
“Every Gene Is Everywhere but the Environment Selects”:

Global Geolocalization of Gene Sharing in Environmental

Samples through Network Analysis

Marco Fondi1,2,y, Antti Karkman3,y, Manu V. Tamminen4,5, Emanuele Bosi1,2, Marko Virta3, Renato Fani1,2,
Eric Alm6 and James O. McInerney7,8,*

1Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Italy
2Computational Biology Group, University of Florence, Italy
3Department of Food and Environmental Sciences, University of Helsinki, Finland
4Department of Environmental Systems Science, ETH Zürich, Switzerland
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Abstract

The spatial distribution of microbes on our planet is famously formulated in the Baas Becking hypothesis as “everything is everywhere

but the environment selects.” While this hypothesis does not strictly rule out patterns caused by geographical effects on ecology and

historical founder effects, it does propose that the remarkable dispersal potential of microbes leads to distributions generally shaped

by environmental factors rather than geographical distance. By constructing sequence similarity networks from uncultured environ-

mental samples, we show that microbial gene pool distributions are not influenced nearly as much by geography as ecology, thus

extending the Bass Becking hypothesis from whole organisms to microbial genes. We find that gene pools are shaped by their broad

ecological niche (such as sea water, fresh water, host, and airborne). We find that freshwater habitats act as a gene exchange bridge

between otherwise disconnected habitats. Finally, certain antibiotic resistance genes deviate from the general trend of habitat

specificity by exhibiting a high degree of cross-habitat mobility. The strong cross-habitat mobility of antibiotic resistance genes is a

cause for concern and provides a paradigmatic example of the rate by which genes colonize new habitats when new selective forces

emerge.
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Introduction

The spatial distribution of microorganisms on the planet is

often expressed according to Baas Becking’s famous tenet

“everything is everywhere but the environment selects”

(Baas Becking 1934). “Everything is everywhere” alludes to

the remarkable dispersal potential of microorganisms,

whereas “the environment selects” implies that only specifi-

cally adapted organisms will thrive and proliferate in a partic-

ular environment (Fuhrman 2009). The Baas Becking

hypothesis does not rule out the possibility of strong

geographic patterns but rather suggests that geography per

se does not drive the distribution of species—geographic pat-

terns could simply reflect an association between geography

and ecology. Empirical testing of the Baas Becking hypothesis

has focused mainly on specific microorganisms and/or specific

environments (Reno et al. 2009; Sul et al. 2013). Because most

members of microbial communities resist cultivation, under-

standing of molecular and ecological details of microbial bio-

geography remains vague (Staley and Konopka 1985; Martiny

et al. 2006; Raes et al. 2011; Hanson et al. 2012). However,
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the recent increase in the number of metagenomes in public

repositories offers an opportunity to explore the global distri-

bution of coding sequences, universally shared phylogenetic

marker genes, and horizontally transferred genes, including

genes of clinical importance such as antibiotic resistance genes

(Fondi and Fani 2010).

Furthermore, many studies have highlighted the impor-

tance of network theory and approaches based on sequence

similarity networks (SSNs) in studying large-scale evolutionary

relationships, including the influence of habitat and ecology in

the distribution of gene pools, evolution of organisms, and

horizontal gene transfer (HGT, Lima-Mendez et al. 2008;

Halary et al. 2010; Dagan 2011; Tamminen et al. 2012;

Alvarez-Ponce et al. 2013; Forster et al. 2015). However, in

most cases, only completely sequenced genomes (including

plasmids and phages) were used for these analyses, thus lim-

iting the scope of the studies to mainly cultivable microorgan-

isms or specific phyla (i.e., ciliates). Indeed, often the initial

habitat assignment stems from where the organism was

first isolated, which may not be its only, or even its preferred,

habitat (Hooper et al. 2009).

Here, we empirically test the Baas Becking hypothesis by

applying it to genes as well as organisms. By studying 339

metagenomes (pooled into roughly 100 sampling points)

using an SSN approach (Fondi and Fani 2010; Halary et al.

2010), we offer a culture-independent view of microbial gene

pool commonalities and differences and investigate whether

the distributions of genes are limited to particular ecological

niches or whether they display a cosmopolitan or geograph-

ically defined distribution. Geographical influence on overall

patterns of gene distribution is measured as the correlation

between the physical distance and the degree of shared ho-

mologous sequences between the metagenomes. A positive

or negative correlation indicates a distance-effect on global

macroscale patterns of gene distributions, whereas absence

of such correlation suggests independence between geo-

graphical distance and proportion of shared sequences.

While gene dispersal may depend on the distribution patterns

of microbial species, genes can also rapidly move between

phylogenetically distant cells by means of HGT. To test

whether the putative horizontally transferred genes follow

the distribution of their hosts or form their own distribution,

we converted the reconstructed SSN into an HGT network

and investigated its main topological features.

By applying a network-oriented analysis pipeline on culture-

independent environmental data, we here demonstrate the

cosmopolitan distribution of genes and the influence of ecol-

ogy on their distribution and, in parallel, we show that the

same patterns hold for “mobile” genes. Our findings have

important implications in several areas of biology, from envi-

ronmental microbiology to antibiotic resistance, to microbial

evolution and to the structure of present day common gene

pools.

