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Ischemic heart disease 

 

Ischemic heart disease and its most severe manifestation, i.e. myocardial infarction, is a major cause 

of death and disability worldwide and myocardial infarct size is a major determinant of prognosis 

(Schmidt et al., 2014). 

The pathogenic occurrences in the infarcted heart are dependent on ischemia/reperfusion (I/R).  

I/R is a process whereby the initial damage caused to tissue by compromised blood flow and the 

related metabolic starvation is then compounded by additional and more severe injury caused by re-

oxygenation upon blood flow restoration. The compromised blood flow is a result of narrowing of 

the coronary artery (Liem et al., 2007). It is therefore essential to restore coronary flow to the ischemic 

myocardium by interventions such as angioplasty, thrombolytic treatment or coronary bypass surgery 

(Jennings and Reimer, 1991). 

Patients, who are able to overcome the acute phase of I/R, face long-term complications due to 

adverse myocardial remodeling, mainly impaired myocardial contractile function and heart failure 

(Jaber and Holmes, 2007). In particular, cardiac dysfunction caused by nonlethal myocardial 

infarction affects an ever-increasing number of subjects, depending on the ageing of population, 

with a mean 5-year survival of 50-70%. Hence, there is a major interest in the identification of new 

therapeutic agents that can prevent or reduce myocardial injury. 

 

 

Ischemia/reperfusion (I/R) pathophysiology 

 

During I/R, there is a primary damage of the coronary endothelium leading to impaired production 

of nitric oxide (NO ) and failure of endothelium-dependent functions, chiefly vasodilatation and 

prevention of leukocyte and platelet adhesion. This triggers a cascade of events that include 

recruitment of harmful reactive oxygen species (ROS), such as superoxide anion (O2
-
) and 

hydroxyl anion (OH
-
). The cellular components susceptible to damage by ROS are lipids (peroxidation 

of unsaturated fatty acids in membranes), proteins (nitration, oxidation and denaturation), carbohydrates 

and nucleic acid (Jaeschke and Woolbright, 2012). Furthermore, ROS determine the release of 

histamine, a powerful arrhythmogenic factor, and the increase of intracellular calcium 

concentration; these actions produce an irreversible damage, apoptosis and finally necrosis of 

cardiomyocytes (McCord 1985; Simpson 1988).  
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The process is accompanied by inflammatory cell recruitment secondary to endothelial injury 

(Kokura et al., 2002). Indeed, activated inflammatory leukocytes, especially neutrophils and, at a 

later stage, macrophages, provide a major contribution to oxidative stress through the production of 

both superoxide anion (O2
-
) and NO , which react to generate peroxynitrite (ONOO ), a major 

oxidant for lipid membranes, sulfhydryl residues, aromatic residues of proteins and other 

biomolecules (Bencini et al., 2010).  

In conclusion, the mechanisms of I/R injury that induce progression of cardiac damage and 

development of myocardial fibrosis and heart failure are multiple and complex (Eefting 2005): they 

basically involve oxidative stress (McCord 1985; Simpson 1988) and inflammation (Frangogiannis 

2002). 
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Aims of the study 

 

The study described in this thesis was designed and performed to test the protective action on I/R 

damage by two molecules, a natural one, the peptide hormone relaxin (RLX) which has been 

demonstrated to possess prominent cardioprotective actions, and a synthetic one, a Mn
II 

complex 

with tetraamine dicarboxylic acid 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid, 

also termed  Mn
II
(Me2DO2A), endowed with ROS-scavenging characteristics. 
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Relaxin 

 

Relaxin (RLX) is a peptidic hormone produced mainly by the corpus luteum, the uterus and the 

placenta during pregnancy. Its main function is to facilitate childbirth, helping the tissues of the 

birth canal to relax and the interpubic ligament to elongate. The discovery of the RLX hormone 

dates back to the second half of the 1920s. 

 

 

Discovery 

 

RLX was first discovered by Frederick Hisaw (1926) as a substance that could facilitate parturition, 

based on its observed ability to soften and expand the pubic ligament prior to delivery in pregnant 

female gophers and guinea pigs and was subsequently named for these actions. Hisaw noticed that 

the injection of serum from pregnant guinea pigs or rabbits into virgin guinea pigs induced 

relaxation of the pubic ligament when administrated shortly after estrus (Hisaw 1926). Further 

studies conducted by Hisaw in 1927, located this “relaxing” factor in the pig corpus luteum and 

rabbit placenta (Hisaw 1927), and the hormone was formally named “relaxin” after it was extracted 

from the pig corpus luteum in 1930 (Fevold et al., 1930). 

After this initial discovery, research on RLX declined for the next 15 years due to the economic 

depression in the 1930s and world conflict in 1940s, as well as limitations in peptide isolation and 

available RLX bioassays (reviewed in Bani 1997). 

However, there was a surge of research interest on RLX from the late 1940s through the early 

1960s, during which time, a better understanding of the physiological roles of RLX in pregnancy 

and parturition was achieved. 

RLX was reportedly shown to have several effects on the reproductive system, including its ability 

to promote expansion of the interpubic ligament in estrogen-primed mice (Hall 1947; Hall 1948), 

mediate relaxation of the uterine myometrium in estrogen-primed guinea pigs (Krantz et al., 1950) 

and induce cervical softening in estrogen-primed cattle (Graham and Dracy 1953). 

These physiological actions of RLX were centered on its ability to regulate collagen metabolism to 

facilitate pregnancy and successful parturition in females (Sherwood 2004); and thus, RLX was 

often referred to as a pregnancy-related hormone. 

During the late 1950s and early 1960, human studies exploiting the use of RLX as a therapeutic 

agent were supported by Warner-Chilcott laboratories, which generated an impure preparation of 
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porcine RLX (Releasin). Releasin was found to have several beneficial effects, being able to 

prevent premature birth by inhibiting uterine contractility, reduce the duration of child-birth by 

softening the cervix, and increase skin elasticity in patients with progressive systemic sclerosis 

(Sherwood 2004). However, clinical studies with Releasin in the mid-1960s were discontinued due 

to the lack of consistent effectiveness, safety issues and the failure to meet the stringent 

requirements of the United States Food and Drug administration (FDA) (Evans 1959; Erikson and 

Unemori 2001). 

Over the years, research on RLX has significantly increased due to improved methods for its 

isolation and purification (Sherwood and O’Byrne 1974), the generation of sensitive and reliable 

bioassays to measure its level in the blood, and the development of methods to determine its protein 

structure, amino acid sequence and biological actions which preluded to the production of human 

RLX by recombinant DNA technology well suited for human use, as better specified in the 

following chapters (Sherwood 2004; Bathgate et al., 2006; Bathgate 2013). 

In the last thirty years it has been demonstrated  that RLX, historically classified as a hormone 

pertaining only to the reproductive sphere, is not a mere hormone of reproduction, but can influence 

the function of many different organs and tissues (Bani 1997; Dschietzig and Stangl 2002 

Sherwood 2004). Thus, RLX can currently be regarded as one of the most pleiotropic hormones 

ever known. 

 

 

Genes 

 

Developing recombinant DNA technologies enabled RLX researchers to clone RLX cDNAs from 

various species, which showed that it is structurally related to insulin. Despite this link, there is only 

an approximately 25% sequence homology between RLX and insulin (Bathgate et al., 2006), and 

there are no common cellular effects between the two hormones (Bennett 2009). 

It is now well-documented that RLX belongs to a distinct of family of peptide hormones that 

diverged from insulin and the insulin-like growth factors early in vertebrate evolution (Hsu 2003; 

Wilkinson et al., 2005; van der Westhuizen et al., 2008). RLX family peptides are distinguished by 

their ability to bind and activate distinct GPCRs, as opposed to the tyrosine kinase receptors that are 

activated by peptides of the insulin family (Hsu 2003; Wilkinson et al., 2005; van der Westhuizen et 

al., 2008). 

Screening of genomic libraries and database searches have shown that the RLX peptide family in 

humans  and higher primates are encoded by seven genes, which includes three RLX genes: RLN1, 
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RLN2, RLN3 and four insulin-like (INSL) peptides genes; INSL3, INSL4, INSL5 and INSL6 (van 

der Westhuizen et al., 2008; Bathgate 2013). On the other hand, most other species consist of five 

of these genes which include: RLN1 (equivalent to human RLN2), RLN3, INSL3 INSL5 and 

INSL6 (equivalent to human RLN3, INSL3, INSL5 and INSL6, respectively) (Bathgate 2003; 

Samuel 2007). 

In humans, the RLN1 and RLN2 genes are located on chromosome 9, in close vicinity to genes 

INSL4 e INSL6, whereas RLN3 is located on chromosome 19, near INSL3; INSL5 is found on 

chromosome 1 (Bathgate et al., 2002; Hsu et al., 2003). In mice, instead, RLN1 is located on 

chromosome 19, in the vicinity of INSL6, while RLN3 maps on chromosome 8, near INSL3.  

The products of the human genes RLN1, RLN2 and RLN3 are named respectively H1, H2 and H3 

RLX, while the products of  murine genes and of rats RLN1 and RLN3 are called relaxin and 

relaxin 3 (Bathgate et al., 2006).  

Although the peptides of these genes share low amino acid sequence homology, phylogenetic 

analysis revealed that they are evolved from a same ancestral gene, the RLN3 gene (Hsu 2003; 

Wilkinson et al ., 2005). Furthermore, the genes encoding the human relaxin family peptides were 

found to share a similar structure and synthesize similar properties (Hsu 2003). 

It is now well established that the product of human RLN2 gene (H2 RLX) is the functional 

orthologue of the RLN1 gene product (relaxin) of non-primate species. H2 RLX and its species 

equivalent RLX peptide are the major stored and circulating forms of RLX in their respective 

species (Samuel et al., 2007).  

 

 

Structure 

 

RLX is a polypeptidic hormone of 6 kDa with a structure similar to insulin, with similar molecular 

weight, number and length of chains and disulfide bonds (Bathgate et al., 2006).  

RLX, like insulin, is formed by two chians, A e B (Figure 1); A chain consists of 24 amino acid 

residues (25 in mice) with 2 -helix structures  in A3-9 and A13-20 position,  whereas the B chain 

is made up of 29 amino acid residues with only one -helix structure in B7-22 position. The chains 

are bound covalently by two disulfide bonds; besides, an intra-chain disulfide bond (in the A chain) 

stabilizes the tertiary structure (Bathgate et al., 2006). The glycine in B8 e B20 position and half of 

the cysteines of the disulfide bonds are essential for the correct “insulin-like” folding. It is, thus, 

clear how RLX and insulin share a similar structure (Bathgate et al., 2006).  
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In various species, RLX maintains a scarce homology of the amino acid sequence, comprised 

between 30% and 60%. This is at variance with a highly preserved localization of the disulfide 

bonds and of the cysteines, which seem to yield a tertiary structure similar for all isoforms (Bryant-

Greenwood et al., 1994). 

The molecular analysis has led to identify relaxin’s amino acid residues preserved during evolution: 

in the A chain cysteines are constant in A10, A11, A15 position, the glycine in A14, the lysines in 

A9 e A17 and the arginines in A18 e A22, while in B chain, the glicines in B12 e B14 and the  

arginines in B13 e B17. 

The arginines B13 e B17 are found close to the  disulfide bond and carry out a fundamental role for 

bioactivity, as they are involved in the interaction ligand-receptor (Bullesbach and Schwabe,  2005); 

even their minimum variations cause the lack of  the interaction with receptor. 

 

 

 

Fig.1 Schematic structure of RLX (Sherwood, Endocr Rev 25:205–34, 2004) 
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Synthesis  

 

RLX, like insulin, is synthesized in the form of a precursor, known as pre-pro-relaxin. The latter has 

a molecular weight of 23 KDa and is made up of a single chain that includes the signal peptide, B 

chain, the connection peptide C and A chain. 

The maturation process begins by the action of enzymes of the rough endoplasmic reticulum, that 

carry out a cut of the signal peptide (3KDa) at the carboxyterminal end of B chain; from this cut 

pro-relaxin is obtained. 

The complete maturation occurs presumably in the Golgi apparatus: the PC-1 e PC-2 convertase, 

involved in the synthesis of insulin by pro-insulin, carry out the cut between C peptide and 

carboxyterminal end of A chain, while PC-3 determines the cut between C peptide and the B chain 

(Smeekens et al., 1992). C peptide could be involved in the folding of the protein, as it seems to 

direct the correct formation of the disulfide bonds between A chain and B chain. 

The pre-pro-relaxin is without biological activity, while pro-relaxin, even though endowed with C 

peptide, has a biological activity compared to the mature molecule (Zarre et al., 2001). 

 

 

 

RLX sources 

 

Reproductive tissues 

 

The expression of H1 RLX is limited to the decidua and the placenta, even if the biological role of 

this isoform still remains unknown.  H2 RLX in human and relaxin in mice and rats are produced in 

high levels during pregnancy by the placenta, the uterus and - above all - by the corpus luteum. The 

latter is its main source in various animal species (Skott and Carter, 2002; Sherwood, 2004; 

Bathgate et al., 2002; Samuel et al., 2003). Secondary sources of H2 RLX have been located in the 

mammary glands and the fallopian tubes (Bryant-Greenwood et al., 1987; Mazoujian and Bryant-

Greenwood, 1990), while in mice they are the mammary glands (Peaker et al., 1989) and in rats 

they are the uterus, the placenta and the mammary glands (Gunnersen et al., 1995). Relaxin 3 in 

mice is produced by the luteal cells and it is expressed also in the ovary, even if the two forms do 

not seem to be identical (Bathgate et al., 2002). 
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Although RLX is often associated as a female pregnancy-related hormone, it is also produced in 

males but in smaller quantities. The expression of H1 RLX is limited to the prostate and, even if its 

biological role remains unknown, small quantities are found in the seminal fluid (Gunnersen et al., 

1996, Yki-Jarvinen et al., 1983).  The expression of H2 RLX and its mRNA has been detected in 

the prostate and in the seminal vesicles (Gunnersen et al., 1996, Yki-Jarvinen et al., 1983). In mice 

(Samuel et al., 2003) and rats (Gunnersen et al., 1995) relaxin is expressed in testicles and prostate. 

In man the expression of H3 RLX has been demonstrated in testicles but the biological role is still 

unknown (Liu et al., 2003). 

 

 

Non-reproductive tissues  

 

RLX is expressed not only in reproductive organs. By RT-PCR it has been demonstrated that, both 

in atrial and ventricular portion of the human heart, small quantities of H1 and H2 RLX are 

expressed (Dschietzig et al., 2001). In mice, instead, relaxin mRNA is present in the brain, lung, 

kidney, liver, thymus, spleen and heart (Bathgate et al., 2002; Du et al., 2003; Samuel et al., 2004); 

in rats, it is present in the heart, brain, kidney, pancreas and liver (Osheroff e Ho, 1993; Gunnersen 

et al., 1995). The expression of H3 RLX in human is located essentially in the brain, but it has been 

demonstrated also in lymphnodes, spleen, and thymus (Bathgate et al., 2002); in mice instead it has 

been found in the brain (Bathgate et al., 2002), in the spleen, thymus, lung, heart, kidneys and liver 

(Bathgate et al., 2002; Samuel et al., 2003; Samuel et al., 2004); in rats, it is present in the brain and 

in the heart (Kompa et al., 2002; Samuel et al., 2004). 

 

 

 

Relaxin family peptide receptors (RXFPs)  

 

For numerous years, researchers have tried to identify RLX receptors; however, the structural 

resemblance between this hormone and insulin had led to the assumption that the two molecules 

shared similar receptors with tyrosine-kinase activity. Instead, in 2002 it was discovered that RLX 

is able to activate two receptors, until then orphans, belonging to the LGR (leucine-rich repeat-

containing G protein-coupled receptors) family, namely LGR7 and LGR8 (Hsu et al., 2002; 

Rosenkranz et al., 2002). These receptors, that shared approximately 60% of the amino acid 

residues, have been renominated respectively Relaxin Family Peptide Receptors 1 e 2 (RXFP1 and 
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RXFP2) (Bathgate et al., 2006) A further confirmation of this important discovery derives from the 

fact that the inhibitors of the activation of G proteins abolish the response of target cells to RLX 

(Barstch et al., 2001). More recently, other G protein-coupled receptors of the relaxin family have 

been discovered: GPCR135 and GPCR142 (Liu et al., 2003), respectively renominated RXFP3 e 

RXFP4. 

RXFP1 is the main receptor and it is the most specific for  H2 RLX, however it binds also H3 RLX, 

it is expressed both in the reproductive apparatus during pregnancy and in the heart, brain, kidney 

and lung (Bathgate et al., 2003). 

RXFP2 instead binds INSL3 peptide, but it is able to bind with less affinity also H1 and H3 RLX 

(Hsu et al 2002; Sudo et al., 2003). 

RXFP3 and RXFP4 bind relaxin 3 (Liu et al., 2003). RXFP3 is highly expressed in the brain of rats 

(McGowan et al., 2006) and represents the endogenous receptor for relaxin 3. 

RXFP4 is selectively activated by relaxin 3, even if with low affinity, and it has been located in 

various tissues, namely brain, kidney, testicles, thymus, placenta, prostate, salivary glands, thyroid 

and colon (Liu et al., 2003); recently it has been discovered that it represents the endogenous 

receptor for ISLN5 (Liu et al., 2003). 

 

 

RXFP1 structure 

 

RXFP1 is constituted in its N-terminal region by a low density class A lipoprotein module (LDLa), 

followed by two cysteine rich regions, separated by a multiple repetition of  leucine (Multiple 

leucine-rich repeats LRR). The ectodomain is connected to a region formed by seven trans-

membrane domains, followed by a C-terminal region (Figure 2). Episodes of alternative splicing on 

the region that codifies for the ectodomain generate the receptor’s isoforms (Bathgate et al., 2006). 

Exploiting RXFP1 chimeras, two binding sites for RLX have been identified: one with more 

affinity in the extracellular region, the other with low affinity, placed at the trans-membrane 

domain. The bond receptor-ligand takes place through synchronized chelation of the two arginine 

B13 e B17 present in RLX, due to the couple of aspartic acid and glutamic acid of the receptor. This 

bond is stabilized by the hydrophobic interaction that isoleucine B20 of the hormone carries out 

with the residues of tryptophan, isoleucine and leucine of the LRR domains on the receptor 

(Büllesbach et al., 2005). The receptor, once the binding has taken place with the RLX, faces a 

conformational change that favors the contact of the ligand with the transmembrane domain. This 
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new conformation determines, through the LDLa domain, the activation of the adenylate cyclase 

protein (AC) and the consequent production of cyclic AMP (cAMP) (Scott et al., 2006). 

Of interest, there is approximately 85% sequence homology between rat, mice and human RXFP1 

(Scott et al., 2004). 

 

 

 

Fig.2 Schematic representation of the RXFP1 receptor (Bathgate et al., Pharmacol Rev, 58:7-31, 

2006) 
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RXFP1 expression pattern 

 

Since its discovery, RXFP1 transcripts have been found in several reproductive organs and non-

reproductive organs known to be involved in RLX physiology (Sherwood et al., 2004). Hsu and 

colleagues demonstrated that in humans the RXFP1 transcript is present in the heart, brain, kidney, 

testis, placenta, uterus, ovary, adrenal, prostate, skin, liver and lung (Hsu et al., 2002). In rodents a 

similar expression pattern was seen including the heart, nipple, oviduct, small intestine, colon, 

thymus and spleen (Hsu et al., 2000; Krajnc-Franken et al., 2004; Scott et al., 2004) 

 

 

RXFP1 dimerization as a de-activation mechanism 

 

The regulation of RXFP1 has been shown to be similar to numerous GPCRs including the receptors 

for the thyroid-stimulating hormone, luteinizing hormone, and follicle-stimulating hormone 

(Svendsen et al., 2009), particularly in terms of their dimerization properties. RXFP1 was 

consistently shown to exist as a homo-and heterodimer receptor complex on the plasma membrane 

after being synthesized (Kern et al., 2008; Svendesen et al., 2008). 

RXFP1 homodimers are often predominantly formed in the endoplasmic reticulum before being 

translocated to the cell membrane, thus implying that RLX receptor exists as a constitutive 

functional dimer once it reaches the cell surface (Kern et al., 2008; Svendsen et al., 2008). This 

suggests that the expression of RXFP1 at the cell surface is highly regulated by a number of factors 

during receptor synthesis and maturation, to ensure the smooth trafficking of the homodimer 

receptor complex to the plasma membrane. On the other hand, RXFP1 heterodimers are formed 

when RXFP1 interacts with other GPCRs that are co-expressed within the same cellular membrane. 

The dimerization of RXFP1 can occur either in the absence or presence of ligand binding to the 

receptor and receptor dimers are evident throughout the bioactivity of RFXP1 (Svendsen et al., 

2008a; Svendesen et al., 2008). 

Two intriguing consequences of RXFP1 dimerization are that i) it increases the functional range of 

RLX (over a broader range of concentrations), leading to the activation of different signaling 

pathways (Shymko et al., 1997); and ii) it leads to a “negative co-operativity” resulting in a rapid 

acceleration in the dissociation rate of RLX at the receptor as its concentration increases, which in 

turn causes lower physiological response to RLX at higher concentrations (Svendsen et al., 2008; 

Svendsen et al., 2009).  
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RLX signaling 

 

In THP-1 (human acute monocytic leukemia) and HEK293T (human embrionic kidney) cell lines, it 

has been demonstrated that the binding of RLX to RXFP1 determines two mechanisms successive 

in time: during the first 1-2 minutes, through the α subunit of G protein, there is the activation of  

adenylate cyclase (AC), with the consequent increase of the intracellular cAMP levels. The 

following mechanism, within 10-20 minutes from the stimulation, foresees instead the activation, 

mediated by βγ subunit of G protein, of phosphatidylinositol (PI) 3-kinase (PI3K). The production 

of phosphatidylinositol-3-phosphate by PI3K determines the translocation to the membrane of 

protein kinase Cζ (PKCζ) that phosphorylates AC, increasing the level of intracellular cAMP 

(Nguyen and Dessaur, 2005). The transduction pathway that involves PI3K could be triggered also 

through tyrosine kinase activated by the same RXFP1 receptors (Bartsch et al., 2001). 

RLX is also able to increase NO
 
production, modulating the activation and expression of inducible 

NO synthase (iNOS or NOSII) and of endothelial-type NO synthase (eNOS or NOS III) (Baccari & 

Bani, 2008). The signaling transduction system involves PI3K, through which protein kinase B 

(PKB or Akt) is activated. The latter in turn activates eNOS, through the phosphorylation at serine 

1179. An alternative mechanism, instead, is based on the increase of the cAMP level, with 

consequent activation of protein kinase A (PKA). The rise in intracellular cAMP level also activates 

cAMP-responsive element-binding protein 1 (CREB) to cause changes in gene expression for 

various proteins (Tanq et al., 2005) including iNOS (Nistri and Bani, 2003). H2 RLX and porcine 

relaxin-1 have been also found to bind and activate human nuclear glucocorticoid receptors in 

different human cell lines, such as macrophages, HeLa endometrial cancer cells and embryonic 

cells (Dschietzig et al., 2004) (Figure 3). 
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Fig.3 Signaling pathways activated by the RLX receptor RXFP1 (Du et al., Nat Rev Cardiol 7:48-

58, 2010) 

 

 

 

Phenotype of RLX deficient rodents 

 

In vivo studies performed using antibodies that neutralize RLX (MCA1), have demonstrated how 

the hormone is able to carry out a trophic function for the female reproductive organs and the 

mammary apparatus (necessary for child birth and breast feeding). MCA1-treated rats show both a 

compromised development of the nipple (Kuenzi and Sherwood, 1992) and an under-development 

of the vagina and uterine cervix, with a high density of collagen fibers and less blood vessels in the 

stroma (Zhao and Sherwood, 1998). The treated rats are also subject to non-vital deliveries and the 

cubs have smaller dimensions in respect to the relative control (Guico-Lamm and Sherwood, 1988). 

The minor development of the organs seems ascribable to an accumulation of collagen and to its 

diminished re-modelling, usually mediated by RLX (Zhao et al., 1999). 

The use of RLX knockout mice (RLX -/-) has allowed to confirm the results obtained with the  
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MCA1 antibodies, validating the concept that RLX is necessary for the growth and differentiation 

of the mammary gland and the maturation of the uterus cervix; it is necessary, furthermore, to relax 

the birth channel and to inhibit contract activity of the uterus, (Skott and Carter, 2002). 

Also, male RLX -/- mice show underdevelopment in the sexual organs: inadequate dimension of the 

prostate, testicles and epididymis (Samuel et al., 2003). 

 

 

 

Biological effects of RLX 

 

RLX has a long history in the reproductive field and a relatively short history in the non-

reproductive field, as extensively reported in previous reviews (Bani 1997, Bathgate 2006, 

Goldsmith et al., 1995; Sherwood 2004; Weiss et al., 2001). The use of recombinant H2 RLX and 

availability of RLX- and RXFP1-deficient mice have allowed researchers to better understand the 

effects of RLX in both the reproductive and non-reproductive organs. A detailed review of the non-

cardiovascular actions of RLX is beyond the scope of this thesis, but a brief summary of the main 

findings is appropriate before shifting back the focus to the effects of RLX in the cardiovascular 

system. 

 

 

Effects on the reproductive system 

 

The first biological activity attributed to RLX is the lengthening of the interpubic ligament and the 

softening of the tissues of the cervix and vagina, which have an effect of facilitating the passage of 

the fetus at birth.  

RLX, in synergy with ovarian steroids, is required to promote the growth of the mammary gland 

(Sherwood 1994; Bani 1997) and to induce a normal development of the nipple (Kuenzi et al., 

1995). At the uterine level, in laboratory mammals, RLX can inhibit the spontaneous contractile 

activity of the myometrium (Krantz et al., 1950) thereby facilitating the accommodation of the 

conceptus (Downing and Hollingsworth, 1993).  

The regulation of RLX production and secretion is species-dependent (Sherwood 2004; Bathgate et 

al., 2006). Interestingly, the profile serum RLX levels in humans greatly differs to that of rodents, 

whereby: i) serum RLX levels are highest during the normal menstrual cycle and the first trimester 
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of pregnancy, which subsequently decline throghout pregnancy; ii) maximal serum RLX levels 

reach 1-2 ng/ml during pregnancy, which is very much lower than the 150-200ng/ml of circulating 

RLX that peak around late gestation in pregnant rodent (Sherwood and Crnekovic 1979); and iii) 

human RLX does not accumulate in the storage granules of the lutual cells (Eddie et al., 1986; Bell 

et al., 1987). Human RLX has thus been implicated in playing a crucial role in preparing the uterus 

for embryonic implantation rather than maintaining pregnancy and facilitating childbirth (Van Der 

Westhuizen et al., 2007). 

Although RLX is often associated as a female pregnancy-related hormone, it is also produced in 

males but in smaller quantities by the prostate (primarily within the glandular epithelium) and/or 

testes, which is subsequently secreted into the seminal fluid to increase spermatozoa motility to 

enhance male fertility (Essig et al., 1982; Essig et al., 1982; Sokol 1989). Morover, RLX in the 

seminal fluid can act on the female uterine receptor to promote thickening of the endometrium and 

angiogenesis to prepare the uterus for embryo implantation (Weiss 1989). 

 

 

Effects on the non-reproductive system 

 

Kidney 

RLX has been shown to promote renal vasodilatation and hyperfiltration, while reducing the 

myogenic reactivity in small renal arteries of both pregnant and non-pregnant rats (Conrad et al., 

2004; Danielson et al., 2003; Novak et al., 2001). It was found that exogenous RLX could increase 

effective renal plasma flow and glomerular filtration rate, attenuate the renal circulatory response to 

Angiotensin II and reduce plasma osmolality regardless of sex (Danielson et al., 2000; Danielson et 

al., 1999). This work was extended to humans. The renal effect of H2 RLX was examined in both 

male and female and RLX was found to increase plasma flow confirming that RLX is indeed one of 

the renal vasodilatory factors in human pregnancy (Smith et al., 2006). 

 

Lungs 

Bani and co-workers found that RLX possesses anti-asthmatic properties by using ovalbumin-

sensitized guinea pigs (Bani et al., 1997). RLX was able to reduce the severity of respiratory 

abnormalities, histological alterations, mast cell degranulation and leukocyte infiltration; 

additionally, the hormone was able to promote dilatation of alveolar blood capillaries and reduce 

the thickness of the air-blood barrier (Bani et al., 1997). Later on, RLX was demonstrated to inhibit 
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airway remodeling and hyperresponsiveness in models of allergic airways disease (Royce et al., 

2009) and improve pulmonary hypertension (Tozzi et al., 2005). 

 

Brain 

The brain is another target organ for RLX as evidenced by increases in the presence of RLX and its 

receptors in numerous regions of the brain involved in a broad range of sensory and autonomic 

neural functions. Experimental studies suggest central effects of circulating RLX include: timing of 

parturition, plasma osmolality, milk ejection and release of oxytocin, autonomic control of fluid 

homeostasis and release of vasopressin (Dayanithi et al., 1987; Sortino et al., 1989; Summerlee et 

al., 1998; Summerlee et al., 1984). Additionally, intracerebroventricular RLX administration 

impairs memory consolidation and stimulates the intake of food and water (Hornsby et al., 2001; 

Ma et al., 2005; McGowan et al., 2005; McGowan et al., 2006; Summerlee et al., 1998). 

 

Connettive tissue and fibrosis 

In the first years of the ‘80s, Too and collaborators (Too et al., 1984), through in vitro experiments 

on rat ovarian granulosa cells, observed that RLX stimulates the release of matrix metalloproteinase 

(MMPs). Through in vivo studies on female rats, it has been noticed that treatment with porcine 

RLX decreases the amount of collagen in the uterine cervix (Downing and Sherwood, 1986). 

Further studies carried out on dermal fibroblasts have demonstrated that RLX, increasing the 

expression of MMPs, down-regulates the production of tissue inhibitors of MMPs (TIMP) and the 

secretion of collagen (Unemori and Amento, 1990). In this same model, RLX was able to inhibit the 

production of collagen stimulated by TGF-β (Unemori and Amento, 1990). 

By in vitro experiments on human uterine cervical fibroblasts, it has been demonstrated that RLX 

determines an increase in the espression of specific MMPs: MMP-1, MMP-2 e MMP-3 (Palejwala 

et al., 2001). RLX, through the modulation of the expression of MMPs and the regulation of 

secretion of collagen, promotes its remodeling, thus contrasting the process of fibrosis. This has 

been demonstrated both in vitro and in vivo not only in the female reproductive apparatus, but also 

in other disctricts such as heart, skin, lungs, liver and kidneys. (Unemori and Amento, 1990; 

Unemori et al., 1996; Du et al., 2003; Garber et al., 2003; Samuel et al., 2003) 

Regarding skin, it has been demonstrated that RLX is able to modulate the secretion of collagen 

from dermal fibroblasts (Unemori and Amento, 1990) and to decrease collagen deposition in rat and 

mouse models of fibrosis (Unemori et al., 1993). Furthermore, according to a study relative to a 

clinic trial carried out on a cohort of 68 patients with scleroderma, the treatment with RLX is 

associated with a reduced cutaneous thickness
 
(Seibold et al., 2000).  



18 

 

Regarding the lung, the administration of RLX decreases collagen deposition in a mice model of 

fibrosis (Unemori et al., 1996). Moreover, a synthetic peptide with RXFP1-agonist activity was able 

to carry out an antifibrotic action in a murine model of bleomycin-induced pulmonary fibrosis (Pini 

et al., 2010). In a rat model of liver cyrrhosis, RLX decreases collagen deposition and shows an 

antifibrotic action (Williams et al., 2001). Similarly, in a rat model of kidney fibrosis, RLX was 

able to inhibit the activation of fibroblasts (Hegg et al., 2005) and carries out an antifibrotic action 

(Garber et al., 2001) (Lekgabe et al., 2005).  

 

 

 

RLX AND THE CARDIOVASCULAR SYSTEM  

 

In the last 30 years, RLX has been validated as a bona fide cardiovascular hormone (Bani 1997; 

Dschietzig et al., 2002; Nistri et al., 2007). Indeed, convincing evidence has been provided that 

RLX is produced by the heart, it possesses specific receptors at the cardiac level and it acts on the 

myocardium, blood vessels and blood cells. 

 

 

Myocardial RLX expression 

 

In 1994 a study reported that when cardiomyocytes derived from the atria of neonatal rats were 

cultured in monolayers, immunoreactive RLX was detected in the conditioned medium (Taylor and 

Clark 1994). This study provided the first evidence that RLX is secreted by cardiomyocytes and 

opened the possibility that it may act through a paracrine route to regulate cardiovascular function. 

Since then, both H1 and H2 RLX, but not H3 RLX, have been found to be expressed in human atria 

and ventricles and, furthermore, the expression was demonstrated to increase dramatically under 

pathological conditions, such as cardiomyopathy and heart failure (Dschietzig et al., 2001). 

Expression of the H1 and H2 RLX mRNA was also evident in mammary arteries and saphenous 

veins and was believed to be produced by cardiomyocytes and interstitial cells (Dschietzig et al., 

2001). 

In accordance with findings in humans, relaxin 3 was found to be expressed in the atrial and 

ventricular myocardium, in atrial and ventricular myocytes and fibroblasts in addition to vascular 

smooth muscle (Kompa et al., 2002; Samuel et al., 2004). Separate in vitro studies using isolated rat 
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hearts confirmed that, along with elevation of ventricular filling pressure mimicking the 

hemodynamic changes associated with heart failure, there was an up-regulation of ventricular RLX 

expression (Dschietzig et al., 2001). 

 

 

Myocardial RXFP1 expression 

 

In 1992, Osheroff and colleagues reported the existence of high–affinity binding sites for [
32

P]-

labeled synthetic H2 RLX in the rat cardiac atria, from as early as day one after birth up until 

adulthood, thereby indicating that the heart is a target organ for RLX (Osheroff et al., 1992). 

Subsequent to the discovery of the RXFP1 receptor in 2002, transcripts for this receptor were 

identified in the heart of rats (Hsu et al., 2002; Kompa et al., 2002; Samuel et al., 2004), mice 

(Krajnc-Franken et al., 2004) and humans (Hsu et al., 2002). In particular, the expression of RXFP1 

mRNA was determined in rat atria and left ventricles (Kompa et al., 2002) and in rat 

cardiomyocytes (Nistri et al. 2012; Moore et al., 2014). 

 

 

Chronotropic effects 

 

Numerous ex vivo studies have shown that RLX exerts a positive chrontropic effect both on the 

whole perfused heart and on the isolated right and left atrium as well as on the ventricular portion 

(Ward et al., 1992; Kakouris et al., 1992; Han et al., 1994; Tan et al., 1998; Conrad et al., 2004). 

The positive chronotropic effect attributed to RLX was also confirmed by in vivo studies on rats 

(Ward et al., 1992; Kakouris et al., 1992; Han et al., 1994; Tan et a.,l 1998; Conrad et al., 2004). 

RLX is able to influence cardiac frequency through the increase of intracellular cAMP, which in 

turn activates a cAMP-dependent protein kinase. The latter mediator determines a rise in the 

concentration of intracellular calcium, with consequent increase in L-type current mediated by 

calcium channels (Han et al., 1994).  

Experiments conducted on rat isolated atria have highlighted that the positive chronotropic effect 

provoked by RLX results more efficient than that produced by known chronotropic substances such 

as endothelin-1, angiotensin-II, isoproterenol, adrenalin, histamine and serotonin (Kakouris et al., 

1992). 
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Vasodilatatory and neoangiogenetic effects 

 

The local and systemic administration of RLX produces an immediate vasodilation. This 

vasodilatatory effect has been first observed in the ‘80s in the mammary gland of mice to which 

porcine RLX had been administered (Bani and Bigazzi, 1984). The effect of the hormone has been 

observed not only in the reproductive apparatus, but also in mesocaecum (Bigazzi et al., 1986), in 

the coronary arteries of rats and guinea pigs (Bani-Sacchi et al., 1995) in the pulmonary 

microcirculation of guinea pigs (Bani et al., 1997), in the pigeon crop sac (Bigazzi et al., 1998), in 

the rat kidney (Novak et al., 2001) and in rat liver sinusoids (Bani et al., 2001). In particular, the 

vasodilatation induced by RLX in the coronary arteries results in a significant increase of blood 

flow which, in rat and guinea pig models, was found to be 100 fold more intense than that produced 

by acetylcholine and 1000 fold more intense than sodium nitroprusside (Bani-Sacchi et al., 1995; 

Bani et al., 1998). 

The RLX-induced vasodilatation appears to depend on the stimulation of endogenous generation of 

the potent vasorelaxant agent NO
 
by vascular cells (Bani et al., 1998; Danielson et al 1999; Failli et 

al., 2002). In particular, RLX was found to increase the expression and activity of NOS II (iNOS) in 

endothelial and vascular smooth muscle cells (Bani et al., 1998; Failli et al., 2002). RLX could also 

indirectly induce NO
 
generation through an endothelin-dependent pathway. In fact, RLX promotes 

secretion of collagenases, which causes proteolytic cleavage of big endothelin-1 into bioactive 

endothelin. In turn, endothelin could bind to and activate endothelin-B receptors, which are up-

regulated by RLX (Conrad 1999) thereby inducing constitutive NOS III (nNOS) activation and NO 

release (Conrad 1999; Unemori 1999). 

Besides vasodilatation, RLX can also induce angiogenesis in some target organs, as suggested by 

the pioneer findings by Hisaw (1967) using partially purified RLX. In human endometrial cells in 

vitro, RLX induces the production of potent angiogenic molecules such as basic fibroblast growth 

factor (bFGF) and vascular endothelial growth factor (VEGF) (Unemori et al., 1999). In a rat model 

of chronic myocardial infarction, systemic infusion of RLX potentates bFGF mRNA expression in 

the peri-infarct region by both cardiomyocytes and fibroblasts (Lewis et al., 2001). Similarly, in a 

swine model of post-infarcted heart, local production of RLX by RLN2 gene-transfected myoblasts 

grafted into the post-ischemic myocardium, causes a significant increase in microvessel density and 

over-expression of VEGF mRNA by the host cardiac cells (Formigli et al., 2007). 

Thus, RLX, by promoting vasodilation and, at least in some conditions, angiogenesis could 

influence the perfusion of many target organs. 
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Anti-inflammatory and anti-thrombotic effects  

 

Through the modulation of the production of NO , RLX also performs anti-inflammatory effects, as 

it can inhibit: i) the endothelial adhesiveness to neutrophils in pro-inflammatory conditions in vitro 

by down-regulating early- and late-phase endothelial cell adhesion molecules (Nistri et al., 2003); 

ii) the activation of neutrophils challenged in vitro with inflammatory mediators, by reducing 

oxidative burst, ROS generation and chemotaxis (Masini et al., 2004); iii) the activation of 

circulating  basophilis, thereby reducing the release of  histamine and of the other mediators of the 

inflammation (Masini et al., 1997); iv) the release of histamine by perivascular mast cells in guinea 

pig and rat models of  inflammation (Masini et al., 1994; Bani et al., 2002; Nistri et al., 2008). 

RLX is able to regulate blood homeostasis also influencing the number and hemostatic function of 

platelets. From studies carried out in rabbits and rats, RLX was shown to stimulate platelet NO  

production, to inhibit platelet aggregation and to decrease the number of circulating platelet, 

impeding their release from the megakaryocytes (Bani et al., 1995). RLX also promotes 

fibrinolysis, stimulating the release of tissue plasminogen activator (Qin et al., 1997; Wang-Lee et 

al., 1998). 

 

 

Anti-fibrotic effects 

 

There are numerous studies that confirm that RLX is able to contrast cardiac fibrosis. In a model of 

myocardial fibrosis obtained in rats with spontaneous hypertension, it was demonstrated that RLX 

normalizes the content of collagen and inhibits the proliferation and differentiation of fibroblasts 

(Lekgabe et al., 2005). In a model of cardiac fibrosis carried out in transgenic rats overexpressing 

the adrenergic β2 receptor, the treatment with engineered adenovirus for the production of RLX 

determines a significant decreasing of interstitial collagen in the left ventricle (Bathgate et al., 

2008). Furthermore, in a rat model of cardiomyopathy, the treatment with H2 RLX promotes an 

improvement of collagen accumulation in the left ventricle, decreases myofibroblast activation and 

increases MMP matrix degradation (Samuel et al., 2008).  Recently, RLX has demonstrated to be 

able to favourably influence the process of fibrotic healing in swine and rodent models of 

myocardial infarction (Formigli et al., 2007; Bonacchi et al., 2009; Samuel et al., 2011). In these 

models, RLX determines a significant reduction of TGF-β1 expression, myofibroblast 

differentiation and cardiomyocyte apoptosis in addition to a promotion of MMP levels and de novo 

blood vessel growth. 
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Moreover, treatment with RLX of rat cardiac fibroblasts in culture causes decrease in the 

production of collagen, inhibition of fibroblasts differentiation into myofibroblasts and increase in 

MMP secretion. The hormone is also able to contrast the growth- and differentiation-inducing 

effects of TGF-β on cardiac fibroblasts (Samuel et al., 2004). In this context, it has been recently 

demonstrated that RLX is able to inhibit TGF-β-induced transition of cardiac fibroblasts to 

myofibroblasts by a mechanism involving the Notch-1 signal pathway (Sassoli et al., 2013). 

 

 

Myocardial regeneration and remodelling  

 

The many cardiotropic properties of RLX could underlie and justify future research to test its 

possible therapeutical use in stem cell grafting for myocardial regeneration of post-infarcted heart, 

possibly favouring its colonization with precursor cells able to settle into the scar, to establish 

functional relationships with the residual cardiomyocytes, and to differentiate in situ into contractile 

elements functionally integrated with the surrounding myocardium.  

An in vitro study, conducted on co-cultures of skeletal myoblasts and adult cardiomyocytes  

demonstrates how treatment with H2 RLX favors the intercellular coupling between 

cardiomyocytes and between  cardiomyocytes and myoblasts not only by the formation of new 

junctions but also by potentiation of electrical coupling of the pre-existing junctions (Formigli et al., 

2005). Similar results have been obtained on cardiomyocyte cultures in the presence of myoblasts 

genetically engineered to over-express H2 RLX (Formigli et al., 2009). 

A pioneer study conducted on a pig model of chronic myocardial infarction has demonstrated that 

the inoculum of mouse skeletal myoblasts genetically engineered to express RLX, induced a 

straightforward functional improvement of the post-infarcted heart, favoring the re-modelling of the 

extracellular matrix and increasing the microvascular density (Formigli et al., 2007). 

Similarly, in a rat model of chronic myocardial infarction, the inoculum of mouse skeletal 

myoblasts genetically engineered to express RLX and treatment with exogenous RLX improved the 

main echocardiographic parameters of cardiac function, increased myocardial viability, decreased 

cardiac sclerosis and myocardial cell apoptosis and increased microvascular density in the post-

infarction scar tissue (Bonacchi et al., 2009). 

Recently, it has been demonstrated that RLX specifically acts on immature cardiomyocytes by 

promoting their proliferation and maturation. These notions suggest that RLX may be an 

endogenous regulator of cardiac morphogenesis during pre-natal life and could participate in heart 

regeneration and repair (Nistri et al., 2012) 
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Effects on I/R injury 

 

To study the possible benefits of RLX in the treatment of myocardial infarction, experimental 

models  of I/R injury were used, both ex vivo on isolated and perfused hearts and in vivo by the 

temporary closure of the left anterior descending coronary artery. The ex vivo studies conducted on 

guinea pig hearts, adding porcine RLX to the perfusion liquid 30 min before coronary occlusion, 

evidenced that the hormone was able to increase the coronary blood flow already during ischemia 

and to a greater extent at reperfusion. In this model, RLX was able to blunt the severity of ischemia 

and facilitate the removal of inflammatory mediators and ROS during reperfusion (Masini et al., 

1997). In an in vivo rat model of acute myocardial infarction, similar results have been obtained by 

administering intravenous porcine RLX, 1 h before the induction of ischemia (Bani et al., 1998). In 

this model, a smaller extension of the damaged myocardial area and a diminished production of 

ROS were observed upon RLX treatment. At the ultrastructural level, aspects of cardiomyocyte and 

endothelial cell necrosis were not detected, while the cardiomyocytes of the ischemic area showed a 

moderate grade of signs of contractile dysfunction, e.g. myofibril hypercontraction and 

mitochondrial calcium accumulation (Bani et al., 1998). More recently, Zhang and collaborators 

(Zhang et al., 2005) have evaluated the effects of relaxin 3 in a rat ischemic heart model obtained by 

functional overload through the β-adrenergic agonist isoproterenol. The induction of cardiac 

damage causes an increase of relaxin 3 level both in the myocardium and in the plasma, while the 

exogenous administration of the hormone determines a reduction of ROS-induced myocardial 

injury, inflammatory cell infiltration and myocardial fibrosis. 

These studies have demonstrated that RLX can exert a protective action towards the heart 

undergoing hypoxic damage when administered before the ischemic insult, suggesting a possible 

preventive therapeutic use of RLX, or RLX analogues, in myocardial infarction. Subsequently, 

further studies were conducted to evaluate if RLX could bring therapeutic benefits even if 

administered after the ischemic event, thus trying to bridge the gap between experimental model 

and clinic reality, where the possible therapies can be carried out upon hospitalization or even 

during surgical re-opening of the occluded coronary artery (coronary angioplasty), e.g. after the 

ischemia. With this intent, Perna and collaborators (Perna et al., 2005) have carried out experiments 

on a pig model of acute myocardial infarction in which H2 RLX was administered in the coronary 

artery after 30-min. ischemia at the moment of reperfusion. In this model, RLX caused a marked, 

dose-related reduction of the main serum markers of myocardial damage, namely myoglobin, CK-

MB and troponin T, as well as of the metabolic and histopathological parameters of myocardial 

inflammation and cardiomyocyte injury and apoptosis. These effects of RLX resulted in increased 
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myocardial salvage, and improved ventricular contractile performance. 

On the above basis, it is possible to hypothesize a therapeutic use of RLX in ischemic 

cardiomyopathy. The validity of such hypothesis is confirmed by the findings of a recent clinical 

trial on patients with acute heart failure, where the administration of H2 RLX (Serelaxin, Novartis) 

has demonstrated a good effectiveness in prolonging life expectancy in patients treated with the 

hormone in respect to the group treated with placebo. In particular, the completion of phase II and 

phase III trials in as many as 1400 patients has clearly demonstrated that RLX improved dyspnea, 

various markers of cardiac and renal damage/dysfunction and lowered the number of re-

hospitalization and deaths (by 37%) in a 180 day follow-up period. (Teerlink et al. 2009; Teerlink et 

al., 2013). 

 

 

Intracellular mechanisms of RLX-induced protection against I/R injury 

 

Based on the known signalling pathways downstream RXFP1, there are multiple mechanisms 

whereby RLX can induce protection to cardiac cells against I/R injury: among them, the Notch-1 

pathway holds a pivotal place. Notch 1 is a transmembrane receptor that, once bound to its ligand, 

undergoes proteolytic cleavages managed sequentially by ADAM 10 metalloprotease and the γ-

secretase complex. These events allow the release of the intracellular domain of Notch (Notch-ICD) 

that translocates to the nucleus to control transcription of specific target genes (Brou 2009).  

The relationship between RLX and Notch-1 is supported by the demonstrations that Notch-1 is 

involved in ischemic preconditioning and postconditioning of the heart (Yu  and Song, 2013; Zhou 

et al., 2013) and in the reduction of I/R-induced cardiac nitroxidative stress (Pei et al., 2013). Of 

note, the involvement of Notch-1 in target cell response to RLX has been recently demonstrated: 

indeed, RLX has been shown to antagonize the TGF-β-induced transition of cardiac fibroblasts to 

myofibroblasts by activation of Notch-1 pathway (Sassoli et al., 2013).  
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Aim-1 

 

The aim of the first part of this thesis is to investigate the possible protective actions of RLX on 

cardiomyocytes using an in vitro model of I/R – i.e hypoxia followed by reoxygenation (H+R) - and 

to investigate the intracellular mechanisms by which RLX may exert cardioprotection, paying 

special attention to the Notch-1 pathway. 

 

 

 

Materials and Methods  

 

Ethical statements 

Animal handling and use complied with the European Community guidelines for animal care (DL 

116/92, application of the European Communities Council Directive of 24 November 1986; 

86/609/EEC) and were approved by the Committee for Animal Care and Experimental Use of the 

University of Florence. The ethical policy of the University of Florence conforms to the Guide for 

the care and use of laboratory animals of the U.S. National Institutes of Health (NIH Publication 

No. 85–23, revised 1996; University of Florence assurance No. A5278-01). The animals had free 

access to food and water and were housed on a 12 h light/dark cycle at 22°C room temperature. The 

experiments were designed to minimize pain and the number of animals used. Sacrifice was carried 

out by decapitation. 

 

Cell culture and treatments 

H9c2 embryonic rat myocardium-derived cells, a well characterized and widely used cell line to 

study myocardial cell ischemia (Hescheler et al., 1991), were obtained from European Collection of 

Cell Cultures (ECACC, Salisbury, UK). They were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM, Sigma- Aldrich, Milan, Italy) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS, Invitrogen, Carlsbad, CA, USA), 2 mM glutamine, 250 U/ml penicillin G and 

250 μg/ml streptomycin (Sigma-Aldrich), in a humidified atmosphere with 5% CO2 at 37 °C. 

Primary cultures of mouse ventricular immature cardiomyocytes were prepared from hearts of 1-

day old newborn CD1 albino mice (Harlan, Correzzana, Italy), as described (Nistri et al., 2012). 

Briefly, hearts were excised, the ventricles minced and digested at 37°C for 45 min in calcium-free 
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HEPES-buffered Hanks' solution, pH 7.4, containing 100 μg/ml type II collagenase (Invitrogen). To 

reduce the harvest of nonmyocardial cells, the tissue lysate was filtered through a 70m cell strainer 

(Millipore, Billerica, MA, USA) and preplated for 1 h. The myocyte-enriched cells remaining in 

suspension were seeded on collagen-precoated multi-well plates. Cardiomyocytes were cultured in 

DMEM containing 10% horse serum, 5% fetal bovine serum, 2 mM glutamine, 250 U/ml penicillin 

G and 250 μg/ml streptomycin. In previous studies, these cells were characterized morphologically, 

immunophenotypically and electrophysiologically (Nistri et al., 2012; Formigli et al., 2009) and 

were shown to express the specific RLX family peptide receptor-1 (RXFP1) (Formigli et al., 2009). 

H9c2 cells and primary cardiomyocytes were subjected to H+R, simulated in vitro by substrate 

starvation plus hypoxia followed by reoxygenation as described (Zhang et al., 2012) with minor 

modifications. The cells were incubated in DMEM with no serum or glucose and placed in a 

hypoxic chamber saturated with a 0,1% O2 , 5% CO2, ≈95% N2 gaseous mix, humidified and 

warmed at 37°C, for 7 h. At end hypoxia, the cells were reoxygenated for 2 h by incubation in 

normoxic conditions in glucose-containing, serum-free DMEM. Control normoxic cultures were 

also prepared. Cells were treated or not with human recombinant H2 RLX (RLX)  (17 nmol/l), 

kindly provided by the RRCA Relaxin Foundation (Florence, Italy), administered in two different 

ways: in some experiments, RLX was added preventatively, i.e. 24 h before hypoxia and maintained 

for the whole duration of H+R (RLX+ H. and RLX+H+R); in other experiments, RLX was added at 

reoxygenation, concurrently with the peak of ROS generation (H+RLX+R). The noted RLX dose 

was chosen as the most effective on the basis of preliminary dose-finding experiments (5-50 

nmol/ml) performed on H9c2 cell viability.  

As control for specificity of the RLX effects on cell viability, some experiments (MTT assay) were 

performed using inactivated RLX (iRLX, 17 nmol/l) in the place of authentic RLX. Inactivated 

RLX was obtained by blockade of functional arginine residues by reaction with cyclohexanedione 

followed by dialysis of the unbound reagent against distilled water, according to the method of 

Büllesbach and Schwabe (Büllesbach and Schwabe, 1988). To test the effective lack of bioactivity 

of iRLX, we measured cAMP generation in human THP-1 cells constitutively expressing RXFP1, 

as described (Bani et al., 2007). These findings confirm that, at variance with authentic RLX, iRLX 

did not induce any cAMP rise in THP-1 cells. The effects of iRLX were evaluated at reperfusion, 

when authentic RLX showed the highest cell protection. 

To investigate the role of the Notch-1 pathway in  the mechanism of action of RLX, H9c2 cells 

were treated with N-[N-(3,5 difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT; 5 

M, Sigma-Aldrich), a highly active -secretase inhibitor which blocks the generation of Notch 

intracellular domain (Notch-ICD), the active proteolytic fragment of Notch-1 receptor that mediates 
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its biological effects. At the end of the treatments, the cell cultures were photographed under a 

phase contrast inverted microscope. 

 

Reverse Transcription (RT) and real-time PCR 

To evaluate if H9c2 cells express RXFP1 mRNA, one μg of total RNA, extraction with TRIzol 

Reagent (Invitrogen), was reverse transcribed and amplified with SuperScript One-Step RT-PCR 

System (Invitrogen).  After cDNA synthesis for 30 min at 55°C, the samples were pre-denatured for 

2 min at 94°C and then subjected to 38 cycles of PCR performed at 94°C for 15 s, alternating with 

57°C for 30 s and 72°C for 1 min; the final extension step was performed at 72°C for 5 min. The 

following rat gene-specific primers were used: RXFP1 (NM_ 201417.1), forward 5’-CGG ATG 

GGA TCT CCT CTC TT-3’and reverse 5’-GCG TGC TTC CTG TAC TCT CC-3’. PCR products 

were electrophoresed on a 2% agarose gel stained with ethidium bromide.   

To quantify bcl-2 and bax gene expression, 1 μg of total RNA was reverse transcribed with iScript 

cDNA Synthesis Kit (Biorad, Milan, Italy). Samples were incubated at 25°C for 5 min followed by 

30 min at 42°C and 5 min at 85°C. Appropriate negative controls were carried out. Quantitative 

real-time PCR was performed using iTaq Universal SYBR Green Supermix (Biorad) on an ABI 

Prism 7900 HT detection system (Applied Biosystems Foster City, CA). PCR amplifications were 

performed in Optical 96-well plates (Applied Biosystems) on cDNA samples corresponding to a 

final RNA concentration of 10 ng. The relative quantitation values of targets were normalized to the 

endogenous GAPDH control gene. The primers used in the current study were chosen from 

previously published studies (Prasanna and Rasool, 2014): bcl-2 (NM_016993.1) forward 5’-GCT 

ACG AGT GGG ATA CTG G’ and reverse 5’-GTG TGC AGA TGC CGG TTC A-3’; bax (NM_ 

017059.2), forward 5’-CTG CAG AGG ATG ATT GCT GA-3’ and reverse 5’-GAT CAG CTC 

GGG CAC TTT AG-3’and GAPDH (NM_017008.4), forward 5’- AAC GGC ACA GTC AAG 

GCT GA-3’ and reverse 5’-ACG CCA GTA GAC TCC ACG ACA T-3’. Reaction conditions were 

as follows: 95 °C for 1 min., followed by 40 cycles at 95°C for 15 s alternating with 55°C for 1 min 

for bax and GAPDH or 57°C for 1 min for bcl-2. PCR amplifications were run in triplicate. Blank 

controls, consisting in no template (water) were performed in each run. Melting curves were carried 

out to confirm amplification of single sequences and absence of primer dimers. The results of the 

real-time PCR data were represented as Ct values, where Ct was defined as the PCR threshold cycle 

at which amplified product was first detected. Ct values were analysed using 2
- ΔΔCt

 comparative 

method. 
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Western blotting 

After treatments,  H9c2 cells  were lysed in cold buffer (10 mM  Tris/HCl, pH 7.4,  10 mM NaCl, 

1.5 mM, MgCl2, 2 mM Na2 EDTA, 1% Triton X-100), added with 10X Sigmafast Protease 

Inhibitor cocktail tablets (Sigma-Aldrich). Upon centrifugation at 13.000 g for 20 min at 4°C the 

supernatants were collected and the total protein content was measured spectrophotometrically 

using micro-BCA
TM

 Protein Assay Kit (Pierce, IL, USA). Forty μg of total proteins from cell 

lysates were electrophoresed by SDS–PAGE and blotted onto nitrocellulose membranes 

(Amersham, Cologno Monzese, Italy). The membranes were blocked with PBS containing 0.1% 

Tween (Sigma-Aldrich) and 5% bovine serum albumin (AT-PBS) (Sigma-Aldrich) for 1 h at RT 

and incubated overnight at 4°C with rabbit monoclonal anti-Notch-1 antibody (1:2000; Abcam) and 

rabbit polyclonal anti- GAPDH antibody (1:1000, Cell Signaling Technology), assuming GAPDH 

as control invariant protein. Specific bands were detected using rabbit peroxidase-labeled secondary 

antibodies (1:15.000; Vector, Burlingame, CA) and ECL chemiluminescent substrate (BioRad, 

Milan, Italy). Densitometric analysis of the bands was performed using Scion Image Beta 4.0.2 

image analysis software (Scion Corp.) and the values normalized to GAPDH.  

 

Trypan Blue viability assay 

The trypan blue exclusion method was used to further assess cell viability. H9c2 cells (5x10
4
/well) 

and primary cardiomyocytes (3-5x10
4
/well, depending on the number of littermates and the overall 

yielding of the isolation procedure) were seeded in 24-well plates. At end treatments, the cells were 

gently harvested and mixed with 0.4% trypan blue solution (Sigma-Aldrich); the resulting cell 

suspension was counted under a phase contrast inverted microscope using a Burker chamber. The 

viable cells were expressed as percentage of the total counted cells.  

 

MTT viability assay 

Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT) assay (Sigma-Aldrich). H9c2 cells (5 x10
4
/well) and primary cardiomyocytes (3-

5x10
4
/well) were seeded in 24-well plates. At end treatments, MTT stock solution was added to 

each well and incubated for 4 h at 37°C. Dimethyl sulfoxide was added to each well to dissolve the 

formazan crystals. The plate was gently shaken for 10 min. and was read at 550 nm on a plate 

reader. Optical density was assumed as indicator of mitochondrial activity and, indirectly, cell 

viability. 
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TUNEL assay 

H9c2 cells were grown on glass coverslip and subjected to the different treatments. Cell death was 

studied with TUNEL assay for apoptosis, performed using a Klenow-FragEL
TM

 DNA fragmentation 

detection kit (Calbiochem, San Diego, CA), as reported in the manufacturer's instructions. Briefly, 

H9c2 cells were incubated with 15 mg/ml proteinase K for 5 min at room temperature. After rinsing 

in PBS, the cells were immersed in the Klenow Labelling Reaction Mixture containing 

deoxynucleotidyl transferase and biotin-labeled and unlabeled deoxynucleotides, and incubated at 

37° C for 90 min in a humid atmosphere. Then, the cells were incubated with peroxidase-

conjugated streptavidin for 30 min at room temperature and the signal was revealed with 3,3’-

diaminobenzidine. Finally, nuclear counterstaining was achieved by Methyl green. Apoptotic nuclei 

were recognized by the presence of dark brown staining, at variance with those of viable cells, 

which instead appeared pale brown or green. TUNEL-positive nuclei were counted in five 

microscopic fields for each cell preparation. TUNEL apoptotic index was then expressed as relative 

percentage of TUNEL positive nuclei on the total number of methyl green-stained nuclei.  

 

Immunohistochemical localization of nitrotyrosine 

Nitrotyrosine (NT), an index of protein nitrosylation by harmful oxidants generated during 

inflammation, such as peroxynitrite (ONOO
-
) was determined by immunocytochemistry as 

described previously (Cuzzocrea et al., 2001).  H9c2 cells were grown on glass coverslip and 

subjected to the different treatments. The cells were fixed with formaldehyde for 10 min and then 

incubated with rabbit polyclonal anti-NT antibody (Upstate Biotechnology, Buckingham, UK; 

1:118) at 4°C overnight. Immune reaction was revealed by goat anti-rabbit IgG conjugated with 

biotin (1:200; Vector Lab, Burlingame, CA, USA) followed by incubation with ABC complex 

(Vector Lab; 1:200). Negative controls were carried out by omitting the primary antibodies. 

Densitometric analysis of the intensity of NT was performed on digitized images using Scion Image 

Beta 4.0.2 in 20 regions of interest (ROI) of 100 m
2
 for each confocal stacks (at least 10).  

 

Determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) 

8-OHdG levels, an indicator of oxidative DNA damage, were determined in H9c2 cells using the 

Highly Sensitive 8-OHdG Check (JaICA, Japan), according to the manufacturer's instructions. After 

treatments, the cells were collected with TRIzol Reagent (Invitrogen) and DNA was isolated 

according to the manufacturer instructions. Then DNA was subjected to enzymatic digestion with 

10 IU of P1 nuclease (Sigma-Aldrich) in 10μL and incubated for 1 h at 37°C with 5 IU of alkaline 
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phosphatase (Sigma-Aldrich) in 0.4 M phosphate buffer, pH 8.8. All of the procedures were 

performed in the dark under argon. The mixture was filtered by an Amicon Micropure-EZ filter 

(Millipore), and 50 μl of each sample was used for 8-OHdG determination. The values are 

expressed as ng 8-OHdG/ng total DNA.  

 

Transmission electron microscopy 

After treatments, H9c2 cells were pelleted by centrifugation, fixed in 4% glutaraldehyde and 1% 

osmium tetroxide and embedded in Epon 812. Ultrathin sections were stained with uranyl acetate 

and alkaline bismuth subnitrate and examined under a JEM 1010 electron microscope (Jeol,Tokyo, 

Japan) at 80 KV 

 

Confocal Immunofluorescence 

H9c2 cells grown on glass coverslips were fixed with 0.5% buffered paraformaldehyde for 10 min 

at room temperature. After permeabilization with cold acetone for 3 min, the fixed cells were 

blocked with 0.5% bovine serum albumin (Sigma-Aldrich) and 3% glycerol in PBS for 20 min and 

then incubated overnight at 4°C with a rabbit monoclonal anti-Notch-1 antiserum (1:200, Abcam) 

recognizing both Notch-1 receptor and its activated form Notch- ICD. Immunoreactions were 

revealed by specific anti-rabbit Alexa Fluor 488-conjugated IgG (1:200; Molecular Probes, Eugene, 

OR) for 1 h at RT. Negative controls were carried out by replacing the primary antibody with non-

immune serum; cross-reactivity of the secondary antibody was tested in control experiments in 

which primary antibodies were omitted. After washing, the immunolabeled cells were mounted with 

an anti-fade medium (Biomeda Gel Mount, Electron Microscopy Sciences, Foster City, CA, USA) 

and observed under a confocal Leica TCS SP5 microscope (Leica Microsystems, Mannheim, 

Germany) equipped with a HeNe/Ar laser source for fluorescence measurements. Observations 

were performed using a Leica Plan Apo 63X/1.43NA oil immersion objective. Series of optical 

sections (1024 x 1024 pixels each; pixel size 204.3 nm) 0.4 m in thickness were taken through the 

depth of the cells at intervals of 0.4m. Images were then projected onto a single ‘extended focus’ 

image. Densitometric analysis of the intensity of Notch-ICD fluorescent signal was performed on 

digitized images using Scion Image Beta 4.0.2 image analysis program (Scion Corp) in 20 regions 

of interest (ROI) of 100m
2
 for each confocal stacks (at least 10).  

 

Statistical analysis 

The reported data are expressed as the mean ± SEM of at least 3 independent experiments. As the 

experimental values in each group approximated to a normal distribution, statistical comparison of 
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differences between groups was carried out using one-way ANOVA followed by Student-Newman-

Keuls multiple comparison test. A p value ≤0.05 was considered significant. Calculations were done 

using GraphPad Prism 2.0 statistical program (GraphPad Software, San Diego, CA, USA).  
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Results 

 

RLX receptor is expressed by cardiac muscle cells 

Primary mouse cardiomyocytes were previously found to express RXFP1 (Formigli et al., 2009). 

The present findings show that rat cardiac muscle H9c2 cells also expressed the specific RLX 

receptor RXFP1, as shown by RT-PCR and Western blotting (Figure 4 A,B). 

 

 

 

Fig.4 RT-PCR (A) and Western blotting (B) showing RXFP1 RLX receptor expression by H9c2 rat 

cardiac muscle cells 

 

 

RLX increases cardiac muscle cell viability impaired by H+R. 

The trypan blue exclusion test (Figure 5 A) showed that hypoxia and especially reoxygenation 

caused a marked reduction of H9c2 cell viability. RLX (17 nmol/l), added to the culture medium 24 

h before hypoxia, significantly increased cell viability both after hypoxia and after reoxygenation. 

RLX also had protective effects when added at reoxygenation. The beneficial effects of RLX were 

significantly reduced, albeit not abolished, when the Notch-1 inhibitor DAPT was administered 

together with the hormone, indicating that Notch-1 signaling is involved in the cardioprotective role 

of RLX against cardiac injury (Figure 5 A).  

Similar findings were obtained with the MTT assay (Figure 5 B), which showed that hypoxia and 

reoxygenation caused a marked reduction of H9c2 cell viability. RLX (17 nmol/l), added 24 h 

before hypoxia, significantly increased cell viability both after hypoxia and after reoxygenation. 

RLX also had protective effects when added at reoxygenation. iRLX substituted for authentic RLX 

resulted in the disappearance of any cytoprotective effect, as evaluated by the MTT assay on H9c2 

cells (Figure 5 B).  
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Fig. 5 Evaluation of H9c2 cell viability by trypan blue exclusion (A) and MTT (B) assay. Replicas 

of the experiments (n) are indicated at the bottom of each column. Values are mean ± SEM. 

Significance of differences for trypan blue assay: a, p<0.001 vs. control; b, p<0.001 vs. H; c, 

p<0.001 vs. H+RLX; d, p<0.001 vs. control and p<0.05 vs. H; e, p<0.001 vs. H+R; f, p<0.001 

vs. RLX+H+R; g, p<0.001 vs. H+R; h, p<0.001 vs H+RLX+R. Significance of differences for  

MTT assay: a, p<0.001 vs. control; b, p<0.01 vs. H; c, p<0.05 vs. H+RLX; d, p<0.001 vs. 

control and p<0.01 vs. H; e, p<0.01 vs. H+R; f, p<0.05 vs. RLX+H+R; g, p<0.01 vs. H+R; h, 

p<0.05 vs H+RLX+R . 

 

Light microscopic observation of H9c2 cell monolayers confirmed the above findings (Figure 6): in 

fact, the cell amounts were markedly reduced and the individual cell morphology worsened by 

hypoxia and H+R, whereas RLX reversed the adverse effects. Co-administration of DAPT reduced 

the effects of RLX.  

 

Fig. 6 Representative phase contrast micrographs of H9c2 cell monolayers. Scale bars 20 m. 
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The cardioprotective action of RLX against hypoxia- and H+R-induced cell death was confirmed in 

parallel experiments with primary cultures of mouse neonatal cardiomyocytes subjected to trypan 

blue exclusion and MTT assays, which gave similar results as those performed on H9c2 cells 

(Figure 7 A,B). 

 

 

Fig.7 Evaluation of the viability of mouse cardiomyocytes in primary culture by trypan blue 

exclusion (A) and MTT (B) assay. Replicas of the experiments (n) are indicated at the bottom 

of each column. Values are mean ± SEM. Significance of differences for trypan blue assay: a, 

p<0.001 vs. control; b, p<0.001 vs. H; c, p<0.01 vs. H+RLX; d, p<0.001 vs. control and p<0.05 

vs. H; e, p<0.001 vs. H+R; f, p<0.01 vs. RLX+H+R; g, p<0.001 vs. H+R; h, p<0.05 vs 

H+RLX+R . Significance of differences for MTT assay: a, p<0.001 vs. control; b, p<0.01 vs. 

H; c, p<0.01 vs. H+RLX; d, p<0.001 vs. control and p<0.01 vs. H; e, p<0.001 vs. H+R; f, 

p<0.01 vs. RLX+H+R; g, p<0.01 vs. H+R; h, p<0.05 vs H+RLX+R . 

 

 

RLX protects cardiac muscle cells from nitroxidative damage induced by H+R. 

RLX increased H9c2 cell viability by reducing nitroxidative stress occurring at reoxygenation 

(Figure 8). In fact, the levels of immunoreactive nitrotyrosine, a marker of protein nitration which 

were enhanced upon H+R, were significantly reduced after the addition of RLX, either before 

hypoxia or, at a lesser extent, at reoxygenation (Figure 8 A). Similar findings were observed in the 

experiments performed to quantify oxidized DNA. The levels of 8-OHdG were enhanced upon 

H+R, were significantly reduced after the addition of RLX, either before hypoxia or, at a lesser 
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extent, at reoxygenation) (Figure 8 B). Of interest, the protective effects of RLX against oxidative 

stress were reduced by DAPT co-administration (Figure 8 A,B).  

 

 

 

Fig.8 Evaluation of H9c2 cell nitroxidative stress by immunoreactive nitrotyrosine (A) and  8-

OHdG (B). Scale bars 10 m. Replicas of the experiments (n) are indicated at the bottom of 

each column. Values are mean ± SEM. Significance of differences for nitrotyrosine: a, p<0.001 

vs. control; b, p<0.001 vs. H+R; c, p<0.001 vs. RLX+H+R; d, p<0.05 vs. H+R; e, p<0.05 vs. 

H+RLX+R. Significance of differences for 8-OHdG: a, p<0.01 vs. control; b, p<0.001 vs. 

H+R; c, p<0.01 vs. RLX+H+R; d, p<0.01 vs. H+R; e, p<0.05 vs. H+RLX+R. 
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RLX protects cardiac muscle cells from apoptosis induced by H+R. 

RLX significantly decreased apoptotic death induced by hypoxia and reoxygenation in H9c2 cells. 

Indeed, compared with the controls, mRNA expression of the antiapoptotic gene bcl2 was reduced 

and that of the proapoptotic gene bax enhanced by hypoxia and, even more, by reoxygenation 

(Figure 9). RLX, given both before ischemia and at reperfusion, increased the expression of bcl2 

and decreased that of bax. The effects of RLX were reduced by co-administration of DAPT (Figure 

9). Evaluation of the percentage of TUNEL-positive apoptotic cells was consistent with these 

findings (Figure 10). Hypoxia and especially reoxygenation caused a marked increase of apoptosis. 

RLX (17 nmol/l), added to the culture medium 24 h before hypoxia, significantly decreased 

apoptosis both after hypoxia and after reoxygenation. RLX also had protective effects when added 

at reoxygenation. As expected, co-administration of DAPT reduced the effects of RLX (Figures 

9,10). RLX also significantly decreased apoptotic cell death induced by hypoxia and reoxygenation 

in H9c2. Indeed, the mRNA expression of the antiapoptotic gene bcl2 was reduced and that of the 

proapoptotic gene bax enhanced by hypoxia and, even more, by reoxygenation (Figure 9). 

Consistently, the percentage of TUNEL-positive apoptotic cells was increased upon hypoxia and 

reoxygenation (Figure 10). Treatment with RLX before hypoxia or at reoxygenation (Figures 9,10) 

significantly  attenuated these changes. As expected, co-administration of DAPT reduced the effects 

of RLX (Figures 9, 10).  

 



37 

 

 

 

Fig.9 Evaluation of the expression of the antiapoptotic gene bcl2 and of the proapoptotic gene bax 

in H9c2 cells by real-time PCR. Replicas of the experiments (n) are indicated at the bottom of 

each column. Values are mean ± SEM.  Significance of differences for bcl-2: a, p<0.001 vs. 

control; b, p<0.01 vs. H; c, p<0.01 vs. H+RLX; d, p<0.001 vs. control and p<0.001 vs. H; e, 

p<0.001 vs. H+R; f, p<0.01 vs. RLX+H+R; g, p<0.01 vs. H+R; h, p<0.05 vs H+RLX+R . 

Significance of differences for bax: a, p<0.001 vs. control; b, p<0.001 vs. H; c, p<0.001 vs. 

H+RLX; d, p<0.001 vs. control and p<0.05 vs. H; e, p<0.001 vs. H+R; f, p<0.01 vs. 

RLX+H+R; g, p<0.01 vs. H+R; h, p<0.05 vs H+RLX+R. 
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Fig.10 Evaluation of apoptotic H9c2 cells by TUNEL assay. Scale bars 10 m. Replicas of the 

experiments (n) are indicated at the bottom of each column. Values are mean ± SEM. 

Significance of differences: a, p<0.001 vs. control; b, p<0.05 vs. H; c, p<0.05 vs. H+RLX; d, 

p<0.001 vs. control and p<0.001 vs. H; e, p<0.001 vs. H+R; f, p<0.01 vs. RLX+H+R; g, 

p<0.01 vs. H+R; h, p<0.05 vs H+RLX+R. 

 

 

Transmission electron microscopy confirmed the cardioprotective effects of RLX (Figure 11). 

Indeed, H9c2 cells subjected to hypoxia and H+R showed signs of damage typical of apoptosis, 

namely cytoplasmic shrinkage and vacuolation, mitochondrial swelling and chromatin condensation 

or fading. These morphologic features were, instead, rarely observed in the RLX-treated cells.  Co-

administration of DAPT and RLX resulted in prominent signs of cell damage. 
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Fig.11 Representative transmission electron micrographs of H9c2 cells in the different experimental 

conditions. Scale bar 1m. 

 

 

RLX stimulates Notch-1 signalling pathway 

The above findings indicate that inhibition of Notch-1 signaling pathway reduces the 

cardioprotective effects of RLX, suggesting a close functional relationship. Indeed, a 24-h treatment 

of H9c2 cells with RLX (17 nmol/l) induced a significant increase in Notch-ICD expression, the 

active intracellular fragment of Notch-1 receptor (Figure 12 A,B). As expected, DAPT significantly 

reduced the basal expression of Notch-ICD (Figure 12 A,B).  

Of note, in the current experimental conditions, Notch-ICD was down-regulated by hypoxia and, 

even more, by reoxygenation (Figure 12 C,D), whereas RLX, given either 24 h before hypoxia or at 

reoxygenation, antagonized such effect (Figure 12 C,D). 
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Fig.12 Evalution of Notch-1 activation by RLX in H9c2 cells under the different experimental 

conditions by confocal immunofluorescence (A,C) and Western blotting (B,D). Scale bar 10 

m. Replicas of the experiments (n) are indicated at the bottom of each column. Values are 

mean ± SEM. Significance of differences: panels A,B): a, p<0.001 vs. control; panel C): a, 

p<0.001 vs. control; b, p<0.001 vs. H; c, p<0.001 vs. control and p<0.05 vs. H; d, p<0.001 vs. 

H+R; e, p<0.05 vs. H+R; panel D): a, p<0.01 vs. control; b, p<0.05 vs. H; c, p<0.001 vs. 

control and p<0.01 vs. H; d, p<0.05 vs. H+R; e, p<0.01 vs. H+R. 
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Discussion 

 

Identification of the endogenous mechanisms that the heart put into play to increase its resistance to 

adverse conditions represents a new frontier of cardiologic research. In this context, agents capable 

of modulating these mechanisms to improve myocardial rescue upon an ischemic insult can be a 

promising therapeutic approach (Della-Morte et al., 2012). Among such agents, RLX deserves a 

pivotal place. Convincing evidence exists in the literature that RLX, which has been credited as a 

cardiotropic hormone (Bani 1997; Dschietzig and Stangl, 2002; Nistri et al., 2007) protects the heart 

from ischemia and reperfusion-induced myocardial damage in ex vivo and in vivo models through 

its vasodilator, anti-inflammatory and anti-fibrotic actions (Bonacchi et al. 2009; Nistri et al., 2003; 

Masini et al., 2004; Perna et al., 2005; Samuel et al., 2004; Samuel et al., 2011; Lekgabe et al., 

2005; Formigli et al., 2007; Sassoli et al., 2013). The current findings provide first information that 

RLX also has a direct cytoprotective effect on cardiac muscle cells subjected in vitro to hypoxia and 

reoxygenation increasing their resistance to oxygen deprivation and nitroxidative stress. This 

finding is in keeping with the observation that RLX protects cardiomyocytes against oxidative 

stress-induced apoptosis (Moore et al., 2007). The RLX-induced protection was observed both in 

H9c2 cells, a cardiac muscle lineage currently used as a model for ischemic injury, and in primary 

cultures of freshly isolated ventricular cardiomyocytes. In particular, our findings demonstrate that 

the protective action of RLX is receptor-specific, because it is completely abolished by iRLX, and 

involves the activation of Notch-1 signaling pathway. Notch-1 is implicated in cardiac 

development, where it regulates cardiomyocyte proliferation, myocardial trabeculation and valve 

formation (Niessen and Karsan, 2007; High and Epstein 2008) as well as in the maintenance of 

adult heart tissue integrity (Campa et al., 2008; . Collesi et al., 2008; Nemir and Pedrazzini, 2008). 

Notch signaling also plays a role in heart disease: its expression increases in myocardial infarction 

(Gude et al., 2008; Kratsios et al., 2010) and in dilated or hypertrophic cardiomyopathy (Croquelois 

et al., 2008). Notch-1 activation contributes to cardioprotection afforded by ischemic pre- and 

postconditioning and in the reduction of ischemia/reperfusion-induced cardiac nitroxidative stress in 

in vitro and in vivo animal models (Yu and Song, 2013; Zhou et al., 2013; Pei et al., 2013). The 

present findings indicate that H9c2 cardiac muscle cells, which express the high affinity RLX 

receptor RXFP1, respond to RLX by up-regulating the expression of Notch-ICD, the active 

intracellular domain of Notch-1. Indeed, Notch-1 activation requires its proteolytic cleavage by 

ADAM metalloproteases and γ-secretase, causing the release of Notch-ICD, which translocates into 

the nucleus and stimulates the transcription of target genes controlling cell proliferation and 

maturation (Boni et al., 2008). In the present experimental conditions, Notch-ICD expression was 
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markedly decreased in hypoxic and H+R-exposed H9c2 cells. RLX, added either 24 h before 

hypoxia or at reoxygenation, was capable of significantly reducing the Notch-ICD down-regulation. 

This mechanism plays a major role in the cytoprotective action of RLX on cardiac muscle cells. In 

fact, the capability of RLX to increase cell viability by reducing H+R-dependent oxidative stress 

and apoptosis is significantly hampered by co-administration of DAPT, a γ-secretase inhibitor that 

blocks the generation of Notch-ICD (Brou, 2009). The fact that DAPT does not completely abolish 

the effects of RLX may suggest that multiple cytoprotective signaling pathways are operated by 

RLX in cardiac muscle cells. For instance, these pathways may involve the endogenous generation 

of nitric oxide, a typical downstream effector of RLX (Baccari and Bani, 2008), which has been 

demonstrated to protect cardiomyocytes from H+R-induced apoptosis (Rakhit, et al., 2001). The 

possible mechanisms by which RLX can activate the Notch-1 pathway remain to be elucidated. It 

can be speculated that RLX may induce ADAM 10 activation through a dual pathway which 

involves the up-regulation of Akt, a downstream pathway of RXFP1 activation (McGuane et al., 

2011) also involved in ADAM 10 activation (Fernandez et al., 2010), and down-regulation of 

TIMP-1 (Palejwala et al., 2001), a known ADAM 10 inhibitor (Edwards et al., 2008).   

We shall point out that the present findings have been obtained on cultured embryonic and neonatal 

cardiac muscle cells, which may not exactly behave as adult cardiomyocytes of the heart in vivo. On 

the other hand, this fact may suggests that RLX is capable of preserving viability of the scattered 

population of cardiac stem cells of the adult heart, favoring their post-ischemic activation as an 

attempt to replace damaged cardiomyocytes.  In this context, the finding that RLX constitutively 

activates the Notch-1 pathway in H9c2 cardiac muscle cells may contribute to explain the 

mechanisms whereby RLX promote neonatal cardiomyocyte growth and maturation (Nistri et al., 

2012). In fact, previous reports have shown that Notch-1 induces cell cycle re-entry and 

proliferation of cardiac muscle cells (Campa et al., 2008; Collesi et al., 2008). However, whether 

RLX may also be cardioprotective through the recruitment of cardiac muscle precursors in the post-

infarcted heart remains a stimulating matter for further investigation. 

Our findings indicate that the cytoprotection afforded by RLX is more potent when the hormone 

was added before the occurrence of hypoxia than at the onset of reoxygenation. This notion, taken 

together with the previous reports that cardiomyocytes produce RLX (Taylor and Clark, 1994) and 

express specific RLX receptors (Kompa et al., 2002; Moore et al., 2014), strongly suggests that 

RLX could be an endogenous cardiac factor involved in the mechanisms of myocardial 

preconditioning. Further clues in support to this hypothesis come from the observations that: i) 

plasma RLX is increased in patients with cardiac failure (Dschietzig et al., 2001) suggesting that 

RLX may be released from the injured heart as an attempt to compensate for noxious conditions; ii) 
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Notch-1 signaling has been recognized as a major endogenous mechanism involved in heart pre- 

and postconditioning (Yu and Song, 2013; Zhou et al., 2013). Nonetheless, RLX also exerted a 

significant cytoprotective action when administered at reoxygenation, suggesting that it can 

effectively counteract the acute cellular mechanisms of reperfusion injury. 

In conclusion, our study expands the knowledge of the pharmacological properties of RLX as a 

cardioprotective agent.  Of note, phase III clinical trials performed on heart failure patients have 

demonstrated that human recombinant RLX, or serelaxin (Novartis, Basel, Switzerland), 

significantly improved the hemodynamic parameters and life expectancy of the treated patients 

compared to the placebo group (Teerlink et al., 2013) thus emerging as a new drug for the treatment 

of the failing  heart. The existing experimental background can justify the design of clinical trials to 

explore whether RLX may be a new drug for the primary and secondary prevention and therapy of 

ischemic heart disease. 
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Mn
II
(Me2DO2A) 

 

Mn
II
(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetate), also termed  Mn

II
(Me2DO2A), 

is a  non-peptidic, low molecular weight, Mn -containing compound, capable to catalyze O2
 
 

dismutation. This molecule has been designed, synthesized and characterized, chemically and 

biologically, by a multi-disciplinary research team of the University of Florence, involving 

researchers from the Departments of Chemistry, NEUROFARBA, and Experimental & Clinical 

Medicine. The compound has been patented and is now property of General Project Ltd. 

(Montespertoli, Florence, Italy), which is gratefully acknowledged for kindly giving the permission 

to use this compound for the present studies. 

 

 

 

Role of reactive oxygen species (ROS) in I/R injury 

 

Multiple interplaying mechanisms play a role in I/R damage, mainly consisting in production of 

reactive oxygen species (ROS) (Jaeschke and Woolbright, 2012). Pathogenic ROS include 

superoxide anion (O2 ), hydrogen peroxide (H2O2), peroxynitrite (ONOO
-
), hydroxyl radical (HO

) and perhydroxyl radical (HO2). All of them are formed by O2
 
 reduction reactions occurring in 

the cellular microenvironment. Among ROS, O2  is the main representative and widely 

investigated for its pathological relevance. In normal conditions, the endogenous levels of O2  are 

controlled by superoxide dismutases (SOD), located in mitochondria (Mn-SOD), cytosol (Cu-/Zn-

SOD), and outer plasma membrane (Cu- /Zn-SOD). SOD catalyze the dismutation of O2  to O2 

and H2O2 by a reaction requiring a key transition metal at the catalytic site (Fridovich 1989; 

Johnson and Giulivi, 2005). The resultant H2O2 is then degraded to O2 and H2O by cytosolic or 

mitochondrial catalase, glutathione peroxidase (Thannickal and Fanburg, 2000) and peroxiredoxin 

(Vivancos et al., 2005). On the other hand, whenever the generation of O2  is enhanced over the 

inactivating capability of SODs, O2 -mediated cell injury occurs (Finkel, 2005). Moreover, 

oxidative stress causes a rapid inactivation of SODs, sparkling a vicious cycle that causes ever-

increasing, harmful O2
 
 tissue levels

 
(Wang et al., 2004). 

In particular, mitochondrial dysfunction of hypoxia-exposed cells impairs the electron flow and 

enhance O2  formation and, therefore, release of ROS (Murphy 2009; Poyton et al., 2009). The 

over-production of ROS during I/R determines a depolarization of mitochondrial membrane 
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potentials (Crompton, 1999; Levraut et al., 2003), an increase of mitochondrial permeability 

transition pores (MPTP) and of intracellular calcium concentration (Crompton, 1999; Levraut et al., 

2003; Li and Jackson, 2002). All these events determine cell damage and, finally, cell death. 

Moreover, mitochondria can use the respiratory chain to reduce nitrite (NO2
-
) to nitric oxide (NO ) 

(Castello et al., 2008). Because cytochrome oxidase produces NO
 

from nitrite at low O2 

concentrations, the mitochondrially generated oxidants whose concentration increase under hypoxic 

conditions also include peroxynitrite (ONOO
-
), which is formed by the reaction between O2  and 

NO  (Galkin et al., 2007). ONOO-  is a relatively long-lived, stable molecule, which has the ability 

to reach critical targets of cells, as it is membrane permeable (Glebska and Koppenol, 2003);  it is 

involved in myocardial cytotoxicity by direct oxidation of lipids, proteins, and DNA (Pesse et al., 

2005; Pacher et al., 2005) . Over the past decade, ONOO
- 
has been identified as the major harmful 

oxidant in myocardial hypoxia-reoxygenation injury (Xie et al., 1998).  

Inflammatory cells recruited upon endothelial injury also provide a major contribution to oxidative 

stress through the production of both O2  and NO , and hence, ONOO
-   

. 

The above notions underscore that O2  and NO
  

play a pivotal role in oxidative stress upon 

hypoxia-reoxygenation and hence can be suitable target of new pharmacological interventions. 

 

 

 

Non-peptidic, low molecular weight, metal-containing compounds as 

ROS scavengers 

 

At first, pharmacological research was based on the use of extractive or recombinant
 
SOD as 

therapeutic approach to oxidative stress upon I/R, in order to allow removal of excess O2   and 

leaving enough NO
 
to sustain residual vascular function (Seal and Gewertz, 2005). Indeed, 

transfection of H9c2 rat cardiomyocytes with Cu/Zn SOD was found to attenuate I/R injury (Liu et 

al., 2013).  However, the pharmaceutical use of SOD is hampered by
 
major issues, including poor 

stability in water, limited intracellular penetration, immunogenicity,
 
short half-life, and unfavorable 

yield/cost ratio (McCord and Edeas, 2005; Slemmer et al., 2008). Pharmacological research was 

then oriented toward of non-peptidic, low molecular weight, metal-containing compounds capable 

to efficiently catalyze O2  dismutation (Riley 1999). These complexes are based on a well-known 

principle of inorganic chemistry, i.e. the property of transition metals to bind to and react with free 

radicals. In the last three decades, a number of manganese, iron, copper and nickel complexes, have 
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been used as SOD-mimetic agents (Riley 1999; Zhang and Lippard, 2003; Cuzzocrea et al., 2004; 

Riley and  Schall, 2006; Batinic-Haberle et al., 2011). Among them, manganese and iron complexes 

were generally found to be the most effective. However, the iron complexes often resulted to be 

toxic in vivo (Riley 1999; Zhang and Lippard, 2003; Cuzzocrea et al., 2004; Riley and Schall, 2006; 

Batinic-Haberle et al., 2011; Batinić-Haberle et al., 1999). Therefore, in the last decade, major 

attention has been paid to manganese complexes.  Basically, four different classes of Mn-based 

compounds have been synthesized, namely Mn
II
 complexes with pentaazamacrocycles, polyamine-

polycarboxylates, salen derivatives and porphyrins (Muscoli 2003; Batinic-Haberle et al. 2011; 

Baker  et al. 1998; Salvemini 1999; Salvemini et al., 2002; Sheng  2002; Batinic-Haberle 2010; 

Miriyala et al., 2012). They have been tested as ROS scanvangers for therapeutic purposes in 

cellular and animal models of oxidative stress (Bani and Bencini, 2012). 

 

 

 

Mn
II

(Me2DO2A) 

 

In recent years, a series of studies have been carried out on a polyamine-polycarboxylate Mn
II
 

complex, Mn
II
(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetate), also termed  

Mn
II
(Me2DO2A), patented as O2  scavenger.  

Polyamine-polycarboxylate scaffolds represent an optimal tool for the synthesis of highly stable 

Mn
II
 complexes. In fact, these molecules are known for their ability to strongly bind a number of 

metals, from alkali and alkali earths to lanthanide and transition metal cations, including Mn
II
. 

Moreover, these compounds are resistant to oxidizing and reducing agents, are highly soluble in 

aqueous media, and exhibit low toxicity, all properties that render them suitable for several 

biological and medicinal applications (Bianchi et al., 2000; Merbach and Tóth, 2001). 

Among these, Mn
II
(Me2DO2A) presents an organic scaffold with a tetra-amine macrocyclic moiety, 

characterized by high thermodynamic stability, kinetic inertness and poor tendency to bind alkali or 

alkaline metal cations (Lindoy 1989). It also possesses two carboxylic moieties as pendant arms, 

acting as additional binding sites for metal cations. The carboxylic groups deprotonate upon Mn
II
 

binding in aqueous solution, yielding a Mn
II
(Me2DO2A) neutral complex, (Figure 13) (Failli et al., 

2009).  
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The stability of Mn
II
(Me2DO2A) is also higher than that of other Mn

II
 complexes with endogenous 

ligands present in the cellular environment, such as ATP , glutathione  and carboxylate anions, thus 

excluding substantial de-metallation of Mn
II
(Me2DO2A) by biological chelators.   

At the same time, the present ligand yields a Mn
II 

complex remarkably more stable than those with 

the most abundant metal cations present in intracellular environment, in particular Na
I
, Mg

II
 and 

Ca
II
, and it is unable to bind K

I
. From an electrochemical point of view, Mn

II
(Me2DO2A) displayed 

only a mono-electronic single oxidation step, related to a Mn
II
 → Mn

III
 process, followed by slow 

rearrangement of the carboxylate groups around Mn
III

. 

Interestingly, the presence of two anionic carboxylate groups neutralizing the charge of Mn
II
 and 

two lipophilic methyl groups renders Mn
II
(Me2DO2A) capable to cross the cell membranes and 

attain significant intracellular concentrations (Failli et al., 2009), thus being capable to directly 

scavenge O2  in the cytoplasmic environment. The absence of negative charge and increased 

lipophilia has been shown to facilitate accumulation of manganese complexes in mitochondria 

(Batinic-Haberle et al., 2014; Spasojevic et al., 2010).  

 

 

 

 

Fig.13 3-D structure of Mn
II
(Me2DO2A) (Failli et al., J Med Chem 52:7273-7283, 2009) 

 

 

Mn
II
(Me2DO2A), was proven effective in reducing oxidative stress in cell culture models and to 

decrease oxidative tissue injury in animal models of inflammation (Failli et al., 2009; Cinci et al., 

2010; Di Cesare Mannelli et al., 2013). In particular, the Mn
II
(Me2DO2A) complex was found to be 

a potent O2  scavenger, provided with biologically relevant effects, in terms of reduced oxidative 

injury and increased cell viability, in the in the 0.1-1 micromolar range (Failli et al., 2009). It also 
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had good pharmacokinetic properties, being able to readily cross the plasma membrane and reach 

effective intracellular concentrations. When given to mice, Mn
II
(Me2DO2A) reduced the 

hyperalgesic response to induced acute and chronic inflammation (Failli et al., 2009); when 

administered at the same doses to ovalbumin-sensitised guinea pigs, Mn
II
(Me2DO2A), it effectively 

blunted asthma-like reaction, lung inflammation and oxidative injury induced by acute reaction to 

allergen inhalation (Cinci et al., 2010). Mn
II
(Me2DO2A) also behaves as a potent pain reliever in 

acute inflammatory and chronic articular pain induced in rats. It reduced articular derangement, 

plasma TNF alpha levels, protein carbonylation and lipid peroxidation (Di Cesare Mannelli et al., 

2013). 
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Aim-2 

 

The aim of the second part of this thesis is to test the antioxidant, cytoprotective potential of 

Mn
II
(Me2DO2A) on cultured H9c2 cardiac muscle cells using an in vitro model of I/R – i.e hypoxia 

followed by reoxygenation (H+R). 

 

 

 

Materials and Methods  

 

Reagents 

The amount of Mn
II
(Me2DO2A) required to perform the present experiments was kindly donated by 

the patent owner General Project Ltd., Montespertoli (Florence), Italy. The inactive compound 

Zn
II
(Me2DO2A) was synthesized in following the same procedure as Mn

II
(Me2DO2A). Unless 

otherwise specified, the other reagents used for the experiments were from Sigma-Aldrich (Milan, 

Italy). 

 

Cell culture and treatments 

H9c2 embryonic rat cardiac muscle cells, obtained from European Collection of Cell Cultures 

(ECACC, Salisbury, UK), were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA), 

2 mM glutamine, 250 U/ml penicillin G and 250 μg/ml streptomycin, in a humidified atmosphere 

with 5% CO2 at 37 °C. These cells were subjected to hypoxia and reoxygenation (H+R), simulated 

in vitro by substrate starvation plus hypoxia followed by reoxygenation, as previously described. 

Cells were treated or not with Mn
II
(Me2DO2A) at 2 different doses (1 and 10 mol/l), added at 

reoxygenation, concurrently with the peak of ROS generation (H+ Mn
II
(Me2DO2A)+R). The given 

Mn
II
(Me2DO2A) doses were chosen on the basis of  previous in vitro studies (Failli et al., 2009). As 

control for the specific capability of Mn
II
(Me2DO2A) to suppressing oxidative stress by redox 

reaction, some cell viability experiments were performed using the inactive congener 

Zn
II
(Me2DO2A) at the same concentrations as Mn

II
(Me2DO2A) added at reoxygenation (H+ 

Zn
II
(Me2DO2A)+R). 

Separate experiments were performed to assess the toxicity of Mn
II
(Me2DO2A) and 

Zn
II
(Me2DO2A) in H9c2 cells. In these experiments, the two compounds were added to the cell 
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cultures at increasing concentrations (0.1-100 mol/l) for 2 and 24 h; cell viability was then assayed 

by the MTT test. 

 

Trypan Blue viability assay 

The trypan blue exclusion method was used to assess H9c2 cells viability, as previously described. 

 

MTT  viability assay 

H9c2 mitochondrial function was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) assay, as previously described. 

 

Mitochondrial membrane potential (Δψ) 

Mitochondrial membrane potential was assessed using tetramethylrhodamine methyl ester 

perchlorate (TMRM), a lipophilic potentiometric fluorescent dye that distributes between the 

mitochondria and cytosol in proportion to Δψ by virtue of its positive charge. At low 

concentrations, the fluorescence intensity depends on dye accumulation in mitochondria, which in 

turn is directly related to mitochondrial potential. For confocal microscope analysis, cells were 

cultured on glass coverslips and loaded for 20 min at 37 °C with TMRM, dissolved in 0.1% DMSO  

to a 100 nM final concentration in the culture medium. The cells were fixed in 2% buffered 

paraformaldehyde for 10 min at room temperature and the TMRM fluorescence analyzed  under a 

confocal Leica TCS SP5 scanning microscope (Mannheim, Germany) equipped with a helium-neon 

laser source, using a 543-nm excitation wavelength, and with a Leica Plan Apo x63 oil immersion 

objective. Mitochondrial membrane potential was also quantified by flow cytometry. Single-cell 

suspensions were washed twice with PBS and incubated for 20 min at 37 °C in the dark with 

TMRM dissolved in DMEM (100 nM). The cells were then washed, resuspended in PBS and 

analyzed using a FACSCanto flow cytometer (Becton-Dickinson, San Jose, CA). 

 

Mitochondrial permeability transition pore opening (mPTP) 

Mitochondrial permeability, an index of mitochondrial dysfunction and early apoptosis, was 

measured by calcein fluorescence, as described (Petronilli et al., 1999). The fluorescent probe 

calcein-AM freely enters the cells and emits fluorescence upon de-esterification. Co-loading of cells 

with cobalt chloride, which cannot cross the mitochondrial membranes in living cells, quenches the 

fluorescence in the whole cell except mitochondria. During induction of mPTP, cobalt can enter 

mitochondria and quenches calcein fluorescence, whose decrease can be taken as a measure of the 

extent of mPTP induction. H9c2 cells grown on glass coverslips were loaded with calcein-AM (3 
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µM) and cobalt chloride (1 mM) added to the culture medium for 20 min at 37 °C. The cells were 

then washed in PBS, fixed in 2 % buffered paraformaldehyde for 10 min at room temperature and 

analyzed by a  Leica TCS SP5 confocal laser scanning microscope equipped with an argon laser 

source, using 488-nm excitation wavelength, and with a Leica Plan Apo x63 oil immersion 

objective. Mitochondrial permeability was also monitored by flow cytometry: single-cell 

suspensions were incubated with calcein-AM (3 µM) and cobalt chloride (1 mM) for 20 min at 37 

°C, washed twice with PBS and analyzed using a FACSCanto flow cytometer (Becton-Dickinson). 

 

Assessment of Caspase-3 activity  

H9c2 cells seeded on glass coverslips were incubated with FAM FLICA™ Caspase 3&7 assay kit 

(Immunochemistry Technologies, Bloomington, MN, USA) for 30 min, following the 

manufacturer's instructions. After incubation, the cells were thoroughly washed and fixed in 2% 

buffered paraformaldehyde for 10 min at room temperature. Fluorescence was detected by a 

confocal Leica TCS SP5 scanning microscope equipped with an argon laser source, using 488-nm 

excitation wavelength, and a Leica Plan Apo x63 oil immersion objective. Caspase-3 activity was 

also quantified by flow cytometry: single-cell suspensions were incubated with FAM-FLICA™ for 

30 min at 37 °C, washed twice with PBS and analyzed using a FACSCanto flow cytometer (Becton-

Dickinson). 

 

TUNEL assay 

Cell death was studied with TUNEL assay, as previously described. 

 

Determination of intracellular ROS and mitochondrial superoxide 

H9c2 cells seeded on glass coverslips were loaded with the ROS-sensitive fluorescent probe 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA; Invitrogen, CA, USA; 2.5 μmol/l) or the 

mitochondrial O2 -specific fluorescent probe MitoSOX (Invitrogen; 3 μmol/l) - dissolved in 0.1% 

DMSO and Pluronic acid F-127 (0.01% w/v) – which were added to cell culture media for 15 min 

at 37 °C. The cells were fixed in 2% buffered paraformaldehyde for 10 min at room temperature 

and the H2DCFDA and MitoSOX fluorescence analysed using a Leica TCS SP5 confocal scanning 

microscope equipped with an argon laser source, using 488-nm and 543-nm excitation wavelength, 

respectively, and a Leica Plan Apo x63 oil immersion objective. ROS and mitochondrial O2
 

generation were also monitored by flow cytometry: briefly, single-cell suspensions were incubated 

with H2DCFDA (1 μmol/l) or MitoSOX (0.5 μmol/l) for 15 min at 37 °C and immediately analysed 



52 

 

using a FACSCanto flow cytometer (Becton–Dickinson). Data were analyzed using FACSDiva 

software (Becton–Dickinson). 

 

Immunohistochemical localization and quantitation of nitrotyrosine 

Nitrotyrosine (NT), an index of protein nitrosylation, was determined by immunocytochemistry as 

previously described.  

 

Determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) 

8-OHdG levels, an indicator of oxidative DNA damage, were determined in H9c2 cells as 

previously described.  

 

Statistical analysis 

The reported data are expressed as the mean ± SEM of at least 3 independent experiments. As the 

experimental values in each group approximated to a normal distribution, statistical comparison of 

differences between groups was carried out using one-way ANOVA followed by Student-Newman-

Keuls multiple comparison test. A p value ≤0.05 was considered significant. Calculations were done 

using GraphPad Prism 2.0 statistical program (GraphPad Software, San Diego, CA, USA).  
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Results 

 

Mn
II
(Me2DO2A) preserves cardiac muscle cell viability impaired by H+R. 

Evaluation of H9c2 cell viability by trypan blue assay (Figure 14) showed that reoxygenation 

caused a marked reduction of the amounts of viable cells. This effect was inhibited by 

Mn
II
(Me2DO2A) (1 and 10 mol/l) added at reoxygenation, when high levels of O2  are produced. 

The Mn
II
(Me2DO2A)-induced cytoprotection showed a dose-dependent trend, as it was expected 

based on the mechanism of action of Mn
II
(Me2DO2A) which involves its functional Mn

II
 centre to 

scavenge O2 . Of note, Zn
II
(Me2DO2A), made with a similar organic scaffold but lacking Mn

II
, 

substituted for Mn
II
(Me2DO2A) showed no cytoprotective effect (Figure 14).  

 

 

 

 

Fig. 14 Evaluation of H9c2 cell viability by trypan blue assay. Significance of differences: 

°°°p<0.001 vs. control; *p<0.05 and ***p<0.001 vs. H+R. 

 

 

Mn
II
(Me2DO2A) preserves cardiac muscle cell mitochondrial function impaired by H+R. 

Parallel experiments to explore mitochondrial integrity and function were carried out with the MTT 

assay, which reveals the efficiency of the respiratory chain (Figure 15 A) and the TMRM assay, 

which evaluates the mitochondrial membrane potential (Figure 15 B). The results of these 

experiments have consistently shown that reoxygenation caused a marked impairment of 
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mitochondrial function in H9c2 cells. This detrimental effect was significantly blunted by 

Mn
II
(Me2DO2A) (10 mol/l) added at reoxygenation. Replacement of Mn

II
(Me2DO2A) with 

Zn
II
(Me2DO2A) had no protective effect against mitochondrial dysfunction (Figure 15 A,B). FACS 

analysis confirms the microscopical findings of TMRM fluorescence as it shows that, compared 

with the control cells, H+R shifts the fluorescence peaks towards higher values (right), while this 

effect is markedly reduced by Mn
II
(Me2DO2A), especially at the higher dose (Figure 15 C).   

 

 

Fig. 15 - Evaluation of H9c2 cell mitochondrial integrity and function by MTT assay (A), TMRM 

assay by confocal microscopy (B) and FACS analysis (C). Scale bars: 20 m. Significance of 

differences: °°°p<0.001 vs. control; *p<0.05 and ***p<0.001 vs. H+R. 
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Mn
II
(Me2DO2A) protects cardiac muscle cells from H+R-induced apoptosis. 

The reduction of H+R-induced oxidative stress by Mn
II
(Me2DO2A) resulted in a significant 

decrease in apoptotic cell death. Indeed, the occurrence of mitochondrial permeability transition 

pores (mPTP) typical of early apoptosis (Figure 16 A,B),  and the activation of caspase-3 (Figure 16 

A,B) were markedly increased in H9c2 cells exposed to H+R, while the addition of 1 and 10 mol/l 

Mn
II
(Me2DO2A) at reoxygenation significantly attenuated these changes. FACS analysis confirms 

the microscopical findings as it shows that, compared with the control cells, H+R shifts the 

fluorescence peaks towards higher values (right), while this effect is markedly reduced by 

Mn
II
(Me2DO2A), especially at the higher dose (Figure 16 A,B) 

 

 

 

Fig. 16 Evaluation of apoptosis in H9c2 cells by mPTP and caspase-3 activity assayed by confocal 

microscopy (A) and FACS analysis (B). Scale bars: 20 m 
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In keeping with these findings the percentage of TUNEL-positive apoptotic cells was increased by 

H+R and significantly decreased by Mn
II
(Me2DO2A) (Figure 17) 

 

 

 

Fig.17 Evaluation of apoptosis in H9c2 cells by TUNEL assay. Scale bar: 10 m.). Significance of 

differences: °°°p<0.001 vs. control; *p<0.05 and ***p<0.001 vs. H+R. 

 

 

 

Mn
II
(Me2DO2A) protects cardiac muscle cells from oxidative damage induced by H+R. 

Mn
II
(Me2DO2A) decreased H9c2 cell death by reducing the oxidative stress occurring at 

reoxygenation. In fact, determination of intracellular ROS and mitochondrial O2  by loading the 

cells with the fluorescent probes H2DCFDA and MitoSOX, respectively, showed that these oxidant 

species were markedly increased by H+R, whereas they were significantly reduced by 10 mol/l 

and, at a lesser extent, 1 mol/l Mn
II
(Me2DO2A) (Figure 18 A,B). 
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Fig.18 Evaluation of intracellular ROS and mitochondrial O2  production by H2DCFDA and 

MitoSOX assays by confocal microscopy (A) and and FACS analysis (B) Scale bar: 20 m 

 

 

In keeping with these findings, the levels of immunoreactive nitrotyrosine (NT), a marker of protein 

nitration which were enhanced upon H+R, were significantly reduced after the addition of 10 

mol/l Mn
II
(Me2DO2A) at reoxygenation (Figure 19). 
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Fig. 19 Evaluation of H9c2 cell nitroxidative stress by immunoreactive nitrotyrosine. Scale bar: 10 

m. Significance of differences: °°°p<0.001 vs. control; *p<0.05 and ***p<0.001 vs. H+R. 

 

 

Similar findings were observed in the experiments performed to evaluate the degree of DNA 

oxidation (Figure 20): in this instance, 10 mol/l Mn
II
(Me2DO2A) significantly reduced the levels 

of 8-OHdG in H9c2 cell lysates. 
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Fig.20 Evaluation of oxidative stress by 8-OHdG assay. Significance of differences: °°°p<0.001 vs. 

control; *p<0.05 and ***p<0.001 vs. H+R. 

 

 

 

Mn
II
(Me2DO2A) has no toxic effects on cardiac muscle cells 

As shown by the MTT assay (Figure 21), Mn
II
(Me2DO2A) had no toxic effect on H9c2 cells, even 

at 10-100-fold higher concentrations (100 mol/l) and for longer exposure times (24 h) than those 

displaying significant biological effects. Similarly, Zn
II
(Me2DO2A) (0.1-100 mol/l) was also 

innocuous for the cells (Figure 21). 
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Fig.21 Evaluation of the toxicity of Mn
II
(Me2DO2A) and Zn

II
(Me2DO2A) on H9c2 cells by the 

MTT assay. 
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Discussion 

 

Formation of reactive oxygen and nitrogen species and the resulting nitroxidative stress are the most 

invoked pathogenic mechanisms of ischemia–reperfusion-dependent diseases (Jaeschke and 

Woolbright, 2012; Murphy 2009; Poyton et al., 2009; Castello et al., 2008; Galkin et al., 2007) and 

justify the search for new drugs capable of limiting the over-production of O2 , NO  and ONOO
-
. 

In this context, previous studies have demonstrated that low molecular weight NO  scavengers and 

SOD-mimetic Mn-containing porphyrins can preserve the function of isolated rat myocardial 

mitochondria subjected to hypoxia-reoxygenation and can protect the heart from ischemia-

reperfusion injury in in vivo models (Robin et al., 2011; Masini et al., 2002). On a concurrent line 

of evidence, potentiation of O2
 

decomposition capability of H9c2 rat cardiomyocytes by 

transfection with Cu/Zn SOD was found to increase their resistance to hypoxia-reoxygenation 

damage (Liu et al., 2013). The present cell culture model is intended to study the possible protection 

afforded by O2  scavenging on cardiac muscle cells subjected to hypoxia-reoxygenation-induced 

nitroxidative stress. In the noted experimental conditions, the O2  scavenger
 
Mn

II
(Me2DO2A), 

added at reoxygenation at low, micromolar concentrations, effectively prevented mitochondrial 

O2 generation, intracellular ROS generation, protein nitroxidation and oxidative DNA damage, 

thereby reducing apoptotic cell death, improving mitochondrial function and increasing cell 

viability. In a previous study, we have shown that Mn
II
(Me2DO2A) has lipophilic properties which 

allow it to easily cross the cell membranes (Failli et al., 2009). This property suggests that this 

scavenger was able to attain O2 -neutralizing levels within the cardiac muscle cells and exert 

antioxidative effects close to the mitochondrial sited of O2  generation, as suggested by the results 

of the MitoSOX and TMRM membrane potential assays. Moreover, Mn
II
 forms a highly stable 

complex at physiological pH with the polyamine-polycarboxylate scaffold. Other metal cations 

present in the cellular environment, including Ca
II
, Mg

II
 and K

I
, give remarkably less stable 

complexes than the functional Mn
II 

ion. The high stability of the Mn
II
(Me2DO2A) prevents both de-

metallation of the complex upon Mn
II
 complexation by cellular chelating agents and trans-

metallation reactions, due to complexation of the ligand to other metals present in the cellular 

medium. As a matter of fact, Mn
II
(Me2DO2A) does not release Mn

II
 even in the presence of large 

excess of Ca
II
 and other metal ions and of broad variations of pH (at pH 6, Mn

II
 release is less than 

5%) (Failli et al., 2009). These properties are particularly important in view of a possible 

pharmacological extension of Mn
II
(Me2DO2A) to the protection of ischemic-reperfused heart in 

vivo: in fact, the injured myocardium undergoes an overload of Ca
II
 (Bourdillon et al., 1981), which 

may potentially compete with the active Mn
II
 centre of the compound, and prominent acidosis due 
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to metabolic impairment. Moreover, Mn
II
(Me2DO2A) is less susceptible to inactivation by 

oxidative stress conditions than endogenous or exogenously administered SOD (Finkel, 2005; Liu 

et al., 2013). The possible molecular mechanism of O2  scavenging by  Mn
II
(Me2DO2A) may 

consist of a catalytic cycle involving first oxidation of Mn
II
 to Mn

III
 by O2  and then reduction of 

the resulting Mn
III

 complex by another O2  to form the initial  Mn
II 

compound (Failli et al., 2009; 

Cinci et al., 2010). Interestingly, Mn
II 

in aqueous solution is oxidized via a single-electron process 

with redox potential higher than that of natural Mn-SODs. This suggests that, in the cellular 

environment, Mn
III

(Me2DO2A) reduction may occur upon reaction with O2   as well as other 

cytoplasmic reductans. To confirm these assumptions, the antioxidative effects of Mn
II
(Me2DO2A) 

were completely lost when inactive Zn
II
 was substituted for Mn

II
. Taken together, these features 

allow Mn
II
(Me2DO2A) to behave as an efficient O2  scavenger. Of note, Mn

II
 pentaazamacrocyclic 

complexes have been shown to react with ONOO
-
 and dismute NO , albeit at lower rates than with 

O2  (Filipović et al., 2010). Whether Mn
II
(Me2DO2A) may also be able to remove harmful ONOO

-
 

and excess NO , thereby increasing its antioxidant properties, remains a tantalizing matter for 

further investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

 

Bibliography 

 

Baccari M.C., Bani D. (2008) Relaxin and nitric oxide signalling. Curr Protein Pept Sci 9: 

         638-645. 

Baker K., Bucay Marcus C., Kruk H., Malfroy B., Doctrow S.R. (1998) Synthetic combined  

         superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stoke  

         model: a key role for a reactive oxygen species in ischemic brain injury. J Pharmacol Exp  

         Ther 284: 215-221. 

Bani D., Bigazzi M. (1984) Morphological changes induced in mouse mammary gland by porcine 

and human relaxin. Acta Anat (Basel) 119: 149-154 

Bani D., Maurizi M.;, Bigazzi M. (1995) Relaxin reduces the number of circulating platelets and 

depresses platelet release from megakaryocytes: studies in rats. Platelets 6: 330-335 

Bani D. (1997) Relaxin: a pleitropic hormone. Gen Pharmacol 28: 13-22 

Bani D., Ballati L., Masini E., Bigazzi M., Sacchi T.B. (1997) Relaxin counteracts  asthma-like 

reaction induced by inhaled antigen in sensitized guinea pigs. Endocrinology 138: 1909-1915 

Bani D., Masini E., Bello M.G., Bigazzi M., Bani Sacchi T. (1998) Relaxin protects against 

myocardial injury caused by ischemia and reperfusion in rat heart. Am J Pathol 152: 1367-

1376 

Bani D., Failli P., Bello M.G., Thiemermann C., Bani-Sacchi T., Bigazzi M., Masini E. (1998) 

Relaxin activates the L-arginine-nitric oxide pathway in vascular smooth muscle cells in 

culture. Hypertension 31: 1240-1247 

Bani D., Nistri S., Quattrone S., Bigazzi M., Bani-Sacchi T. (2001) The vasorelaxant hormone 

relaxin induces changes in liver sinusoid microcirculation: a morphological study in the rat. J 

Endocrinol 171: 541-549 

Bani D., Baronti R., Vannacci A., Bigazzi M., Sacchi T.B., Mannaioni P.F., Masini E. (2002) 

Inhibitory effects of relaxin on human basophis activated by stimulation of the  Fc ipsilon 

receptor. The role of nitric oxide. Int Immunopharmacol 2: 1195-1204 

Bani D., Bigazzi M. 2005. Clinical aspects and therapeutic perspectives of relaxin. Curr Med Chem 

- Immunology, Endocrine and Metabolic Agents (CMC-IEMA) 5:403-10. 

Bani D., Nistri S., Bani Sacchi T., Bigazzi M. (2005). Basic progress and future therapeutic 

perspectives of relaxin in ischemic heart disease. Ann N Y Acad Sci, 1041:423-30. 



64 

 

Bani D., Nistri S., Cinci L., Giannini L., Princivalle M., Elliott L., Bigazzi M., Masini E. (2007) A 

novel, simple bioactivity assay for relaxin based on inhibition of platelet aggregation. Regul 

Pept 144: 10-16. 

Bani D., Bencini A. (2012) Developing ROS scavenging agents for pharmacological purposes:  

         recent advances in design of manganese-based complexes with anti-inflammatory and anti-  

         nociceptive activity. Curr Med Chem 19:4431-4444;  

Bani-Sacchi T., Bigazzi M., Bani D., Mannaioni P. F.; Masini E. (1995) Relaxin-induced
 
increased 

coronary flow through stimulation of nitric oxide production. Br J Pharmacol 116: 1589-1594 

Bartsch O., Bartlick B., Ivell R. (2001) Relaxin signalling links tyrosine phosphorylation to 

phosphodiesterase and adenylyl cyclase activity. Mol Hum Reprod 7(9): 799-809 

Bathgate R.A., Samuel C.S., Burazin T.C., Layfield S., Claasz A.A.,  Reytomas I.G., Dawson N.F., 

Zhao C., Bond C., Summers R.J., Parry L.J., Wade J.D., Tregear G.W. (2002) Human relaxin 

gene 3 (H3) and equivalent mouse relaxin (M3) gene. Novel members of the relaxin peptide 

family. J Biol Chem 277:1148-1157 

Bathgate R.A., Samuel C.S., Burazin T.C., Gundlach A.L., Tregear G.W. (2003) Relaxin: new 

peptides, receptors and novel actions. Trends Endocrinol Metab14:207-13 

Bathgate R.A.D., Hsueh A.J., Sherwood O.D (2006) Physiology and molecular biology of the 

relaxin peptide family. Knobil and Neill’s Physiology of reproduction. Neill J.D. Elsevier 

Bathgate R.A., Lekgabe ED., McGuane JT., Su Y., Pham T., Ferraro T., Layfield S., Hannan R.D., 

Thomas W.G.; Samuel C.S.; Du X.J. (2008) Adenovirus-mediated delivery of relaxin reverses 

cardiac fibrosis B Mol Cell Endocrinol. 280:30-8 

Bathgate R.A., M. L. Halls M. L.; van der Westhuizen E.T., Callander G.E., Kocan M., Summers 

R.J. (2013). Relaxin family peptides and their receptors. Physiol Rev 93: 405-480 

Batinić-Haberle I; Spasojević I.; Hambright P.; Benov L.; Crumbliss A. L.; Fridovich I. (1999)      

         Relationship between redox potential, proton dissocation contsnts of pyrrolic nitrogens, and in 

         vivo and in vitro superoxide dismutating activies of manganese(III) and iron(III) water-soluble  

         porphyrins. Inorg Chem 38: 4011-4022. 

Batinic-Haberle I., Reboucas J.S., Spasojevic I. (2010) Superoxide dismutase mimics: chemistry,  

         pharmacology, and therapeutic potential. Antiox Redox Signal 13: 877-918. 

Batinic-Haberle I., Rajic Z., Tovmasyan A., Reboucas J.S., Ye X., Leong K.W., Dewhirst M.W., 

Vujaskovic Z., Benov L., Spasojevic I. (2011) Diverse functions of cationic Mn(III) N-

substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 51: 1035-

1053 

Batinic-Haberle I., Tovmasyan A., Roberts E.R.H., Vujaskovic Z., Leong K.W., Spasojevic I.  



65 

 

         (2014) SOD Therapeutics: latest insights into their structure-activity relationships and impact  

         on the cellular redox-based signaling pathways. Antioxid Redox Signal 20:2372-2415. 

Bencini A.; Failli P.; Valtancoli B.; Bani D. (2010). Low molecular weight compounds with 

transition metals as free radical scavengers and novel therapeutic agents. Cardiovasc Hematol 

Agents Med Chem 8:128-146 

Bianchi A.;  Calabi L.; Corana F. Fontana S.; Losi P.; Maiocchi A.; Paleari L.; Valtancoli B. (2000) 

Thermodynamics and Structural Properties of Gd(III) Complexes with Polyamino-

Polycarboxylic Ligands: Basic Compound for the Development of MRI Contrast Agents. 

Coord Chem Rev 24:309-393 

Bigazzi M., Del M., Petrucci F., Casali R., Novelli G.P. (1986) The local administration of relaxin 

induces chenges in the microcirculation of the rat mesocaecum. Acta Endocrinol (Copenh) 

112: 296-299 

Bigazzi M., Bani D., Bani G., Bani-Sacchi T. (1995) Relaxin and the cardiocirculatory system. In: 

McLennan A. H., Treggar G., Bryant-Greenwood G. D. (eds) Progress in Relaxin Research. 

Singapore: World Scientific Publishing, pp. 499-507 

Bigazzi M., Bani D., Bani Sacchi T., Petrucci F., Bianchi S. (1998) Relaxin: a mammotropic 

hormone promoting growth and differentation of the pigeon crop sac mucosa. Acta Endocrinol 

117: 181-188 

Bell R.J., Eddie L.W., Lester A.R., Wood E.C., Johnston P.D., Niall H.D. (1987) Relaxin in human 

pregnancy serum measured with an homologous radioimmunoassay. Obstet Gynecol 69: 585-

589 

Bennett R. G. (2009). Relaxin and its role in the development and treatment of fibrosis. Transl Res 

154: 1-6 

Bonacchi M., Nistri S., Nanni C., Gelsomino S., Pini A., Cinci L., Maiani M., Zecchi-Orlandini S., 

Lorusso R., Fanti S., Silvertown, J., Bani D. (2009) Functional and histopathological 

improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy. J 

Cell Mol Med 13: 3437-3448. 

Boni A., Urbanek K., Nascimbene A., Hosoda T., Zheng H., Delucchi F., Amano K., Gonzalez A., 

Vitale S., Ojaimi C., Rizzi R., Bolli R, Yutzey K.E., Rota M., Kajstura J., Anversa P., Leri, A. 

(2008) Notch1 regulates the fate of cardiac progenitor cells.  Proc Natl Acad Sci USA105, 

15529–15534 

Bourdillon P.D., Poole-Wilson P.A. (1981) Effects of ischaemia and reperfusion on calcium  

         exchange and mechanical function in isolated rabbit myocardium. Cardiovasc Res 15:121- 

         130. 



66 

 

Bradley P.P., Priebat D.A., Chriestensen R.D., Rothstein E. (1982) Measurement of cutaneous 

inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78: 

206-209 

Brou C. (2009) Intracellular trafficking of Notch receptors and ligands. Exp Cell Res315, 1549–

1555. 

Bryant-Greenwood G.D., Ali S., Mandel M., Greenwood F. (1987) Ovarian and decidual relaxins in 

human pregnancy. Adv Exp Med Biol 219: 709-13 

Bryant-Greenwood G.D., Schwabe C. (1994) Human relaxins: chemistry and biology. Endocr. Rev. 

15: 5-26 

Büllesbach E. E. and Schwabe C. (1988) On the receptor binding sites of relaxins. Int J Pept 

Protein Res 32: 361–367. 

Büllesbach E.E.; Schwabe C. (2005) The trap like relaxin-binding site of LGR7. J Biol Chem 280: 

14051-14056 

Campa V.M., Gutierrez-Lanza R., Cerignoli F., Diaz-Trelles R., Nelson B., Tsuji T., Barcova M., 

Jiang W., Mercola M. (2008) Notch activates cell cycle reentry and progression in quiescent 

cardiomyocytes. J Cell Biol 183: 129–141 

Caplice N.M. (2006) The future of cell therapy for acute myocardial infarction. Nat Clin Pract 

Cardiovasc Med 3: S129–32 

Castello P.R., Woo D.K., Ball K., Wojcik J., Liu L., Poyton R.O. (2008) Oxygen-regulated 

isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and 

on hypoxic signaling. Proc Natl Acad Sci USA 105:8203–8208. 

Cinci L., Masini E., Bencini A., Valtancoli B., Mastroianni R., Calosi L., Bani D. (2010) 

Suppression of allergen-induced respiratory dysfunction and airway inflammation in 

sensitized guinea pigs by Mn(II)(Me(2)DO2A), a novel superoxide scavenger compound. 

Free Radic Biol Med 48:1525-1534 

Collesi C., Zentilin L., Sinagra G. Giacca M. (2008) Notch 1 signaling stimulates proliferation of  

immature cardiomyocytes. J Cell Biol 183: 117–128. 

Conrad K.P., Gandley R.E., Ogawa T., Nakanishi S., Danielson L.A. (1999) Endothelin mediates 

renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious 

rats. Am J Physiol 276, F767 

Conrad K.P., Novak J. (2004) Emerging role of relaxin in renal and cardiovascular function. Am. J 

Physiol Regul Integr Comp Physiol 287: R250-R261 



67 

 

Conrad K.P., Debrah D.O., Novak J., Danielson L.A., Shroff S.G. (2004) Relaxin modifies system 

arterial resistance and compliance in conscious, nonpregnant rats. Endocrinology 145: 3289-

3296 

Crompton M. (1999). The mitochondrial permeability transition pore and its role in cell death. 

Biochem J 341: 233-249 

Croquelois A., Domenighetti A.A., Nemir M., Lepore M., Rosenblatt-Velin N., Radtke F., 

Pedrazzini, T. (2008) Control of the adaptive response of the heart to stress via the Notch1 

receptor pathway. J Exp Med 205: 3173–3185 

Cuzzocrea S., Thiemermann C., Salvemini D. (2004) Potential therapeutic effect of antioxidant  

         therapy in shock and inflammation. Curr Med Chem 11: 1147-1162. 

Cuzzocrea S., Mazzon E., Dugo L., Caputi A.P., Aston K., Riley D.P., Salvemini D. (2001) 

Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery 

occlusion and reperfusion. Br J Pharmacol 132: 19−29. 

Danielson L.A., Sherwood O.D. and Conrad K.P. (1999). Relaxin is a potent renal vasodilator in 

conscious rats. J Clin Invest 103:525-33 

Danielson L.A., Kercher L.J and Conrad K.P. (2000). Impact of gender end endothelin on renal 

vasodilatation and hyperfiltration induced by relaxin in conscious rats. AmJ Physiol Regul 

Integr Comp Phsiol 279: R1298-304 

Danielson L.A. Conrad K.P. (2003). Time course and dosev response of relaxin-mediated renal 

vasodilation, hyperfiltration, and changes in plasma osmolality in conscius rats. J Appl 

Physiol 95(4):1509-14 

Dayanithi G., Cazalis M., Nordmann J.J. (1987). Relaxin affects the release of oxytocin and 

vasopressin from the neurohypophysis. Nature 325(6197) 813-6 

Della-Morte D., Guadagni F., Palmirotta R., Ferroni P., Testa G., Cacciatore F., Abete P., Rengo F., 

Perez-Pinzon M.A., Sacco R.L., Rundek, T. (2012) Genetics and genomics of ischemic 

tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics 13: 

1741-1757. 

Di Cesare Mannelli L, Bani D, Bencini A, Brandi ML, Calosi L, Cantore M, Carossino A.,  

         Ghelardini C., Valtancoli B., Failli P. (2013) Therapeutic effects of the superoxide dismutase  

          mimetic compound Mn
II
Me2DO2A on experimental articular pain in rats. Mediat Inflamm  

          905360.  

Downing S.J., Sherwood O.D. (1986) The physiological role of relaxin in the pregnant rat: IV the 

influence of relaxin on cervical collagen and glycosaminoglycans. Endocrinology 118: 471-

479 



68 

 

Downing S.J., Hollingsworth M. (1993) Action of relaxin on uterine contractions--a review. Reprod 

Fertil 99: 275. 

Dschietzig T., Richter C., Bartsch C., Laule M., Armbruster F.P., Baumann G., Stangl K. (2001) 

The pregnancy hormone relaxin is a player in human heart failure. FASEB J 15: 2187-2195 

Dschietzig T., Stangl K. (2002) Relaxin: a pregnancy hormone as a central player of body fluid and 

circulation homeostasis. Cell Mol Life Sci 59: 1-13 

Dschietzig T., Bartsch C., Stangl V., Baumann G., Stangl K. (2004) Identification of the pregnancy 

hormone relaxin as glucocorticoid receptor agonist. FASEB J 18:1536-8. 

Dschietzig T., Bartsch C., Greinwald M., Baumann G., Stangl K. (2005) The pregnancy hormone 

relaxin binds to and activates the human glucocorticoid receptor. Ann NY Acad Sci 1041: 256-

271 

Du X.J., Samuel C.S., Gao X.M., Zhao L., Parry L.J., