are summarized in Table 3.6, and compared

with results from [125]. As we can see, fitting statistical data according to the

CV (non-Markovian case), we achieve the highest accuracy, both with respect

to our exponential case and with respect to HMM and CRF. Nevertheless,

the exponential case, HMM, and CRF outperform the non-Markovian case in

terms of average recall.

3.2.5.3 Discussion

Experimentation developed so far achieves results that compare well with the

HMM and CRF approaches, with a slight increase in precision and a slight

reduction in recall. The proposed approach is open to various possible devel-

opments, and the insight on observed cases of success and failure comprises

a foundation for refinement and further research on which we are presently

working.

In the present implementation, classification of the current activity relies

only on past events, which is for us instrumental to open the way to the

integration of classification with online prediction. However, the assumption of

this causal constraint severely hinders our approach in the comparison against
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Exponential non-Markovian

Precision Recall F1 Precision Recall F1

Idling 82.89 59.81 69.49 83.00 69.78 75.82

Leaving house 98.52 98.46 98.49 98.52 98.46 98.49

Preparing

a beverage
10.00 23.81 14.09 18.18 9.52 12.50

Preparing

breakfast
24.38 55.71 33.91 45.28 34.29 39.02

Preparing

dinner
20.00 62.76 30.33 31.04 64.62 41.94

Sleeping 94.33 96.33 95.32 93.22 98.08 95.59

Taking shower 39.18 47.51 42.95 50.32 35.75 41.80

Toileting 15.90 42.04 23.08 42.86 21.15 28.33

Table 3.5. Precision, recall, and F1 score achieved for each activity type.

Accuracy Average recall

Exponential case 92.11 60.80

non-Markovian case 93.69 53.96

HMM [125] 80.00 67.20

CRF [125] 89.40 61.70

Table 3.6. Accuracy and average recall achieved by the exponential and non–
Markovian cases (dual change-point representation and online analysis), com-
pared with those reported in [125] for HMM and CRF (change-point represent-
ation and offline analysis).

the offline classification implemented in [125] through HMM and CRF. Online

classification results reported in [125] are unfortunately not comparable due

to the different abstraction applied on events, and it should be remarked that

in any case they are not completely online as the classification at time t relies

on all the events that will be observed within the end of the timeslice that

contains t itself, which makes a difference for short duration activities. For

the purposes of comparison, our online approach can be relaxed to support
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offline classification by adding a backtrack from the final states reached by

the classificator. This should in particular help the recall of short activities

started by events that can be accepted also as the beginning of some longer

activity (e.g., Preparing a beverage with respect to Preparing dinner). We

also expect that this should reduce the number of cases where a time period

is misclassified as Idling.

The statistics of durations are now fitted using the basic technique of [128]

which preserves only mean value and coefficient of variation. Moreover, the

deterministic shift introduced in the approximation of hypo-exponential distri-

butions with low CV causes a false negative for all the events occurring before

the shift completion, which is actually observed in various cases. Approxima-

tion through acyclic Continuous PHase type (CPH) distributions [81, 50, 104]

would remove the problem and allow an adaptable trade-off between accuracy

and complexity. In particular, a promising approach seems to be the method

of [21] which permits direct derivation of an acyclic phase type distribution

fitting not only mean value and coefficient of variation but also skewness.

Following a different approach, the present implementation is completely

open to the usage of any generally distributed (GEN) representation of activity

durations. This would maintain the underlying stochastic process of the online

model within the current class, i.e., Markov Regenerative Processes (MRP)

that run under enabling restriction [35] and guarantee a regeneration within a

bounded number of steps. In this case, online classification could be practically

implemented using various tools, including Oris [51, 25], TimeNet [135] and

GreatSPN [7].

In the present implementation, classification is unaware of the absolute

time, which may instead become crucial to separate similar activities, such as

for instance Preparing breakfast and Preparing dinner. To overcome the lim-

itation, the model should in principle become non-homogeneous, but a good

approximation can be obtained by assuming a discretized partition of the day-

time, which can be cast in the online model as a sequence of deterministic

delays. By exploiting the timestamps, at each event the current estimation

of the absolute time is restarted. Under the fair assumption that at least one
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event is observed in each activity, the underlying stochastic process of the on-

line model still falls in the class of MRPs that encounter a regeneration within

a bounded number of steps, and can thus be practically analyzed through the

Oris Tool [51, 25].
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Chapter

4
Performance engineering of

meta-modeling architectures

This Chapter explores meta-modeling architectures from a performance point-

of-view, investigating the performance impact that new persistence approaches

based on promising NoSQL technologies [115, 2, 3] can bring in the model-

driven re-engineering of a meta-modeling architecture with respect to consol-

idated relational solutions.

