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Abstract

Computer Vision Applied To Underwater Robotics

by Fabio Pazzaglia

Ocean and seafloors are today probably the less known and unexplored places on earth.

Nowadays, the continuous technological improvements on underwater inspection offer

new challenges and possibilities. Beside the classic acoustic sensors, modern cameras

are playing an ever increasing role in autonomous underwater navigation. In particular,

the capability to perform a context-driven navigation, based on what the vehicle is ac-

tually seeing on the seafloor, is of great interest in many research fields, spanning from

marine archaeology and biology to environment preservation. Industrial companies on

oil and gas or submarine cabling, also have a strong interest in underwater robotics. The

peculiarities of the underwater environment offer new opportunities to computer vision

and pattern analysis researchers.

This thesis analyses, discusses and extends computer vision techniques applied to the

underwater environment. The main topic is the semantic classification of the seabed.

A framework that may actually be embedded in an underwater vehicle and made to work

in real time during the navigation was developed. The first part of this work addresses

the problem of semantic image labelling. For this purpose a deep analysis of feature sets

and related classification algorithms was carried out.

The physical properties of light propagation in water need to be properly considered. In-

spired by techniques for terrestrial single image dehazing, a new approach for underwater

scenarios was developed. This approach is capable to significantly remove both the ma-

rine snow and the haze effects in images, and to effectively handle non-uniform and

artificial lighting conditions.

By jointly combining the results of underwater classification and the physical modelling of

light transmission in water, a new feature set, more robust and with better discriminative

performance was defined. Experimental results confirmed the accuracy improvements,

over the state-of-the-art obtained with the new feature set, in most critical environmen-

tal conditions.

This work is largely based on original images and data, acquired during the European

project ARROWS. The novelties introduced by this thesis may represent a basis for fu-

ture applications, stimulating novel directions for research in computer vision and its

applications to the underwater environment.
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Introduction

Today the use of Autonomous Underwater Vehicles (AUV) for environmental inspection

is growing.

Modern technologies both in electronics and in mechanics allow the manufacturing and

employment of these vehicles. On the other hand improvements in informatics extend

their functionalities, hence the range of action that these vehicles are capable to perform.

More in detail this work is focused on analysing some possibilities offered by the optical

sensors (cameras) that may be installed on it. In comparison to the acoustic sensors,

the optical ones present today the higher innovation characteristics. Anyhow the infor-

mation derived from underwater images is complementary to the one obtained by other

devices as, for example, the acoustic ones.

Visual images can be used in the underwater environment for simple observation or

qualitative analysis. Respect acoustic imaging, that still today represent the most em-

ployed technology, visual images offer several improvements about resolution, colour and

definition.

The idea of achieving an automatic classification of the deeper seabed leads to two

biggest advantages. The first one is the ability to assist researchers in the analysis of

huge quantities of acquired videos and to allow the creation of a semantic database of

the explored environment. In this way researchers may gain both in efficiency and in

effectiveness in doing their job.

The second advantage related to the seabed automatic classification is the chance to

perform a context-driven navigation. This requires algorithms that can be implemented

on the AUV hardware and able to run in real-time during navigation with minimum

delay respect of the acquisition frame rate.

The image classification method must be sufficiently generic and robust at the same

time. In fact, based on the seabed automatic classification, the mission control module

of the AUV may decide to investigate deeper certain interesting areas or rapidly move

away when nothing of relevant is sensed.

Nowadays the related bibliography on underwater image classification is quite poor due
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2 Introduction

the fact that AUV technology is an expensive procedure and a research field in the mid-

dle between computer vision and robotics. The peculiarities of underwater environments

make not easy to suite all the classic vision and pattern recognition algorithms already

experimented in terrestrial scenarios. The principal reasons are hidden in the particular

(natural) structures appearing in the seabed and in the light transmission properties.

Absorption and scattering are two effects directly linked to the light propagation in wa-

ter and they need to be correctly handled. The atmospheric scattering is responsible of

some types of degradations in acquired images that are easily observable when haze or

fog are present.

Recently some techniques to deal with these phenomena in the terrestrial case have been

presented. They do not require particular hardware but only a single image; their pro-

cessing is based on theoretical models about the light propagation but until today their

performance on underwater images are still low because they do not consider completely

the involved physical effects.

In this thesis we address all the aforementioned themes. The chapter 1 is dedicated to

provide some basis about underwater imaging and in particular the theoretical effects

behind the light propagation in water medium.

Chapter 2 is dedicated to describe the application context of this work. In the first part

the FP7-project ARROWS, that largely inspired this work, is presented within the state

of the art of some image processing techniques applied to underwater robotics.

In the second part of the same chapter is instead introduced our developed framework

for underwater seabed classification.

Chapter 3 deals with underwater haze removal techniques. Starting from classic methods

applied to terrestrial images, the attention is then focused on the underwater world. We

developed a new approach to underwater dehazing and several experiments are shown

comparing other concurrent approaches. In the last part of this chapter other extensions

and possible concrete applications of this technique are also proposed. In particular is

shown how the haze is an actual cue directly related to the image depth.

Chapters 4 and 5 are completely dedicated to go in deep into the image classification

task. The classification architecture is here described in detail. In the first of these

two chapters the feature sets that we choose to compare are presented, justified and

discussed. Parallel to this, all the datasets that we employed to conduct experiments

are here deeply analysed. Considering the generalized lack of suitable data from other

comparable works, these dataset were mostly created by ourselves from the ARROWS

AUV images and videos. The chapter 5 describes in detail all the results achieved from

our main experiments; in doing this, we considered several different parameters in our

framework with the aim to get the best configuration.

The last part of this chapter is dedicated to provide a global summarizing discussion
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regarding obtained results and comparing performances across many possibilities.

This leads us directly to the next succeeding chapter, in fact, by following the previous

experience, the Chapter 6 presents a new feature descriptor to be used in our framework

with textural images and explicitly realized for dealing with underwater images. A deep

result analysis was conducted by comparing it with other classic feature sets showing

the advantages and potential drawbacks of this new approach.

Finally, the last Chapter, the 7th, reports a summary and a discussion all across the

themes that have been dealt in this work underlining future improvements and new field

application.





Chapter 1

Underwater imaging: Description

and basic tasks

This work starts with discussing problems and peculiarities of the underwater environ-

ment. It is a research field that closely involves both computer vision and photogram-

metry. This latter field presents models that are very useful to deal with images that are

often degraded due to the properties of the acquisition environment. As well described

in [12], images can be processed by two different techniques leading one to an image

restoration and the other one to an image enhancement. The last section of this chapter

is dedicated to describe the bibliographic state of the art, including models to deal with

these basic low-end image processing and to show obtained results.

1.1 Underwater environment

Computer vision for underwater imaging presents substantial differences with the ter-

restrial one. The basic geometry of optics can be found in [13]. Although the image

formation model is the same, the different medium (water instead of air) involves physical

effects which must be taken into account. Underwater images are generally character-

ized by a poor visibility caused by light which is exponentially attenuated. This fact

limits the visibility—intended as the possibility to perceive electromagnetic waves in the

visual spectrum from a given distance—that spans from 1 to about (in best conditions)

20 meters. Typical coefficients used to model the light attenuation strongly vary from

bay, coastal and deep sea waters. The total pureness of water in nature is nothing more

than an ideal concept.

In this work the focus is on underwater marine environment. With the exception of some

5
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terrestrial water springs that have low interest for underwater robotics, deep waters are

those that shows a higher purity.

There are slightly differences between sea or oceans in comparion of other environmental

water as lakes or rivers. Even if some differences still remain among seas and oceans [14]

[15]—for example caused by different environmental and life dynamics—their chemical

composition and their interaction with light rays, present many affinities. Due to the

properties of electromagnetic spectrum, the blue colour is characterized by more energy

(shortest wavelength) than other colours. This makes underwater images mostly domi-

nated by this colour that may change the appearance of the scene. Other times, is the

water composition itself that strongly contributes to colour distortions. For example

water, with a certain algae concentration, tends to cause a high presence of the green

component.

Although deep waters are good for their clarity they also totally lack of natural illumi-

nation. Artificial light can be better controlled than the natural one and, by knowing its

characteristics and its position, a camera could help to adjust contrast and recovering

the true colour appearance. At the opposite, natural illumination covers the scene much

more uniformly, avoiding brighter spots that may cause saturated spots with poorly

illuminated surroundings.

It is possible to summarize the main problems in dealing with underwater images, as:

Range visibility, Illumination, Contrast attenuation, Colour changes and Noise. They

arise principally from:

• unknown variations in microscopic properties of the medium

• poor underwater lighting

• variations of absorption and scattering behaviour

• water transparency.

Standard computer vision techniques to underwater imaging may fail if we do not cor-

rectly deal before with these questions. A lot of specialized algorithms already exists

(e.g. in [12]) and others will be shortly presented in this work. Some kind of distortion

can be present both in the appearance and in the geometry of image.

Image enhancement uses qualitative subjective criteria to produce a more visually pleas-

ant image and they do not rely on any physical model for the image formation. This

kind of approaches are usually simpler and faster than restoring methods.
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1.2 Physical background

The understanding of some basic concepts regarding the physics of underwater light

propagation is crucial to deal with this kind of images. By definition an optically pure

medium is one in which suspended particles are totally absent. This does not mean that

there is total chemical pureness of an element—the compound can as well be a mixture—

but that there is homogeneity in respect of the optical properties of the medium deter-

mined only by its atoms, molecules and ions without the presence of impurities. Most

of the models about optics—included those specifically for underwater—often make as-

sumptions concerning the hypothesis of pure medium with an isotropic behaviour.

The basic work about the propagation of electromagnetic waves in dielectric media was

the Maxwell equations. Light passing from a medium to a different one is subject to

the reflection and refraction phenomena. Considering a geometrical optical model, both

effects determine a change in the direction of propagation of the electromagnetic wave

and usually are properly referred depending on the size of its deviating angle.

Reflection is the part of electromagnetic wave that do not pass through the second

medium; it is reflected and still continues its propagation in the medium of origin. Re-

fraction, instead, is the part that can cross the interface and it is transmitted to the

second medium. In physics and optical geometry the Fresnel equations are used to cal-

culate these quantities [13].

In underwater the main focus is on refraction because it has a primary role on determin-

ing the light attenuation coefficient. Each material or compound is characterized by its

own refraction index. For classical mediums, standardized value are used as reference

even if they cannot fully handle the microscopic and local properties. In critical tasks,

actual value needs to be experimentally determined in each case.

The main issues about light propagation—and more in general electromagnetic waves—

in a dense medium like water, take the names of absorption and scattering effects. They

were addressed for the first time in the twentieth century as testified in [16], [17]. In

[18] and later in [19], the authors starts from discussing physical aspects to address the

problem of simulation processes involved in underwater image formation. This latter

work, in particular, is focused on the relationship between the image contrast and the

received light power.

There is a trade-off that influences the perception and imaging in underwater. Basically,

absorption phenomenon is mostly due to the actual water composition that cause a (se-

lective) decreasing of energy of the light ray.

Scattering occurs when a light ray diverge from its straight-line path due to a variation

in velocity caused by a medium change. Historically it is related to the theory developed

after a series of studies and publications at the end of the nineteenth century by Lord
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Rayleigh, and so today it is often referred also as Rayleigh scattering.

Actually this theory was developed for non-dense medium; scattering in liquids—although

more evident than in gases—was discovered later and presents some differences with

Rayleigh’s model. This applies to particles that are small with respect to wavelengths

of light, in particular the interaction within electromagnetic radiation and atoms or

molecules of a impurity-free medium [17]. In water, scattering presents slightly different

origins due to the presence of colloids or suspensions [20]. Note that this has not to be

confused with the diffraction effect which only deals with the bending of waves around

an obstacle or through an opening.

Absorption and scattering are generally synthesized as two separate coefficients, respec-

tively a and b. Assuming an isotropic and homogeneous medium they are empirically

grouped together and determine the so-called attenuation coefficient :

c = a+ b . (1.1)

All the a, b and c coefficients express a constant decay which involves light intensity

per unit of distance. Whit respect to the Beer-Lambert law the decay model of light

intensity is related to the property of the water by an exponential relation. Let r be the

distance from an object characterized by an irradiance of Eo, so the perceived E(r) can

be expressed as:

E(r) = Eoe
−cr (1.2)

where the parameter c is the above-mentioned attenuation coefficient. This model can

be further decomposed in a form that directly expresses the absorption and scattering

coefficients:

E(r) = Eoe
−are−br. (1.3)

Although empirically determined, this is a useful model with high precision to describe

the behaviour of thin and collimated light beam. Problems arise when, for reasons

depending on the medium composition, the principal light beam lose its collimation

and undesired rays may be scattered back with it. Figure 1.1 graphically shows this

situation.

Different scattering events can be identified during the image formation model and

they need to be considered in the previous equation 1.3. The scattering may be now

expressed as the actual light beam—called the direct beam—with the superposition of

other two contributions, the forward-scattering and the back-scattering. The difference

between the forward and back-scatter concerns the angle whose the beam is deviated.

In the first case there are small-angle deviations mostly caused by the intrinsic reflection
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Figure 1.1: Direct light beam, forward and back-scattering effect.

properties of the towards an ideal, diffusely reflecting, Lambertian surface. The back-

scatter instead is much more problematic to handle and ad it is caused by wide-angle

reflections of light by other object different from the target.

In order to deal with this effects superposition another property B(θ) of the medium

must be defined: the volume scattering. It is a function of the angle θ and must be

integrated to obtain the total scattering b as reported in 1.4.

b =

∫ π

o

B(θ) sin θdθ. (1.4)

It theoretically considers all contributions coming from all directions.

Modelling the backward scatter is more complicated than the forward one because it

requires the explicit volume scattering function. The four quantities a, b, c and B(θ)

are those representing the properties of the medium. This resulting model can be used

to predict the behaviour of light underwater in a high precise way.

The main practical effect is that the previous defined quantities vary with their location,

and also are not constant over time.

As seen before, the light absorption is the other parameter that appears in the equa-

tion 1.3. This phenomenon involves the entire electromagnetic spectrum, and it is also

due to the interactions, at very microscopic resolution, between radiation and atoms

or molecules present into the medium. We are not interested here in deeply describing

this relationships, but our focus is about the effects that they produce. In particular

the application of the Beer-Lambert law depends on the existence of an analytical and

well defined absorption coefficient a. The first remarkable thing is that the absorption
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strictly depends on the wavelength of the radiation, usually indicated as a(λ); so the

behaviour is different across materials and among the components of a single light beam.

As reported in [21] the absorption coefficient for water can be expressed as:

a(λ) = aw(λ) +
∑

a∗x(λ)|x| (1.5)

where aw is the specific absorption of water itself. The sum over x involves other com-

ponents that might be present in pure water in concentration |x| and characterized by

their coefficients a∗x. In this way the absorption is a linear superposition of independent

effects and determined by substances present in water. There are no general formulas

to model these a values other than experimental measuring.

What is important to notice, both for scattering and absorption as well as other optical

properties in underwater environment, is that their behaviour is always strictly related

to the specific medium composition. This fact justifies the variability that we encounter

in dealing with them.

The effects described above, scattering and absorption, are always wavelength depen-

dent. The issues affecting the light propagation in the water are stronger than in the

air.

Therefore, concerning the image formation process itself, the direct, back-scattered and

forward scattered light constitute the three additive components of the total irradiance

Etot. So it can be mathematically expressed as:

Etot = Ed + Eb + Ef . (1.6)

This latter formula (1.6) is sufficient to understand phenomena and contributions that

influence underwater imaging. As can be noticed this model assumes that the image

formation process is affected by various degradations. In the ideal case, assuming a

proper optics for the camera, only the irradiance Ed of the directed components hits the

sensor, determining a clear, focused and noiseless image. The absorption effects may

cause a change in colour and a poor contrast, but when the scattering effects become

relevant, some more serious degradation can be encountered.

The presence of blur give rise to an image with serious lack in sharpness. This is not just

a visual issue. Blurred image means that an information loss has happened, particularly

at edges or high frequency components. The blur nature is very close to the one of a

defocused image. Unlike this latter, that typically regards entire region of images and

primary depends on the acquiring used optics, blur presents a much more localized and

unpredictable behaviour. As shown in figure 1.2 the forward scattering is the principal

responsible for blurred images. Due to small-angle deviations, light rays originated by

near (non-adjacent) points can reach the image plane like a very poor collimated beam.
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Figure 1.2: An effective representation of how the forward scattering affects the
process of image formation.

So the radiance of one point will impress the corresponding sensor area together with

a contribution that is a function of the radiance of other near forward-scattered points.

The resulting image will be smooth and characterized by a loss in details.

The back-scatter instead is mostly responsible for the sparse noise on images, as depicted

in figure 1.3. This kind of noise may have a spike-form in the easiest case. Using

Figure 1.3: How the backward scattering cause noisy alteration in images.

classical image filtering methods it can be simply removed or attenuated in most cases.

Nevertheless in other scenarios it can assume a much more diffuse form. When this
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noise appears as an haze-effect it causes a huge information loss that is in general hard

to recover. This effect will be deeply analysed in chapter 3 because it is an interesting

research topic and needs a special model. In figure 1.4 both effects derived from forward-

and backward-scattering are present. In particular, on the middle-top of this image a

noisy haze—mostly due to interaction with sunlight—makes difficult to recover the real

appearance. On the bottom of image, instead, a discrete amount of blur makes the

image quite smooth.

For further details in [19] the crucial quantities Ed,Eb and Ef as well the analytical

Figure 1.4: An image that shows the effect of common noise due to underwater
environment.

formulas that link them are discussed in deep with the definition of an expression for

each component of total irradiance.

1.3 Geometrical aspects and effects

There are several studies about the geometrical distortion induced by the water medium

[22], [23]. The refraction effects—the bending of a wave when it enters in a different

medium—is the main cause. In the classical photography, light rays are conveyed to

the image CCD or CMOS sensor, through a lens. Considering well-designed and low-

distortion lens they can well approximate the pinhole camera, the underlying model

today in most of the visual geometry. This model is valid until light rays pass through one

single medium, more or less homogeneous, during the trip from the emitting source and

the camera. Typically this medium is air, but for underwater imaging it is obviously the

water. As seen in the previous section about underwater physics, the water-medium has a

higher refraction index and its presence in nature is characterized by stronger differences
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in chemical composition that can affect the physical interaction with electromagnetic

waves. The effective problems arise from the fact that to take underwater images—

especially at non-trivial depth—we need a waterproof housing for cameras. These camera

containers, commonly realized with a thick layer of a transparent material, determine a

three-medium system passed through by rays, as reported in figure 1.5.

The optical system is composed by two parts that affect paths of optical rays between

Figure 1.5: Situation in which light rays are passing through a three medium system
before reaching the camera sensor.

objects and their images. The cover lenses are in the front of the camera and are

assembled on the cover of the housing that isolate the system against high pressure in

a deep-water environment. The shape of the cover lenses could be of two types: convex

or plane-concave. In general the use of concave lenses can increase the field of view and

reduce some kind of distortion induced by water.

There are two different interfaces, water/glass and glass/air, that deviate the light rays

from their original direction causing two different angle of refraction before reaching the

camera. From the geometrical point of view the camera needs some specific calibration

procedure or correction as reported in [24] and [25] to take this effect into account. A

crucial step if we have to employ underwater algorithms for structure from motion, visual

odometry, 3D stereo reconstruction. Despite algorithms and models, to best overcome

these issues is fundamental using a specific-designed housing/lens system for underwater

images. The water-glass-air distortion may vary with water depth and composition, so

experiments and compromises are needed in order to best accomplish specific tasks.

Even if we are not directly interested in recovering geometrical features from the image,
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if it is not treated properly may affect also the direct appearance of captured images,

spanning from a slightly blur noise to a more strong defocus. In both cases the image may

lose definition and more important may lose information that hardly will be otherwise

re-established.

1.4 Image restoration

The final aim of image restoration is to recover a degraded image by considering the

image formation process and by using a specific model of the occurred degradations.

This kind of methods can improve the image better than other enhancements under the

hypothesis of choosing the right model and overall they require to correctly set some

parameters. The knowledge of how to tune these values is not trivial and commonly

treated as an experimental matter. The physics about the image formation can help to

use a correct model for the environment (as reported in Section 1.2) and some knowledge

about the noise statistics are needed in order to approximate certain effects. Without

entering into the particular noise distribution models, what is important to note is the

difference between additive or multiplicative noise. In image recovering the multiplica-

tive factor is usually regarded as a more general degradation function, which better

incorporates the effects of the imaging system and the medium. So, the image i(x, y)

can be regarded as the function:

i(x, y) = j(x, y) ∗ h(x, y, θh1 , . . . , θ
h
n) + n(x, y, θn1 , . . . , θ

n
n) (1.7)

where j(x, y) is the real value at point (x, y), h(·) and n(·) are respectively the degra-

dation and the noise function, both with a set of parameters θh and θn. The h(·) is

a point spread function (PSF) and describes the response of an imaging system to a

point source of an object (in [26] is presented a brief discussion and comparison about

different point spread functions). The fist two terms are convolved together so passing

to the frequency-domain this become a simple multiplication.

I(u, v) = J(u, v)H(u, v, ·) +N(u, v, ·) (1.8)

Many restoration methods are created to consider this latter domain.

Because the strong degradation usually induced some models for underwater imaging

was realized.

Better is the knowledge that we have about the degradation function, better are the

restoration results. In practical cases, there is insufficient knowledge about the degra-

dation and it must be estimated and modelled. Sources of degradation in underwater
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imaging includes turbidity, floating particles and the aforementioned optical properties

of light propagation in water.

In [27] the authors presented a self-tuning restoration filter based on a simplified version

of the Jaffe-McGlamery image formation model. Two assumptions are made in order to

design the restoration filter. The first one is a uniform illumination and the second one

is to consider into the model only the forward component (i.e. ignoring back scattering).

This is reasonable until the concentration of particulate matter generating limited, even

if appreciable, effects. So, a low backscattering component and a condition of shallow-

water represent the optimal environment for applying this technique.

They assessed quantitatively the benefits of the self-tuning filter as a preprocessing step

for a subsequent classification, to check where an image contains or not man-made ob-

jects.

In [28], authors deal with the polarization effect to compensate for visibility degradation.

The proposed algorithm is based on a couple of images taken through a polarizer filter

with different orientations. Even if the raw images are characterized by limited contrast,

the light differences can lead anyhow to visibility improvements. In [29] a same approach

was further improved to both recover underwater visibility and provide a coarse 3D es-

timation about the 3D geometry. Also this method requires specific hardware and it is

based on multiple images of the scene.

As will be shown the method developed in this work (see Chapter 3) uses, instead, a

different approach, derived from the so-called dehazing techniques and employing only

a single image of the scene.

1.5 Image enhancements and performance measures

Differently from the image restoration techniques, the enhancement methods take into

account the image formation process, without any relevant a priori knowledge. This

means more general approaches substantially independent from the image scenario.

Image enhancement is basically a non-specific process used to improve the visual quality

or perceptual information in images mostly directed to human viewers.

In underwater images it has to be noticed that as depth increases, depending on their

wavelength some colour components tend to disappear. Although image enhancement

theoretically abstract from the model, the considered environmental properties cannot

be totally forgotten and in the scientific bibliography there are specific works about

underwater image enhancement techniques. In [1] is proposed a multi-step filtering

approach specifically developed to be employed in underwater vehicles as first image

treatment to reduce several common degradation effects. The pipeline is composed by
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nine steps mainly focused on dealing with non-uniform illumination, noise suppression

and colour adjustments. Figure 1.6 shows some results obtained with this approach.

A similar approach based on multiple filtering and contrast equalization is proposed in

Figure 1.6: Results achieved by the method proposed by Bazeille et al. in [1] (image
from the original work).

[30]. Here the scattering and absorption phenomena are explicitly mentioned but they

are not directly modelled as in the restoration techniques.

Another technique for colour enhancement was presented in [31] and differently from the

aforementioned is based on perceptual approach and inspired by lightness and colour

constancy properties. This method is also suggested as preliminary step to improve

segmentation.

In [32] the problem of colour enhancement and restoration is addressed as an energy

minimization problem, modelling the image as a Markov Random Fields but employing

more than one image to actually work.

Another theoretical method to enhance underwater image in the scene with planar sur-

faces and in presence of non-uniform illumination and low contrast is those proposed in

[33].

More recently in [34], [35] and [36] other novel enhancement approaches have been pre-

sented and mostly aimed to actually guarantee image details preservation.

A single image strategy is proposed in [37]; here, without a specific hardware or knowl-

edge about the environment the authors performs a white balancing and a noise reduc-

tion (that also can work with video and maintaining temporal coherence) to actually

enhance the image appearance. In [38], the authors propose an algorithm for the en-

hancement (and restoration) of blurred underwater images substantially based on me-

dian filter.
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Finally, in [39], instead, a comparative analysis of three different enhancements techniques—

contrast stretching, histogram equalization and contrast limited adaptive histogram

equalization—was carried out. Without considering a particular colour space, the adap-

tive equalization is the approach that seems provide better results.

During time many different methods for image quality evaluation have been proposed

and analysed. As well as for the restoration techniques, image enhancements are difficult

to measure in comparison of natural images for at least two reason.

The first is the difficulty with determining a commonly adopted and objective method

for the evaluation of perceived quality on a given image. A ”well-enhanced” (or restored)

image is hard to establish univocally. Anyhow, even considering less subjective measures

related to image information and/or noise the second issue is instead related to have

available a reference image to actually calculate these values.

Classically, Peak Signal to Noise Ratio and Mean Squared Error are the most widely

used measures when a reference image is available.

Even if there is not a prevailing one, in bibliography various attempts to define new

specific indices for quality assessment were introduced. Clearly it is not a problem

exclusively regarding the underwater environment. In [40], it is proposed a methodol-

ogy based on simulations and considering the well known Jaffe-McGlamerys model for

underwater images. In particular authors explicitly mention the problem related to im-

age noise, marine suspended particles, light attenuation and non-uniform illumination.

Actually this is an a priori evaluating strategy that enables to benchmark algorithms

suitability for underwater conditions. In other words it may be employed for a rigorous

pre-evaluation and comparison algorithms for underwater applications and only on syn-

thetic data.

In [41], it was presented an approach that uses edges and image sharpness to evaluate

the image quality after its processing. In particular an image quality metric is defined

and specifically tuned to better respond to the environmental parameters. Finally in [42]

is reported a short review about the traditional approaches based on error-sensitivity to

image quality assessment. Starting from the intrinsic limitation of these approaches, the

authors proposed a new different measure, capable to handle with structural similarities

and called Structural Similarity Index.

In conclusion it must be pointed out that unless a valid reference image there are no

objective and fully reliable ways to asses image quality, especially in underwater images.

For general applications a straight direct comparison still remain the preferred way in

most of the recent works.





Chapter 2

Underwater image processing

framework

2.1 Motivation and State of the art

Nowadays the use of Autonomous Underwater Vehicles (AUVs) for environmental sub-

marine inspection is growing. Modern technologies on both mechanic and electronic

fields allow this kind of vehicles to be ever more used for environmental underwater

inspections.

The availability of powerful batteries and low absorption components makes easier the

project and the actual hardware realization. On the other side, smaller size computer

units and their growing performance enable the chance to guide the AUV in accomplish

more sophisticated tasks.

At their essence, AUVs are a submarine vehicle that is capable to navigate and maybe to

take some actions in a total autonomous way. They differ from most common Remotely

Operated Vehicles (ROV)—sometimes referred also as ROUV, Remotely Operated Un-

derwater Vehicles—for basically the fact that they have not a direct physical connection

with a base station, as for example a supporting boat, that provides both power and

instructions. ROVs are typically guided from remote places or anyhow supervised by

humans on the basis of information gathered by sensors installed on them.

In underwater medium the communication channels are limited; radio or electromagnetic

signal transmissions are characterized by a short range so that the ROV are actually

linked to the base station with a cable that clearly limits the movements capabilities of

the vehicle.

On the other hand AUVs have not a direct link with a base station and they need to

19
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take internally their decisions about the actions that have to undertaken. Today, the op-

erative possibilities offered by ROVs are still greater than AUVs—because the fact that

they are largely adopted in marine oil platforms—which are instead employed mostly in

environmental inspections ([43] and [44]).

An AUV is typically provided of several different sensors, some used for navigation and

others for inspection. In this work we deal with images and our focus is on optical sen-

sors. Taking underwater images requires that the vehicle is able to navigate sufficiently

close (few meters, depending on actual environment) the sea bottom because the visual

signal quickly decreases with the distance.

During underwater inspections, AUV enables researchers to acquire potentially a lot of

visual data. In the simplest case the vehicle can be programmed in advance to follow

some navigation plans and to acquire images during all its journey. These videos may

be after seen and analysed by humans with or without the assistance of (semi)automatic

software. The drawbacks of such approaches are evident due to the limited possibilities

for actually drive the inspection.

To directly provide the AUVs with the capabilities of real time image analysis is a chal-

lenging task that may improve a better context driven navigation and also make the

inspection more effective and hence all the entire process will be more efficient.

As said before we are focused on image analysis but more in general the topic of au-

tonomous context driven navigation also takes profit by other sensors.

In this work particular attention is given to inspect the possibility to actual classify

images directly ”on-board” and in real time during the navigation. As major advantage

this may lead to perform targeted searches that might be suited in several ways by re-

searchers.

The main application fields are marine biology, underwater archaeology and environ-

mental preservation.

As will be explained in a following section the aim of this classification is primary di-

rected to the overall environment and it is not—in its original conception—properly

directed to particular objects.

Even if our developed processing framework can be used also for the post processing

phase, working in real time during the navigation determines a low computational time

cost as the main requirement.

The navigation is a key challenge that needs to be improved ([45]). The output of the

classification task is proactive in the sense that it may change the navigation plan be-

cause the main software module that controls the AUV navigation uses these information

to take decisions.

With the aim to gather data from underwater environments, the classification allows to

automatically label acquired images not only in relation to the location but also to the
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content. This may save a lot of time in post mission activities undertaken by researchers.

Anyhow, our framework architecture and its output will be discussed more in depth in

following sections.

Looking at the related bibliography, that sometimes has to be found in the middle

between robotic and vision, there are some relevant works that may be taken into con-

sideration.

A good and concise review of optical imaging for underwater vehicles can be found in

[46]. In [47] there is instead a review of more recent underwater system technologies

with a close look to the vehicle navigation characteristics.

One of the earliest work is reported in [48], where a vision system is presented for pre-

dictive segmentation especially designed for underwater robot tasks.

To testify how the problem of identify some common underwater patterns, in [49] is

presented a vision system for automatic detection of ripple pattern starting from ROV

acquired videos. The idea is to skip those images that are uninformative—as for example

those with only sand-related patterns—about the actual interests of the mission.

Another similar approach, this time used for automatic change detection is dealt in [50].

The same authors in [51] extend the previous approach to work in real time applica-

tions.

Walther et al. report in [52] an automated system for (post-) processing underwater

videos that is able to detect and track objects (fish actually) that might be of potential

interest. In [53] another method for identification of underwater objects was proposed,

this time with a more general approach and mostly based on the analysis of perceived

colours of the scene.

Actually not all these referenced works are explicitly aimed to support the AUV mission.

Most of them are not suitable to be used during navigation, both for their computational

demands and temporal costs.

More recently in [54] the problem of underwater habitats classification, starting from

video. In [55], instead, was presented a series of experiments for automated species de-

tection of algae from AUV acquired data. Here the authors adopted a scheme that is,

in comparison of the previous ones, closer to our adopted classification framework and

that will be described in the next section.

2.2 The ARROWS project

The ARROWS (ARchaeological RObot systems for the World’s Seas, Fig. 2.1) project

([56]) is a collaborative project coordinated by the University of Florence (Italy) with

partners from academia and industries from all across the Europe.
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It started on 2012 by following also the experience of another underwater project,

Figure 2.1: The ARROWS logo.

named THESAURUS (TecnicHe per l’Esplorazione Sottomarina Archeologica mediante

l’Utilizzo di Robot aUtonomi in Sciami) project ([57]) characterized by similar aims and

in which the University of Florence has also been involved.

The project ARROWS was partially funded by the European Commission during the

7th Framework Programme (FP7), and it has been ended in middle 2015.

From the big picture perspective, the Arrows proposal was to develop low-cost au-

tonomous underwater vehicle (AUV) technologies directed to support and improve ar-

chaeological underwater operations with cost-saving solutions and the use of new (mod-

ern) technologies.

Although this project was explicitly related to the archaeological field, most of the de-

veloped solutions are clearly suitable also for other kind of applications as for example,

environmental inspections and seabed mapping. Anyhow, most of the ARROWS tasks

were explicitly referenced to the cultural underwater heritage scenario with the presence

of a number of archaeologists into the partnership.

Beside the vehicle development, overall some of the main actions enabled by the activities

of this project regards:

• Horizontal large-area surveys with the acquisition of data originated from a number

of different vehicle sensors.

• High quality seabed maps both for reconstruction and geolocalization activities.

• Small low cost vehicles for penetration in hard and small environments.

• A fully and semi-automated data analysis tool for enabling the possibility of a

context driven navigation and to realize a semantic labelled map of the explored

environment.

• 3D reconstruction and mixed reality environments for virtual explorations.

The ARROWS project developed and evaluated low-cost AUVs capable of achieve sys-

tematic surveys of the seabed by programmable missions both close the sea surface and

at some hundred meters depth. AUVs are realized to be modular (i.e. with variable

payload that can be embedded on them) and able to work in a collaborative way with
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other similar vehicles.

The acquisition hardware/software installed on the vehicle was specifically developed for

this project;

it is schematically composed by two cameras with proprietary interface and driver. All

the vision modules (hence not only the attentive vision) run as a ROS (Robot Operat-

ing System) node and are capable to read activation and deactivation signals originated

from higher level modules, that drive the hardware behaviour. Other information, like

the status, are instead implemented with using the standard ROS routines.

The acquisition module is able to work both in mono and stereo configuration depending

on the specified task. In all cases a video is recorded meant to be used in post-processing

applications.

To store and efficiently process every video frame a producer-consumer pattern was used

so that each recorded frame can be asynchronously accessed, locked and shared by pro-

cesses that might need the resource. Because the buffer for the temporary frame storage

is limited and each location serially accessed, there is the necessity that all visual tasks

may perform in sufficiently short time related to the desired frame rate processing.

The acquired image resolution may vary from 2040x2040 to 1020x512 depending on par-

ticular application.

In the context of the present work the qualities and technological improvements carried

out by vehicles themselves are not reviewed. More detailed information can be found in

ARROWS related bibliography, as for example [58] and [59].

The activities linked to the semantic labelling and seabed classification, are those that

are here analyzed in depth.

During its mission the AUV examines the seabed, looking for areas of potential interest.

With limited or none connection to a base station, the vehicle must be capable to per-

form analysis and to take decisions by itself. This leads to a context-driven navigation

based on observing the local seabed appearance. In particular, considering the wide

extension of seas and the relative sparse and limited areas of interest, the vehicle should

have the capability to rapidly move away when for example uniform sandy seabed is

present. On the other hand, when an area of potential interest is reached, the AUV

should have the ability to reduce its navigation speed and actively perform a deeper

investigation that might also need to activate some other more specific sensors.

From the point of view taken by the mission control module, the optical sensors are a

choice between many others dedicated to the navigation. In particular acoustic sensors

are more capable to make wide-range analysis of the seabed while the optical one can

be used to go deeply in potentially target areas. Although their limited range, optical

informations are in general higher both in number and in quality instead of those gath-

ered by different sensors.
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Even if the vehicle is equipped with two cameras, actually to comply with timing con-

straints imposed by navigation, only the output of one of them is used. In fact the two

cameras are installed to be used in other vision task that requires a stereo configuration

as for example the visual SLAM and 3D reconstructions.

A challenging aim was also to use all the gathered visual information to realize a 3D

virtual submerged underwater world, built using all the data acquired and which can

allow general users to interactively explore the environment.

After each mission the (archaeological) researchers are in this way provided with anno-

tated maps of the seabed together with the complete acquired underwater videos. These

labels may quickly indicate the environmental composition or interesting areas.

To perform the seabed classification and consequently enable the possibility of an atten-

tive navigation system, the seabed is analysed with a texture-oriented algorithm. After a

supervised training stage—performed offline during the navigation— the system learns,

through examples, a dictionary of textures and contextually acquires the ability to find

similarities and to discriminate across learned environments by inferring each time the

most likely. This is actually the real link between the perceived images and its virtual

ontology based representation (Figure 2.2).

The information gathered by the seabed classification is thought to feed a distributed

Figure 2.2: The vehicles and the shared world-model representation realized by ge-
olocalized labels of classified places.

world model. More in deep, through a specific defined ontology the vehicle is able to

understand and remember the world already inspected. Starting from an almost empty

model, this world representation is enriched by information carried out by the analysis
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of several sensor outputs and the geolocalization dedicated hardware. The use of this

world model can be shared across different entities and continuously augmented dur-

ing different mission by also employing different vehicles. By using supervised machine

learning technologies, the seabed classification results are effectively related also to the

pertinence of the used dataset to perform the training phase.

Furthermore this map may be used also to favour other aspects of the post-processing

activities as for example:

• to favour the geolocalization in a virtual navigation environment

• to allow semantic (automatic) searches inside the acquired videos (e.g. Which are

the frames characterized by the presence of sand or marine vegetation?)

• to spatially localize each video frame.

Overall the key step of this mapping task is also to handle and organize in an automatic

manner the huge amount of information collected by every AUV mission and to enable

an easy and effective retrieval.

Other than a description of seabed, in the post-processing phase might be also achieved

a more specific object detection task, employing usual object classification and retrieval

algorithms (e.g. [60], [61] and [62]).

Anyhow it must be noticed that in underwater environments, poorly affected by human

interventions, the notion of ”object” may be unclear and sometimes even trivial.

2.3 Task definition

The attentive vision module of the AUV uses the visual data provided by the optical

sensors to identify potential interesting area during the mission. The optical sensors

are complementary to other acoustic modules that may be found on the vehicle, as for

example the side-scan sonar and the output can be combined together in order to gather

a wider analysis. Clearly, acoustic sensors are focused on the inspection from longer

distance while optical images are obtained by a more close range acquisitions and may

capture additional data from the scene. In this environment the most important are the

informations about image textures.

These data can be analysed and processed with machine learning techniques to classify

the seabed and to help in identifying possible areas of interest.

In developing the software module responsible of such processing the limitations imposed

by the hardware vehicle specifications have to be taken into account together with the
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real-time execution constraints. In particular the time spent for processing each image

has to be almost constant or however there must not be an accumulation of processing

delay during mission. The attentive vision module can be synthesized as in figure 2.3.

The results of these computations are employed by higher software modules to take

Figure 2.3: Concise representation of the attentive vision software module.

decisions and they contribute to create a semantic representation of the underwater

environment. This latter point may be significantly achieved by combining the environ-

mental labels with the geo-localized information based on robust position estimates (e.g.

SLAM techniques).

The classification of known underwater environments for the attentive navigation re-

quires to classify images according to predefined common underwater classes. In partic-

ular, it has been implemented a supervised learning approach based on Support Vector

Machines classification, which is one of the most general state-of-the-art approach.

To have an effective classification of the seabed it is crucial the use of a training set

which can be selected according to the task and environmental aspects. In fact these

latter ones may vary from place to place, and there is no easy way to gather all them

together. The classical machine learning framework for supervised classification is de-

picted schematically in Figure 2.4; it mainly consists of two steps, the training phase

and the actual classification.

In the training phase the algorithm learns the different classes according to a provided

dataset, consisting of labelled examples of image patches representing the desired clas-

sification. A good selection of datasets is crucial for the subsequent phase.

While the computational time needed by the training phase might be high it has not

a high impact on the execution during navigation because it is a one-time job achieved

before the actual mission.

In the classification step instead, time constraints must be taken into account during
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Figure 2.4: Classic scheme of a supervised learning approach.

the AUV mission.

As can be noted in Figure 2.4, both the training and the classification steps share com-

mon image pre-processing and feature extraction execution blocks.

The choice of a set of suitable, efficient and discriminative features is crucial for every

machine learning algorithm and actually it might be the most time consuming step both

in training and in classification step. In details, the adopted approach works by segment

firstly the image into a number of regions. These region may be characterized by vari-

able or fixed size depending the choice to (pre)process the image with a segmentation

algorithm or just to take equally sized windows. We notice that, dependently on the

implementation and also the available data, images might be previously scaled, filtered

or depending on the available computational time, a pyramidal representation of the

image might be used.

In any case, each region is then processed to extract its features successively processed

by SVM.

2.3.1 Classification Architecture

To perform the activities of seabed classification an ad hoc software framework was de-

veloped for the attentive vision module.

As previously said the vehicle needs to perform the classification of seabed in real time

during navigation and with time constraints linked to the entire AUV hw/sw architecture

and taking care of other vision modules. This will be referred as the online classification
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task.

Otherwise based on the acquired videos during navigation a post-mission classification

can be also conducted. This will be instead refereed as the offline classification task in

the developed framework. The usefulness of this approach is the chance to conduct more

accurate classification without time constraints also in using higher number of classes,

more sophisticated features or simply because the needs to re-examine a video (or a

portion of it) for conducting a different analysis by following other criteria.

Using both the online and the offline classification the training step is almost the same

and follows the block diagram reported in Figure 2.5.

The input of this learning algorithm is a number of labelled examples representing

Figure 2.5: Block diagram representation of software used to train the classifier.

the diverse classes that have to be classified (for more details about the classification

algorithm see Section 4.4.2). Each group of image represents a dataset with types and

number of classes not necessarily coincident.

Normally every dataset is used to train a single classifiers. Anyhow multiple datasets

can be also grouped together.

The reason behind the choice of training several independent classifiers is due to the

highly variable characteristics of underwater environments. With the support of prac-

tical experiments we noted that realizing a single classifier leads in general to lower

performance due not only to differences in context but also on intra-class variations.

The employment of task-specific datasets needs a choice that has to be done, au-

tonomously by researchers or automatically by the aid of an algorithm based on the

scene analysis.
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Referencing again the figure 2.5 and following the input image line, there is the pre-

processing block. Here are grouped all the tasks designed for normalizing the image

with both colour balancing and filtering approaches. Note that the dataset examples

are here composed by patches and not by entire images.

The next block is the feature extraction, that is responsible of transforming the input

image in a feature vector with a (predefined) number of component depending the par-

ticular feature set actually used. The employed feature set might be changed but anyhow

it must ensure coherence with the corresponding classification task.

To this regard we may notice that all our software architecture is completely modular

and the operation inside each block might be changed with maintaining the same block

interfaces.

The feature vectors are the inputs to the actual training phase based on Support Vector

Machines. The output of the SVM training is a classifier that may be then used to

actually classify the image both directly on-board (online) and on previously acquired

videos (offline). In general the training phase is much more slower than the time re-

quired by the successive classification step. It mostly depends on the type and number

of extracted feature and the number of examples given as input.

Switching to the classification step, we already said that our framework contemplates

two execution possibilities, online and offline. Both are described in the next section.

2.3.2 Online vs offline approach

Figure 2.6 shows the internal software diagram for the attentive online vision module.

The architecture is complementary to the training one.

The AUV camera acquired images that (excluding the initial shared buffer management)

are directly passed through the preprocessing task.

Other than the (optional) image normalization task, here the image is preliminary seg-

mented in a number of patches. This segmentation, depending on the adopted strategy,

must be carried out on two ways: fixed window or variable window.

In the first case the image is divided into n rectangular windows of predefined size and

regardless their content.

With the second choice, instead, the image is segmented in windows with a size de-

pendent on some uniformity property measures of the considered area. The proper

advantages of using fixed versus variable window size are discussed more in detail in

Chapter 4.

Anyhow despite consequences and final performance achieved this second step, carried

out by a fast QuadTree segmentation is more time consuming and hence might reduce
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Figure 2.6: The online attentive vision module; block diagram representation.

the frame rate of processed images. In fact, as for the training phase, the time spent is

primarily related to the feature extraction and the correspondent vector dimension. In

this case also the time required to perform the initial segmentation plays an important

role that is further dependent on the number of extracted patches; clearly the adoption

of a fixed size window strategy guarantees a more stable execution.

It can be noticed that the minimum frame rate necessary to actually conduct a fine

seabed classification depends also in vehicle-related characteristics, as its speed and the

camera distance from the seabed.

By continuing to follow the block diagram classification scheme, the set of patches is

then passed to the feature extraction task. This block is exactely the same as used

during the training phase and depending on the chosen features it generates the feature

vectors that are successively classified in the successive task.

Other than the feature vectors of the current images, the classification block use the

classifier trained in the learning phase.

Even if the time consumed to perform the classification task is limited (for example in

relation to the time used by previous tasks in the diagram) this online classification em-

ploy only a single classifier each time, that has to be selected before the mission starts.

One label is then assigned to every classified patch and correspondent to one of the known

classes. Regarding all the different labels that might be associated to each image, only

the most relevant (in terms of occurrences) are selected and the image is classified with

those labels conveniently weighted.

Together with the semantic class label and before to store these information, again this

last task associates to every image the actual AUV geolocalized position. To perform
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more accurate analysis the developed framework can be employed in the offline man-

ner. The synthesised block diagram is reported in figure 2.7. In this configuration, that

Figure 2.7: The offline attentive vision module; block diagram representation of the
offline module.

works when the mission is ended, the input is properly a video sequence registered by

the vehicle. In practice there are no many differences in relation with the case of real

time acquisition and in fact the first blocks are mostly the same that are present in the

online version.

Clearly, without particular timing constraints, theoretically more complex feature sets

or preprocessing filtering operation can be used. The actual difference is in the proper

classification block.

To achieve an accurate discrimination, multiple classifiers may be used in parallel to

process every image patch. The multiclassifier approach may improve the performance

of a single classifier (e.g. [63]). The effectiveness of a classifier combination is clearly

related to the achieved independence between the single ones. Then through a voting

scheme or fusion of confidence score (if available) the labels with higher rating can be

chosen. In particular the approach of training multiple classifiers over different datasets

is useful in cases where there are poor information about the investigated environment

or rapid changes might be expected in the seabed appearance during a mission.

Otherwise, by changing the preprocessing step also an adaptive pre-selection of the

classifier can be carried out. Now before the actual classification task each image is

compared to some appearance measures extracted from some images used to generate

each dataset. Based on these similarity measures the—a priori—best classifiers can be
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selected.

In addition and to obtain the more possible adaptive training dataset, another possi-

bility offered by the offline approach is to use a certain amount of images taken from

the input video to conduct an initial manual classification that successively becomes the

training set and the classification may be then executed for the remaining (biggest) part

of the video.

As final remark, note that during the offline processing, in parallel to the classification

task also a more specific object recognition algorithm might be also executed.

2.3.3 Implementation details

A first prototype of the proposed framework was initially developed in Matlab code for

an easy and fast development and evaluation. After, this code has been implemented in

C/C++ ( by using also the OpenCV libraries) to provide a faster implementation and

to allow the integration with the ROS (Robot Operating System) to be executed on the

vehicle hardware. In particular is only the classification module that actually needs to

run on the AUV hardware, while the training phase may be achieved in a (sufficiently

powerful) desktop PC.



Chapter 3

A method for underwater

dehazing

Acquiring clear images in underwater environment is a key issue in ocean engineer-

ing [51]. Light-ray scattering and colour changes, usually lead to contrast loss and

colour distortions in images acquired in underwater.

Conventionally the classic approach mostly rely on compensating both these issues with

techniques more close to image enhancements or traditional histogram equalizations.

In this chapter is presented a method that try to recover the actual image radiance in

underwater environment. This is a techniques referred as dehazing and substantially

borrowed from the terrestrial scenario.

In the following sections the general problem is presented, both in the terrestrial and

underwater scenario. After giving some backgrounds, in section 3.2 is presented the

approach that likely is the most adopted method of image dehazing from single image

that is applied to terrestrial images.

In section 3.3 the haze removal problem is extended to the underwater scenario, firstly

analysing issues and some existing techniques. Then, in section 3.4 is discussed our pro-

posed method for underwater dehazing and it is, followed by obtained results. At last,

in section 3.6 the relationship between haze and image depth is investigated, showing

how starting from the haze effect it is possible to infer a coarse 3D of the scene directly

from a single image.

33
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3.1 Introduction and general problem definition

During transmission from a point of a given scene to an observer, light rays can be

affected by various degradations. Scattering and absorption are the major responsible

for decreasing the quality of perceived image. As we saw in detail in chapter 1, light

passing through different medium is deviated from its theoretically straight trajectory.

Unless we have to deal with the geometry of image, this phenomenon, macroscopically

Figure 3.1: An everyday example of image distortion due to different medium inter-
faces.

is not a big deal for what concerns image quality and clearness (Figure 3.1). In this

sense the distortion effects are mostly due to the number of crossed media.

Problem arises when we consider the microscopic deviations caused by non-homogeneous

medium. The light that we perceive is the result of deviations and reflections of rays

emitted by a source. In a normal clear day, sunlight is reflected by terrestrial object

and hits our retina travelling through the air. In a foggy day we can perceive only

closer object while those that are far away appear unfocused and faded (Fig. 3.2). This

Figure 3.2: Image characterized by fog (image from flickr).

phenomenon is caused by suspended particles (composed by water in this case) that

scatter light rays. Depending on size and density of particle distribution the degrada-

tion increases. When the amount of particles is high the scene might be irremediably
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occluded and not much can be done to recover images. From the other side, when the

phenomenon is not so strong and some ray can travel from the object to the perceiver

it is possible to get back some important details with appropriate techniques.

Particles can be of different nature than water, like dust or smoke, but anyway we refer

it generally as haze.

Following the literature, the term dehazing refers to the techniques for haze removal.

Even if they can appear sometimes similar, removing haze from images is different to

other de-noising techniques based on classical image filtering. Differently from the ac-

quisition noise, the haze effect has a natural origin, depending on scenarios and a light

transmission model is needed.

After discussing the existing dehazing techniques and showing results of our implemen-

tation for terrestrial images, in this chapter we treat the case of underwater dehazing. In

comparison of the air, the underwater haze has similar effects but some different causes

that have to be properly treated.

3.2 Background

Dehazing techniques found their origin in the terrestrial environment. The haze reduces

contrast, make colour grayer and objects are difficult to identify. Removing haze can

increase the visibility of a scene and correct the possible colour distortions caused by

the atmospheric lighting.

In this work the attention is focused on single image haze removal, but this is nothing

than one of the last approaches to address this problem. The context of computational

photography was the first interested in deal with haze and after that an increasing

amount of attention was received also by the field of signal, and in particular, image

processing. Several proposed methods in literature address this problem primarily with

techniques close to the classic photography, like varying some camera settings during

image acquisition.

Satellite imaging, otherwise, is one of the early fields (back to 1970s) that studied how

to improve or restore the information in an image heavily characterized by haze. At-

mospheric corrections and radiometric calibrations from satellite, largely employ a tech-

nique known as dark object subtraction, which basically consist in using as reference

values those points that correspond to the darkest object in the scene ([64]). The satel-

lite or airplane [65] imaging is not—even if represent a large number of applications—the

only fields in which this problem is studied. Haze removal techniques are strictly con-

nected also to coarse depth recovering and blur estimation ([66]).

Although, in general, haze removal from single image is based on a model and some a
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priori knowledge of the atmospheric scattering, as it will be shown in the next section,

this remain an ill-posed problem because the airlight-albedo ambiguity.

In one of the first major works about this problem ([2]) it has been observed by a sta-

tistical point of view, that the contrast in a clear image is considerably higher than in

one affected by haze.

A simplified and widely used optical model of image formation is depicted in Figure 3.3.

Due to atmosphere, the direct transmission of light that originates from the object, is

Figure 3.3: Optical model formation of an (hazy) image. (Image from [2])

influenced by other rays scattered away by suspended particles. The total ray-beam that

hits the image sensor is then composed by two mixed components: the object-reflected

rays and those scattered by atmosphere. This latter effect is the origin of airlight.

Clearly the actual amount of haze is strictly related to the combined effect between these

two components. Several object reflections and the airlight methods from single image

require to know the airlight parameter.

Starting from an acquired image, the airlight value may be provided by hand (generally

indicating a sky region in image) or estimated automatically as for example proposed in

[67].

Mathematically, the single image dehazing approach proposed by Tan in [2] starts from

the classic optical model discussed in [68],[69] and commonly used in image processing

and computer vision when dealing with light propagation in a given medium.

This model is:

I(x) = L∞ρ(x)e−βd(x) + L∞(1− e−βd(x)) (3.1)

where I(x) is the image intensity value at pixel x and L∞ is the atmospheric light (i.e.

the airlight). It can be seen that the airlight is supposed constant in the whole image;



3. A method for underwater dehazing 37

in fact for terrestrial images it does not depend in general on pixel position, but it is

assumed as like it comes from infinity and its behaviour may be considered uniform.

The other parameters in equation 3.1 are ρ(x) that is the inherent reflectance coefficient

of an object in the image, d(x) or the sensor-object distance (i.e. depth) and β the

attenuation coefficient. Considering linear optics, this latter coefficient derives from the

general extinction coefficient [70], both handling the scattering and absorption phenom-

ena. In practical applications, supposing uniform the atmospheric medium, also β may

be kept constant in the model.

Clearly this is a simplified model, that does not consider microscopic light-particle inter-

actions. Anyhow the importance of this simplified optical model is that, as we’ll see, it

has been employed with success across many other works, sometimes adopting different

notation or additional assumptions.

Another early popular method, contemporary of this latter, is the one proposed by Fat-

tal in [5]. The baseline idea is practically the same. This is again a passive method—in

fact does not use any further specialized hardware than the camera—and basically it

uses haze information and airlight estimation to recover a transmission map that will

be successively used to restore the clearer appearance of the image.

Another method to jointly estimates the real scene reflectivity and depth starting from

a single image is proposed in [3]. Here the underlying hypothesis is that both albedo and

depth can be treated as two conditionally statistically independent image layers and au-

thors use a Bayesian approach to model them. An hazy image is modelled as a Factorial

Markov Random Field, where both chromaticity C(x, y) and depth (i.e. the distance)

D(x, y) are the two hidden layers associated to the observations of the intensity image

values at pixel x = (x, y) as reported in Figure 3.4.

The optical model used is practically the same than in equation 3.1 and assuming to

know L∞ it straightforwardly leads to a sum of the two terms, C(x, y) and D(x, y).

Largely inspired by previously discussed works ([2] [5]) is the method proposed by He

in [4]. Today, this is likely the most influencing dehazing approach, especially in prac-

tical applications, because its relative simplicity and effectiveness. A wide amount of

successive haze removal algorithms were developed starting from it and for this reason

the section 3.2.1 will be entirely dedicated to analyse it.

Many current works based on He et al.’s method, suggest improvements in airlight es-

timation ([71]), in speed boosting ([72] [37],[73]) or in post processing phases ([74]).

Obviously the haze removal can be extended to deal with also video sequences ([75]

[76]). In those case the single image requirement might be relaxed and other techniques

based on contrast enhancements may be used.

In [77] authors propose—somehow differently from previously described approaches—

that instead to only look at the statistical aspects of dehazing, it is possible to start
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Figure 3.4: Markow Random Field formulation of the problem of albedo-depth joint
estimation. Ĩ(x, y) is the known image pixel values, C(x, y) is the albedo and D(x, y)

the relative depth. Image from [3].

from a geometrical point of view. In particular they made the substantially assumption

of an image taken outdoor and dominated geometrically by a ground plane.

In certain applications, haze might also be treated as a noise reduction problem, con-

sidering its natural origin. In [78], for example, a method is shown from a single image

to infer the noise as a function of image intensity. They uses a simple prior model for

noise estimation without the knowledge of the image content.

To complete this short review on dehazing techniques based on single image, other

methods, might be based on general contrast enhancement techniques. In particular

they adopted pixel-wise operators that do not depend on spatial pixel relations. Ex-

amples are histogram equalizations, stretching, linear mapping and more complex tone

reproduction operators ([79]).

Starting from the hypothesis that the haze, affect lower frequencies first, other meth-

ods (e.g. [80]), work with wavelets, use spatial pyramids, apply some bilateral filters

(e.g.[81]) or gradient analysis (e.g.[82]) to preserve image edges.

Not all the existing methods for haze removal are based on single image post-processing

techniques ([83]). In some cases solutions that use hardware components may alleviate

the problem of haze before the image acquisition; as in the case of using polarized optical

filters [84]. The light polarization changes when light rays are reflected or refracted by

the interface between two different types of transmission medium. The main assumption

is that the polarization of received light is almost caused by the environmental illumina-

tion, and only few beams, with more defined polarization (and typically lower intensity)

are the only that really matter.

Other dehazing techniques are instead based on additional information coming from
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other sensors or human interaction (e.g.[85]). Information about depth, even if it is not

precise, can highly improve haze removal and image restoration ([86]).

For analogous reasons also a multi-image system may be useful; a stereo system, for

example, can both provide depth information and point correspondences, and also any

pair of blurred and noisy images can be sometimes sufficient, as proposed in [87].

3.2.1 He et al.’s method

As we said in the previous section, haze is an important cue to estimate the depth of a

scene and vice versa, because their mutual dependence. From single image and without

further information, the problem of dehazing results in general under-constrained. In

particular to estimate the transmission—that formally is the portion of the light beam

that starting from a target object can reach the camera sensor—we need to know the

(relative) scene depth. The formula for the transmission t(x) can be expressed as:

t(x) = e−βd(x) (3.2)

where β is defined as the scattering coefficient (see section 1.2) of the medium and d(x) is

the depth of pixel x. Basically, there is an exponential attenuation of light transmission

with the depth.

