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Summary 

Automotive transportation plays an important role in most industrialized countries. 

The automotive industry receives stimuli by legislators and public demand to develop cars 

satisfying high standards with respect to energy efficiency, emissions, and safety. At the 

same time, the car manufacturers and suppliers are subjected to strict cost and time 

constraints, due to the competitive free market system.  

The developments in the fields of computer technology and numerical methods 

contributed to the implementation of computer-aided design and simulation tools in 

structural engineering, and vehicle design. Computational simulation models of systems and 

subsystems are widely used in the vehicle design process, and provide means to improve the 

―time to market‖, and reduce the number design iterations and prototype testing on a part, 

system and module level. When several or many multidisciplinary design requirements are 

involved, it remains however a great challenge to efficiently obtain a good design, even with 

the help of structural simulations. There is an industrial demand for research on the analysis, 

selection and development of numerical optimization methods that can aid the design of 

complex systems or structures. 

The aim of the here presented research activity is to contribute to the identification 

and development of efficient strategies for multidisciplinary design optimization of vehicle 

structures involving, crashworthiness, vibro-acoustic and lightweight design criteria. The 

literature survey at the start of this activity, identified: that although a large variety of 

optimization strategies and methods are described in the literature, only few comparisons or 

guidelines are available for the selection of efficient optimization algorithms or methods for 

vehicle optimization related problems, involving the mentioned design criteria. 

In this work, several state of the art optimization algorithms for multidisciplinary 

design optimization have been selected and are systematically compared for their efficiency 

on applications that typically occur within a car body design optimization context. Although 

these comparisons mainly involved existing methods, the resulting comparisons on the 

industrially relevant application of vehicle design related optimization problems extended the 

currently available literature. The results could serve as initial guidelines for practitioners in 

industry and as a starting point for further research. 

In the optimization literature, there are many test functions/problems available that 

are commonly used for comparative assessments of optimization algorithms. These test 

problems are however difficult to relate to industrially relevant problems and vice versa. A 

novel Representative Surrogate Problem approach is developed in the scope of this work, 

which could be summarized as a strategy to construct optimization test problems, based on 

response characteristics of real-world problems. The approach is presented and investigated 

for its application to car body design problems. 
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Inspired by the response characterization strategies and results, a novel test function 

generation method based on the composition of random fields is presented. The resulting 

method is a contribution to the field op global optimization in general and not restricted to 

automotive applications. This method enables the construction of synthetic optimization 

problems with various interesting function features. Due to the parameterized nature of the 

method, these test functions enable structured investigations on the influence of particular 

problem features on the performance of optimization algorithms. Compared to existing test 

functions the method provides a further step towards systematic problem feature orientated 

performance analysis of meta-heuristic optimization methods, which contributes to the 

analysis, selection and development of optimization algorithms for non-convex optimization 

problems.  

The overall results of the performed comparisons and case studies with the developed 

methods showed that significant gains in optimization efficiency can be achieved by 

selecting suitable optimization algorithms, and tuned parameter settings for optimization 

problem formulations relevant to car body design. The comparison results, stressed the need 

to take into account optimization efficiency, whereas in many case studies in the literature, 

optimization algorithms are selected without proper justification. The presented results and 

methods are relevant for practitioners in industry and for further research on the development 

of optimization algorithms for complex problems. 
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1. Introduction and motivation 

“Fat men cannot run as fast as thin men, but we build most of our vehicles as though dead-

weight fat increased speed! Saving even a few pounds of a vehicle's weight ... could mean 

that they would also go faster and consume less fuel. Reducing weight involves reducing 

materials, which, in turn, means reducing cost as well.” 

 

“There is one rule for the industrialist and that is: Make the best quality of goods possible at 

the lowest cost possible, paying the highest wages possible.”  

-Henry Ford 1923 

1.1. Transportation and its impact on health and the environment 

Since these words of Mr. Ford many things have changed, but some of the principles are 

timeless, and still apply to the multidisciplinary challenges in the automotive industry today. 

Most of the earth‘s human population presently lives in a society where transportation has a 

huge influence on life and environment. The influence of transportation extends to various 

aspects of life: such as social and settlement habits on local and global scales. Mobility 

affects how we spend our time and resources, and it influences our health and climate:  

 In 2013, 25.8% of the total energy use in the EU area (28 countries) was 

attributable to the road transportation sector [Eur15a, Eur15b]. Road transport 

is also the biggest contributor to transport related Greenhouse Gas (GHG) 

emissions and their potential future growth. 

 In China in 2010 the Years of life lost due to Road traffic accidents exceeded 

the losses due to Lung Cancer [Yan13]. 

 Road traffic accidents, not AIDS, cancer, or any other disease - are the major 

cause of death for 15-19-year-olds worldwide [EdL07]. 

 ―At least one million healthy life years are lost every year from traffic-related 

noise in the western part of Europe. Sleep disturbance and annoyance, mostly 

related to road traffic noise, comprise the main burden of environmental noise‖ 

[WHO12]. 

 In the US, the total greenhouse emissions of the transportation sector exceeded 

those of the Industrial sector [USE15]. 

Transportation can however also bring many benefits. Therefore, it is natural to strive 

to sustainable transportation systems that minimize negative social and environmental 
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impacts. Following the definition articulated in [WCE87] the term ‗sustainable transport‘ 

means transport that meets the needs of the present without sacrificing the ability of future 

generations to do the same. In a free market economy as currently present in most of the 

western world, also financial aspects have to be considered. The transportation sector has 

been described as a ‗complex and porous social technical and economic system‘ that is hard 

to address comprehensively [Gld06]. Many of the involved challenges have been identified, 

and various type of targets have been set on political [WCE87, KYO97, EUP14], corporate 

[WBC04] and research [TRB97] board levels during the last decades. Achieving a 

transportation system that meets such targets requires planning, methodology and actions, by 

the transportation users, suppliers, and responsible legislators. 

An important target is the reduction of GHG emissions caused by the transportation 

sector. In [Cce15] several directions to establish this have been addressed: 

1. Fuel transition. By using biofuels or other low-carbon energy sources such as 

electricity produced from renewable sources, GHG emission can be reduced.  

2. Efficient transportation technology. The development of alternative vehicle designs 

that are more energy efficient can reduce the energy usage and GHG emissions due 

to the transport sector  

3. Increasing transportation system efficiency. By traffic monitoring, using modern 

information technology systems and mobile communication techniques, traffic 

congestion can be avoided, and the efficiency of the road usage can be increased, 

leading to savings in time, energy and emissions.  

4. Reducing vehicle travel demand, by changing the travel habits and means of travel. 

Such as for example, the substitution of vehicle by walking, biking, or rail transport 

energy usage and GHG emissions can be reduced.  

Since transportation is a complex sector, that is interacting with local infrastructure 

and customs, many different approaches [Shi13, Arf13, Gud13] are proposed, applied and 

evaluated for all of these directions, often from a regional perspective. For further analysis 

and descriptions of the challenges in sustainable transport in general, is referred here to 

[Nkp94, Gre97, Ric05, Gld06] and [Eli15]. 

Another important target is safety improvement. A general analysis regarding road 

transport safety was presented in [WHO04]. The proposed interventions can be roughly 

divided in the following categories: 

A. Managing risk exposure through effective transport and land-use policy making 

B. Securing compliance with safety regulations 

C. Shaping the network for injury prevention 

D. Technological improvement of active and passive safety of transportation vehicles  

E. Providing effective post-accident care 

The realization of interventions to improve safety is driven by legislation and public 

demand. Presently revisions to the EU General Safety Regulation 2009/661 are considered 

[ETSC15]. In addition, the publication of voluntary vehicle safety assessment results (such 

as EURO NCAP), result in increased consumer awareness for crash safety and strongly 

stimulate car manufacturers to develop safer cars. 

Although many of the problems are identified, and targets have been set, it remains a 

great challenge to achieve the targets. Innovative approaches, methods, and technologies are 

required to reach successful transportation systems. Scientific research can partly contribute 
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to this goal by providing paradigms, theories, methods, and technology that can aid to the 

realization of more sustainable transport.  

From the far past until the present, transportation related topics were and are of great 

interest in various scientific communities. The achievements ranging from: the invention of 

the wheel thousands of years ago, up to the recent spacecraft landing Philae on the Comet 

67P in November 2014, all involved transport related science. Besides politics and practical 

craftsmanship, also mathematical methods can contribute to the challenges involved with 

transportation. Examples range from the treatment of the ―traveling salesman‖ (graph theory) 

problem by Hamilton and Kirkman [Big76] in the nineteenth century, to development of 

artificial intelligence programs to control driverless cars. And from Newton‘s ―Principia‖, 

[New1726] describing the laws of motion, that are still the basis for state-of-the-art 

numerical simulation techniques for vehicle dynamics and crash simulation, to the principles 

of chaos theory [Pon1890] of which the application extends to among others the field of 

Computational Fluid Mechanics used aerodynamic for optimization of car and airplane 

designs. 

The work presented in this thesis was partially done in the scope of the GRESIMO 

project funded by the European Commission, which was aimed to set research and 

development steps toward green and silent mobility for passenger vehicles. Therefore from 

the variety of different means of transportation available, this work is primarily aimed at 

automotive transportation and passenger vehicles in particular.  

Of the different directions proposed in [Cce15] and [WHO04], to set steps towards 

sustainable and safe mobility, the work in this thesis is related to the selection and 

development of efficient numerical optimization methods for the design and development 

process that targets technical improvements in the transport vehicles. It should however be 

noted, that the essence of the presented investigations and methodologies could also be 

relevant to optimization of other complex structural design problems such as aircraft design, 

but such applications are not directly treated within this work. The following section will 

discuss the selected challenges in structural vehicle design optimization in more detail.  
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1.2. Targeted challenges in multidisciplinary design optimization of 

car body structures 

The automotive industry receives direct and indirect stimuli by European legislation 

and public demand to reduce emissions, improve vehicle safety and fulfill noise regulations 

for production vehicles. At the same time, manufacturers strive to shorten the product 

development times, product costs and development costs, to be competitive in the 

automotive market. Computer-aided design, numerical simulation techniques, and structural 

optimization methods are key enablers to achieve these goals in the vehicle development 

process [Sai05, Hir13]. 

There are many engineering sub-disciplines involved with the development of a 

passenger vehicle [Hap01]. Examples are: aerodynamics, structural integrity, vehicle 

dynamics, acoustics, ergonomics, control engineering and electrical engineering to only 

name a few. The work of this thesis will be focused on numerical methods for applications 

related to structural engineering requirements of the car body design.  

An important objective in structural engineering is the analysis of the mechanical 

resistance of structures to achieve a design that satisfies the functional requirements. The 

task of the engineers is to apply scientific methods and engineering knowledge to create a 

feasible design satisfying the structural criteria, and other design objectives and constraints. 

In the scope of car body design in an industrial context, not only the physical realization or 

manufacturability of a single component or product is to be regarded, but also the 

industrialization of the manufacturing and assembly process should be taken into account. 

From an industrial engineering point of view, an automotive manufacturer does not only 

produce cars, but coordinates the development of factories, production and assembly lines 

that produce the final consumer product.  

In the first part of this section, a brief overview is provided on the targeted structural 

engineering requirements and design criteria for the car body design that will be considered 

in this work. The second half of this section gives a short overview on the selected numerical 

methods for Multidisciplinary Design Optimization (MDO).  

1.2.1. Design criteria 

The automotive car body is designed to comply with a wide variety of mechanical 

loadings, and related safety, quality and comfort criteria [Web14]. From creep resistance of 

composite structure components during quasi-static loadings, to the fatigue life of spot-welds 

during stochastic transient vibration loads. From vibration amplitude restrictions at the 

central rear mirror to energy absorption due large plastic deformations during a frontal crash, 

to only address a few criteria related to different engineering disciplines. Other design 

objectives and constraints can involve styling, economical, legal, environmental aspects.  

In the research task description of the GRESIMO project (which was the main 

funding source for this activity), it was targeted to make a scientific contribution to 

industrially relevant MDO problems that deal with weight, crashworthiness and vibro-

acoustic criteria of automotive vehicle structures. These car body design criteria are of high 

relevance to the performance regarding acceleration, energy efficiency and consumer quality 

perception of the vehicle. Besides the design criteria related to weight, passive safety, and 

vibrational comfort also other design criteria are of importance for the car body design, and 

no claim is made that this subset of criteria is of higher importance than other criteria. In 

agreement with the aims of the funding project and the consortium industry partners the 
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MDO problems investigated in this activity however only involve design criteria and 

response types from these disciplines. The following subsections provide a brief overview of 

the relevance of the selected criteria and the involved challenges. 

 

Weight Reduction 

The mass of automotive vehicle structures is high compared to the passenger weight. 

According to [Fen01] only a small fraction of fuel energy is used in hauling the driver for 

typical car masses. Weight reduction is one possible way to reduce the energy consumption 

and GHG emissions of passenger vehicles. Besides the direct effects of weight reduction of a 

structural component, there are also beneficial secondary effects. Significant reductions in 

car body mass also allow for modifications or reductions in other components such as for 

example the drive train, leading to additional mass reduction and increased energy efficiency 

while maintaining a constant power-to-weight ratio, or other dynamic elasticity targets 

[Pag06, Kof10].  

Lightweight design can be defined as a design paradigm in which the objective is to 

design a structure with minimum structural mass while satisfying the structural requirements 

and other constraints involved. When multidisciplinary structural requirements that involve 

nonlinear responses are regarded (such as crashworthiness and vibrational comfort in the 

case of car body design), lightweight design becomes complex and challenging.  

 

Safety and Crashworthiness 

Automotive vehicle safety strategies can be roughly classified into active safety, and 

passive safety. The importance of the first category has increased drastically during the last 

decades due to the developments of electronic safety systems (such as ABS (Anti-lock 

Braking system) in the 70‘s, and ESP (Electronic stability program) in the 90‘s) [Yu08]. The 

European Transport Safety Council was founded in 1993 with the aim to provide objective 

advice on transport safety matters to governing bodies within the EU. By the year 2010, the 

forthcoming regulations reduced the number of road deaths since 2001 by 42% in the EU 

[ETSC2011]. Despite the advances in vehicle safety, motor vehicle accidents still have a 

significant impact on the society. During 2010, in the United States, motor vehicle crashes 

were responsible for 33 thousand fatalities, 3.9 million injuries, and 24 million damaged 

vehicles. The involved economic cost, when also ―quality of life‖ valuations are regarded, 

summed to 836 billion Dollar [Bli15]. In comparison, the number of fatalities in the EU in 

2014 was still 25.7 thousand, and was higher than the target intended [ECP15].  

The Euro NCAP (New Car Assessment Program) is a voluntary vehicle safety 

assessment program that publishes safety reports on new cars regarding their passive safety 

performance under specific conditions. These test results are openly available for the public 

and are often referred to by popular automotive consumer magazines. The increased 

consumer awareness for crash safety, the interest of insurance companies and legislators, 

strongly stimulate car manufacturers to develop safer cars. Besides the need for further 

improvements in the field of active safety, also passive safety which embodies vehicle 

crashworthiness performance remain of high significance. Vehicle crashworthiness criteria, 

set strict structural requirements on the car body design and therefore contribute significantly 

to the vehicle mass [Ben14]. 

In the Euro NCAP [NCA15] frontal crash load cases are included that typically 

involve large structural deformations The vehicle responses for such load cases are generally 

highly nonlinear w.r.t. changes in vehicle design parameters, due to the phenomena involved 

such as buckling, plasticity, and contact and fracture. Experimental crash safety performance 
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assessment is expensive, especially during the prototype stage. Although numerical 

simulation techniques are available to evaluate the influence of design changes to the vehicle 

responses, there remain many challenges due to the complex high nonlinear nature of the 

physical phenomena, and the high computation cost involved.  

 

Noise and Vibration comfort 

According to [WHO12] relationships exist between noise and specific health effects 

(cardiovascular disease, sleep disturbance, cognitive impairment, and annoyance). ―The 

results indicate that at least one million healthy life years are lost every year from traffic-

related noise in the western part of Europe.‖ [WHO12]. Tire rolling induced vibrations in 

automotive vehicle structures can resonate through the driver body and exposure may cause 

muscle fatigue and back injuries [Nah09]. 

International standards such as the ISO 2631 aim to regulate the admissible noise and 

vibration levels for different time durations and standardize the measurement methods. In the 

consumer vehicle industry, the targeted comfort criteria are however generally much stricter 

than the legislative criteria, since most consumers consider vibrational comfort of high 

importance for their quality perception. Besides on human annoyance and fatigue, structural 

car body vibrations are also related to structural durability. The field of NVH and related car 

body design criteria is wide and still receives high attention from industry and academia.  

 

1.2.2. Computer-aided multidisciplinary design analysis and optimization 

methods 

The vehicle design criteria from the selected disciplines (weight, crashworthiness and 

vibrational comfort) can be experimentally assessed on the final physical product. It is 

however of industrial relevance to estimate and assess, the design criteria and structural 

responses during the design process. This can be done by experimental testing on prototypes, 

or by the use of numerical simulation models.  

In traditional system development paradigms: design, calculation, and testing were 

distinct activities that iteratively lead to the final product. The developments during the last 

decades in the fields of computer technology and numerical methods, contributed to the 

implementation of Computer-Aided Engineering (CAE) tools, in structural engineering and 

vehicle design [Tho95, Odn03, Hir13]. 

The developments of Computer-Aided Drafting (CAD), numerical simulation 

methods such as the Finite Element Method (FEM), and Computer-Aided Manufacturing 

(CAM), not only increased the effectiveness of the individual design, calculation, 

manufacturing and testing activities, but also the interfaces in between them. The integration 

of these CAE methods in the product development process aims to reduce the number of 

physical prototypes, the number of design iterations and shortening the development times. 

In order to achieve that, research and development on more accurate and computationally 

efficient simulations methods are currently active topics in science and engineering. In this 

activity several state-of-the-art numerical simulation methods are used for the evaluation of 

the structural performance of car body design variants. An overview of used vehicle models 

and numerical methods is provided in chapter 2. The challenges that accompany the 

application of these simulation types are the involved computational cost, and the nonlinear 

responses, in particular for crashworthiness simulation.  
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CAE also includes the application of numerical optimization and design analysis 

methods in the engineering process. The methodological focus of this thesis is on 

multidisciplinary design optimization. Other numerical methods such as FEM and meta-

modeling are used and applied but not further analyzed in the scope of this work.  

 

Multidisciplinary Design Analysis and Optimization  

When the geometry, materials, and loads are appropriately modeled, numerical 

techniques such as the Finite Element Method can give useful estimations of the structural 

response and resistance. Whereas the design process flow of the computer design model to 

the simulation-based mechanical response can be automated straight forward, the feedback 

mechanism in the traditional design process involves human designers to make the design 

modifications based on the simulation results. When several or many multidisciplinary 

design requirements are involved, and the simulation responses are complex it, remains 

challenging to obtain a good designs, even with the help of structural simulations [Sai05]. 

Together with the developments in computer systems and numerical simulation 

methods, notable developments on computational optimization methods for structural 

optimization were developed in the second half of the last century. Early numerical 

investigations on evolutionary computation in 1950‘s [Bar54, Bar57] were followed by the 

development of evolution process based programs and algorithms to solve more general 

mathematical optimization problems [Bre62]. Soon thereafter, these ideas were used for the 

design optimization of technical systems [Schw65, Rch71]. Since then, many other nature-

inspired optimization algorithms, and meta-heuristic algorithms have been developed and 

applied to industrial optimization problems [Hol75, Kir83, Ken95, Sto97]. Surveys on such 

methods are given in [Flo09, Tng09, Rio12].  

From an industrial and academic perspective it is of great relevance to deal with 

design problems that involve design criteria from multiple disciplines simultaneously [Sbi95, 

Agt10]. The aim in Multidisciplinary Design Optimization (MDO) is: to optimize the design 

w.r.t. the objective while satisfying all other design requirements at the end of the 

optimization procedure, or design process. In the general case (which applies to the design of 

many complex structures), it is much harder to find or establish a design that deals with all 

requirements, than to deal with the individual requirements separately.  

During the last decades various works have been published considering the 

application of MDO methods to car body design related problems involving lightweight 

design, NVH or crashworthiness responses [Yng01, Sbi01, Dud08, Lia08, Yil12, Abb14]. 

There remain however many challenges for the application of MDO methods for this 

application with the selected disciplines. Especially the crashworthiness criteria pose a 

challenge due to the highly nonlinear responses and high computational cost. Briefly 

summarized, these problems are difficult due to: the high dimensionality of the search space, 

the nonlinear responses, and high computational cost of the simulation responses. More 

details on the challenges, used vehicle models, load cases and design criteria are provided in 

chapter 2. These challenges are however not only relevant for the selected application, but 

are shared among complex product and system design optimization problems, and 

categorized as HEB problems (High-dimensional, Expensive (computationally), Black-box) 

[Sha10].   

The ―no free lunch theorems for search‖ [Wol95] implicate that averaged over all 

possible optimization problems search algorithms perform equally ―well‖ or ―bad‖. On 

particular problem types, some algorithms could however perform better than others. 

Although many different meta-heuristic optimization methods have been proposed and many 
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applications of such methods to particular problems related to car body design have been 

studied, only very few significant comparisons have been made to select efficient algorithms 

for these particular problems. This observation has also been addressed in recent literature 

[Sha10, Wan13]. The literature survey in [Sha10] exposed that direct modeling and 

optimization strategies to address HEB problems are ―scarce and sporadic‖. The review also 

revealed that research trends tend to focus on sampling and modeling techniques themselves 

and neglect to investigate the characteristics of the underlying expensive functions [Sha10]. 

In [Wan13] it was emphasized that there are not enough comparative assessments that could 

help to choose from the many available algorithms for simulation optimization problems.  

All in all, these observations confirmed a statement made a decade earlier in [Fu02] 

that there is a gap between the ―toy‖ test problems often used in theory and development of 

algorithms and the complexity of complicated real-world problems.  
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1.3. Scope and aim of the thesis 

This thesis aims to contribute to the selection and development of effective 

optimization and analysis methods to improve the efficiency of the multidisciplinary car 

body design process involving weight, crashworthiness and vibrational comfort criteria. 

The described investigations and developments are made and tested for this particular 

application type. Although the results are application dependent, many of the methods used 

are general and not limited to the selected application. Therefore the content of this thesis 

could also be of interest to others who deal with multidisciplinary design analysis and 

optimization methods involving computationally expensive black-box functions with 

nonlinear responses.  

The main contributions of this thesis work are: 

1. A meta-model based comparative assessment on the performance of 

optimization algorithms for car body design problems, involving 

lightweight, vibrational comfort and crashworthiness criteria. The few 

significant meta-model based studies available in the literature, only use a 

single vehicle model per problem type, while the meta-models are based on 

few function evaluations. The presented assessment is based on 

investigations using models of various vehicles, while a larger number of 

construction points was used for the meta-models than in previous works. 

Furthermore, this is to the knowledge of the author the first comparative 

assessment for this application type where the meta-model based benchmark 

performance results are compared to the corresponding direct simulation-

based benchmark results.  

 

2. The development of a novel Representative Surrogate Problem (RSP) 

approach to construct test problems for comparative assessments based 

on simulation responses related to car body design problems. 

Multidisciplinary car body optimization problems with crashworthiness 

criteria are computationally expensive. Comparative assessments are orders 

of magnitude more expensive and therefore such studies are very scares in 

the literature. Meta-model based comparative assessments use a 

computationally cheap ―black-box‖ approximation model to represent a 

black-box simulation model providing little insight into the problem 

characteristics. The new approach is based on numerical analysis of the 

optimization problem and simulation response characteristics and enables the 

construction of test problems based on the observed characteristics. 

 

3. The development of a new method based on random field composition to 

construct global optimization test functions with a wide variety of 

function characteristics. 

Compared with existing optimization test functions in the literature, the 

presented method can generate optimization test functions that are 

parameterized with respect to dimension, modality, variance contribution 

distribution, and interaction order. This enables more systematic analysis of 
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meta-heuristic optimization algorithms, which could lead to the development 

of more efficient optimization algorithms for real-world applications 

Related to these contributions the following specific questions have been addressed: 

1. Are the relative optimization algorithm performances on a particular vehicle 

design problem correlated with the relative performance on a similar vehicle 

design problem involving another vehicle model? No comparative study which 

used different vehicle models for a similar problem formulation is available in the 

literature. Therefore it is not known, how optimization performance on a particular 

car body optimization problem, is correlated with the optimization performance of a 

similar problem on a different vehicle model.  

 

2. How representative are meta-model optimization benchmarks for vehicle 

design problems compared to full direct simulation-based optimization 

performance benchmarks? The few comparative assessments of optimization 

algorithm performance on problems involving crashworthiness responses are all 

based on meta-models or response surface models, in order to reduce the 

computational cost involved. It has however not been investigated how the 

characteristics of such models and the approximation errors affect the optimization 

algorithm performance w.r.t. the optimization performance on a simulation-based 

vehicle model.  

 

3. Are the differences in performance between meta-heuristic algorithms on 

various problem formulations of typical car body design optimization 

problems involving crashworthiness responses, of practical relevance? Based 

on the current state of the art it is not clear how significant the performance 

differences between the optimization algorithms are for the typical optimization 

problems related to car body design w.r.t. the selected criteria, under a tight function 

evaluation budget.  

 

4. What are the characteristics of the simulation responses of the selected design 

criteria w.r.t. changes in the design variables? (Are there any typical response 

characteristics over similar problems involving different vehicle models?) The 

simulation response characterization of some of the selected design criteria is 

computationally expensive, and to the knowledge of the author not published in the 

literature. In order to develop efficient optimization methods, it is required to 

understand the structure of the problem involved. Also, investigations on the 

differences and similarities between different problem instances or vehicle models 

are of interest. 

 

5. How to formulate computationally affordable test problems which are 

representative for simulation-based car body design optimization problems 

and their response characteristics? The only computationally affordable surrogate 

test problems for crashworthiness responses are meta-model or response surface 

based. Although as approximations such models are often the a reasonable choice, 

such models replace a ―black-box‖ simulation model with a ―black-box‖ 
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approximation model and provide little insight in the response structure. 

Furthermore, these methods are interpolation based, and the responses between the 

construction points are smooth, whereas underlying simulation responses could be 

non-smooth (particularly in the case of crashworthiness responses).  

 

6. How to construct optimization test functions with relevant problem features, in 

a way that enables systematic performance analysis w.r.t. particular response 

characteristics? Many of the commonly used optimization test problems have 

characteristics that have been criticized for their lack of realism and complexity. 

The construction of optimization test functions with a complexity and function 

structure features that are also present in real-world problems would be a step 

towards bridging the gap between the complexity of real-world optimization 

problems and the available test functions.  

 

In the next chapters these questions will be referred to by the abbreviations Q1, Q2,  ..., Q6. 

In the next chapter an overview is given of the methods and models used in this thesis, 

combined with an overview on the state of the art. In chapter 3 a comparative assessment 

between different optimization algorithms is made, using several optimization formulations 

and different vehicle models. In chapter 4 a new approach is presented to construct 

representative surrogate test problems with similar function characteristics as the simulation 

responses. An analysis of the simulation responses was performed on two vehicle models, 

and characteristics have been identified and quantified. A novel approach is proposed, which 

provides a way to incorporate the function characteristics in computationally affordable test 

functions. The approach is presented and tested using the application of car body design 

related optimization problems. In chapter 5 a new method is presented to construct global 

optimization test problems with parameterized function characteristics, based on random 

field composition. This method generalizes some aspects of the ideas in the approach of 

chapter 4, to construct global optimization problems with more realistic complexity, in a 

systematic way. In the final chapter a general summary and discussion of the results are 

presented together with overall conclusions and an outlook for further related work. 





 

 

 

2. Literature overview and description of 

the used methods and models 

"Taking a model too seriously is really just another way of not taking it seriously at all." 

-Andrew Gelman [Gel09] 

 

In this work several investigations and methodologies relevant to simulation-based 

optimization of car body structures are presented. Various methods related to simulation, 

meta-modeling, and optimization have been used, of which an overview is provided in this 

chapter. 

The first section provides an overview of the available literature on the performance 

assessment of optimization algorithms; the topic is introduced in a general context, followed 

by a more focused perspective in the frame of car body optimization problems. 

Finite Element Method based numerical simulation models have been used to 

estimate the structural responses of the design variants of several vehicle models. The 

vehicle models have been parameterized w.r.t. the selected design variables. A workflow is 

programmed to automatize the pre-processing, solving, and post-processing stages, which 

involved various computer programs, such that a program or function is established which 

returns the design responses as a function of the design variables. This workflow is then used 

for the function evaluations of the simulation responses, which are the basis for the meta-

model construction points, optimizations, and response characterization.  

The other sections of this chapter provide descriptions of the used methods and 

models, together with a brief overview of significant references on each of the topics, in the 

context of car body optimization problems. The application of new approaches and methods 

developed in the scope of this thesis are treated in subsequent chapters. 
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2.1. Literature review on optimization algorithm performance 

analysis for car body design problems. 

2.1.1. Optimization algorithm performance analysis and testing 

Genetic algorithms and other meta-heuristic algorithms (MHA) and have been applied 

to many complex search and optimization problems. In the last decades, there has been an 

explosion of new and differently named search heuristics or optimization algorithms. Having 

the choice between many different algorithms and implementations, naturally the question 

arises: ―which algorithm is the best suitable for the problem at hand?‖ 

The ―No Free Lunch‖ (NFL) theorems [Wol95, Wol97] state that the performance of 

all MHAs is equivalent when averaged over all possible problem types. This implies that 

statements in the form of ―algorithm A performs better than algorithm B‖ are invalid under 

the assumptions under which the NFL class theorems hold.  

The validity and implications of this statement are quite intuitive for discrete/non-

continuous pseudo-random problems. For a general instance of a function that maps to a 

random field it is not necessary that previously visited points contain any information about 

the location of local or global optima. Therefore, it is unfeasible to outperform 

enumerative/random search, by using another heuristic approach. 

After the publication of the NFL papers many discussions on the assumptions and 

implications on particular problem classes and practical real life optimization problems 

followed.  In the work of [Dro99], five different types of optimization scenarios are 

identified in which for several scenarios specific techniques exist that are superior to general 

ones. For some problem classes, there are at least free ―appetizers‖ [Dro99] or ―leftovers‖ 

[Cor03] available. In [Stre03] two broad classes of functions were identified where the NFL 

does not hold. The work of [Ige01] showed/proved that on most subsets of all possible 

functions the precondition of the NFL are not fulfilled, which allows the existence of a 

performance measure where some algorithms have better performance than others when 

averaged over the considered objective functions with a probability close to one. 

Furthermore, it has to be noted that those particular subsets of functions are characterized 

exactly by the sort of properties that ―real life‖ problems might possess [Dro02]. The 

characterization of problem classes where the NFL theorems hold or not hold, and its 

implications on performance comparisons is still an ongoing research problem.  

For some function classes and particular real life optimization problems, there might 

be algorithms that perform better than other. Thus, statements in the form of: ―Algorithm A 

performs better than algorithm B‖ can be valid if coupled with a suitable well-formulated 

disclaimer containing the domain of validity for the statement [Cul96]. Regarding 

optimization algorithm comparisons in the context of general purpose performance and 

performance on particular problems, [Eng96] stated: ―The preoccupation with the best 

optimizer should shift to an interest in finding the right optimizer for the job.‖ Later in the 

conclusions section of that work the following comparison was made: 

―Hammers contain information about the distribution of nail-driving problems. 

Screwdrivers contain information about the distribution of screw-driving problems. Swiss 

army knives contain information about a broad distribution of survival problems. Hammers 

and screwdrivers do their own jobs very well, but they do each other’s jobs very poorly. 

Swiss army knives do many jobs, but none particularly well.” 
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Thus specific algorithms can have better performance on particular problem types, 

than general purpose search heuristics [Dro02]. Although it may not always be practical to 

design an optimization algorithm for a particular problem, one could tune the optimization 

algorithm meta-parameters for a particular problem type, or select efficient existing 

algorithms based on empirical testing and benchmark performance. 

In [Barr95] several criteria are proposed for meaningful or significant empirical 

testing and comparisons of algorithms. Experimental competitive testing of algorithms can 

show which algorithms are faster than others, but it has been criticized among others by 

[Hoo95] because: ―its failure to yield insight into the performance of algorithms‖. Therefore, 

he emphasized the importance of more theoretical analysis approaches. A summary of such 

approaches is given in [Pit12]. As stated in [Mit92] ―there is much about the GA’s behavior 

that is not well understood, even on very simple landscapes‖. Just as in most other fields of 

science, theoretical analysis alone is not enough to address all relevant issues and questions. 

There are many real-world optimization problems that have an urgent need/necessity for 

improved performance.  ―In  the  absence  of  a  good,  predictive  theory  of  GA  

performance,  unavoidably  we are  only  left  with  an  experimental  approach.‖ [Bor04]. 

The position of empirical testing, is well placed in context by the words of [Coh95], ―It is 

good to demonstrate performance, but even better to explain performance‖. 

Since no techniques for theoretical performance analysis of meta-heuristic algorithms 

on car body design related problems are available, this work aims to evaluate and extend 

existing comparative assessments and assessment strategies for optimization of car body 

structures.  

2.1.2. Optimization test functions and benchmark problems 

Theoretical performance analysis is difficult and unfortunately still only restricted to 

simple MHAs and particular problem types. Therefore "empirical" analysis methods, based 

on numerical experiments are commonly used to assess the performance of different 

algorithms on various problem types [Bor04]. In order to compare the different MHAs many 

benchmark functions have been proposed, which are widely used for performance 

assessment by optimization algorithm developers and optimization practitioners in 

engineering physics and various fields. Some examples of such functions are the Rosenbrock 

function [Ros60] the Rastrigin function [Ras74] for single objective problems, and the ZDT 

functions by Zitzler, Deb, and Thiele [Zit00] for multi-objective optimization problems. In 

works by i.a. De Jong et al. [Jon75], Floudas et al. [Flou99] and Andrei [And08] 

compilations of such benchmark or test functions is were made. Many authors have used a 

selection of such functions to compare newly developed or existing MHAs w.r.t. 

performance i.a. [Yao99, Ves04, Bre06, Bis07, Bao09]  or even to set up suites for 

performance competitions [Tang13, Liang13], such that the number of works in the literature 

with such comparisons is quite large.  

In recent works such as for example [Bar11, Die12, Lia05] many of the commonly 

used test functions have however been criticized because they are not very challenging, and 

do not represent the difficulty1 of real-world problems. In [Bar11] the topic of test function 

                                                           
1 From a problem centered perspective, when ―difficulty‖ or ―hardness‖ is averaged 

over all possible search or optimization algorithms no problems are intrinsically 
harder than others. From an algorithm centered perspective however some problem 
classes can be more difficult than others, for a particular algorithm [Wol95]. 
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generators for assessing the performance of meta-heuristic optimization algorithms on 

multimodal functions was discussed. It was highlighted that many of the currently available 

test functions in the specialized literature are too simple, and show regularities, such as 

symmetry, uniform spacing of optima, and centered optima which can easily be exploited by 

algorithm designers (see also [Lia05]), and which are unrealistic testing environments for the 

algorithm performance on real life problems. Although several different strategies to 

generate more complicated and realistic test functions have been proposed [Bal05, Add07, 

Gal06, Ahr10], none of these or other approaches (to knowledge of the author) deals actively 

with the topic of test function structure related to higher order interactions between the 

design variables, and variance contribution distributions, in a structured manner. 

Such test functions, sometimes also named ―artificial landscapes‖, are often expressed 

as simple closed form expressions, which require little computational effort such that 

millions of function evaluations can be achieved in a small amount of time on modern 

computers. It remains however a challenge to relate such standard analytical test functions to 

particular real-world problems, and vice versa. 

An alternative to analytical test problems could be the use of simulation-based 

structural optimization benchmarks, based on standardized problem instances. The need for 

more complex realistic system benchmark problems is expressed in [Ali10], and a relatively 

recent initiative to start an open benchmark database for simulation-based multidisciplinary 

optimization problems with engineering relevance is presented in [Var12]. For the 

optimization of vehicle design problems, involving crashworthiness and NVH responses, no 

relevant open-source benchmark problems are available yet. Although vehicle models are 

made publicly available by the vehicle modeling laboratory of the National Crash Analysis 

Center (NCAC), none of these or other models are to the knowledge of the author used for 

any standardized simulation-based optimization benchmark problems. Even if standardized 

simulation-based benchmark optimization problems of full vehicle models would become 

available in the near future, the hardware and software resources required for the 

computationally expensive simulations remain a big hurdle to perform, the large amount of 

function evaluations required to obtain statistically significant performance comparisons of 

optimization methods and algorithms for these problem types. These difficulties also exist 

for other structural optimization benchmark problems that involve resource demanding 

simulations. 

 

2.1.3. Comparative optimization algorithm assessment in the context of car 

body design related problems 

The conclusions of a relatively recent review paper [Wan13] in the context of review 

on simulation-based optimization were expressed as follows: “In the literature, many 

techniques and algorithms have been proposed. But there is not enough research on the 

comparisons between them.” 

As discussed in the previous sections, theoretical performance analysis is difficult, 

and only possible for very simple problems. Empirical performance testing on test problems 

is quite common, but many of the common test functions have been criticized, and the 

available test problems are difficult to relate to real-world problems. Real-world inspired 

structural optimization problem-based benchmark problems exist but simulation based 

problems of industrial signifficance are often so resource demanding that they are hardly 
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used by those in the optimization research community who are developing new optimization 

strategies.  

In [Gom11, Mig12, Gho13] several optimization algorithms have been compared on 

structural optimization problems with frequency constraints, these problems were however 

composed of simple truss structures. Early investigations on structural optimization with 

crashworthiness responses used strongly simplified components or sub structures to 

overcome the computational burden [Yng94, Schr98]. Although nowadays MDO using 

meta-heuristic search algorithms is commonly applied in an automotive industrial context, 

the literature provides still nearly no significant performance comparisons, or guidelines for 

efficient optimization, of more than two relevant algorithms applicable for vehicle design 

problems involving crashworthiness. Statistically significant comparative studies on 

optimization algorithms for problems that involve vehicle crashworthiness constraints are 

relatively rare, and those available are often limited in their reproducibility, statistical 

significance and their comparative scope w.r.t. the number of optimization algorithms 

compared. Studies  

An early small comparative study on stochastic optimization methods for crash and 

NVH problems was presented in [Dud03]. In that study, two different optimization 

algorithms were compared for 6 repeated optimization runs on the same problem. The results 

indicated that the evolutionary strategy performed 11% better than the Monte-Carlo scheme. 

Furthermore it was noted that these type of problems are too complex to truly find the global 

optimum, and that in an industrial context the optimization typically aims at a significant 

design improvement, within the feasible computation cost. In the outlook, further work on 

finding suitable and efficient algorithms for these problem types was recommended.  

In [Nil04] a novel Stochastic Optimization Zooming Method was proposed for 

crashworthiness design, and compared with an RSM based optimization approach. The 

comparison was made using several problems that included crashworthiness simulation 

responses. The results were however based one run per algorithm per problem, therefore the 

statistical significance of the results is difficult to assess.  

In a later work, [Dud08] presented several benchmark studies for NVH and 

crashworthiness related problems, together with a list of search algorithm requirements on 

such optimization problems. In the work several comparisons based on different problem 

types were presented. The comparisons that involved crashworthiness criteria however only 

included the results of two different optimization algorithms.  

In [Gu13] a comparative study on multi-objective and robust optimization for the 

design of vehicle structures involving crashworthiness criteria was presented. A fairly 

detailed vehicle model was used, but the optimization problem formulation only included 6 

design variables. The comparison results were all based on static RBF-meta-models using 36 

construction points based on the simulation model.  

Recently in [Kia15], a comparative study between five meta-heuristic optimization 

algorithms was presented. The comparison was made by optimizations on a static meta-

model response based on 46 training points that were based on a full vehicle crashworthiness 

simulation model with 22 design variables.  

Among the few studies optimization on optimization performance for car body design 

problems, the studies in which more than two optimization algorithms were compared on 

problems that involved FEM based vehicle crashworthiness simulation responses [Gu13, 

Kia15], were based on meta-model based function evaluations. In both cases no comparison 

with the optimization performance based on direct simulation based function evaluations was 

made. Furthermore, the number of construction points used for the meta-models was 
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relatively low, and no clear quantifications about the accuracy or representativeness of the 

used meta-models were provided. 

One of the reasons for the scarcity of literature with statistically significant 

comparisons on optimization problems which involve full vehicle optimizations, including 

crashworthiness and NVH simulation responses is that these problems are resource 

demanding. Such optimizations are generally expensive in terms of hardware and software 

resources (solver licenses), modeling effort and computation time. For such MDO studies in 

an industrial context the computational budget is often restricted to approximately 200-500 

function evaluations [Dud08, Kno05, Kno09] due to the required computational cost. If 

several crashworthiness load cases are regarded in a car body optimization problem, each 

design evaluation could require several hundreds of CPU hours [Dud08], while such 

problems can have easily more than 20 design variables. Not only for car body design 

problems but for many industrial problems that involve computationally expensive 

simulators the results are significantly affected by the constraint on the number of function 

evaluations due to the computational cost [Kno05, Kno09]. 

For optimization problems involving crashworthiness responses and more generally 

for MDO involving expensive simulators with complex responses, the current state of the art 

could be paradoxically stated as: the problems for which optimization performance matters 

the most, because they are computationally expensive and restricted to a limited evaluation 

budget, are also the problems for which it is too expensive to compare algorithms, tune the 

optimization parameters or develop specialized optimization methods. 

None of the comparative studies available in the literature that deal with 

crashworthiness responses of full vehicle models did consider or investigate the 

transferability of the comparative assessment results. Is the relative optimization 

performance among a set of algorithms on a particular car body optimization problem, 

relevant or correlated to a similar optimization problem for a different vehicle model? This 

important question has not been assessed in the literature yet. Also the representativeness of 

performance comparison results, based on meta-model function evaluations w.r.t. direct 

simulation based function evaluations have not been assessed yet for car body design 

problems.  

Since theoretical analysis of algorithm performance is presently only possible for 

simple algorithms and problems, empirical numerical testing and benchmarking are 

important for finding efficient optimization algorithms for particular problem types. Many of 

the commonly used test functions used for optimization algorithm benchmarking are 

criticized for their lack of complexity and relation to real-world problems. In one review 

paper the authors stated: “current modeling research tends to focus on sampling and 

modeling techniques themselves and neglect studying and taking the advantages of 

characteristics of the underlying expensive functions” [Sha10]. In this work these open 

topics are addressed for the application of typical car body design optimization problems.  
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2.2. Simulation methods 

The term ―simulation‖ is commonly used in many contexts with various meanings. In 

the scope of this thesis the term simulation refers to the application of mathematical methods 

to study engineering problems. This process generally consists of three phases [Kry72]: 

 Modeling: the formulation of the physical problem into a mathematical description 

referred to as a model  

 Solving: the treatment and manipulation of the model in order to obtain the desired 

results of the physical problem 

 Analysis: the translation and/or interpretation of the mathematical results into 

physical terms and meaning 

Although some engineering problems can be treated with analytical simulation 

methods for which closed form solutions can be obtained, many problem types of practical 

relevance quickly become too complex or require an unfeasible large amount of operations to 

be of use. For such problems computer implementations of numerical simulation methods 

were developed since the 1950s, and gained importance in many fields of engineering. In the 

core chapters of this thesis, Finite Element Method based numerical simulation models have 

been used to estimate the structural responses of the design variants of several vehicle 

models.  

 

2.2.1. Brief overview on the history of the Finite Element Method  

Computational Mechanics is a sub-discipline of theoretical and applied mechanics 

that is targeting the development and implementation of computational methods to model 

and analyze the mechanics of systems [Odn03]. The numerical simulations used in this thesis 

to obtain estimates of the structural responses for different vehicle design variants are based 

on the Finite Element Method (FEM).  

Based on early pioneering works by among others Euler [Eul1744], Schellbach 

[Sbh1851], Ritz [Rtz1908] and Galerkin [Glk1915] on analytical variational approaches, 

practical numerical approximation methods for engineering applications such as the 

Displacement Method, the Force method, and the Direct Stiffness Method and Matrix 

Structural Analysis were developed in the first half of the twentieth century [Dnc34, Ptr40, 

Lev53], primarily targeting aeronautic and submarine structures.  

Later some of these ideas were generalized for the analysis of complex structures by, 

among others, the works of Argyris (summarized in [Arg60]), and Turner et al. [Tur56] and 

became popular and known under the name Finite Element Method [Cgh60] in the second 

half of the twentieth century. It was probably the combination of general applicability and 

the developments in computer technology after the 1950‘s which exponential progressed 

since [Mor65] that led to the large increase in attention and popularity of the FEM and other 

discretization based approximation methods (such as the Boundary Element Method [Brb77], 

and Finite Volume Method [Pat80]). Overviews on the history of the development of the 

fundamentals of FEM are given in [Gnd12, Flp01]. A historic reference of the method is the 

textbook of [Zwz67].  An early mathematical treatment and analysis of the method is given 
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in [Str73]. The application of FEM is not limited to structural engineering problems, a 

comprehensive introduction on the application of the method for different for linear 

problems (such as: heat transfer, fluid mechanics, electromagnetism) in engineering is given 

in [Brt87]. An introduction to of the method for nonlinear problems for structural 

engineering applications is given in [Csf96]. There are however many textbooks available 

with various perspectives targeting different application fields. 

In this work, FEM is applied for numerical estimation of the lower frequency 

eigenmodes and eigenfrequencies of the car body structure, and to estimate the response of 

the vehicle model under crashworthiness load cases. The following sections introduce the 

fundamentals of the methodology and models used in this work.  

 

2.2.2. FEM and explicit-dynamic time integration 

The crashworthiness criteria investigated in the scope of this thesis are related to 

highly dynamic events in a small time period (100ms), with very large deformations. The 

typical numerical solution procedure for such problems is by explicit time integration (see 

[Dok89] for a review on explicit time integration methods).  

For the crash simulations in this work the LSTC LS-DYNA solver (version 971) was 

used. This section provides a short summary of the general method based on the solver 

documentation, for details is referred to [Hal06, Hal07]. For dynamic deformation problems 

were damping is omitted, the principle of virtual work over a homogeneous bodzcontinuous 

volume V (with boundary surface S) including the inertial terms can be stated as: 

 

     ∫        
 

 
    ∫       

 

 
   ∫       

 

 
   ∫       

 

 
   (2.1) 

 

Where the terms on the right hand side summarize the different sources of virtual work: 

 The first term:∫        
 

 
 corresponds to the virtual inertial work, were     are the 

virtual displacements that satisfies the Dirichlet (locally prescribed displacement) 

boundary conditions;   is the material density;   is the instantaneous acceleration. 

 The second term: ∫       
 

 
 corresponds to the virtual internal work, were   refers 

to the instantaneous Cauchy stress, and the virtual work conjugate strain is denoted 

by   . 

 The third term: ∫       
 

 
 is the work due to the body forces   acting on the 

volume. 

 The fourth term: ∫       
 

 
 corresponds to work due to the traction forces   over the 

surface of the volume. 

The sum of the third and fourth term is often referred to as the virtual external work.  

If the displacement vector function    in the continuum is approximated by local 

interpolation (shape) functions belonging to a superimposed mesh of finite elements between 

a discrete set of nodal points with finite displacement vector    such that 

                       (where         are the parametric element coordinates), equation 

(2.1) can be written as the algebraic equation:  

 

                                (2.2)  
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Were the following substitutions have been made  

 

  ∫         
 

 

 

  ∫         
 

 

 

  ∫        
 

 

 ∫      
 

 

      

         (2.3) 

 

in which   is the strain displacement matrix formed by applying differential operator   on 

the local interpolation functions         is the elasticity tensor and   is the total of 

external body ( ), traction ( ) and point    ) Forces (introduced due to the discretization). 

Due to the superimposed mesh of finite elements the integration operation is now composed 

of a summation over element volume integrals in their local coordinate system which are 

approximated by numerical integration methods such as Gauss and Lobatto quadrature 

integration. If the trivial case       is excluded the zero virtual work statement is 

satisfied if:  

 

                 (2.4) 

 

A frequently applied solution procedure for this equation is based on the implementation of 

diagonal element mass matrices, together with an explicit time integration scheme for 

displacement approximation. For a current (time) state i with known displacements the 

accelerations are determined by rewriting equation (2.4) as:  

 

  
             

         (2.5) 

 

Where subscripts       have been omitted for better readability. The non-prescribed 

displacements at each of the nodal points for the next state (i+1) are extrapolated according 

to the formulas in expression (2.6), based on the assumption of constant acceleration during 

the small time increment ∆t 

 

                       

               
         

 
                    (2.6) 

 

This assumption implies conditional stability on the numeric solution with the restriction that 

∆t is smaller than the period of the highest eigenfrequency of the discrete system. For shell 

elements the time step limitation is often estimated with: 

 

     
     

√         
         (2.7) 

 

Where       in stands for the characteristic length of the most critical (smallest/distorted) 

element of the system, and the denominator represents the dilatation wave speed in the shell 

plane (dependent on Young‘s modulus  , material density   and poisson‘s ratio   ). A 
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concise (but a bit dated) treatment of relevant numerical topics in crashworthiness simulation 

in an automotive context is given in [Swz92]. More details and derivations of applied 

simulation methods in this work are given in [Hal06]. 

 

2.2.3. FEM-based modal analysis 

For the estimation of the selected eigenvalue and eigenfrequency criteria, Finite 

Element Method based modal analysis was used. FEM-based solutions for vibration 

problems are available since the 1960‘s [Daw65, Irr02]. Based on equation (2.4), resonance 

or eigenfrequencies are characterized by dynamic equilibrium in the absence of external 

forces, such as can be expressed as:  

 

                 (2.8) 

 

Under the assumption of harmonic motion, the nodal displacement as a function of time can 

be expressed as: 

 

                    (2.9) 

 

Where   is the angular frequency natural of the system and   is the imaginary unit in the 

complex plane which satisfies        . When the expression for the nodal displacement is 

two times differentiated w.r.t. the time an expression for the nodal accelerations is obtained.  

 

       ̈                     (2.10) 

  

Such that the corresponding eigenvalue problem can be expressed as: 

 

                   (2.11) 

 

Which can be rewritten as: 

 

                   (2.12) 

 

For the problems treated in this work the low-frequency non-zero eigenfrequencies are of 

interest. Due to the use of diagonal mass matrices as also mentioned in the previous section, 

also large systems of this form can be solved using sparse eigensolver techniques, such as the 

Lanczos method [Lan50], for more details is referred to [Hal06].  
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2.3. Selected vehicle models, design variables, load cases and design 

criteria 

2.3.1. Overview of the used vehicle models 

The objectives and constraints of the example optimization problems are based on the 

response of numerical simulations using the Finite Element Method (FEM). The vehicle 

models used in this work are based on the models available from the National Crash Analysis 

Center (NCAC) finite element model archive [NCA12], these models been developed by The 

National Crash Analysis Center (NCAC) of The George Washington University under a 

contract with the FHWA and NHTSA of the US DOT (formal courtesy notice). The 

preparation of such FEM-based vehicle models requires significant effort. Due to the use of 

readily available vehicle models for this work, more emphasis could be placed on issues 

related to the optimization process. An advantage of these models is, that results can be 

published without restrictions on confidentiality, in addition the selected models have also 

been used in many other works in the literature.  

For the presented investigations and case studies, the models displayed in Table 1 are 

used. The Metro model (A) is selected because, the low mesh resolution and forthcoming 

low computational cost, which enabled a larger number of function evaluations for the 

response characterization. The Neon model (B) has a much higher FEM mesh resolution, and 

a more detailed model structure. The Taurus model (C) has a computational cost between 

those of models A and B, and allows the large number of function evaluations required for 

the corroboration of the approach. The number of design variables is different for each of the 

vehicle models because different design car body construction concepts are used, and the 

vehicles used are modeled with a different level of detail. Although this work is dealing with 

―similar‖ vehicle-related optimization problems, it is rather typical in industry, that there are 

some differences between the different problem instances. The differences in geometry, FEM 

mesh resolution, number of design variables, and car body concepts, enable the assessment 

of the robustness of the response characterization for the different vehicle models and 

presented benchmark approach. Typical full vehicle crashworthiness models applied in 

industry today have about 1-10 million elements, and require computation times in the order 

of magnitude of 100 CPU hours, for a single 100ms crash event. The models used for the 

response characterization had significantly lower mesh resolution and required less 

computation time (see Table 1). These models are less accurate in representing the exact 

behavior of a particular vehicle model, however in this work the identification of typical 

response characteristics w.r.t. the design variables is prioritized over the accuracy required in 

a detailed analysis of a particular vehicle design. The response characterization results in 

section 5 did not indicate any dependency of the statistical response characteristics 

depending on the mesh, although the used models differed in mesh resolution for an order of 

magnitude.  

The models have been slightly modified for the use in the simulation workflows for 

the presented investigations. The modifications consisted of placing additional spot-welds, 

small geometric changes to avoid contact penetrations, local re-meshing to avoid small 

elements that caused excessive small time steps in explicit time integration, modifications in 

the floor-bead-geometry in order to avoid local low-frequency, resonances, and sheet 

thickness changes. More details about the vehicle models can be found in Table 1. 
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As design variables for the optimization problems, the scaling factors on the sheet 

thickness of Body In Prime (BIP) components have been parameterized. The design 

variables are normalized to be in the unit hypercube domain and scale the nominal part 

thickness by a scaling factor varying between 0.5 and 2. Components appearing on both 

sides of the vehicle are scaled symmetrically. In Table 1, the parts with variable thickness are 

colored in the pictures of the modal analysis models, while constant parts are displayed in 

gray, the same design variables have been used for the crash simulation. For vehicle models 

A, B, and C the total nominal mass of the parameterized components accounts for 75%, 90% 

and 90% of the total BIP mass respectively. 

 

Table 1 Overview of the used vehicle models 

  model A model B model C 

  Metro Neon Taurus 

Modal analysis 
models (in color the 
parts with variable 

thickness)  

 

  

Crashworthiness 
models 

 

 

  

Nr. of elements Crash 
model 16k 271k 28k 

Total CPU time
2
 [hr.] 

for a crash simulation 
of 100ms 0.4 30 1.1 

Nr. of design variables 32 72 50 

 

The simulation workflow was programmed using MATLAB, VBA, and batch scripts, 

to execute the preprocessors (Altair Hypermesh and LS-PREPOST), solver, and post-

processing programs (LS-PREPOST). The eigenfrequency simulation and crashworthiness 

simulation of the finite element models were performed using the implicit (direct), and 

explicit LS-DYNA (971) solvers respectively. The Modal Assurance Criterion (MAC) was 

implemented in the simulation workflow to identify the corresponding eigenmodes, for the 

different designs evaluations (see the next section for more information).  

 

                                                           
2 Approximate CPU time per simulation using a single logical core of a HP Z600 with 2 Intel 

Xeon E5520 processors, and 24GB DDR3 Memory. 
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2.3.2. Description of the selected load cases and simulation responses 

There are many structural requirements which a car body structure has to satisfy. 

Although it would be of interest to consider all or many of them in a multidisciplinary design 

optimization context, in this thesis a reduced set of design criteria is considered. The 

considered set of design criteria is composed of lightweight, vibrational comfort and 

crashworthiness criteria. The selected criteria set considers several design aspects that are of 

industrial importance, and the combination of criteria is representative for a multidisciplinary 

design optimization problem with different sources of complexity. Similar design criteria 

sets have also been used in other works in the literature [Cra02b, Sta03, Fng05a, Goe09]. 

The following subsection provides an overview of the selected design criteria for the 

optimization problem case studies: 

 

Lightweight criteria 

As already mentioned in the introduction only a fraction of the energy used by a 

passenger vehicle is for the transport of the passengers [Fen01]. This is partly due to the high 

weight of the vehicle structure compared to the passenger weight. One way to reduce the 

vehicle energy consumption and GHG emissions is to reduce the weight of the vehicle. If the 

weight of components or modules is significantly changed during the design process, also 

additional weight savings on other components due to secondary effects can be achieved 

[Kof10].  Several studies have been made that estimated the fuel consumption reduction to 

0.15 l of gasoline, or 0.12 l of diesel per 100 km for a reduction of 100 kg if only the direct 

effects are included, and up to 0.45 l and 0.3 l if also secondary effect such as gear ratio and 

engine displacement are changed, (while maintaining a constant power to weight ratio, and 

dynamic elasticity values) [Kof10]. Another study [Ch10] estimated reductions in energy 

consumption of about 7% for every 10% reduction in vehicle weight. Although the exact 

relation between mass reduction and energy savings depends on the particular vehicle 

concept and driving cycles considered, these results indicate the relevance of weight 

reduction and lightweight design. A general overview on lightweight design in an automotive 

context is provided in [Fen01, Mal10]. An analysis how lightweight design can contribute to 

the reduction of the environmental impact of automotive vehicles was presented in [Sch14]. 

Although lightweight design is relevant for all vehicle parts, the focus in this work is 

on the weight of the car body structure. As a lightweight design criterion, the total mass of 

the BIP structure of the vehicle models is used. The mass for each vehicle model design 

variant is calculated by summation over the lumped finite element masses of a predefined set 

of elements representing the components of the vehicle BIP. In the proceeding of this work 

this design criteria is referred to as the ―Mass‖ response. 

 

 

Vibrational comfort criteria 

The effect of vibrations on the loss of performance of workers, fatigue, and health 

problems have been investigated by various researchers in the literature [Hor61, Gret71, 

Ljung07]. As also mentioned in the introduction significant relationships exist between noise 

and specific health effects [WHO12]. Besides noise related regulations by the legislators the 

automotive industry sets strict targets on Noise Vibration and Harshness (NVH) related 

criteria, because these aspects are of high importance in the perception of quality by the 

consumers.  
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Automotive NVH requirements cover subjective and objective criteria, related to 

tactile vibration and audible sound. A common practice is to relate subjective criteria to 

objective criteria of reference vehicles and use the relative objective criteria as performance 

targets for a new vehicle design. NVH targets can be categorized as follows [Har04]: 

 

 Whole vehicle exterior noise targets (e.g. drive pass noise levels for legislative 

approval) 

 Single component exterior noise targets (e.g. engine-radiated noise, exhaust noise) 

 Whole vehicle interior noise targets (e.g. A-Weighted or C-weighted sound pressure 

levels at the drivers ear position under full load acceleration conditions) 

 Ride quality targets (e.g. low-frequency vibration levels at the seat rail at 80 km/h 

on a typical tarmac road) 

Sources of noise can be categorized as air-borne or structure-borne. The structure-

borne noise below the 125Hz region is important because most of the noise energy is present 

in this range. [Dun96]. Structure-borne noise sources (road, tire and powertrain induced) can 

often be controlled by designing for insulation. Typical subsystem performance parameters 

to relate the full vehicle targets to are: 

 Trimmed body natural frequencies 

 Acoustic body impedance such as P/F transfer functions at chassis and powertrain 

attachments 

 Car body mobility such as A/F transfer functions at chassis and powertrain 

attachments 

 Body in Prime3 natural frequencies 

 Body in Prime static stiffness  

Although there are many NVH related design criteria relevant for car body design, in 

the scope of this thesis the investigations are limited to global natural eigenfrequencies of the 

BIP structure.  

Optimization of global bending and torsion frequencies is one of the most basic 

challenges in automotive vehicle body design. Several approaches have been proposed in 

[Don09, Mih10, Mih12] to already assess these criteria in the early concept phase of the 

vehicle development process by using simplified structural beam representations. Although 

these methods are able to represent the static and dynamic behavior of detailed geometries by 

models of computationally reduced complexity, the reverse process to derive more prototype 

or production geometry from such representations is not straight forward, and will generally 

not replace the optimization of more detailed geometric models in later design stages. To 

achieve vehicle designs with efficient trade-off solutions it is important to apply 

multidisciplinary design optimization techniques throughout the development process. Not 

only during early design stages with highly simplified models, but also in later design stages 

                                                           
3 The term body in white refers to the joint composition of the main load carrying car 

body components, before the assembly of moving parts, covers glass etc. The Body 
in Prime (BIP) is the body in white with in addition the front windshield and if 
applicable other load-carrying windows attached to the main structure of the car 
body. 
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when the simulation models become computationally expensive. Therefore, this work 

concentrates on the optimization problems using vehicle geometry models that are of a level 

of detail sufficient to simulate crashworthiness behavior, which typically receives high 

priority in vehicle design. The optimization of the eigenfrequencies and eigenmodes is also 

at the basis of other NVH criteria such as Frequency response functions (FRF) and Transfer 

Path Analysis (TPA).  

The vibrational comfort related design criteria used in this work are the 

eigenfrequencies (under free-free boundary conditions) that belong to the first natural 

bending and torsion mode of the vehicle structure. The corresponding eigenmodes and 

eigenfrequencies are estimated based on FEM-based modal analysis, using LS-DYNA-

implicit (version 971). Figure 1 shows a scaled deformation plot of the first natural torsion 

frequency of vehicle model B 

 

 

Figure 1 Simulation response: scaled deformation plot of the first natural torsional 

eigenfrequency of the BIP of (vehicle model B) 

The eigenmodes are distinguished using the Modal Assurance Criterion (MAC) 

[All82] with respect to the dynamic behavior of the nominal vehicle model configuration. 

The MAC is defined as: 

 

   (     )  
   

     
 

   
        

    
       (2.13) 

 

Where    represents an eigenvector (or mode shape), and   
 
 denotes its transposed 

complex conjugate. In the following chapters of this work the eigenfrequencies that that can 

be attributed to the first bending mode, and first torsion mode will be referred to as the 

―NBF1‖ and ―NTF1‖ responses. 

Although optimization with respect to mass and NVH or vibrational comfort criteria 

is already a challenge, the complexity of the optimization problem drastically increases when 

also objectives or constraints are included from other disciplines such as for example 

structural crashworthiness responses. 
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Crashworthiness criteria 

Despite significant improvements in accident avoidance and active safety 

technologies, motor vehicle crashes still occur and can have significant consequences. As 

mentioned in the introduction road traffic related incidents, cause ten thousands of human 

fatalities, millions of injuries [Bli15]. Besides further technological improvements in the 

field of active safety, also improvements and strict passive safety standards are required to 

improve passenger car safety.  

Whereas the field of active safety deals with technologies and systems that aid to 

avoid accidents such as ABS, ESP and the maneuverability of the car, the field of passive 

safety deals with technologies that reduce the effects of an accident, such as airbags, seat 

belts and safe car body structures [Sei07]. The ability of a structure to protect its occupants 

during an impact is commonly referred to as crashworthiness. An introduction to the topic of 

vehicle crashworthiness is given in [Hua02] and further information can be found in 

[DuB04,]. Vehicle crashworthiness performance can be assessed by a posterior study of 

vehicle crashes from the past, by crash experiments and by numerical modeling and 

simulation. Many different vehicle crash test protocols are defined by several institutions 

(see also [Per13]) such as for example the Insurance Institute for Highway Safety (IIHS), 

European New Car Assessment Program (Euro NCAP), and the National Highway Traffic 

Safety Administration (NHTSA). The different test protocols target occupant safety and 

vulnerable road user (such as pedestrian) safety by various means and testing procedures.  

 Some of the previously mentioned test protocols include frontal impact load cases at 

relatively high speeds (50-64 km/h) which involve large kinetic energies and thus require 

significant energy absorption of the car body structure, while at the same time the integrity of 

the passenger compartment must be assured. Such crashworthiness load cases usually 

involve large structural deformations and damage the vehicle to an extent which makes 

reparation practically unfeasible. Crashworthiness tests are therefore expensive, especially 

during the design process when physical prototypes are required. Therefore numerical 

techniques have been developed to evaluate structural designs and design changes by 

computer simulations (see section 2.2).  

Although many different crash types and load conditions are relevant for a vehicle 

design to comply with the various international test programs, in the scope of this work only 

a single crashworthiness load case is considered. In order to make a contribution to 

optimization of car body design problems that involve multidisciplinary design criteria 

including crashworthiness a compromise between completes and computation, and modeling 

effort was made. The selected load case of a frontal crash against a rigid wall, is rather 

academic, but it includes the important aspect of large highly nonlinear deformations, while 

also taking into account the mass ratio effect such that comparable results for different 

vehicle models can be obtained (which would not automatically be the case for impact with a 

deformable barrier [Lom01]). The vehicle safety during such tests is often assessed using 

crash dummy models, however also deformation and acceleration criteria can be used to 

assess the vehicle responses, and such responses exclude the influence and complications of 

the crash dummy kinematics during impact. Frontal impact crash load cases, and structural 

responses similar to those selected for this work, have also been used for other optimization 

related studies in i.a. [Cra02, Red04, Sun11].  

 The crash load case is a frontal crash configuration against a rigid wall at 64 km/h. 

For the crashworthiness simulations, nonlinear transient dynamic analysis by means of 



2. Literature review and description of methods and models 49 

 

explicit FEM is used (see section 2.2.2). Figure 2 illustrates the typical phenomena involved 

in the load cases. As crashworthiness criteria the maximum acceleration values
4
 at the 

vehicle tunnel, and the deformation between the A- and B- pillar were used. In the following 

chapters of this work these simulation responses will be referred to with the abbreviations  

―P. acc‖. and ―ABP. Def.‖ respectively.  

 

Figure 2 Deformation plot from a crashworthiness simulation of a frontal impact against a rigid 

wall (vehicle model B) 

 

Summary of the design criteria 

In the proceeding of this work the following design criteria and abbreviations will be used: 

 Vehicle body mass (Mass) 

 First (free-free) natural torsion eigenfrequency (NTF1) 

 First (free-free) natural bending eigenfrequency (NBF1) 

 Deformation between A- and B-Pillars during crash (ABP. Def.) 

 Peak acceleration during crash (P. acc.) 

                                                           
4 The peak acceleration results are based on SAE 60 Hz low pass filtered acceleration values of an 

accelerometer element located at the center of the vehicle on the tunnel.  

Zoom of door section

Accelerometer element

A-B Pillar distance
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2.4. Meta-modeling methods 

Meta-models also often referred to as surrogate models or emulators, or response 

surface methods (RSM), are approximation models that relate model input and output based 

on provided training data, or construction points. For input values at which no output data is 

known, output values are estimated using different estimation and interpolation techniques 

depending on the type of meta-model. A loose definition of RSM is provided in [Mye89] as: 

“a collection of tools in design or data analysis that enhance the exploration of a region of 

design variables in one or more responses‖. In much of the literature, the term RSM is 

however often used for models based on particular sampling schemes and polynomial 

approximation functions. In this work we will use the word meta-model referring to a model 

of a model in a similar sense as the previously stated loose definition of an RSM (note that 

the term meta-model can however be used even more general in the context of other (non-

engineering) literature). 

Meta-modeling methods were used in the scope of this thesis, but no technical 

contributions to this field are treated in the scope of this work. Therefore, this section is 

restricted to a brief summary of relevant references, an overview of the meta-modeling 

method used, and a short critical analysis of the use of meta-models in the literature related 

to car body optimization problems.  

The idea to represent given data with a function, or to interpolate data, is general and 

natural, therefore the origin of meta-modeling is not traceable to a single scientific work. The 

works of [Box51] and [Sac89] are however generally considered as the seminal papers in this 

field. Reviews on meta-modeling in general are provided in [Hil66, Mea75, Mye89]. 

Reviews in a structural engineering context are presented in [Bar93, Wng07] and more 

recently in [Via14]. The next section will give a brief overview of comparisons in the 

literature on meta-modeling techniques in car body design problems that involved 

crashworthiness simulation responses. Followed by a section, in which the applied method 

used in this thesis is described.  

 

2.4.1. Meta-modeling in crashworthiness optimization problems 

In [Dud15] the use of physical surrogate models for crashworthiness related 

robustness and reliability assessments is discussed. There is a distinction between 

mathematical and physical surrogate models. The latter are computational models with 

strong simplifications of the involved physical phenomena. These simplifications can be 

used to reduce computation cost, or to deal with course models in early stages of the design 

process when design details are not available yet. Such physical surrogate models can be 

used to aid the optimization process [Ham03, Ham04], or when combined with sensitivity 

analysis methods, they can be used in early design stages or to simplify models involving 

complex composite material vehicle components [Hes15]. In the scope of this work, physical 

surrogate models, are not further addressed, and in the following the term surrogate model 

refers to mathematical models.  

In [Fng05a] a polynomial RSM and Radial Basis Function (RBF) based methods are 

compared for their performance in a crashworthiness optimization context. The comparisons 

were based on full crash vehicle simulation problem with 10 design variables, using 28 

function evaluation based construction points. The results based on error comparisons at 8 

independent design points indicated that RBF based approximations performed better than 
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the RSM based approximations. The use of polynomial augmented RBF functions was 

recommended by the authors of that work. 

Kriging and (classical) polynomial regression based RSM based meta-models were 

compared for crashworthiness related responses in [For06]. The results indicated that kriging 

models reduce the amplitudes of oscillations in optimization responses, but also that kriging 

based optimization procedures may converge earlier to a local optimum. Therefor the results 

based on these investigations were not conclusive enough so select a clearly preferred meta-

model type for impact problems.  

In [Sta04] three metamodeling methods (RSM, Kriging, Feed Forward Neural 

Networks (FFNN)), were compared for several problem types among wich a vehicle 

crashworthiness problem. The best results were obtained using a linear successive response 

surface technique.  

Several metamodeling methods (RSM, FFNN, and Radial Basis Neural Network 

(RBNN)) were compared in [Ham04b] w.r.t. their approximation accuracy to model crush 

tubes with various section dimensions. The results indicated that RBNN had better accuracy.  

In [Fng06] a comparative study between several meta-modeling methods was 

presented on different problem types, among which a vehicle impact problem. The use of 

polynomial augmented RBF functions was recommended by the authors of that work for the 

approximation of finite lement simulation based responses.  

In [Yng05] a comparative study between 5 meta-modeling methods was presented for 

a vehicle crashworthiness problem with 4 design variables. From the results, no decisive 

conclusions could be drawn, and further research was suggested to obtain statistically 

significant results.  

The application of various RSM, meta-modeling, or surrogate modeling techniques is 

widespread for the application to optimization problems involving crashworthiness 

responses. Nevertheless, there is no clear consensus on which methods to apply. The few 

comparative studies in the literature that deal with crashworthiness related simulation 

responses dealt only with problems of modest size (less than 20 design variables), and used a 

relatively low amount of construction points and function evaluations on the simulation 

response.  

Although the use of meta-models can be useful, and justified when dealing with 

computationally expensive simulators, one cannot assume automatically that the meta-model 

is representative for simulation response behavior. Caution should be used in particular for 

highly nonlinear non-smooth responses such as can be the case with crashworthiness 

responses. The non-smoothness of the responses w.r.t. to changes in the design variables are 

due to the interactions between the nonlinear phenomena involved such as local buckling, 

plasticity, contact and fracture. Under such conditions, small changes of the design variables 

result in bifurcations or abrupt changes in the topological behavior of the system and the 

resulting structural response. In a high-dimensional design variable space, this highly non-

smooth behavior is difficult to be represented by traditional meta-models. Even the use of 

methods that are generally considered as suitable for nonlinear responses (such as Radial 

Basis Functions (RBF) and kriging), results in smooth behavior between the construction 

points. Such methods can capture the ―global‖ nonlinearities with a limited number of 

construction points, which is useful for approximation models. But to represent local non-

smooth behavior (which can affect the optimization algorithm performance on the 

simulation-based model) these meta-models require a number of construction points 

proportional to the number of local ―peaks‖ and ―valleys‖ of the response ―landscape‖ to be 



52 Chapter 2 

 

represented. For high-dimensional non-smooth crashworthiness responses this requires a 

large number of sampling points.  

The curse of dimensionality and its challenges for meta-modeling are important topics 

of present research. In [Bck11] the development of high-dimensional engineering application 

problems for the comparison of meta-modeling techniques was suggested as a topic for 

future research. Also in [Via14] the need for the development of suitable meta-modeling 

methods for high-dimensional problems was emphasized. One of the recommendations for 

future work in the paper of [Agt10] was: the need to develop ―surrogate models adaptable to 

the complexity of the design space to strike a proper balance between the cost and the 

scarcity of the DOE coverage of the design space― [Agt10].  

The variety of meta-modeling methods is not so large as the variety of optimization 

algorithms, and more comparative studies are available in the literature. Nevertheless, the 

selection and development of meta-modeling algorithms for crashworthiness and other real-

world problems that involve computationally expensive simulations, deals with similar 

difficulties as the development and selection of suitable optimization algorithms: analytical 

comparisons are difficult, and numerical comparisons with statistical significance are 

computationally expensive. In [Jin11] the need for rigorous benchmarking and test problems 

that reflect the major difficulties of real-world applications at a feasible computation cost 

was emphasized.  

 

2.4.2. Description of the used polynomial augmented RBF method 

Although the current state of the art provides no clear consensus on which meta-

models are best for to represent crashworthiness responses, based on the results in [Fng05a] 

and [Fng06], RBF-based models were used in this work. Several researchers came up 

independently with ideas related to the method of RBF [Har71, Nad64]. Later a new 

interpretation of the method as a layered adaptive learning method [Bro88] increased the 

popularity of the idea.    

For the brief explanation of the RBF methodology used, the analogy with a 

multivariate nearest neighbor interpolation with weighting functions is used. If in a 

multivariate space, for a set of n points with coordinates    the corresponding function values 

   are known, an estimation of function values at any given point in the space can be made 

by: 

 

  ∑    
 
    ‖    ‖        (2.14) 

 

Where    are the weights corresponding to each of the points with coordinates   , and 

     is a radial function on the distance between the location of interpolation   and the points 

of the training set   . Before such an interpolation can be used it is required to calculate 

appropriate weights   , this can be done by solving a linear system of equations that results 

from the following expression.  

 

                (2.15) 

 

Where matrix     is defined as: 

 

     (‖     ‖)        (2.16) 
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There are several different radial functions     , and distance measures ‖ ‖ that can 

be used (see [Buh00] for an overview). If not mentioned otherwise in the scope of this work, 

Gaussian RBF models are used with radial functions          
 where radius   

‖     ‖ is the Euclidean distance between two points    and   . 

 

The here described principle can be extended by augmenting polynomials such as 

described in [Kri03]. In the applied method, monomial terms            
  , (without 

variable interaction) were used as augmented polynomials      .  

 

  ∑    
 
    ‖    ‖  ∑       

         (2.17) 

The additional constants can be solved by using equation 2.18 (provided that sufficient data 

points are available). 

 

[
      

      
] [

  

  
]  *

  

   +        (2.18) 

 

where index k is enumerated over the total number of coefficients m of the augmented 

polynomial functions. And matrix     is defined as            and        
 . 
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2.5. Optimization methods 

2.5.1. A brief overview of the history of optimization in a structural 

engineering context 

It seems a natural desire of humans to improve tools, structures and methods. The 

concept of ―Trial and error‖ is presumably one of the oldest design paradigms. When it is 

combined with human intuition, an individual memory, and a collective memory in the form 

of culture, it is a remarkably powerful approach. 

For problems in which the human intuition fails to achieve a sense of logic in the 

interpretation of the already established trials and results, or in cases where intuition 

indicates that many more trials are necessary, the approach can be however tedious, 

unsatisfactory, or too time demanding, and a systematic approach seems desirable. Following 

a systematic approach to achieve a predefined goal can be considered as optimization in a 

loose sense. The word optimization comes from the Latin word optimus ―best‖ (used as a 

superlative of bonus ―good‖) [Oed15]. Although in a stricter sense optimization is related to 

achieving the best or most favorable solution for a specific problem, the verb ―optimization‖ 

is in practice however often used as a synonym for improvement. In the scope of this work 

the term optimization is used from an engineering perspective, referring to: the use of 

numerical algorithms to achieve improvement of specific objectives under specified 

constraints and boundary conditions. 

In the documented history of science, early optimization related works are attributed 

to i.e.: 

 Euclid of Alexandria (325-265 BC) ―Elements” (dealing i.a. with geometry 

problems) 

 Heron of Alexandria (10-75 BC) ―Catoptrica‖ (dealing i.a. with light propagation)  

 Johannes Kepler (1615 AD) ―Nova stereometria doliorum vinariorum” (on the 

optimization of wine barrels) 

 René Descartes (1596-1650) ―La Géometrie” (i.a. on tangent lines or ―derivatives‖ 

of certain functions)  

 Pierre de Fermat (1601-1665) ―Methodus ad disquirendam maximam et minima” 

(on the use of tangents for finding function extrema, see also [Str68] for a 

reconstruction of the approach)  

 Isaac Newton (1668) ―Philosophiae naturalis principia mathematica‖ (on i.a. the 

problem of the body of least resistance)  

 Leonhard Euler (1744) ―Methodus inveniendi lineas curvas‖ (on variational 

calculus) and ―Scientia navalis‖ (1749) (on optimal ship design) 

 Joseph-Louis Lagrange (1788) ―Mécanique Analytique‖ (i.a. on the introduction of 

Lagrangian multipliers for constraint handling) 

These are just some examples of well-known scientist living before the 19
th

 century 

who dealt with optimization related problems, but works by many others are relevant for the 

current state of the art. A brief historical overview of important developments in the field of 

applied mathematics and optimization is given in chapter 2 of [Krn14]. Many ideas used in 

optimization are strongly related to mathematics, and therefore to the history of mathematics 

about which many books are written (i.e. [Bal60] and [Sti02]).  
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During the nineteenth century the first optimization algorithms were refined and 

developed for deterministic differentiable functions: Basic linear programming (by Joseph 

Fourier, see also [Gra70]). The ―Newton-Raphson-Simpson‖ method (see [Kol92] and 

[Ypm95]); steepest descent [Cau1847]; least-squares minimization by Gauss and Legendre 

(see also [Sti81]). In the next century many more methods followed i.a: the Simplex method 

[Dan55], Non-linear Programming [Kar39] and Dynamic Programming [Bel54]. All of these 

methods would find the optimum solution for convex problems, but for multimodal non-

convex problems they are however likely to converge to a local optimum, and not the global 

optimum. 

Non-convex, multimodal global optimization problems are however relevant for 

many practical and industrial applications. These are typically the type of problems 

previously mentioned where the relation between trial and error points are unintuitive, and 

where most obvious systematic approaches fail to achieve satisfying results.  For these type 

of problems meta-heuristic algorithms were developed since the second half of the twentieth 

century.  

Pioneering work in 1950‘s, by Barricelli [Bar54, Bar57] on evolutionary computation 

was followed by the development of evolution process based approaches and strategies to 

solve mathematical optimization problems [Bre62], and design optimization problems of 

complex technical systems [Schw65, Rch65, Rch71, Schw75], and artificial intelligence 

tasks [Fog62, Fog66, Hol75]. The independent development of the idea‘s inspired by 

biological reproduction mechanisms led to slightly different approaches with various names: 

Cybernetic Evolution [Schw65, Rch65], Evolutionary Strategy [Rch71, Schw75], 

Evolutionary Programming [Fog66], Genetic Algorithms [Hol75], and later more varieties 

were developed [Sto97] that are now all covered by the umbrella term Evolutionary 

Algorithms (EA). An introduction to Evolutionary Strategies is given in [Bey02], and an 

overview of interesting properties of evolutionary mechanisms is given in [Schw12]. 

Besides evolution based algorithms, also other meta-heuristics were developed, such 

as: Random search [And53, Ras64], the Nelder-Mead method (another simplex based 

method) [Nel65], Simulated Annealing (SA) [Kir83], Particle Swarm Optimization (PSO) 

[Ken95], Fire Fly optimization [Yan09], and many more. For a review on meta-heuristics the 

author refers to [Flo09, Rio12] and for a review on nature-inspired algorithms to [Tng09]. In 

section 2.5.3 an brief overview is provided of the optimization algorithms used in the work 

of this thesis.  

 

Structural and multidisciplinary optimization 

Optimization methods can be applied to various hypothetical and practical problems 

in many different fields of application. The focus of this work is structural or mechanical 

design. Although the design and development of structures and improving their designs is a 

common activity throughout the human history, the term structural optimization was 

introduced as late as 1960 by Schmit [Schm60]. In that work the consequences of the 

multidisciplinary nature in structural design were demonstrated at the hand of a weight 

optimization of a simple truss structure with multiple load conditions. The example showed 

as a counter-intuitive result that the minimum weight design was not a fully stressed design 

in neither of the load conditions.  
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The goal of lightweight design is to design a structure with minimum structural mass 

while satisfying the structural requirements and other constraints involved. Following the 

introduction of [Schm60], the typical iterative structural design cycle to achieve this can be 

divided in three steps: 

1. generate a trial design 

2. evaluate the structural response of the trial design by a structural analysis 

3. modify the trial design as required 

Structural optimization deals with the systematic approaches or procedures to achieve 

an improved or optimal design. As already mentioned in the previous sections, since the late 

1950‘s several important advancements have been made that strongly enabled progress in 

this field: 

 numerical solution procedures for the solution of the mechanical or structural 

problems  

 numerical solution procedures for the design optimization of the structural problem 

 computer technology to execute the numerical procedures5.  

Since the 1970‘s regularly reviews have been published on the topics and advances in 

the structural and multidisciplinary optimization community ([Ven78], [Schm81], [Aro90], 

[Mar04], [Sim08]). The research and applications grew however fast during the last decades 

and the activities in the field of structural optimization diversified over different directions, 

applications, and subfields. A few examples of such sub-directions also relevant for car body 

optimization problems are: Topology Optimization [Bend88, Roz01, Roz09, Weh15]; Shape 

optimization [Haf86, Hun13], Discrete variable optimization [Cel73, Tha95]) and continuous 

variable optimization [Pin13]), optimization for high-dimensional design problems [Sha10]. 

Besides differentiation w.r.t the type or dimensionality of the design variables also reviews 

for particular applications or response types were published: optimization for eigenfrequency 

responses [Gra93], impact responses [Schr96], and composite materials [Ven99]. The large 

amount of research publications in this field underlines that although structural and 

multidisciplinary optimization involves many established techniques already used in the 

industry, it is also still a field of ongoing research in many directions.  

An important characteristic of structural optimization is that it typically deals with 

multidisciplinary design criteria. Each of the relevant criteria could be described by a 

different model, and for complex systems it might be beneficial to organize and structure the 

models involved in the optimization and design process. Several different optimization 

architectures have been proposed in the literature such as: All-at-once (AAO), Individual 

Discipline Feasible (IDF), or Analytical Target Cascading (ATC). Although several case 

studies of ATC and other design optimization formulations for vehicle design applications 

are presented in the literature [Kim03, Kok02], these methods still received only modest 

attention in the literature and the automotive industry. Overviews of ATC and other 

(distributed) MDO architectures for the optimization of complex systems are given in [Sbi87, 

                                                           

5 Analytical solutions for particular problems can be formulated requiring without 

these techniques, such cases are however rather exceptional in the set of industrially relevant 

problems.  
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Crm94, Sbi00, Ted06, Mar13]. In a recent review [Mar13] a summary and classification of 

optimization architectures were made. It was concluded that much work remains to be done 

in the area of benchmarking of different architectures, and that the development of test 

problems would be extremely useful. The development of distributed optimization 

architectures remains a topic of ongoing research. In this work only the conventional AAO 

Approach was applied. There are however no implicit restrictions in applying similar studies, 

and the developed assessment strategies to the performance assessment of distributed 

optimization methods. In fact the presented test problem generation methods, are developed 

such that extensions to applications in this field are straightforward.  

 

The focus of this work is on car body optimization with lightweight, vibrational 

comfort and crashworthiness design criteria, using continuous6 design variables scaling the 

material thickness (sizing). The following sections provide a brief overview on the state of 

the art of structural optimization for related applications.  

 

2.5.2. State of the art of structural optimization involving eigenfrequency 

and crashworthiness design criteria 

Optimization and vibrational comfort and eigenfrequency criteria 

Optimization with frequency constraints is of practical importance for many 

applications and has been of interest since the early days of computer-aided structural 

optimization [Tur67]. Since then many advancements have been made, common solution 

strategies include the use of Optimality Criteria (OC) techniques and Mathematical 

Programming (MP) methods [Gra93]. For non-convex problems these methods are however 

likely to converge to local optima, therefore also the use of meta-heuristic global 

optimization methods is of interest for these applications [Gho08, Zuo11]. To emphasize an 

important observation, a brief list of several works from the recent literature on optimization 

methods for natural frequency responses is provided: 

 

• Zuo W., Xu T., Zhang H., Xu T.  ―Fast structural optimization with frequency 

constraints by genetic algorithm using adaptive eigenvalue reanalysis methods.‖ 

Structural and Multidisciplinary Optimization 43.6 (2011): 799-810. 

• Gomes HM. ―A firefly meta-heuristic for structural size and shape optimization 

with natural frequency constraints.‖ International Journal of Meta-heuristics 2.1 

(2012): 38-55. 

• Meinhardt G., and Sengupta S. ―Optimization of Axle NVH Performance Using 

Particle Swarm Optimization.‖ Proceedings of the ICAM 2014 May 28-30 (2014). 

                                                           
6  Traditionally sheet metal (steel or aluminum) are only available in discrete 

thicknesses. Due to modern manufacturing processes, large scale customers can order 

batches of sheets with custom thickness, (or produce even tailored blanks with varying 

thickness according to specification. Such sheets are however still subject to production 

tolerances, the uncertainties due to such tolerances are however not regarded in this work.  
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• Karakaya S., and Soykasap Ö. ―Natural frequency and buckling optimization of 

laminated hybrid composite plates using genetic algorithm and simulated 

annealing.‖ Structural and Multidisciplinary Optimization 43.1 (2011): 61-72. 

• Luo Y., Fu J. and Zhang Y. ―Robust Design for Vehicle Ride Comfort and 

Handling with Multi-Objective Evolutionary Algorithm.‖ SAE Technical Paper 

No. 2013-01-0415., 2013. 

• Kaveh A., and Zolghadr A. ―Democratic PSO for truss layout and size 

optimization with frequency constraints. .‖  Computers and Structures, 130, 

(2014): 10-21. 

In the list, the different optimization methods and applications are written in bold. The 

list shows that eigenfrequency related design criteria are relevant for many applications and 

that many different optimization algorithms are used. Several benchmark problems have 

been developed for shape and sizing optimization problems, based on them a several small 

comparative assessments have been made recently [Gom11, Mig12, Gho13]. These 

benchmarks were however based on the optimization of relatively simple truss structures. 

Comparative optimization performance assessments on typical car body design optimization 

problems using full vehicle models are of industrial relevance, but such studies are relatively 

scarce in the literature, especially for problems were also crashworthiness design criteria are 

involved. 

 

Optimization and crashworthiness criteria 

Before the availability of FEM with explicit time integration for transient impact 

problems, vehicle crash-optimization was restricted to the optimization of simplified mass 

and spring models such as for example in the work of [Ben77]. About a decade after the first 

numerical crashworthiness simulation of a vehicle structure by Haug et al. [Haug86] early 

feasibility studies of design optimization methods applied to automotive structures involving 

crashworthiness analysis on sub-structures such as those by Yang et al. [Yng94] and 

Schramm et al.  [Schr98] were published. These feasibility studies were later followed by 

basic studies of MDO of full vehicle structures w.r.t. crash, NVH and lightweight criteria in 

the works of, for example, Yang et al. [Yng01] and Sobieszczanski-Sobieski et al. [Sbi01]. 

Since then the investigations and showcase studies applying various types of optimization 

methods on vehicle design problems have increased strongly in quantity (e.g. [Cra02, Yng02, 

Dud03, Kod04, Nil04, Yng05]) and continued to be of interest during the recent years (e.g. 

[Dud08, Hor09, Yil12, Gu13, Hes15, Kia15, Rak15]).  

Vehicle crashworthiness responses depend on complex interactions between the 

involved vehicle components. Nevertheless, there is also attention in the literature for 

optimization of separate components. Investigations on design optimization of thin 

rectangular thin-walled crash beams were presented in [Liu08]. In [Hou08] different 

optimization formulations for the design of crash absorbing multi-cell beam structures were 

investigated. Investigations on graded foam-filled structures, where the foam has varying 

density throughout the crash-beam are presented in [Sun10]. Investigations on 

multidisciplinary optimization of composite absorber crash boxes have been presented in 

[Lnz04]. A combination of experimental and numerical crashworthiness studies on crash 

boxes is described in [Zar08]. The study presented in [Rus08] indicated the importance of the 
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modeling of strain-rate sensitivity and boundary conditions on the location of the collapse of 

the crash-beam/box structures. In the work of [Mar11] genetic algorithms combined with 

neural networks were used for the MDO of crash tubes. 

Although the previous studies indicate that also the optimization of separate 

components are of interest, the challenge of higher industrial interest is the optimization of 

component assemblies and vehicle structures. In [Etm96] a multipoint Sequential Quadratic 

Programming (SQP) optimization approach is applied to a crashworthiness problem-based 

on multi-body simulation. In the presented study, the ―noisiness‖ and nonlinear nature of the 

simulation results w.r.t. changes in the design variables were identified, and multipoint 

approximations were used to tackle the non-smoothness of the responses. Although at the 

time multi-body simulations (MBS) were computationally expensive, MBS makes coarse 

approximations w.r.t. local stiffness of the components involved in a crash, and is typically 

much less computationally expensive as FEM-based crash simulation. The study in [Sbi01] 

(which was a cooperation between the NASA, SGI High-performance computing and the 

Ford Motor company) demonstrated the industrial application of MDO on a car body 

structure for minimum mass, under frequency and crashworthiness constraints, using FEM-

based simulation techniques. Later in the study of [Cra02] a similar vehicle optimization 

problem was solved using a response surface method combined with a multi-start variant of 

the leap-frog dynamic trajectory method. Many studies using different algorithms on 

crashworthiness problems followed. In [Red04] the application of a stochastic optimization 

approach was investigated for several analytical test functions, and two simplified 

crashworthiness problems. In [Lia08] a two stage multi-objective optimization on a vehicle 

optimization problem was presented. The use of a stepwise regression model in an 

optimization context for the design of a car body structure was presented in [Lia08B]. In 

[Dud08] several optimization algorithms were compared using different benchmark studies, 

and a list of requirements for optimization algorithms for application to simulation-based car 

body optimization problems was presented. A new particle swarm based optimization 

approach was used in [Yil12] for a vehicle crashworthiness problem. In [Abb14] concurrent 

usage of a hybrid Neuro-fuzzy model and the Taguchi method were applied to an automotive 

crashworthiness optimization problem.  

Similarly as was the case with the optimization with eigenfrequency criteria, also 

many different optimization approaches and algorithms are used for several very similar 

problems that involve crashworthiness criteria. In many of these and other works that include 

crashworthiness criteria, response surface modeling, surrogate modeling or meta-modeling 

techniques are used. It should be noted that in some of the presented works the optimization 

was only performed based on a static meta-model response. In that case the choice of the 

optimization algorithm, and the optimization efficiency is almost trivial, since the 

computation cost required for function evaluations on the meta-model is very low. For 

industrial applications the aim is however often not to run an optimization on a static meta-

model but to optimize and explore the search space of the simulation responses. Although 

meta-models can be used to guide the optimization procedure on the simulation responses, 

the meta-model responses should not be confused with the simulation responses, because 

especially for the highly nonlinear, non-smooth responses that are involved with 

crashworthiness, significant deviations and errors between the two can exist. The topic of 

meta-modeling is discussed in section 2.4 in further detail. An overview on the state of the 

art on comparative assessments of optimization algorithms and car body design applications 

was given in section 2.1.  
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2.5.3. Used optimization algorithms 

In the literature, both gradient based as well as meta-heuristic algorithms are used for 

problems with lightweight, eigenfrequency and/or crashworthiness criteria. For the 

comparative assessment and other case studies several different optimization algorithms 

were used. For each of the optimization algorithms selected a short overview of properties 

and references is provided. 

 

Interior point (IP) algorithm 

The group of Interior point algorithms (or barrier algorithms) are generally used to solve 

nonlinear convex problems. According to [Boy09] interior point methods can solve convex 

problems typically within 10-100 steps, where in each of the steps first and second-order 

derivatives of the constraint and objective functions are required. If the derivatives are not 

implicitly provided by the objective and constraint functions, they can be established by 

finite differences at the cost of additional function evaluations (this cost increases then 

proportionally to the number of design variables). For a description of the algorithm it is 

referred here to the textbook of [Boy09] chapter 11. The implementation in MATLAB 2013a 

embedded in the ―fmincon‖ function (option 1) was used in this work.  

 

Sequential quadratic programming (SQP) 

The Sequential quadratic programming approach is generally used to solve smooth nonlinear 

problems. SQP solves the optimization problem by sequential steps of the Newton method. 

The Newton method successively updates its search points on the location of the estimated 

minimum according to the assumed quadratic model. To the description of the algorithm a 

book chapter is dedicated in [Flt10]. The implementation in MATLAB 2013a embedded in 

the ―fmincon‖ function (option3) is used in this work.  

 

Genetic algorithm (GA) 

Genetic algorithms are a class within the evolutionary algorithms that mimic the genetic 

process of the reproduction of biological life, in an iterative optimization procedure. Starting 

from a given or random initial population, genetic operators such as crossover and mutation 

are used to generate a new offspring population of search points. The optimization procedure 

is based on the principle of ―survival of the fittest‖ by selecting parent (search points) based 

on fitness criteria that correspond to the objective function evaluation, to generate the 

offspring (new search points) for the next generation, and iteration step. A detailed 

description of genetic algorithms can be found in [Gld88]. The implementation used in this 

work was the ―ALGA‖ implementation included in MATLAB 2013a.  

 

Non-dominated sorting genetic algorithm (NSGA2) 

NSGA-2 is a Multi-objective evolutionary algorithm proposed in [Deb00], as an 

improvement over the original NSGA presented in [Sri94]. It can handle any number of 

objectives and strives to find designs close to the Pareto front. The application of this 

algorithm is unconventional for single objective problems, preliminary investigations 

showed reasonable performances for the type of single objective problems of interest, and 

therefore the algorithm was included in the comparison.  The variation of the algorithm used 

in this work is Reference-point based NSGA-II implemented by [Lin11]. 
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Differential Evolution (DE) 
Differential Evolution (DE) is another evolutionary algorithm used for optimization. The 

main distinction of Differential Evolution algorithms with respect to genetic algorithms is the 

use of parameter vectors. Where for GAs the objective improvement is dependent on 

selection, of improvements by quasi-random changes, DE can make targeted steps by adding 

―gradient like‖ weighted difference vectors between two points to a third point. A 

comprehensive overview and a MATLAB implementation is provided in [Sto97]. The 

implementation used was an adaptation of that code by [Buh13], combined with a penalty 

approach to enforce nonlinear constraint handling.  

 

Particle Swarm optimization (PSO) 

Particle swarm optimization algorithms are inspired by the movement of groups of 

organisms in for example a bird flock or fish school. A group or population of particles, 

changes their position in each step of the algorithm, based on its local best position, the 

global best known position, its velocity vector, and particle inertia. A description of the 

algorithm principles can be found in chapter 8 of [Yan10a]. The implementation of [Bir06] 

was used combined with an additional penalty factor approach to enforce nonlinear 

constraints.  

 

Simulated Annealing (SA) 

Simulated annealing is a meta-heuristic search algorithm, developed in the early 80‘s by 

[Kir83] and [Cer85] inspired by the thermodynamic process involved in the metallurgic 

annealing heat treatment. The principle behind the algorithm is that starting from an initial 

set of search locations (equivalent to a population), a change of location is induced in each 

time step, which corresponds to the kinetic movement of atoms in the annealing analogy. 

Changes to lower energy states are admitted but higher energy states are admissible 

according to a probability function depending on the temperature. At increasing time and 

number of algorithm iterations, the temperature decreases according to a cooling scheme, 

and thus convergence to lower energy states is enforced. A description of the algorithm can 

be found in [Yan10b], together with an implementation of the algorithm, that was used in 

this assessment.     

 

Fire Fly Algorithm (FFA) 

Fire Fly inspired optimization algorithms are population-based and follow the analogy of 

fireflies attracted to surrounding fireflies by light intensity (a fitness equivalent) to reproduce 

offspring (new function evaluation samples), to explore and exploit the search space. An 

algorithmic description of is provided in chapter 10 of [Yan10b], together with the 

MATLAB implementation that was used in this work. 

 





 

 

 

3. Meta-model based comparative 

assessments of optimization algorithms 

for various multidisciplinary car body 

design problem formulations 

“All models are wrong, but some are useful.” 

-George E. P. Box [Box87] 

3.1. Motivation and aim of the comparative assessment study 

Based on the literature review chapter 2, it could be concluded that although many 

different optimization algorithms are available and used for these type of problems, there are 

no clear guidelines on which algorithms to choose. Comparative assessments of optimization 

algorithms for problems related to this application type are very rare in the literature, 

although they are of industrial interest [Wan13].  

Of the few comparative studies available in the literature, most do not perform the 

comparative assessment by means of the simulation responses, but on static meta-models of 

the simulation responses, to reduce the involved computation cost [Gu13, Kia15]. In none of 

those works, the validity of the obtained results based on meta-models, is verified with 

similar optimizations based on the simulation responses. Moreover, in all of these works the 

number of construction points for the meta-models was rather low. In the two available 

studies that were not meta-model based, either only a few algorithms were compared 

[Dud08], or insufficient repetitions were performed to obtain statistically significant results 

[Nil04]. Furthermore in all of these works only a single vehicle model for each problem type 

was investigated.  

The here presented comparative assessment aims to extend the available work in the 

literature on the following points: 

 Use of two different vehicle models per optimization formulation 

 Verification of the optimization performance of the meta-model based 

comparison, with a simulation workflow based comparison  

 The performance of 8 state-of-the-art optimization algorithms is compared 

 The comparisons are based on several optimization problem formulations 

 The meta-models are based on a number of construction points that exceeds 

previous studies by at least an order of magnitude (1000 simulation-based 

function evaluations)  
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Because the set-up of this comparative assessment includes features not available in previous 

studies, the following research questions (as introduced in the introduction) can be 

addressed:  

 

Q1 Are the relative optimization algorithm performances on a particular vehicle design 

problem correlated with the relative performance on a similar vehicle design 

problem involving another vehicle model?  

 

Q2 How representative are meta-model optimization benchmarks for vehicle design 

problems compared to full direct simulation-based optimization performance 

benchmarks?  

 

Q3 Are the differences in performance between meta-heuristic algorithms on various 

problem formulations of typical car body design optimization problems involving 

crashworthiness responses, of practical relevance? 

 

In the next section, a description of the assessment set-up will be given, some notes on 

statistical consideration in optimization performance are discussed in section 3.3. The results 

of the meta-model based comparative assessment and a corroboration using an independent 

vehicle model are provided in sections 3.3 and 3.4 respectively, followed by the conclusions, 

discussion, and outlook.  
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3.2. Description of the comparative assessment study 

In this study, a selection of optimization algorithms is compared with respect to their 

performance efficiency for problems involving basic NVH criteria. The comparative 

assessment is made for several different optimization formulations that include 

multidisciplinary objectives and constraints related to: global vehicle eigenfrequencies, 

vehicle mass, and nonlinear crashworthiness responses. The significance of the meta-model 

based assessment results are corroborated using results based on direct simulation workflow 

results of a third vehicle model. 

To make statistically significant comparisons a large number of optimization runs, 

and thus function evaluations are required. In order to achieve a high number of function 

evaluations the optimization runs are performed on meta-models of 2 vehicle models, 

constructed from 1000 quasi-random function evaluations per vehicle model. The meta-

models used are polynomial augmented Radial Basis Function (RBF) models following the 

recommendations in [Fng06] (see also section 2.4). 

The meta-model based assessment is made using results from two distinct vehicle 

models (Vehicle models A and B). A detailed description of the vehicle models, design 

variables and simulation responses is given in section 2.3. 

 The optimization algorithms compared are: 

1. Interior Point (IP) algorithm 

2. Sequential quadratic programming(SQP) 

3. Genetic algorithm (GA) 

4. Non-dominated sorting genetic algorithm (NSGA2) 

5. Differential Evolution (DE) 

6. Particle Swarm Optimization (PSO) 

7. Simulated Annealing (SA) 

8. Fire Fly algorithm (FFA) 

More details about the implementations are provided in section 2.5.3. For each of the 

algorithms and each problem formulation, the performance statistics of 100 algorithm runs 

are compared for a budget of 250 and 500 function evaluations. The results are expressed in 

terms of the Relative Objective Improvement (ROI) denoted by the symbol  .  

 

The ROI for a number of i function evaluations is defined as: 

   
          

            

     (3.1) 

where      
 is the minimum feasible objective after i function evaluations,      is the 

objective value of the nominal design, and        
 is the minimum objective value found for 

the given problem formulation. Such that the ROI expresses the ratio of the objective 

improvement at a given number of iterations, relative to the maximum achievable 

improvement known for the problem. 
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3.2.1. Optimization formulations  

A general description for an optimization problem with k nonlinear constraints is: 

 

min      Subject to:              (3.1) 

 

Where objective function      and constraint functions       are a function of the design 

variable vector  :                . 

In this study depending on the formulation investigated, the result of objective 

function       corresponds to the either, the vehicle BIP mass, or the negate of the first 

torsion eigenfrequency (minimizing the negate is maximizing the original). The constraint 

functions       are either an upper bound on the vehicle BIP mass, a lower bound on the 

natural frequencies, an upper bound for the maximum acceleration, and/or a lower bound on 

the deformation between the A- and B-pillars. Details regarding the combinations of 

objectives and constraints for the investigated formulations are described in the following 

list: 

1. Unconstrained mass optimization with design variable bounds (reference 1) 

2. Mass optimization with design variable bounds and with natural frequency constraints  

3. Mass optimization with design variable bounds and with natural frequency, and 

crashworthiness constraints  

4. Unconstrained natural frequency optimization with design variable bounds (reference 2) 

5. Natural frequency optimization with design variable bounds and mass constraints 

6. Natural frequency optimization with design variable bounds with mass, and 

crashworthiness constraints 

The unconstraint mass optimization with variable bounds (formulation 1) is only 

included in the formulation selection as a reference. The mass estimation of the vehicle 

structure with sheet thickness parameters is a trivial problem by itself for two reasons: 1 it is 

computationally cheap to estimate; 2 the optimal solution is intuitive (minimum thickness 

throughout the structure). The formulation is however useful as a reference, because 

provided a maximum computation budget, based on the typical budget of the other 

formulations; it can provide an estimation of the upper bound for the optimization algorithm 

performance.  
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3.2.2. Statistical considerations in optimization performance 

Search methods such as the IP algorithm and SQP generally exploit the search space 

according to deterministic operators such that the ―search path‖ is dependent on the initial 

starting point. A common way to overcome ―optimum‖ solutions restricted to a single local 

optimum is the application of multi-start approaches (repeatedly starting the method from 

another starting point).  

Most meta-heuristic algorithms or nature-inspired optimization algorithms have 

stochastic operators to enforce diversification in order to avoid getting trapped in local 

optima. Examples of such operators are mutation or crossover operators that are applied to 

create new search points/populations based on previous search points subjected to a pseudo-

random change or combination of properties. The progress and history of a search of an 

algorithm with such operators is therefore also dependent on the initial starting points and the 

―seed‖ that was used to generate the pseudo-random state for the stochastic operators.  

The search performance of a single algorithm run, on a particular problem is thus a 

probabilistic quantity since it depends on the starting point(s) and random seed of the 

stochastic operators. Therefore, the performance assessment is made, based on the obtained 

statistics of several repetitions of algorithm runs with different starting points and random 

seeds.  As an example, Figure 3 plots the best feasible objective value during a series of 10 

optimization runs on a meta-model based problem. The objective of the optimization runs is 

weight reduction of body in prime design, constrained with natural bending and torsion 

frequencies, combined with constraints on A-B pillar deformation, and maximum 

acceleration at the tunnel during a frontal crash against a rigid wall (see also the definitions 

of the design criteria ―Mass‖, ―NTF1‖, ―ABP. Def‖, and ―P. Acc‖ in section 2.3). 

 

Figure 3 Best feasible objective history plots for 10 repeated optimization runs for 8 different 

algorithms. 

The diagrams in Figure 3 show the optimization characteristics of the repeated runs of 

the investigated algorithms, on a single optimization problem instance. These diagrams are 

established based on optimization runs with a maximum of 5000 function evaluations. Due 
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to the high computation cost for each design evaluation, optimizations are in industrial 

practice often limited to a single run, with a strictly limited function evaluation budget. 

According to the examples and suggestions in [Dud08, Kno05, Kno09], typical optimization 

budgets for these applications are between 200 and 500 function evaluations.  

Although significant design improvements can even be achieved with such small 

sampling budgets, the result of such optimization runs are restricted to a preliminary ―local 

optima‖ or a ―lucky pick‖, since this is a function evaluation range where the meta-heuristic 

algorithms generally don‘t reach global convergence yet. In this early stage of the 

optimization trajectory also the stochastic aspects can have a dominant influence on the 

resulting optimization performance (see Figure 3 and Figure 4). The distributions of the 

optimization performance are unsymmetrical, thus an algorithm (A) could outperform 

another algorithm (B) on average, whereas the upper 90% performance quantile of algorithm 

A could be worse than that of algorithm B. 

 

Figure 4 Best feasible objective history plots for 25 repeated optimization runs for an 

optimization budget of 500 function evaluations for: left SQP and right the GA algorithms 

The statistical quantities (averages and quantiles) that are used to summarize 

algorithm performance, in the proceeding of this work are based on 100 optimization 

repetitions per investigation. 
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3.3. Optimization efficiency assessment for six optimization 

formulation types 

For each optimization formulation, and each vehicle model the ROI results of the 

optimization algorithms are compared in bar diagrams. In Figure 5 the optimization 

performance results based on the meta-model of vehicle model A for formulations 1, 2 and 3 

are displayed. In Figure 6 the corresponding results are displayed based on the meta-model 

of vehicle model B. 

a b c 

Figure 5 A comparison of relative objective improvement for the selected optimization 

algorithms after 250 and 500 function evaluations, for optimization formulations 1, 2 and 3 on 

vehicle model A. 

a b c 

Figure 6 A comparison of relative objective improvement for the selected optimization 

algorithms after 250 and 500 function evaluations, for optimization formulations 1, 2 and 3 on 

vehicle model B. 

As already mentioned in section 3.2, formulation 1 (unconstrained mass 

minimization) is only included as a reference. None of the selected optimization algorithms 

finds the minimum value (within a 1% tolerance) within the given function evaluation 

budget. The respective ROI-values show how the function evaluation budget limits the 

optimization performance of each of the algorithms for the (trivial) unconstraint problem. 

The differences between ROI-values between figures a and b, b and c indicate how the 

additional constraints affect the optimization performance. As might be expected the results 

show that additional constraints decrease the ROI-values.  

Although the additional constraints affect the efficiency of all algorithms, the IP 

method and SQP algorithms have a large performance decrease when constraints are added. 

Besides decreasing optimization efficiency also the variance and 10% and 90% percentiles 

over the optimization results increase when adding constraints. Comparing the results 

―vertically‖ (5a with 6a, 5b with 6b and 5c with 6c) the results indicate not identical but very 

similar relative optimization performance for corresponding problem formulations on 
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different vehicle models.  

 

In Figure 7 the optimization performance results based on the meta-model of vehicle 

model A for formulations 4, 5 and 6 are displayed. In Figure 8 the corresponding results are 

displayed based on the meta-model of vehicle model B. 

a  b c 

Figure 7 A comparison of relative objective improvement for the selected optimization 

algorithms after 250 and 500 function evaluations, for optimization formulations 4, 5 and 6 on 

vehicle model A. 

a  b c 

Figure 8 A comparison of relative objective improvement for the selected optimization 

algorithms after 250 and 500 function evaluations, for optimization formulations 4, 5 and 6 on 

vehicle model B. 

Comparing the ROI-diagrams in Figure 7 and Figure 8 from left to right, the similar 

observation descriptions as before apply:  

1) The results of the unconstrained frequency optimization (formulation 4) are a 

reasonable upper bound estimate of the expected optimization efficiency. 

2) The efficiency decreases with increasing constraints (formulations 5 and 6).  

3) The optimization efficiency distributions are similar for both vehicle models.  

Comparing the corresponding formulation pairs (1 and 4, 2 and 5, 3 and 6) 

―vertically‖, it can be observed that the optimization efficiency decreases less for the 

frequency response optimization as for the mass response optimization when constraints are 

added.  
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Correlations in optimization performance for similar problems of different vehicle 

models 

An important point of interest (See Q1) is the correlation of the optimization 

algorithm performance between the investigations on vehicle models A and B. In Table 2 an 

overview of the (Pearson) correlation coefficients (CC) and the corresponding p-values (p) is 

given (see [Rod88] for a discussion on different interpretations of the correlation coefficient).  

 

Table 2 Overview of the correlations between the algorithm optimization performance between 

the dataset of vehicle model A, and vehicle model B. 

  250 f. evals 500 f. evals 

formulation CC p CC p 

1 0.995 3.1E-07 0.998 2.1E-08 

2 0.990 2.7E-06 0.981 1.7E-05 

3 0.910 1.7E-03 0.937 6.1E-04 

4 0.938 5.8E-04 0.965 1.1E-04 

5 0.950 2.9E-04 0.972 5.5E-05 

6 0.837 9.5E-03 0.869 5.1E-03 

mean 0.937 2.0E-03 0.954 9.8E-04 

 

The p-value which lies in the domain between 0 and 1 expresses the probability that 

the null hypothesis is true [Fis50]. In this context, the null hypothesis refers to the statement 

that there is no relationship between the two data sets. Thus a low p-value (p<0.01) indicates 

that the relation between the predictor and the validation data is significant, or conversely 

that there is a probability of p that the obtained results are either obtained by random chance 

or that the null hypothesis is true.  

The correlation coefficient is a scale-independent measure, therefore relative 

optimization performance distributions are compared by this measure. The results indicate 

that for all of the optimization formulations (1-6), the correlations are significant. This 

indicates that the meta-model based optimization performance distribution of vehicle model 

are A is strongly correlated to the distribution for vehicle model B. This was the case for the 

ROI at 250 function evaluations (f. evals) as well as for 500. Also the results from the 

corroboration study in section 3.4 with a third vehicle model support the thesis that 

correlations between similar problems on different vehicle models are significant. 

 

Relevance of the optimization algorithm performance  

A point of interest is that for all formulations the mean of the difference between the 

ROI at 250 and 500 function evaluations (             is smaller than the average absolute 

difference (AAD) of the ROI among the different algorithms. Table 3 provides an overview 

of the statistics for the six problem formulations and both vehicle models. The results show 

that the change in ROI by doubling the maximum number of function evaluations from 250 

to 500, has less influence on the ROI than the average absolute difference between the 

performance of a particular optimization algorithm w.r.t. the mean performance of the 

investigated algorithms (the AAD is thus equal to the standard deviation of the ROI-values 

over the different optimization algorithms).  
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Table 3 A comparison of the influence between increasing the number of function evaluations 

and algorithm selection in terms of average change of ROI.  

  Vehicle Model A Vehicle Model B 

formulation                                                     

1 0.08 0.15 0.19 0.08 0.15 0.19 

2 0.05 0.12 0.14 0.03 0.12 0.15 

3 0.05 0.15 0.18 0.06 0.07 0.11 

4 0.06 0.14 0.14 0.08 0.18 0.19 

5 0.08 0.16 0.16 0.09 0.18 0.19 

6 0.08 0.18 0.18 0.09 0.20 0.20 

mean 0.06 0.15 0.16 0.07 0.15 0.17 

 

This implies that improvement of ROI, by performing more function evaluations in 

this range is low compared to the differences between the different algorithms. Thus 

selecting the appropriate optimization algorithms is more effective than applying a 

―randomly‖ chosen optimization algorithm and doubling the computational effort for these 

problems within the investigated computational budget range.  

Table 4 contains a summary of the assessment by listing the best-performing 

optimization algorithms for each of the investigated optimization formulations. The 

summarized results are expressed in ROI-values corresponding to the worst case 90% 

percentiles averaged over vehicles A and B for 250 function evaluations.   

 

Table 4 A summary of the best-performing algorithms per optimization formulation. The results 

are ROI-values corresponding to the worst case 90% quantiles averaged over vehicles A and B 

for 250 function evaluations. 

 

constraints 

objective 

None 

(unconstraint 

optimization) 

mass, feasibility fraction 

60% 

eigenfreq. (1st. 

Nat. Bend, 1st. 

Nat. Tors) 

feasibility fraction 

40% 

crashworthiness 

(A-B Pillar 

deformation, 

tunnel peak 

acceleration) 

feasibility fraction 

60% 

mass (BIP) 

formulation 1     formulation 2 formulation 3 

DE 0.74     DE 0.60 DE 0.52 

SQP 0.59     ALGA 0.50 ALGA 0.34 

PSO 0.56             

eigen- 

frequency 

(BIP) 

formulation 4 formulation 5     formulation 6 

SQP 0.89 SQP 0.83     SQP 0.59 

IP 0.77 IP 0.72     DE 0.57 

DE 0.74 DE 0.63         
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Besides these relative figures, the results presented in the following section also 

provide absolute figures in mass savings and eigenfrequency improvements, which 

additionally emphasize the importance of proper algorithm selection. 

3.4. Result validation 

The presented comparative assessment of optimization algorithm performance was 

based on function evaluations on meta-models representing the simulation responses of two 

vehicle models. A few meta-model based comparative assessment studies for optimization 

algorithms on car body design problems were presented in the literature [Gu13, Kia15]. The 

aim of such assessments is to investigate which algorithms perform well on the problems of 

interest. The meta-models are used to reduce the computational cost that are involved when 

doing a similar study in which each of the function evaluations in the optimization process is 

based on the simulation response. None of the available studies, did however compare the 

meta-model based optimization performance results with, simulation-based performance 

results, for these problem types. In this work, validation7 performance assessments have been 

performed directly on a full vehicle simulation workflow for some of the problem 

formulations (2, 3 and 5). Since the required computation cost on a the simulation workflow 

is orders of magnitude larger than on the meta-models, the validation examples are based on 

5 repetitions per optimization algorithm, and restricted to 250 function evaluations per 

optimization run. Figure 9 and Figure 10 contain the diagrams comparing the results for 

formulations 2 and 5 respectively.  

                                                           
7 Because in this work the investigations are limited to simulations and examples of vehicle models no 
general statements can be proven, the term ―validation‖ should be considered in its proper context. As 
stated in [Ore94] validation does not necessarily denote an establishment of truth, but it establishes 
legitimacy. Similar to the validity of a contract (―A valid contract is one that has not been nullified by 
action or inaction‖) a valid assumption or model is one that has not been nullified by observation or 
logical flaws. In this context additional independent observations (based on numerical simulations) 
can support/validate, refute or cast doubt on a model or assumption. 
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Figure 9 A comparison of the optimization algorithm performance between the meta-model 

based assessment (vehicles A and B) and the validation assessment (vehicle C) for formulation 2  

 

 

Figure 10 A comparison of the optimization algorithm performance between the meta-model 

based assessment (vehicles A and B) and the validation assessment (vehicle C) for formulation 5. 

The optimization algorithm performance in the validation assessment is qualitatively 

similar to the results obtained in the previous assessment. The average ROI-values (of 

vehicle C) are quantitatively not always strictly within the quantile bounds of the original 

assessment, but follow a very similar distribution. The correlation coefficients between the 

averaged ROI vectors (vehicles A and B) and validation ROI vector (vehicle C) are 0.84 

(p=0.0082), and 0.97 (p=0.00006) for formulation 2 and 4 respectively, and thus confirm the 

statistical significance and correlation between the meta-model based assessment, and 

simulation-based assessment results of the independent vehicle model. It should however be 

noted that such significant correlations between the meta-model based optimization 

efficiency, and the validation on the vehicle model simulation-based optimization efficiency 

were only obtained for optimization problems with mass, or eigenfrequency responses 

(formulations 1,2,4 and 5). For the optimization formulation (3) that included the 

crashworthiness response, the statistical test indicated a correlation between the meta-model 
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based benchmark results and the validation examples but the significance was rather 

marginal (CC=0.75 and p>0.05). The results indicate that the meta-model based optimization 

performance results are representative for similar simulation-based comparisons for the 

investigated problem formulations that do not include crashworthiness responses. For the 

investigated problem formulation that included crashworthiness responses the results were of 

marginal significance in this investigation, and a larger study would be required to quantify 

any existing correlation with sufficient statistical significance.  

The cause for the difference in correlation significance between the problem 

formulations with and without crashworthiness, remains unclear at this point. A possible 

explanation could be the difference in local smoothness between the simulation-based 

responses and the meta-model based responses. Although the used amount of construction 

points for the meta-models for the crash responses is unprecedented in the literature, it seems 

that the number of construction points for the interpolation is still insufficient to sufficiently 

model the high degree of nonlinearity that is characteristic for these responses. Further work, 

which quantifies the relation between the correlations and the number of construction points 

for the meta-models could investigate the influence of the local smoothness.  

 

For the validated assessments, dimensionless quantities of comparison (the ROI-

values) were used. In the diagrams in Figure 11 and Figure 12 the assessment results of the 

validation case (vehicle C) are expressed in absolute objective improvements, sorted by their 

optimization efficiency performance. Note that the optimization algorithms are ordered w.r.t. 

increasing efficiency and that this order is different for each of the graphs. 

 

Figure 11 A Comparison of average weight savings for different optimization algorithms 

(problem formulation 2) 
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Figure 12 A Comparison of averaged frequency shift for different optimization algorithms 

(problem formulation 5) 

The comparison, in terms of absolute results, underlines the importance of finding and 

selecting the right optimization algorithm for the right problem. Choosing the best 

performing algorithm, leads on average to more than 50% additional objective improvement 

than, choosing randomly one of these optimization algorithms. The efficiency increase in 

terms of function evaluations is even higher. 
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3.5. Discussion and outlook 

Whereas previous studies only used one vehicle model per comparative assessment 

study, in this work two different vehicle models were used (and a third as a validation 

model). Although two or three vehicle models are too few to make detailed general claims, a 

few trends could be identified. The corroboration with the third vehicle model, confirmed the 

qualitative significance of the assessment. Furthermore, no similar investigations are 

available in the literature with more than a single vehicle model, and sufficient repetitions on 

full vehicle model simulation-based problems to achieve statistically significant results.  

The demonstrated efficiency gains by appropriate optimization algorithm selection, 

enabled by application oriented benchmarking motivates to establish publicly available 

benchmark problems that are representative for industrial problems, and contribute to the 

reproducibility and comparability between optimization performance comparisons such as 

these. Especially for more complex and computationally expensive NVH criteria, similar 

studies can aid to increase the optimization efficiency in industrial applications and thus lead 

to improved design quality.  

The similarities between the results, despite the differences in the vehicle models 

used, indicate robustness of the assessment results. Nevertheless it should be emphasized that 

the assessment results are only relevant for problems that are similar to the benchmark 

problems in terms of: design variables, response types, and vehicle concepts. The algorithms 

that did not perform well in this benchmark could, still be suited for different problem types 

as tested here, or optimizations with a larger function evaluation budget. Further aspects that 

could influence the optimization performance such as problem dimensionality, effective 

dimensionality, degree of nonlinearity should be investigated. The presented comparison was 

made using the (general purpose) settings coded by default in each of the algorithms. The 

influence of the optimization meta-parameter settings on the example problems should be 

further investigated. Also extensions by additional disciplines, load cases and further design 

criteria are industrially relevant.  

Although a selection of 8 different optimization algorithms is compared, a wide 

variety of other optimization algorithms and implementations are available. Not this work 

neither a following work can contain a comparison of all available algorithms. Therefore, the 

presented assessment results can only be considered an initial guideline which could be 

extended and refined by future work.  
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3.6. Summary and conclusions 

Based on a performance comparison of 8 publicly available optimization algorithms, 

a selection is made of recommended algorithms for several different of optimization problem 

formulations. For the meta-model based performance assessment simulation responses of 

two vehicle models were used. The significance of the assessment results was compared with 

a validation example, using optimization studies on a third vehicle model. This comparison is 

the first benchmark study in which more than a single vehicle model is used.  

The results indicated that the correlations between similar optimization problems of 

different vehicle models are significant for the investigated vehicle models (Q1).  

The comparison with the validation example vehicle model indicates that for the 

problem formulations that do not include crashworthiness responses the correlations between 

meta-model based and simulation model based optimization performance are significant. 

While for optimization formulations that included crashworthiness responses, the results 

indicated a lower correlation and marginal significance (Q2).  

In general the results showed that there was a large variety in optimization algorithm 

performance. For each of the algorithm formulations the mean absolute difference in 

performance between a particular algorithm and the mean performance over all algorithms 

was larger than the average increase performance obtained when doubling the function 

evaluation budget from 250 evaluations to 500. Furthermore, the results indicated that the 

algorithm performance was highly dependent on the problem formulation, which emphasized 

the importance of proper algorithm selection for each problem type (Q3). 

Since there is few available literature containing guidelines or comparisons of 

optimization algorithms for full vehicle design optimization involving NVH and 

crashworthiness requirements, even the modest investigations presented here contribute to 

the state of the art. To reach more general conclusions the work could be extended, by using 

additional vehicle models, a larger collection of optimization algorithms, and adding 

additional objective and constraint criteria. The assumed requirements in terms of computer 

resources, software resources, and manpower seemed to have prevented such studies from 

being established and documented in the literature.  

The work presented shows that appropriate optimization algorithm selection can 

contribute significantly to the optimization efficiency and thus the optimization results 

achieved in industrial practice. The author encourage readers dealing with similar problems 

to apply the assessment results as presented here as an initial guideline. If however the reader 

has data available from previous similar problems, it is recommended to create their own 

benchmark problems and tailor them to any particular needs. For readers with different NVH 

related optimization problems, the presented results could motivate to make performance 

assessments for different problem types. 

The following chapter deals with the characterization of simulation responses in order 

to derive representative response test functions, which can be made publicly available to 

increase the reproducibility of benchmark studies. Furthermore such representative response 

test functions can be used for meta-simulation of the optimization process in order to 

increase the optimization efficiency, by selecting and adapting optimization algorithms under 

consideration of available hardware and software (solver licensing) resources. 

 



 

 

 

4. A representative surrogate problem 

approach and its application in a car 

body design context 

“…when you can measure what you are speaking about, and express it in numbers, you 

know something about it; but when you cannot measure it, when you cannot express it in 

numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of 

knowledge, but you have scarcely in your thoughts advanced to the state of science, whatever 

the matter may be." 

-William Thomson (Lord Kelvin) [Tho1883] 

 

4.1. Introduction and motivation 

The use of optimization algorithms to solve structural engineering problems has 

gained much interest in the last decades. As already mentioned in the previous chapters a 

great variety of optimization algorithms has been developed which can be applied to MDO 

problems (see [Ven78, Sbi97, Sim08, Zan10, Rio12] for reviews). But which of these 

algorithms to choose for a particular problem? In general there is no ―magic bullet‖ or 

universal algorithm that is efficient for all problem types [Wol95]. However, particular 

algorithms can perform well on particular problems [Eng96]. The challenge is to identify the 

corresponding efficient algorithms for the problems of interest.  

There are many analytical test functions proposed (compilations can be found in 

[Jon75, Flou99, And08]) which are commonly used to compare optimization algorithms 

[Yao99, Ves04, Bre06, Bao09]. Many of these functions are however criticized for their lack 

of complexity and representativeness for real-world industrially relevant problems [Bar11, 

Die12]. Besides the lack of complexity it is also difficult to relate such test functions to 

engineering and other real-world problems.  

In case, an engineering or structural optimization problem can be expressed as a 

closed form solution, or its numerical solution is not computationally expensive, the 

optimization efficiency is trivial. When non-convex structural optimization problems involve 

computationally expensive function evaluations, the optimizations problem is typically 

several orders of magnitude more expensive as a single function evaluation. In many of such 

industrially relevant problems, the optimization procedure is constrained by a tight function 

evaluation budget, and thus optimization efficiency is important [Kno05, Kno09]. 

Unfortunately it is difficult to determine the performance or optimization algorithm 
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efficiency on such problems. Theoretical analysis is currently still restricted to particular 

very simple problems [Bor04] and, ―empirical‖ performance comparisons by repeated 

numerical experiments are exactly burdensome on such problems because of the involved 

computational cost. Therefore comparative assessments on optimization problems that 

involve computationally expensive function evaluations are rare in the literature. This leads 

to the unsatisfactory situation that problems for which optimization efficiency matters the 

most, are also the problems on which there is only few information available on optimization 

algorithm efficiency.  

The results of the previous chapter indicated that meta-model based comparisons can 

be used for some car body optimization related problems, but that this strategy is not suitable 

for problems which included highly nonlinear crashworthiness responses. Is the only 

alternative then to perform the optimization algorithm comparison on the expensive 

simulation-based problem? In the review paper [Sha10] it was noted that presently research 

trends tend to focus on sampling and modeling techniques themselves and neglect to 

investigate the characteristics of the underlying expensive functions.  

In this chapter a new approach is presented to construct test functions (Representative 

Surrogate Problems) which are based on the characteristics of the simulation responses. An 

extensive analysis of the simulation responses w.r.t. changes in the design variables is made 

in order to identify and quantify typical characteristics and response features. At the hand of 

this response characterization results the test problem formulation is explained, and 

formulated. The results are evaluated using two case studies using an independent validation 

vehicle model. 

This chapter aims to answer the questions:  

 

Q4 What are the characteristics of the simulation responses of the selected design 

criteria w.r.t. changes in the design variables? (Are there any typical response 

characteristics over similar problems involving different vehicle models?) 

 

Q5 How to formulate computationally affordable test problems which are 

representative for simulation-based car body design optimization problems and 

their response characteristics? 

 

The work presented in this chapter contains the following contributions to the state of the art: 

 An extensive simulation response characterization is performed which is 

unprecedented for the application of car body design problems involving 

crashworthiness simulation responses.  

 A novel approach to construct representative surrogate problems based on 

function characteristics is presented.  

These points are of practical and theoretical relevance, because in order to select and 

develop efficient optimization algorithms it would be beneficial to avoid brute force 

comparisons running many repeated optimizations on computationally expensive problems. 

As long as there are no alternatives, comparative assessment can be of practical relevance to 

select efficient algorithms; they are however not intellectually satisfactory, because they 

provide no insight into the problem type or characteristics, and as such the results only have 

value for particular similar problems. The simulation response characterization, is a step 

towards the analysis of optimization problems in a more systematic way. The general aim is 
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that optimization problems of practical and industrial interest can be related to particular 

function characteristics, and that in its turn such function characteristics can be related to 

optimization algorithm performance.  

Presently industrial optimization problems that involve computationally expensive 

simulations are often limited to a subset of members in the optimization community, because 

the simulation-based function evaluations often require particular computer resources, 

software resources (solver licenses) and specialistic modeling competences. Due to these 

burdens, it is still common in the optimization community to use simple test functions even 

though they are often criticized for their simplicity. A methodology to construct test 

problems which are representative for real-world optimization problems, can overcome this 

burden, by providing accessible test functions that can be shared in the optimization 

community. 

Furthermore, the selection of efficient optimization algorithms for such problems is 

not only dependent on the problem type but also on the available function evaluation budget, 

which is related to the available resources and time, that could be different among 

practitioners dealing with similar problems. Parameterized, scalable test problems can 

provide a mean to perform a meta-optimization of the optimization process tailored to the 

specific needs of the problem instance.  

4.2. Description of the RSP approach 

4.2.1. The concept of representative surrogate problems 

In scientific literature, there is much attention for the development of new meta-

heuristics, while there is relatively few attention for the analysis of the problems, and their 

characteristics (see also [Sha10]). The general idea of the presented approach is to construct 

synthetic and computationally affordable test problems based on characteristics of real-world 

complex structural optimization problems. In the proceeding of this work, these synthetic test 

problems will be called Representative Surrogate Problems (RSP). Note that (unlike 

conventional meta-model or surrogate modeling methods) the involved surrogate models and 

responses in this context are not intended to be used as an interpolation or approximation 

model of the targeted simulation responses, rather they aim to serve as a representative 

artificial response landscape with similar typical characteristics as the simulation-based 

response in a statistical sense. A RSP does not fit particular problem data, but is constructed 

to fit or satisfy selected characteristics of a problem type or class. The RSP approach can also 

be regarded as an adaptation and extension of surrogate data generation methods for time 

series such as proposed by Prichard and Theiler [Pri94] for applications with multiple 

correlated multivariate responses. Apart from an oral conference presentation by the author 

[Sal14a], in which preliminary results of this work is discussed, this or similar approaches to 

construct synthetic test problems based on particular real-world problems did not receive 

attention yet in the optimization literature. 
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Representative surrogate functions 

In this thesis, a surrogate function for an individual response is denoted as a 

Representative Surrogate Function (RSF). An RSF is intended as a representative 

relationship between a model response w.r.t. it's design variables. In the general case this 

could also be a parameterized meta-model (e.g. Kriging or RBF based meta-models), in this 

work the author however used a function representation for the RSFs, which is inspired by 

the Sobol-Hoeffding function decomposition ([Hfd48; Sbl90]). 

 

              ∑       
 
    ∑            

    
                               (4.1) 

 

In equation 4.1 multi-index notation is used8. The terms:      and      refer to functions of 

dimension d, which can be decomposed in a series of summands of increasing interaction 

order. The design variable vector is denoted by the symbol  , and it has elements    in the 

normalized domain of the d-dimensional unit hypercube                      . 
The expression      refers to the targeted simulation-based response function, and      is 

refers to the surrogate function. In the scope of this work, the symbol   refers to similarity 

according to criteria to be defined by the modeler (in the example in this chapter, a particular 

set of such criteria will be defined and enforced as constraint expressions). When orthogonal 

summands are chosen, an unique and exact decomposition      exists, but in the case of 

expensive black-box functions, and approximate function decomposition based on a limited 

number of samples, this is of little practical relevance. The aim is to find a parameterized 

truncated series expansion or another computationally affordable expression that can 

represent the characteristic behavior of the individual simulation responses, which is not 

necessarily limited to an approximation of the particular response. Depending on the 

response type, the summands that are part of the decomposition of equation 4.1 (truncated in 

―interaction order‖) could be either represented by simple analytical functions or by series 

expansions over the corresponding variable subset. These ―second‖ series expansions can 

again be truncated in ―resolution‖, according to the data obtained from the response 

characterization. The choice for the truncation, basis functions and resulting 

representativeness, of such an expansion is dependent on the information obtained from the 

response characterization. The characteristic behavior or similarity criteria of the response 

output w.r.t. the design variables could involve for example the degree of nonlinearity, and 

the variance decomposition distribution of first and higher order interactions. The function 

series representation enables parameterized control over such response characteristics, 

whereas in data-fitting based meta-models such as RBF and Kriging surrogates, the response 

characteristics can only be controlled indirectly.  

 

Representative Surrogate Systems 

When more responses are involved in the optimization problems, such as in the case 

of MDO, the solution of the problem is not only dependent on the individual response 

characteristics but also on the relationship and structure between the different responses. A 

                                                           
8  In particular, the expression ∑            

    
        indicates a sum over all function 

decomposition terms with pairs two variables for which the index inequalities:  
        are valid. The right hand side last terms indicate the corresponding 
sums over variable subsets of more than two variables (        ). For each 
interaction order   there are ( 

 
) distinct variable subset combinations.  
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set of RSFs (index r in equation 4.2) combined with defined structure or relation between the 

involved responses is denoted as an RSF-Set or Representative Surrogate System (RSS).  

 

               
  ∑   

     
 
    ∑     

        
    
                  

              (4.2) 

 
Representative Surrogate Problems 

A RSP can be defined by choosing an optimization formulation involving objectives 

and constraints that are depending on RSS responses. An example of a single objective 

optimization problem subjected to nonlinear inequality constraints could be expressed as: 

 

             subject to:            0      (4.3) 

 

Where index w refers to the number of constraints. Once an RSS is established it is 

straight forward to test different optimization formulations on a given set of responses.  

 
RSP construction  

As can be seen, from the previous definitions the most challenging part of the RSP 

approach is to obtain RSFs and an RSS that is representative for the responses of interest. 

The general structure of the approach is: to apply parameter-study and other existing 

sensitivity analysis methods (see section 4.2.2) to identify and quantify characteristics of the 

involved simulation-based responses that are common over a set of problem instances 

(different vehicle models in the application example). These characteristics such as 

nonlinearity types, sensitivity index distributions, and inter-response correlations can be used 

to define a constraint satisfaction problem (CSP) based on the combination of suitable basis 

functions with free parameters, the domain of the parameters and the constraint set that 

enforce the selected function characteristics (see section 4.2.3). Using the solutions of this 

CSP problem as a parameter set for the given basis functions will result in an RSS with a 

selection of similar response characteristics as the simulation-based calibration responses. 

The responses of the resulting RSS can be used to define a synthetic optimization problem.  

The activities to construct an RSP could be summarized by the following steps: 

1. response characterization  

2. construction of the RSFs and the RSS by defining and solving a CSP 

3. combining the optimization formulation with the resulting RSS to define an 

RSP 

4. corroboration of the RSP.  

Since the RSS and RSP are not approximative surrogates, the validation or 

corroboration of them can only be done indirectly by comparing the characteristics, or the 

performance of operators such as optimization algorithms between them, and an independent 

model or optimization problem instance.  

 

Applications and general remarks 

The resulting synthetic problem or RSPs could be used as a test or ―toy function‖ to 

compare, select, tune and develop efficient performing optimization algorithms and 

optimization frameworks for the related class of real-world optimization problems. Once 

established they have a computational cost, orders of magnitude less than the real problem 

instance. In addition, they also improve the accessibility of problem types, which are 
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normally only available to a limited community because simulation-based function 

evaluations often require modeling expertise, solver licenses, and considerable computation 

resources to be used in an optimization. Furthermore such RSPs could be made publicly 

available to serve as standardized benchmark problems, enabling an increased comparability, 

and reproducibility between performance studies on particular type of applications. In this 

chapter a schematic overview of the approach for the example case study on a 

multidisciplinary car body design application is provided. 

Although the function characterization necessary for the formulation of an RSP 

requires much more function evaluations than a typical optimization run of a single problem 

instance in an industrial design environment, the cost of such investigations can be seen as an 

investment that provides an increased insight into the typical response structure for similar 

problem types. The investment to apply the approach could pay off for practitioners that deal 

with many similar optimization problem instances that involve expensive simulators (such as 

vehicle design problems), in particular for those who aim to select or develop specialized 

algorithms for particular complex problem types. In the case where conventional meta-

models are able to represent the response characteristics, they can replace computationally 

expensive ―black-box‖ simulation responses, with computationally affordable ―black-box‖ 

meta-models. Although this can be practical, the additional insight for a systematic analysis 

of the problem is rather limited. For the systematic development of optimization strategies 

for difficult problems, it would be useful to analyze problems by their characteristics. The 

nature of the proposed approach enables the investigation on the influence of different 

response characteristics on the performance of optimization algorithms or strategies. Such 

additional insight could be a further justification for the required investment in the response 

characterization.  

 

4.2.2. Simulation response characterization 

Based on the vehicle models, parameterization, design space and design responses 

described in section 2.3, the selected simulation responses are analyzed w.r.t. changes in the 

design variables. The results presented in this section, are specific for the selected response 

types, design variable types and design space. Different results could be obtained for other 

choices, nevertheless the response characterization applied methods are not specific to any of 

the responses or design variables, and could also be applied to other problem variations or 

even completely different problem types.  

Local one-factor-at-a-time (OFAT) and two-factor-at-a-time (TFAT), parameter 

studies have been performed to investigate and quantify the degree and type of nonlinearity 

of the response functions, as a function of the design variables. For these parameter studies 

one or two variables have been changed in fixed steps over the entire domain9, while all 

other design variables are fixed to their nominal value, hence only first and second-order 

effects are investigated. The term local in this context refers to the fact that these parameter 

studies have only been performed at a single location w.r.t. the other design variables. It has 

to be noted that for other responses or design variable types (such as parameterized ply 

orientation in the case of composite materials), or other design variable ranges the 

                                                           
9 The design variables are normalized to be in the unit hypercube domain and scale the 

nominal part thickness by a scaling factor varying between 0.5 and 2 
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relationship type between the design variables and response could be different. Figure 13 

shows a representative sample of the response characterization with respect to change of a 

single design variable, while keeping the others fixed to the nominal value. In the present 

work a characterization of the responses upon first-order changes of all the design variables 

is performed for vehicle models A and B. 

 

 

 

Figure 13 Overview of different types of nonlinearities in OFAT parameter studies, for four 

different response types, w.r.t the variation of one design variable 

In the scope of this thesis, only a few results are displayed. However, the full set of 

parameter study results indicate very similar nonlinearity characteristics w.r.t. the design 

variables for each response type. The relative importance or amplitude of the first and 

second-order effects varied over the different design variables, but the ―shape‖ of the relation 

between the responses and the design variables identified characteristic types of nonlinearity 

for each response type. The results indicated linear behavior for the vehicle mass response, 

mildly nonlinear behavior for the natural modes, and highly nonlinear behavior of the 

deformation and peak acceleration responses during the crashworthiness load cases.  

To investigate the type of interactions, similar investigations are performed using 

TFAT parameter studies on a subset of the design variables. The subset is defined based on 

the global sensitivity analysis results described later in this section. Figure 14 shows an 

example of the results.  
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Figure 14 Overview of different types of nonlinearities in TFAT parametric studies 

Further analysis is performed to quantify the nonlinearity and variations among 

parameters. For the responses with nonlinear and non-smooth first-order and second-order 

effects, the results are analyzed using one- and two-dimensional spectral wavenumber 

decomposition using the Fast Fourier Transform (FFT). Figure 15 and Figure 16 show 

examples of wavenumber decomposition analysis results for the peak acceleration response, 

of vehicle model A. 

 

Figure 15 Fourier analysis on the OFAT parameter study results of the “P. acc.” response: the 

1D SSAS of low wavenumbers     for all design variables  
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Figure 16 Fourier analysis on the TFAT parameter study results of the “P. acc.” response: the 

normalized single sided amplitude spectrum (SSAS) for 2d wavenumber decomposition 

For all of the investigated design variables and vehicle models the results indicate that 

the low wavenumber ―trends‖ are of predominant importance. Although it is difficult to 

discover common trends in the distribution of individual amplitude contributions per 

wavenumber, the amplitude contribution averaged over all design variable combinations is 

decreasing with increasing wavenumber.  

 

Global sensitivity analysis and variance decomposition 

Using existing global sensitivity analysis (GSA) methods, and variance based variable 

screening methods, the first and second-order variance contributions and/or sensitivity 

indices of the model output with respect to the optimization design variables are estimated 

for the two vehicle models 10 . First-order sensitivity indices are defined as:       
       where                    which represents the variance (VAR) of the expected 

value ( ) of response or model output Y conditioned w.r.t. design variable   . Analogously 

second-order indices can be defined as:              ( |   ) . For an introduction and 

further theory of GSA methods the reader is referred to [Sbl01] and [Slt10]. The used 

implementations for the sensitivity index estimation and variable screening are described in 

[Rat10] and [Pli10]. For GSA of the response model output w.r.t. the model input, 2000 

pseudo-random samples of design variable combinations are used for vehicle model A, and 

1000 for vehicle model B. Figure 17 shows the sensitivity distributions
11

 for the 4 different 

response types of two vehicle models.  

                                                           
10 The design variables and the range of the design variables are as described in section 2.3  

11 The distribution of the first order sensitivity indices    are expressed in terms of √   since this is 

in the opinion of the author more intuitive for visualization (in a similar manner as standard 

deviation can be preferred over variance in particular diagrams).  
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Figure 17 Sensitivity distributions for responses and 2 vehicle models, for vehicle model A (top) 

and B (bottom). The variables are independently sorted in descending order of relevance, within 

each sub-figure 

The resulting estimates of the first-order sensitivity indices show characteristic 

distributions for all of the investigated simulation responses.  For the mass, NTF1 and ―ABP. 

Def.‖ responses, a small fraction of the design variables have a high contribution to the total 

response variance. Similar results are obtained for both investigated vehicle models (A and 

B). It should be noted that in Figure 17 the variables are sorted in descending order of 

relevance according to variance contributions. The ordering for the different response types 

is however different, such that variables important for one response are not necessarily 

important for another response. This is visualized in Figure 18, where for each vehicle model 

a unique ordering according to the mass response is used. The relation of the variable 

importance between the different simulation responses is further dealt with in section 4.3.  

 

Figure 18 First-order sensitivities sorted by mass influence, for vehicle model A (top) and B 

(bottom) 
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A natural property of the sensitivity indices or Sobol indices resulting from a GSA is 

that the variance contributions should sum up to unity. Combining the explained variance of 

a linear regression model together with the previously mentioned sensitivity analysis 

methods for the estimation of first and second-order sensitivity indices, an overall estimation 

of the variance decomposition can be obtained for each of the simulation responses (Figure 

19).  

 

a b 

Figure 19 Variance decomposition per response for: a: vehicle model A; b: vehicle model B 

Simulation response correlations 

Previous sections dealt with the analysis of the individual simulation responses with 

respect to the design variables. In this section, a basic analysis of the structure between the 

different simulation responses of the system is presented. The structure between the different 

simulation responses and between the sensitivity distributions of the responses is investigated 

using the normalized covariance (correlation coefficients) (see equation 4.10).   

 

a b 

Figure 20 Linear correlation coefficients between the simulation responses for: a: vehicle model 

A; and b vehicle model B 

 

Figure 20 shows the matrix of normalized covariances (also called correlation coefficients [Rod88]) 

between the simulation responses, based on quasi-random sampled design variable values for each of 

the vehicle models (A and B). Besides correlations among the design responses also the correlations 

between the linear first-order effects of the different simulation responses are assessed. 
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a b 

Figure 21 Linear correlation coefficients between linear first-order effect distributions of 

different simulation responses for: a: vehicle model A; b: vehicle model B 

As an example Figure 21 shows the correlation coefficient matrix between the 

distributions of the linear first-order sensitivity index estimates (based on linear regression 

models) for each of the simulation responses.  

 
Discussion and summary of the response characterization 

No general validity can be claimed by investigating only two (or three) vehicle 

models with these approximate response characterization techniques. Nonetheless comparing 

the results between the two vehicle models, common trends, and a band of mutual 

differences between the investigated response characteristics can be qualitatively estimated. 

Although, for other applications and response types, possibly more problem instances and 

other characterization techniques might be required for a useful estimate, the applied 

characterization methods are by no means specific to the presented application, and could be 

used to investigate other response types.  

The response characterization performed here, required a large investment in terms of 

computational effort. This investment could however be worthwhile if a significant increase 

in optimization efficiency for other instances of related problems can be obtained with the 

RSP approach. The computational investment for this particular example is done in scope of 

a proof of concept. The main goals of this section were however to show the application of 

different analysis techniques that can be used for the response characterization, and to 

provide an overview of similarities and differences in response characteristics of different 

simulation model instances of similar type. 
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4.2.3. Construction of representative surrogate problems for selected 

responses in vehicle design optimization  

In this section an example implementation of the RSP approach is presented. As 

stated in the general description of the approach, the aim of an RSP is to mimic selected 

function characteristics of the simulation-based vehicle model responses of interest in a 

statistical sense, and not to approximate a particular response or dataset such as is the usual 

context of meta-models or surrogate models. Figure 22 displays a schematic workflow of the 

steps used to construct the RSP in this application example.  

 

The results of the simulation response characterization gave an indication of common 

features and differences between the corresponding simulation responses of the different 

vehicle models. For this example the selected characteristics for a single response are:  

 The type or ―shape‖ of the response nonlinearity w.r.t. the design variables  

 The distribution of the first and second-order sensitivity indices w.r.t. the design 

variables 

 The distribution of the total variance contribution of the first, second and higher 

order effects  

The selected characteristics of the different responses are:  

 The correlation coefficients (or normalized covariance) of the responses 

 The correlation coefficients of the first-order sensitivity indices between the 

responses 
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Figure 22 Schematic flow diagram for the construction of the RSP for the car body design 

application case study 
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For this example an RSF formulation for each response type (index r), composed of a 

series expansion truncated to include interaction effects up to the second-order followed by a 

combined higher order is used to represent the behavior of the characteristic responses. 

 

      ∑   
     

 
    ∑     

        
    
                

                (4.4) 

 

Superscript   is the index over the different types of outputs or pseudo responses (in 

this example: 1 Mass, 2 NTF1, 3 ―ABP. Def.‖, 4 ―P acc.‖). All operations considered are 

invariant to addition with a constant, which is therefore omitted at this stage. For each of the 

responses the choices for the summands of the representing basis functions, and the 

parameter bounds are summarized in Table 5. Each of the basis function summands has free 

parameters which are the variables for the constructed CSP. For the RSS with the general set 

of free parameters    the following notation is used:          , whereas the notation       

for the same RSS with a parameter set which satisfies all similarity criteria enforced by the 

constraints and simple bounds. The general set of parameter bounds is expressed as     
  

 
  
      

 . The particular free parameters for each summand in the RSF of each response 

type are listed in column 5 of table 2.  

The general set of constraints on the CSP that relate to the separate RSFs is expressed 

as:  

 

   
 (   ( 

 
    ))            (4.5) 

 

And the general set of constraints working on the combined set of RSFs is expressed as: 

 

   (   ( 
 
    ))             (4.6) 

 

The CSP problem can be relaxed by defining tolerances for each of the constraints, or 

by using lower and upper bounds for the quantities of interest, in the presented example 

lower and upper bounds are used instead of tolerances, this is however at the cost of doubling 

the number of constraints in the CSP. These nonlinear constraint functions will be defined 

later in this section. 

 

Selection of the basis functions 

As mentioned in section 4.2.1 the choice for basis functions and the series truncation 

is dependent on the respective response characterization results. For the provided example 

the choice for the basis function types is based on the local OFAT and TFAT parameter 

studies on a subset of the design variables. To represent the ―Mass‖ and ―NTF1‖ responses 

w.r.t. the design variables (see Figure 13, Figure 14), linear basis functions and a subset of 

quadratic polynomials are selected respectively, because these functions match the ―shape-

characteristics‖ observed in the response analysis. For these response types second and 

higher order interaction terms are omitted, since nearly all the variance of the responses can 

be explained without these (see also Figure 19). Based on the parameter study results (see for 

example Figure 13, 14, 15, and 16) a composition of linear functions and harmonic series 

(expressed as complex exponentials in Table 5) was selected by the author, to represent the 

first and second-order characteristic nonlinear relation between the design variables and the 
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―ABP. Def‖ and ―P. acc‖ simulation responses. The parameter bounds were chosen to 

roughly match the observed range of function behavior in the OFAT parameter studies.  

An analysis of higher than second-order effects of the simulation responses requires a 

high amount of function evaluations and was computationally infeasible to the author. The 

performed response characterization could however provide an indication of the total 

magnitude of the variance contribution of unexplained third and higher order effects (see 

Figure 19). Based on the unsmooth behavior observed in the local sensitivity analysis, the 

assumption is made that, these higher order effects can be represented by a single non-

smooth field with higher order interactions. To represent such a non-smooth field, functions 

that generate reproducible isotropic uniform distributed noise are used. These functions 

denoted by operator               serve as a multivariate random map to pseudo-

random but reproducible values in interval  , where    is a uniform distribution in the open 

interval       . The magnitude of this uniform noise field is scaled by a factor   which is 

chosen such that variance contribution of this term matches the ―explained‖ variance by 

higher order terms in the response characterization (in the example         and    
                       ) 

 

Table 5 Overview on the summands for the RSFs 
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type 
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int. representing summand formulation function/parameter constraints 
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The Fourier series coefficients of the RSFs for responses 3 and 4 (referred to by the 

symbol   with the corresponding sub- and superscripts) are not part of the set of free 

parameters of the CSP. For the one-dimensional case for each dimension   the complex 

Fourier series coefficients    
  with index    over the frequencies are of similar 

structure     
     

     
to the coefficients of a reference set    

     
. The coefficients of the 

reference set can be obtained by performing the discrete Fourier transform on gridded data 

points on the design variables after subtracting the linear trend (such as done in section 4). 

For the presented case study ―similar‖ Fourier coefficient structures are obtained using the 

Iterative Adjusted Amplitude Fourier Transform (IAAFT) algorithm described by Schreiber 

and Schmitz [Srb96] and implemented by [Vnm03]. The IAAFT method (denoted by 

operator  ) can generate various discrete series or fields (depending on the random seed ―z‖ 
that have the same amplitude distribution and autocorrelations, as the provided input data 

(the various calibration fields), up to a specified tolerance ― ‖ (in the example 0.005). 

 

   
           

     
            (4.7) 

 

The resulting series and fields, are later scaled by the factors   
  which are part of the 

variables set of the CSP. In this context the selected similarity criteria are: amplitude 

distribution and autocorrelation.  

For the responses with considerable nonlinear second-order interactions ( responses 3 

and 4), the correlation coefficient between the inner product of the first-order sensitivity 

indices, and the second-order sensitivity index estimate is high and significant for the 

calibration vehicle models. This indicates that for the application example the variables with 

high first-order effects are also the variables involved in the most important second-order 

interactions in terms of variance contribution. In order to reduce the number of free variables 

in the CSP the relative second-order sensitivity index distribution controlled by variable    
  

(see also table 2) is defined such that it is dependent on the first-order sensitivity distribution 

as:    
    

     
  where   denotes the inner vector product. The amplitudes of the 

resulting nonlinear fields are scaled by variable   which is constrained such that the total 

variance contribution of the fields corresponds to the second-order contributions estimated in 

the response characterization (see Figure 19). 

Besides the selection of the basic functions and parameter bounds, also function and 

additional parameter constraints are defined to enforce response characteristics.  

 
RSF constraints  

The choice for the targeted sensitivity index distributions is made using the global sensitivity 

results as presented in section 4.2.2. The sensitivity indices were sorted in descending order, 

for each response obtained (according to the function characterization  results), such that, a 

fit for the sensitivity index distribution could be made. The distributions of all of the 

responses in this case study could be approximately described by a two-term exponential fit 

model (See also Figure 17). The related function constraints are defined as upper (  
    

) and 

lower bounds (  
    

) on the ordered set first-order sensitivity indices. The set of upper and 

lower bounds is based on the fit model on the sorted set of sensitivity indices from the 

calibration models.  This can be expressed for the general case as:  
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 (   ( 

 
    ))= 

  
    

    
  for q=1:d and j=d and 

   
 (   ( 

 
    ))=  

    
  

  
   for q=d+1:2d and j=q-d    (4.8) 

 

Where   
  contains the first order sensitivity index estimates   

  for each response r in 

descending order over index i using the sorting transformation   
 =    

  . The sensitivity 

indices for each RSF   
   (    

 
      ) are estimated using the method described in 

[Pli10]denoted by operator   based on a set of pseudo-random samples      
 

RSS constraints  

Following the described approach up to this point for each of the design responses (mass, 

frequency, deformation, peak acceleration) would lead to function formulations that could be 

representative for each simulation responses individually, but would not take into account the 

coupling structure between the responses. In the applied approach, the coupling between the 

responses is accounted for by applying constraints on the correlations between the function 

responses, and the correlations between the sensitivity distributions for each of the responses.  

For a set of w design evaluation vectors the matrix of results (Y) for each design is 

defined as:  

 

                  (4.9) 

 

The normalized covariance or correlation coefficients between the column vectors of the 

responses are given by: 

 

   
                    (4.10) 

 

Where     is the operator that results in the correlation coefficient between two vectors 

defined as: 

 

         
        

                           (4.11) 

 

The similarity of the obtained correlation coefficient matrices of the test function can be 

defined by choosing lower     
    

  and upper bounds     
    

  for each of the upper diagonal 

matrix entries. The upper and lower bounds are based on the values obtained in the response 

characterization of the calibration models.  

 

   (   ( 
 
     ))     

     
     for t=1:(N-1), v=(t+1):N & h=t+N(v-1)-v(v-1)/2 

 

   (   ( 
 
     ))     

        
 

 for t=1:(N-1), v=(t+1):N & h= t+N(v-1)-v(v-1)/2+N(N-1)/2       (4.12) 

 
Where N is the number of responses (4 in this example). A similar approach is used for the 

correlation between the first-order sensitivity indices   
  for all response combinations. 

 

   
       

    
          (4.13) 
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Also here lower and upper bounds for the correlation coefficients are defined based on the 

results of the response characterization of the calibration models. The corresponding 

constraints are defined as:  

 

   (   ( 
 
     ))     

      
    

 for t=1:(N-1), v=(t+1):N & h=t+N(v-1)-v(v-1)/2 + N(N-1) 

   (   ( 
 
     ))     

    
    

  
 for t=1:(N-1), v=(t+1):N & h= t+N(v-1)-v(v-1)/2+3N(N-1)/2    (4.14) 

 

These function and problem constraints are selected to achieve representativeness of the 

surrogate problem to the calibration problems. The selection of the function formulation for 

each of the responses, and the corresponding free parameters, combined with the parameter 

constraints, function constraints, sensitivity index constraints, and correlation constraints 

define a CSP.  

 
CSP solution 

The general notation used previously for the set of parameterized basis functions to represent 

the responses can now be linked to the corresponding parameter values:  

 

   ( 
 
    )        

    
    

    
    

       
    

           (4.15) 

 
This expression represents the concatenation of all free parameters of the RSS (in the 

example   
    

    
    

    
       

    
    , see also Table 5) , into a single parameter structure 

 
 
 . At this stage the RSS is thus represented by the function    ( 

 
    ) with free function 

parameters  
 
 , and the design variables  . At this point the total number of elements in  

 
 is 

still dependent and parameterized, w.r.t. to the number of design variables d wich determines 

the size of the function parameters with index i. Once the dimensionality of the target 

problem is set, the size of   
 
 is fixed, and it can be treated as an ordinary vector variable. For 

the case studies that will be presented in section 4.3 and 4.4, the number of design variables 

was set to 50. The selection of appropriate values for the elements of   
 
  wich contains all 

free function variables, can be done by means of solving the following CSP problem: 

 Variables: structure  
 
  with all free parameter values as its elements denoted as   

  

 Domain:     
   

  
      

  

 Constraints:     
 (   ( 

 
    ))    and    (   ( 

 
    ))     

where     
 and     

  are the collections of lower and upper bounds for each of the 

corresponding free function parameters respectively (see also column 5 of table 5). Besides 

the parameter bounds also the constraints from equations 4.12 and 4.14 are applied in the 

formulation of the CSP in order to enforce the selected similarity criteria. For the example 

application with relatively few problem instances in the training set, the upper and lower 

bounds for the constraints are based on a simple ―averaging approach‖, where the minimum 

and maximum values from the calibration model characterization results are set as the lower 

and upper bounds of the respective constraint values. The total number of constraints K for 



98 Chapter 4 

 

the CSP criteria in this example scales with d according to K=2Nd+2N(N-1) where N is the 

number of responses.  

In the previous CSP formulation, each of the constraint equations of the CSP is still 

dependent on  . To obtain a computable solution, the realizations of   in its domain, are 

approximated in this example, by using fixed set of     pseudo-random samples    in the 

domain of the design variables (the unit hyper cube). Using a fixed set   , the constraint 

equations can be treated as a function of the free function parameters  
 
  only. The validity of 

this approximation can be assessed by a posteriori analysis of the constraint violations with 

another large set of pseudo-random samples for       
Solutions to the formulated flexible CSP problem could be obtained using various methods. 

For the presented example a standard Interior point method that handles nonlinear constraints 

(MATLAB 2013a fmincon) is used, with the full set of constraints as separate nonlinear 

constraints. An auxiliary objective function defined as: 

 

 ( 
 
 )  ∑  (   

   
 
  )  ∑  (   ( 

 
 ))       (4.16) 

 
where operator      is an indicator function defined as:  

 

     {
        
        

       (4.17)  

 
Combining this auxiliary objective function, the parameter bounds and constraint sets from 

equations 4.8, 4.12 and 4.14 the CSP can be solved. For the example this is done using 

successive optimization runs with decreasing constraint violation tolerances ranging from 1 

at the start, to 1E-6 in the final run. For the successive optimizations, the final value of the 

previous run is used as the initial value of the next optimization. Each feasible solution  ̌
 
  to 

the CSP represents a parameter set, which when combined with the basis functions forms a 

response set with representative characteristics with respect to the selected criteria. 

Up to this point the constraints are all based on relative measures (sensitivity indices, 

and correlation coefficients, which are invariant with respect to addition of constants and 

scaling by multiplication). The absolute range of the response of the surrogate functions can 

be controlled by applying the corresponding offset    and scaling factors    to the resulting 

RSS from the CSP solution.  

 

     =          ( ̌
 
     )      (4.18) 

 
Optimization algorithms are however typically programmed to be scale-independent, 

therefore this last step is not necessary to obtain results, and the results are not affected by 

the choice of the offset and scaling factors.  
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4.3. Application 1- a car body design case study: optimization 

efficiency assessment 

A first application example of the RSP approach was its use in benchmarking 

optimization performance for particular problem types. The performance of several 

optimization algorithms was estimated on two RSP formulations, after which the results were 

compared with performance results based on simulation workflow based problems. The two 

different optimization problem formulations for the comparisons are: 

 Objective: Minimization of the vehicle mass, subjected to crashworthiness 

constraints (max peak acceleration at the tunnel, and A-B-pillar 

deformation). 

 Objective: Maximize 1st natural torsion frequency, subjected to mass 

constraints.  

Both RSPs are based on a single RSS (obtained as described in section 5), and the 

results are compared with the optimization performances on the corresponding problem 

formulations of a full vehicle simulation workflow (vehicle model C) which was not part of 

the original calibration data set. The number of design variables RSS was set to 50 according 

to the targeted validation vehicle model. The comparison for the optimization efficiency is 

made for the following algorithms (see also chapter 2):  

1. Interior point (IP) algorithm 

2. Sequential quadratic programming (SQP) 

3. Genetic algorithm (GA) 

4. Non-dominated Sorting Genetic Algorithm, (NSGA2) 

5. Differential Evolution (DE) 

6. Particle Swarm Optimization (PSO) 

7. Simulated Annealing (SA) 

8. Fire Fly Algorithm (FFA) 

For further information on the methods and implementations is referred to the 

corresponding references in section 2.5.  Algorithms 3, 5, 6, 7 and 8 are meta-heuristic 

search algorithms which are commonly used for problem types involving non-convex 

nonlinear responses, whereas the IP and SQP algorithms are typically used for nonlinear 

convex problems, and NSGA2 is a multi-objective optimization algorithm. Although the 

application of NSGA2 is unconventional for single objective problems, preliminary 

investigations showed reasonable performances for the type problems of interest. Since 

optimization formulation 2 does not include the highly nonlinear crashworthiness responses, 

also algorithms 1 and 2 were included in the comparison.  

For each formulation, the optimization algorithm repeatedly runs  on the same 

optimization problem with default optimization algorithm parameters, except for the random 

seed, and or initial population, such that performance statistics can be obtained. To compare 

the optimization efficiency for each problem, the results can be expressed in terms of 

Relative Objective Improvement (ROI, See equation 3.1). 

Figure 23 shows the performance expressed in averaged relative objective 

improvement for optimization runs up to 250 function evaluations per optimization run, 100 

repetitions per optimization for the corresponding RSP, and 20 repetitions per optimization 
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on the independent full vehicle C simulation model. A higher number of repetitions would 

allow more accurate estimates, especially of the distribution or percentiles but, this was 

unfeasible due to the involved computational cost. Also, the total number of function 

evaluations per optimization run is limited to 250, due to the high computational cost for the 

validation runs. As indicated in [Dud08] it is however common in an industrial environment 

to apriori limit the number of function evaluations to a number too small to reach 

convergence, a true optimization up to convergence is rather exceptional when dealing with 

problems that involve computationally expensive simulations (see also [Kno05] and 

[Kno09]).  

a 

 

 

b 

Figure 23 Comparison of average optimization efficiency for 8 optimization algorithms on 2 

different optimization problem formulations, a: formulation 1; b: formulation 2  

The results in Figure 23 show a similar trend in relative algorithm performances 

between the optimizations run on the RSP and the optimization runs on the simulation 
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workflow of vehicle model C. The error bars are estimates of the 20% and 80% percentiles. 

The similarity between the performance prediction and results can be quantified by the 

correlation coefficients R and the corresponding significance by the p-values between the 

vectors of optimization algorithm performance results obtained with the RSP and simulation 

workflow, which are R=0.910, p=0.0012 and R=0.964, p=0.0001 respectively. Thus it can be 

concluded that in this corroboration example, the RSP approach offers a statistically 

significant prediction of the optimization efficiency of the tested algorithms applied to both 

problem formulations using the independent corroboration vehicle model. Application of the 

RSP approach to benchmark the algorithms and selecting the most efficient algorithms leads 

to optimization efficiency increases of 32% and 16% in terms of ROI for the respective 

optimization formulations (1 and 2) with respect to ―the average‖ performance over the 

investigated algorithms. The computation cost of such a benchmark study without the RSP 

approach, comparing 8 algorithms, 100 algorithm run repetitions, of 250 function 

evaluations, each requiring about 1 CPU hour (if a computationally cheap model is used) 

would require       CPU hours. Whereas the RSP approach for the same study would take 

about 5 CPU hours
12

 (including optimization algorithm overhead), thus saving several orders 

of magnitude in computation time. Even including the total function evaluation cost for the 

formulation of the RSP requiring about         function evaluations, and a total of about 

        CPU hours, the application of the RSP approach would already be worthwhile the 

computational investment, if a benchmark study was to be made. To justify the 

computational effort and endeavor of such a comparison, the computation cost of the 

comparison or RSP calibration (using reduced resolution simulation models) should be 

compared against the cost the industrial size problem which can be about       CPU hours 

for a single optimization run. For the investigated examples the difference in efficiency 

between the algorithms in terms of CPU time is larger than the difference in terms of ROI. If 

CPU time savings in the order of 20% can be made by selecting a suitable optimization 

algorithm, the investment of the comparison pays off after about 5 industrial scale 

optimizations problems. For this particular example in the field of automotive engineering 

the increase in efficiency can however also translate in the improved mechanical 

performance due to the tight time constraints between design freezes in the vehicle 

development process. 

Although the corroboration shows a significant correlation between the relative 

performances, such a resemblance cannot be guaranteed for any arbitrary vehicle. 

Nevertheless, it seems reasonable to assume that the results can be relevant for vehicle 

models with a similar structural concept, optimization parameters, and response criteria as 

the two calibration vehicle models and the third vehicle model used for the proof of concept. 

Furthermore, a single RSS can be used to construct several RSPs for different optimization 

formulations, and thus provides information and flexibility beyond single benchmark 

comparison results. For application-oriented practitioners the RSS and the derived RSP 

approach can answer more detailed questions than published benchmarks, whereas for the 

community interested in optimization method development and comparisons, several 

                                                           
12 CPU time for a RSP function evaluation is about 2.5E-2 [s] for the four responses in 

the example, using a MATLAB 2013a implementation on a Dell T3500 workstation 
with an Intel Xeon X5650 processor and 12 GB of DDR3 RAM. The runtime of the 
optimizations using the RSP is dominated by the overhead of the optimization 
algorithm and optimization history saving.  
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standardized problems can be defined, and made available in order to provide access to 

reproducible representative surrogate problems of problem types which would be otherwise 

difficult to assess.  

 

4.4. Application 2 a car body design case study: meta-optimization of 

the car body design optimization process 

A further example application of the RSP approach regards the tuning of the 

parameters of an optimization algorithm to increase the optimization efficiency for problem 

types of interest. An optimization of the optimization parameters (or meta-optimization) is 

performed for the DE algorithm on an RSP. In the inner loop of the optimization, DE 

optimization runs with a maximum of 200 iterations are performed on the RSP. The 

objective in the inner loop is the minimization of the RSP mass response, with nonlinear 

constraints on the first natural mode and test function peak acceleration of the RSS. The 

design variables for the outer optimization are the optimization algorithm meta-parameters of 

the inner optimization (3 DE parameters: population size   ), crossover probability    , and 

step size    ). In the outer loop (for each parameter-setting-vector -evaluation) a set of 50 

inner loop optimization run repetitions is executed on the RSP: The 80% percentile of the 

minimum feasible pseudo-mass determined after 200 function evaluations is set as the 

objective for the outer optimization. In the outer optimization loop a GA algorithm is used 

(with default settings) for 500 iterations to minimize objective thus finding statistically 

efficient performing optimization parameters for the inner optimization. A total of       

function evaluations on the RSP are performed for this case study.  

The increase in optimization efficiency due the optimization meta-parameter tuning 

based on the RSP approach can be visualized by comparing the difference in optimization 

efficiency between the DE algorithm with ―default‖ settings ( =30,       and        

and ―optimized‖ ( =10,        and         settings. Figure 24 shows the plots of the 

best feasible objective history for standard parameter settings, and optimized parameter 

settings, on both the RSP and the full vehicle simulation workflow based optimization 

problem during respectively 50 and 15 optimization runs. The error bars indicate the 20% 

and 80% percentiles. 
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a 

 

 

b 

Figure 24 Comparison of best feasible objective history for standard and optimized optimization 

parameter settings for: a: the RSP; b: the validation vehicle model C 

For both the RSP as well as for the full vehicle simulation workflow based problems 

the optimization performance is significantly improved by the tuning of the optimization 

meta-parameters. Since the full vehicle optimization problem (vehicle model C) was not part 

of the calibration set for the RSP, these results confirm the usefulness of the RSP approach 

for this problem type. In the corroboration example the RSP approach based parameter 

tuning leads on average to additional performance gains of about 4% in terms of normalized 

BIP mass, for the fixed function evaluation budget.  

Since optimizations of the full vehicle simulation workflow are orders of magnitude 

more computationally expensive than on the test functions, the number of repeated 

optimization runs on the vehicle simulation workflow is limited to 12 and hence, the 

resulting statistics are estimates only. The results have a significant common trend regarding 
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the means, but the percentile statistics between optimization on the RSP and real problem are 

not quantitatively identical. Surprisingly the performance of the optimized settings is even 

better on the real problem than predicted. Although further refinements of the approach 

could possibly increase the general accuracy of the efficiency predictions, this accuracy is at 

the same time also capped by the nature of the approach. A surrogate problem representative 

for a class of problems inherently has variability in efficiency prediction accuracy similar to 

the efficiency variation within the class of problems targeted. If additional information on the 

specific target problem is available prior to the simulation run, such data could be augmented 

to the RSP for increased performance estimation accuracy.  

4.5. Discussion and outlook 

The interpretation of performance assessment results based on the RSP approach is 

straightforward, if for a particular problem type the optimization performance on different 

instances is sufficiently similar. This was the case in the presented examples, but for other 

applications or other problem types, this may be different. In a more general context, for a 

particular problem, investigations on different problem instances could possibly result in 

very different optimization algorithm performances. For such cases it would be of interest to 

investigate further, which problem feature causes such differences. Currently many 

engineering problems are described and classified by engineering features (such as vehicle 

model, simulation type, load case, design variable type). To tackle the challenge in finding 

and developing efficient optimization strategies for such problems, a systematic analysis and 

classification of the problem types and optimization algorithm operators is required. This 

work presented a new approach in that direction, from an engineering perspective, but many 

challenges remain, and further work is required. In the author‘s opinion it would be good to 

shift a part of the focus for further research from the development of new optimization 

algorithms, towards problem analysis and characterization. Since theoretic analysis of 

complex problems is presently still unfeasible, also systematic empirical studies on the 

influence of various problem features could contribute. In the next chapter a method towards 

such analysis is presented.  

The comparative studies on optimization efficiency presented in this and the previous 

chapter are unprecedented in the literature in terms of tested algorithms, and number of 

simulation-based function evaluations for problems involving crashworthiness of full vehicle 

models. Although the results can be of practical significance, the main message of the 

presented results is not that algorithm A is ―X‖ percent better than algorithms B, C and D, 

but that such relative optimization performances for this particular type and problem 

formulation can be estimated with significant accuracy using the RSP approach, based on 

calibration data from similar problem types. The particular benchmark results should be 

relativized by the fact that many different implementations and variations of the compared 

optimization algorithms exist, which could perform different as the implementations used. 

Besides that the response characterization of computational expensive problems leads to 

more insight of the problem structure, The main message should be that RSP-based 

performance benchmarks were useful for the selection of and tuning of optimization 

algorithms, to increase the efficiency for the investigated car body design problems, and the 

presented ideas could possibly also be of use for other computationally expensive 

simulation-based optimization problems.  

The author furthermore would like to highlight: that suitable parameterized 

benchmark problems are of greater general value than published benchmark results. This is 
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underlined by the fact that the optimization efficiency of algorithms on particular 

multidisciplinary problem instances can be dependent on problem and formulation properties 

such as the number of design variables, number and type of design responses, the choice for 

the objective and constraints, constraint limits (feasibility fraction), and the available 

function evaluation budget. Flexible parameterized benchmark problems, such as those 

constructed with the RSP approach, could be useful for the ―practitioner‖ audience since the 

RSP problem instance parameters can be adapted to resemble the particular problem of 

interest. For the ―developer‖ audience standardized RSP instances could be defined for 

industrially relevant problems, in order to make complex problem types (in terms of 

simulation expertise, hardware and software resources) easily accessible.  

Likewise as many other works in the literature dealing with vehicle optimization, the 

presented study deals only with a subset of all relevant vehicle design objectives and criteria. 

It should be noted that to design a car suitable for production, more crash scenarios, NVH 

criteria, as well as structural requirements from other disciplines such as drive dynamics, and 

structural durability should be considered.  

The vehicle models used for the response characterization are of lower mesh 

resolution than typical industrial models. Although lower mesh resolution models have a 

much lower accuracy to represent the response of a particular vehicle model, it is assumed 

that the most general crashworthiness response features can be represented by the models. 

The vehicle models used for the characterization for the RSP calibration differed in mesh 

resolution in about an order of magnitude while still significantly consistent response 

characteristics could be identified, this observation supports the previous assumption and 

emphasizes the robustness of the approach.  

The ―unsmooth‖ parameter study results obtained from the crashworthiness 

simulations could have a stochastic nature. Small design variable perturbations can trigger 

such chaotic dynamic response behavior. Further investigations on the application of 

deterministic chaos related analysis techniques to the application of crashworthiness 

problems could be of interest for future studies(surprisingly no such studies were found in 

the literature yet).. Depending on the crash simulation solver settings even non-unique 

solutions can be obtained for the same crash event, only by using another CPU configuration 

during the numerical solution such as also indicated by [Blu01] and [Dud08]. Such 

sensitivities to small configuration changes, are not merely simulation artifacts, also in 

physical testing reproducibility is an issue. Indeed for this application type further work is 

necessary to representatively take into account aspects regarding the robustness of the 

design. Investigations on the application of the RSP approach to compare different Robust 

Design Optimization (RDO) strategies (such as e.g. in [Yng04]) are therefore of interest.  

In the presented example case studies the application of the RSP approach is 

calibrated and corroborated using similar problems (similar in terms of response types, 

design variable types, design variable range and optimization formulation), on different 

vehicle models. For other design variables, design criteria, or other applications, the 

relationship between the design variables and responses might be different, and other basis 

functions might be more suitable. Investigations on the application of the RSP approach on 

other design variables (such as implicit shape optimization [Dud13]), load-cases and design 

criteria [Crn02, Cra03, Lng05] are of interest for further research. Although the approach is 

developed for the presented vehicle design application, the general idea of the approach, the 

presented response characterization techniques, and the concepts to construct and solve a 

CSP to incorporate response characteristics for an RSP are however not limited to this 
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particular problem type, and could of interest to be applied and tested on a wider range of 

problems and applications. 

For a true generalization there remain however still open issues. The approach is 

developed based on empirical investigations, further supporting theory on which response 

characteristics affect the representativeness of surrogates on the performance of optimization 

algorithms would have to be developed. Although the application example is rather complex, 

the approach should be tested on other problem types, to investigate the limitations and 

applicability in a more general scope. The involved response characterization requires many 

function evaluations and can be of considerable computation cost, but the results could 

provide valuable insights. If the response characteristics can be represented by meta-models 

with sufficient accuracy, the approach could be applied indirectly by means of meta-models. 

Its additional value would be the characterization of the meta-models responses. Other future 

work regarding the development of the approach could involve an extension to accurately 

represent the shape, type and distribution of the Pareto-fronts between different responses, 

for RSP problems targeting multi-objective optimization problems. Due to the background of 

the author, this text is written and formulated with an ―engineering‖ mindset. The author 

would like to invite practitioners and researchers from other fields to test, develop, generalize 

or criticize the approach, and in particularly to establish a more theoretical basis in addition 

to empirical experience on which it is leaning in its present form.  

Further investigations on the RSP approach in the context of vehicle design problems 

could be: to extend or modify the approach to deal with problems with more different design 

variable types, and to widen the considered design response types and load cases.  

As a general outlook on the applications of the RSP approach for the optimization of 

systems with expensive simulators, future work can involve investigations of additional 

aspects or response characteristics that influence the optimization efficiency. A first point of 

interest for future investigations is the comparison of different distributed optimization 

frameworks (such as for example Collaborative Optimization [Brn95], or Analytical Target 

Cascading [Kim03]). A second point is taking into account the available computational 

resources to find an efficient optimization strategy. Simulation solvers can be constrained in 

the number of available parallel licenses, or by the available hardware infrastructure (number 

and type of nodes, processors memory, etc.). Aspects such as the parallelization and 

scalability of a single function evaluation, combined with the ability of different optimization 

algorithms, to use parallel function evaluations (using for example a population-based 

approach) can be explored. Therefore the RSP approach could aid to find efficient 

optimization strategies for a particular problem, by enabling a meta-simulation of the 

optimization process which could take into account a particular resource environment. 

 

4.6. Summary and conclusions 

An approach is presented that could be used to construct computationally affordable 

synthetic test problems (RSPs) based on response characteristics of computationally 

expensive real-world industrial optimization problems. The approach is developed, and 

tested for the application of multidisciplinary vehicle design problems, involving vibrational 

comfort and crashworthiness responses, but the applied strategy and used methods are not 

limited or specific to the application example. The approach is presented in a general way to 

facilitate the use and testing of the concept to other application fields.  
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A composition of existing analysis methods (parameter studies, sensitivity analysis, 

Fourier analysis and correlation analysis) is used to identify and quantify typical response 

characteristics of the simulation responses, with respect to the design variables.  Based on the 

response characterization results, basis functions to represent the responses are selected. The 

combination of: the basis functions, the function parameters, parameter bounds and the 

formulation of constraints that enforce selected response structure characteristics, formulate a 

CSP. Each feasible solution of the CSP provides a set of parameters for which the set of 

basis functions has response characteristics which are ―representative‖ w.r.t. the selected 

criteria. These surrogate response functions can be used to formulate surrogate response 

based optimization problems.  

The results of the simulation response analysis indicated that although the vehicle 

models were substantially different, several characteristic features could be identified (Q4). 

The distribution of the first-order effects was exponential for all responses (a small subset of 

design variables have a dominating effect). The distribution of the total variance 

contributions of first, second and higher order effects was similar for corresponding response 

types, over different vehicle models. Each of the simulation responses had a characteristic 

behavior (linear for the mass related responses; mildly nonlinear for the eigenfrequency 

responses; and highly nonlinear for both crashworthiness responses). Also, the normalized 

covariance matrix between the different simulation response sets for the vehicle models had 

similar distributions.  

The proof of concept of the RSP approach and corroboration with an independent 

vehicle model indicated that for this relatively complex application such RSP-based 

problems can be used as benchmarks to compare optimization efficiency of different 

optimization algorithms (Q5), and to improve the efficiency of an optimization algorithm by 

tuning of the optimization meta-parameters. The response characterization required for the 

RSP construction is computationally expensive, but once made it can provide valuable 

insights in the problem structure, which could pay off for applications in which many 

instances of similar problems. No general theory of this novel approach has been formulated 

yet, neither are the limits of applicability to other problems known. The presented results on 

are however remarkable and encourage further investigations of the concept. The approach is 

a step towards systematic analysis of industrially relevant complex black-box optimization 

problems. The author encourages creative interpretation, application, and critiques of the 

approach, such that further improvements in the optimization of complex industrially 

relevant problems can be achieved. 





 

 

 

5. Optimization test functions based on the 

systematic composition of random fields 

“To find out what happens to a system when you interfere with it you have to interfere with it 

(not just passively observe it).” 

-George  E.P. Box [Box66] 

 

5.1. Introduction and motivation 

The selection and analysis of the many different meta-heuristic algorithms which have 

been developed remains a great challenge in the field of global optimization. For the 

development and selection of optimization algorithms, many analytical optimization test 

functions, or artificial landscapes are available i.a. [Him72, Ros60, Ras74, Ack87, Back96] 

(see [Jon75, Flou99, And08] for collections of such test functions). As mentioned in the 

previous chapters, these functions are often difficult to relate to real-world problems that 

occur in practice.  

Furthermore many of these functions have been criticized in the literature for their 

lack of complexity and representativeness w.r.t. real-world problems [Lia05, Bar11, Die12]. 

In [Bar11] the topic of test function generators for assessing the performance of meta-

heuristic optimization algorithms on multimodal functions is discussed. It is highlighted that 

many of the currently available test functions in the specialized literature are too simple, and 

show regularities, such as symmetry, uniform spacing of optima, and centered optima which 

can easily be exploited by algorithm designers (see also [Lia05]), and which are unrealistic 

testing environments for the algorithm performance on real life problems. Several new 

strategies to create test problems with more realistic complexity have been presented since 

[Bal05, Add07, Gal06, Ahr10]. However, none of these methods enables the construction of 

test functions, with particular variance contribution distributions, and variable order 

interactions13 in a systematic way.  

                                                           
13 Recently the issue of separability and non-separability has been addressed in a survey [Mah15] on 

MHAs in large-scale global optimization problems (LSGO). The survey concluded that much more effort is needed 
to develop de problem decomposition methods such as Cooperative Coevolution methods (see e.g. [Cao15]) with 

high performance on non-separable and separable subcomponents, and that their performance on imbalanced 

problems should be further investigated. Although the specific application to LSGO problems is not further 
addressed here, the proposed method generates test problems with properties of high relevance to this issue, since 

the Interaction order (degree of non-separability), number of interaction subgroups and dimension for a single 
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In the previous chapter an approach was proposed to construct optimization test 

functions using features obtained by the characterization of the simulation responses. The 

results indicated that the approach could be used to construct test problems with similar 

structure and characteristics as the targeted application problem. The application of this 

approach could be of interest to different types of applications and optimization problems. 

After a response analysis, the response characteristics could be used to classify and compare 

problems. While it is of industrial and practical relevance to estimate optimization 

performance using approaches such as the RSP approach, it would be of more general value 

for the global optimization community to also have a tool available to investigate the 

influence of variations of particular problem characteristics in systematic way. Therefore in 

this chapter the following question will be addressed (Q6): How to construct optimization 

test functions with relevant problem features, in a way that enables systematic performance 

analysis w.r.t. particular response characteristics? 

In this chapter a new method is presented that enables the construction of 

optimization test problems with several important function characteristics. Whereas other test 

functions often have a particular set of characteristics, this function generation method is 

parameterized with respect to several function features, such that the influence of separate 

characteristics or combinations of characteristics can be investigated in a systematic way.  

The presented method enables the systematic design/construction of test problems of 

varying structures with parameterized variance contribution distributions, higher order 

interactions and heterogeneous modality in a general way. Furthermore multiple problem 

instances with the same problem specifications can be generated, which facilitates the 

statistical assessment of MHA performance on different instances of a problem type. Besides 

as stand-alone test functions, the fields or functions can be added to existing test functions to 

enrich their complexity and increase the level of difficulty. The aim of this chapter is to 

demonstrate/introduce the concept to construct structured functions that are based on the 

superposition of random fields in order to apply the resulting fields as test functions in the 

field of evolutionary global optimization. In section 5.2.1 a simple and practical algorithm 

implementation of a discrete basic random field creator that can generate fields with higher 

order interactions is described. In section 5.2.2 a ―smoothing‖ method to obtain continuous 

fields is presented, together with several composition techniques to create structured fields 

by combining different types of basic random. In section 5.3 the optimization performance of 

several example functions generated with the presented method is investigated, followed by a 

discussion, outlook, and conclusions.  

  

                                                                                                                                                      
objective function are all fully parameterized, and the general idea of the method can be scaled in order to create test 
functions for very large scale problems. 
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5.2. Description of the Random Field Composition method 

In this section a concept for test function generation based on the composition of random 

fields is presented. This section is divided in three parts:  

1. The description of a basic multidimensional discrete random field generator capable 

to produce parameterized fields with higher order interactions 

2. The description of a ―smoothing‖ method to obtain continuous and differentiable 

fields, by means of weighting functions. 

3. A description of several composition techniques to create structured fields by 

combining different types of basic random fields 

 

5.2.1. A basic Multidimensional Discrete Random Field (MDRF) generator 

Random fields are of interest in various branches of Mathematics, Physics and 

Engineering. A random field is a stochastic process taking values in a Euclidean space 

[Adl09]. Elementary discrete random fields can be interpreted as a list of ―random‖ numbers 

with the indices mapped onto an n-dimensional space. The general idea presented in this 

communication is to compose a number of Discrete Random Fields (DRF) of different 

spatial resolutions and dimensionality, in order to construct fields with particular structures. 

Such fields can serve as test functions of highly variable difficulty in terms of spatial 

nonlinearity, variance contribution distributions, and higher order interactions.  

To model computationally affordable fields which can possess higher order 

interactions we describe a MDRF generator. This generator function (referred to as operator 

 ) takes a multidimensional vector   of floating point values from the unit hypercube 

domain as an input, and maps it to a value from a given finite set   with an arbitrary discrete 

probability distribution and a computational type (e.g. binary integer or float) of choice: 

 

                   where          for d 1,2,…,n and       (5.1) 

 

To explain the concept of the implementation, a related discretized version of this idea can 

be defined as: 

 

                   where       and       and        (5.2) 

 

Here operator A can be interpreted as high-dimensional random ―array‖ A with indices j of 

which each index    is bounded by the maximum array size    for dimension d. In expression 

5.2,   is a finite set of successive integers pointing to the distinct elements of the set  .  

The concept chosen for the MDRF generator algorithm is to compute and reproduce 

the pseudo-random values of the high-dimensional arrays ―on the fly‖ instead of storing a 

potentially huge passive map in the computer memory14. Another alternative interpretation 

                                                           
14 Such a passive map would be very memory intensive since the required memory scales with the 

number of elements   ∏   
 
    or      for a uniform resolution   and field dimension  . 

which already becomes problematic at modest resolutions and problem dimensions. A discrete 

field array of resolution      and dimension      would already require 8 TB (terabyte) 

of memory when each element takes 8 bit of storage. 
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would be to consider operator A as a pseudo-random number generator with a high-

dimensional vector as its generating seed.  

The ideas in equations 5.1 and 5.2 can be combined to establish a parameterized 

MDRF operator:              where the operator on input variables    is parameterized 

with respect to the discretization resolution  , discretization offset   and codomain set  . 

The concept of the algorithm can be explained by the following steps:  

 

1. Addition of an optional offset or shift    to design variable vector   :  ̂     

    

2. Discretize the resulting floating point input variables  ̂  to integers with respect to 

the resolution    or corresponding array size             ̂     , where    

represents an index vector.  

3. Map the resulting index vector   to an integer index   of T by a Pseudo-Random 

Mapping (PRM) :           

4. Return the element     to which the resulting integer index   pointed:       

The pseudo-randomness and higher order interactions of the resulting discrete field 

are introduced by the PRM (step 3). The PRM can be achieved by using a Pseudo-Random 

Number Generator (PRNG), with a multivariate random seed mechanism. Depending on the 

program implementation such an approach would easily enable the use of discrete random 

fields with a total array size   of        or more (     where n is the dimensionality of 

the problem).  In the following sections the parameterized implementation of the MDRF 

generator is denoted by            or primitives thereof (when parameters not of interest in 

a particular context, they are omitted for better readability). 
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5.2.2. Obtaining continuous and differentiable random fields 

The algorithm presented in the previous section can generate multidimensional 

discrete random fields, with specific probability density distributions. Figure 25 shows on the 

left a two-dimensional example of such a discrete field, with an array size or spatial 

resolution of 5 intervals per dimension in the domain.  

 

 

Figure 25 Left: Examples of a discrete random field in 2 dimensions. Right: the corresponding 

continuous field after smoothing 

Using a multiplicative weighting function as expressed in equation 3 these discrete 

random fields can be transformed to ―smooth‖ differentiable continuous random fields.  

 

           (∏ ((      (           )  )  (
 

     ))
 
   )

 

  (5.3) 

 

Where   denotes the vector of the (phase) shift of the discrete field and the      

operator such that also fields with non-zero values along the domain boundaries can be 

constructed (         . With parameter   the shape of the function can be adjusted. This 

weighting function has the properties, that at each location where the discrete random field is 

not differentiable in one or more directions, the value and corresponding derivative of the 

weighting function are equal zero for all values 15  of    . Figure 25 (right) shows a 

―smoothened‖ version of the discrete field using this method. The multiplicative composition 

of operators     and  () is abbreviated as  ̃  . Although the application of the      operator 

or weighting function, is technically not smoothing, we will refer to it as smoothing to avoid 

misunderstandings with the weighting factors introduced later. This ―smoothing‖ operator 

works to generate continuous fields from the discrete fields in arbitrary dimensions, however 

it should be noted that in this context as an effect of high dimensionality the integral over the 

product of the smoothing or weighting function can become vanishingly small with a rate 

that depends on the choice of exponent  . This effect is similar to the decreasing relative 

                                                           
15 Although the above statement is true for all     the author recommends to use as a 

rule of thumb      , since for very small values of   the smoothness vanishes.  
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volume of the n-dimensional hyper-sphere with respect to the volume of the unit hypercube 

for high dimensions. The smoothing operator also affects the probability density distribution 

of the resulting field w.r.t. the original discrete field distribution. For high-dimensional 

spaces these effects can be controlled by choosing appropriate values for exponent  .  

Alternatively other smoothing approaches could be considered.  

 

5.2.3. Random Field Composition (RFC) based test functions 

The application of the ―bare bones‖ discrete random fields generated by the algorithm 

in the previously described sections, as optimization test functions is of little practical 

interest because of the primitive problem structure. The message of this section is however 

that compositions of such fields of different and heterogeneous resolutions, dimensions and 

codomain distributions can provide test functions with interesting problem structures. 

Continuous fields with different spatial resolution can be created, and compositions 

can be made by for example multiplication or by weighted addition such as for example: 

 

 ̃        ∑      ̃         
 
           (5.4) 

 

where    and    (both in bold) denote the vectors with the array size and shifts for each 

dimension of composition fields k. A graphical example of such a weighted field summation 

in 2d is displayed in Figure 26. 

 

 

Figure 26 Graphic example of the addition of 2 smoothened discrete fields of different resolutions 

and the resulting composition 

For clearness of visualization, only two fields of low resolution were added, but 

additions of many fields, with higher and distinct resolution are possible. Besides 

composition of fields over a fixed set of dimensions or design variables such as in the 

previous example, also fields over different variable subsets can be composed in order to 

generate fields targeting variance contributions by specific interaction terms.  

According to the Sobol-Hoeffding decomposition [Hfd48, Sbl90], it is possible to 

decompose a vector valued function     , into summands of increasing dimensions.  

 

        ∑       
 
    ∑            

 
                                 (5.5) 

 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-1.5

-1

-0.5

0

0.5

1

1.5

x
1

x
2

H
(X

) 1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-1.5

-1

-0.5

0

0.5

1

1.5

x
1

x
2

H
(X

) 2

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-2

-1

0

1

2

x
1

x
2

H
(X

) to
t+  



5. Random field composition based test problems 115 

 

In expression 5.5 multi-index notation is used 16  [EOM15]. The different terms of the 

summation refer to the interaction terms of all possible combinations of variable subsets. 

When the summands are orthogonal this decomposition is unique. In the field of sensitivity 

analysis, this idea is commonly used to decompose the variance contribution of the function 

output variance w.r.t. the individual summands, to identify the variance contribution of 

variables and interactions of variable subsets. Such results are commonly expressed by 

means of quantitative importance measures named Sobol indices  , or sensitivity indices, 

that can be defined as in eq. 5.6 [Sbl90]: 

 

          ar (                    )   ar(    ) with             (5.6) 

 

This expresses the variance contribution of a subset of variables as: the ratio of the 

variance of the corresponding term 17  from the Sobol-Hoeffding decomposition to the 

variance of the total function. This concept can be used to quantify (additive) function 

(output) separability w.r.t. its (input) design variables. 

In this context, we apply these ideas in order to construct functions with predefined 

variance contribution distributions of the first and higher order interaction terms by 

specifying the weights in equations 5.4 and 5.7 accordingly. Besides composition of fields 

over a fixed set of dimensions or design variables (such as the example in Figure 26), also 

fields over different variable subsets can be composed in order to generate fields targeting 

variance contributions by specific interaction terms. Equation 5.7 shows how a random field 

can be composed of weighted sums of random fields over variable subsets.  

 

 ̃   
    

       ∑     ̃ 
        

 
    ∑       ̃   

    
       

    
                    ̃       

    
              (5.7) 

 

Particular variance contribution distributions over a selection of subsets can be achieved by 

applying the weights according to one's needs. Each of the subset fields  ̃       
    

 can 

themselves also be composed of a summation of fields over the corresponding variable 

subset (see equation 5.4). A notable point is however, the uniqueness and orthogonally of the 

summands. In general, the random vectors or fields generated for variables or variable 

subsets are not necessarily orthogonal to each other. For subfields of high resolution, or high 

dimensionality the lower-order interaction effects will average out and will become 

approximately orthogonal w.r.t. lower-order effects of other fields in the composition. For 

lower resolutions and dimensionality such separable effects cannot be neglected and have to 

be accounted for by for example an a posteriori sensitivity analysis on the final composed 

function, or a covariance/correlation coefficient analysis between the composition 

summands.   

A test function      based on the presented concept of parameterized MDRF 

composition can then be described by the general expression:  

 

                                                           
16 Explanation to the multi-index notation: The expression ∑            

 
        indicates a sum over all 

function decomposition terms with two variables for which         . This applies similarly to 

all pairs of higher order interactions         . 

17The variance for the terms expression 5.6, w.r.t. the corresponding sub domain in the unit hypercube can 

be expressed as:    (                    )  ∫   
       

            
 

 
        . 
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      ̃
 ̅  ̅  ̅  ̅

    
     ̃    ̅  ̅  ̅  ̅       (5.8) 

 

where now the composition parameters  ̅  ̅  ̅  ̅ indicate arrays/structures containing all the 

parameter vectors of the composed fields.  

The 2d ―landscapes‖ from the previous visualization examples, are not really any 

more spectacular than landscapes of existing test functions. The novelty of the method lies in 

the parameterization of the function structure (with respect to variance contribution 

distributions, function modality and higher order interactions) combined with the 

straightforward scalability to create high-dimensional test problems.  

 

5.3. Examples and case studies in meta-heuristic optimization 

algorithm performance analysis 

For a few example problems, the isolated effects of some function features on the 

optimization performance of a genetic algorithm are demonstrated. The optimization 

algorithm used is a simple genetic algorithm from the publicly available Genetic Algorithm 

Toolbox for MATLAB developed by Chipperfield et al. [Chi95]. For the investigations a 

population size of 1000, combined with default settings were used. The optimization 

performance is measured in the number of function evaluations N that is required to find a 

solution within   of the best known solution         . 

 

Variance contribution distributions 

The first example shows the influence of the different distributions of the first order 

sensitivity indices or variance contribution, on the genetic algorithm performance. For a 

given instance of the first order term related fields, the weights    can be optimized such 

that a particular distribution for the sensitivity indices for the first order terms    can be 

obtained. The target first order sensitivity distributions  ̂  of the small 10 dimensional 

example problem are chosen according to: 

 

  ̂  
      

∑ (
 

 
)
 

 
   

                 (5.9) 

 

Such that different types of distributions (uniform for k=0, linear for k=1, and skewed for 

k>1) can be obtained (see also Figure 27).  Although here only demonstrated for first order 

sensitivity index distributions, also the distribution of higher order effects are expected to be 

function features that influence the optimization performance on a particular problem. The 

example in Figure 28 shows that for increasing values of k, and decreasing effective 

dimension, the problem gets significantly easier to solve for the selected optimization 

algorithm.  
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Figure 27 Variance contribution distribution examples for k values: 0 (top); 1 (center); 10 

(bottom) 

 

Figure 28 The average number of required GA function evaluations and the 20% and 80% 

percentiles, on random fields with an increasing distribution exponent k (MDRF settings: n=10, 

r=20, q= 1) 
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Variable-interaction order 

The second example shows the effect of increasing design variable interactions on the level 

of difficulty of the problem expressed in the number of function evaluations required to 

converge. In equation (5.5) the different term types represent different interaction orders. 

Each interaction order q adds   
 
  interaction terms/or discrete random fields of interaction 

order q (that each have    degrees of freedom). For each interaction term the corresponding 

weights (            are chosen such that the variance contribution of the corresponding 

weighted field is: 
 

     
 where Q is the maximum order of interaction of the problem. For the 

small example problem of dimension 5 with interaction orders up to 5, Figure 29 shows as 

expected that for increasing interaction order both the mean level of difficulty as well as the 

variance increase. 

  

Figure 29 The average number of required GA function evaluations, on fields with an increasing 

interaction order q (MDRF settings: n=5 and r=5) 

 

Multimodality and MDRF resolution 

The third example shows how for smoothened random field containing only first-order 

interactions the optimization algorithm efficiency scales with respect to the chosen base 

resolution of the discrete random field. In this 5 dimensional example, the resolution is 

homogeneous and the DRF values are taken from a uniform distribution. Thus the 

―resolution‖ directly affects the multimodality of the resulting test function. The modality is 

further dependent on the choice for the targeted distribution S of the discrete field. Figure 30 

shows the required number of function evaluations that the genetic algorithm requires to 

reach convergence, for various resolutions.  
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Figure 30 The required number of GA function evaluations on random fields with increasing 

resolution r (MDRF settings: n=5, max. q=1) 

 

Dimensional scalability  

A common algorithm performance discrimination criterion is the scaling behavior of 

optimization algorithms on test function instances with increasing dimensionality. In the 

presented approach parameterization of the dimensionality of the problem is straightforward. 

A fourth example shows the number or function evaluations required by the genetic 

algorithm until the convergence criterion is met. Figure 31 shows super-polynomial scaling.  

 

Figure 31 The required number of GA function evaluations on random fields with increasing 

dimension n and interaction order q (MDRF settings: r=10, interaction order q~n) 

In this example each test problem was based on a single MDRF, such that the interaction 

order increases proportionally to the number of design variables. The example shows that 

quite easily difficult problems can be created that require many function evaluations to solve. 
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It is however also possible to limit the interaction order of the problems so that the scaling 

will be less strong.  

 

Deceptive functions 

Also test functions containing the established function features such ―deception‖ can be 

constructed. The general idea behind deceptive functions is a global trend or ―larger‖ 

function basin that distracts from the smaller basin of the true global optimum. This effect 

can be achieved in a statistical sense by the composition of smoothened lower resolution 

fields, combined with high resolution fields of which the probability density function is such 

that at most points in space the ―amplitude‖ of these fields is negligible, except at a single or 

few places where the magnitude of the amplitude dominates the amplitudes of the lower 

resolution smoothened fields (see also Figure 32).  

   

Figure 32 Example of a RFC-based deceptive function 

These few examples briefly demonstrate the potential of the concept of RFC-based 

test problems to systematically construct optimization problems with several different 

properties that could influence the performance of optimization algorithms. In most 

examples isolated properties are assessed, but the presented function generation concept 

covers a vast function space containing many combinations of different ―landscape‖ 

properties.  
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5.4. Discussion and outlook 

When analyzing the performance of optimization algorithms on different problems, 

one is interested in which algorithms or algorithm operators can exploit certain properties of 

the problem structure. As was presented in chapter 4, several characteristic properties of the 

simulation responses could be identified for the car body design optimization application. 

But, how do variations of such properties influence the optimization performance of a 

particular algorithm? What are the isolated effects and how do particular combinations of 

problem characteristics influence the optimization performance?  

In the application example of chapter 4, particular sensitivity (or variance 

contribution) distributions for the simulation responses were observed (see figure 17). 

Example 1 in section 5.3 shows by means of a simple case study how the influence of 

different distributions on the optimization performance of a genetic algorithm can be 

investigated using the random field composition method presented. The response 

characterization results from chapter 4, quantified importance of first and second order 

variable interactions for the different simulation responses. The second example in section 

5.3 shows by means of a simple case study how the RFC method can be applied to 

investigate the influence of variations in variable interaction order of an objective function 

on the optimization performance of an genetic algorithm. The third and fourth examples in 

section 5.3 provided case studies in which the application of the RFC to investigate the 

influence of nonlinearity, and problem dimensionality was demonstrated.   

The novelty and additional value of the method presented in this chapter, over the test 

functions in the literature (see section 5.1 ), is the tunable level of difficulty regarding 

modality, variance contribution and interaction order of the design variables of the resulting 

test functions. A variety of test problems can be generated, which ranges from simple smooth 

uni-modal problems, up to apparent difficult structureless (pseudo-random) hyper 

dimensional problems. Because the functions are parameterized w.r.t. the function features, 

the effect of the function features can be investigated by means of parameter studies. 

Furthermore various problem instances of similar problems can be generated to investigate 

the effect of the function properties in a statistical sense, rather than merely on a single 

anecdotal test function.  

A drawback of the presented method is that for compositions of these discrete random 

field based test functions the global optimum is not necessarily known (depending on the 

composition type). Probability based estimations can however been made, or brute force 

evaluation could be used to explore the details of the generated search space. Although a 

priori knowledge of the global optimum is desired for test functions, such knowledge is often 

also not available for real-world problems, and thus this disadvantage could therefore also be 

seen as a feature of realism.  

Another property of the test function generating concept presented here, is that 

according to one's wishes it is possible to generate test function with a huge amount of 

descriptive parameters. Although this property is typically classified as unwanted, because 

it‘s potential complexity in use. One could also argue using the concept of Kolmogorov 

complexity [Kol65] that simple test functions with few parameters are intrinsically very 

unlikely to represent the difficulties that can arise in highly specified complex computational 

models, and are therefore strongly limited in their scope. In this context, the author regards 

the possibility of creating highly parameterized test problems as a necessary feature to 

specify problems of highly structured complexity.  
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The presented concept enables the construction of complex problem types with 

structures that have been rarely investigated. As also expressed in [Bar11] the development 

of more challenging test functions could lead to the development of more robust and 

effective optimization algorithms. The author hopes that this communication will motivate 

others to use and extend the concepts presented, in endeavors to analyze and develop useful 

met heuristic algorithms.  

Although the description of the method, only covers a few pages, an endless variety 

of test problems with different properties can be created using the concept presented. The 

large function space that the method covers, naturally leads to the need for the specification 

of subproblem classes (parameter ranges) and to define standardized test function instances 

for algorithm benchmarking. Such a classification could also contribute to compare this 

method with the many available ―anecdotal‖ test functions, and it could place those functions 

in a more general function feature context. Other topics for further research based on the 

presented method, involve the construction of constrained and multi-objective test functions 

using a similar systematic approach. Besides investigations on the performance of different 

optimization algorithms, also the relation of function characteristics and optimization 

algorithm operators can be investigated, in order to analyze the mechanisms of metaheuristic 

algorithms in a more intrusive manner. The flexible parameterization, of the dimensionality, 

and higher order interactions between groups of design variables is also of interest for the 

generation of test problems for large scale global optimization.    

 

5.5. Summary and conclusions 

Because theoretical optimization performance analysis is difficult for non-convex 

problems, and since problems based on models of real-world systems are often 

computationally expensive, in the literature several artificial performance test problems and 

test function generators have been proposed for empirical comparative assessment and 

analysis of meta-heuristic optimization algorithms. These test problems however often lack 

the complex function structures and forthcoming difficulties that can appear in real-world 

problems.  

In the chapter 4 an approach was presented to construct test problems that have 

similar characteristics as simulation response based optimization problems for vehicle 

structures. The response characterization criteria encountered during the development of that 

approach, inspired the development of a more general method to formulate optimization test 

problems with parameterized function features, targeting the wider framework of global 

optimization. Whereas the focus of the RSP approach (see chapter 4) lies on the construction 

of surrogate problems for a particular problem type, the method presented in this chapter 

enables the generation of parameterized test problems in a more general sense. This enables 

systematic investigation of the influence of selected function features on the performance of 

optimization algorithms.  

In this chapter, a method is presented to systematically construct test problems with 

varying types of difficulty, based on the composition of parameterized random fields (Q6). 

An algorithm is described that can be used to generate and high-dimensional pseudo-random 

discrete fields of heterogeneous resolution. The resulting discrete fields can be combined 

with suitable weighting functions to obtain continuous and differentiable fields. By 

parameterized composition of these random fields, various interesting test functions can be 

generated. The presented method provides means to construct test functions with a variety of 
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problem structures, with respect to modality, variance contribution distribution, and variable 

interactions. The concepts and the potential of the method was demonstrated by means of a 

few examples, in which the influence of different function parameters on the performance of 

a simple genetic algorithm was investigated.  

The developed method is of relevance to the field of optimization because the 

methodology can be used as a tool for systematic optimization algorithm performance 

analysis, and for the development and identification of efficient global optimization 

algorithms for particular problem types. The method enables the construction of 

parameterized global optimization test functions with features combinations that were 

previously unavailable in the optimization literature. Furthermore the concept has potential 

to be extended and applied in multi-objective and large-scale optimization problems, and is a 

step towards the generation of optimization test problems with structure and level of 

difficulty relevant for industrial optimization problems. 





 

 

 

6. Overall summary, discussion, and 

conclusions 

“As our circle of knowledge expands, so does the circumference of darkness 

surrounding it.” 

-Albert Einstein 

 

This dissertation presented numerical investigations and new methodologies related to 

the computational efficiency of multidisciplinary design optimization of car body structures. 

The focus has been on the performance analysis of optimization algorithms for simulation-

based car body design optimization problems involving mass, vibration, and crash criteria. In 

addition, some of the developed ideas have been generalized to be of value for the field of 

global optimization in general. By answering the targeted research questions, this work set an 

explorative step in the direction of problem orientated optimization performance analysis, 

which is in the view of the author necessary to achieve improved optimization efficiency, in 

a systematic way, rather than by opportunism. Although, within the limits of the presented 

investigations and methodologies, significant improvements in optimization performance 

could be achieved for car body design problems by means of proper algorithm selection and 

parameter tuning, the path towards more efficient optimization methods for complex 

optimization problems involving computationally expensive simulations in general still 

requires further exploration.  

 

The motivation for the presented work is the need in the automotive industry to 

improve the efficiency and methodology for complex computationally expensive 

optimization problems. The automotive industry is stimulated in various ways to design and 

construct fuel efficient, lightweight and safe vehicles, with profitable margins under tight 

time constraints. To achieve effective vehicle design solutions, efficient computer-aided 

engineering, simulation and optimization methods are of paramount importance. For 

industrial optimization problems that involve highly nonlinear, non-convex design criteria, 

such as (but not limited to) car body optimization, the selection and development of efficient 

optimization algorithms are still challenging open research topics of practical relevance. 

In chapter 2 a survey on the literature regarding optimization performance analysis for 

crashworthiness optimization and related topics was presented, in which several open issues 

in the field have been identified. In the different studies in the literature on optimization of 

car body structures, many different optimization algorithms were used. There is no clear 

consensus on which algorithms are the most effective, and significant comparative studies 

are rare. Although there are many works in the literature that demonstrate the application of 

optimization algorithms to car body optimization problems, there are very few review papers 
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or reference books targeting automotive crashworthiness optimization problems in a broader 

sense. 

Comparative optimization performance assessments are not only rare for vehicle 

crashworthiness problems, but also for problems that involve computationally expensive 

simulations in general. As was stated in [Wan13] about simulation-based optimization: there 

are many different optimization algorithms developed, but there are not enough comparisons. 

In a more general scope performance comparisons between optimization algorithms are done 

quite commonly, using computationally inexpensive standard test problems. Many of these 

test problems have however been criticized for their lack of representativity for complex 

problems of industrial relevance [Lia05, Bar11, Die12]. Another point of criticism stated in 

[Sha10] was that not enough attention was given to the analysis of the structure of the 

underlying optimization problems.  

In this thesis the primary aim was to address these open challenges for the particular 

application of optimization of car body structures. While the secondary aim was to make 

contributions that could also be extended to be of relevance for a wider range of problems. 

 

6.1. Conclusions: the research questions revised 

Based on the literature analysis (chapter 2), six research questions were formulated in 

the introduction (chapter 1), which were answered based on the presented work. In the 

following paragraphs, the questions and corresponding conclusions are recapitulated.  

 

1. Are the relative optimization algorithm performances on a particular vehicle 

design problem correlated with the relative performance on a similar vehicle 

design problem involving another vehicle model? 

In chapter 3 the performance of 8 different optimization algorithms was 

assessed for 6 different optimization formulations, using meta-model based 

comparisons on two distinct vehicle models. The results indicated that the 

optimization performance distributions of corresponding optimization formulations 

over different vehicle models were significantly correlated with on average 

CC>0.93 and p<0.002. Additional validation results using a direct simulation 

approach on a third independent vehicle model confirmed the results 

Although by means of examples no general validity among all similar 

problems can be claimed. The presented results support the assumption that 

experiences based on an optimization problem of one vehicle, could be relevant for 

similar optimization problems of other vehicles. Although this has been silently 

assumed in previous works, the particular issue has not been explicitly addressed or 

investigated in the available literature before. The investigation and results were 

relevant since correlation significance among problem instances is a required 

justification for comparative assessments and benchmark studies on these problem 

types. 
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2. How representative are meta-model optimization benchmarks for vehicle 

design problems compared to full direct simulation-based optimization 

performance benchmarks?  

The statistical correlation between meta-model based optimization algorithm 

performance, and direct simulation-based algorithm performance was high and 

significant for those optimization formulations that did not include crashworthiness 

related responses (CC>0.84 p<0.0082). The significance of the correlation was 

however marginal (p>0.05) for the problem formulations that included nonlinear 

crash responses.  

These results are of relevance because several of the few available 

comparative studies in the literature that dealt with vehicle crash-optimization were 

based on meta-models using only up to 40 construction points, whereas these results 

obtained with 1000 construction points indicated that these meta-models were still 

not representative with sufficient significance. This implies that for car body 

optimization problems involving crashworthiness simulation responses, meta-model 

based comparisons should not implicitly be assumed to be representative for the 

algorithm performance on the corresponding simulation-based optimization 

problem.  

 

3. Are the differences in performance between meta-heuristic algorithms on 

various problem formulations of typical car body design optimization 

problems involving crashworthiness responses, of practical relevance? 

The comparative assessment studies in chapter 3 and 4 indicated significant 

performance differences among the optimization efficiency for the investigated 

problem formulations. For the investigated case studies the difference in 

optimization algorithm efficiency in terms of relative objective improvement at a 

given function evaluation budget ranged between 8% and 98% in terms of relative 

objective improvement. Moreover the results clearly showed that the best-

performing optimization algorithms were dependent on the problem formulation, 

and no algorithm could be selected that was top performing among all problem 

formulations. The performance difference between average algorithm performance 

and the best-performing algorithm was larger than the average performance increase 

when doubling the function evaluation budget from 250 to 500. 

The results showed that the differences in optimization performance are of 

practical significance. This emphasizes the importance of comparative testing to 

identify suitable optimization algorithms for particular problem types and function 

formulations, because proper optimization algorithm selection enables significant 

improvements in optimization efficiency, thus improved design solutions and/or 

savings in computational cost and time can be achieved. 
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4. What are the characteristics of the simulation responses of the selected design 

criteria w.r.t. changes in the design variables? (Are there any typical response 

characteristics over similar problems involving different vehicle models?) 

An analysis of the simulation responses was provided in chapter 4. By means 

of global sensitivity analysis, parameter studies, harmonic analysis, and covariance 

or correlation analysis, several response characteristics have been identified and 

quantified, based on investigations on two different vehicle models. The simulation 

responses investigated were: BIP mass, (free-free) 1
st
 natural torsion 

eigenfrequency, peak acceleration 18 , and A-B pillar deformation18. The design 

variables were scaling factors on the thickness of BIP components. Briefly 

summarized the results of the simulation response characterization indicated that: 

 For all simulation responses, the variance contribution distribution of first-order 

effects was unbalanced. Which implies that a small subset of design variables 

have a large influence in terms of variance contribution while many design 

variables only have a small influence.  

 The influence of second and higher order variable interactions had 

characteristic distributions for each of the investigated simulation responses. In 

detail mass, and eigenfrequency responses had nearly no interaction terms, 

whereas the crashworthiness responses were significantly influenced by 

variable interactions in terms of total variance contribution.  

 Each of the simulation responses had characteristic behavior w.r.t. design 

variable changes in terms of nonlinearity. Mass responses varied linearly; 

eigenfrequency responses varied mildly nonlinear; and both crashworthiness 

responses had highly nonlinear behavior. 

 Using simulation-based function evaluations based on pseudo-random 

sampling the normalized covariance between the different simulation responses 

was estimated. Significant similarities between the normalized covariance 

distributions for the simulation responses for two vehicle models were 

identified. 

 Similar results were obtained for the normalized covariance between the first-

order sensitivity index distributions among the different simulation responses. 

Although such correlations are not identical for the different vehicle models, 

clear similarities could be observed and quantified. 

Although by the use of other or additional analysis techniques possibly also 

other response characteristics could be identified, the presented response analysis 

and resulting set of response characteristics are unprecedented in the literature. The 

                                                           
18 Both peak acceleration at the vehicle tunnel, and A-B pillar deformation responses 

for the load case of a 56km/h frontal crash against a rigid wall. 
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characterization approach and results are of relevance to practitioners in the 

application field of car body design, as well as to those interested in optimization 

problem and performance analysis in general, since the methods used 

characterization are not problem specific, and could also be used for other problem 

types. 

 

 

5. How to formulate computationally affordable test problems which are 

representative for simulation-based car body design optimization problems 

and their response characteristics? 

A new approach to construct representative surrogate test problems based on 

response characteristics was proposed in chapter 4 and evaluated by means of 

several case studies. In the approach basis functions and parameter constraints for 

each of the targeted simulation responses are selected based on the response 

characterization results. These basis functions and parameter constraints are 

combined with additional constraints that enforce the other response characteristics, 

such as the variance contribution distributions and response correlations, to describe 

a constraint satisfaction problem. By the solution of the constraint satisfaction 

problem, problem instances can be obtained which are similar w.r.t. the selected 

response characteristics. The results of the case studies indicated that the use of the 

approach for comparative algorithm performance assessments led to performance 

distributions which were significantly correlated (CC≥0.910, p≤0.0012) with the 

performance of the validation study on an independent vehicle model.  

The function characterization requires a considerable function evaluation 

investment (and thus computational effort), however once the function 

characterization is established the resulting test functions are computationally 

affordable. For industrially relevant problems where many instances of similar 

optimization problems have to be solved, such an approach could however pay off, 

since significant increases in optimization efficiency can be achieved.  

The presented approach provides insight in the optimization problem 

characteristics and not merely the optimization algorithm performance. Therefore 

the presented approach is a contribution in the direction of the research targets set in 

[Sha10] aiming towards a more problem oriented application of optimization 

methods. 

 

6. How to construct optimization test functions with relevant problem features, in 

a way that enables systematic performance analysis w.r.t. particular response 

characteristics? 

The previous point (5) addressed the construction of test functions based on 

particular real-world problem types. A further key issue is the systematic analysis of 

optimization performance based on problems with particular response 

characteristics. A new method has been proposed (in chapter 5) which enables the 

construction of a broad range of different test problems with parameterized 

characteristics such that their influence can be studied systematically. The method is 

based on the superposition or composition of different random fields. An algorithm 
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is described to generate discrete random fields of varying nonlinearity, spatial 

resolution and dimensionality. By the use of weighting functions, continuous and 

differentiable random fields can be obtained. These continuous random fields can 

be combined and weighted to compose test functions of various complexity. The 

provided framework allows the parameterized control over function features such as 

nonlinearity, variance contribution distributions, variable interactions, and 

dimensionality. These function features can also be combined. The results in 

chapter 4 indicated that these function features can be characteristic for some 

problem types. In chapter 5 a few example investigations are presented to 

demonstrate the effect that some of these individual features have on optimization 

performance.  

The presented method contributes to a more systematic analysis of 

optimization algorithm performance on problems with various types of complexity. 

The scope of the method is not limited to automotive or engineering applications, 

and is relevant for the field of global optimization in general.  
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6.2. Main contributions, discussion, and outlook 

The objective of this work was to make scientific contributions targeting one or more 

challenges related to multidisciplinary vehicle design involving weight, crash and vibration 

criteria. The main contributions of this work were: 

 

1. A meta-model based comparative assessment on the performance of 

optimization algorithms for car body design problems, involving lightweight, 

vibrational comfort and crashworthiness criteria. 

Compared to past comparative studies on car body optimization problems 

[Dud08, Gu13, Kia15] the presented meta-model based comparison, extended the 

previously available work by several aspects: the use of multiple vehicle models for 

similar problem types; the number of compared optimization algorithms; the 

number of construction points used for the meta-models was an order of magnitude 

larger than previous investigations; the algorithm comparison results based on meta-

models were compared with results using direct simulation-based results. Due to 

these features of the study, the comparative assessment addressed several open 

issues in this application field (see research questions 1-3, in the previous section).  

The results showed that the performance differences between the different 

algorithms are large. Choosing the most suitable algorithm from those investigated 

would lead to larger objective improvements, then doubling the number of 

optimization iterations of an average algorithm. The results also demonstrated a 

significant correlation between the optimization performance over similar problems 

formulations on different vehicle models. Which indicates that comparative 

assessments and benchmark studies, can prove of value for algorithm selection on 

similar problems. The results however also indicated that in comparative 

optimization algorithm assessments, the performance based on meta-model 

responses is not necessarily representative for the direct simulation based 

performance.  

Although the results of the comparative assessment study, extended the 

available literature in various ways, the value of such comparative assessments is 

only limited to similar optimization problems. Furthermore, comparative 

assessment results by themselves do not provide insight in the problem 

characteristics and efficiency of the mechanisms and operators of which the 

optimization algorithms are composed. However, in the absence of better 

comparisons and analysis, the presented study provides useful results for 

practitioners in industry dealing with these problem types. 

 

Outlook 

The presented comparative study could be extended in various ways. The 

representativity of meta-model based performance comparisons with additional or 

other design criteria, load cases, and design variable types, could be investigated 

and compared with simulation-based comparisons on the corresponding problems. 

Also, a larger variety of optimization algorithms could be tested. The value of such 

comparative studies could be increased if the used meta-models, construction point 

datasets and algorithms were shared and made publicly available. Although meta-
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model based comparative assessments of optimization algorithms can be useful, the 

performance results should be compared and validated with direct simulation based 

results, since representativeness of the results cannot be taken for granted. In the 

author's perspective, the application and extension of more intrusive and systematic 

performance analysis techniques such as the RSP approach seems beneficial over 

the use of meta-models, because it provides additional insights into the problem 

structure.  

 

2. The development of a novel Representative Surrogate Problem (RSP) 

approach to construct test problems for comparative assessments based on 

simulation responses related to car body design problems.  

Comparative optimization algorithm assessments in which the simulation 

responses are estimated using meta-models are limited in their validity, depending 

on the response types involved. A new surrogate problem modeling approach for 

such comparisons was presented, that is also suitable for problems with high 

nonlinearities, such as the case with crashworthiness responses. A detailed 

description of the approach was given in chapter 4.  

 

Briefly summarized the approach is composed of 3 phases:  

a. Response characterization based on function evaluations on the simulation 

models;  

b. Construction of a representative surrogate response system by formulating 

and solving a constraint satisfaction problem, with selected basis functions, 

parameter bounds constraints that enforce selected response characteristics 

based on the response characterization;  

c. Combining surrogate response system with an optimization formulation of 

interest to construct an optimization problem; 

d. Corroboration of the representativeness of the obtained optimization 

problem.  

The presented RSP approach is partly related to surrogate data generation 

techniques for time series such as [Pri94], but strongly adapted for the application to 

multivariate and multidisciplinary optimization problems. This approach to generate 

optimization test functions derived from real-world problems by means of function 

characterization and the incorporation of selected function characteristics by means 

of solving a constraint satisfaction problem is new in the field of structural 

optimization.  

For the simulation response analysis: global sensitivity analysis methods and 

parameter studies have been applied to analyze the characteristics of the simulation 

responses w.r.t. changes in the design variables for several vehicle models. 

Although the analysis of optimization problem structures in order to improve 

optimization efficiency has been suggested in the literature [Sha10], such 

investigations are still very scarce. The simulation response analysis is to the 

knowledge of the author the first study of its kind for the application of car body 

design problems. 
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A proof of concept was presented, in which the optimization efficiency of 8 

different optimization algorithms was compared using the RSP approach, 

(calibrated using 2 vehicle models) and a comparison using full vehicle simulation-

based results on an independent corroboration vehicle model. The presented results 

indicated that for this problem statistically significant predictions on optimization 

performance, could be made w.r.t a similar optimization problem on the 

independent vehicle model. Using these prediction results to select a suitable 

optimization algorithm led to efficiency increases between 16% and 32% w.r.t. the 

average performance over the investigated algorithms.  

Quantitative representativeness of the RSP was also demonstrated for a 

meta-optimization of the vehicle model optimization. In this case study the 

parameters of the optimization algorithm (Differential Evolution) were optimized 

using the RSP problem, and the optimized parameters were applied to perform 

optimization runs of the corroboration vehicle model. The results indicated that 

additional optimization efficiency improvements in the order of 4% can be achieved 

by using the optimized meta-parameters, based on the application of the RSP 

approach.  

The proposed RSP approach provides a new perspective on optimization 

performance assessment for car body design problems, and the results indicate 

potential for applications in other fields of (design) optimization. The presented 

RSP approach, the investigated application case studies, and their validations, 

showed encouraging results. Therefore further investigations on other applications 

and problem types are of interest, in order to evolve the approach to a more general 

method suitable for other applications. The concept of the presented approach and 

ideas do not contain problem specific methods, such that further investigations on 

other problem types are straight forward.  

 

 Outlook  

The idea of the RSP approach can be extended and applied for the use of meta-

simulation of optimization processes for complex industrially relevant problems 

dealing with computationally expensive simulations. The solution of such problems 

is often restricted by time and computational resources (hardware infrastructure, 

software licenses). For such problems, there are often many possibilities to apply 

parallel computing: parallelization of the simulation solution process, parallelization 

of the different simulation responses, or parallelization in the optimization process 

using population-based approaches. For complex simulation-based optimization 

problems, the efficiency of the solution approach is not only problem dependent but 

also resource dependent, using RSP-based optimization test problems, tailored 

strategies for a given problem and simulation environment could be established. In 

the presented work the focus was on multidisciplinary optimization problems with a 

single objective and various constraints, for some problems also multi-objective 

optimization problems can be of interest. Therefore an extension of the presented 

approach for such problems would be of interest. Also of interest are investigations 

on the RSP approach targeting robust design optimization (RDO) problems, which 

are also highly relevant for car body design [Asp12, Hun13, And15]. Investigations 

on MOP and RDO problems however usually require even more computational 

effort than the presented single objective multidisciplinary problems addressed in 

this work, and are therefore an important challenge for future work. 
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3. The development of a new method based on random field composition to 

construct global optimization test functions with a wide variety of function 

characteristics. 

Most optimization test functions that have been proposed in the literature deal with 

a particular combination of function characteristics. Few attempts have been made 

to construct parameterized functions that could be used to investigate optimization 

performance in a systematic way.  

A novel method proposed in chapter 5, uses concepts from random field theory to 

construct basic discrete random fields with probability distributions of choice. By 

means of the described random field composition method, fields with specified 

features can be constructed, such as particular variance contribution distributions, 

higher order interactions, anisotropic multimodality. The method provides means to 

construct test functions with high complexity and features of realism representative 

for real-world problems, which in its turn enables a systematic investigation of 

optimization algorithm performance w.r.t. variations in problem function features. 

Such systematic investigations with relate problem features to optimization 

algorithm performance, are important for the development of efficient optimization 

strategies.  

 

Outlook 

The description of the proposed RFC-based method for the generation of global 

optimization based test functions only requires a few pages, the amount of different 

test functions and problem types that can be generated are however endless. In the 

scope of this thesis, only a few different possibilities to study the effect of different 

problem characteristics have been investigated for a single optimization algorithm. 

With the provided methodology it is straightforward to extend this work with 

studies that include the combination of different optimization problem features and 

different optimization algorithms. Such studies are relevant because the influence of 

different function features and their combinations, on the performance of various 

optimization algorithms can be investigated in a systematic way. This in its turn 

could provide to be a valuable tool, for the development of efficient optimization 

algorithms for problem types with particular characteristics. Another point of 

interest for future research, is to apply the presented concept to large scale global 

optimization problems, and to extend it to multi-objective optimization problems.  
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6.3. Final remarks, and overall outlook 

This thesis addressed multidisciplinary car body design optimization problems, which 

regard crashworthiness, vibration comfort, and lightweight design criteria. In a full industrial 

vehicle design process, even more criteria are of practical relevance. Besides additional 

criteria from the selected fields, also design criteria such as: structural durability, production 

cost and the environmental impact during the product life cycle are of relevance to the car 

body design process. Studies on highly interdisciplinary optimization problems, which take 

many or all of the relevant car body design criteria in to consideration, are presently still rare 

in the literature. Future studies could investigate the potential of new optimization strategies 

for problems with such high complexity. However, it is often easier to create complex 

problems, than it is to solve them. To find efficient optimization approaches, it is necessary 

to investigate and analyze the underlying structure and characteristics of such problems. This 

thesis provides new approaches to compare optimization strategies, using test functions with 

particular problem characteristics. To experiment with more complex optimization problems, 

and their solution techniques, representative surrogate problems that mimic the real problem 

characteristics can be of practical value, for the selection and development of optimization 

strategies. The case studies presented in this thesis indicated that significant performance 

gains can be achieved, for industrially relevant problems, by the selection and tuning of 

optimization algorithms, using appropriate test and benchmark problems. For a more 

intrusive and systematic optimization algorithm analysis, besides testing optimization 

algorithm performance on problems with fixed characteristics, also investigations on 

problems with parameterized characteristics are of importance. The presented method to 

construct random field composition based test functions, can be a valuable aid to evaluate 

how optimization algorithm performance depends on various optimization problem 

characteristics and sources of complexity.  

Specific outlooks to each of the contributions were already stated in the previous 

section. As a general recommendation for future research the author would like to emphasize 

the potential benefits of inter- and trans-disciplinary perspectives to better exploit the data 

and methods that are involved with computationally expensive simulation based optimization 

problems. In the scope of this work, numerical simulation, meta-modeling, sensitivity 

analysis, variable screening, and optimization methods were applied in an engineering 

context. Merging competences and techniques from subfields as computational mechanics, 

machine learning, statistics, and mathematical optimization could result in further novel 

techniques and tools valuable for applications in automotive and industrial engineering.  

During the activities for this thesis, the author came across various novel strategies 

related to the optimization and analysis for industrial complex large scale optimization 

problems that seem promising but are not commonly applied yet. Examples are various 

distributed optimization architectures (see for example [Mar13] for a review) and co-

evolutionary optimization strategies (e.g. [Cao15]). Although these strategies have not been 

addressed in the scope of this thesis (because the involved computation cost for validation 

studies would have exceed the available resources of the author), the ongoing further 

development of these strategies, could however strongly benefit from the presented 

approaches to construct realistic and challenging optimization test problems. As a first and 

straightforward step, comparative studies of such optimization methods on test functions 

based on the in this thesis described approaches could be performed in a similar way as 

presented in this thesis. A next objective could be: to gain further insight in the relation 

between optimization performance and problem characteristics in order to develop, 
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guidelines or methodologies that enable the construction of efficient optimization algorithms 

and architectures for particular problem types, based on a priori known problem 

characteristics. A further step would be the development of highly adaptive meta-

optimization-algorithms that during the optimization process on a new unknown problem, 

attempt to classify the problem type, and change the applied optimization strategy 

accordingly, while also regarding the available computation and simulation resources. To 

achieve these and other goals, there is still much research to be done in the field of 

optimization of complex problems, and in the meantime the complexity of industrial 

problems will only increase even further. Challenging test problems with realistic problem 

features (such as contributed in this thesis) are therefore indispensible to achieve these goals, 

and further improvements. 

This thesis targeted to contribute to the topic of: simulation based mathematical 

design optimization of car body design structures. An important open issue in this area, is the 

efficiency and selection of the optimization algorithms that are used for these type of 

problems. Because such problems involve computationally expensive simulations, relevant 

comparative assessments are cumbersome, and rare in the literature. Although the 

complexity, computational cost and depth of the open problems in this field span a challenge 

that is too large to tackle in the scope of a single thesis, the investigations, approach and 

methods presented in this work, provide previously unavailable insights, new ideas and 

methods that are aimed to set a step towards more efficient multidisciplinary car body design 

optimization. Furthermore several concepts are presented in a general way, in order to also 

be of benefit to further optimization research for other applications that deal with complex 

and computationally expensive problems. 
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