4.1 Relational solutions and inefficiencies

Due to the high degree of abstraction of the underlying meta-model, a meta-

modeling architecture is often exposed to major performance inefficiencies,

in terms of extra processing and instantiation, at run-time, of an increased

number of objects (and relationships) for describing the whole domain. These

drawbacks are largely exacerbated when the domain logic is persisted over

a relational storage layer, due to the nature of the domain model and its

mismatch with the relational tier [6].
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These performance issues, that translate in longer time required for key

persistence operations, can be partially mitigated with ad-hoc optimizations

in the design of the relational database [110], including: the choice of a par-

ticular representation for class inheritance; the use of auxiliary tables to store

additional information; and the smart use of data fetching.

The interposition of an Object-Relational Mapping (ORM) layer between

the domain layer and the data layer can mitigate this problem. In the practice

of development of Java enterprise applications, the Java Persistence API (JPA)

specification represents a mature and state-of-the-art ORM solution which

grants many benefits [20]. First of all, it allows to persist domain classes with a

minimal boilerplate code, thanks to simplified annotation facilities. Moreover,

it provides full integration with the Java application stack, composed by other

technologies such as EJB (for encapsulating the business logic) and CDI (for

implementing the Inversion of Control pattern [76]). However, JPA further

increases the degree of indirection and this can have negative effects on system

performance, also due to the loss of design control on the impact that domain

logic operations have on the storage process.

4.2 Towards NoSQL technologies

With the rise of the Not Only SQL (NoSQL) movement [115], other options

in the storage modeling are now available, providing various advantages.

On the one hand, the high degree of flexibility provided by NoSQL solu-

tions gives space to alternative choices in the definition of the storage data

model, which is, to a large extent, independent from the structure of object

types. The absence of a fixed schema provides multiple options concerning the

definition of the database structure, facilitating the representation of hetero-

geneous data characterized by high variability over time, such as in the case

of meta-modeling architectures.

On the other hand, while relational databases are not able to scale out eas-

ily on commodity clusters preferring scale up policies as workload increases,
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new NoSQL databases are designed to horizontal scaling by adding new nodes,

leading to a overall improvement in the data access time [109]. This motiv-

ates the investigation on engineering the performance of working systems by

changing the storage schema from a relational + ORM persistence stack to a

NoSQL solution, while preserving the domain logic structure.

In the rest of this Section, we compare and experiment different data models

implemented over two distinct NoSQL persistence layers, i.e. a graph-oriented

database called Neo4j [3], and a document-oriented database called MongoDB

[2], applied to the case of a meta-modeling architecture originally persisted

over a MySQL + Hibernate technology stack, i.e. the Empedocle EHR system

(see Chapter 2 for more details). While referring to this case for the sake of

experimentation concreteness, most of the subsequent discussion about the de-

velopment of a graph-oriented or document-oriented database representation

as well as about the impact that NoSQL technologies can have on system per-

formance are more generally applicable to most schemes that can be designed

in the style of a meta-modeling architecture.

4.2.1 A data model for Neo4j

Neo4j [3] relies on a graph-oriented structure, which can natively represent the

domain logic of a meta-modeling architecture whose data structures are direct

acyclic graphs and trees (see Fig. 2.4) [127].

As a schema-less database, the data model in Neo4j is inherently defined

by the nodes and relationships persisted in the database. Every node and

relationship can also be characterized by an arbitrary number of properties.

From version 2.0, Neo4j developers tweaked its schema-less nature by intro-

ducing labels and indexes, two concepts that help modeling data in a more

organized way, without losing the database original adaptability. Specifically,

labels can be used to group together nodes, and each node can optionally be

labeled with one or more text descriptions, and indexed to improve query ex-

pressiveness and flexibility. Moreover, indexes can be defined on properties of

labeled nodes, to improve performance during query operations, similarly to
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the relational case. Both labels and indexes are optional.

In the concrete case of the Empedocle EHR system, modeling the domain

logic of Fig. 2.3 in Neo4j comes down to:

1. identifying the node structure that characterize the model;

2. defining relationships between nodes;

3. defining properties that characterize nodes and relationships;

4. labeling with appropriate qualifiers.

Following these steps, as depicted in the schema of Fig. 4.1, each class that

is an entity in the original model has been represented as a node in the target

model, and labeled with correspondent qualifiers. In so doing, nodes that

belong to Fact or FactType hierarchy are qualified using two labels: the first

one to identify the hierarchy, and the second one to define their role in the

class hierarchy (e.g., Fact:QualitativeFact qualifies a QualitativeFact inside

a Fact hierarchy).

As it can be observed in the schema, the name property is used for identi-

fying, at the knowledge level, a named FactType. The value property is used

to record, at the operational level, the value assumed by a TextualFact or a

QuantitativeFact node.

Another characteristic of the graph model is the capability of modeling

TypeLink and FactLink classes using relationships. These two classes were

introduced in the original model to represent the parent-child association

between FactType or Fact classes. For this reason, they can be naturally

modeled as a relationship in a graph-oriented model. In addition, since Neo4j

represents relationships as directed arcs that can be traversed in both direc-

tions, this allows to simplify the model introducing a single relationship, called

HasChildren, for modeling TypeLink and FactLink classes, without any im-

pact on query capabilities.

Since Neo4j allows to put a relationship only between two nodes, this pre-

cludes the possibility to use a relationship to represent the existing reference
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between TypeLink and FactLink, as in the original model. Properties have

been used to solve this problem, as follows:

• the uuid property of each TypeLink is used to store an identifier value;

• the same value is copied into the type property of the related FactLink.

Finally, Fact and FactType nodes are linked together via the HasType

relationship. The self-explanatory HasUnit and HasPhenomenon relationships

are ambivalent across the knowledge and the operational level, and are used

to connect:

• a QuantitativeType node with a set of possible Unit nodes, and the

corresponding QuantitativeFact node with the selected Unit node;

• a QualitativeType node with a set of possible Phenomenon nodes, and

the corresponding QualitativeFact node with the selected Phenomenon

node.

4.2.2 A data model for MongoDB

MongoDB [2] data model is based upon a document-oriented structure. A

document is a collection of attribute-value pairs, with values that can be basic

types, array of values or nested sub-documents. Documents with similar char-

acteristics are grouped together and stored in collections. Relations between

documents can be represented in two ways:

• using references, that produce a normalized data model;

• by embedding related data in documents, producing denormalized mod-

els.

In particular, the use of denormalization techniques [63] is promoted by document-

oriented NoSQL solutions for discouraging the use of JOIN queries, and solving

typical performance issues that affect relational databases.

The schema of Fig. 4.2 illustrates how the domain logic of the Empedocle

EHR system is represented on the document-oriented model of MongoDB.
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Usually, modeling an object-oriented domain logic via a document-based

data model can be achieved in a direct way. Unfortunately, this simplicity is

weakened when dealing with meta-modeling architectures, due to the indirect

structure of the model.

The proposed solution attains a good balance, mixing together documents

embedding approaches with references techniques [63] for obtaining a flexible

data representation without performance degradation. In so doing, the Fact-

Type hierarchy comprises a typical example of mixed modeling. Specifically,

while named FactType instances are persisted as distinct documents, and refer-

enced by other documents using the ObjectId identifier, anonymous FactType

instances are persisted as embedded documents inside the named FactType

document in which they are defined.

To efficiently recognize the subtyping-class of an instance in the Fact-

Type or Fact hierarchy, every persisted document has a property called class

that can assume the following values: txt, for referring to a TextualType or

TextualFact instance; qlt, for referring to a QualitativeType or Qualitat-

iveFact instance; qnt, for referring to a QuantitativeType or Quantitative-

Fact instance; and, cmp, for referring to a CompositeType or CompositeFact

instance. In so doing, it is sufficient to check the class property value of a doc-

ument to recognize its nature, avoiding to pre-emptively explore its properties.

In the case of referring to a named FactType, the class property assumes the

ref value, and an additional property called reference contains the ObjectId of

the referenced named FactType.

The different behavior used for persisting FactType instances drops the

need to persist TypeLink instances as separate entities. For this reason,

TypeLink and FactType classes are modeled in MongoDB as a single entity,

and the name property of embedded documents inside CompositeType in-

stances corresponds to the TypeLink name property of the original model.