Materials and Methods

Data Set Assembly and Validation

Metagenomic sequences (contigs) used in this work were

downloaded from three major repositories, IMG (http://img.

jgi.doe.gov/), MG-RAST (http://metagenomics.anl.gov/, Meyer

et al. 2008), and CAMERA (http://camera.calit2.net/, Sun et al.

2011). The presence of redundant projects (i.e., the same

project deposited in two different repositories) was checked

manually and, in those cases, only one of the two projects was

maintained. When only sequencing reads were available, shot-

gun metagenomics assembly was performed. Quality control

and removal of identical reads were done with Prinseq

(Schmieder and Edwards 2011). For most of the samples, as-

sembled contigs were available on the public repositories men-

tioned above. In those cases where (Roche 454) shotgun DNA

sequences were available, assembly was carried out using

Phrap using the default parameters (Machado et al. 2011).

A total of 339 metagenome projects (supplementary ma-

terial S1, Supplementary Material online) were retrieved, pro-

cessed, and analyzed. Each of the retrieved projects was

associated with a habitat, according to its sampling point as

indicated in the metafiles associated with each of the project.

Nine main categories were defined for sampling habitats, in-

cluding soil, seawater, inland-water, wastewater, host, air,

bioremediation, biotransformation, and sludge waste.

Samples for which a clear habitat of the corresponding sam-

pling point was not available were labeled as “Unknown.”

Additionally, for each metagenome the exact sampling

point (latitude and longitude) was retrieved (Global

Positioning System [GPS] coordinates). The physical distance

(d, expressed in km) among the different sampling points was

computed from their GPS coordinates using the spherical law

of cosines, that is:

d ¼ acos sin f1ð Þ � sin f2ð Þ þ cos f1ð Þ � cos f2ð Þ � cos ��ð Þð Þ

� R;

where f1 and f2 represent latitude values (in degree) of

points 1 and 2, �� represents the difference between longi-

tude values of points 1 and 2, and R is the earth’s radius (mean

radius = 6,371 km). In cases in which we found different meta-

genome projects (i.e., different naming and different number

of sequences but same habitat) with (almost) identical sam-

pling points (i.e., within a radius of 20 km), the corresponding

projects were pooled into a single sequence fasta file.

Ribosomal sequences were removed from each sequence

data set using Ribopicker software (Schmieder et al. 2012)

with default parameters.

At the end of the data set assembly and checking proce-

dures, 97 Fasta files were obtained, embedding a total of

1,019,781 contig sequences (longer than 1,500 bp). These

were used as input for homology-based network construction

pipeline. Fasta files and scripts used in this work have been
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made publicly available at http://sourceforge.net/projects/

metanetwork/.

BLAST Searches and Evolutionary Distances Computation

Homology searches among sampled contigs were performed

using BLASTp and BLASTn from the BLAST suite (Altschul et al.

1997). Only hits longer than 500 bp and with an E value lower

than 1e� 100 were considered for further analysis (multiple

hits among two contigs were counted only once and no con-

straints on the alignment coverage were imposed). Further-

more, several identity thresholds were considered, that is,

70%, 80%, 90%, 95%, and 99%. A summary of the main

features of contigs embedded in our data set and BLAST hits is

reported in supplementary fig. S1, Supplementary Material

online.

BLAST outputs were then postprocessed in the form of

undirected networks (accounting for the different identity

thresholds). Two different kinds of network were obtained

1) metagenomic network and 2) contig network. In the first

type of network, nodes represent single metagenome projects

(or metagenome project pools), whereas links represent the

amount of BLAST hits they share. In the second kind of net-

work (“contig network”), every node represents a contig and

two nodes are connected if a significant hit was retrieved

among them.

Five different identity thresholds were selected (70%, 80%,

90%, 95%, and 99%) and an alignment length threshold of

500 bp was set to place links between two different metagen-

omes (nodes). It must be noted that the size of the different

metagenomes in the data set may influence their degree (i.e.,

the number of their connections) in the network; indeed,

larger metagenomes might have higher probability to be

more connected in the graph, just by random chance. To

overcome this issue, we also computed a normalized value

for each link, dividing the actual number of BLAST hits by

the sum of the number of sequences possessed by the two

metagenomes and evaluated the correlation between con-

nectivity and number of sequences for each metagenome in

the normalized network. A Pearson product moment calcula-

tion over the original (not normalized graph) revealed a (low)

positive correlation among connectivity and sample size

(Pearson-product-moment correlation = 0.126, P value

<2.2e-16). The same calculation repeated after normalizing

link values produced a Pearson-product-moment correlation

of 0.044, with a P value of 0.002117, suggesting a minor size

effect on the computed similarity network. All BLAST postpro-

cessing was performed with in-house-developed Perl and

Python scripts.

To account for the actual amount of sequence possessed

by each sample (and not only the number of contigs pos-

sessed), we performed an alternative normalization process,

dividing the number of BLAST hits between two nodes by the

number of bases (not the contigs) possessed by the two

corresponding samples. General trends computed in the rest

of the article were not affected by the normalization proce-

dure implemented since the clustering of the different samples

was still influenced by ecology rather than by their physical

distance.

To test whether a correlation exists among the number

of BLAST hits shared by two metagenomes and their

geographical distance, the Pearson-product-moment correla-

tion was calculated. Results obtained (Pearson-product-

moment correlation =�0.038, P value = 06� 10� 3) revealed

the absence of a statistically significant correlation among

physical distance (expressed in km) and the number of

shared hits (supplementary fig. S2, Supplementary Material

online).