Considering the RGB model He et al. in [4], after some statistical observations on

images, pointed out that in most local image regions (with very few exceptions) there

are some pixels with very low intensity values in almost one colour channel. Their idea

is to look at these pixels in a similar manner than in Dark Object Subtraction methods,

obtaining what they call Dark Channel Prior (DCP).

In hazy images, the darkest pixels have an intensity value that can be entirely attributed

to the airlight component; by locally sampling these pixel over the whole image an

accurate estimation of the light transmission into the scene can be provided.

Limitations in using this approach are only due to scenes where the entire image has an

appearance almost equal to the airlight. An example is the sky, where pixel appearance

is entirely due to the airlight and sky points are practically at infinity with all their

appearance determined only by airlight.

The starting model is basically the same as reported in equation 3.1, with just some

notation changes. The process of image formation ([88]), at pixel x, is described by the

equation:

I(x) = J(x)t(x) +A(1− t(x))) (3.3)
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where I(x) is the observed intensity at pixel x, J(x) is the actual scene radiance, A is

the atmospheric light and t(x) is the transmission. It has to be noticed that I, J and

A, include the three channel RGB representation.

Splitting the equation 3.3 we can identify two terms: the direct attenuation J(x)t(x)

and A(1− t(x)) that is properly the airlight component.

The transmission, intended as the portion of light that isn’t scattered by the medium, is

independent from the particular channel. Hence the transmission can be expressed as:

t(x) =
Ic(x)−Ac

Jc(x)−Ac
c ∈ {r, g, b} . (3.4)

From this latter equation (3.4), assuming the dark channel prior hypothesis, for each

local image patch Ω(x) centered on a pixel x, there must be at least one pixel with a

very low value in almost one colour channel.

The map of all these pixel gives rise to the dark channel map, defined as:

Jdc(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

Jc(y)) . (3.5)

By considering previous hypothesis, for these pixel the actual (single channel) radiance

may be considered zero, so:

Jdc(x) → 0 . (3.6)

For common (natural) images it may be observed that depth and medium composition

are not abruptly varying, so it can be done the hypothesis that every image patch

Ω(x) has a constant transmission tΩ(x)(x). Dividing the equation 3.3 by Ac, it may be

rewritten as:

Ic(x)

Ac
= tΩ(x)(x)

Jc(x)

Ac
− tΩ(x)(x) + 1 c ∈ {r, g, b} . (3.7)

Following the dark channel definition (considering that Ac is not negative):

Jdc(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

Jc(y)

Ac
) = 0 , (3.8)

and applying the min operator on both sides of equation 3.7,

min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)

Ac
) = tΩ(x)(x) min

y∈Ω(x)
( min
c∈{r,g,b}

Jc(y)

Ac
)− tΩ(x)(x) + 1 (3.9)

we finally obtain that the transmission t(x) estimated for every patch is:

t(x) = tΩ(x)(x) = 1− min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)

Ac
) . (3.10)
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Once obtained an estimate for the whole image transmission, the actual radiance can be

recovered by the equation (simply derived from the equation 3.3):

J(x) =
I(x)−A

max(t0, t(x))
+A (3.11)

where a minimum threshold t0 for the transmission is used to avoid issues occurring

when the estimated t(x) is close to zero.

Until now, nothing has been said about the A parameter. It was supposed known,

but actually it needs to be estimated. Instead follow the approach proposed in [2]—

that simply takes the brightest pixel in image—He et al.’s method again uses the dark

channel map; in fact, this can be regarded as an approximation of the haze density, so

they pick up as atmospheric light A the brightest pixels intensity value taken from a

set including only a small percentage (typically 10%) of the highest values in the dark

channel image.

Furthermore, to conclude this description we need two final remarks:

• The He et al.’s single image dehazing method considers to slight modify the equa-

tion in 3.10 for the transmission, adding a constant parameter ω ∈ (0, 1) to keep a

little amount of haze. This gives a more natural appearance to the final recovered

images, hence the actual transmission equation is:

t(x) = 1− ω( min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)

Ac
)) . (3.12)

• Transmission evaluation is made by considering small squared image window where

this value is assumed constant. This may lead to a non pleasant final appear-

ance, with squared appreciable artificial patches making the image unnatural. To

overcome this effect, before recovering the radiance (last step) the obtained trans-

mission map is processed by a refinement algorithm that smooth the transition

between patches. This is achieved by a soft matting algorithm ([89]) plus a bilat-

eral filtering to smooth and preserve edges.

In general we can observe that both the refinement step and the atmospheric light

estimation are those that differentiate the largest amount of dehazing methods from the

previous. The refinement step can hardly degrade the performance in terms of required

time, so depending on the particular applications may be avoided or changed with faster

(and coarser) approaches, even if this often means to renounce to some detail.

In Figure 3.5 are reported some results of experiments that we achieved by implementing

the He et al. method (Matlab R© code). On the left column are reported the original
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Figure 3.5: Some examples of dehazing. Original starting images are in the left
column and their recovered version is on the right in the same row. Center column
reports the transmission t(x) computed, without refinement (source images derive from

[4], [5] and [2])).

starting images, on the middle the (non-refined) transmission while the actual image

recovered are in the third column.

It can be observed as the dehazing algorithm is actually capable to give back to the

image more tone, sharpness and increasing the visibility of smaller details.

3.3 Underwater dehazing

More than the air, water is an hard opponent to the light transmission. Haze induces

poor visibility in terrestrial atmosphere, but even more in underwater environments
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where, in general, suspended particles are greater in number and cause an high scatter-

ing.

Differently from the air-medium, water presents strong effects also on absorption. Both

phenomena—scattering and absorption—can be proved also in human experience.

The field of view is shorter (also extremely short in some kinds of lakes or rivers) and

colours are notably distorted, shifted to a bluer or greener appearance. This latter fact is

due to the variable attenuation of frequencies in water. Furthermore as shown in Figure

3.6 the red colour is usually characterized by less intensity (i.e. power) when it reaches

the camera sensor in comparison to the other RGB channels. Sometimes it can be very

  

Figure 3.6: Underwater images (left column) with their corresponding RGB histogram
plot (right column). It is evidenced how the red channel is globally at lower values than

blue and green channels (images from ARROWS project).

low, but this does not mean that it has not information at all.

In this situation the He’s et al.’s method might be useless because the Dark Channel

Prior tends to overlap with the red intensity values and it is a poor indicator about the

actual haze effect distribution.

Here we are interested to single image haze removal methods, but as well as the terrestrial

scenario, these are not the only suitable approaches for radiance recovering. Additional

informations might be employed in a similar manner than in air-medium.
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The problem of single image dehazing in underwater environment may be formulated

in a close manner; even if the effects are common, anyway there is a variation in causes

that generate them.

To our knowledge the majority of approaches (not so much, really) for underwater de-

hazing are less or more based on the He et al.’s method and its prior (DCP).

As stated in Duntley’s work [16] the full general underwater model can be actually

considered:

Nt(z, θ, φ) = Nt0(zt, θ, φ)e
−α(z)r +N(zt, θ, φ)e

k(z,θ,φ)r cos θ(1− e−α(z)r+k(z,θ,φ)r cos θ)

(3.13)

where:

Nt(z, θ, φ) is the observed radiance,

z is the depth (observer),

zt is the depth (target),

θ is the zenith (observer-target),

φ is the azimuth (observer-target),

r is the observer-target distance,

Nt0(zt, θ, φ) is the actual radiance,

N(zt, θ, φ) is the radiance in the water column (the airlight),

α(z) is the attenuation rate,

k(z, θ, φ) is the radiance attenuation function that captures how the airlight changes

with z.

This model is quite complex enough due to the high number of parameters and func-

tion that include. With good assumptions that are valid in the majority of cases—in

particular θ ≈ π/2 and constant α—the model become:

Nt(z, θ, φ) = Nt0(zt, θ, φ)e
−αr +N(zt, θ, φ)(1− e−αr) . (3.14)

This latter equation can be then reported, with appropriate notation changes, to the

wide-used known model of equation 3.3. This justify the validity of such a model also

for the underwater scenario.

Differently from the terrestrial case, what has to be considered in underwater environ-

ment is that the attenuation rate α is made by two component, respectively the scattering

(αs) and absorption (αa) summed together (α = αa + αs). In the terrestrial case solely

the scattering component is considered; however, using the absorption component does

not change substantially the model equation.

The most straightforward application of the theory of terrestrial DCP to underwater

images is reported in [90]. Here authors practically leave unchanged the He et al.’s
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method and apply it both in natural and in artificial underwater images.

A more general and analytic treatment is the one reported in [91], where a region-

specialized method for underwater images is proposed with the aim to dehaze and com-

pensate colours together. Another similar approach with DCP to handle haze and colour

distortion simultaneously is proposed in [92].

Different from these methods that leaves the DCP practically unchanged with only few

or none modifications, are the approaches proposed in: 1) Carlevaris-Bianco et al.[93],

2) Drews et al.[94] and 3) Wen et al.[6]. Still continuing to use the same DCP algorithm

scheme, they include into their models proper characteristics related to the underwater

environment; in particular all these methods starts from changing the prior and tacking

in deeper consideration the underwater peculiarities.

More in detail:

1. In Carlevaris-Bianco et al.’s work, authors start from the dark channel prior ap-

proach but they modify this prior on the basis of the assumption that the red

channel versus blue and green ones has, in underwater, a particular behaviour.

They use a prior calculated as:

D(x) = max
x∈Ω(x),c∈{red}

Ic(x)− max
x∈Ω(x),c∈{blue,green}

Ic(x) (3.15)

that means to take the difference between red and green-blue channels.

To estimate the transmission over every patch tΩ(x), it is assumed that the closest

foreground pixel has a maximum difference of one by normalizing all values in

[0, 1]. Hence, the actual transmission is computed as:

tΩ(x) = D(x) + (1−max
x

D(x)) . (3.16)

Starting from this transmission equation the radiance recovering step is carried

out considering the usual model obtained from equation 3.3 (for all the three RGB

channels):

J(x) =
I(x)−A

tΩ(x)(x)
+A (3.17)

and successively modelling it as a noisy variable,

J(x) = J0(x) + w(x) . (3.18)

Here, J0(x) is the actual radiance value and w(x) is a white Gaussian noise (w ∼

N (0, 1)). In this way the final radiance values can be computed as a maximum a
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posteriori estimate, maximizing the posterior probability:

P (J0(x)|J(x)) ∝ P (J(x)|J0(x))P (J0(x)) . (3.19)

Clearly this last step of considering J(x) as a noisy process, is an optional upgrade

of the original (terrestrial) dark channel prior based method.

For what concerns the atmospheric light, the A value is calculated as:

A = I(y) with y = argmin
x

tΩ(x)(x) (3.20)

that practically is the RGB values corresponding to the lowest transmission pixel.

It might be pointed out that—mostly when the underwater images are taken with

a camera with the principal axis perpendicular to the seabed plane—these airlight

points are expected to be located on pixels that correspond to furthest scene points.

2. In Drews et al.’s work the baseline assumption is easy. In underwater environment

the red channel is affected by stronger absorption than the other two RGB chan-

nels, so the idea is to extend (or limiting) the original DCP approach to deal only

with the green and blue channels.

It results in a slightly new prior that the authors call underwater DCP (Judcp(x))

and computed as:

Judcp = min
y∈Ω{x}

( min
c∈{g,b}

(Jc(y))) (3.21)

Aside this, the other steps of this method to restore the actual image radiance

actually remain the same as in He et al.’s work. The constant parameter A is

directly computed tacking the RGB values correspondent to the brightest pixel

among those in Judcp(x).

3. In Wen et al.’s work, is taken again into consideration the different behaviour

of red channel—differently from blue and green—characterizing the underwater

environment.

Starting from the usual (hazy) image formation model (3.3) here the assumption

is to employ different transmission maps for each colour channel. In particular two

transmission are considered: one for the red channel and another (identical) for

blue and green. Then, they model the underwater image formation process as:

Ic(x) = Jc(x)tcβ(x) +Bctα(x) (3.22)

where c ∈ {red, green, blue} and Bc is the background light that substantially has

the same role played by the atmospheric light A. It has to be noticed that the
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transmission is now expressed by two different component tα(x) and tcβ(x). The

first, tα includes only the scattering effect and it is the same independently from

the colour channel. Instead, tcβ is dependent from the channel and try to catch both

effects of absorption and scattering. The separation in two different transmission is

due to the consideration that the absorption phenomenon only affects the amount

of light originating from the target object and can be neglected in the airlight

component.

The prior tα is computed minimizing only on the green and blue channels. Dividing

the equation 3.22 by Bc—similarly than in the He at al.’s method— is obtained

the equation:

min
c∈{b,g}

( min
y∈Ω(x)

(
Ic(y)

Bc
)) = t

Ω(x)
β · min

c∈{b,g}
( min
y∈Ω(x)

(
Jc(y)

Bc
)) + tΩ(x)

α (3.23)

where both transmission (t
Ω(x)
β , t

Ω(x)
α ) are assumed constant in every patch Ω(x).

Under the hypothesis that the dark channel in equation 3.21 tends to zero—in fact

the Bc parameter is positive and constant—it results that the scattering transmis-

sion tα(x)
1 is:

tα(x) = min
c∈{g,b}

( min
y∈Ω(x)

(
Ic(y)

Bc
)) . (3.24)

Otherwise, for blue and green channels, the transmission tβ(x) can be obtained as:

tg,bβ (x) = 1− tα(x) (3.25)

and, instead, the transmission for the red channel, trβ as:

trβ(x) = τ · max
y∈Ω(x)

Ired(y) (3.26)

where τ is a correction parameter to normalize this transmission value.

The radiance recovering for each channel c, can finally be performed by the equa-

tion (derived from 3.22):

Jc(x) =
Ic(x)−Bc · tα(x)

tcβ(x)
. (3.27)

To apply this latter formula B = (Bred, Bgreen, Bblue) has to be firstly estimated.

To perform this step they use the pixel value at the image position P such that:

P = argmin
x

(Idark(red)(x)−max(Idark(green)(x), Idark(blue)(x))) (3.28)

1For a more readability in the following we stop to report the apex Ω(x) unless when strictly needed.
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with:

Idark(c)(x) = min
y∈Ω(x)

(Ic(x)) . (3.29)

Summarizing, to overcome the red-light attenuation, Drew et al.’s and Wen et al.’s

method both apply the DCP theory, but limited only to the blue and green channel.

This choice allows to better capture the underwater haze caused by the scattering effect,

even if sometimes they tend to overestimate it.

Instead, the Carlevaris-Bianco et al.’s approach is based on a different prior (eq. 3.16)

and uses Markov Random Fields to better recover the actual image appearance. De-

spite its good performance—mostly accomplished with foreground objects—it suffer the

presence of artificial illumination and strongly depends on the chosen airlight value

(sometimes the human interaction is preferable). As the Drews et al.’s method, the

Bianco’s one does not handle directly the absorption but only the scattering.

Among these three approaches presented, only the one proposed by Wen et al. ([6])

takes into account this phenomenon. Even if the absorption is not directly modelled,

it has made a channel distinction (equation 3.22). Anyhow it does not resolve all the

illumination problems, but we tested that in general, all the presented methods suffer

problems related to non-uniform, low or artificial illumination. The method for under-

water dehazing that we introduce in the following section is firstly aimed to overcome

such limitations.

3.4 Underwater dehazing: proposed method

In proposing a different approach for underwater dehazing from single image, our goal is

to improve—as much as possible—the performance of existing solutions. In particular

we want to achieve higher independence in illumination and scenarios changes. Images

on the right column of Figure 3.7 show how the illumination is distributed by considering

two different scenarios (left column). The top-one, where the lighting is more irregular

represents the sunlight effect while the bottom shows the case of artificial illumination,

characterized by a more regular distribution. The architecture of our proposed method

for single image underwater dehazing is fairly similar to the one shared also by other ma-

jor work in this field. Figure 3.8 reports our adopted scheme. The fundamental blocks

are those of total transmission and airlight estimation, other than the refinement process

and the actual final step of radiance recovering. Except for the scattering evaluation,

all the other blocks separately work over the three different RGB channels.

The basic assumption in our proposed method for underwater dehazing is that, dif-

ferently from the terrestrial case, it needs to both model separately the effects due to
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Figure 3.7: Two different scenarios about lighting distribution. In the top-left im-
age the sunlight gives rise to a non uniform seabed illumination as underlined in the
corresponding right figure. The bottom image shows the case of artificial illumina-
tion, that—also depending on the number of lights—can be detected by analysing the

regularity of the illumination edges.

{r,g,b}

Figure 3.8: The architecture of our proposed method. Note that except for the
scattering estimation (haze) the other blocks work in parallel with the three RGB
channels and are computed over all colour channels and then merged in the last step.

scattering and absorption.

We previously saw that the full Duntley’s equation (3.13), completely describing the

light transmission model in an underwater scenario, might be simplified in a form that

is fairly close to the usual model,

I(x) = J(x)t(x) +A(1− t(x))) (3.30)
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where the bold letters represent vectors or matrices on the RGB channels (this equation

with a deeper description was already presented in section 3.3). This correspondence

leads to define the total transmission as:

t(x) = eα = eαseαa (3.31)

where αs and αa are respectively the scattering and absorption coefficients.

The knowledge of such coefficients or an empirical estimation of them (see also chapter 1)

makes possible to recover the actual image radiance J(x) from I(x).

Despite the impossibility to directly estimate αs and αa from a single image our method

considers as separate the two effects and models the total transmission t(x) as composed

by two single contributions s(x) and a(x). By assuming for now their independence we

can express the total transmission as:

t(x) = a(x)s(x) (3.32)

where t(x) and a(x) are vectors representing the quantities for the three colour chan-

nels. In general total transmission t(x) is now seen as a function of this two varying

measures. By comparison, in (the simpler) terrestrial scenario the only transmission

actually considered is t(x) = eαs = s(x). In underwater environments the evaluation

of both transmission components must be carried out in a separate way. In particular

the scattering coefficient can be evaluated as the Dark Channel Prior method without

considering the red channel. The transmission due to scattering may be expressed as:

s(x) = 1− min
y∈Ω(x)

( min
c∈{g,b}

Ic(y)

Ac
) (3.33)

where Ω(x) is a neighbourhood of the pixel x on image I(x), A is the airlight and c rep-

resents the considered channel ({red, green, blue}). As we seen this is a common choice

in literature to handle haze in the underwater environment because the red channel, in

areas not close to the camera is fairly low.

The second factor in the total transmission model is the absorption (computed for each

channel c ∈ {r, g, b}); it is evaluated as:

ac(x) = max
y∈Ω(x)

(
Ic(y)

Ac
) . (3.34)

Despite its simplicity this value can quickly give information about the light absorption

caused by water medium. Although this quantity is evaluated by considering separately

the single channels, sometimes we refer the transmission due to absorption only with

a(x) and indicating in this case the average (on the three channels) value. Clearly the
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given representation for a(x) might have its failures in special areas, with particular uni-

form colour gradients or patterns that may confuse the absorption estimation. From the

experience carried out by intensive tests, the underwater environment presents highly

varied and irregular colour distributions that leads to neglect such particular situations,

with using a sufficiently large neighbourhood window Ω(x). In any case, however, also

employing more complex formulas, similar issues may still remain because none of them

can resolve the inherently ambiguity behind the general absorption estimation from sin-

gle image without the knowledge of the point distance.

Figure 3.9 shows an example of the scattering and absorption estimation for the under-

water input images already shown in Figure 3.7. Images in column (a) and (b) represent

Figure 3.9: Examples of the s(x) and a(x) maps (the latter is averaged over RGB
channels), reported respectively in column a and b. Components are both normalized
in [0, 1] and the neighbourhood window Ω(x) has a size of 15 × 15 pixels. Higher
(white) intensities represents high transmission due to scattering effect s(x) and due to

absorption component a(x).

examples of computation respectively of the s(x) and a(x) factors.

Scattering and absorption component are both normalized in [0, 1] by the airlight com-

ponent Ac, and the neighbourhood window Ω(x) has a size of 20× 20 pixels. We notice

that higher (whiter) intensities represents high transmission due to scattering (s(x)) and

to absorption a(x) effect.

Evaluating only the scattering effect in underwater images might be trivial due the fact

that the dark channel prior assumption is more weak than in the terrestrial environment.

As we can see from the top left (a) image in Figure 3.9, considering only the scatter-

ing component in the underwater environment might lead to confuse higher illuminated

areas with those that are the most haze-affected; a similar behaviour is shown also by
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the lower image, where the illumination is artificial. Scattering and absorption might

present an overlapped behaviour confirming the fact that these measures are not totally

complementary or independent (it must be kept in mind that the quantity s(x) is the

transmission due to scattering and not the amount of the scattering itself).

Using two components to express the total transmission function t(x), there are four

extremal and qualitative configurations that can be actually identified:

1. High scattering and low absorption phenomena (s(x) → 0 and a(x) → 1)

This configuration represents the situation in which the haze is present and it is

relatively close to the camera without significant absorption in all channels (also

some saturated parts might show a similar behaviour).

2. Low scattering and low absorption phenomena (s(x) → 1 and a(x) → 1)

This is the scenario in where less or no absorption and scattering are detected.

Here the recovered radiance is substantially the same than in the input image.

3. High scattering and high absorption phenomena (s(x) → 0 and a(x) → 0)

This scenarios is typical in points that are far away from the camera. Here, also

in clear water, the haze is maximum and the hypothetical presence of objects is

hard to recover.

4. Low scattering and high absorption phenomena (s(x) → 1 and a(x) → 0)

Commonly this is a scenario represented by dark areas (i.e. areas with a good

scattering transmission but total absorption).

The Figure 3.10 visually explains the previous four qualitative possibilities of a(x) and

s(x), that arise considering high/low scattering/absorption transmission.

Even if the total transmission is theoretically a multiplication of two factors s(x) and

a(x), respectively related to the scattering and absorption effects, in practice we cannot

simply multiply them. Despite the correctness of such a representation, in this case the

resulting total transmission would be lower than the actual value. This issue is linked to

the fact that s(x) and a(x) are evaluated in a non-independent manner; the transmission

estimation due to scattering may also include a (un)certain amount of absorption in each

colour channel and vice versa.

All these motivations lead us to actually employ a total transmission expressed as:

t(x) = max (s(x),a(x)) (3.35)

where t and a are both vectors with 3 (RGB) components. Remembering from equation

3.17 the radiance recovering formula, we have that the actual radiance J(x) is inversely
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Figure 3.10: The four qualitative possibilities of a(x) and s(x) synthesized with
examples on a test image. Both a(x) and s(x) are continuously varying and mutual
dependent. Areas labelled with number 2 are theoretically the clearest, but are also
rare to find in underwater. The 1-labelled areas are characterized by an overall good
visibility keeping low the absorption effect (high a(x)). The increase of depth usually
leads continuously to an augmented haze, as in label 3. Finally, the number 4 presents
high s(x) and lower a(x) that may be encountered in dark or far away areas in presence

of a clear water medium.

proportional to total transmission t(x) which is in the interval [0, 1]. In particular lower

t(x) means low (darker) output radiance and multiplying both a(x) and s(x) generally

leads to an underestimation of the total transmission. Otherwise, by choosing, in a pixel-

wise fashion, the highest value between the two components we make an overestimation

of the total transmission, and a brightest final radiance J(x) is obtained at the cost

of keeping some degradation effect in the resulting image. An extensive amount of

comparison experiments with other different transmission estimations have confirmed

us the validity of this choice.

The airlight A = [Ar, Ag, Ab] is evaluated by only considering the scattering map value

(i.e. (1 − s(x))) in a similar way than the He’s terrestrial method. A is selected as

the highest intensity RGB value over the entire original input image by choosing among

those pixels that have bigger values on the direct scattering map (typically the set with

the 10% biggest values is used).

As shown in Figure 3.8, representing the architecture of our method, once estimated

A and before the J(x) computation, we filter the total transmission map to avoid the
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block effect over the image caused by the window size used to locally estimate scattering

and absorption contributions.

Both maps (s(x) and a(x)) are refined applying a filtering method similar to the one

presented and improved respectively in [95] and [96]. In particular it is aguided filter,

meaning that to refine our total transmission map we use a guidance, and in particular

this guide is the input image itself. In comparison of other common image filters with

explicit predefined kernels (e.g. Sobel and LoG), this guided filter better preserve edges

of the input (guide) image. With a close behaviour in comparison to the bilateral filter

([97]), the guided filter is in general faster (especially using the fast implementation

that employs sub-sampled images) and achieves comparable performance. By assuming

a local linear dependence between the guide image (I) and the output image (t =

aI + b), this filter is more than just a smoothing approach because allows to easily

transfer the structure of the input image to the output. In our case this image is the

total transmission map without the block-artefacts due to the scattering and absorption

estimation. For this reason this technique is highly suggested for dehazing than the

slower soft-matting approaches used in the earliest works. The Figure 3.11 shows an

example of a transmission map before and after the refinement.

With this refinement step the output produced by the radiance recovering acquires a

Figure 3.11: An example of a transmission map refined (a) and not (b). As can be
noticed in the non-refined version are appreciable blocks corresponding to the window

used to estimate the total transmission (including both a(x) and b(x)).

more clear and pleasant look, without the block effects, as shown in Figure 3.12.

After the transmission map refinement, to finally obtain the expected radiance J(x)

of the input image, a parameter tlow ∈ (0, 1] needs to be introduced and the actual

recovering equation takes the following form:

J(x) =
I(x)−A

max(tlow, t(x))
+A (3.36)
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Figure 3.12: Radiance recovered considering the refined total transmission map (a)
and the non-refined version (b). Circles represent those areas where the block-effect on

the output image is more evident.

where t(x) is defined as in 3.35 and tlow is needed to lower bound the amount of total

transmission and keeping a certain amount of the input image I(x). Figure 3.13 shows

an example obtained once the full dehazing process is completed and compares it with

the other principal dehazing methods.

While He and Wen’s methods both tends to introduce several artefacts on image, it

is evident the close output between our method and the Drews’s one. This similarity

might occur, as in this case, when our total transmission approximatively follows the

s(x) component. The Drew’s method represent in this way a subset of our approach.

Stronger differences arise however when the absorption effect is widely less than the

scattering, for example as in the Figure 3.14. From these preliminary comparisons it

can be noticed also that our algorithm is much more stable using smaller lover bound for

the transmission2 (tlow) than the other underwater approaches. Obviously some methods

are designed to perform better for certain situation than other (e.g. foreground and/or

close objects).

3.4.1 Variable airlight

As can be seen in Figure 3.13, our proposed method might still produce dark areas in

presence of non-uniform illumination. This phenomenon is due to the way for estimate

the airlight, that is unique over the entire image. This phenomenon is also common in

practically all methods and sometimes it may be hidden by choosing high lower bound

for the transmission values. The actual problem that has to be handled is, instead,

2Some authors suggest to use bigger values to lower bound the underwater transmission, although

increasing the tlow actually means having an output image that is closer to the input one.



56 3. A method for underwater dehazing

Figure 3.13: Results obtained with the main dehazing method in an underwater
scenario. The single top image is the input, while the two rows corresponds to the
same image with different transmission lower bounds, respectively tlow = 0.2 the first
row and tlow = 0.6 the second. In both cases the processing was carried out with
Ω(x) = 21× 21 pixels and an original image of 2, 5 Mpx). By columns are reported the
output images obtained with (starting from left): 1) He’s method, 2) Drews’s method,
3) Wen’s method and 4) our method. It can be observed as to a lower values of tlow
correspond in general a darker image. The He’s method is the one that is not specifically
designed for underwater and actually doesn’t alter substantially the input image, while
Wen’s is the one that introduces more artefacts. Our method performs quite close to
the one of Drew in this scenario but our methods appears notably less insensitive to

the tlow values.

the non uniform illumination that might cause the alternation of bright and dark areas

during the recovering of the actual radiance. More specifically, this is related to the

airlight (A) estimation. As well as for the medium absorption, usual terrestrial methods

for dehazing does not handle this issue, or there are properly designed methods, as the

one reported in [98]. Still keeping as reference the same architectural scheme reported

in Figure 3.8, in our dehazing method we changed the way in which A is calculated by
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Figure 3.14: An image characterized by a strong artificial illumination recovered by
the Drew’s method (left image) and our approach (right image). These results were
achieved with a limited tlow = 0.3 and confirm that the use of a measure of absorption
in combination with one of scattering for the transmission estimation is a valid approach

to face up to the underwater dehazing.

employing an adaptive approach.

The airlight is a three channel matrix Av, where each entry represents the local airlight

value calculated over a m ×m square patch in the input image. The size of the patch

Figure 3.15: To handle the non-uniform illumination in underwater environment a
variable airlight matrix Av is used. Each entries of this matrix corresponds to a square

patch in the original input image.

m is a new parameter that has to be carefully chosen depending on the scenario. For

non-uniform illuminated areas m should be kept low to better handle the light variation.