Note that, since embedded documents are always anonymous, the FactType

name property is specified only for the root document of a FactType hierarchy.

The Fact hierarchy does not have the same need of reusability and referen-

cing that characterize FactTypes. For this reason, Fact instances can always
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be represented as a single document, in which Fact children are embedded

as sub-documents. In so doing, the number of queries for data retrieval is

considerably limited.

Fact and related FactType instances are linked together with different

strategies, depending on the role of the Fact in the hierarchy. In the case of a

Fact root document, the typeId property stores the ObjectId of the referenced

FactType instance. Otherwise, when dealing with sub-documents of the Fact

root, a type property refers to the uuid value of the corresponding FactType.

Consequently, for completely retrieving a Fact and its related FactType, we

need to:

1. query for the Fact root (with children as embedded documents);

2. query for the related FactType using the ObjectId referenced by the

typeId property of the Fact root;

3. link together retrieved Fact children and FactType children instances

using uuid and type properties.

For the sake of completeness, Phenomenon entities are modeled as embedded

documents inside QualitativeFact and QualitativeType documents with

the intent of minimizing the number of retrieval query in reading operations.

In the same manner, Unit entities are modeled inside QuantitativeFact and

QuantitativeType documents.

4.2.3 The information equivalence problem

A comparison of the performance among different data storage implementa-

tions (i.e. from relational to a document- or graph-oriented model) requires

that they are in some sense equivalent. Since data can be modeled in various

ways, through the use of different data structures offering the same informa-

tion capacity, a notion of model equivalence, or hierarchy of equivalences [52],

is required to be defined.

In a general sense, two data structures can be considered equivalent in

terms of information-capacities if they can be associated to the same number
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of states, such that each state of a data structure can be mapped to a database

state of the other structure, preserving any relationship attribute value.

For the purpose of our experimentation, it is not necessary to prove the

complete equivalence between two representations, but it is sufficient to prove

the query equivalence of two models [9], i.e. the possibility to extract the

same information from both models through query operations. Specifically,

the equivalence problem consists in casting information data into structures

(i.e. graphs or tree) of the same type.

Comparing and matching graphs is a well-known NP-complete problem

[45], and different approaches have been proposed to determine the distance

between two graphs using specific heuristic [30, 37].

In our case, proving the equivalence of Neo4j and MongoDB data models

with respect to the actual relational model means showing that they have the

same representativeness of information. This means that the equivalence prob-

lem will be focused on showing that two data structures are exactly identical

in terms of represented information, rather than identifying similarities and

differences between data models. Moreover, it is not necessary to check the

query dominance for the new data models; it is sufficient to show that it is

possible to query the same structure across different representations.

In a practical manner, we consider equivalent two data representations of

the same domain logic using different persistence models when the carried

information can be serialized into an equivalent string of information. In so

doing, given two different persistence models, named A and B, A and B are

equivalent if it is possible to generate the same string serialization for each

given Examination and ExaminationType instance represented in A and B.

Consequently, if A is a valid model, and A and B are equivalent, than B is

also valid. Note that we assume that the actual relational model is a valid

reference model.

In order to prove the validity of converted NoSQL models, we started by

choosing a dataset with an arbitrary number of clinical information data, per-

sisted in the relational model. Then, we have retrieved all Examinations and

ExaminationTypes instances contained in the dataset, and we have serialized
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the information data in a string representation. Finally, for testing the equi-

valence, we have converted information data from the relational model to the

target NoSQL model, serializing again the information data, and comparing

the resulting string with the string obtained from the relational model at the

previous step. The validation process is considered successful, if we are able to

obtain an equivalence between the reference relational model and the target

NoSQL model for every string of information.

Fig. 4.3 illustrates an example of the string produced during the serializa-

tion process applied to the information data as represented using the models

depicted in Figs. 4.1 and 4.2.

"compositeType" : {

"aNamedType" : {

"aQuantitativeType" : "10.2 u1"

"aTextualType" : "aText"

}

"aQualitativeType" : "Phenomenon2"

}

Figure 4.3. An example of serialization of a clinical Examination. The pattern
used to serialize the information is as follows: type.name : fact.value. The
structure of the serialization is deliberately similar to a JSON document, due to
its simple and readable syntax.

4.2.4 Computational experience

An experimentation was carried out to evaluate the performance of three dif-

ferent implementations based on MySQL + Hibernate, Neo4j, and MongoDB,

and their sensitivity to the characteristics of the dataset.

4.2.4.1 Experimental setup

We can expect that the response time of different storage schemes be dependent

on the complexity of the collection of domain logic objects that are read-from

or written-to the persistence layer. Due to the pattern-based architecture
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of classes in the domain logic, objects are organized in an almost tree-like

structure, and their complexity can thus be characterized in terms of nodes

and depth of the tree. For this reason, we experimented with two different

kind of datasets:

• a real dataset of clinical examinations acquired in the Empedocle EHR

system for which we provide a description of the statistics about the

number of nodes and the depth of the tree structure;

• a synthetic dataset for which we can control the statistics so as to stress

the indexes of complexity.

The real dataset consists of about 13 000 examinations that belong to the

same speciality and thus share the same structure. The dataset was conveni-

ently anonymized by omitting patients’ personal information, and by obfus-

cating textual observations recorded during each clinical session.

Table 4.1 summarizes the complexity of the examination structure, i.e.

the number of FactTypes included in each examination. The structure of the

examination includes 243+110+99 fields, which are organized in a graph whose

depth (intended as the maximum distance from the root node) is equal to 8,

and which includes 144 FactTypes that act as composition nodes.

Depth 8

Number of nodes 596

CompositeType 144

QualitativeType 243

QuantitativeType 110

TextuaType 99

Table 4.1. Characteristics of the considered examination type structure in the
dataset, with additional details about the distribution of type nodes contained in
the structure. Of the 596 nodes that form the examination type, 452 nodes are
leaf nodes, which actually contain a value.

Note that, at the operational level, the complexity of the tree structure

depends on the course of each specific examination.
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Figure 4.4. The histogram describes the distribution of examinations in the
dataset as the number of nodes varies. Note that about 35% of the examinations
in the dataset are in the neighbourhood of 23±6, with peaks in 19, 20, 25 and 27.
This shows clearly how, usually, only a small part of the examination structure,
that comprises a total number of 596 nodes, is actually filled out by health
professionals. Only about 9% of examinations in the dataset have more than 70
nodes filled out.

Fig. 4.4 reports the distribution of examinations per number of nodes.

Fig. 4.5 characterizes the distribution of examinations per depth of the tree

structure. From these statistics, it is possible to note that the size of the tree-

like structure (composed by Facts) is always much lower than the size of the

corresponding graph structure (composed by FactTypes). This is due to the

fact that, during a clinical session, not all the observations represented in the

examination structure (≈ 600) are actually recorded.
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Figure 4.5. The histogram describes the distribution of examinations as the
depth increases. Note that 96% of the examinations in the dataset have depth
comprises between 4 and 6.

The synthetic dataset contains generated examinations with a full binary

tree structure, with depth ranging from 2 to 8. For each depth, a fixed number

of 100 examinations has been generated. Being a full binary tree, the number

of nodes n for each tree of depth d is given by:

n = 2d+1 − 1,

ranging from 3 to 511 nodes.

The synthetic dataset does not correspond to a real situation in the present

context-of-use of the Empedocle EHR system, but it can become a possible

scenario in the evolution of the use of the system, and, for this reason, repres-

ents a relevant part of the motivation for this performance engineering invest-

igation. In the more general perspective of a meta-modeling architecture, this

corresponds to the case where different courses can be described on a structure

with different degrees of completeness.

The experimentation on both datasets under consideration has been carried

out with reference to a major scenario of interaction: a health professional ac-

cesses the patient’s EHR content in order to review past medical examinations
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and read collected clinical information (Fig. 2.2 depicts the read-only use case

in a typical outpatient scenario). To do that, each examination in the dataset

has first been retrieved and, then, a read-only operation has been performed

in order to simulate the real interaction of users with the EHR system through

the interfaces exposed by the Presentation Layer.

As a metric of performance, we evaluated the total time required to com-

plete the selected scenario, from data retrieving to data serialization, for all

compared models. Specifically, we measure the time for completing the whole

use case, comprising database retrieval operations, Java database APIs, or

ORM persistence layer intermediation (only present in the relational case),

without distinguishing time passed by the various phases of data retrieval and

process. This is because experimental results not reported here indicate that

these accessories operations, and in particular the ORM mapping layer (im-

plemented by Hibernate in the current application stack), do not significantly

impact the overall performance (e.g. Hibernate is optimized for the underlying

database technology [83, 131]). Finally, note that retrieving an examination

also implies retrieving the associated structure, containing the semantic of all

Facts within the retrieved examination.

Experiments were conducted on a computer with the following character-

istics: Debian 3.2.60 operating system, with 2 x Intel Xeon E5640 @ 2.66 GHz

64-Bit CPU, and 32 GB RAM.

4.2.4.2 Results

Table 4.2 and Fig. 4.6 report the results of the experimentation on the real

dataset, showing the mean value (µ) and the coefficient of variation (CV ) of the

time spent to complete a read-only operation for a single examination in the

three implementations under test. These statistical indexes were evaluated

by repeating the read-only task for 100 times on all 12 953 examinations in the

dataset. In comparison with the MySQL + Hibernate implementation, Neo4j

reduces the retrieval time by approximately 1.5 times, and MongoDB reduces

it by more than 33 times.
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MySQL +

Hibernate
Neo4j MongoDB

µ (ms) CV µ (ms) CV µ (ms) CV

76.06 0.031 51.29 0.0024 2.27 0.064

Table 4.2. Comparison between MySQL+Hibernate, Neo4j, and MongoDB, eval-
uated using the real dataset comprising 12 953 examinations. Table reports mean
value (µ) and coefficient of variation (CV ) for the execution of a single examin-
ation.
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Figure 4.6. Performance results obtained by repeating the read-only task for 100
times on all 12 953 examinations in the real dataset.

Table 4.3 and Fig. 4.7 show the results of experimentation on the synthetic

dataset. We report the mean value (µ) and the coefficient of variation (CV ) of

the time spent to complete a read-only operation for a single examination in

the three implementations under test, evaluated by repeating the task for 100

times on all 100 examinations in the dataset. Results indicate that MongoDB

attains by far a better performance and slower sensitivity to the examination

depth. It should also be noted that the MySQL + Hibernate implementation

performs better than Neo4j for examinations with depth lower than 7.
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Depth
MySQL +

Hibernate
Neo4j MongoDB

µ (ms) CV µ (ms) CV µ (ms) CV

2 6.93 0.12 18.76 0.12 1.07 0.05

3 9.54 0.11 19.41 0.09 1.2 0.06

4 12.6 0.1 21.57 0.09 1.38 0.07

5 18.87 0.09 26.04 0.08 1.64 0.07

6 28.17 0.09 33.94 0.05 2.2 0.07

7 48.18 0.08 44.03 0.05 3.05 0.08

8 121.29 0.04 72.93 0.05 4.88 0.07

Table 4.3. Comparison between MySQL+Hibernate, Neo4j, and MongoDB, eval-
uated using the synthetic dataset comprising 100 examinations with increasing
depth. Table reports the mean value (µ) and the coefficient of variation (CV )
for the execution of a single examination.
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Figure 4.7. Performance results obtained by repeating the read-only task for 100
times on all the 100 examinations in the synthetic dataset.
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4.2.4.3 Discussion

Performance results obtained during experimentations in real and synthetic

datasets indicate a clear gain in performance through the use of MongoDB

database, and more generally, a better scalability of NoSQL technologies as

the depth of examinations grows, due to the increased number of JOINs and

reference operations affecting the MySQL + Hibernate solution [114].

Moreover, both tested NoSQL technologies offer advantages in terms of

flexibility in the data model, scalability and reliability.

Results also indicate a counter-intuitive conclusion: the graph-oriented

data model of Neo4j allows a more natural and direct data conversion, which

also permits a simpler implementation; however, the document-oriented data

model of MongoDB produces by far better performance results. Specifically:

Neo4j, which graph-oriented modeling is more natural in the considered soft-

ware architectural context, shows a performance gain of 1.5 times compared

to MySQL + Hibernate. On the other hand, MongoDB, which requires a big-

ger engineering investment to convert the original data model for achieving

the right trade-off between redundancy, adaptability and reactivity, shows a

performance gain of almost 33 times compared to MySQL + Hibernate.

The present investigation is completely open to explore the performance of

NoSQL databases in other use cases, not only limited to read-only operations

but also extended to write and update scenarios, whose impact in the context-

of-use is less relevant but nonetheless interesting to have a full comparison

between the various analyzed data models.
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Conclusions
A digital universe of unstructured or semi-structured human-sourced informa-

tion, structured process-mediated data, and well-structured machine-generated

data is rapidly growing over the last decade, encouraging the adoption of innov-

ative forms of data modeling and information processing to enable enhanced

insight, decision making, and process automation applied to a variety of dif-

ferent contexts [19].

Healthcare comprises a notable domain of interest, due to the availability

of a large amount of information that can be efficiently exploited to achieve

some relevant and tangible benefits, including: improvement of operational

efficiency and patient outcomes; early identification of comorbidities as well

as worsening health states; evidence of effectiveness and safety of therapeutic

strategies; reduction of health system costs; real enactment of predictive mod-

els for diagnosing, treating, and delivering care.

However, the health domain constitutes a context with intrinsic complexit-

ies, mainly derived by the nature of data to deal with, and whose characteristics

can be summarized in terms of volume, variety, variability, velocity, and vera-

city [80]. This complex nature represents one of the main hurdles to be closely

faced.

In this dissertation we focused on the crucial role played by software ar-

chitectures in order to overcome data modeling and information processing

challenges posed by the healthcare context. Specifically, we investigated the
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applicability of multi-level meta-modeling architectural styles in two different

health scenarios, i.e. healthcare and Ambient Assisted Living (AAL) contexts.

Multi-level meta-modeling architectures [28, 134] represent a powerful al-

ternative to consolidated object-oriented solutions that fit well the develop-

ment of (static) systems characterized by a stable domain with a low rate of

change but inevitably fail in volatile contexts.

Otherwise, a multi-level meta-modeling architecture supports the develop-

ment of systems able to change structure and behavior dynamically, tailoring

itself to the case of domains characterized by high volatility and complexity,

where adaptability and changeability represent primary requirements [55].

Concerning how medical concepts and clinical data can be effectively and

efficiently represented to fully exploit the large amount of available information

(i.e. data modeling challenge), this dissertation addressed the design and im-

plementation of an adaptable patient-centric Electronic Health Record (EHR)

system, named Empedocle [88], facing a number of challenging requirements,

including: adaptability to different specialities and organizational contexts;

run-time configurability by domain experts; interoperability of heterogeneous

data produced by various sources and accessed by various actors. As a result,

the Empedocle EHR system is in use since more than 3 years in various units

of the major hospital of Tuscany Region (Careggi Hospital, in Florence).

Concerning how all available data can be exploited for enabling advanced

decision-making processes (i.e. information processing challenge), we expan-

ded the research in two different directions.

First, in order to provide patient-specific advices based on existing clinical

data and support automated compliance evaluation of the quality of clinical

processes, we addressed the integration of recommendations extracted from

medical guidelines with clinical data collected within the Empedocle EHR sys-

tem via a two-step diagnostic process [89] consisting of: i) collecting clinical

information using an unbiased general EHR structure; ii) automatically ad-

apting the EHR content to the specific formulated diagnosis in accordance to

related applicable guidelines. Preliminary experimentations on real guidelines

have shown the feasibility and benefits of the proposed approach.
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Secondly, due to the crucial role played by Ambient Assisted Living (AAL)

technologies for providing assistance care at home and supporting elderly

people in their daily activities, we investigated how an adaptable EHR system

can be exploited to collect clinical data produced by human actors as well as

sensed data generated by remote monitoring devices deployed in a pervasive

intelligent environment. Than, we proposed a continuous-time model-based

approach for Activity Recognition (AR) for monitoring and classifying high-

level human activities starting from low-level sensed data collected with the

EHR system [29]. The proposed approach was validated with reference to

a public dataset widely used in applications of AAL [125], providing results

that show comparable performance with state-of-the-art AR discrete-time ap-

proaches.

The development and applicability of meta-modeling architectures to dif-

ferent contexts of eHealth exposed the resulting adaptable systems to some

weakness. Specifically, a problem of performance inefficiencies is emerged, due

to the high degree of abstraction of the underlying meta-model, requiring extra

processing and instantiation, at run-time, of an increased number of objects

(and relationships) for describing the whole domain. We addressed how refact-

oring interventions of the data model based on promising NoSQL technologies

can impact on performance issues with respect to consolidated relational data

solutions.
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