To account for the evolutionary distances among the

(coding) sequences in our data set, we have also implemented

the following pipeline. First, we have performed an all versus

all BLAST of the coding sequences embedded in our meta-

genomes data set. Next, we extracted 100 000 groups of

homologs among the different samples using an E-value

threshold of 1e-70. At this stage, to avoid considering un-

derrepresented samples, we focused our analysis only on

the most represented samples (i.e., inland water, host associ-

ated, sea water, and soil). Such a low E-value threshold was

used to retrieve highly similar sequence from the different

data sets that could facilitate accurate sequence alignment

and distance calculation in the next steps of the pipeline.

Identified groups of orthologs were then aligned using

Muscle (Edgar 2004a, 2004b) and the resulting multialign-

ments were automatically edited using Gblocks (Talavera

and Castresana 2007) to remove poorly aligned regions.

Edited multialignments were then used as input for the dis-

tmat tool of EMBOSS (Rice et al. 2000) suite, leading to the

creation of one distance matrix (according to Jukes–Cantor

model [Jukes and Cantor 1969]) for each group of homologs

shared by the samples. From these we calculated and com-

pared the evolutionary distances among genes shared by the

same samples and among those shared by samples from dif-

ferent niches.

Identification of Marker Genes

Universal phylogenetic marker genes were identified from the

metagenomes using the fetchMG program version 1.0 (Suna-

gawa et al. 2013). All identified marker genes from one meta-

genome were pooled and used in network analysis.

Connections between metagenomes were normalized with

the sum of sequences in the two metagenomes, as described

previously. To test whether a correlation existed among the

number of shared marker genes by two metagenomes and

their geographical distance, the Pearson-product-moment

correlation was calculated (supplementary fig. S3, Supplemen-

tary Material online).
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Network Analysis and Visualization

Graph topology and statistical tests were performed with the

igraph (v. 1.0.0) library of the R statistical package (v. 3.1.3,

http://www.r-project.org/) and in-house-developed Perl and R

scripts. The main graph metrics evaluated in this work were

betweenness centrality, clustering coefficient, closeness cen-

trality, and assortativity. Briefly, betweenness is a centrality

measure that indicates which nodes are holding the network

together; nodes with high betweenness values can be bridges

between otherwise disconnected regions of the network. The

clustering coefficient measures the extent to which the

neighbors of a given node are interlinked. We used this coef-

ficient as an indicator of cohesiveness around a node neigh-

borhood. The closeness of a node is the inverse of its average

distance to all other nodes in the graph. The higher the close-

ness, the more central is the node. Finally, assortativity mea-

sures the tendency of nodes with the same label (the source

ecological niche in our case) to preferentially connect with one

another in the graph (Newman 2003). If a network has perfect

assortativity (r = 1), then all nodes connect only with nodes of

the same kind. If the network has no assortativity (r = 0), then

any node can randomly connect to any other node. If a net-

work is perfectly disassortative (r =�1), all nodes will have to

connect to nodes with different degrees.

Statistical support to these centrality measures was pro-

vided through randomization of the original graph. More in

detail, here the null model reflects the possibility that interac-

tions are equally likely between any pair of nodes in the graph.

In other words, our stochastic null model has no centrality

structure. In this case, our randomized networks contained

the same nodes, but edges were rearranged randomly

among them (edges rearrangement). Statistical tests (e.g.,

Mann–Whitney test) were carried out each time to infer

whether original and randomized networks differed

significantly./

Network visualization and postprocessing were done using

the Cytoscape and Gephi software (Bastian et al. 2009; Kohl

et al. 2011). The GeoLayout Gephi plugin was used to build

geocoded graphs of gene sharing.

Computational Strategy for Clusters Identification and
Testing

To identify network clusters in the metagenomes network, a

community detection algorithm (MCL, van Dongen and

Abreu-Goodger 2012) was first applied to the graph. The

main parameter of this algorithm is the inflation factor (IF)

that modulates cluster granularity. To choose the optimal IF

(i.e., to select the proper trade-off between clusters size and

their overall homogeneity), we explored values ranging from

1.2 to 5 by steps of 0.2 and estimated cluster homogeneity by

computing the average intracluster cluster coefficient (ICCC)

at every step. Briefly, the clustering coefficient measures the

“cliquishness” around a node; hence, its average over the

nodes of a cluster can be used as a measure of the cluster

homogeneity. ICCC is computed considering only the edges

within clusters and, in principle, a clustering result that max-

imizes the ICCC produces more homogeneous graphs.

Supplementary fig. S5, Supplementary Material online,

shows the trend of the ICCC and the number of clusters at

different IF values for the 90% network. As expected, the

number of clusters increases as the IF increases, whereas the

opposite holds for ICCC. The peak at inflation value of 1.4

suggests that this clustering solution is the best trade-off be-

tween network fragmentation and cluster size (supplementary

fig. S4, Supplementary Material online). Additionally, this

threshold was shown to perform reasonably well also for

the networks obtained at different network clustering, allow-

ing the identification of eight major clusters (i.e., with at least

two nodes).

