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Abstract

Male infertility is a multifactorial complex disease with highly heterogeneous phenotypic representation and in at least 15% of cases,

this condition is related to known genetic disorders, including both chromosomal and single-gene alterations. In about 40% of primary

testicular failure, the etiology remains unknown and a portion of them is likely to be caused by not yet identified genetic anomalies.

During the last 10 years, the search for ‘hidden’ genetic factors was largely unsuccessful in identifying recurrent genetic factors with

potential clinical application. The armamentarium of diagnostic tests has been implemented only by the screening for Y chromosome-

linked gr/gr deletion in those populations for which consistent data with risk estimate are available. On the other hand, it is clearly

demonstrated by both single nucleotide polymorphisms and comparative genomic hybridization arrays, that there is a rare variant

burden (especially relevant concerning deletions) in men with impaired spermatogenesis. In the era of next generation sequencing

(NGS), we expect to expand our diagnostic skills, since mutations in several hundred genes can potentially lead to infertility and each

of them is likely responsible for only a small fraction of cases. In this regard, system biology, which allows revealing possible gene

interactions and common biological pathways, will provide an informative tool for NGS data interpretation. Although these novel

approaches will certainly help in discovering ‘hidden’ genetic factors, a more comprehensive picture of the etiopathogenesis of

idiopathic male infertility will only be achieved by a parallel investigation of the complex world of gene environmental interaction

and epigenetics.
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Introduction

Nearly 7% of men from the general population are
infertile and in at least 15% of cases this condition is
related to genetic disorders, including both chromo-
somal and single-gene alterations. Genetic causes can
be detected in all major etiologic categories of male
infertility (pre-testicular, testicular and post-testicular
forms) and genetic tests became part of the routine
diagnostic procedure in selected groups of patients
(Krausz 2011). Karyotype and azospermia factor (AZF)
microdeletion analyses are indicated in patients with
!10 million spermatozoa/ml and !5 million sperma-
tozoa/ml respectively (Krausz et al. 2014). CFTR gene
mutation screening is performed in men affected by
congenital absence of vas deferens, whereas in the case
of central hypogonadism a growing number of candidate
genes involved in gonadotrophin-releasing hormone
receptor migration, development, secretion and
response can be analyzed. After a complete diagnostic
work-up (including also genetic testing), in about 40% of
primary testicular failure the etiology remains unknown
and is referred to as ‘idiopathic infertility.’ The search for
‘hidden’ genetic factors, especially focusing on
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polymorphisms, in idiopathic infertile patients were
intensified in the late 1990s, since this approach turned
out to be successful in some other complex multifactorial
diseases (Riggs et al. 2014, Smith & Newton-Cheh 2015).
Starting from 2009, novel approaches such as single
nucleotide polymorphism (SNP) array, comparative
genomic hybridization-array (array-CGH) and next
generation sequencing (NGS) provided important data
also on rare variants. This review is aimed at providing an
overview of i) genetic risk factors including SNPs,
variable number tandem repeats (VNTRs) and copy
number variations (CNVs) and ii) potential causative
mutations/CNVs related to idiopathic male infertility.
Genetic susceptibility factors: the candidate gene
approach

Since late 1990s, the field of genetics of male infertility
entered an era of intense search for genetic risk factors,
mainly SNPs, VNTRs and Y chromosome-linked CNVs.
The results obtained up to 2007 have been summarized
in the meta-analysis by Tüttelmann et al. (2007), who
reported significant association with impaired
DOI: 10.1530/REP-15-0261
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spermatogenesis only for two genetic factors: a partial
AZFc deletion (gr/gr deletion) and the rs1801133
(c.677COT) variant in the MTHFR gene. At that time,
for many other SNPs, either only single studies were
available or results from different laboratories were
discordant (Nuti & Krausz 2008).

We herein review the existing literature via a search in
the PubMed database of case–control studies published
since 2008. The following keywords were used to select
eligible studies: ‘genetic risk factor (s)’ AND ‘male
infertility.’ Additionally, all identified gene/polymorph-
ism combinations were searched individually (e.g.,
‘FASLG’ and ‘male (in)fertility’). Data were extracted
from single papers and are summarized in Tables 1, 2
and 3 and Supplementary Table 1.

As in other fields of medicine, targeted search for SNPs
or gene mutations is based on the candidate gene
approach. This approach has been facilitated by an
increasing body of information from model organisms,
expression analyses (transcriptomic and proteomic) in
relationship with spermatogenesis and, together with
data produced by Genome-Wide Association Studies
(GWAS) (Tables 2 and 3), represents the major source for
genetic studies in humans. A minority of SNPs (nZ28)
studied before 2008 have been the objects of subsequent
publications, whereas the large majority, listed in Table 1,
are new entries (nZ286). A total of 314 SNPs have been
reported in 123 genes. Approximately 70% of SNPs are
related to genes with common cell function but with
predicted relevance in germ cells, such as apoptotic
process, DNA repair, detoxification of environmental
molecules, response to reactive oxygen species and so
on. Indeed, the best candidate genes are those with
specific expression in germ cells or those that have
specific spermatogenic function or play important roles
in meiosis or endocrine regulation of the testis (Table 1).
Data in existing literature are rarely concordant, and for
many SNPs (nZ269), only single studies are available.
To date, meta-analyses are available for ten genes: AR,
CYP1A1, DAZL, ESR1, ESR2, MTHFR, NOS3, POLG,
TP53 and USP26. Although data remains largely
controversial, ethnic/geographic origin seems to play
an important role in the phenotypic expression of
polymorphisms in the MTHFR, ESR1/ESR2, NOS3 and
DAZL. Data remains inconclusive for CYP1A1 and AR
genes, whereas a lack of association with male infertility
has been clearly demonstrated for polymorphisms
related to TP53, USP26 and POLG. Although reliability
of the presently available meta-analyses is largely limited
by the heterogeneous inclusion criteria used for patients
and controls selection, in this review we attempt to
provide a short description of those SNPs that according
to the latest meta-analyses result significantly associated
with spermatogenic failure.

Tüttelmann et al. (2007) reported that the c.677COT
variant in the MTHFR (methylenetetrahydrofolate
reductase (NAD(P)H) gene was the only one showing
Reproduction (2015) 150 R159–R174
significant association with male infertility. The MTHFR
gene is located on chromosome 1p.36.22, encodes an
enzyme that produces 5-methyltetrahydrofolate and is in
involved in folate metabolism. Folate is necessary for the
preservation of genome integrity due to its role in DNA
synthesis, repair and methylation, and it has been
predicted that its deficiency may lead also to male
infertility. The c.677COT variant impairs the enzyme
activity by 35% in heterozygosis and by 70% in
homozygosis (Frosst et al. 1995). The conclusion
presented by Tüttelmann et al. (2007) stimulated further
studies, which led to controversial results and to novel
meta-analyses (Gupta et al. 2011, Wei et al. 2012, Wu
et al. 2012, Weiner et al. 2014, Gong et al. 2015).
Interestingly, there is discordance even between the five
meta-analyses, with some reporting an association
(Tüttelmann et al. 2007, Gupta et al. 2011, Wu et al.
2012) and others reporting a lack of association (Wei
et al. 2012, Weiner et al. 2014). The last meta-analysis
(Gong et al. 2015), which included 26 published studies
(5575 cases and 5447 controls from Asian, African and
Caucasian populations), indicated that the MTFHR
variant is associated with AZ (AZ) (ORZ1.36, 95% CI:
1.18–1.55, PZ0.000) and oligoasthenoteratozoo-
spermia (OAT) (ORZ1.35, 95% CI: 1.11–1.64,
PZ0.003), but not with oligozoospermia. Finally, a
second SNP in the MTHFR gene has also been the object
of numerous studies but with similar discordant results.
Rs1801131, also known as 1298COA, is a missense
polymorphism found in exon 7 that also reduces MTHFR
activity, though apparently less severely than C677T (Van
der Put et al. 1998). The meta-analysis of seven studies
with a total of 1633 cases and 1735 controls from
different ethnic groups shows that the polymorphism is
significantly associated with azoospermia (ORZ1.12,
95% CIZ1.00–1.26) but not with OAT (Shen et al. 2012).