From our test we experimented that values between N
16 to N

2 (with N the size of the

smaller image dimension) are capable to handle the majority of scenarios. In each

window the computation of the airlight value is done by taking the biggest intensities on
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input image and corresponding to the pixels that are brightest on the map (1−s(x)). In

the case that the airlight evaluation window has the same dimension of the input image,

we practically return to our initial approach as previously discussed. What is overall

important is that the airlight window must be not smaller than the dimension of the

patch used to evaluate both scattering and absorption effects. Empirical test suggested

us to maintain the airlight window almost ten times bigger.

In underwater environment the illumination is also crucially dependent on depth. Points

far away from the camera usually tend to become darker with a certain continuity, so the

image illumination will be determined also by the field of view and the angle between

the camera and the sea bottom (Figure 3.16). In particular when the principal axis

Figure 3.16: The two opposite camera configurations. When the principal axis of the
camera is perpendicular to the seabed (a) the limited depth can lead to evaluate the
airlight on larger windows. At the opposite (b), when the principal axis is nearly parallel
to the seabed a finer airlight evaluation might be necessary to keep the non-uniform

lighting caused by wide depth variations.

of the camera is perpendicular to the seabed—considering an approximate constant

depth—few or at least one single window is necessary. Instead, when the input image

is characterized by a non-uniform and continuous variation in depth a hight number of

windows can better catch the airlight changes.

To conclude the description of our adaptive method it may be useful to point out that

considering the airlight as a matrix (Av), it doesn’t change significantly the equation

used to recover the image radiance J(x). It is computed as:

J(x) =
I(x)−Av

min(tlow, t(x))
+Av . (3.37)
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To avoid the square-shaped artefacts on the output image (e.g. Figure 3.17) a Gaussian

filter is applied before to the matrix A. Figure 3.18 shows a comparison of our method

Figure 3.17: Example of underwater image recovered. To avoid the square-shaped
artifacts (center) on the output image (left) a Gaussian filter is applied to the airlight

matrix Av.

with or without using the adaptive airlight estimation.

It is straightforwardly evident as the images recovered with the adaptive airlight estima-

tion present a much more lighting uniformity than the correspondent images, obtained

by considering the classical approach that performs only a single sampling of the airlight

over the entire image. The native dark areas are instead correctly preserved.

This confirm our initial idea that classical dehazing approaches does not fit well, in

general, the underwater environment; not just the transmission estimation function, but

also the airlight sampling should be carefully handled.

3.5 Experiments and results

In this section are reported results with our method and are compared with those ob-

tained on the same images by the other major aforementioned approaches: 1) He et al.’s

method, 2) Drews et al.’s method 3) Wen et al.’s method. All these techniques have

been implemented strictly following the related original works. For this reason we do not

take directly in consideration the Carlevaris-Bianco et al.’s approach for dehazing be-

cause the lack of sufficient implementation details that might be affect the performance

of our version.

In Figure 3.19 are shown some preliminary results obtained with our new method, di-

rectly compared with the original image.

From our knowledge there are not widely adopted approaches to quantitative asses the

performance of haze removal. Both, terrestrial and underwater techniques are compared

by confrontation but there is not a measure that can objectively catch substantial dif-

ferences. While human observation is capable to determine the quality of a distorted

image also without the presence of a reference one, designing algorithms capable to do
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Figure 3.18: Examples of images recovered with (left column) or without (right col-
umn) using an adaptive airlight estimation. It is possible to observe how, the variable
airlight, preserves better the brightness uniformity bot in the case of natural illumina-

tion (top row) than in case of artificial illumination (bottom row).

that is still today a difficult task. This is a problem also known as No-Reference quality

assessment. In some works about the dehazing topic the Peak Signal-to-Noise ratio

is used even if it may be not a good indicator of overall image quality ([99]), because

it is poorly correlated with perceived quality and, mostly of all, it require a reference

image that in the case of underwater images is hard to obtain. For terrestrial dehazing

are sometimes carried out evaluations based on ad hoc setup, simulating the haze in a

controlled artificial environment ([100]).

In underwater scenario, some works (e.g. [93]) use known reference pattern to measure

the transmission and colour distortion. More than the inherent difficulties to place a

reference pattern on the seabed, as we saw in equation 3.13 and also in Chapter 1, the

differences in water environment may severe change the behaviour. Drew et al. ([94])

evaluate quantitatively their method by using an image with known ground truth taken
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Figure 3.19: Other results of the underwater dehazing algorithm.

from Middlebury dataset ; even if this image do not originate in underwater environment,

they simulate on it the water effects. By our part we excluded the option to use an ar-

tificial haze over the image because using the same model to add and then remove haze

from an image might be trivial and anyhow not much accurate.

Furthermore, given the diversity of approaches for single image dehazing and given the

indefinite number of possible scenarios there is no way to proof that a method is actually

better than another in every situation.

For all these reasons our approach was to conduct intensive test on our images, directly

comparing algorithms over the variety offered by our datasets and using images that are

present in other works in literature.

We tested the result of our approach—considering a variable airlight window—related

to the three other main algorithms proposed by He, Drews and Wen.

Figure 3.20 and 3.21 collects the obtained results. Each row represents an image taken

from one of the dataset described on chapter 4.3 (provided by ARROWS project and/or

Soprintendenza Archeologia della Regione Toscana). Starting from the left of Figure

3.20, there are respectively: a) Original input image, b) He’s dehazing, c) Drews’ dehaz-

ing, d) Wen’s dehazing, e) Our proposed method. All results employ an haze evaluation

window (Ω(x)) of 15× 15 pixels. Our methods computes the airlight on a squared win-

dow with dimension a tenth of smallest image side.

The two comparison figures that are shown below were achieved with tlow = 0.2 and

tlow = 0.6 respectively in Figure 3.20 and Figure 3.21. In fact, after various tests we saw
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that the tlow is a parameter, shared by all methods, that notably influences the results.

It practically handle the amount of the input image appearance that has to be kept in

recovered output image; hence for greater tlow, input and output image tend to be closer

and the radiance is poorly recovered.

As can be noted our method (column e on Figure 3.20 and Figure 3.21) seems to

perform better in almost all datasets than other approaches. Considering the first Fig-

ure with a little lower bound for the transmission (tlow), our approach is capable to

keep brighter and uniform colours. in low lighting condition, Wen’s method (column

d) notably affects the output colour with high distortions mostly on red channel that

sometimes appears overcompensated. Similar effects have been obtained also by chang-

ing its input parameters like the patch dimension used for the transmission estimation.

On the other hand, the Wen et al.’s is the approach that more than the others mitigates

the blue (or green) colour predominance in underwater images.

He et al.’s method shows consistent colours, however its performance is lower than in

terrestrial environment.

Our method instead has better overall performance, but in particular the differences

are much more remarkable in D3, D12 and D11. The positive effect in using a variable

airlight estimation seems to be confirmed by the good results obtained with darker im-

ages as for example in dataset D12. All images are characterized less or more by a more

lighting in passing from tlow = 0.2 to tlow = 0.6. Drews et al.’s and Wen et al.’s methods

are those who seem suffer more this variation, especially with input image having lower

illumination as images in datasets D2, D3, D6, D11 and D12. By increasing tlow, the

Drews’s and He’s methods obtain closer output results in practically all datasets as it is

possible to observe in Figure 3.21.

Figure 3.22 shows the differences that we achieved by using our approach with a variable

(column b and c) or fixed airlight (column a). While there are few or less differences be-

tween the three approaches when the image has an uniform illumination (e.g dataset D6

and D9 ) using a variable airlight estimation allows to get better results when the depth

variation in the input image is higher, as for example in dataset D3 and D12. In partic-

ular, images on the right column in Figure 3.22 globally have a better uniform lighting

in comparison of those that use a single airlight sample calculated over the entire image.

Images on the central column have a larger airlight windows (2.5 times bigger) and their

illumination is slightly lower than using a finer airlight sampling. By comparing these

images, obtained with tlow = 0.2, with the corresponding ones in Figure 3.20, we may

observe that our proposed method, also without the adaptive airlight windows, is able

to perform better in underwater environment than the Drews’s and Wen’s approaches

especially in dealing with images characterized by larger depth ranges. Obtained results,

instead, are much more close when the image depth is limited.
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All our implemented algorithm for single image dehazing are in Matlab R© code. To pro-

cess an image of about 3 megapixels, it takes about 200 seconds, comprehensive of the

airlight estimation and refinement steps. This time can be further reduced by employ-

ing the ”fast” version of guided filter ([96]) to refine the transmission. With a limited

number of windows for sampling the airlight, the temporal difference between the twice

version of our algorithm is negligible.

From all the reported comparisons—and the many others that we conducted—over mul-

tiple images taken from our datasets we observe that our proposed method, especially

with variable airlight estimation is capable to obtain in general better results than the

competing approaches in underwater environment.

As already said, speaking about the problem of underwater dehazing and its peculiari-

ties, unlike the terrestrial scenario, for this environment there is a lack of datasets that

can be employed to actually asses the overall performance of existing methods.

Literature works, including those we analysed and implemented here, lack of a common

shared evaluation dataset publicly available.

In figure 3.23 are presented some results with images taken from the works of Wen ([6])

and Fattal ([5]). Here are compared results obtained with our proposed algorithm (col-

umn D), Carlevaris-Bianco’s (column B) and Wen’s (column C ) dehazing approach. In

the image on top our method seems to perform close to Wen’s one. On the other hand,

the bottom image points out as our method has apparent lower performance on the im-

age background. In particular, differently from other methods, it does not substantially

change the image colours. We may notice that other methods (on columns B and C )

recover colours in a quite distorted and not realistic way, while our approach is able

to keep more image consistency. In Bianco’s method, for example, colours tend to be

whiter while in Wen’s work there are some appreciable distortions due to the lighting

variation.

Moreover there are some reason behind these differences. Except for our output image

(column D), all the others are taken from ([6]). Authors do not specify information re-

garding the input image used for these results and our starting image was available only

in a very compressed and small (300×240 px) form. In relation to the haze phenomenon

and its diffusion/distribution across an image, compressions (lossy) or large resizing may

severe infer the performance of dehazing algorithms. It’s a fact that our method works

better with unfiltered and uncompressed input underwater images. Furthermore, in

Figure 3.23, there are no sufficient information about used parameters, optional colour

enhancement or special pre-processing filters. In dealing with terrestrial images, for ex-

ample, white balancing algorithms are often used preliminary for the dehazing algorithm;

in our approach we don’t use anyhow extra enhancement or filter because we observed
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that depending on the particular environment they can lead sometimes to evident mis-

takes and may hide the actual ability of our proposed dehazing algorithm.

The original datasets that we used and presented here (compatibly with copyright per-

missions because the majority of our images come from underwater videos taken during

the ARROWS project funded by the European Commission through the 7th Framework

Programme for Research and Technological Development) jointly with our algorithm,

will be publicly released to give a shared dataset for evaluation and to improve further

works on underwater dehazing topic.
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(a) (b) (c) (d) (e)
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Figure 3.20: Final results obtained for input images (column a) applying methods:
b)He, c)Drews, d)Wen, e)Our. Images are recovered with tlow = 0.2, Ω(x) = 15.
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(a) (b) (c) (d) (e)
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Figure 3.21: Results with tlow = 0.6.
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(a) (b) (c)

D3

D12

D9

D6

Figure 3.22: Comparison of our method using a variable (column b and c) or fixed
(column a) airlight estimation. Main parameters: tlow = 0.2, Ω(x) = 15, and the
airlight window is a quarter of the smallest side image (column b) or a tenth (column
c). While there are less differences between images in presence of a uniform illumi-
nation (dataset D6 and D9 ) using the variable airlight allows to asses better results
when the depth variation in the input image is higher (D3 and D12 ). We can also
notice how reducing the airlight window size the output image acquires a more uniform

illumination.



68 3. A method for underwater dehazing

(a) (b) (c) (d)

Figure 3.23: Example of comparison of our method (column D) with Carlevaris-
Bianco’s (column B) and Wen’s (column C ) dehazing approach, in relation to the
input image (column A). Images are taken directly from the work in [6]. In the first
row our method (with tlow = 0.2 and approximatively 40 airlight samples) perform
close to the Wen’s method. In the second figure (bottom row), our approaches works
well on the foreground but affect only slightly the background, but differently from

other approaches, colours are not highly distorted.
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3.6 Dehazing for coarse depth estimation

As we said at the beginning of this chapter, the haze removal is intrinsically linked to

depth information of a 3D scene. In particular, in equation 3.1 we saw a close relation

between depth and image appearance in hazy environments.

Haze or fog, when is not occluding entirely a scene can be seen as cue for recovering

coarsely the scene depth [101].

There are various method to obtain a depth estimation from a single image, shape from

texture[102], shape from shading [103] or by assumptions on the presence of particular

known object or structure inside the scene ([104]). In [105] the problem of inferring the

depth of an image starting from a single image is carried out in a more general way by

a supervised learning approach. Starting from a number of training examples with a

known ground-truth they learn a classifier (see also [106]) based on the analysis of a set

of visual clues.

The haze approach is today not enough well suited in image processing ([86]). Being

able to recover—with some limitations—the actual scene radiance from an hazy image,

we also need to carry out some information about depth. Theoretically this is a relative

depth because unless a more precise model and absolute quantifications this method is

able to catch only a coarse depth map of the environment. Some errors might be pointed

out also by particular image configuration so, for example the sky, snow, sea or rivers

reflections can lead to incorrect estimates.

Practically, every image taken in a terrestrial environment is affected by haze. Only a

vacuum atmosphere (i.e. the absence of a medium between the target and observer)

is theoretically immune from it. Here shapes lying on different-depth planes might be

caught by the transmission map. Figures 3.24, 3.25 and 3.26 show results obtained with

the He et al. method for terrestrial images. The presence of a smoothly distributed

fog as on Figure 3.24 allows better results than in case of a low hazy atmosphere as in

successive Figures (3.25 and 3.26). Anyhow the foreground scene is well segmented and

the results are comparable to those obtained with more articulated approaches. Clearly

the haze-based approach works better with outdoor images, but it is possible to extract

acceptable results also for indoor scene as reported in Figure 3.27. We used an image

(the top one) taken from the Middlebury Stereo Dataset ([7],[8]), and we compared the

results that we obtain with our implementation of the He et al. method (images on

column right) in relation to the effective depth map (left column). Clearly there are

some errors, mostly due to the high-textured background and the small depth range of

the image, but the foreground object is still appreciable.

Switching the scenario from terrestrial to underwater it is possible to apply our method

to recover a coarse 3D map of the seabed. Underwater images are in general affected by
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Figure 3.24: The transmission map can be seen as a cue for estimate the (relative)
depth, from a single foggy image.The top right image is the computed transmission for
the input image (left). Whiter points represent closest point. Below is reported the

obtained texture-mapped surface seen by two views. (Image from [4])

much more distortions and the visibility is typically lower and all this might affect the

final result. Differently from the terrestrial method for haze removal (where only the

scattering effect is considered) in underwater images we employed three transmission

maps (one for channel) and consequently we have not a single transmission leading

straightforwardly to a depth estimation. To overcome this limitation and to obtain a

coarse 3D depth map of the underwater environment the idea is to use a transmission

map derived by taking the minimum among all the channels. In particular for every

point x of the transmission t(x), is computed:

tdepth(x) = min(tred(x), tgreen(x), tblue(x)) . (3.38)

The following images (from 3.28 to 3.35) report the obtained depth-transmission map

(central image) obtained for several significant underwater scenarios (left image). All

images are processed using our method with estimated haze over a 15 × 15 pixel win-

dow. The corresponding texture mapped on the depth surface, derives from the original

(non-dehazed) image so that the resulting appearance is not influenced by the choice

made for the other parameters (like tlow or the airlight window size). Considering that

low (darker) transmission values are representative of many further 3D points, we ob-

tain consistent results both considering large (e.g. Figure 3.29) than small (e.g. Figure

3.31) depth variation ranges. We often use the adjective coarse to underline that this
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Figure 3.25: A second example of a texture-mapped surface obtained starting from a
single image. Without any further information using the haze distribution this method

is able to segment out the scene foreground, also in presence of a moderate haze.

recovered depth is not composed by precisely trusted values. Furthermore, the evalu-

ated measures are not so accurate to give the real depth measure, both absolute and

relative. What this approach can do, instead, is to provide, a background/foreground

segmentation and a sketch of the scene structure.

For what concerns the errors carried out by this approach we observed that as in figure

3.32, 3.34 and 3.35, lighting saturated area may lead to inconsistencies, in most cases

limited to spotted zone of brighter transmission. Also the artificial light, in stronger

area, might lead to bad estimations as for central objects in figure 3.30. Note that the

first two figures (Figure 3.28 and Figure 3.29) are characterized by an apparent distor-

tion in correspondence to the image corners. Actually the transmission is here correctly

evaluated because the four visible dark corners are due to the circular camera housing

mounted to the AUV, and the position of those points is really closer to the camera.

The smoothly curved surface is then the result of the application of a filter that limit

abrupt transmission changes.

Despite its coarseness and limitation, haze removal can bee seen as a fast, simple

and effective way to compute a coarse relative scene depth just starting from a single



72 3. A method for underwater dehazing

Figure 3.26: Another example of coarse depth estimation using the He et al. method.

natural image, without particular informations needed or special parameter tuning. Hy-

pothetical applications may be in all those visual patterns where there is the need to

get an overall scene sketch in a limited time, for boosting already existing algorithm or

simply where there is not enough information (i.e. images) to run more sophisticated

method for obtain depth informations.

The use of the haze effect like a cue for coarse depth estimation does not ends here and

other applications can be derived. Another example is employing it in the image forensic

field.

As many natural phenomena captured by images (e.g. lighting condition in [107]), the

process of correctly and consistently replicate haze distribution is not easy to achieve

and for this reason it is reasonable to think haze as a clue for detecting potential incon-

sistencies over an image.

In particular some digital forgeries may be discovered in where an image presents added

elements that they were not in the original one.

Starting from a single tampered image and taking its transmission map the relative mu-

tual position of every object that is present into the scene is considered. The position of

these elements should be coherent with the perspective (i.e. the actual position) in the

original image and every inconsistency may be regarded as a potential forgery. Figure

3.36 shows a tampering action that can be detected, by looking at the inconsistencies
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Figure 3.27: Example of coarse depth estimation for an indoor image. The (top)
input image is taken from the Middlebury Stereo Dataset ([7],[8]) then we compared
the results that we obtain with our implementation of the He et al.’s algorithm (images
on right) in relation to the effective depth map (left images). Although there are some
errors due to the highly textured background the foreground object is appreciable.

generated by the transmission map and the actual perspective.

Clearly this approach—as many others in image forensics—needs the human interven-

tion to label the original image with the real relative mutual positions of objects.

This approach of using haze as a cue to discover potential image forgeries is based on the

fact that elements extracted from different images, taken in different context and time

would be in general affected by distinct haze distributions. Hiding such modifications

is not an easy task to accomplish and it may represent a weakness leading to discover

whereas an image tampering action has been occurred.
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Figure 3.28: Example of coarse depth recovering from a single image. Figure on the
left is the input image, the central one represents the transmission map and the right
is the textured obtained surface. The fact that all the four image corners appear ahead
the other image points is due to the circular camera housing employed that partially
occludes image corners. So this is not properly a distortion but instead those dark four
image corner are correctly placed; anyhow some distortion is inducted by the filtering

step that smooths the abrupt depth changes as in this case.

Figure 3.29: A second example of underwater scenario with natural, non-uniform
illumination.

Figure 3.30: Example of 3D coarse depth recovery in a scenario with artificial illumi-
nation. We notice that a strong illumination may deceive the foreground/background
estimation as in the case of the object in the center of the (left) input image whereof

presence is not correctly captured and appears almost fuse with the seabed.
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Figure 3.31: An example of 3D coarse scene depth using an image with a small depth
range variation. Even if some evaluation errors are present (mostly due to the object
surface reflection properties and the strong blue presence), the overall depth evaluation

is quite consistent and realistic.

Figure 3.32: Another example of depth evaluation. This is a detail of a bigger image
again strongly dominated by blue channel.

Figure 3.33: Example of depth evaluation. In this case the image is dominated by
the green colour, but result is comparable with the previous obtained.
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Figure 3.34: Another example of depth estimation with a naturally coloured image.

Figure 3.35: Example of coarse depth estimation in an image characterized by a clear
foreground object. We can notice (both on central than right figure) that the foreground
object is correctly identified by the transmission map. As happened in other images,
some illumination saturated areas, like those near the central object, might appear as

foreground even if they are not.
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Figure 3.36: Example of potential tampering (the original tampered image is from
Wikipedia).





Chapter 4

Underwater classification:

algorithm and feature

comparisons

Texture analysis is an active research topic in the fields of computer vision and pattern

recognition. There is not an unique and widely accepted definition for texture, even if

related studies were conducted from the beginning of image processing. Many methods

characterize textures regarding features extracted from them.

First of all, texture analysis is useful to describe images that shows regular pattern.

Natural environment shows a lot of coarse and irregular shapes at different scale and

resolution (Figure 4.1). On the other hand, places in where humans live are subject to

transformations that make the visually perceived environment characterized by well de-

fined, identically repeated, finer and regular shapes. We can hence define human world

as characterized by object-oriented scenes in opposition to the more pattern-oriented

scenarios of the natural world. Therefore if we want to deal with this latter, we need a

representational framework that is able to describe effectively such shapes.

Underwater environment is still mostly unexplored and so it is a place where nature

can totally express itself. Performing task as segmentation or classification in the un-

derwater scenario can be very difficult because imaging conditions as illumination and

magnification and different noise sources contribute to a poor image quality.

79
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Figure 4.1: Examples of natural patterns (Images from Flickr).

4.1 Related works and background

Many times researchers have attempted to emulate the ability of the human brain to

understand the content of images for the interpretation of images and developing image

understanding algorithms for applications including robotic vision, remote sensing, as-

sisted medical diagnosis and automated target recognition. Texture analysis is strictly

connected to human low-level perception tasks. Historically from its beginning, image

analysis took into consideration to deal with textures.

It is important to notice that the term texture is not a prerogative of the visual image

analysis—meaning the images that are acquired through CCD (Charge couple devices)

or CMOS (Complementary Metal-Oxide-Semiconductor) sensors—because many tech-

niques are suited also in more general frameworks of signal processing. There is not a

commonly adopted definition for what a texture is [108]. Simply we can define it as

the main and direct source of visual information. Texture are complex visual patterns

made itself by entities or sub-patterns in a hierarchical fashion. What characterize a

texture are apparent properties regarding density, uniformity, roughness, smoothness,

directionality, frequency, phase, etc.. . It is possible to say that an image region has a

constant texture if a set of given local properties in that region is constant and is slowly

varying. It must be underlined that the texture has both local and global meaning.

The analysis typically require the identification of proper attributes (features) that can

differentiate textures during classification, segmentation and recognition tasks.

Selecting textural feature which are independent and discriminable may aid an even-

tual preliminary segmentation process. Textures present significant properties in digital

imaging system and have an important role in human visual perception as also experi-

mented in [109] from a psychological point of view and where textures are addressed as
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an important cue for scene identification.

Texture plays an important role for the analysis of many types of images. A variety of

measures for discriminating textures have been proposed. Most of them quantify the

texture measures by using just few values; all the extracted elements are then combined

as elements of feature vectors for performing classification or discrimination tasks and

with or without knowledge about the imaging conditions ([110]).

In [111] is proposed an algorithm that uses textures jointly to colour descriptors over

multiple scales to perform an automatic annotation of underwater images taken in coral

reef scenarios. Althougth some limitation the final aim is here quite similar to the one

proposed in this work, with using SVM to accomplish the proper classification task.

In a classification framework the texture and local spatial statistics are actually an im-

portant way to describe the information that is present in an image, as evidenced in

[112]. The main conclusion is that both texture and local spatial statistics are able to

improve the classification accuracy. Other than by features this latter is influenced also

depending on the chosen window size, resolution and direction. Here the application

field is not the underwater environment but the satellite imaging that anyhow shares a

lot of similar properties and characteristics with it.

Already in [113] a deep investigation about the GLCM was presented that by considering

their statistical meaning showed as only a small subset of them, in common application,

must be regarded as effectively needed.

Wavelets are an alternative approach widely adopted for texture recognition and or clas-

sification, as shown in [114], where three different approaches are analysed. Similarly in

[115] the Haar wavelet transforms are used in combination with Support Vector Machine

classification or in [116] where the wavelet technique is directly integrated in the SVM

kernel function.

In [117] a statistical versus wavelet-based approach was instead carried out. The point

is that even if features based on first and second order statistics are characterized by far

less number of components in comparison of methods based on wavelet transforms, the

statistical features are able to show better performance. Statistical features does not

also involve computational intensive transformation so are in general suggested in time

constrained tasks. The experiments have been conducted on medical images but can be

extended also to other similar non-regular shapes.

In [118] the TextonBoost approach is presented. It assumes a discriminative model for

an efficient and effective semantic segmentation and/or recognition of images. A sim-

ilar discriminative method, specific for underwater images has been also presented in

[119] for detection and image segmentation. Even the good achieved performance, both

approaches are anyhow too object oriented to be effectively employed for a seabed clas-

sification.
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Ideally every 2D image patch can be seen as a texture, but in general only those that

present some regularities are suitable in texture analysis. Seen as an informative signal,

each 8-bit grey-level image patch with N × M pixel can represent 256N×M different

patches. Without considering problems due to viewpoint changes, images taken from

the real world are affected by a strong intrinsic variability, in acquisition process and

atmospheric-induced noise. We can isolate two major relevant problem regarding tex-

ture analysis: Discrimination and Classification. The first one (see [120] and [121] for

good reviews) is ascribable to a segmentation problem.

A texture is not a bounded entity but it is a region defined by some of its characteristics

and their homogeneity. So, how can we discriminate textures? The answer is strictly

related to the actual task that we need to accomplish. It may depend from different fac-

tors like desired resolution or invariance properties in relation to image transformations.

Method based on quad tree [122], Markov Random Fields [123] or Superpixel [124] are

some of most famous for image and vision tasks.

The classification problem is meant to grouping textures about some desired features.

The difference with the discrimination is that there is a fixed set of texture classes among

which choose. To accomplish tasks as texture description, discrimination, classification

and retrieval there is the need to compress texture information in a (relative) small

subset of simple, robust, reliable and well defined measures. For this reason texture

statistics are largely employed.

According to [125], [126] and [127] there are various method for approaching texture

analysis. Basically there are three categories: 1) Structural, 2) Statistical and 3) Model

based.

The structural methods [128] try to represent a texture with some basic primitives and

their spatial placement. Examples of basic primitives can be the pixel tone or edge

direction. During time various methods have been developed and in addition, spatial

relations may be considered to improve the discrimination factor. Statistical methods, as

the name said, define texture only by a set of local statistics based on pixel gray-levels

with a single channel at time.

These approaches are sometimes related to the structural one when statistics are used

to defines primitives without attempting to describe explicitly the texture. Model based

methods are instead directed to describe an image texture with a linear combination of

basis functions or with probability models chosen a priori. The texture is in this case

defined by the parameters or coefficients of these models. Examples in this category

are methods based on Simultaneous autoregressive models [129], Markov model [130],

wavelet based [131], fractal dimension [132], and Gabor filter [133].
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4.2 Classification and texture analysis in underwater

As previously said textural analysis is a early and wide field of study in image process-

ing and pattern recognition. Obviously each method has its strengths and weaknesses

considering the numerous way in which features are extracted and used.

There is not a straight way that was proven better than others for an effective use in

general texture-based tasks of segmentation/classification. By that, in this work, we

are interested to investigate the behaviour of some textural features to handle with the

underwater environment that has the properties already described in Chapter 1.

In the work proposed in [134] the authors aims to classify seabed using textural fea-

tures. With some example comparing the co-occurrence matrices (COM) [135] with self

organizing maps (SOM) [136] they found that even if SOM features are lighter and easy

to compute the COM-based (contrast,correlation,Angular second moment and Inverse

difference moment appear to better handle with the underwater noise.

A deep investigation of performance of all proposed methods during years is practically

intractable, so based on some main works about underwater classification we have been

focused only in a subset of them.

4.2.1 First order statistics

Given a single-channel N × M image it is possible to compute the corresponding his-

togram as:

h(i) =
N−1∑

x=0

M−1∑

y=0

δ(f(x, y), i) (4.1)

where

δ(i, j) =




0 if i 6= j

1 if i = j
(4.2)

is the Kroneker’s delta with i ∈ [0, imax] and (x, y) that represent the point coordinate.

Dividing by the product N ×M the equation 4.1 it results,

p(i) =
1

NM
h(i) (4.3)

where p(i) may be seen as an approximation of the probability density function. Using

only the histogram itself to characterize textures on real images is not a viable choice.