To test the presence of a correlation between the clustering

of the different nodes (metagenomes) and their source hab-

itat, we implemented a computational strategy similar to the

one applied by Lima-Mendez et al. (2008). Once the clusters

were identified in the network, we evaluated the correspon-

dence between such clusters and the source habitat of the

different nodes represented by the different nodes. In other

words, we evaluated whether metagenomes belonging to the

same ecological niche tended to cluster together or not in a

significant manner.

Three different measures are classically adopted to evaluate

the overlap between some kind of classifications (in our case

network clustering and source ecological niche): recall (R),

precision (P), and accuracy (A). R evaluates whether all

nodes of a given habitat are found in the same cluster

(R = 1) or there are found embedded in different clusters of

the network (R<1). Conversely, P measures how well a given

cluster corresponds to its best-matching habitat; a value of 1

indicates that all nodes in the cluster belong to the same hab-

itat. Similar to Lima-Mendez et al. (2008) from the class- and

cluster-wise statistics, the clustering-wise statistics were com-

puted as the weighted means over all habitat/clusters of the

class/cluster-wise values. The geometric mean of R and P gives

the accuracy measure. Results obtained with this approach

were compared to random expectations performing 1,000

permutation tests by shuffling labels of the nodes in the net-

work while maintaining the structure of the network. The null

hypothesis underlying this approach is that any node (group of

sequences) can occupy any network position (i.e., could clus-

ter with any other node in the network). Accordingly, during

our randomizations, the network structure is held constant

and the node labels are permuted. A graph sampled with

this approach retains all network traits of the empirical

graph and this enables assessment of whether the node char-

acteristics depend on the structure of the graph. For each of

the permutations, the same statistics (R, P, A) were computed

and finally compared to the observed ones.
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Contig Taxonomic Annotation and Source Molecule
Identification

Each contig of the metagenome data set was assigned to the

(putative) corresponding genus using the approach imple-

mented in RAIphy (Nalbantoglu et al. 2011).

Finally, since RAIphy is a semisupervised method that relies

on reference genomes, sample types that have better repre-

sentative set of sequenced genomes may achieve higher su-

pervised classification rates and will tend to connect with each

other more frequently. To avoid possible biases due to the use

of a semisupervised method, we also implemented a compo-

sition-based method (using tetranucleotide frequency distribu-

tions) for the identification of (putative) HGTs. Briefly, for each

match between two contigs, the tetranucleotide frequencies

of the flanking regions were compared as described in Teeling

et al. (2004). Only matches where the flanking region was at

least 1,000 bp and the Pearson correlation coefficient be-

tween the tetranucleotide profiles was below 0.7 were con-

sidered as putative HGT events.

The most likely source molecule of each contig (i.e., plasmid

or chromosome) was identified using the composition-

oriented software cBar (Zhou and Xu 2010). Both tools

were used with default parameters.

ORF Identification and Functional Annotation

ORFs were identified using the FragGeneScan software (Rho et

al. 2010). Functional annotation of identified ORFs was per-

formed using hmmscan from HMMER (version 3.1b2 [Finn

et al. 2011]) with an E-value cut-off of 0.1 and probing the

Pfam database (Finn et al. 2014). Antibiotic Resistance (AR)-

related genes were identified through BLAST (blastp) searches

against Antibiotic Resistance Database (Liu and Pop 2009).

Adjacency Matrix Construction

The adjacency matrix accounting for the degree of intercon-

nections among samples from the different environments was

computed as follows:

For each habitat, the proportion of connections of that

habitat with all the other habitats has been computed. The

proportion of connections connecting habitat A with habitat B

(PCA;B) is given by this formula:

PCA;B ¼
WeightðEdgeA;BÞX

i
WeightðEdgeA;iÞ

The PC index ranges from 0 to 1 and measures the

specificity of the connection between one habitat in respect

to the others. Since the denominator represents the

amount of sequences in one of the two analyzed samples,

this measure is specific to each of the analyzed environments

and is not symmetric PCA;B 6¼ PCB;A. The PC values have been

organized in the form of a matrix where all these values

have been normalized by computing the row Z score, which

means that rows of the matrix are centered and scaled by sub-

tracting the mean of the row from every value and then divid-

ing the resulting values by the standard deviation of the row.

Z row
i ¼

Xi � mrow

srow

Results and Discussion

General Features

We built an SSN using metagenome sequences from 97 sam-

pling sites (representing 339 metagenomic projects, see sup-

plementary material S1, Supplementary Material online)

where nodes represent sampling points and links reflect the

number of shared homologous sequences (see Materials and

Methods for network construction details). We used different

sequence identity thresholds in building these SSNs (i.e., 70%,

80%, 90%, 95%, and 99%). Results presented here refer to

the 90% network, although the results are valid for all identity

thresholds (see supplementary material S1, Supplementary

Material online). In figure 1, the extent of sequence sharing

among the different samples is presented as a network, to-

gether with the geographical location of each sampling site.

To test whether physical distance and the number of homol-

ogous DNA fragments shared by the different metagenomes

correlate, we calculated Pearson-product-moment correlation

coefficients for samples from different (Pearson Correlation

Coefficient [PCC] =�0.038 and P value = 6 � 10� 3) and

same habitats (from PCC =�0.2 in soil samples to 0.04 in

fresh water samples, P values< 6 � 10� 3; supplementary

fig. S2, Supplementary Material online). Therefore, physical

distance at the spatial resolution provided by the available

metagenomes does not explain the distribution of the links

in the metagenome-derived SSN, suggesting a relatively mar-

ginal role of physical distance in the shaping of the biological

relationships. Exemplars of this situation are reported in figure

1b and c for host- and sea water-derived samples.

Metagenomes of the subnetwork of figure 1b (samples no.

77, 25, 88 and 89, see supplementary material S2,

Supplementary Material online), although connected to

almost all the other metagenomes in the network, share

many more sequences among themselves. The sequences em-

bedded in these metagenomes were obtained from micro-

biomes of geographically distant Arthropods: Dendroctonus

ponderosae (samples 88 and 89), D. frontalis (sample 25),

Xyleborus affinis (sample 77), and Sirex noctilio (sample 54).

We observed a similar trend in geographically disparate speci-

mens of sea squirt Ciona intestinalis (Dishaw et al. 2014), con-

sistent with the selection of a core community by that

particular ecosystem. We observed the same feature for meta-

genomes displayed in figure 1c (samples no. 2, 97, 10, 39, 14,

28, 27, 2, and 8, see supplementary material S2,

Supplementary Material online), all from seawater samples
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and all sharing heavy connections despite most being sepa-

rated by large geographical distances. Accordingly, we spec-

ulate that the similarity of the ecological niches in which

samples were collected explains the high level of gene sharing

among these two sets of metagenomes. Figure 1c also shows

that, within samples sharing the same source niche, some

nodes that are close in the network (e.g., 10, 7, and 97) dis-

play fewer connections among them in respect, for example,

to those shared with nodes 28 and 2 (being far away in the

map). This, in turn, might suggest the limit of using physical

distances as a proxy for estimating the “real” distance among

gene pools. Indeed, other barriers and forces (besides geo-

graphical distance) might account for the actual dispersal.

This is the case, for example, of sea currents that may contrib-

ute to creating quite different environments in two close

points in the network of metagenomic samples. Similarly,

mountains might create a separation among physically close

terrestrial DNA pools. On the other hand, these features are

FIG. 1.—(A) Overall SSN among the 97 sampling points together with their geographical positions. Each node represents a metagenome project and the

links represent the presence of homologous sequences between them. Node and link sizes are proportional to the number of sequences embedded in the

sample and the (normalized) number of shared sequences, respectively. In (B) and (C) specific study cases are reported (see text for details) for host-(red

nodes) and sea-water (blue)-derived samples. The connections among samples from the same ecological niche and those among samples from different

ecological niches are shown in (D) and (E), respectively.
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quite hard to be confidently modeled on a large, global scale

as the one used in this work.

A preliminary visual inspection of the network revealed that

samples from same ecological niches (fig. 1D) are more tightly

connected than samples from different niches (fig. 1E). Thus,

to explicitly test the ecological niche versus geographical dis-

tribution hypotheses, we evaluated the correlation between

the grouping of the different metagenomes (i.e., the habitat

composition of the major clusters in the network of fig. 1) and

their source habitat. We first clustered the metagenomes ac-

cording to the Markov Cluster (MCL) algorithm (see Materials

and Methods) and then evaluated whether metagenomes be-

longing to the same ecological niche tended to (significantly)

cluster together using recall (R), precision (P), and accuracy (A)

measures. This analysis (fig. 2) revealed relatively high values of

both R and P across all the different networks (average

R = 0.588 and average P = 0.71). A similar trend was observed

also when measuring clustering accuracy (A) (fig. 2). Such high

values of P, R, and A were never obtained during 1,000

random permutations (label shuffling, see Materials and

Methods) of the original networks, giving a P value esti-

mate< 10� 3. The same results were observed for networks

obtained with lower sequence identity thresholds (supplemen-

tary fig. S6, Supplementary Material online) and when evolu-

tionary distances were considered for a set of 10,000

randomly sampled coding sequences in the data set (supple-

mentary fig. S7, Supplementary Material online).

Additionally, assortativity was used to evaluate the ten-

dency (if any) of nodes of the same type (i.e., sequences

from the same source habitats) to cluster together in the net-

work. Briefly, assortativity coefficient measures the preference

for a network’s nodes to attach to others that share a partic-

ular attribute (source environment in our case) and can be

comprised between�1 (disassortative network) and 1 (assor-

tative network). Assortativity for the network in figure 3 was

found to be 0.157, thus confirming a general pattern of pref-

erential connections between nodes of a particular ecological

niche. Importantly, higher assortativity values were never en-

countered when (1,000) randomization of the original net-

work were performed (edge rearrangement, see Network

Analysis and Visualization), allowing to infer a rough estima-

tion of a P value lower than 10� 3.

From this we conclude that the source habitat of the dif-

ferent sequence samples is a key factor in determining their

clustering within the different SSNs.

A force-directed layout of the network (fig. 3a) reveals a

clear separation between sea samples (in dark blue) and sam-

ples coming from other sources such as host (red), soil

(yellow), waste waters (black), and air filters (light blue).

Interestingly, inland-water samples (blue) appear to lay half

way between these two major clusters. As listed in table 1,

metagenomes from inland water samples possess the highest

betweenness values in the SSN in comparison to all the other

sample sources, expressing that these nodes have a central

position in the network and that, in turn, they serve as con-

nectors among otherwise separated regions of the network

(Mann–Whitney U test, P values in table 1). These results were

confirmed by randomizations (edge replacement, see

Network Analysis and Visualization) of the original graph

(table 1) according to which inland water metagenomes,

and (to a lower extent) sea water metagenomes, have be-

tweenness centrality values higher than is expected by

chance. Inland water metagenomes are also less prone to

form clusters within the network, since they show, on aver-

age, the lowest clustering coefficient (Mann–Whitney U test,

table 1). Inland water metagenomes possess also the highest

closeness centrality values in the SSN (Mann–Whitney U test,

table 1). This suggests that, in water, bacteria from different

origins (human, animal, and environmental) may be able to

mix, co-exist, and travel to an extent that is higher than in

other ecological niches. This could give rise to exchange and

shuffling of genes, genetic platforms, and genetic vectors

(Baquero et al. 2008). This result confirms and extends previ-

ous findings on the horizontal flow of the plasmid encoded

resistome (Fondi and Fani 2010).

As shown in figure 3a, nine metagenomes remained dis-

connected from the overall network. These metagenomes in-

cluded five seawater samples, two soil samples, one host, and

one inland water samples. Not surprisingly, these metagen-

omes embed fewer sequences than others present in the data

set. Indeed, although it has been shown that the metagen-

ome size has a negligible effect on the overall connectivity

within the network (see supplementary material S1,

Supplementary Material online, and Materials and Methods),

some exceptions may still exist. These metagenomes are

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Recall Precision Accuracy

Real

Random

FIG. 2.—Recall, precision, and accuracy values for real and random

network at 90% sequence identity threshold.
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connected to the others at lower identity thresholds (data not

shown).

HGT Networks

The extent of sequence sharing among the metagenomes can

be partially explained by the overlapping taxonomical space of

the different samples; indeed, similar habitats may tend to be

colonized by the same major taxonomical groups. This latter

observation is supported by the results obtained repeating the

same analysis pipeline for marker genes retrieved in the stud-

ied metagenomic samples (supplementary fig S4,

Supplementary Material online) and likely with a reduced

susceptibility to HGT. Nevertheless, the assembled data set

permits us the opportunity to assess the relationships (if any)

between physical proximity, ecological niche, and HGT. To

account for this task, a second set of networks was con-

structed, accounting for putative HGT events among the ana-

lyzed sequence data sets. We identified putative HGTs as

blocks of nearly identical DNA (�500 nucleotides and�98%

sequence identity) in otherwise distantly related contigs (i.e.,

contigs from different genera inferred by a composition-

based, semisupervised, taxonomic binning algorithm). Since

the method adopted for taxonomic binning of metagenome

sequences is mainly suited to microbial sequences

(Nalbantoglu et al. 2011), only prokaryote to prokaryote
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FIG. 3.—(A) Force-directed layout representation of the metagenome network (at 90% sequence identity threshold). Each metagenome is colored

according to its source habitat as indicated in the legend and major coherent clusters are highlighted. (B) The putative HGT network derived from network

shown in (A) (see text for details on HGT network construction).

Table 1

Centrality Measures in Relation to Sample Environmental Origin in Observed and Random Networks

Network Metric Soil Sea Host Inland water

Real Random Real Random Real Random Real Random

Betweenness 4.6 16.8(6.02) 52.46 42.20(4.05) 50.52 61.14(5.24) 102.67 63.76(6.9)

P = 2*10�3 P = 2*10�2 P = 2*10�2

Closeness 0.42 0.44(0.008) 0.46 0.48(0.07) 0.49 0.50(0.009) 0.50 0.48(0.01)

P = 1*10�3 P = 9*10�3 P = 4*10�3

Clustering c. 0.68 0.18(0.03) 0.6 0.24(0.03) 0.56 0.24(0.02) 0.39 0.20(0.03)

P = 1*10�3 P = 3*10�1 P = 2*10�3

NOTE.—Values in parentheses after randomized values indicate standard deviation. Values after real values for soil, host, and sea metagenomes indicate P values for
comparisons to inland water samples (Mann–Whitney U test).
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putative gene exchanges will be considered in the following

sections. Importantly, trends in sequence sharing described

below were observed also when a composition-oriented

method (based on the evaluation of differences in tetranucleo-

tide frequency distribution between two contigs, see Contig

taxonomic annotation and source molecule identification) was

used for the identification of (putative) HGT.

The network of HGT among metagenomes is reported in

figure 3b, displaying a topology very similar to the network of

gene sharing (fig. 3a) although, as might be expected, pos-

sessing fewer links. The HGT network also proves that se-

quence sharing between metagenomes is not just due to

overlapping taxonomical space. To further investigate the

HGT network, we built a second type of network in which

each node represents a single contig, whereas links account

for (putative) HGT events. This network contains 34,555

nodes (contigs) and 34,398 edges (putative HGT events, sup-

plementary material S3, Supplementary Material online) and

can be divided into 8,017 connected components (CC), the

great majority embedding only few contigs (�10). We identi-

fied 46 larger CCs, embedding 50 or more contigs. Functional

annotation was missing for 38% of the genes involved in

putative HGT events. Among those that were successfully an-

notated using Pfam database, the two most represented func-

tional categories were ABC transporters and transposase DDE

domain. Considering the biological role of genes embedded

into these categories (resistance to xenobiotics and horizontal

transfer of genes) this finding highlights the dangerous impli-

cations of the horizontal flow of genes in the spreading of

microbial resistance (and resistance to xenobionts in general)

in natural environments (Baquero et al. 2008; Fondi and Fani

2010). Two examples of this are provided below.