Overall, for both SNPs the conferred susceptibility to
AZ and OAT is modest, implying a marginal biological
role for this SNP in infertility. Controversies might
depend on different ethnic origin (variant frequency
does differ among different populations), and the
penetrance of this mutation is likely to be affected by
diet, e.g., subjects carrying the variant may have a major
risk for male infertility in cases of low folate intake.
Consequently, it could be of interest to test for these
SNPs in relationship to the responsiveness to folate
supplementation, i.e., to select potential ‘responders’
through a pharmacogenetic approach.

Other SNPs that have been objects of investigation
occur in the estrogen receptor 1 (ESR1) and estrogen
receptor 2 (ESR2) genes. Estrogens are predicted to play
an important role in the male reproductive tract, and
both the deficit and the excess of estrogens can alter
sperm production and maturation (Atanassova et al.
1999, Hess 2003). Three different receptor isoforms ERa,
and ERg are known. The ESR1 gene on 6q25 codifies for
ERa, a 595 amino acid receptor. The ESR2 gene is
www.reproduction-online.org
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Table 1 Summary of case-control studies focusing on gene poly-
morphisms since 2008. SNPs related to genes with (A) common cell
function, (B) specific spermatogenic function, (C) endocrine function.
Further details are given in the Supplementary Table 1, see section on
supplementary data given at the end of this article.

Gene name
CasesC
controls

Country of
origin Association

(A) Common cell function
ABCB1a 162C191 Poland YES
ABLIM1a 3608C5909 China YES
AHR 991C1256 China; Estonia;

Iran; Japan
YES**

AHRR 235C324 Estonia; Japan DISCORDANT
APOB 604C501 Slovenia; India DISCORDANT
ARNTLa 589C444 Slovenia, Serbia NO
ATM 809C816 China DISCORDANT
BCL2a 1653C2329 China YES
BHMTa 153C184 Sweden NO
BRCA2 820C830 China YES**
CAT 885C839 China; France;

Iran
DISCORDANT

CDC42BPAa 3608C5909 China YES
CHD2a 1653C2329 China NO
CLOCKa 517C444 Slovenia YES
CRISP2a 92C176 Australia NO
CYP1A1 1060C1225 Meta-analysis YES
CYP17A1a 456C465 Korea YES
CYP26B1a 719C383 China NO
EPSTI1 917C2015 Japan DISCORDANT
ERCC1a 202C187 China NO
ERCC2 202C187 China NO
ETV5a 204C296 Australia, USA YES
FAS 547C571 China; India;

Turkey
NO

FASLG 447C532 Albania,
Macedonia;
China; Turkey

NO

FOLH1a 153C184 Sweden NO
GNAO1a 1653C2329 China YES
GPX1 690C649 China; France NO
HLA-DRA 4508C7588 China; Japan YES
JMJDIAa 136C161 Albania,

Macedonia
NO

KLK2a 218C220 Korea YES
LIG4a 580C580 China YES
LOC203413 623C530 Albania,

Macedonia;
Japan

NO

LRWD1 130C100 Japan NO
MAS1L/UBD 917C2015 Japan NO
MCT2

(SLC16A7)a
471C265 Korea YES

MDM2a 580C580 China YES
MLH1a 1292C480 China NO
MLH3 1454C640 China YES**
MSH4a 1292C480 China NO
MSH5 1454C640 China YES
MTHFD1 428C533 Sweden; Russia NO
MTHFR 5575C5447 Meta-analysis YES
MTR 713C739 Brazil; China;

Poland
NO

MTRR 1790C1622 Brazil; China;
France;
Jordania;
Korea; Poland;
Sweden

DISCORDANT

NFE2L2
(NRF2)a

336C295 China YES

NOS1a 580C580 China NO
NOS2a 580C580 China NO
NOS3 2019C1509 Meta-analysis DISCORDANT

Table 1 Continued.

Gene name
CasesC
controls

Country of
origin Association

NQO1a 580C580 China NO
OR2W3 623C530 Albania, Mace-

donia; Japan
DISCORDANT

PACRGa 610C156 Australia YES
PARP1a 317C231 China YES
PCFT1a 153C184 Sweden NO
PEMTa 153C184 Sweden YES
PEX10 2369C2946 China; Japan NO
PMS2a 1292C480 China YES
POLG 2463C1480 Meta-analysis NO
PON1 1037C1094 China; Greece;

Iran; Slovenia
DISCORDANT

PON2 270C320 Greece; Iran DISCORDANT
PSAT1 917C2015 Japan DISCORDANT
RAG1a 580C580 China YES
RFC1a 153C184 Sweden NO
RGS9a 3608C5909 China NO
SHMT1 153C184 Sweden NO
SFRS1a 962C1931 China NO
SFRS2a 962C1931 China NO
SFRS3a 962C1931 China NO
SFRS4a 962C1931 China NO
SFRS5a 962C1931 China NO
SFRS6a 962C1931 China YES
SFRS7a 962C1931 China NO
SFRS9a 962C1931 China NO
SIRPA 1402C1172 China YES**
SIRPA-SIRPGa 490C1167 China NO
SIRPG 1402C1172 China DISCORDANT
SOD2 690C649 China; France DISCORDANT
SOD3a 580C580 China NO
SOX5 2987C3526 China; Japan DISCORDANT
TAS2R38 623C530 Macedonia,

Albania and
Japan

NO

TCblRa 153C184 Sweden YES
TCN2a 153C184 Sweden NO
TMEM132Ea 3608C5909 China NO
TNFa 780C260 India YES
TP53 1134C1545 Meta-analysis NO
UBR2a 30C80 Japan YES
USP26 1716C2597 Meta-analysis NO
USP8 917C2015 Japan DISCORDANT
XPCa 252C288 China NO
XRCC2a 580C580 China NO
XRCC3a 580C580 China NO
XRCC4a 580C580 China NO
XRCC5a 580C580 China NO

(B) Specific spermatogenic function
BRDT 259C343 Albania, Mace-

donia; Israel
NO

DAZL 2715C1835 Meta-analysis DISCORDANT
EPPINa 473C198 China YES
H2BFWT 851C445 China; Korea YES
HORMAD1 391C448 China; Japan YES**
HORMAD2a 361C368 China NO
MOV10L1a 30C70 Iran NO
NANOS1a 719C383 China NO
PIWIL1a 490C468 China NO
PIWIL2a 490C468 China NO
PIWIL3a 490C468 China NO
PIWIL4a 490C468 China NO
PRDM9a 309C377 China NO
PRM1 851C955 China; Iran;

Japan; Spain
YES**

PRM2 525C648 China; Japan NO
PRMT6 2369C2946 China; Japan NO
REC8a 96C96 USA NO
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Table 1 Continued.

Gene name
CasesC
controls

Country of
origin Association

SEPT12 290C480 Japan; Taiwan DISCORDANT
SPATA17a 38C96 Japan YES
SPO11 186C167 China; Iran DISCORDANT
STRA8a 719C383 China YES
TEX15 445C538 Albania, Mace-

donia; China
NO

TSSK4a 372C220 China NO
TSSK6a 519C359 China NO
UBE2B 568C612 China and India YES*a

YBX2a 326C210 China YES

(C) Endocrine function
AR 2084C1831 Meta-analysis YES
ESR1 1576C1777 Meta-analysis DISCORDANT
ESR2 2815C3178 Meta-analysis DISCORDANT
INSR 624C530 Albania, Mace-

donia; Japan
NO

MSMBa 338C382 China YES
SRD5A2a 132C111 Estonia NO

Underlined, gene polymorphisms evaluated in meta-analyses com-
prising study populations with different ethnic/geographic origins and
association description refers to the global meta-analysis results;
YES, SNP is associated in all studies; YES**, multiple SNPs studied in
the gene by different authors, but specific SNPs analyzed in a single
study result as associated to male infertility; DISCORDANT, the same
SNP analyzed in different studies show discordant results; NO, SNP
shows no association in any study.
aGene analyzed by a single study. Alternative gene names appearing in
other studies are reported in brackets.
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located on chromosome 14q23-24 and codifies for ERb,
a protein with 530 amino acids. Both receptors are
highly expressed in human testicular germ cells.
Regarding ESR1, the two most studied SNPs are
rs2234693 (also known as PvuII) and rs9340799
(known as XbaI), both located in intron 1 (c.453-
397TOC and c.453-351AOG respectively). Although a
relationship between these SNPs and ESRs gene/protein
function and stability has been proposed, their exact
effect remains unclear. The last meta-analysis performed
so far involves 12 studies comprising from 736 to 1418
infertile cases and 841–1601 controls depending on the
type of analyzed SNP (Ge et al. 2014). The meta-analysis
includes azoospermic, oligozoospermic and oligoastheno-
zoospermic (OAZ) and OAT patients of different
ethnic and geographic origin. According to this analysis,
ethnic background plays an important role in the
biological effect of the variants. For instance, the minor
allele C of rs2234693 (c.453-397TOC) seems to show a
protective effect in the Asian population (C allele vs
T allele ORZ0.78, 95% CI: 0.64–0.96; CC vs TT, ORZ
0.61, 95% CI: 0.40–0.93), whereas in Caucasians it is
associated with an increased risk for infertility (CC vs
CTCTT: ORZ1.52, 95% CI: 1.05–2.22). As far as the
XbaI SNP (c.453-351AOG), the G allele is associated
with a decreased risk, according to the dominant model
in the Asian population, whereas no association was
found in Caucasians. A similar situation was encoun-
tered also for the SNP rs1256049 in ESR2 (c.984GOA),
Reproduction (2015) 150 R159–R174
which according to the recessive model is associated
with a decreased risk in Asian populations, whereas in
Caucasian men it is associated with an increased risk for
male infertility according to the dominant model.
Finally, rs4986938 (c.1406C1872GOA) mapped on
ESR2 does not affect male fertility in any population.
These results show again the importance of the patients’
ethnic origin and their genetic background in modulat-
ing the effect of a given variant. Controversies may also
derive from the different level of exposition to endocrine
disrupters, which also interact with these receptors and
alter testis development and function. It is therefore
plausible that a more pronounced effect of these SNPs
can be observed only in relationship with a high level of
exposure to these environmental factors.

As for the nitric oxide synthase 3 (NOS3 or eNOS)
gene, three principal SNPs have been studied in
relationship with male infertility: rs1799983 (c.894TOG
in the exon 8), rs2070744 (c.-786COT in the promoter
region) and rs61722009 (27 bp VNTR polymorphisms in
the intron 4, also known as 4a4b polymorphisms). NOS3
is located on chromosome 7q36.1 and produces nitric
oxide (NO), which is implicated in several cellular
functions such as vascular smooth muscle relaxation
through a cGMP-mediated signal transduction pathway,
but also predicted to have an important role in fertility,
including sperm motility and maturation, as well as germ
cell apoptosis in the testis (Zini et al. 1996, Lee & Cheng
2008). The eNOS rs2070744 variant is associated with
reduced promoter activity, suppressed eNOS transcrip-
tion and decreased NO generation (Dosenko et al.
2006). There is also a trend for diminished eNOS
enzyme activity in eNOS rs1799983 SNP carriers
(Wang &.Mahaney 1997). The VNTR within intron 4 of
the eNOS gene accounts for O25% of basal plasma NO
generation, suggesting that this gene might have an
important role in NO-mediated physiology (Wang et al.
1997). The first case–control study related to fertility
analyzed the three SNPs in a cohort of 371 patients and
association was found only between the 4a4b variant
and sperm morphology (Yun et al. 2008). Subsequently,
relatively small studies from Italy, China, Iran and Brazil
reached discordant results (Buldreghini et al. 2010,
Safarinejad & Shafiei 2010, Bianco et al. 2013, Yan
et al. 2014). Finally, Song et al. (2015) performed a
meta-analysis on 2018 infertile patients (from eight
studies, including their own) and concluded that only
c.-786COT and 4a4b were significantly associated with
male infertility in both the Asian and Caucasian
populations (ORZ1.53, 95% CIZ1.10–2.22 and
ORZ3.24, 95% CIZ2.49–4.22 respectively). Indeed,
these SNPs are promising and merit further investigations
in order to define their potential clinical relevance.

The deleted in azoospermia-like (DAZL ) gene is an
autosomal homologue of the Y-chromosomal DAZ
(deleted in azoospermia) gene cluster and maps to
chromosome 3p24 (Yen et al. 1996). As the other family
www.reproduction-online.org



Table 2 Summary of GWAS results. SNPs and related genes described as significantly associated in GWA Studies.

Aston & Carrell (2009) Aston et al. (2010)a Hu et al. (2012) Zhao et al. (2012) Kosova et al. (2012)

SNP
associated

Gene
related

SNP
associated

Gene
related

SNP
associated

Gene
related

SNP
associated

Gene
related

SNP
associated

Gene
related

rs1399645 NXPH2 rs763110 FASLG rs12097821 PRMT6 rs3129878 HLA-DRA rs10966811 TUSC1
rs2063802 NXPH2 rs5911500 LOC203413 rs2477686 PEX10 rs498422 C6orf10/BTNL2 rs7867029 PSAT1
rs4954657 NXPH2 rs10246939 TAS2R8 rs10842262 SOX5 rs12870438 EPSTI1
rs11707608 CNTN3 rs3088232 BRDT rs7174015 USP8
rs2976084 CNTN3 rs323344 TEX15 rs10129954 DPF3
rs3105782 MASP1 rs323345 TEX15 rs680730 DSCAML1
rs4484160 PROK2 rs5764698 SMC1B rs11236909 TSKU/LRRC32
rs9814870 ARL6 rs1801131 MTHFR rs10488786 ARHGAP42
rs9825719 NSUN3 rs631357 KIF17 rs724078 MAS1L/UBD
rs2290870 ATP8A1 rs35397110 USP26
rs4343755 GNPDA2 rs34605051 JMJD1A
rs4695097 GNPDA2 rs2030259 JMJD1A
rs4541736 LRFN2 rs11204546 OR2W3
rs1545125 COBL rs2059807 INSR
rs215702 LSM5
rs6476866 SLC1A1
rs10841496 PDE3A
rs10848911 EFCAB4B
rs12920268 MAF
rs2032278 GALR1
rs608020 SALL4

aAston et al. (2010) analyzed a total of 172 SNPs including also 84 SNPs from Aston & Carrell (2009).
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members (DAZ and BOLL), this gene encodes RNA
binding proteins with important roles in spermatogenesis
(Yen 2004). One of the most studied SNPs is
rs121918346, a missense variant that changes threonine
54 to an alanine on exon 3. The last meta-analysis
comprised 13 studies with a total of 2715 cases and 1835
controls from different ethnic origins and concluded that
the variant was significantly associated with male
infertility exclusively in Chinese men (Chen et al.
2015). This finding is in line with the conclusion of the
first Caucasian study that considered this polymorphism
as ‘an example of remarkable ethnic differences’ for its
effect on predisposing carriers to spermatogenic failure
(Becherini et al. 2004).

The androgen receptor (AR) gene also contains two
polymorphic sites in the N-terminal trans-activation
domain of the receptor: a polyglutamine tract – (CAG)n
– and a polyglycine tract – (GGC)n,, which were objects
of many publications related to male infertility (for
review see Davis-Dao et al. (2007) and Nenonen et al.
(2011)) The (CAG)n length normally ranges between six
and 39 repeats in the general population, with a median
value that varies according to the ethnicity (21–22 in
White Caucasian, 19–20 in African–American, 22–23 in
Asian, 23 in Hispanic populations). The originally
described inverse relationship between CAG repeat
length and the receptor trans-activation led to the
hypothesis that longer CAG repeat conferred a higher
risk for a series of androgen-dependent diseases,
including infertility and cryptorchidism (Tut et al.
1997). The first meta-analysis based on 33 publications
www.reproduction-online.org
in 2007 was unable to find a cut-off value above which
infertility risk is increased (Davis-Dao et al. 2007).
A more recent meta-analysis has proposed an alternative
way of analysis based on the ‘optimal range’ hypothesis,
which derives from novel functional studies reporting
that the AR activity was actually higher in the presence of
a determined number of CAG (Nenonen et al. 2011).
Therefore, according to this hypothesis either a longer or
a shorter CAG tract might have a negative effect on the
receptor function. Although Nenonen et al. (2011) were
able to demonstrate a significant association between
the length of this polymorphism below or above the
‘optimal range’ and impaired sperm production (CAG
!22: PZ0.03, ORZ1.18 95% CI: 1.02–1.39; for CAG
O23: PZ0.02, ORZ1.22, 95% CI 1.03–1.44), the role of
CAG repeats in male infertility is probably more complex
than it has been previously considered. More functional
and clinical studies are needed before the introduction of
this polymorphism into the diagnostic setting.

The CYP1A1 (cytochrome P450, family 1, subfamily A,
polypeptide 1) is located on chromosome 15q24.1
and encodes a member of the cytochrome P450
superfamily. The cytochrome P450 proteins are mono-
oxygenases that catalyze many reactions involved in
drug metabolism and synthesis of cholesterol, steroids
and other lipids. CYP1A1 encodes a 522-aminoacide
protein that, among its functions, is involved in the
metabolism of polycyclic aromatic hydrocarbons into
their biologically active intermediates that have potential
reproductive toxicity in men (McManus et al. 1990). The
rs4646903 variant, a TOC substitution in 3’UTR of
Reproduction (2015) 150 R159–R174



Table 3 Summary of GWAS replication studies for SNPs and related
genes (including SNPs presenting significant or borderline association
in the original GWAS).

Reference SNPs analyzed Gene related

Follow-up Aston et al. (2010)
Plaseski et al. (2012)a rs5911500b LOC203413

rs11204546b OR2W3
rs3088232b BRDT
rs2059807 INSR
rs10246939 TAS2R8
rs34605051 JMJD1A
rs323344 TEX15
rs323345 TEX15
rs763110 FASLG

Chihara et al. (2015) rs11204546b OR2W3
rs5911500 LOC203413
rs10246939 TAS2R8
rs2059807 INSR

Follow-up Hu et al. (2012)
Xu et al. (2013) rs3197744b SIRPA

rs11046992b SOX5
rs146039840 SOX5
rs1129332 PEX10
rs3791185 PRMT6
rs2232015 PRMT6
rs1048055 SIRPG

Lu et al. (2014) rs1048055b SIRPG
rs2281807 SIRPG
rs11046992 SOX5
rs146039840 SOX5

Zou et al. (2014) rs10842262b SOX5
rs12097821 PRMT6
rs2477686 PEX10

Hu et al. (2014),c rs7194b HLA-DRA
rs7099208b ABLIM1
rs13206743b MIR133BL17A
rs3000811b CDC42BPA

Sato et al. (2013) rs12097821 PRMT6
rs2477686 PEX10
rs10842262 SOX5
rs6080550 SIRPA-SIRPG

Follow-up Hu et al. (2012), Zhao et al. (2012)
Tu et al. (2014) rs3129878b HLA-DRA

rs12097821 PRMT6
rs10842262 SOX5
rs2477686 PEX10

Follow-up Zhao et al. (2012)
Jinam et al. (2013) rs3129878b HLA-DRA

rs498422 C6orf10/BTNL2
Follow-up Kosova et al. (2012)
Sato et al. (2015) rs7867029b PSAT1

rs7174015b USP8
rs12870438b EPSTI1
rs724078 MAS1L/UBD

aSNPs in this study are not significantly associated after Bonferroni
correction. bSNPs described as significantly associated. cOnly SNPs
described as significantly associated to male infertility are listed (in the
study, a total of 77 SNPs originated from the Hu et al. (2012) paper were
screened).

R164 C Krausz and others
CYP1A1 gene has been associated with increased
transcript half-life and therefore increased enzyme
activity resulting in elevated levels of activated metab-
olites (Manfredi et al. 2007). This SNP has been
associated with different types of cancers (Salnikova
et al. 2013, Abbas et al. 2014), further supporting their
biological importance. Studies focusing on the role of
Reproduction (2015) 150 R159–R174
this SNP in male infertility overall produced discordant
results even in the same ethnic groups. Despite
discrepancies, the last meta-analysis performed on a
total of 1060 cases and 1225 controls concluded for a
significant association between the variant and male
infertility reaching the highest risk’s entity according to
the homozygous model (ORZ2.18, 95% CI: 1.15–4.12)
(Luo et al. 2014). However, since only two out of six
studies report it as a significant susceptibility factor, this
meta-analysis awaits further confirmation. Given the
biological function of this gene, differences in exposure
to environmental factors may also influence the outcome
of single studies; lack of information about careful
matching of important variables such as drug and
alcohol intake and life-style factors between patients
and controls may well be responsible for controversies.

Apart from the meta-analyses focusing on the ten
genes, in case of multiple studies analyzing the same
SNPs/gene, results are almost constantly controversial
and even if association is found generically with
‘infertility,’ the subgroup analysis shows differences
(Supplementary Table 1). An example is the rs7885967
(c.-9COT) of the H2BFWT (H2B histone family, member
W, testis-specific) gene encoding for a testis-specific
histone with an essential role during meiotic chromatin
reorganization (Gineitis et al. 2001). This SNP maps to
the 5’UTR of H2BFWT and has been demonstrated to
affect the translation of the protein (Lee et al. 2009). The
two case–control studies found significant association
(with moderate OR ranging from 1.51–1.88) with
completely different semen phenotypes: azoospermia
in the Chinese population (Ying & Scott 2012) whereas
lack of association with azoospermia and association
with non-azoospermia (a heterogenous group of oligo/
astheno/teratozoospermic men) in the Korean study
(Lee et al. 2009). Such contradictory results clearly
discourage further studies on this SNP.

The unique example of a polymorphism with fully
concordant results in more than one relatively large
independent study populations is related to the MSH5
gene (rs2075789). The mutS homolog 5 (MSH5) encodes
a member of the mutS family of proteins that are
involved in DNA mismatch repair and apoptosis. Msh5
knockout mice present sterility due to the defect in
resolving meiotic chromosomal crossovers (Edelmann
et al. 1999) Yeast two-hybrid analysis demonstrated that
the SNP rs2075789 impairs interaction between MSH4
and MSH5 proposing a functional effect (Yi et al. 2005).
The two independent studies that include a total of 1454
cases and 640 controls from the Chinese population
report a similar risk’s entity for homo/heterozygous
minor allele carriers compared to WT homozygous
carriers (ORZ2.51; 95% CIZ1.43–4.40 and OR Z1.83,
95% CIZ1.32–2.55, by Xu et al. (2010) and Ji et al.
(2012) respectively). Although this is a promising
candidate SNP, its importance remains limited until
new data are available in other populations.
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Genetic susceptibility factors: GWAS and SNPs

All the genetic risk factors discussed above originate
from the candidate gene approach, which is based on the
analysis of genes/polymorphisms with predicted or
known function in spermatogenesis. Given the relatively
poor outcome of these studies, much expectation was
given to whole genome analysis. Gene discoveries from
GWAS have been successful for several diseases and
helped unravel pathways important for a certain
biological process (Visscher et al. 2012) Overall, four
GWAS based on SNP-arrays are available in the
literature and are summarized in Table 2 (Aston &
Carrell 2009, Hu et al. 2012, Kosova et al. 2012, Zhao
et al. 2012). The first study by Aston and Carrell (2009)
analyzed 370 000 SNPs in 92 oligozoospermic and non-
obstructive azoospermic (NOA) patients and 80 healthy
controls and found 21 SNPs associated with azoosper-
mia or oligozoospermia. Due to the prohibitively high
cost of the array studies in 2009, the study population
size was clearly underpowered and the associations
reported did not reach genome-wide significance. This
pioneer work was followed by two large, properly
powered Chinese GWAS, which reported a number of
SNPs with stringent P value !1!10K8. Hu et al. (2012)
analyzed 2927 individuals with NOA and 5734 controls
from Han Chinese population and found a few SNPs
predisposing to NOA in PRMT6, PEX10 and SOX5 genes.
The second study analyzed 2226 NOA patients and 4576
controls in the same population and reported significant
associations with SNPs mapping to two regions: HLA-DRA
and C6orf10/BTNL2 (Zhao et al. 2012). Despite meeting
requirements for genome-wide significant results, no
overlapping SNPs were observed between these two
large studies. Finally, in the same year Kosova et al.
(2012) analyzed 269 Hutterite men and 123 men from
Chicago with diverse ethnic background, and described
nine SNPs associated with reduced fertility or impaired
sperm parameters, but in this case also no SNPs
overlapping with the previous three GWAS were
reported (Table 2).

Subsequently, SNPs reported as significantly associ-
ated or with borderline P values in the above GWAS
were analyzed in independent study populations with
variable success (Table 3). Findings on the majority of
candidate SNPs were not confirmed by the replication
studies, and the few SNPs that show association either
confer a moderate risk for impaired sperm production or
loose significance after Bonferroni correction (for
instance, OR2W3, BRDT). Interestingly, the SNP
reported in SIRPA/G (rs6080550) with borderline
significance in one of the GWAS (Hu et al. 2012) was
not confirmed in the follow-up studies, but following
re-sequencing of the SIRPA gene, another SNP
(rs3197744) was identified as a significant susceptibility
factor for oligozoospermia with ORZ4.62 (95% CIZ
1.58–13.4 PZ0.005) (Xu et al. 2013) Similarly, the
www.reproduction-online.org
re-sequencing of SIRPG also provided an interesting
candidate SNP (rs1048055) with similarly high OR for
NOA (ORZ3.93, 95% CIZ1.59–9.70 PZ3.00!10K3)
(Lu et al. 2014). Both genes are members of the signal-
regulatory-protein (SIRP) family and belong to the
immunoglobulin superfamily, and when they bind to
CD47 can induce cell apoptosis (Brooke et al. 2004).
According to the above data, SIRPA/G can be considered
as promising candidate genes for spermatogenic impair-
ment and furtherer investigations.

The HLA-DRA gene-related SNPs turned out to be the
most promising, since highly significant association with
NOA was found in the GWAS of Zhao et al. (2012) and in
four case–control studies in Chinese and Japanese
populations (Tsujimura et al. 2002, Jinam et al. 2013,
Hu et al. 2014, Tu et al. 2014). HLA-DRA gene is a
member of class II genes and encodes the alpha chain of
HLA-DR and heterodimerizes with b chains (HLA-DRBs)
and plays an important role in the immune system by
presenting peptides on the cell surface of antigen-
presenting cells. Three variants have been described
with significant association with male infertility in
Japanese and Chinese populations (Zhao et al. 2012,
Jinam et al. 2013, Hu et al. 2014, Tu et al. 2014):
rs3129878, rs7194 and rs7192. The variant rs7194 is in
linkage disequilibrium with rs7192 and is located on
3 0UTR. It was predicted to map to the has-miR-6507-3p
binding site and may play an important role during
transcription by influencing HLA-DRA expression level
through microRNA-mediated post-transcriptional
regulation (Lin et al. 2015). As for rs7192, it is a
missense variant (L242V) located in exon 4, which
encodes part of the DRA a-chain cytoplasmic domain
(Neefjes et al. 2011). This SNP might alter interactions
with b-chain or ubiquitin E3 ligases, which control the
cell-surface expression of class II MHC proteins (Gueant
et al. 2015). Finally, rs3129878 maps to intron 1 and its
putative effect is not yet clarified. These polymorphisms
have been already described as susceptibility factors for
a number of autoimmune diseases, therefore it has been
hypothesized that they might mediate the response to
testicular micro-environmental antigens and therefore
may elicit autoimmune inflammatory responses leading
to azoospermia (Hu et al. 2012). It would be interesting
to study this polymorphism also in Caucasians and in
subgroups of patients with previous history of urogenital
inflammation, especially orchiepididymitis.
Rare variants: gene re-sequencing studies

Besides the polymorphisms described above, many
re-sequencing studies of candidate spermatogenesis
genes have been also published. Although many genes
are known to be essential for gametogenesis, there are
surprisingly few monogenic mutations that have been
conclusively demonstrated to cause human spermato-
genic failure. The majority of mutations identified are in
Reproduction (2015) 150 R159–R174
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heterozygosis and therefore the demonstration of a
cause-effect relationship remains difficult. In addition,
functional studies are lacking in a large majority of the
cases. Some of the most promising mutations, for which
also functional studies were performed, have been
identified in the following genes: i) HSF2 (Mou et al.
2013) and SOHLH1 (Choi et al. 2010) reported in NOA
men; ii) NANOS1 (Kusz-Zamelczyk et al. 2013) and
NR5A1 (Bashamboo et al. 2010) reported in NOA and
oligozoospermic patients; iii) Yatsenko et al. 2006),
GALNTL5 (Takasaki et al. 2014) and SEPT12 (Kuo et al.
2012) identified in oligo or OAT men. All the above
genes are autosomal and the reported mutations are in
heterozygosis. Whether these mutations are fully
responsible for the given phenotypes (dominant effect)
or are acting in synergy with other yet unidentified
heterozygous mutations in genes with similar function
(oligogenic model) remains to be defined.

Thanks to the diffusion of NGS platforms, testing for a
large panel of candidate genes in large group of patients
and controls has now became an affordable approach.
The first NGS-based, candidate gene panel study has
been recently performed in a Chinese case–control
setting including 757 NOA patients and 709 fertile males
(Li et al. 2015), Using the HiSDefault 2000 platform,
they sequenced a total of 650 infertility-related genes
and described a significant excess of rare, non-silent
variants in genes that are key epigenetic regulators
during spermatogenesis such as BRWD1, DNMT1,
DNMT3B, RNf17, UBR2, USP1 and USP26. The authors
do not provide detailed information about the exact
genotype of the variants, but apparently ‘most of the non-
silent variants in these genes in the sporadic NOA
patients were heterozygous.’ As USP26 is located on the
X chromosome, the reported variants are hemizygous.
Given that these genes are involved in similar biological
function, the hypothesis about a synergic action of
heterozygous mutations is plausible. However,
functional analyses are still needed in order to support
this hypothesis,

NGS has been recently used with success also for
studies of familial cases of azoo/oligozoospermia from
Turkey. A novel homozygous mutation in the NPAS2
gene was reported in three brothers from a consangui-
neous family, showing variable semen phenotypes
ranging from azoospermia to oligozoospermia (Rama-
samy et al. 2015). Another publication focused on two
families: in one case, the most plausible cause for
impaired spermatogenesis was a homozygous truncating
mutation in TAF4B; in the other case, two azoospermic
brothers were homozygous for a mutation in the
ZMYND15 gene (Ayhan et al. 2014). All these genes
are expressed in the testis and are plausible candidates
for the observed phenotypes. However, given that the
heterozygous carriers of the families are not affected,
mutation screening in sporadic NOA patients has
limited, if any, diagnostic relevance.
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On the contrary, sex chromosomes represent an
optimal target in sporadic cases since mutations are in
hemizygosis with a potential direct effect on protein
function without a compensating effect from a normal
allele. Stouffs & Lissens (2012) have reviewed the
literature concerning X-linked gene mutations in eight
genes. With the exception of the AR gene, no other
causative mutations/polymorphisms have been
described with clinical relevance. Novel data on
X chromosome-linked genes derives from recent array-
CGH studies (see paragraph below) and the most
interesting findings concern genes belonging to the
cancer testis antigen (CTA) family (Krausz & Giachini
2012) and to a meiosis genes, TEX11 (Yatsenko et al.
2015) (Fig. 1B).

As far as the Y chromosome-linked genes are
concerned, studies are limited to deletion analysis rather
than intragenic mutation screening, and the only
relevant finding concerns the USP9Y gene in the AZFa
region (Tyler-Smith & Krausz 2009) Deletions affecting
this gene have been associated with a variable semen
phenotype from azoospermia to normozoospermia,
indicating that the gene is more likely a fine tuner than
an essential factors for spermatogenesis.
CNVs and male infertility

CNVs are a class of structural variation that may involve
complex gains or losses of homologous sequences at
multiple sites in the genome. The first genome-wide map
of CNVs existing in the human genome showed that
these variations cover w360 Mb, i.e., 12% of the human
genome and represent the primary source of inter-
individual variability between genomes (Redon et al.
2006). Notwithstanding, the gain or loss of DNA
sequence can also produce a spectrum of functional
effects and human disease phenotypes, by both disrupt-
ing gene-coding sequences and affecting region void of
genes but involving regulatory elements with an indirect
effect on gene transcription. Although the functional
consequences of a CNV might be difficult to predict,
many CNVs do generate alleles with a clear-cut impact
on health and have been associated with a growing
number of common complex diseases (Riggs et al.
2014). As infertility is indeed a complex disease, it has
been hypothesized that certain CNVs may cause
defective recombination (especially those mapping to
PAR), leading to meiotic failure and the loss of germ
cells, or might affect the activity of individual genes
important for spermatogenesis. To date, the only CNVs
proved to be in a clear-cut cause-effect relationship with
spermatogenic impairment are the AZF microdeletions
on the Y chromosome (Vogt et al. 1996, Krausz et al.
2014). Furthermore, the relationship between CNVs and
male infertility was also investigated on a larger scale by
performing array-CGH on the whole genome (Tüttelmann
et al. 2011, Stouffs et al. 2012, Lopes et al. 2013) or at
www.reproduction-online.org
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Figure 1 Schematic representation of sex chromosome-linked CNVs with clinical relevance. (A) Y chromosome CNVs: the picture illustrates
complete AZF microdeletions, a direct cause of impaired spermatogenesis and the gr/gr deletion, an ascertained risk factor for spermatogenic
impairment. In the lower table, AZF microdeletions and gr/gr deletion frequencies in patients and controls are reported. Azoo: azoospermic;
OAT: oligoasthenoteratozoospermic. * mean frequencies of the gr/gr deletion are relative to the Italian and Spanish populations. (B) X chromosome
CNVs: DUP1a (Chianese et al. 2014), c.652del237bp in TEX11 (Yatsensko et al. 2015) and CNV67 (Lo Giacco et al. 2014a) are three novel variants
with potential clinical implication given their specific association with impaired spermatogenic phenotypes. In the lower table, CNVs type and
frequencies in patients and controls are reported. Figure is not in scale.
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high resolution on the X chromosome (Krausz et al.
2012). The three studies that compared the CNV load
between patients and controls all converged on a
significantly higher burden of CNVs in men with
spermatogenic disturbances (Tüttelmann et al. 2011,
Krausz et al. 2012, Lopes et al. 2013). In our study,
both the mean number of CNVs/person (mainly
dependent on an over-representation of losses) and the
mean size/person were significantly increased in the
patient group (Krausz et al. 2012). In addition, a
significantly lower sperm concentration and total
sperm count was found in patients with O1 CNV
compared to those with %1 CNV. This excess of X-linked
CNVs and DNA loss in patients with reduced sperm
count and the significant association between CNV
number and sperm count in the infertile group
support the existence of a potential link between the
observed CNV burden and spermatogenic failure. These
conclusions are supported also at the whole genome
level, but the CNV burden is especially pronounced
on the sex chromosomes (Tüttelmann et al. 2011,
www.reproduction-online.org
Lopes et al. 2013). More specifically, Tüttelmann et al.
(2011) reported a significant over-representation of
sex-chromosomal CNVs in azoospermic men with
Sertoli-cell only (SCO) histology, whereas Lopes et al.
(2013) in azoo/oligozoospermic men.
Sex chromosomes

Sex chromosomes clearly play an important role in
spermatogenesis since they are enriched with genes
involved in the development and differentiation of
gonads and gametogenesis (Skaletsky et al. 2003,
Mueller et al. 2008, 2013). Given that with the exception
of the PAR genes, men are hemizygous for most of the
genes located on this chromosome, any de novo
mutation/CNV might have an immediate impact, since
no compensation is provided by another normal allele.
Moreover, both chromosomes have accumulated a
relevant number of segmental duplications (also called
amplicons), which constitute a favorable substrate for
CNV formation.
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The Y chromosome

The Y chromosome: as already mentioned, Y chromo-
some microdeletions occurring on the AZF region are the
first and thus far the only example of CNVs with clinical
significance (Krausz et al. 2014). While the complete
AZF deletions have been introduced as a routine genetic
test for patients with severe OAT and NOA, the role of
partial AZFc deletions, i.e., gr/gr deletion, b1/b3, b2/b3
(Repping et al. 2003, 2004) has been the object of long-
lasting debates (Fig. 1A). Four meta-analyses are
available on the gr/gr deletion and all reach significant
odds ratios, reporting on average two- to 2.5-fold
increased risks of reduced sperm output/infertility
(Tüttelmann et al. 2007, Visser et al. 2009, Navarro-
Costa et al. 2010, Stouffs et al. 2011). In a more recent
survey on AZFc deletions in a sample of 20 884 men,
Rozen et al. (2012) found the gr/gr deletion to be the
most common among partial AZFc deletions (2.4% or
1/41 men), as well as that it doubles the risk for impaired
spermatogenesis. These data altogether thus confirm the
gr/gr deletion as an established significant genetic risk
factor for impaired sperm production. The entity of the risk
associated with this genetic anomaly varies between
populations, reaching the highest OR in Italians, which
have a 7.9-fold increased risk for spermatogenic impair-
ment (ORZ7.9, 95% CI 1.8–33.8) (Ferlin et al. 2005,
Giachini et al. 2005, 2008). The existence of Y chromo-
somal haplogroups that constitutively carry the gr/gr
deletion, such as the Db2 branch common in Japan and
the Q1 haplogroup common in China, indicates that the
Y background may modulate the penetrance of this CNV in
Asia (Repping et al. 2006, Zhang et al. 2007). Interestingly,
phenotypic variation within European carriers of the
Y-chromosomal gr/gr deletion is independent of the
Y-chromosomal background (Krausz et al. 2009).

Though Y-chromosome microdeletions are directly
associated only with spermatogenic failure, concerns
have been raised about the potential risk for carriers
undergoing assisted reproductive technology to father
children affected not only by impaired spermatogenesis
but also other conditions such as Turner’s syndrome
(45,X) and other phenotypic anomalies associated with
sex chromosome mosaicism (e.g., ambiguous genitalia)
(Patsalis et al. 2002, Krausz et al. 2014). Furthermore, a
recent study (Jorgez et al. 2011) reported that 5.4% of
men with AZF deletions and a normal karyotype also
carried SHOX haploinsufficiency. Indeed, this infor-
mation raised the question about the importance of
screening for SHOX-linked CNVs in men carrying
Y-chromosome microdeletions. Our group performed a
large multicenter study in order to evaluate whether
such an alarming hypothesis was actually true (Chianese
et al. 2013). No association was found between
Y-chromosome microdeletions and SHOX haploinsuffi-
ciency, implying that deletion carriers have no
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augmented risk of SHOX-related pathologies (short
stature and skeletal anomalies).

The question whether increased gene dosage of the
AZFc region may also affect fertility originates from the
observation of a limited variation in the copy number of
AZFc-linked genes, which strongly indicates a natural
selection for the conservation of an ‘optimal’ copy
number by removing exceptionally high or low copy
number variants from the population (Repping et al.
2006). The DAZ gene in the AZFc region is a clear
example: about 90% of men carry four DAZ copies,
which suggests that this is the optimal number required
for normal spermatogenesis and that both a reduction
and an increase of AZFc gene dosage may have a
negative effect. This observation encouraged initially two
groups to investigate the clinical consequences of partial
AZFc duplications, reaching different conclusions: an
association between increased AZFc gene dosage and
male infertility was observed in the Han Chinese study
(Lin et al. 2007), whereas no association could be
detected in the Italian study population (Giachini et al.
2008). Later on, the effect of AZFc duplications on
spermatogenesis was further investigated and again
different results were obtained. Ye et al. (2013) found a
significantly higher frequency of partial duplications in
the infertile patients (4.0%) compared to controls (0.7%)
in the Chinese-Yi population. Contrastingly, in the
analysis by Lo Giacco et al. (2014a), performed on a
study population including prevalently Spanish subjects,
AZFc duplications were found at comparable frequen-
cies in patients (4.9%) and controls (3.5%). Seemingly,
this discordance reflects mere ethnic differences; there-
fore, if increased AZFc gene content does play a role in
spermatogenic impairment, the effect is probably
modulated by population-specific factors.

The X chromosome

The first X chromosome studies were based on the
candidate gene approach, and a total of seven X-linked
candidate genes have been studied so far (AR, AKAP,
FATE, NXF2, TAF7L, SOX3, USP26). With the exception
of the AR gene, no clear-cut causative mutations have
been reported and SNPs linked to some of these genes
have been the objects of discordant results (Table 1).
With the shift of discovery research to high-throughput
approaches, researchers were encouraged to apply such
technologies to investigate X chromosome-linked CNVs
and their role in spermatogenic failure. To date, four
groups have employed comparative genomic hybrid-
ization (CGH) arrays (Tüttelmann et al. 2011, Krausz
et al. 2012, Stouffs et al. 2012, Lopes et al. 2013) and
three provide information about X-linked CNVs with
potential clinical relevance in the etiology of male
infertility (Tüttelmann et al. 2011, Krausz et al. 2012,
Lopes et al. 2013) (Fig. 1B).
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The analysis performed by array-CGH employing a
high-resolution (probe distance of 2–4 Kb) X chromo-
some-specific platform (Krausz et al. 2012) allowed the
identification of a consistent number of CNVs on the
X chromosome, the majority of which (75.3%) were
novel. From a clinical standpoint, of particular interest
are patient-enriched (significantly more frequent in
patients) and patient-specific (not found in controls)
CNVs, since genes and regulatory elements within or
nearby these regions presumably have a higher prob-
ability of being implicated in spermatogenic failure.
Although there are some partially overlapping findings
regarding the X chromosome-linked CNVs between the
three studies (Tüttelmann et al. 2011, Krausz et al. 2012,
Lopes et al. 2013), differences in the resolution of the
arrays may explain the lack of complete overlaps. By
performing a comparison between the raw data of the
three studies we observed a few interesting overlapping
CNVs. Three patient-specific CNVs – DUP1a, DUP55
and DUP60 – detected in the study by Krausz et al. (2012)
were also found by Tüttelmann et al. (2011) in men
affected by SCOS. The comparison with data by Lopes
et al. (2013) also shows an overlap of a recurrent deletion
detected in their study at a significantly higher frequency
in patients compared to controls and two patient-specific
CNVs, CNV30 (gain) and CNV31 (loss), identified in the
Krausz’ study. When comparing patient-specific CNVs
detected in the study by Tüttelmann et al. (2011), the loss
nssv1496532 overlaps with CNV69, which was found
significantly more frequent in patients than controls in the
Krausz’ study. One gain on Xq22.2 (Lopes et al. 2013)
overlapped with the private duplication nssv1499049
found in an oligozoospermic man in Tüttelmann’s study.
It is worth noting that this duplication intersects a number
of genes with specific or exclusive expression in the testis
(H2BFWT, H2BFXP and H2BFM). No CNVs were found
to be common to all three studies. In the light of these
comparisons, DUP1a, CNV69 and the nssv1499049 are
promising variants, since their potential involvement in
spermatogenic impairment was reported by more than
one study.

In fact, the two variants DUP1a and CNV69 were
objects of large follow-up studies, together with other
recurrent deletions, CNV67 and CNV64 (Chianese et al.
2014, Lo Giacco et al. 2014b). The first study analyzed
three recurrent deletions (frequency O1%) in a large
case–control setting (nZ1255) for their exclusive
(CNV67) and prevalent (CNV64 and CNV69) presence
in patients. For instance, deletion carriers displayed a
higher probability of having impaired spermatogenesis
(ORZ1.9 and 2.2 for CNV64 and CNV69 respectively)
as well as sperm concentration and total motile sperm
number was lower in carriers compared to non-carriers
The most interesting deletion was CNV67 because it was
exclusively found in patients with a frequency of 1.1%
(P!0.01) and is likely to involve the MAGE9A gene –
a CTA family member – and/or its regulatory elements
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(Lo Giacco et al. 2014b). Similarly, a follow-up study
was performed on five selected gains (DUP1A, DUP5,
DUP20, DUP26 and DUP40), which include, or are in
close proximity to, genes with testis-specific expression
and potential implication in spermatogenesis (Chianese
et al. 2014). While four of the five CNVs (DUP5, DUP20,
DUP26 and DUP40) did not individually reach statistical
significance, they remained patient-specific. DUP1A,
instead, was found exclusively and at a significantly
higher frequency in patients. This gain fully duplicates a
long non-coding RNA (LINC00685) that potentially acts
as a negative regulator of a gene with potential role in
spermatogenesis, PPP2R3B; according to our hypothesis,
the mechanism by which DUP1A could lead to
spermatogenic failure is a misbalanced ratio of the
PPP2R3B and its antisense, causing a decrease in
PPP2R3B transcription in the developing germ cells
(Chianese et al. 2014). Our data together with the
identification of two SCOS patients with a duplication
disrupting the PPP2R3B gene (Tüttelmann et al. 2011)
indicate that CNVs mapping into this region and
affecting either PPP2R3B or the long non-coding RNA
(LINC00685) are good mutational targets for future
case–control studies.

Lastly, a recent study proved the implication of the
TEX11 gene in meiotic arrest and azoospermia (Yatsenko
et al. 2015). The study population included a total of 289
patients with different testis histology (63 with SCOS,
33 with meiotic arrest and 193 with mixed testicular
atrophy) and 384 normozoospermic controls. With the
use of an X-chromosome high-resolution GCH micro-
array, they firstly analyzed 15 azoospermic men and
found that a patient with mixed atrophy carried a 91-KB
deletion (c.652del237bp) encompassing exons 10, 11
and 12 of TEX11. Further Sanger sequencing in the rest of
the patients allowed detecting that another man with
meiotic arrest carried the same deletion c.652del237bp,
which was confirmed by array-CGH validation; more-
over, they found five patients with either meiotic arrest or
mixed testicular atrophy carrying missense mutations in
TEX11. None of the controls carried any of these
variants. Finally, the finding of TEX11 mutations in
2.4% (nZ7/289) of patients, of which 15% (nZ5/33)
suffered from meiotic arrest and 1% (nZ2/193) had a
mixed testicular atrophy, supports the importance of this
gene for normal spermatogenesis.
Autosomes

Whole-genome approaches allowed providing data also
on the potential role of autosome-linked CNVs in
relation to different semen phenotypes (Tüttelmann
et al. 2011, Stouffs et al. 2012, Lopes et al. 2013). The
first study reported eight autosomal rearrangements
(involving chromosomes 1, 2, 3, 5, 12, 15, 16, 17) poten-
tially linked to fertility problems, as they were not detec-
ted in normozoospermic controls (Stouffs et al. 2012).
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The second study reported recurrent and patient-specific
autosomal CNVs potentially associated with oligozoos-
permia (nZ11) and with SCOS (nZ4), also reporting a
list of genes intersecting the CNVs and with potential
involvement in the spermatogenic phenotype. Finally,
after assaying genome-wide SNPs and CNVs, the third
study estimated that rare autosomal deletions multi-
plicatively change a man’s risk of disease by 10% (OR
1.10 (1.04–1.16), P!2!10K3). The same authors
observed five deletions (ranging in size from 54 kb to
over 2 Mb) of the autosomal DMRT1 gene in four cases
of azoospermia and one in normozoospermia. Despite
the normozoospermic deletion carrier, statistical
analysis based on the comparison of all patients versus
7000 controls lead to a significant association with
impaired sperm production. Given the low frequency of
this mutation and the wide range of associated
phenotype, it remains difficult to include the testing for
DMRT1-linked CNVs in the routine diagnostic workup.

The comparison between the three studies shows
some overlapping findings. When comparing the CNVs
detected by Stouffs et al. (2012) with the raw data
deposited in dbVar by Tüttelmann et al. (2011), five
overlapping loci can be observed on chromosomes 1, 5,
15, 16 and 17, but only those related to chromosome
1 and 16 results are patient-specific in both studies. The
first locus on chromosome 1 shares a 46 kb-span overlap
with the gain nssv1495850 reported in an oligozoos-
permic man in Tüttelmann’s study. The other locus on
chromosome 16 overlaps with both gains and losses
from Tüttelmann’s study; interestingly, gains are found in
both patients and controls, whereas the reciprocal losses
were exclusively detected in OAT patients. When
comparing the Lopes’ and the Tüttelmann’s study, one
overlap is reported on chromosome 8: at this locus,
Tuttelmann et al. identified a deletion in an azoospermic
man and another with a duplication, intersecting the
PLEC1 and MIR661 genes, whereas Lopes et al.
identified a duplication in an oligozoospermic man
affecting the same genes. No CNVs were observed to be
common to all three studies.
Summary and future directions

Male infertility is a multifactorial complex disease with
highly heterogeneous phenotypic representation. The
wide range of quantitative and qualitative impairments
can be caused by several acquired and congenital
factors, including genetic/epigenetic anomalies. Despite
a 10-year effort, research was largely unsuccessful in
identifying recurrent genetic factors with potential
clinical application. The armamentarium of diagnostic
tests has been implemented only by the screening for
Y chromosome-linked gr/gr deletion in those popu-
lations for which robust and consistent data with risk
estimate are available. Much expectation was given to
genome-wide SNP arrays, based on the analysis of
Reproduction (2015) 150 R159–R174
common variants, but no overlapping SNPs have been
identified between different studies. Meta-analyses have
been able to demonstrate significant association only for
a few SNPs, conferring generally weak predisposition to
infertility. According to a few observations, common
SNPs with significant but low effect size may eventually
lead to impaired spermatogenic efficiency if they are
present contemporarily in the same individual (Aston
et al. 2010, Kosova et al. 2012). On the other hand, it is
clearly demonstrated by both SNP and array-CGH, that
there is a rare variant burden in men with impaired
spermatogenesis, which is especially relevant concern-
ing CNVs. Whether this phenomenon is an expression of
a more generalized genomic instability is still an open
question. Epidemiological observations indicating lower
life expectancy and higher morbidity in infertile men
(Jensen et al. 2009, Salonia et al. 2009, Eisenberg et al.
2014) are suggestive for such a potential relationship.

It has been predicted that more than 2000 genes
(housekeeping and specific germ cell genes) are involved
in spermatogenesis (Hochstenbach & Hackstein, 2000)
and mutation in these genes may act directly or through
gene-environmental interaction. In the era of NGS we
expect to expand our diagnostic skills, since mutations in
several hundred of genes can potentially lead to
infertility and each of them is likely responsible for
only a small fraction of cases. Exome analysis is
predicted to be successful especially for descendants of
consanguineous families and familial cases of infertility.
Concerning sporadic oligo/azoospermia, the situation is
more complex and, since the infertile trait undergoes
negative selection, at least two scenarios can be
predicted. On one hand, there is a possibility that rare
or de novo large-effect mutations are involved in these
pathological conditions; in this regard, the X chromo-
some represents one of the most exciting future targets
for both its enrichment in genes involved in spermato-
genesis and its hemizygous state in males, which implies
a direct effect of a damaging mutation. On the other
hand, an alternative pathogenic mechanism can be
related to a synergistic effect of multiple heterozygous
mutations in genes involved in the same biological
pathway. In this regard, system biology, which allows
unrevealing possible gene interactions and common
biological pathways, will provide an informative tool
for NGS data interpretation. Although these novel
approaches will certainly help discover ‘hidden’ genetic
factors, a more comprehensive picture of the
etiopathogenesis of idiopathic male infertility will
only be achieved by a parallel investigation of the
complex world of gene environmental interaction
and epigenetics.
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