It lacks of stability in relation to little variations and noises that might affect the image
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acquisition process. For this reason the histogram is further described by some statisti-

cal measures extracted from it. These values are employed as textural features, and are

more qualitative than using the entire histogram itself. In image processing literature

they are often referred as first order statistics. Considering the usual 8-bit image repre-

sentation i ∈ [0, 255], the common statistical measures extracted from an histogram are:

Mean:

µ =
255∑

i=0

ip(i) (4.4)

Variance:

σ2 =
255∑

i=0

(i− µ)2p(i) (4.5)

Skewness:

µ3 = σ−3
255∑

i=0

(i− µ)3p(i) (4.6)

The skewness is a measure of symmetry around the histogram mean value µ. It is zero

when there is a perfect correspondence.

Kurtosis:

µ4 = σ−4
255∑

i=0

(i− µ)4p(i)− 3 (4.7)

As the skewness, the kurtosis index describes the shape of the distribution. It indicates

the flatness or peakedness property of the histogram with respect to a normal (Gaussian)

distribution. In statistical theory the definition is not unique and there may be multiple

different ways to define it. In this representation the proper Gaussian distribution has

a kurtosis equal to zero.

Energy:

E =

255∑

i=0

p(i)2 (4.8)
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Entropy:

H =
255∑

i=1

p(i) log2 p(i) (4.9)

The entropy may be regarded as a measure of the distribution uniformity.

In addition, other but anyhow less relevant features, used to characterize images at the

histogram level are Median, Maximum and Minimum.

For some measures, may be a good choice to standardize the image values first in order

to have µ = 0 and σ2 = 1. In this way the successive comparisons might be more

effective. Note that an histogram normalization is also required when the compared

images have not the same dimension.

4.2.2 Second order statistics

In the image processing field the second order statistics are those measures that derive

from a joint probability distribution of pairs of pixels. Differently from the previous, the

second-order statistics, also rely on the spatial positioning of pixels.

Starting point is the definition of the co-occurrence matrix (or Gray Level Co-occurrence

Matrix, GLCM) that is indicated for single channel image I(x, y) with values in [0, 255]

as:

hd,θ(i, j) =

255∑

x=0

255∑

y=0

gd,θ(x, y) (4.10)

where,

gd,θ(x, y) =




1 if I(x, y) = i and I(x+ dx, y + dy) = j

0 otherwise .
(4.11)

In this latter equation, d = (dx, dy) is the distance between a pair of pixel and θ is the

direction (i.e. angle) in which this distance is measured. In this way d can be formally

expressed as: 


dx = d cos θ

dy = d sin θ .
(4.12)

The co-occurrence matrix is inherently square. Note that the parameters d and θ lead to

a very large number of different matrices. As we’ll see those that are actually employed

in common image texture processing are only a restricted number. Furthermore, note

that the direction d can be computed in two way +d or −d. If this distinction is not
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taken into account the resulting matrix will be symmetric. In [137], that is likely the

most famous work on this argument, where are proposed the so called Haralick features,

it’s also been suggested to use d ∈ {1, 2} and θ ∈ {0, 45, 90, 135}, respectively expressed

in pixel units and angle degrees. Another commonly adopted way is simply to average

all values obtained over different direction.

Dividing the hd,θ(i, j) by the total number of contributions, carry out an estimate of

the joint probability pd,θ(i, j). The choice of the parameter d may affect the discrimina-

tion capabilities; smaller d has to be preferred in dealing with fine textures that instead

achieves lower performance when they are coarser.

As for the characterization by histograms and maybe worst than that, it is unfeasible

using directly the co-occurrence matrix, both for reasons of generalization capabilities

than for its actual dimension. In fact it can be noted that without compressed represen-

tations, the co-occurrence matrix dimension grows with the square of the image value

cardinality.

However from the co-occurrence normalized matrix some basic measures, or features,

can be extracted. They may be essentially grouped in three sets:

1. Statistic features - are the usual basic statistical measures;

2. Contrast features - related to internal similarity properties;

3. Orderliness features - extracted from different image moments.

Let p(i, j) the co-occurrence matrix, with i, j ∈ [0, . . . , G−1] the principal used measures

are: Mean (1st group): 



µi =
G−1∑
i,j=0

ip(i, j)

µj =
G−1∑
i,j=0

jp(i, j)

(4.13)

Variance (1st group): 



σ2
i =

G−1∑
i,j=0

p(i, j)(i− µi)
2

σ2
j =

G−1∑
i,j=0

p(i, j)(j − µj)
2

(4.14)

Correlation (1st group):

σ2
i,j =

G−1∑

i,j=0

(i− µi)(j − µj)

σiσj
(4.15)

(with σi =
√
σ2
i and σj =

√
σ2
j the corresponding standard deviations)



4. Underwater classification: algorithm and feature comparisons 87

Absolute value or Dissimilarity (2nd group):

AV =
G−1∑

i,j=0

|i− j|2p(i, j) (4.16)

Inertia or contrast (2nd group):

I =

G−1∑

i,j=0

(i− j)2p(i, j) (4.17)

Inverse difference or homogeneity (2nd group):

ID =
G−1∑

i,j=0

p(i, j)

1 + (i− j)2
(4.18)

Angular II moment (3rd group):

ASM =
G−1∑

i,j=0

p(i, j)2 (4.19)

Entropy (3rd group):

H = −
G−1∑

i,j=0

p(i, j) log2 p(i, j) (4.20)

Max probability (3rd group):

MAX = max
i,j

p(i, j) (4.21)

Note that some of this statistics may strongly degrade as the number of image intensity

levels increase. A quantization step before is desirable in many situations. In [138] there

is a good deep analysis about.

The previously presented quantities are the baseline and others might be extracted or

derived for them.

4.2.3 Local Binary Pattern

Local Binary Pattern (LBP) are a method for texture description that is able to both

combine statistical and structural approaches. First studies have been addressed in [139]

where authors introduced a texture analysis based on simple texture units. The idea is
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that each unit can be represented by a small number of elements (e) each one taken from

a small set of values ([emin, emax]). A vector is computed for all texture pixel considering

a square neighbourhood (N). In this way each pixel has associated a value that represent

it. The texture is then described by considering the distribution of these values over a

patch. In this sense it is a combination of structural and statistical approaches.

Different implementations may vary in how all these values are computed, as for example

one of the earlier study for each element a neighbourhood of 3 × 3 (i.e. |e| = 8) was

used with values taken in [0, 2], and giving rise to a 38 different texture units. LBP is

a non-parametric descriptor, close to the census transform [140], non-parametric local

transforms relying on relative ordering of pixel intensities and not on the specific values.

This leads to achieve some invariance to monotonic transformations of the intensity

function.

Overall, one of the most successful method named Uniform LBP is reported in [9] and

is the main reference for the present work. It is related to previous basic approaches

on local binary pattern as [141] [142] and [143]. Once proposed, this method received

much attention, that continues also in recent times (e.g. [144], [10], [145] and [146]).

Before discussing the Uniform version of LBP it must be discussed the basic idea behind

it. LBP was born to handle a single channel gray-level image even if can be easily

extended to deal with different colour spaces. Starting from an entire image or a single

patch for each pixel a neighborhood around it is selected to calculate its LBP value

as in Figure 4.2. This value is computed considering a N × N window around the

-

=

Figure 4.2: LBPs are computed for all image pixel considering their neighborhood.
The value of the central pixel is then compared one-by-one with all adjacent ones.
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central reference pixel p and each neighbouring pixel Ni is compared one-by-one with

the value of p. The complete version of Uniform LBP has the properties to be invariant

about monotonic transformation of pixel values and against image rotations. It starts

to consider a monochrome textured square patch T , composed by a number of P (with

P > 1) pixels. Let

T = t(c, g0, . . . , gP−1) (4.22)

where c is the value of central pixel and gi, with i = 0 . . . P − 1, are the values of

neighbouring pixels. Differently from previous methods this neighbourhood is composed

by equally spaced pixels at a radial distance R (R > 0) expressed in pixel units, as it

is represented in Figure 4.3 with different R and P values. Each pixel in the position p

Figure 4.3: The circular neighbourhood of LBP for different value of radius R and
pixels P . (Image from [9])

has coordinates

(−R sin
2πp

P
,R cos

2πp

P
) (4.23)

and for a practical use these values might be obtained by interpolation. The local binary

pattern of each central pixel of the texture patch is calculated by subtracting its value

c to all neighbouring pixels of value gi. The texture T is hence defined as

T = t(g0 − c, g1 − c, . . . , gP−1 − c) (4.24)

and this representation achieves an invariance against diffuse changes in luminance that

rigidly interest all the texture. Theoretically the invariance is acquired by value shifts

that might occur uniformly over all pixels (Figure 4.4).

This invariance has obviously a price in terms of lost information. Anyhow this is not

a big deal because we theoretically consider textures that have equal luminance change

and, excluding some kind of noise and considering patches with small R values, it is

reasonable that the luminance uniformly vary.

It is possible to achieve invariance related to other gray-level transformations, as scaling

or more in general for those due to a monotonic function. To realize this, all references
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g0
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g4

g5 g6 g7

g0
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g0

g1g2g3

g4
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g0 g1 g2 g3 g4 g5 g6 g7

Figure 4.4: The effect of gray-level shift invariance.

to the actual pixel values are discarded. The central pixel of value c is compared with

its neighbourhoods by the function,

s(x) =




1 if x ≥ 0

0 if x < 0
(4.25)

that is nothing more that the sign(·) operator and T can be represented as:

T = t(s(g0 − c), s(g1 − c), . . . , s(gP−1 − c)). (4.26)

Now each pixel comparison give rise to a single bit (0−1) of information depending if the

neighboring pixel is respectively less or greater than the reference one. Having P pixel in

the circular neighborhood as output of this transformation we obtain an ordered binary

vector of length P (see Figure 4.5). It is this step that substantially determines the name

of binary pattern. The ordered processing of neighbouring pixel is crucial. Usually the

binary vector is constructed starting from the first (most significant) position and pixels

are taken starting from the right one in anticlockwise. We can express the local binary

pattern of a pixel considering a circular neighbourhood with a radius R and composed

by P elements as:

LBPP,R =
P−1∑

i=0

s(gi − c)2P . (4.27)

With a neighbourhood pixel set composed of P elements the binary pattern has 2P

possible configurations. For now this local binary pattern operator differs from earlier

version (like in [141]) only for using a circular neighbourhood. The LBP can be further
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Figure 4.5: The comparison with neighbouring pixel give rise to an ordered binary
vector.

extended to handle invariance against rotation.

In fact, comparing two LBPP,R extracted from corresponding point of two images that

are identical unless a rotation factor, these can lead to a very different binary pattern

and a recognition process are likely to fail over them. Depending on the circular neigh-

bourhood sampling angle there are exactly P different rotation for an LBPP,R equally

spaced by 2π
P

degree (clearly the hypothesis is that the circular neighbourhood sampling

is uniform). The easiest way to handle with differences due to rotations is to take all

the possible shifting of an LBPP,R. As drawback, this solution will increase the compu-

tational cost about P times during comparisons between LBPP,R.

A second way to achieve rotation invariance is to define a LBPP,R normalization over

all possible P rotations. Hence the new definition for the binary pattern is:

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, . . . , P − 1} (4.28)

where ROR(·) is a right shift binary operator. This leads the LBP operator to loose

more allowed configurations and so a certain amount of discrimination power.

Figure 4.6 shows the 36 possible unique binary pattern, calculated with P = 8, that

have the property of rotation invariance. Except for the patterns reported in the first

rows—those from #0 to #8 in Figure 4.6—all the others, from the second to the fourth

row, have not a straight relation with common texture structures. Patterns from #0

to #8 can have, instead an interpretable meaning. The all-0 and all-1 configurations

(respectively #0 and #8) may stand for uniform or spotted texture element. The others

patterns (#1 to #7) may instead represent simple component of edges or straight line.

Experiments conducted in [142] with LBP ri
P,R showed that using the entire set of 36

rotation invariant LBP may be often useless or even counterproductive. In particular

the authors of this work found that over the 90% of LBP ri
P,R patterns belong to the

types from #0 to #8. This reduced set of 9 elements is so the only one used in most
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Figure 4.6: The possible rotation invariant binary pattern configurations for LBP ri
P,R.

(Image from [9])

practical applications and its elements are also known as uniform LBPs.

Mathematically to define a Uniform Local Binary pattern a measure U(·) is needed to be

defined. This operator measures the number of transitions that occurs in the P-length

vector of each LBPP,R. The 9 uniform patterns (Figure 4.7) have a U(·) value that is

Figure 4.7: The uniform patterns. (image from [9])

less or equal to 2.

In conclusion the Uniform Local Binary Pattern can be expressed (following the notation

reported in [9] as:

LBP riu2
P,R =





∑P−1
i=0 s(gi − c) if U(LBPP,R ≤ 2)

P + 1 if U(LBPP,R > 2)
(4.29)

with U(·) expressed as:

U(LBPP,R) = |s(gP−1 − c)− s(g0 − c)|+
P−1∑

i=1

|s(gi − c)− s(gP−1 − c)|. (4.30)

All the ”non-uniform” patterns are grouped in a single class, so, considering P = 8

and R = 1 all possible configurations of LBP binary vector belong to one of 10 final

configurations.

The choice of neighbourhood size P and radius R are obviously related. As R increase

the circular quantization angle might be reduced and P increased. For a small number

of neighbourhoods the interpolation function, used to realize the circular sampling, can

be avoided. Dealing with usual natural images instead of using bigger values of R can
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be convenient—without considering particular application fields—to reduce the image

scale and then use values as (P,R) ∈ {(8, 1), (16, 2)}.

To summarize, LBP riu2
P,R is the ”full” version of the Uniform LBP and is theoretically

able to deal with monotonic value transformations and image rotations.

Remembering that each of these LBP riu2
P,R invariant properties imply an information leak,

after some preliminary experiments we adopted a slightly different approach consisting

in the uniform local binary pattern without the rotation invariance. We refer these as

LBP u2
P,R and a similar approach is also discussed in [10].

The LBP riu2
8,1 maps all patterns in 10 possible configuration—9 uniform plus 1 non-

uniform. Removing the rotation invariance property and keeping the uniform pattern

concept, there is the necessity to (re)consider all the possible configurations due to image

rotations. As previously discussed each rotation of a 2π/P angle corresponds to a vector

shifted of P positions. In Figure 4.8 are reported all the possible combinations of binary

vector that generate the pattern set. Considering that each vector—with equal or less

Figure 4.8: All the possible binary vectors achieved with a parameter P = 8).

than two 01/10 transitions—has 8 possible shifts and that the all-0 and all-1 vectors

are shift invariant, in total there are 2 + 8× 7 = 58 uniform patterns.
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All the possible circular pattern configurations are visually expressed in Figure 4.9.

To these 58 patterns must be added one, non-uniform, configuration that represent all

Figure 4.9: Visualization of the 58 uniform binary patterns LBPu2
8,1.(from [10])

the configurations that have three or more 0-1 transitions in the binary vector. This

means that all the non-uniform configurations are treated equally. So, in total the

LBP u2
8,1 has 59 different configurations.

A non-trivial textured image patch is made up of at least dozens of pixels. Local Binary

Pattern processes, in the previously described manner, each pixel at time (Figure 4.10)

and associate it to one of the previously defined patterns. Like many windowed filters, to

deal with the border of a patch that have not a complete neighbourhood many approach

can be employed, as predefined values circular border extensions or border repetitions.

The most simple (and used) approach is to not consider all these pixels without all

neighbouring elements.

Histograms are employed to finally describe a texture patch with uniform LBPs. A bin

corresponds to each LBP and the feature vector describing an image patch has a size

equal to the number of pattern. Then, in the case of LBP u2
8,1 the feature vector size
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Figure 4.10: LBP extraction from texture patches.

is actually 59. It must be underlined that without the uniform pattern selection this

dimension would be 28 and, in general, increasing the neighbourhood size P , this will

increase the feature vector size.

4.3 Datsets

To conduct our experiments we noticed that the availability of commonly-adopted un-

derwater datasets is very poor. The majority of works in this field are mostly based on

using simulations or task-specific dataset. The use of pertinent dataset is anyhow, a key

issue in every classification task (see [147]).

Thanks to our participation in the project ARROWS (see section 2.2) we had the chance

to collect several hours of underwater videos taken both from vehicles and divers. We

arranged data in approximatively ten original dataset, each one built regarding some

common environmental and acquisition characteristics that we meant to investigate.

Alongside them we placed other two dataset made by publicly available images after an

opportune preprocessing.

Every dataset—derived generally from one or two video sources—is divided in a number

of classes each one consisting in a collection of several image patches.

Not all environments can show or have representatives for each class and for this reason

the class-composition is properly one distinction point between our datasets. Further-

more it must be underlined that also if they share the same name, classes might appear

extremely different according the dataset to they belong.

All the labelling procedure was carried out by hand. In particular, we created a semi-

automatic software to preliminary segment each images according to some basic mea-

sures. From these patches we selected those clearly representing areas (i.e. classes) of



96 4. Underwater classification: algorithm and feature comparisons

interest and we labelled them. This allowed us to collect thousands examples for every

class but for a number of hard datasets we had to choose and pick up patches totally by

hand.

Table 4.1 summarize the twelve dataset that we employ and their class splitting.

The class names that we used are self-describing and intentionally represent a broad

Table 4.1: Main datasets employed for classification and their composition.

Id No. of classes Class 1 Class 2 Class 3 Class 4 Class 5

D01 5 algae coral h.vegetation sand vegetation
D02 5 algae archaeo sand vegetation water
D03 3 rock sand vegetation - -
D04 2 sand vegetation - - -
D05 3 backgrnd group sand -
D06 4 algae archaeo sand vegetation -
D07 4 algae archaeo sand vegetation -
D08 4 algae archaeo sand vegetation -
D09 3 algae archaeo vegetation - -
D10 2 coral sand - -
D11 3 rocks sand vegetation - -
D12 3 archaeo sand water - -

human-like description. In this work the focus is firstly on labelling areas, not objects

or particular shapes. For example the archaeological class stand for a generic object

category and not a specific kind. Each dataset may be characterized by a different type

of archaeological objects.

Our classification task is not meant to work at an object level but is looking for areas

where they may be present in group. At this regard, we needs to underline that look-

ing for isolated and well-specific archaeological things might be, in the general case for

underwater scenario, an extremely hard task. In fact, after some time, objects in an

underwater environment tend to fuse with the environmental appearance, their shapes

are modelled by the encompassing atmosphere and so their retrieval difficulty become

higher with time.

In the following, a brief description and some examples for everyone of this twelve dataset

is provided. With the ARROWS Project label we refers to original material or activities

related somehow with this project.

• Dataset D1

Location: Tasmania.

Type: Natural environment.

Recorded by: AUV.

Classes: algae, coral, high vegetation, low vegetation, sand.

Source: Acknowledgement to the Australian Centre for Field Robotics.
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This dataset was made starting from the Tasmania Coral Point Count data, used

also in [148] and [149]. From these we takes only a subset of selected images and

they have been classified according to classes that we had previously isolated. As

it is shown on 4.11, images are characterized by a good definition, clarity and with

low colour distortions.

• Dataset D2

Location: Elba island.

Type: Natural environment.

Recorded by: Human.

Classes: algae, archaeological finds, vegetation, only water, sand.

Source: ARROWS and THESAURUS projects.

This dataset was recorded by humans at low deep and characterized by the presence

of human made objects that simulate archaeological finds and the presence of a

big wreck. As shown in Figure 4.12, images are clear, environmental colours tend

to green and there is an evident sunlight illumination scattered by the sea surface.

The seabed appearance is largely uniform.

• Dataset D3

Location: Israel.

Type: Natural environment.

Recorded by: AUV.

Classes: rock, sand, vegetation.

Source: ARROWS project.

This dataset (Figure 4.13) was recorded by AUV with a tilt angle of approxi-

matively 45 degrees. The seabed is characterized by the presence of a mixture of

vegetation and sand. The image clarity is not uniform, colours are affected by high

distortion and sufficient sunlight illumination. All these aspect vary in accordance

to small depth changes during vehicle navigation.

• Dataset D4

Location: Israel.

Type: Natural environment.

Recorded by: AUV.

Classes: low vegetation, sand.

Source: ARROWS project.

Even if recorded in a different place and different depth, this dataset is close to

the D3 dataset. In this dataset (Figure 4.14) there are not areas of particular

interest—in fact we used it as a 2-class dataset– but colour distortions and blur

effects assume here notably values. The sunlight presence and the camera settings
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used have contributed to record images characterized by both dark and saturated

parts.

• Dataset D5

Location: Indoor pool.

Type: Artificial environment.

Recorded by: Human.

Classes: pool background, grouped objects, some sand

Source: ARROWS project.

This dataset has been created to initially test our algorithms in a controlled en-

vironment. Classes are in this case slightly different from other datasets (Fig-

ure 4.15). Image resolution was limited and colours are approximatively natural.

• Dataset D6

Location: Sicily.

Type: Natural environment.

Recorded by: AUV.

Classes: algae, vegetation, archaeological finds, sand.

Source: ARROWS project.

Images recorded by AUV during a Sicily campaign. Other than classes tipycal of

a natural underwater environment (vegetation and sand) there is a wide presence

of groups of archaeological vessels that as may be seen on Figure 4.16 have an

appearance not ever easily discernible from the seabed. This fact is also due to a

strong image colour distortions. The appearance is almost clear and a little bit of

blur effect is sometimes due to the vehicle motion over the seabed.

• Dataset D7

Location: Sicily.

Type: Natural environment.

Recorded by: Human.

Classes: algae, vegetation, archaeological finds, sand.

Source: ARROWS project.

This dataset 4.17 is similar, in content, to the D6 and mostly D8. They share—

other than the originating area—the same classes. What is different is the way in

which images have been registered. From the dataset D6, it changes the dominant

colour that now is green. Images are clear e with a low blur. Light entirely comes

from the sunlight illuminating the scene in a uniform manner.

• Dataset D8 Location: Sicily.

Type: Natural environment.
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Recorded by: Human.

Classes: algae, vegetation, archaeological finds, sand.

Source: ARROWS project.

Dataset close to the D7 one. Compared to this latter changes affect a little bit the

environment, the depth (now objects are closer to the camera), the illumination

(slightly higher) and the camera-induced optical distortion. Image pureness is

comparable and the dominant colour is still a brighter green (see Figure 4.18).

• Dataset D9 Location: Sicily.

Type: Natural environment.

Recorded by: Human.

Classes: algae, vegetation, archaeological.

Source: ARROWS project.

This is the last (of four) Sicilian dataset (Figure 4.19). The environment looks

again similar but now camera, illumination and mostly colours are significantly

different. Due to the motion there is more blur on image and higher is the haze

level (also due for a certain amount to the camera settings). Colours are now more

realistic with less distortions than other cases. Images are taken very close to the

seabed and there is a strong presence of vegetation.

• Dataset D10

Location: Pacific ocean and Israel.

Type: Natural environment.

Recorded by: AUV.

Classes: coral, sand.

Source: ARROWS project.

This is a 2-class dataset (see Figure 4.20) created from images of two previous

dataset, D1 and D4. This is an experimental dataset and its purpose is to test

classifiers about two extremely different environment. One (D1) clear and rich

in colour and vegetation, the other (D4) characterized by distorted colours, haze

presence and a larger scale. Clearly the two classes are mixed together starting

from the corresponding ones originating from the two datasets.

• Dataset D11

Location: Elba Island.

Type: Natural environment.

Recorded by: AUV.

Classes: rock, sand, vegetation

Source: THESAURUS project and Soprintendenza Archeologia della Regione Toscana

(N.O.S.)
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This dataset (Figure 4.21) originates from an environment with high presence of

archaeological finds. The camera on this dataset is kept with optical axes perpen-

dicular to the seabed so images are low distorted and the relative slow velocity of

the vehicle allow clear acquisitions. Colours tents to green, but illumination is not

uniform due to an artificial spotted light.

• Dataset D12

Location: Elba Island.

Type: Natural environment.

Recorded by: AUV.

Classes: archaeological finds, sand, water.

Source: THESAURUS project and Soprintendenza Archeologia della Regione Toscana

(N.O.S.)

This dataset (Figure 4.22) is taken in an area close to the one of dataset D11,

but with totally different settings. The vehicle has the camera on the front and

it is pointed almost horizontally and parallel to the seabed. This causes an image

with a huge depth. The haze, interacting with floating particles, increases with

the distance so details and colours are distinguishable only for close areas in where

the lights act. Nevertheless this dataset is interesting because the high presence

of many archaeological finds.
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Figure 4.11: Dataset D1

Figure 4.12: Dataset D2

Figure 4.13: Dataset D3
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Figure 4.14: Dataset D4

Figure 4.15: Dataset D5

Figure 4.16: Dataset D6
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Figure 4.17: Dataset D7

Figure 4.18: Dataset D8

Figure 4.19: Dataset D9
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Figure 4.20: Dataset D10

Figure 4.21: Dataset D11

Figure 4.22: Dataset D12
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4.4 Experiments

We evaluate the performances of the three previous defined sets of features to classify the

underwater scenario. These feature sets was selected because from a theoretical point

of view about underwater environmental characteristic and after some preliminary eval-

uation test they might express the best performance.

This section describes in detail both the feature sets and the classification scheme actu-

ally adopted to conduct our tests.

4.4.1 Features

As discussed in chapter 1.1 the underwater scenario including all living and non-living

things— and without considering particular areas—is today still an almost totally pure

and natural environment. Places characterized by a massive human presence are in

general likely denoted by more regular shapes (like streets and buildings) and discon-

tinuity in their appearance that can aid in recognition and classification tasks. The

natural scenario vary in a continuous manner presenting similar but not identical struc-

tures. Statistics can in general better handle with the variation of natural images. Each

environment has its own characteristics and thus its own statistics ([150] and [151]).

Statistics can be extracted from image histograms ([152], [153] and [154]), that are able

to synthesize images totally discarding the spatial order within it.

Using the first order statistics to characterize underwater scenarios is one of the simplest

and straightforward approaches. These features can describe the general appearance of

the scenario, with a certain amount of invariance from scale variations and environmen-

tal conditions.

To this end two things have to be kept in mind. Underwater scenario usually does

not permit to take picture with a wide field of view—because light might be strongly

attenuated—so the scale of images taken from AUV or ROV haven’t generally strong

scale-space variations. Secondly we can not trust on colours. In fact, depending on

water conditions there might be high amount of alterations.

To construct histogram from an image patch, colour channels can be used individually

or combined together. The straight solution is to look at the gray-level values because

depending on the particular scenario green or blue channel can predominate (e.g. Figure

4.23).

Some algorithm to normalize the colour appearance might be sometimes adopted.

Drawbacks of using first order statistics are mainly due to the fact that they do not hold

information about neighbouring pixels.
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Figure 4.23: Example of underwater images both dominated from a single colour,
blue (left) and green (right).

An extension in this direction is the use of second order statistics method for texture

analysis. This approach starts from a Gray-Level Co-occurrence Matrix (GLCM) or one

of its derivation. Handling with spatial relationships may lead to have more discrimina-

tion power but obviously it determines in general a price that has to be payed in terms

of scale space invariance and noise sensitivity. The uniform Local Binary Pattern is a

descriptor that both combine a structural and statistical approach (see section 4.2.3)

and can suit the problem of underwater environment classification. Image patches are

still described using histograms, but instead of representing straightly statistic of tonal

value, they represent the distribution of a set composed by 59 (in case of LBP u2
8,1,) known

pattern. Practically we aim to compare how tacking into consideration some primitive

local pixel configurations, their distribution can describe and discriminate a texture. In

comparison of, other methods LBP are more sensitive in resolution changes, so in prac-

tical applications, where the fields of view can greatly vary, approaches tacking with

Gaussian pyramid representation may be employed (see [155]).

Experiments here presented compare performance over a wide range of underwater sce-

narios evaluating primarily which features—from those proposed—achieve better results

if used in a classification tasks. The chosen approach is a dense sampling that appeared

more reasonable in our scenario where the entire underwater scene is relevant.

These features are largely employed with success in many classification task as satellite

image processing or biological microscopy, both fields where texture analysis plays a

predominant role. We think that underwater scenario has a lot in common with these

type of analysis. What makes interesting our investigation is to overcome issues induced

by the underwater environment which is, to our knowledge, not researched as well.
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4.4.2 Classification method

The three texture description methods previously presented (section 4.2), are based on

approaches that allow a deep and significant comparison. Each one of these features

may share the same architecture for classification. Due to the lack of widely adopted

underwater-specific dataset we created our ones (section 4.3) with the intent to collect

a large range of examples and environmental scenarios.

The first part of our work was to preliminary test performance of various potential clas-

sification and segmentation methods, both supervised and unsupervised. After tests

regarding the K-Means, Nearest Neighbour ([156]) and other semi-supervised machine

learning approaches ([157]), we drove our attention to Support Vector Machines ([158])

and we used it for our experiments.

Support Vector Machines (SVMs) are a widely employed machine learning method

([159]). Even if this work is focused on classification, it can used also in problems

of regression and novelty detection. The initial formulation takes into consideration

the 2-class problem, looking for the optimal separating hyperplane (in the original or

a transformed feature space). In SVM the decision boundary is chosen to be the one

for which the margin is maximized, i.e. those that minimize the distance between the

decision boundary and any of the samples in the training set. More details about the

theory behind SVM can be found on [160].

Other than by preliminary evaluations, the choice of SVM has been suggested also by

the following considerations:

• a supervised approach better fit our problem of classification with a priori known

classes

• SVMs are a mature and well studied method and they are already used in many

classification problems

• the SVM behaviour can be controlled by a lot of well-known parameters and its

outputs may be easily understood

• once trained, SVM classifiers are sufficiently fast to process new examples and so

can be implemented to deal with real-time tasks

• SVM, in addition to other approaches, may provide acceptable results in case of rel-

ative small sets of training examples. On the other hand, Bayesian approaches (e.g.

Naive Bayes [161], [162]) and more in general generative probabilistic approaches

may need a greater number of examples to work well for this kind problems
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• there are available, complete and fast libraries providing good and efficient imple-

mentation of SVMs.

Classification task with SVM is achieved following the architecture shown in Figure 4.24.

Being a supervised approach it is composed of two distinct phases; learning and clas-

Figure 4.24: The adopted schema for SVM classification.

sification. In the learning phase we feed the SVM with examples (i.e. feature vectors)

previously extracted for every image patch. During learning, the algorithm was feed

with examples and the associated class label to they belong.

In this work we trained SVM according to various configurations and parameters. The

most relevant are related to the kernel type and regularization. Secondary settings are

further related to other details as for example the adopted stopping criterion, but for

now they are less relevant.

Steps for doing classification are practically the same than training. Feature vectors are

extracted from the image and processed with the classifier previously learned. Although

the two phases are separated, it is obviously mandatory that learning and classification

parameters have to be consistent.

An SVM classifier has to be (re-)trained every time new examples need to be added.

For this reason the dataset provided in the training step has to be a valid representation

of what we want to classify.

As previously said, SVM was born to perform binary classification, dealing with only

one class of positive(+) and one of negative(−) examples. Here our objective is a more

general multi-class classification so we need to consider further extended version of the
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original Support Vector Machines ([163], [164]). Multi-class classification problems can

be carried out by SVM in basically two way (see [165]): the One-vs-All and the One-

vs-One approach.

The first is the earliest adopted and the most theoretically straightforward schema [166].

For K classes (with K > 2) it trains K models, one for each class. Examples in the

i class have a positive label while all the other a negative one. A number of K SVM

models means to have K decision functions (di(·)). Considering an example x it will

classified according the C class such that:

C(x) = argmax
i=1...K

di(x) . (4.31)

In other words x is assigned to the class corresponding to the decision function with the

largest value.

The second multi-class approach to SVM—and de facto mainly used in this work— is

the One-vs-One [167][168]. Now, a number of K(K − 1)/2 classifiers is trained, each

one with data (i.e. examples) of only two single classes. The class that emerges in

the highest number of one-by-one binary classifications will be chosen as the class of

the given example x. Formally, let di,j the decision function discriminating the class i

from the class j (respectively the positive and the negative one). Considering the input

example x, if di,j votes for positive the class i get a vote; otherwise (negative response)

is the j class which is incremented of one vote. When all binary decision functions have

been applied, the example x is assigned to the class C with the largest amount of votes.

In [165] was particularly suggested this latter approach (one-vs-one) as a good choice

for practical use.

4.4.3 Evaluation

To evaluate the classification performance the usually employed parameter is the accu-

racy (ACC) measure. It is calculated as:

ACC =
No. correct predictions

No. total predictions
· 100 . (4.32)

This is the most straightforward measure to make comparisons between classifiers.

We argue that for general binary classification problems there are a lot of available

measures—typical related to the information retrieval field—that can be used. In fact

with only two class (positive and negative) there are a lot of significant measures that

might be employed as: F1-score, Sensitivity, Specificity, Precision, Negative Predictive
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Value, Fall-Out, False Discovery Rate, False Negative Rate (missing), Matthews Corre-

lation Coefficient. In [169] and [11] is reported a good discussion about these measures

for binary problems.

As reported in Figure 4.25, some of the previously considered measures can be extended

to the general case by averaging by class. Another possibility of performance analysis is

Figure 4.25: Extension of some classic evaluation measures to the multi-class scenario.
(table from [11])

the ROC (Reception operating Characteristic) [170], but as the previously measures for

multi-class problem is not today a well developed field. In fact, for multi-class problem

all these measures loose their main descriptive properties; for this reason and also for

shortness they are not reported here, even if our classification framework actually com-

putes some of that measures.

Nevertheless, what can be done is reporting the Confusion Matrix (or contingency ma-

trix ).

The confusion matrix can better summarize the performance of classification with mul-

tiple classes. It is a square matrix with C × C dimension where C is the number of

class. By rows it reports the actual class and by columns the predicted ones. Let i and j

respectively the row and column index; the cell in position (i, j) represents the amount

of examples—expressed as absolute value or percentage—that belongs to class i and

were predicted of class j. So, all correct classifications lie in the matrix main diagonal

(i.e. i = j). From the confusion matrix may be extracted information about which are

the most corrected classified classes or which are those that are often mistaken.

Using only the accuracy as a performance measure might sometimes be trivial. Accu-

racy assesses the overall effectiveness of a classifier but it suffer unbalanced datasets.

This happens when there are more examples of one class instead another. For example

in a two-class classification problem with 90 examples of class A and 10 examples of

class B, one classifier that labels all examples as A-class will realize a 90% of accuracy,

but this does not means that it is a good classifiers having 0% of recognition rate on

B class. To overcome this issue it is a good choice to construct datasets with a good
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balancing between the number of examples per class and this is what we have done in

our experiments.





Chapter 5

Underwater classification: Results

Here are presented the obtained results in classifying image patches taken from under-

water scenarios. The classification results was achieved evaluating the previously defined

feature sets, in particular:

• First order statistics,

• Second order statistics,

• Uniform Local Binary Pattern.

All these descriptors were tested over all the datasets discussed in Section 4.3.

The SVM multi-class classification was conducted with the one-vs-one approach. Re-

quired parameters as C, gamma, nu, degree (see Chapter 4), were optimized for the best

performances achieved on a grid of predefined value ranges and minimizing each time

the resulting test error.

All experiments was realized considering cross-validated results. Depending on the

dataset size to have an adequate number of examples per set, we divided it in 5 or

7 partitions. Circularly one of these part was used as test set and all the remaining was

employed for training. Reported performance are given taking an average of these single

executions.

To better test the employed feature sets we executed a high number of classifications,

varying both the SVM parameters and the inputs (feature vectors). On the other hand

to better catch the classification performance in underwater environment we tested the

three feature sets by considering for each input image patch: 1) a variable or fixed patch

size, 2) all the single RGB channel plus the gray-level one.

The first of the two points is related to evaluate performance by comparing the two way

113
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in which we might want to process an entire image. We are interested in developing a

framework that can classify each fixed-size patch (window) of an image or that can label

every region of an automatic pre-segmented image. Using features from different patch

size is not trivial and might point out interesting differences between the considered

feature sets.

For what concern the colour differences, all the descriptors are based on single channel

image. Besides getting the common gray-level analysis we want also evaluate perfor-

mance on the three specific single RGB channel. Differently from the terrestrial one, the

underwater environment is strongly affected by colour distortions due to the medium

transmission properties (see chapter 1). We want to study the behaviour and the impli-

cations of using one colour channel instead another in different underwater scenarios. For

example the red channel might be extremely informative but it is not always sufficiently

present in an underwater image and so might be useless. Another of our objective is to

test if and in which conditions this choice may be useful. This analysis of single channels

can lead to construct an underwater classification algorithm that can take advantage of

using and combine appropriately the multi-channel information.

Other than colours and single datasets, another parameter that we analyze is the choice

of the appropriate SVM kernel in relation to the number of classes to be discriminated

or the feature set employed.

5.1 Obtained results

It was not an easy job to synthesize all results obtained from our experiments, due to

their amount and their analytical possibilities.

The focus here is only on the significant aspects of collected data. The principal mea-

sure that we use for an overall evaluation and comparison is the accuracy measure of

performance—and underlining that a balanced number of experiments per class was

kept.

In the first part we treat as separate the various configuration used for experiments. In

particular we divide the two cases that employ a variable versus a fixed size patch as

inputs. It has to be noted that the fixed window case presents also results on three more

datasets (12 instead of 9 for the variable-size case).

Dealing with single experiments individually is not feasible here, so the analysis will

be carried out showing aggregated results regarding all the different configurations. In

particular we focus in how performance varies with respect to the:

• feature sets
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• colour channels

• SVM kernels

• datasets

• number of classes per dataset.

5.1.1 Variable window: Feature sets

The three tested feature sets were first order statistics (f), second order statistics (s)

and uniform LBP (l); the last one is used in LBP u2
8,1 configuration (see section 4.2.3).

Obtained overall performances are reported in Table 5.1. Accuracy values reported are

Table 5.1: Overall accuracy by features (mean and standard deviation) - [v]

feature set Accuracy (std dev)

f 52,90 24,22
l 70,52 24,12
s 44,56 18,04

averaged over all other configuration parameters (channels, datasets, kernels, etc..), and

this may also explain the high standard deviation.

The l feature set appears to sharply overcome the other two. This may be also evidenced

by the the chart in Figure 5.1 where is clearly visible how l features outperform taking

into consideration both mean value and their standard deviation. Obviously this does

not means that l features will perform better in all single experiments independently

from the actual configuration. What is possible to say for now is that using LBP achieves

in an overall view better results than using more statistical-based features.

5.1.2 Variable window: Colour channels

Table 5.2 reports the accuracy measured for different colour channels.

Table 5.2: Overall accuracy performance by colour channels (mean and standard
deviation) - [v]

Channels Accuracy (std dev)

blue 59,54 25,90
gray 62,11 26,28
green 59,67 25,74
red 58,15 23,09
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Figure 5.1: Overall accuracy performance by feature sets.

Results are very close to each other both considering their average accuracy and the

standard deviation. Slight better performance are achieved using the gray-level image

inputs while the lowest ones are obtained by using the red channel. This fact was

doubtless expected keeping in mind the characteristics of underwater environment for

what regards the transmission properties.

The chart in Figure 5.2 remarks how a priori is not possible in this case to decide

which is the best colour choice and a specific evaluation of the actual dataset might be

necessary.

5.1.3 Variable window: Datasets and number of classes

Tests have been conducted on nine out of twelve dataset, in particular the D1-D9 (please

refer to the section 4.3 for details about these dataset, their composition and classes).

Table 5.3 reports the overall accuracy performance achieved for all datasets. Obtained

results largely vary both in mean value and standard deviation as can be immediately

seen in chart in Figure 5.3. Anyhow we did not a priori expect an homogeneous be-

haviour, because every dataset has its own particularities and acquired conditions.

We notice that those datasets that achieve lower (on average) results, are those with

the highest number of classes. D1 and D8 have, respectively, five and four classes while

dataset D4, with only two classes, is the one that achieves best performance.

Nevertheless is not solely the number of classes that counts. In fact dataset D2 that
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Figure 5.2: Overall accuracy performance by channels.

Table 5.3: Overall accuracy performance by datasets (mean and standard deviation)
- [v]

Datasets Accuracy (std dev)

D1 46,13 17,70
D2 59,35 27,69
D3 62,81 22,46
D4 76,99 19,86
D5 65,10 18,45
D6 56,47 27,08
D7 57,11 33,29
D8 50,73 22,20
D9 64,13 22,82

like D1 has five classes shows significantly better performance. This confirm that over-

all results are widely dependent on the particular considered dataset and its intrinsic

characteristics. Intra-class variations doubtless play an important role.

Table 5.4 and the relative chart in Figure 5.4 report the overall results obtained varying

only the number of classes over all the experiments.

It can be noticed how average values are globally decreasing when the number of classes

increase. Nevertheless, the large standard deviation values—higher for biggest numbers

of classes— means that using appropriate configurations the performance can be in any

case significantly improved.
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Figure 5.3: Overall accuracy performance by datasets D1-D9.

Table 5.4: Overall accuracy performance by number of classes (mean and standard
deviation) - [v]

No. of classes Accuracy (std dev)

2 76,99 19,86
3 64,01 21,25
4 54,77 27,90
5 52,74 24,08

5.1.4 Variable window: SVM kernels

Performance over all the four kernel possibilities, linear, polynomial, RBF and sigmoid—

each SVM configuration was trained by their own optimally parameters— are reported

on Table 5.5 and its relative chart in Figure 5.5. It may be observed that polynomial

and RBF kernels are those that realize best performance.

Table 5.5: Overall accuracy performance by kernels (mean and standard deviation) -
[v]

Kernel Accuracy (std dev)

linear 57,05 28,27
poly 72,87 19,17
RBF 71,57 20,91
sigmd 37,97 12,74
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Figure 5.4: Overall accuracy performance by number of classes.

Figure 5.5: Overall accuracy performance by kernels.

For both, accuracy results are very close so we cannot say which of two has in general

to be preferred. Looking at the standard deviations there is a close behaviour too, so we

need to go in deep with the analysis of other parameters that characterize each single

experiment, to appreciate substantial differences.
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5.1.5 Variable window: Feature sets and channels

Table 5.6 reports performance measured by colour channels while the feature set is

varied. As expected—see previous single analysis by features and by channel—this

Table 5.6: Overall accuracy performance by features and colour channels (mean and
standard deviation) - [v]

Channels by feature sets Accuracy (std dev)

f 52,90
blue 47,10 22,32
gray 56,73 26,73
green 48,30 22,65
red 59,45 23,55

l 70,52
blue 72,09 24,53
gray 72,69 24,77
green 71,96 24,19
red 65,32 23,20

s 44,56
blue 45,22 17,49
gray 45,20 18,90
green 45,12 17,69
red 42,70 18,67

Table point out the fact that the LBP-based feature set performs better regardless the

colour channel. Visualizing these results (chart in Figure 5.6) we may see that the l

features show an overall uniformity about the green, blue and gray channels, while red

one is those characterized by the lowest performance.

On the other hand the f features seems perform slightly better with the red channel

despite its lower reliability in underwater environment. Even from the chart in Figure

5.6 it is possible to note how both the two statistical approaches (f and s) give the

same results on green and blue channel, the predominant colours in many underwater

scenarios.

Looking at the gray-channel—that in practice is a weighted mean on the RGB channels—

we may conclude that the better performance of f features than s are actually related

to the red channel influence. So the red channel can be used only with features that

does not encode any structural or relative information by pixel values. Otherwise, the

red channel instability seems degrade the discriminative performance as in the case of l

and s feature sets.



5. Underwater classification: Results 121

Figure 5.6: Overall feature set accuracy performance in relation to colour channels.

5.1.6 Variable window: Feature sets and kernels

Table 5.7 reports accuracy values and their standard deviations achieved considering the

three feature sets with respect to the four kernels used for SVM classification. These

Table 5.7: Overall accuracy performance by feature sets and kernels (mean and stan-
dard deviation) - [v]

Kernels by feature sets Accuracy (std dev)

f 52,90
linear 33,77 16,19
poly 57,02 23,07
RBF 79,17 14,48
sigmd 41,62 12,56

l 70,51
linear 81,60 12,46
poly 83,42 12,23
RBF 82,20 12,14
sigmd 34,84 13,30

s 44,56
linear 31,14 14,52
poly 66,66 12,19
RBF 41,95 9,77
sigmd 38,49 11,90

data are also visualized in chart in Figure 5.7.

The obtained accuracy values point out interesting observations.
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Figure 5.7: Overall feature set accuracy performance in relation to kernels.

First of all using the LBP-based feature set (l) achieve the best performance unless we

use the sigmoid kernel—which is, by the way, the one that in general achieves worst

performance with all features.

There is a little bit supremacy of the polynomial kernel over the RBF, but we think it

is negligible and partially dependent on particular datasets.

First order (f) features seem to perform better only with the RBF kernel while for

the second order one (s) the evidence points out that the polynomial kernel is to be

preferred.

The l features may perform well also with linear kernel. This might suggest that the LBP

features are able to better catch the intrinsic discriminative properties of the underwater

scenario. In fact the feature vector does not necessary need to be remapped in a more

complex feature space to achieve discrimination between classes. Note that the accuracy

gained by using polynomial versus RBF kernel is less than 2%.

5.1.7 Variable window: Feature sets and datasets

Table 5.8 reports how the feature performance vary in relation to all the 9 dataset here

considered. The l features performs again better for each single dataset. In particular

all the three datasets show coherent results. If we qualitative compare the three lines of

the chart in Figure 5.8 we can observe that the shapes is practically the same. With the

exception of D2—where the l features goes sensibly better—all the features maintain

almost constant their relative performance (i.e. a dataset that is ”difficult” for one
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Table 5.8: Overall accuracy performance by feature sets and datasets (mean and
standard deviation) - [v]

Datasets by feature sets Accuracy (std dev)

f 52,90
D1 39,50 16,14
D2 45,66 17,17
D3 53,32 18,34
D4 73,85 22,73
D5 59,41 25,46
D6 48,08 23,80
D7 51,13 34,09
D8 42,57 17,87
D9 62,55 22,02

l 70,52
D1 53,21 14,45
D2 77,93 27,09
D3 74,68 18,78
D4 82,92 20,01
D5 73,34 15,40
D6 69,00 25,56
D7 67,25 36,79
D8 61,08 22,62
D9 75,23 19,78

s 44,56
D1 35,79 17,27
D2 38,05 13,47
D3 45,28 13,52
D4 68,23 17,84
D5 56,86 10,21
D6 37,49 17,52
D7 39,85 18,99
D8 36,25 12,00
D9 43,25 12,88

feature set has the same difficulty for the other two). This means that variations in

accuracy over D1-D9 datasets are strongly dependent on their actual nature.

Concerning the number of classes (the other interesting parameter to analyse) Table

5.9 and the associated chart in Figure 5.9 show—without surprise at this point—that

l features continue to perform constantly better and are practically insensitive with

respect to an increasing number of classes in the dataset.

Classification accuracy decrease as the number of classes increase in the same manner

that has been found in chart in Figure 5.4 relative to all the three features sets together.

LBP-based features have a smaller spread passing from 2 to a 5-class dataset. Accuracy

values are averaged and the relative standard deviation—substantially high also in the
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Figure 5.8: Overall feature set accuracy performance in relation to the D1-D9
datasets.

Table 5.9: Overall accuracy performance by feature sets and number of classes (mean
and standard deviation) - [v]

No. of classes by feat. set Accuracy (std dev)

f 52,90
2 73,85 22,73
3 58,43 22,00
4 47,26 25,82
5 42,58 16,68

l 70,52
2 82,92 20,01
3 74,42 17,71
4 65,78 28,56
5 65,57 24,78

s 44,56
2 68,23 17,84
3 48,46 13,46
4 37,86 16,16
5 36,92 15,28

case of four an five classes—may lead to argue that taking a single experiment the

obtained performance can be considerably better. In particular l features seems able to

achieve more than 90% of accuracy in all cases despite the number of classes.
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Figure 5.9: Overall feature set accuracy performance in relation to the number of
classes in a dataset.

5.1.8 Variable window: Channels and datasets

To make our consideration about obtained results stronger we need to see if there is any

correlation regarding the considered input image channel and single datasets. Theoret-

ically, using different input colour channels might lead to have substantially different

performance depending on dataset. This fact is linked to the consideration about the

appearance of underwater environments (see 1.1). The possibility to achieve a good

classifier that can equally well performs in all scenarios is one of the main investigations

of this work.

Table 5.10 reports the accuracy (and its relative standard deviation) of different input

image channels while datasets vary.

Due to the amount of data it is convenient here to have a qualitative analysis, as reported

in chart in Figure 5.10. It points out a behaviour that is quite uniform across datasets.

The gray-level is the one that everywhere perform slightly better. In particular datasets

D6-D7-D8 and D9 show a higher spread.

Blue and green channels performs with an identical fashion. The red channel, instead,

seems achieve comparable performance but not in all datasets; performance on D6 and

D8 are significantly lower. Interesting is the fact that both dataset came from the same

environment but are recorded with different cameras (see Figure 4.16 and 4.18 from

section 4.3), so performance appear connected more to the environment itself than their

acquiring modes.

The variation analysis of considered channel and the number of classes (Table 5.11 and
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Table 5.10: Overall accuracy performance by colour channels and datasets (mean and
standard deviation) - [v]

Datasets by channels Accuracy (std dev)

blue 59,54
D1 45,69 18,49
D2 58,90 29,25
D3 62,69 23,13
D4 76,07 20,05
D5 65,37 19,93
D6 58,40 28,83
D7 54,79 34,24
D8 51,47 24,64
D9 62,48 24,63

gray 62,11
D1 48,70 18,99
D2 60,86 29,77
D3 62,84 23,56
D4 77,45 23,75
D5 66,53 17,10
D6 60,20 30,48
D7 59,05 35,87
D8 55,43 24,22
D9 67,93 23,68

green 59,67
D1 45,51 19,18
D2 57,25 28,35
D3 62,87 22,79
D4 76,40 19,63
D5 66,78 17,87
D6 57,79 29,55
D7 54,98 34,49
D8 51,91 24,49
D9 63,58 23,83

red 58,15
D1 44,60 15,33
D2 60,38 25,79
D3 62,84 22,56
D4 78,05 17,40
D5 61,73 20,09
D6 49,48 19,34
D7 59,62 31,38
D8 44,12 14,30
D9 62,53 20,76
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Figure 5.10: Overall accuracy performance of single image channels varying the
datasets.

chart in Figure 5.11) does not point out important new considerations and confirms the

previous one obtained. Gray-level seems again a little bit better than the other channels,

considering both the mean accuracy and its standard deviation, in practically all cases.

Figure 5.11: Overall accuracy performance of single image channels by varying the
number of classes.
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Table 5.11: Overall accuracy performance by colour channels in relation to the number
of classes (mean and standard deviation) - [v]

No. of classes by channels Accuracy (std dev)

blue 59,54
2 76,07 20,05
3 63,51 22,20
4 54,89 29,00
5 52,29 24,98

gray 62,11
2 77,45 23,75
3 65,76 21,31
4 58,23 29,97
5 54,78 25,33

green 59,67
2 76,40 19,63
3 64,41 21,26
4 54,89 29,25
5 51,38 24,54

red 58,15
2 78,05 17,40
3 62,36 20,71
4 51,07 23,26
5 52,49 22,35

5.1.9 Variable window: Kernels and datasets

Table 5.12 and its related chart in Figure 5.12, report the accuracy (mean and standard

deviation) of using the four kernels in every dataset D1-D9.

Here it is possible to note a global coherent behaviour—i.e. there is not evidence

that some kernel performs better over a single dataset. In particular, as for previous

conducted analysis about SVM configurations, the polynomial kernel achieves slight

better performance as can be seen also in Table 5.13, where the mean accuracy obtained

with polynomial kernel is compared (with a simple subtraction) with all other kernels.

Linear and sigmoid kernels are completely dominated in all datasets—with a significant

spread— while the RBF one is only just a little overcome.

Table 5.14 and chart in Figure 5.13 report, the behaviour of kernel in relation to the

number of classes per dataset. Conclusions are the same and there are not evident

correlations in this sense. Globally there are shared descending lines but all of them have

practically the same behaviour—except for the sigmoid kernel in the 4-class datasets—

with the increase of dataset classes.
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Table 5.12: Overall accuracy performance by kernel and dataset (mean and standard
deviation) - [v]

Datasets by kernel Accuracy (std dev)

linear
D1 40,35 23,28
D2 58,08 34,34
D3 59,72 28,74
D4 74,90 22,27
D5 59,08 19,73
D6 53,08 33,08
D7 56,13 33,14
D8 52,18 23,95
D9 59,95 26,83

poly
D1 58,05 11,12
D2 71,89 22,09
D3 74,83 15,73
D4 90,44 11,23
D5 76,88 12,91
D6 70,67 19,94
D7 75,22 22,86
D8 60,96 17,82
D9 76,93 18,63

RBF
D1 54,11 13,14
D2 72,15 23,25
D3 73,41 18,80
D4 84,97 18,06
D5 76,13 16,04
D6 68,92 24,52
D7 78,26 19,55
D8 61,18 20,45
D9 75,03 19,77

sigmd
D1 31,99 2,85
D2 35,28 7,00
D3 43,26 0,07
D4 57,66 6,69
D5 48,32 0,23
D6 33,20 4,10
D7 18,82 16,11
D8 28,60 2,67
D9 44,60 1,74
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Table 5.13: Accuracy spread in relation to the polynomial kernel - [v]

Dataset (poly-RBF) (poly-linear) (poly-sigmd)

D1 3,94 17,70 26,06
D2 -0,26 13,81 36,61
D3 1,42 15,11 31,57
D4 5,47 15,53 32,77
D5 0,75 17,80 28,56
D6 1,75 17,59 37,47
D7 -3,04 19,09 56,40
D8 3,94 8,78 32,36
D9 1,90 16,98 32,33

Mean 1,76 15,82 34,90

Table 5.14: Overall accuracy performance by kernel and number of classes (mean and
standard deviation) - [v]

No. of classes by kernel Accuracy (std dev)

linear 57,05
2 74,90 22,27
3 59,58 24,85
4 53,80 29,76
5 49,21 30,23

poly 72,87
2 90,44 11,23
3 76,21 15,62
4 68,95 20,76
5 64,97 18,58

RBF 71,57
2 84,97 18,06
3 74,86 17,91
4 69,45 22,30
5 63,13 20,72

sigmd 37,97
2 57,66 6,69
3 45,39 2,38
4 26,87 11,28
5 33,63 5,52
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Figure 5.12: Overall kernel accuracy performance by datasets D1-D9.

Figure 5.13: Overall kernel accuracy performance by the number of classes.

5.2 Fixed window

In the following sections an analysis similar to that achieved for variable-size patches is

conducted.

Now the focus is about considering fixed-size input image patches. We notice that fixed

windows may be extracted from images when a pre-segmentation over images cannot be

performed. In fact, in certain conditions, the time required for an image preprocessing
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may be unacceptable.

Our objective will be then to compare both results, obtained from fixed and variable

patch size and see which are the appreciable advantages/disadvantages in using one

approach instead of another.

For evaluating fixed image patches we also have the availability of three more datasets,

D10-D12.

5.2.1 Fixed window: Features

The first analysis that we briefly report, is related to the overall accuracy performance

on the three employed feature sets: first order statistics (f), second order statistics (s)

and uniform LBP pattern (l) in LBP u2
8,1 configuration.

Table 5.15 reports the obtained performance averaged over all the other parameters as

kernel, datasets and colour channels.

Results are clear enough. LBP-based feature set (l) achieve the better performance with

Table 5.15: Overall accuracy by feature set (mean and standard deviation) - [f]

feature set Accuracy (std dev)

f 53,95 22,74
l 74,58 21,32
s 46,90 19,39

more than 20% difference with the second best feature set (first order statistics, f). The

chart in Figure 5.14 visualize this spread that appears consistent also considering the

relative standard deviations.

The l features appears doubtless the better choice for this classification task.

5.2.2 Fixed window: Colour channels

Table 5.16 and its relative chart in Figure 5.15 show the performance obtained by varying

the input colour channel. With the exception of the gray-level channel—that achieve

better results—there is not at this level a relevant distinction about the other three

channel, red, green and blue.

In particular, blue and green carry out approximatively identical performance while

the red channel results again the worst to be used for classify the input image patches.
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Figure 5.14: Accuracy performance of the three different feature sets over all experi-
ments.

Table 5.16: Overall accuracy performance by colour channels (mean and standard
deviation) - [f]

Channels Accuracy (std dev)

blue 62,18 25,18
gray 64,92 24,60
green 62,57 24,87
red 59,72 22,90

5.2.3 Fixed window: Datasets and number of classes

In comparison to the case with variable-size patches, now the available dataset to conduct

experiments are three more, so in total we have 12 datasets (for more details see 4.3).

Table 5.17 reports the average accuracy performance obtained for every dataset. In

particular the chart in Figure 5.16 shows how all these data are characterized by a high

standard deviation, so although all accuracy values are in the range from 50% to 80%,

with appropriate configuration each dataset may achieve values largely over the 70% of

accuracy.

The new dataset D10 is the one that realize the best overall performance. As we can see

from Table 5.18 and chart in Figure 5.17 the mean accuracy—not surprisingly—decrease

while the number of classes increases.
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Figure 5.15: Overall accuracy performance by colour channels.

Table 5.17: Overall accuracy performance by datasets (mean and standard deviation)
- [f]

Datasets Accuracy (std dev)

D01 54,11 27,14
D02 51,31 19,92
D03 59,11 16,19
D04 67,78 20,11
D05 66,43 17,95
D06 64,25 31,13
D07 59,20 31,15
D08 51,40 22,52
D09 64,14 24,43
D10 77,17 20,15
D11 68,20 20,83
D12 65,07 24,58

Datasets D1, D2 and D8 are those with lower values, but also with higher number of

classes that may explain this behaviour. Anyhow, also D7 and D6, have the same num-

ber of classes meaning that the connection with the accuracy is not straight but is also

related to other intrinsic characteristics of the dataset.
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Figure 5.16: Overall accuracy performance by datasets.

Table 5.18: Overall accuracy performance by number of classes (mean and standard
deviation) - [f]

No. of classes Accuracy (std dev)

2 72,48 20,59
3 64,59 21,16
4 58,28 28,90
5 52,71 23,75

5.2.4 Fixed window: Kernels

Concerning the employed kernels used to train the SVMs we may notice (see Table 5.19

and chart in Figure 5.18) that the RBF and polynomial kernel are again those with

better mean accuracy over all experiments.

Table 5.19: Overall accuracy performance by kernel (mean and standard deviation)
- [f]

Kernel Accuracy (std dev)

linear 59,31 28,40
poly 73,21 19,98
RBF 74,38 19,99
sigmd 42,49 10,98

Although the accuracy seems not so high, due to its standard deviation value, the linear

kernel may be in some cases an equally good choice too.



136 5. Underwater classification: Results

Figure 5.17: Overall accuracy performance by number of classes.

Figure 5.18: Overall accuracy performance by kernels.

5.2.5 Fixed window: Feature sets and channels

Table 5.20 and the related chart in Figure 5.19 investigate the possibility of a relation

between the used feature set and a particular colour channel.

Data confirms what was pointed out for the analysis of features and colours in their



5. Underwater classification: Results 137

Table 5.20: Overall accuracy performance by feature sets and colour channels (mean
and standard deviation) - [f]

Channels by feature sets Accuracy (std dev)

f 53,95
blue 50,85 23,48
gray 60,76 23,85
green 52,23 22,00
red 51,96 20,83

l 74,58
blue 75,34 21,93
gray 75,67 21,11
green 75,86 22,15
red 71,46 20,41

s 46,90
blue 47,79 19,92
gray 47,39 20,21
green 47,42 19,51
red 45,00 18,38

Figure 5.19: Accuracy performance by feature sets in combination with a particular
colour channel.

standalone ways. There is no evidence of correlation between these configuration pa-

rameters.

Using the first order feature set (f) in combination with the gray-level channel seems to

significantly improve performance, that remain anyhow, lower than the overall results

achieved by the LBP-based features with any image colour.
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5.2.6 Fixed window: Feature sets and kernels

For the analysis of the relation between feature sets and kernel, using fixed-size image

as input we obtain the chart in Figure 5.20 based on data from Table 5.21. With all the

Figure 5.20: Accuracy performance by feature sets in combination with a particular
kernel.

Table 5.21: Overall accuracy performance by feature sets and kernels (mean and
standard deviation) - [f]

Kernels by feature set Accuracy (std dev)

f 53,95
linear 38,63 15,58
poly 51,74 19,94
RBF 82,27 12,48
sigmd 43,16 11,10

l 74,58
linear 85,07 10,66
poly 85,54 10,03
RBF 85,38 9,77
sigmd 42,34 11,01

s 46,90
linear 29,43 12,60
poly 70,19 15,81
RBF 45,06 10,37
sigmd 42,93 11,27

three best performing kernels—linear, polynomial and RBF— the LBP-based features
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are every time those with the best accuracy measures.

We may observe that also the linear kernel shows good results, but only when used with

the RBF kernel. Despite their simplicity, first order statistics feature set seems to reach

better discrimination performance when is mapped in a higher dimensional space.

LBP-based features does not seems necessary require the same treatment and just using

a linear SVM the accuracy—considering the aggregated results—is practically the same

than other more complex kernels.

5.2.7 Fixed window: Feature sets and datasets

Table 5.22 shows the results obtained for each dataset D1-D12 in relation to all feature

sets. For a qualitative evaluation the chart in Figure 5.21 can be seen.

Figure 5.21: Accuracy performance by feature sets in every dataset.

We can observe that the best performances of LBP-based (l) feature sets are confirmed

on all the twelve datasets.

In comparison to the other two feature types (f and s) that show a very close behaviour,

the lines related to l features in the chart present much more uniformity.

D2 and D7 are datasets where LBP-based features have the worst performance, but

anyhow the other two descriptors do the same. Dataset D6 and D7 are those with the

biggest gap between the l and the other two feature sets.

On the other side, it is the dataset D2 that achieves the closest accuracy values among

all descriptors. This fact might be explained with the good performance that the two

statistical-based feature sets seems achieve in all the 2-class problems. In Table 5.23
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Table 5.22: Overall accuracy performance by feature sets and datasets (mean and
standard deviation) - [f]

Datasets by feature set Accuracy (std dev)

f 53,95
D01 37,06 18,93
D02 42,34 17,36
D03 55,50 16,95
D04 66,90 23,34
D05 59,68 24,27
D06 48,26 27,47
D07 49,74 26,72
D08 40,63 16,60
D09 55,56 23,09
D10 70,19 11,48
D11 64,35 17,54
D12 57,23 21,68

l 74,58
D01 71,34 25,58
D02 61,41 17,76
D03 67,24 12,07
D04 71,15 17,15
D05 72,99 14,21
D06 81,50 28,10
D07 79,06 26,59
D08 65,09 22,18
D09 79,19 21,92
D10 90,64 14,90
D11 76,79 18,22
D12 78,60 19,87

s 46,90
D01 37,67 16,06
D02 38,88 14,25
D03 47,20 15,45
D04 63,99 20,15
D05 58,96 11,11
D06 45,40 20,68
D07 30,41 14,95
D08 36,29 12,85
D09 44,17 10,59
D10 60,47 22,79
D11 53,81 20,46
D12 45,56 19,95
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and chart in Figure 5.22, for completeness are finally reported the performance of all

the three feature sets while varying the number of classes instead the datasets.

Table 5.23: Overall accuracy performance by feature sets and number of classes (mean
and standard deviation) - [f]

No. of classes by feat. set Accuracy (std dev)

f 53,95
2 68,54 18,17
3 58,46 20,65
4 46,21 23,94
5 39,70 18,07

l 74,58
2 80,90 18,65
3 74,96 17,75
4 75,22 26,23
5 66,37 22,24

s 46,90
2 62,23 21,24
3 49,94 16,64
4 37,37 17,30
5 38,27 14,95

Figure 5.22: Accuracy performance by feature sets when is varied the number of
classes.
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5.2.8 Fixed window: Channels and datasets

Colour channel might be a priori connected to the dataset performance variations be-

cause the difference in datasets mostly are determined by a change in environment

and/or acquisition modalities.

From the Table 5.24 and chart in Figure 5.23 we can see that actually the used image

colour channel does not have a significant effect on accuracy.

Figure 5.23: Accuracy performance by channels and datasets.

Clearly, in the chart some slight differences are appreciable and all seem to suggest that

the gray-level channel should be the preferred choice. This gray-level predominance is

much more evident if we consider as variable not the datasets but their number of classes

(Table 5.25, chart in Figure 5.24).

The chart sharply underline exactly the same descending behaviour between colour

channels when there is an increase of classes.

Red channel performance are constantly 5% under the gray-level line which is overall

better.

5.2.9 Fixed window: Kernels and datasets

Using RBF or polynomial kernel, again, leads to the best results in term of classification

accuracy as shown in chart in Figure 5.25 with data from Table 5.26 .
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Figure 5.24: Accuracy performance by channels and number of classes.

Figure 5.25: Accuracy performance by datasets with different SVM kernels.

The performance of both these methods are close. Only if we precisely measure the dif-

ference values in every dataset we can observe (Table 5.27) that RBF is slightly better

and gains, on average, approximatively 1% in accuracy.

Actually this result is due mostly thanks to the contribution of dataset D7 and D9. In

comparison to linear and sigmoid kernel the gap is, instead, higher than 10%.

Finally, considering the variations in performance on the number of classes (Table 5.28,

chart in Figure 5.26), the results do not tell us nothing of different about the best
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performing kernels, that remain the same. The conclusion is that, unless isolated ex-

Figure 5.26: Accuracy performance by kernels and number of classes.

ceptional experiments and without extra knowledge about the environment, an SVM

trained with RBF or Polynomial kernels should be the first choice in underwater classi-

fication.
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Table 5.24: Overall accuracy performance by colour channels and datasets (mean and
standard deviation) - [f]

Datasets by channel Accuracy (std dev)

blue 62,18
D01 53,73 28,06
D02 50,67 19,97
D03 58,23 15,44
D04 68,33 19,18
D05 64,27 19,57
D06 63,05 33,30
D07 59,23 33,36
D08 51,88 23,35
D09 63,38 26,41
D10 76,51 21,31
D11 72,02 23,35
D12 64,90 26,41

gray 64,92
D01 56,48 27,76
D02 54,41 21,30
D03 59,91 18,28
D04 72,04 24,29
D05 69,61 17,31
D06 67,14 30,65
D07 59,66 32,31
D08 55,84 23,14
D09 66,55 23,72
D10 77,94 21,15
D11 71,26 21,94
D12 68,19 24,26

green 62,57
D01 54,14 26,84
D02 51,51 20,75
D03 58,84 15,75
D04 67,98 20,81
D05 65,14 18,31
D06 64,43 31,54
D07 59,38 33,09
D08 51,65 23,23
D09 63,91 25,50
D10 77,36 19,88
D11 71,67 23,71
D12 64,79 27,27

red 59,72
D01 52,08 28,36
D02 48,64 19,13
D03 59,46 16,69
D04 62,76 16,14
D05 66,68 17,82
D06 62,37 31,81
D07 58,53 28,67
D08 46,25 21,45
D09 62,73 24,24
D10 76,89 20,16
D11 57,87 8,97
D12 62,41 22,12
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Table 5.25: Overall accuracy performance by colour channels in relation to the number
of classes (mean and standard deviation) - [f]

No. of classes by channels Accuracy (std dev)

blue 62,18
2,00 72,42 20,37
3,00 64,56 22,50
4,00 58,05 30,08
5,00 52,20 24,01

gray 64,92
2,00 74,99 22,61
3,00 67,10 21,11
4,00 60,88 28,75
5,00 55,44 24,36

green 62,57
2,00 72,67 20,58
3,00 64,87 22,34
4,00 58,48 29,45
5,00 52,82 23,63

red 59,72
2,00 69,83 19,35
3,00 61,83 18,50
4,00 55,72 27,94
5,00 50,36 23,86
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Table 5.26: Overall accuracy performance by kernels and datasets (mean and standard
deviation) - [f]

Datasets by kernel Accuracy (std dev)

linear 59,31
D01 52,92 33,39
D02 47,74 23,92
D03 53,70 22,25
D04 65,44 16,77
D05 62,35 19,86
D06 62,22 36,66
D07 55,31 39,94
D08 54,46 23,48
D09 62,36 29,37
D10 70,34 30,85
D11 64,43 25,20
D12 60,46 31,33

poly 73,21
D01 67,17 22,44
D02 60,45 15,93
D03 67,29 10,49
D04 80,20 16,48
D05 76,10 14,16
D06 80,46 24,79
D07 69,07 27,31
D08 61,00 19,31
D09 72,80 20,08
D10 86,54 13,06
D11 79,58 17,48
D12 77,86 18,24

RBF 74,38
D01 67,41 20,54
D02 64,05 13,75
D03 68,11 12,62
D04 79,09 15,74
D05 77,38 14,85
D06 79,75 25,09
D07 77,73 24,63
D08 61,34 21,15
D09 78,40 21,49
D10 86,16 14,54
D11 76,61 19,42
D12 76,48 21,85

sigmd 42,49
D01 28,92 1,74
D02 33,00 4,27
D03 47,34 0,49
D04 46,37 10,08
D05 49,88 0,13
D06 34,57 0,50
D07 34,69 0,26
D08 28,81 0,97
D09 43,01 1,77
D10 65,65 0,00
D11 52,20 1,45
D12 45,49 0,00
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Table 5.27: Accuracy spread in relation to the polynomial kernel - [f]

Dataset (poly-RBF) (poly-linear) (poly-sigmd)

D01 -0,24 14,25 20,70
D02 -3,60 12,72 11,66
D03 -0,82 13,59 10,00
D04 1,11 14,76 6,40
D05 -1,28 13,75 14,03
D06 0,71 18,24 24,29
D07 -8,65 13,76 27,05
D08 -0,34 6,53 18,34
D09 -5,60 10,44 18,31
D10 0,38 16,20 13,06
D11 2,97 15,15 16,03
D12 1,38 17,40 18,24

Mean -1,17 13,90 16,51

Table 5.28: Overall accuracy performance by kernel and number of classes (mean and
standard deviation) - [f]

No. of classes by kernel Accuracy (std dev)

linear 59,31
2 67,89 24,55
3 60,66 25,56
4 57,33 33,56
5 50,33 28,70

poly 73,21
2 83,37 14,98
3 74,73 16,61
4 70,18 24,87
5 63,81 19,45

RBF 74,38
2 82,63 15,33
3 75,39 18,33
4 72,94 24,63
5 65,73 17,28

sigmd 42,49
2 56,01 12,04
3 47,58 3,40
4 32,69 2,84
5 30,96 3,82
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5.2.10 Fixed versus variable-size: A comparison

This section is dedicated to evaluate the measured performance in case of using variable-

size versus fixed-size image patches (Figure 5.27). The reasons behind this choice may be

Figure 5.27: Taking variable or fixed size patches of an image.

several and—as already said— it is related to pre-processing steps and patch extraction

from input images.

Theoretically this is strictly a problem of feature descriptors. Statistical-based features

should be less affected from these differences than more structural-based features as

LBP. When an image is divided by fixed-size windows there is a general lower warranty

that the pattern inside will be homogeneous in comparison of the variable-size case that

may have more adherence to the actual image structure.

Fixed-size patches have been tested with three more dataset, so slight variations can be

due also to this fact. After reviewed all specific performances about using one type of

patch instead another here the objective is to summarize the results obtained and to

make a comparison between them.

From the results of all the experiments we can observe that performance of both methods

are quite close.

The best results of LBP-based (l) features have found confirmation in both the two

cases. For fixed-size patches the l feature set improves their accuracy more than 4%,

while for the other two statistical features (f and s) the results in both cases are almost

the same (as shown in chart in Figure 5.28).

Analogue tendency is found comparing RGB and gray colour channels. As can be seen

in chart in Figure 5.29, the lines shapes are substantially identical.
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Figure 5.28: Comparison between feature performance in relation to the cases of
variable and fixed size.

Figure 5.29: Comparison between colour channels performance in relation to the
cases of variable and fixed size.

Continuing with this analysis we can interestingly compare variable-size versus fixed-size

patches for what concerns the nine datasets (D1-D9) in common.

The chart in Figure 5.30 shows appreciable differences than the previous ones. All the

lines have roughly the same shape, but on datasets D2, D3 and D4, variable size patch

achieves better results, while fixed size configuration do it on dataset D6.
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Figure 5.30: Comparison between datasets performance in relation to the cases of
variable and fixed size.

Slight differences in performance might be justified from the fact that the image patches

extracted from the same dataset might vary in consistency in relation to the class to

they belong. To limit this issue, patches have been extracted carefully from the same

image areas both in case of fixed size and variable size window. Furthermore we remark

that previous results are reported as aggregated set, averaged over a wide number of

experiments and examples, so this statistically should mitigate non-biased variations in

patches extraction methods.

For these reasons we argue that differences achieved in dataset have to be primarily

related to the environment that a dataset represent.

In dataset D2, for example, we noticed that (relative) small amount of errors was caused

by classes that often appear together in the same patch. The difficult is inherently linked

to the environment and in these cases the variable-size patches can better fit images.

An example is in Figure 5.31 where the spotted vegetation is mixed to sand. Fixed-

Figure 5.31: An example of spotted vegetation mixed to sand with additional colour
limitations.

size sampling works better when the classes in the scenario appear well separated and
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uniform.

In relation to the configuration parameters, the employed feature set and input colour

channel, the SVM kernel distinction is not as much relevant. Again, there is a slightly

overall better performance (about 3%) in using fixed-size patches in combination with

all kernels.

To summarize, there is no a clear evidence to definitely conclude if it is clearly better

using fixed- or variable-size image patches from feature extraction. Descriptor differences

do not seems in both cases significantly influence the performance. Nevertheless what

we may say is that in the case of absolute ignorance about the environment, the fixed

patch may be preferred because their simplicity and because they allow anyhow to gain,

on average, some percentage point of classification accuracy.

Otherwise if we know that the environment under analysis is characterized by a low

class-uniformity, the variable-size patch extraction might be the right choice.
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5.3 Best performance over dataset

Until now have been discussed results by averaging them with respect to main considered

parameters, as feature sets, colour channel and SVM kernels.

Table 5.29 and Table 5.30 reports the best performance achieved on every dataset,

respectively for fixed-size and variable-size patches. Tables reports mean values achieved

Table 5.29: Best results achieved in every single dataset D01-D12 (with relative
configuration) [f]

Data Ch Feat Ker Classes Accuracy (top) (bottom)

D01 gray l linear 5 87,09 88,61 83,54
D02 green l RBF 5 76,78 79,66 69,49
D03 green f RBF 3 79,17 80,56 76,39
D04 gray f poly 2 99,03 100 98,39
D05 green f RBF 3 98,47 99,1 97,97
D06 blue l poly 4 98,89 98,89 98,89
D07 blue l poly 4 96,33 96,75 95,86
D08 gray l poly 4 81,63 88,78 72,45
D09 blue l RBF 3 94,07 96,3 90,74
D10 green l poly 2 99,36 99,54 99,24
D11 green f RBF 3 94,31 94,9 93,42
D12 blue l poly 3 93,25 95,69 88,24

Table 5.30: Best results achieved in every single dataset D01-D09 (with relative
configuration) [v]

Data Ch Feat Ker Classes Accuracy (top) (bottom)

D01 gray l linear 5 66 70 60
D02 gray l poly 5 96,18 98,18 92,73
D03 blue l poly 3 87,16 91,04 83,58
D04 gray f poly 2 98,44 100 97,4
D05 blue f RBF 3 98,19 98,61 97,68
D06 green l poly 4 90,98 95,12 87,8
D07 gray f RBF 4 93,64 95,33 91,59
D08 gray l linear 4 81,32 84,62 78,02
D09 red f RBF 3 94 100 86

with k-fold validation, with also the better and worst results obtained in each execution.

Both in fixed and variable cases we can observe that there is not dependence on colour

channels, unless a little preference for gray-level in the variable case.

For what concerns kernels there is a slight preponderance of polynomial compared to the

RBF kernel. Despite its global results in each table appears almost a situation in which

the best configuration is the linear kernel; for example it is the case of variable-size D1

and D8 datasets. It is interesting that in all these cases the performance are under the

average (less than 90 %) on all datasets. We may argue that when other kernel are not
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able to well discriminate, the linear one become the best choice.

The most powerful feature set seen—not surprisingly—is the uniform LBP that in the

case of fixed-size patches appear in approximatively 70% of the best dataset performance.

In the chart in Figure 5.32 are summarized all the best configurations.

For dataset D1 to D9 the comparison shows that although accuracy values are in this

Figure 5.32: Best performance obtained in each dataset.

case higher than those obtained on averaged measures over datasets (see section 5.2.10),

they are substantially the same.

Referencing again the two Tables 5.29 and 5.30, we can observe that higher results (close

to 100%) have been achieved with the 2-class datasets D4 (variable and fixed cases) and

D10 (only fixed case). Although this fact was expected, similar high and comparable

results are achieved also with dataset with more classes as D5 and D6.

To conclude, Table 5.31 shows the difference in best accuracy for fixed and variable

windows. In almost all scenarios a fixed-size patch seems to be preferred, even if the

difference might be sometimes limited. Datasets D1 and D2 are exceptions where the

choice of the method is a more performance-critical selection.

5.4 Qualitative results and discussion

The purpose of this section is to provide a qualitative and concise summary of obtained

results regarding our test for underwater classification. In particular our aim is to



5. Underwater classification: Results 155

Table 5.31: Accuracy spreads for each dataset

Dataset Accuracy (Fix/Var)

D01 -21,09 Fix
D02 19,40 Var
D03 7,99 Var
D04 -0,59 Fix
D05 -0,28 Fix
D06 -7,91 Fix
D07 -2,69 Fix
D08 -0,31 Fix
D09 -0,07 Fix
D10 - -
D11 - -
D12 - -

give a short answer to the main questions, all related to the task of underwater scene

classification:

1. Which is the descriptor—from those employed—that provides the best perfor-

mance in underwater scenarios?

The LBP-based descriptor is the one that shows best performances over all exper-

iments. All the three descriptors have a similar nature, but we see that using a

more structural based approach gives us better results. It has to be considered,

also, that describing image patches by uniform LBP has itself a statistical nature

(see 4.2.3), precisely when we consider for every patch its histogram distribution.

Although we made experiments on a manifold image sets—with the objective to

take many different environment—they cannot be considered comprehensive of all

possible scenarios.

Looking at best results on single experiments, other descriptors than LBP-based

may locally achieve better results, even if they are never widely greater. From our

tests there are not cases that totally discourage the LBP features and we also no-

ticed that they perform sharply better than others when more classes in a dataset

have to be distinguished. First and second order statistical-based features are in-

clined to have a higher generalization and are not able to correctly discriminate

between classes.

For all these reasons the LBP-based descriptor seems to better get the intrinsic

characteristics of the underwater environmental appearance in relation to other

tested feature sets.
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2. What are effects to feed the classification algorithm with fixed-size or variable-size

image patches?

As we saw, different image segmentation methods, with variable or fixed size, may

affect the overall performance. In particular while the global performance are less

or more the same, on a single dataset this value may vary considerably. From our

tests, the approach with fixed window patch should be preferred for its effectiveness

and simplicity.

3. Are there significant variations in using different colour channels?

The answer to this question is no, at least considering the best results for each

dataset. From the overall performance analysis we noticed that—as might be sup-

posed considering the underwater scenario and its light transmission properties—

the red channel is the one that give, on average, the lowest accuracy. In particular

in only one experiment the red channel appeared as the best choice and not sur-

prisingly in a dataset with a good illumination. Other experiments are distributed

almost uniformly over all the remaining colour channels, and just a slight prepon-

derance for the gray-level is present.

4. Which is the best SVM configuration for classification?

Polynomial and RBF kernels are doubtless the best choice in comparison of the

majority of experiments. Performance of both are comparable and there is not a

clear prevailing one.

In some datasets, instead, the linear kernel—when used in combination with LBP

features—may achieve the best accuracy results. Is interesting to observe that on

dataset where linear performs better, the accuracy is significantly lower than those

of other image sets. This might be due to the dataset itself that may have classes

that are very close and in comparison of non-linear approaches—apparently unable

to catch these differences—the easiest separation of linear kernel emerges as the

best choice.

5. What are datasets that achieve better/worst performance?

In all datasets, as shown also in chart in Figure 5.32, an accuracy widely higher

than 90% may be achieved with a proper configuration. The exceptions are

datasets D1, D3 and D8 that, even considering the best configuration, have lower

values (anyhow they are all over the 80%).

Even from further specific analysis, apparently these three datasets haven’t any

visible shared characteristics so we cannot hypothesize a common cause behind.

Also the number of classes seems do not explain these performance differences



5. Underwater classification: Results 157

although they show a globally (expected) descending trend of accuracy as this

number increase.

6. Which are classes that show better performance?

Which are the better classified classes and those are instead highly misclassified is

one interesting question to answer, and somehow related also to the previous ones.

Working with a dozen of different environmental datasets makes obviously this

process quite complicate for a punctual case-by-case treatment.

Table 5.32 reports the resulting confusion matrix with the performance achieved

over all datasets. This table has been built considering the best performance

Table 5.32: Confusion matrix in relation to all classes (% values)

algae coral h-veg sand vegn archaeo water rock unkwn

algae 6,10 0 0 0,07 0,31 0,07 0 -
coral 0,03 15,12 0,03 0,03 0,07 - - -
h-veg 0 0,24 0,65 0 0,14 - - -
sand 0,03 0,07 0 25,72 0,10 0,58 0,10 0,17 -
veg 0,17 0 0 0,17 9,81 0,07 0 0,51 -
archaeo 0 - - 0,10 0,31 12,60 0,03 - 0
water 0 - - 0 0 0 10,25 - 0,20
rock - - - 0,37 0 - - 11,34 -
unkwn - - - - - 0 0 - 4,43

over all (the twelve) datasets. Here, although all the represented classes are not

balanced due to non-uniformity across datasets, it can give an interesting quick

look to the global behaviour. In particular we see from the diagonal that more than

95% of examples are in total well classified. Classes that appear more frequently

misclassified are:

• archaeological vs sand

• algae vs vegetation

• rock vs vegetation

• high vegetation vs coral

Considering the same class in different datasets might be considered misleading.

In fact, by changing dataset, the concept and the appearance, represented by a

class name can substantially vary.

We conducted experiments also by combining available data carried out from dif-

ferent datasets. For these image sets taken from the same environment or from one

with a close affinity, performance resulted comparable to those obtained with more

consistent datasets. When differences become greater the appearance of patches,

even if they are labelled with the same name, might be characterized by strong
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dissimilarities, making extremely difficult the classification.

For example, the archaeological class, corresponding to objects lying on the seabed,

may have a shape that is easy to be confused (see Figure 5.33 ), sometimes also

by human intelligence, without a more contextual knowledge.

Classes that we considered for classification have not a well defined shape or

Figure 5.33: Example of similar appearance between classes. Left image is from class
archaeological while the right one is from rock class.

peculiarities. Terrestrial natural scenes share similar problems, but in the case

of underwater scenarios, environmental conditions are worst because, other than

shapes, we also cannot trust on colours.



Chapter 6

A new feature descriptor for

underwater image classification

As shown in Chapter 5 the Local Binary Pattern feature set is the one that achieves

best performance with all the underwater dataset considered. Anyhow LBP is a general

purpose approach with large employment in problem like texture analysis, motion de-

tection and face recognition ([145]).

The original idea behind LBP already caused several improvements and extensions, de-

pending on the particular application field. In our classification tasks we adopted the

uniform LBP.

Starting from this, the focus of the first part of this chapter is to show the development

of a new version of LBP, specifically aimed to be used in underwater environment. For

this reason we called it underwater LBP.

In the second part of this chapter the results obtained over all our datasets are presented

and compared with the classic LBP, underlining its strengths and (potential) weaknesses.

6.1 Motivations

The underwater environment present some peculiarities that might hardly interfere and

must to be handled in comparison of the classic terrestrial acquired images.

In Chapter 1 we dealt with the characteristics proper of the water medium that directly

affect the process of acquiring images. Regarding the problem of segmenting/classifying

an image, the scattering effect—mostly due to the presence of dispersed particles or

colloids— is the one that might determine the highest effects.

Despite the dehazing algorithm presented in Chapter 3, the scattering effect cannot be

159
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in many case completely removed. For this reason we define a descriptor that is more

robust and reliable in relation to this phenomenon.

Note that from tests on some of our dataset using the uniform LBP features over a

pre-dehazed image does not change substantially the classification performance and an

haze-recovered image—although its improved appearance—does not seem to increase

the robustness in the classification task. Dehazing algorithms are mostly focused on

image appearance and do not provide reliability when lighting conditions vary in the

same scene. In addition to that the non-linear transformations imposed also by the

transmission refinement may decrease the consistency of this approach.

In synthesis, what we want to perform is a direct improvement of the tolerance to un-

derwater distortions, intrinsically on the binary pattern codification. The focus is again

mostly on the scattering effect.

A known drawback of the LBP—as well as in general of local descriptors that make a

vector quantization—is that they show a poor consistency: small change in the input

image might not have only a small effect in the output. Some solutions propose to re-

place the thresholding function, inside LBPs, with a smoother one, as for example the

approaches reported in [171] and [148].

In their simpler form, the LBPs are substantially constituted by a vector calculated over

a neighbourhood of a given reference element (i.e. pixel in straightforward implemen-

tation). Here, we avoid to report the extensive theory on binary pattern that can be

found on Chapter 4, but we’ll be concentrated only on changed aspects.

The LBP vector is computed by making comparisons between the central pixel of a

squared (or circular) window one-by-one with all its neighbouring in a counter-clockwise

fashion. The LBP is a binary vector and its components are the 0-1 results of this com-

parison (0-1 if the central pixel is respectively less or higher the considered neighbour).

In uniform LBP all the computed binary vectors are then grouped into a predefined set

of configurations, called uniform pattern.

Water scattering affect an image covering it with brighter spots of various dimensions,

less or more concentrated into the scene.

The effect of scattering on a single LBP is synthetically described in Figure 6.1. For

simplicity we consider the general and largely adopted case of LBP8,1 which consists in

a 3× 3 windows with the central pixel surrounded by 8 neighbours. Figure 6.1 reports a

correspondent LBP calculated over the same reference central pixel C = (cx, cy). In the

upper part of figure ((a)), is represented the case in which the LBP is computed consid-

ering the actual radiance of an image, while in the bottom of the same figure is reported

how a light scattering event might affect this computation. Some neighbouring pixels

may present an increased intensity value due to a close brighter spot as the resulting

of a light scatter event. This phenomenon may—as actually does in the figure—change
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Figure 6.1: An example of how scattering events might affect the LBP computation.
Figure (a) shows the LBP calculated over a reference point in where there are no dis-
tortions in the actual image radiance. In figure (b) instead is reported the same point
but now it is close to a brighter spot that partially interferes with the LBP evaluation
neighbourhood. Even if the Uniform LBPs are robust in relation to monotonic intensity
changes, the scattering effect may cause limited and local intensity variations. As can
be seen in this case the resulting binary vector might be different in the two cases. In
computing the LBP over an entire image patch, few isolated changes like the previ-
ous one are well tolerated, but when they increase to much, as in presence of diffuse
scattering, the performance of a classifier based on these features might be seriously

affected.

the resulting LBP vector. As can be seen in this case, the result of the comparison with

the 5th pixel has altered the correspondent vector component which passed from zero to

one. This single change, considering the theory behind the uniform LBP patterns, makes

that the binary pattern associated to the central pixel C, passes from being uniform to

be non-uniform.

An high presence of scattering events leads to have an increasing number of non-uniform

patterns, associated to many pixels and consequently causing a general reduction in the

discrimination capabilities of this feature set.

In classifying an image, each extracted patch is described by taking the histogram repre-

senting the distribution of LBP vector clustered accordingly to a number of pre-defined

patterns (in general are 58 uniform patterns plus one non-uniform configurations, as

reported in Figure 4.9 on Chapter 4).

Until the amount of scattering is limited, only a little number of LBPs will be distorted
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and the effects on final classification might be negligible. In the other hand, when the

scattering phenomenon increase, these diffuse changes might hide the real image struc-

ture described by LBP. Clearly, working with terrestrial images this problem is less

evident because image are in general characterized by a better clearness.

6.2 The underwater LBP

As the Dark Channel Prior theory explains (see section 3.2.1), in hazy/scattering situ-

ations the more reliably image values, compared to the actual radiance, are those closer

to zero.

For short, by keeping the underlining architecture of uniform Local Binary Pattern we

changed the way in which the vector is computed to better work with underwater im-

ages, or more general, with images affected by similar effects.

Like classic LBP, our approach computes a binary vector for all pixels on a given image

patch. It starts by considering a central reference pixel C = (cx, cy) and its circular

neighbourhood.

In the following, the minimal case is described, but the neighbouring set may be in-

Figure 6.2: The neighbourhood area where the Underwater LBP is computed is
theoretically defined as a circular surrounding of a given radius (in px). In practice
for actual computation, instead to interpolate the intensity values, the entire enclosed

region is taken.

creased depending on particular employments. Sometimes, for the general use of LBP
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might be a better solution to properly scale the input image instead to increase the

neighbourhood size of the reference pixel. The concept of circular neighbourhood is use-

ful mostly to theoretically explain this approach and its extensions than in practical uses

where, considering pixels as fundamental units, a squared windows is considered instead

to actually interpolate them (Figure 6.2).

The minimal window size for computing our underwater LBP is 5× 5 pixels.

All the information inside this window is codified in a 8-bit binary vector, associate to

the central reference pixel. Each ordered component of this vector, starting from left,

is numbered incrementally from p0 to p7 (Figure 6.3) and is computed as following.

Considering a reference image coordinate system as reported in Figure 6.4 and with the

Figure 6.3: The information contained in a 5 × 5 uwLBP window give rise to an
ordered binary vector with components labelled as (p0, p1, . . . , p7).

origin located at the top-left corner, we firstly isolate the neighboring pixels that lie on

the X and Y axis. There is a total of 4 couples of adjacent elements with at least one

side in common, starting from east and proceeding counter-clockwise and respectively

indicated as e0, e2, e4, e6. Inside every pair the minimum value is taken so with respect

to the reference pixel C in the Figure 6.4 we have:





e0 = min (p(cx, cy + 1), p(cx, cy + 2))

e2 = min (p(cx − 1, cy), p(cx − 2, cy))

e4 = min (p(cx, cy − 1), p(cx, cy − 2))

e6 = min (p(cx + 1, cy), p(cx + 2, cy))

(6.1)

where p(·) are the image intensity values, over a single channel.

In relation to neighbourhood in diagonal position (Figure 6.5) all the 4-elements that

compose the squared region are considered.

In the same way as before, for each group indicated respectively as e1, e3, e5, e7, starting
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Figure 6.4: In computing the binary vector of b 5 × 5 uwLBP, ar firstly considered
the neighbouring elements (around the reference central element) that lie on the X and
Y directions. In particular 4 couples of near elements are identified and each one is
associated to one component of the final binary vector. The numbers 0, 2, 4, 6 indicate

the position of the correspondent component in (p0, p1, . . . , p7) vector.

Figure 6.5: In the 5×5 uwLBP diagonal neighbours are taken 4-by-4 and each group
is related to the component p1, p3, p5, p7 of the resulting binary vector, respectively
assigned starting from eastern group and proceeding counter-clockwise. Inside each
single element are reported its coordinates in relation to the central reference point

((x, y)).

from the north-east element the minimum value is taken. We formally obtain:





e1 = min (p(cx − 1, cy + 1), p(cx − 1, cy + 2), p(cx − 2, cy + 1), p(cx − 2, cy + 2))

e3 = min (p(cx − 1, cy − 1), p(cx − 1, cy − 2), p(cx − 2, cy − 1), p(cx − 2, cy − 2))

e5 = min (p(cx + 1, cy − 1), p(cx + 1, cy − 2), p(cx + 2, cy − 1), p(cx + 2, cy − 2))

e7 = min (p(cx + 1, cy + 1), p(cx + 1, cy + 2), p(cx + 2, cy + 1), p(cx + 2, cy + 2)) .

(6.2)
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There are in total 8 ordered values (e0, . . . , e7) that represent the neighbourhood of the

central pixel C, as reported in Figure 6.6. It is possible to see that this configuration is

Figure 6.6: The complete relation between values computed on every neighbouring
group of the central element and the actual position in the final binary vector.

in analogy with the classic LBP. Each ei element is compared with the central pixel C

and the result is assigned to the corresponding pi position. In particular:

pi =




1 if (ei − eC) ≥ 0

0 if (ei − eC) < 0
(6.3)

where the eC is the intensity value of the reference central element C = (cx, cy). The

resulting binary vector is finally (p0, p1, . . . , p7).

Following the theory behind the uniform LBP ([9] and [10]) this last vector is then

assigned to one of the 59 possible patterns as explained in Figure 6.7. In particular,

if the number of 01/10 transitions inside the binary vector, is equal or less than two,

the vector is associated to one of the 58 possible uniform configuration depending on

its actual values. Otherwise if the number of 01/10 transitions is more than two, the

binary vector will be assigned to the single non-uniform class.

Each LBP describe a point and the cumulated histogram distribution obtained from

binary vectors computed over all the pixel of a given image patch represents the final

descriptor for it.

Summarizing, Underwater LBPs share the same approach of classic uniform binary pat-

tern (in particular the one defined on Chapter 4) but are differently computed. They

have substantially the same invariance properties, but other than the classic uniform
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Figure 6.7: Each binary vector extracted at every position of an input image, con-
tributes to the creation of an histogram actually representing the complete distribution
of patterns inside the patch. Binary vectors are clustered in 59 total patterns; 58 of
them are the so called uniform patterns (see LBPu

8,12 in [9]) and correspondent to a
binary vector with two or less 01/10-transitions inside. All other possible binary config-
urations are all grouped in a single bin, the 59th, which represents all the non-uniform
pattern. The resulting histogram is finally the actual feature set that describe the given

input image patch.

LBP, this underwater version is more reliable in finding uniform patterns in presence

of spotted light inconsistencies. By using the minimum values of the reference pixel

neighbourhood, each time is selected the one that theoretically would be less distorted

in comparison to the actual radiance.

The uniform configurations are those that have more importance and our proposed

method allow to better catch them. As it will be shown in next section, our improve-

ments make the final descriptor more robust for classification in underwater images.

Wherever degradation effects induced by scattering have comparable dimensions with

the binary pattern elements the best results are observed.

Until this approach has been described using the smallest 5× 5 configuration. However

depending on image and its expected degradations, an extended version can be consid-

ered; it has anyhow must be taken into account that by increasing the neighbourhood
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window also the computational cost consequently will increase. Without any particu-

lar implementation the theoretical cost of computing the underwater LBP descriptor is

O(N ∗m) where N is the number of pixel in the input image and m is the number of

pixel in the window used to calculate the binary vector. Furthermore, instead using

single pixels as the basic elements also bigger segmented areas might be employed. As

well as the classic LBP, this descriptor might be easily scaled.

6.3 Test and results

We initially have conducted several test to actually prove the underlying idea behind

this new feature set (i.e. a more robust behaviour due to the reduction of the number

of non-uniform pattern carried out by this new proposed feature set).

We analysed the feature vectors extracted both with uniform LBP and our underwater

LBP evaluated on the same image patches.

We found empirical evidence that the amount of non-uniform patterns in the uwLBP

feature vectors is in general lower, especially on those images with highest scattering

phenomena.

For example, taking all the images present in dataset D12 (Figure 6.8)—one of the

haziest dataset— the 77.8% of examples presents an effective reduction of the component

corresponding to non-uniform patterns. Compared to the uniform LBPs the reduction

in each example is on average near the 24%.

In the following of this section we compare the results obtained from testing the

Underwater LBP (uwLBP) with respect to our datasets previously defined in Section

4.3 of Chapter 4. We use as comparison data obtained with Uniform LBPs (simply LBP

in the following and specifically considering the LBP u2
8,1) for almost two evident reasons.

Secondly the underwater LBP shares some properties with the classic binary pattern

and it is interesting to see if and how this new version leads to better performance.

The test conducted below follows the approach used in Chapter 5 and, if not otherwise

specified, also the notation will be kept consistent. In particular, questions regarding

the classification scheme adopted, the configuration and parameters used may be found

in that chapter. In the same way, datasets description, composition and peculiarities

may be found in Chapter 4 and will not be here reported again.

By keeping the same datasets and the same framework above, here the experiments

are focused to analyse a limited subset of parameters. Now, we will use only those

configurations that gave the best overall results.
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Figure 6.8: Example of an image taken from dataset D12.

Overall, graylevel images was those that led to better performance and here are chosen—

if not otherwise specified—as the main channel input. The Polynomial and Radial Basis

Function, that achieved best results in previous experiments, are now the only considered

and maintaining the same configuration as before (see section 4.4.2).

The distinctions about the two cases of variable- versus fixed-size input image patches

is also kept in the current evaluation.

To summarize, experiments are now carried out with: 1) 12 datasets (reduced to 9 in the

case of variable-size inputs); 2) polynomial (”poly”) and radial basis function (”RBF”)

kernels; 3) LBP (”l”) and uwLBP (”u”) features. Every single classification test has to

be intended as the mean of multiple cross-validated executions. The accuracy is again

the principal adopted evaluation and measure employed for comparisons.

6.3.1 Features: Overall

Table 6.1 and Table 6.2 report the obtained results by using LBP or uwLBP, respectively

for variable and fixed size patches. The results are averaged on all the datasets and SVM-

kernels used.

It is possible to see that in both situations the new uwLBP perform better.

Table 6.1: Features accuracy (mean and standard deviation) - [v]

Features Accuracy (std dev)

l 85,64 9,85
u 86,46 8,94
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Table 6.2: Features accuracy (mean and standard deviation) - [f]

Features Accuracy (std dev)

l 86,62 8,30
u 87,73 6,65

Using variable window size the difference is limited to less than one percent, while is

higher in the case of inputs consisting in fixed size patches.

Giving a look to the related standard deviations it can be noticed that our proposed

descriptor presents lower values in all cases. This means that considering the best (or

worst) performance, by employing one feature set instead of another may lead to the

same extremal values even if the uwLBP is a priori preferable.

In term of absolute results, using fixed size patches led us to achieve in general better

results than the variable size ones.

6.3.2 Features and SVM kernels

The relation between the uwLBP features in relation to the polynomial or RBF kernels

are reported on Table 6.3 for the variable size and in Table 6.4 for the case of fixed size.

What emerge is that using a kernel instead of another does not change significantly the

Table 6.3: Overall accuracy of features by kernels (mean and standard deviation) -
[v]

Features [by kernel] Accuracy (std dev)

l 85,64
poly 85,71 10,69
RBF 85,56 9,59

u 86,46
poly 86,91 9,30
RBF 86,01 9,10

performance. This, was an expected result considering what has been said in Chapter 5.

Even if the polynomial kernel appears to be better in three out of four cases it must to be

noted that the uwLBP feature used with the RBF obtains the best overall performance

(with fixed windows size).

Furthermore is remarkable that the uwLBP outperforms the LBP also considering each

kernel individually.
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Table 6.4: Overall accuracy of features by kernels (mean and standard deviation) -
[f]

Features [by kernel] Accuracy (std dev)

l 86,62
poly 87,06 8,07
RBF 86,18 8,86

u 87,73
poly 87,43 6,61
RBF 88,03 6,97

6.3.3 Features and Datasets

Table 6.5 shows results obtained on all of the 9 classified dataset with inputs of variable

window size. Looking at the relative chart (Figure 6.9) the shape of both lines show a

Table 6.5: Overall accuracy of feature sets by datasets (mean and standard deviation)
- [v]

Feature sets [by datasets] Accuracy (std dev)

l 85,64
D1 63,30 1,84
D2 96,18 0,00
D3 83,58 2,53
D4 95,58 0,00
D5 81,84 0,76
D6 90,25 0,69
D7 88,69 1,19
D8 80,33 0,16
D9 91,00 2,55

u 86,46
D1 67,60 1,70
D2 93,91 0,13
D3 89,55 0,42
D4 95,84 0,74
D5 77,22 4,33
D6 91,95 0,00
D7 90,38 1,72
D8 82,31 0,47
D9 89,40 0,85

substantial consistent behaviour.

The higher spreads can be found on dataset D1, D3 and D5, where respectively the

uwLBP for the first two and the LBP for the last one perform better. In all other cases

there is a general preference for the uwLBP even if the differences are under 2%, and so
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Figure 6.9: Overall accuracy of features with respect to the 9 datasets and input
patches of variable size.

they appear quite close.

Grouping datasets by the number of represented classes (see chart on Figure 6.10) it

can be observed that the uwLBP seems to work better than classic LBP with higher

number of classes. Switching to the case of fixed size window input Table 6.6 and the

Figure 6.10: The accuracy performance variations with respect to the number of
classes inside the datasets. (Variable window size)

related chart 6.11 reports the observed performance on all 12 datasets that we created.
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Table 6.6: Overall accuracy of feature sets by datasets (mean and standard deviation)
- [f]

Features [by datasets] Accuracy (std dev)

l 86,62
D01 85,63 1,34
D02 73,56 0,24
D03 72,78 0,78
D04 88,07 0,46
D05 81,37 4,03
D06 97,89 0,16
D07 92,19 0,00
D08 80,31 1,87
D09 92,22 1,05
D10 98,97 0,08
D11 88,74 0,21
D12 87,73 0,72

u 87,73
D01 87,28 0,45
D02 78,48 2,16
D03 74,72 1,97
D04 88,71 0,00
D05 84,44 1,20
D06 97,78 0,63
D07 89,17 1,26
D08 83,68 3,17
D09 90,00 1,05
D10 96,72 2,45
D11 91,43 1,37
D12 90,32 0,39

Line shapes are close but it can be noticed that those associated to the uwLBP are in

general higher. Precisely, there are three dataset where the classic LBP works better

and they are D7, D9 and D10.

In a way compatible to the largest standard deviation of LBPs, from the chart in Figure

6.11, it can be observed that they are able to achieve both the best and the worst

performance over all datasets.

Considering the number of classes contained by every dataset, using input patches of

fixed-size doesn’t change what it has been seen in the variable window case where uwLBP

continues to work well with dataset composed by more than two classes (see chart in

Figure 6.12).
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Figure 6.11: Overall accuracy of features with respect to the 9 datasets and input
patches of fixed size.

Figure 6.12: The accuracy performance variations with respect to the number of
classes inside the datasets. (Fixed window size)
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6.4 Results: discussion

The previous tables and charts that have been briefly shown are based on averaged

results that we obtained. Now we analyse what happens by considering only the best

(cross-validated) result. In other words we are showing the expected performance in

using those classifiers that achieved higher results on each one of the twelve datasets.

Table 6.7 and Table 6.8 reports the best performance achieved respectively with poly-

nomial and RBF kernel for training the SVM.

Table 6.7: Best accuracy with polynomial kernel - [f]

POLY
Dataset u l (u-l)

D01 87,59 86,58 1,01
D02 76,95 73,73 3,22
D03 76,11 73,33 2,78
D04 88,71 87,74 0,97
D05 85,29 84,22 1,07
D06 98,22 98,00 0,22
D07 90,06 92,19 -2,13
D08 81,43 81,63 -0,20
D09 89,26 91,48 -2,22
D10 94,98 99,03 -4,05
D11 90,46 88,59 1,87
D12 90,04 88,24 1,80
mean 87,43 87,06 0,36

Table 6.8: Best accuracy with RBF kernel - [f]

RBF
Dataset u l (u-l)

D01 86,96 84,68 2,28
D02 80,00 73,39 6,61
D03 73,33 72,22 1,11
D04 88,71 88,39 0,32
D05 83,59 78,52 5,07
D06 97,33 97,78 -0,45
D07 88,28 92,19 -3,91
D08 85,92 78,98 6,94
D09 90,74 92,96 -2,22
D10 98,45 98,91 -0,46
D11 92,40 88,88 3,52
D12 90,59 87,22 3,37
mean 88,03 86,18 1,85
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We can see that in both the SVM configuration the uwLBP better performs, and using

it in combination with RBF kernel the improvements are greater.

In three out of the twelve datasets (precisely D7, D9 and D10) the classic LBP achieves

higher accuracy, while the uwLBP instead is clearly the best choice in dataset D3, D11

and D12.

Taking a look inside these datasets (see Figure (6.13) it is possible to note that actu-

Figure 6.13: Examples of image taken from corresponding datasets. It is possible
to see that images on column a) are characterized by a higher amount of haze than
those in column b). These cause different performance of the two feature set used for
classification. The uwLBP clearly outperforms the classic LBP with the hazy images

as those in the left column.

ally the uwLBP outperforms the classic LBP in highly hazy contexts. In fact the D3,

D11 and D12 are exactly those in which the haze is more present meaning that diffused

scattering events are well tolerated by these new features and they may lead to better
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classify haze-affected underwater images. The chart in Figure 6.14 reports in deep the

performance differences obtained in the haziest dataset.

Anyhow it is not discouraged to use uwLBP over clear images, even if in this case the

Figure 6.14: Overall performance obtained in the haziest datasets with respect to the
two employed feature sets.

performance may vary depending more intrinsic image characteristics; sometimes, the

classic LBP might represent the best features to use.

In conclusion, the Underwater LBP is a feature set derived from the classic LBP and

specifically aimed to be used in critical (in the sense of image acquisition) underwater

environments. In particular they are focused in dealing with hazy images caused by

scattering events due to the presence of suspended particles in the water medium.

Both feature types—LBP and uwLBP—have been tested on our reference datasets, with

SVM based classification and related to a variable number of classes. Obtained results

showed consistently better performance of uwLBP in almost all the analysed situations;

this is a result obtained by averaging all our tests.

While in underwater clearest images the choice between uwLBP and classic LBP might

be, as expected, not unique, in dealing with images characterized by an evident presence

of distortions—that makes the image to be hazy—the use of uwLBP should be preferred.

In fact, results suggest that using this new feature in most difficult underwater images

having a high presence of scattering, may lead to obtain higher performance in terms of

classification accuracy, differently from the classic LBP.

The uwLBP feature set has been defined with a particular focus on underwater envi-

ronment. However the haze might be sometimes present also in terrestrial images, in
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particular those acquired from satellites. We realized some preliminary (promising) test

on this kind of images, but for now this field is left for future extension.





Chapter 7

Conclusions

Computer vision and pattern analysis techniques find a relatively new employment in

the field of underwater inspection.

The technology is ready to allow modern underwater robots, in particular AUVs, to

be equipped with optical sensor and the related computational hardware to deal with

it. Advanced image processing framework may be directly mounted on these vehicles

providing the capabilities of real-time analysis and improving the possibility to realize a

context-driven navigation (i.e. the chance to take autonomous decision based on what

the vehicle actually see) with the final scope of making more accurate and effective

seabed inspections. This requires that the image processing and learning algorithms

have no delay respect the actual AUV navigation.

Peculiarities introduced by the underwater environment imply that not all the classic

algorithms of vision and pattern analysis can be effectively suited. Differences occur both

in the type of involved scenario and in the characteristics of the transmission medium.

Absorption and scattering are two phenomena strongly related to the light propagation

in water and for this reason they need to be properly handled.

Computer vision studies related to underwater scenario are more limited in comparison

to the ones regarding the terrestrial environment. Considering all the phenomena linked

to the physical aspects of light transmission, underwater computer vision requires more

complex models.

This thesis has started with a deep study regarding the light propagation in water

medium, analysing its properties and its difficulties in comparison to the air medium

and discovering important cues that helped us in solving specific issues.

Almost the entire work was dedicated to the underwater image classification. A com-

plete framework has been proposed to process, principally in real-time, images of the

seabed acquired by autonomous underwater vehicles.

179
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After many experiments and evaluations, all the acquired knowledge led us to the defini-

tion of a new type of image descriptor specifically designed for underwater environment.

The architecture of the developed classification framework macroscopically follows the

classic supervised machine learning approach. Hence there are two distinguished phases:

one for training and one for the proper image classification. As preferred approach was

chosen the SVM (Support vector Machines) due for their achieved performance both in

accuracy and required computational time.

The real-time execution constraint has been taken into consideration in all the phases,

from image preprocessing, to segmentation and feature extraction. In certain situation

we openly sacrificed accuracy performance to stay in reasonable temporal limits.

Thanks to the underwater videos recorded during the ARROWS project, twelve main

dataset have been created to deeply evaluate our framework. All these datasets were

composed by manually segmenting and labelling thousands of image patches.

The usefulness of collected data, all differentiated by scene type and class, is also meant

for an upcoming public release to the vision and pattern analysis community to com-

pensate the current lack of this kind of images, motivate further studies and hopefully

to become a shared benchmark for future improvements and works in this field.

Underwater scenarios may present a vivacious variety. The training phase was found

crucial for the future performance of the algorithm. For this reason, to achieve a sig-

nificant underwater classification, several classifiers must be trained depending on the

environment and on the classification. We found that training classifiers with images

from diverse environmental characteristics may strongly affect the final performance on

unseen data, so it is more desirable to use consistent dataset for specifically environment.

An a priori classifier selection based on known characteristics of the environment to be

explored, seemed to support more efficiently the use of AUV navigation.

For an off-line use with recorded videos our framework instead is able to employ multi-

ple classifiers over a single image with a voting scheme to actually select the most likely

class for each processed patch. Alternatively an automatic selection may be a priori

conducted based on image appearance characteristics.

The underwater environment does not present sharp and regular shapes and is mostly

characterized by planar, irregular and self-similar surfaces.

An extensive evaluation has been conducted with our framework regarding different and

time-efficient feature sets. After a preliminary evaluation on textural features, our work

deeply addressed to employ first- and second-order statistical features and Local Binary

patterns.

A high number of experiments was conducted to evaluate both the single feature set per-

formance over all datasets than under which configurations these features can be used
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and have the best behaviour. In fact, other than feature set each single configuration was

also related to the input image, number of classes and SVM configuration parameters,

such as the kernel function. The obtained results was then compared accordingly to

their measured accuracy in the classification stage. Globally the LBP-based descriptor

is the one that shows best performances (averaged) over all conducted experiments. All

the three descriptors have a similar nature, but we see that using a more structural

based approach gives us better results.

Looking at best performance on single experiments, first order statistical features may

locally achieve better results, anyhow they are never widely greater and hence there

are not cases that totally discourage the use of LBP features. First and second order

statistical-based features are inclined to have a higher generalization but they are less

capable to correctly discriminate between classes. In addition to this, LBP features are

those less affected by the increase of classes that have to be discriminated.

In conclusion the LBP-based descriptor was the one that better get the intrinsic char-

acteristics of the underwater environmental appearance in comparison to other tested

features.

Starting from these experiments, in the second part of this work, we also noticed that

the image degradation caused by water medium may often noticeably interfere with the

feature estimation for what concerns the robustness, reliability and hence the final ac-

curacy.

From the analysis of the physical light underwater transmission we proposed a new kind

of features, derived from the LBP and denoted as Underwater-LBP (uwLBP). Regarding

the classic uniform LBP, a high presence of scattering events associated to many pixels,

leads to have an increasing number of non-uniform patterns and consequently causing a

general reduction in the discrimination capabilities of this feature set.

Underwater LBPs share the basic approach of classic binary pattern, and they have

the same invariance properties. However in comparison of the classic uniform LBP, the

proposed underwater version is more reliable in finding uniform patterns in presence

of spotted light inconsistencies. In fact, by properly compute values on the reference

neighbouring pixels, each time are selected only the ones that theoretically would be

less distorted by the underwater environment. In this way the final descriptor is more

robust and degradation effects induced by scattering and absorption are controlled.

Both classic LBPs and uwLBPs have been tested on our twelve reference dataset, with

SVM based classification and with a variable number of classes. Obtained results con-

firmed our initial hypothesis by showing a slightly, but consistent, better performance

of uwLBPs in almost all the analysed configurations. Although the use of uwLBPs and
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classic LBPs might be equally efficient in analysing clearest underwater images, in deal-

ing with hazy images uwLBPs are preferred. Our tests suggest that using this feature

in most difficult underwater images with high presence of scattering, may lead to ob-

tain higher performance in terms of final classification accuracy. The achieved results

through uwLBPs were 3-4 percentage points better than classic LBP.

Actually the theory behind the definition of this latter Underwater-LBPs is due to the

deep investigation of the interaction between the light—that originates images—and

water medium. The sea water is a colloidal system that has light transmission proper-

ties significantly lower in comparison of the air. The main phenomena to be taken into

consideration are related to the absorption and mostly the scattering of electromagnetic

waves.

The effect of scattering on acquired (terrestrial) images has been previously dealt in

several works, but only recently have been proposed approaches capable to recover the

actual image radiance directly from a single image and without the use of additional

hardware. In this thesis we started with images from the terrestrial scenario, with a deep

review of the most important works on this topic in particular focusing the attention

on those based on DCP (Dark Channel Prior). Our implementation, with some slight

changes, showed comparable results with the original work.

Compatibly to the main objective of this work, we then tested the terrestrial approaches

on underwater environment, but the obtained results were definitively poorer.

The main issues were principally related to the presence of evident absorption light ef-

fects and of a non-uniform, often artificial, illumination. On these basis we developed a

new dehazing method, based on physical model of light transmission in water especially

directed to the underwater scenario. There are very few works about the underwater

dehazing that are not directly a re-proposal of already adopted terrestrial approaches.

Our proposed method is the only one that actually makes an adaptive airlight estimation

other than adopting a different new model for the transmission evaluation. From a com-

parative qualitative evaluation in all our dataset we saw that our new method achieve

qualitative results better than the other main existing approaches for what concerns the

recovered image details and the global illumination.

In conclusion this thesis has carried out three macroscopic contributions all related

to the theme of applying computer vision and pattern recognition techniques to the

underwater environment. The deep study of existing feature sets that can be effectively

employed to classify the seabed; the study of terrestrial dehazing techniques and the

development of a new way to improve the actual radiance recovery in underwater images;

the development of a new LBP-based feature set, for classification in poor visibility

underwater environment.
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All this work was surrounded by the realization of a software framework for seabed

inspection that can be also actually installed on an AUV to automatically classify images,

by allowing a context driven navigation.

Future works can be addressed to various directions. The underwater environment is

still—in our opinion and considering the number of related works—poorly studied by

the computer vision researchers and so unsolved issues might be present. Underwater

environment is also resulted more challenging than the terrestrial one. Anyhow there

are three main big future developments that we want to achieve.

The first is that the feature sets that we deeply investigated can be obviously extended,

especially relaxing the temporal constraints and extending the number of datasets. The

set of classes that we investigated can also be augmented in the same way and a multi-

layer classification can increase the taxonomy levels. The second is related to the de-

hazing techniques both in water than in air. In fact the obtained transmission map—for

now a sub-product of the process of haze removal—can have multiple uses, as discussed

at the end of Chapter 3. The coarse 3D extraction and the forensic field, are only two

of many employment that is our aim to deeply investigate. Finally, the third and last

(macro)direction come out from the consideration that, other than further extensive

tests and comparisons, the developed underwater-LBPs can be also applied to terres-

trial images taken in bad atmospheric condition. In fact, we hypothesize—with marginal

changes—a good performance of uwLBPs on air as well as in water.
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