To investigate the influence of ecology shaping the HGT

network, we estimated whether each CC was either homo-

geneous or heterogeneous in terms of the habitat of the em-

bedded contigs. Results shown in figure 4a revealed that

almost 90% of the CCs (6,814 CCs) contain contigs belonging

to the same environment. Heterogeneous clusters are less fre-

quent, although interesting exceptions do exist (see below).

The observed distribution of homogeneous clusters was com-

pared against the (averaged) distribution of the same measure

from 1,000 networks, obtained through random label reshuf-

fling (see Computational strategy for clusters identification

and testing). The distinctness of the two distributions is

shown in figure 4a and was assessed by a Mann–Whitney U

test (P value< 2.2e-16). A high number of interconnections

inside each of the examined habitats (e.g., host–host and sea

water–sea water) were observed for most of the samples

(fig. 5; see below), in agreement with overall samples cluster-

ing reported in figure 4a and with previous findings concern-

ing the possible presence of barriers or trends to HGT (Popa

and Dagan 2011). According to this whole body of data, ecol-

ogy seems to exert a broad influence on recent gene ex-

change in environmental samples. This is in agreement with

the theory according to which ecological similarity shapes net-

works of gene exchange by selecting for the transfer and

proliferation of adaptive traits or by increasing physical inter-

actions between community members (Aravind et al. 1998;

Caro-Quintero et al. 2011; Smillie et al. 2011). For example,

strong geographical differentiation apparently caused by

recent gene transfer among co-occurring bacteria was ob-

served for Vibrio representatives (Boucher et al. 2011).

An adjacency matrix was built to explore more thoroughly

the interconnections that link sequences from different
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FIG. 4.—Composition of network clusters in terms of habitat and molecule categories. One hundred percentage values on the X axis indicate clusters

with contigs belonging to the same category; conversely, lower values indicate more heterogeneous clusters (i.e., contigs belonging to different habitat or to

different molecules). The cluster composition is shown for (A) habitat coherence and (B) molecule coherence (i.e., plasmid–plasmid and chromosome–

chromosome).
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habitats and common patterns of gene exchange among

samples retrieved from different ecosystems (fig. 5). Two

major clusters can be identified on the basis of the dendro-

gram topology (Clusters 1 and 2 in fig. 5). Contigs embedded

in each of these clusters have similar connections toward the

other environments present in the HGT network. This suggests

the presence of a common pool of genes in ecosystems em-

bedded in these clusters. Cluster 1, for example, embeds Host,

Sludge waste, and Air ecosystems. This particular clustering is

supported by Smillie et al. (2011) and studies showing that

fecal coliforms and other animal pathogens are indeed pre-

sent in sludge waste samples (Jones 1980; De Luca et al. 1998;

Shanahan et al. 2010) and that opportunistic pathogens com-

monly isolated from human-inhabited environments have

been identified in airborne environments (Tringe et al.

2008). Also, the fact that activated sludge microbiomes are

characterized by high microbial density and high levels of var-

ious HGT associated traits (e.g., AR-related genes and plas-

mids/integrons/transposons) (Schluter et al. 2007; Zhang et al.

2011) indirectly supports the observed clustering of sludge

waste samples together with microbes from other (diverse)

ecological niches (e.g., clinical environment). Similarly,

Cluster 2 contains ecosystems that embed overlapping micro-

bial communities (i.e., biotransformation, bioremediation, and

soil environments) and thus showing similar patterns of inter-

connections against microbes from other ecosystems.

Exceptions to ecologically homogeneous clusters can be

highlighted within our data set. Two paradigmatic examples

of cross-habitat putative HGT were chosen in the overall pu-

tative HGT network and are shown in figure 6. In detail, figure

6a reports putative HGTs among contigs embedding tetracy-

cline resistance determinants (tet34) in samples isolated from
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FIG. 5.—Adjacency matrix showing the relationships among the different habitat types in the putative HGT events network. For each habitat, the

proportion of connections of that habitat with all the other habitats has been computed. The proportion of connections connecting habitat A with habitat B

(PCA;B) is given by this formula:

PCA;B ¼
WeightðEdgeA;BÞX

i
WeightðEdgeA;iÞ

Since the denominator represents the amount of sequences in one of the two analyzed samples, this measure is specific to each of the analyzed environ-

ments and is not symmetric (PCA;B 6¼ PCB;A). Color gradient within the matrix refers to the proportion of connections of contigs from a given habitat with all

the others from other habitats, with lighter tones representing less abundant interconnections among the corresponding habitats.
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host and inland waters. Tetracycline resistance is often asso-

ciated with conjugative transposons or other transferable ele-

ments (e.g., pheromone-inducible plasmids) (Clewell et al.

1995; Dunny et al. 1995) and plasmid-mediated HGT events

involving such determinants have been previously identified

(Fondi and Fani 2010; Bosi et al. 2011). Similarly (fig. 6b),

contigs embedding chloramphenicol resistance determinants

belong to samples of very different origin (soil and host). This

latter finding shows possible pathways for cross-habitat chlor-

amphenicol-resistance propagation in the environment and is

in line with previous observations on swine feedlot wastewa-

ter as a possible source of chloramphenicol-resistance genes

(Li et al. 2013) and the overall capability of this class of genes

to undergo HGT (Sermonti et al. 1978; Takamatsu et al.

2003). Taken together, these two cases show that interhabitat

barriers and taxonomic distance can be overcome by certain

genes since phylogenetically unrelated bacteria, and those in-

habiting distinct environments were found to share common

antibiotic resistance determinants, probably as a result of (one

or multiple) HGT event(s) (Halary et al. 2010; Smillie et al.

2011).

The network-based approach adopted here allows testing

the role of plasmids and chromosomes in the overall gene

exchange pattern within environmental samples. Indeed, the

importance of plasmids and chromosomes in shaping the mi-

crobial HGT network has been assessed in recent works

(Halary et al. 2010; Smillie et al. 2011). Halary et al. (2010)

showed that gene sharing mostly occurs among molecules of

the same type (molecule coherence), meaning that plasmid-

plasmid and chromosome–chromosome gene sharing is more

frequent than cross-molecule sharing. Accordingly, we inves-

tigated whether contigs embedded in the same CC belonged

to the same or different molecules (i.e., plasmids or chromo-

somes). Contig sequences were assigned to their source mol-

ecule adopting a composition-based strategy as implemented

in cBar (Zhou and Xu 2010) and the source molecule compo-

sition of each cluster was evaluated. Results reported in figure

4b show an overall coherence within the CCs identified in the

network. In particular, 5,199 CCs (~65% of all the CCs) are

highly homogeneous: more than 90% of the embedded con-

tigs belong to the same type of DNA molecule. Conversely,

heterogeneous clusters (those in which contigs are almost

evenly distributed among the two types of molecules) repre-

sent 24.3% of the total number of clusters. Again, the ob-

served distribution of homogeneous clusters was compared

against the same (averaged) distribution obtained from 1,000

networks, obtained through label reshuffling (red line in fig.

4b). The distinctness of the two distributions was assessed by a

Mann–Whitney U test (P value< 2.2e-16). This finding indi-

cates that DNA pools are mainly transferred between mole-

cules of the same type.

Notably, general trends (i.e., molecule and habitat coher-

ence) among the various clusters were not affected by the

method used for estimating the number of HGT events as

adopting a composition-based (i.e., tetranucleotide frequen-

cies, see Materials and Methods) approach led to the same

overall results (data not shown).

Conclusions

By adopting a similarity network approach on a comprehen-

sive set of environmental sequences, we revealed the absence

of an overall distance effect in the level of sequence sharing

among microbial samples; even distant microbial communities

may share more homologous sequences than geographically

closer DNA pools. Metagenome gene composition is therefore

strongly affected by ecology. Interestingly, inland water sam-

ples occupy a “bridge-like” position in the overall metagen-

ome network (fig. 3a). Hence, despite maintaining their own

(specific) gene pool as assessed by clustering analyses, these

samples connect microbial communities that otherwise would

remain disconnected (e.g., host and seawater samples). This is

in agreement with previous findings on the horizontal flow of

plasmid genes (Fondi and Fani 2010) and speculations on the

role of aquatic environments in the spreading of AR-related

determinants (Baquero et al. 2008). These trends were

tet34

A B
chloramphenicol
resistance

FIG. 6.—Examples of putative cross-habitat HGT events among contigs (nodes) embedding (A) tetracycline resistance determinants and retrieved from

inland waters (blue nodes) and host (red nodes) and (B) chloramphenicol resistance in host (red) and soil (yellow) derived samples.
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confirmed when the SSN was converted into a putative HGT

network by maintaining only those connections linking very

similar sequences (identity� 98%) in distantly related micro-

organisms (i.e., belonging to different genera). Ecology

strongly influences the network of HGT in microbes even

when samples not strictly related to human are considered,

as has also been preliminarily observed in terrestrial and aqua-

tic environments (Hooper et al. 2008). Moreover, HGT events

mainly involve molecules of the same kind (i.e., either plasmids

or chromosomes) with promiscuous gene exchange being less

frequent.

Our work shows the possible use of SSN for studying pat-

terns in microbial ecology and also lays foundations for inte-

grating such networks with other environmental parameters

(e.g., temperature, pH, pressure, and physical barriers) on the

structure of the gene sharing and HGT networks. Finally, our

findings provide support for the Baas Becking hypothesis (for-

mulated in 1934), suggesting that it also applies to genes,

besides microbes for which it was originally formulated.

Overlapping microbial gene pools are likely to be found in

widely geographically disparate environments, and tighter as-

sociations are observed among gene pools from similar hab-

itats. This holds true regardless of microbial evolutionary

lineages (i.e., their common evolutionary history) since we

have shown that the same patterns of common gene pools

still remain when only genes likely shared by means of HGT

events are maintained in the network. This suggests that it is

not so important which organism transcribes and translates a

gene and it matters more where that organism is located,

demonstrating that at least some genes act as public goods

(McInerney et al. 2011). Accordingly, they are available for all

organisms to integrate into their genomes although the kind

of ecological niches occupied and the type of informative mol-

ecules harboring them might impose some constraints on the

overall possibility of gene pools to undergo HGT. Finally, be-

sides drafting an overall scheme of pathways for the global

distribution of gene pools, results presented here provide im-

portant biological insights into the spreading of antibiotic-

resistance-related genes across multiple hosts and habitats.
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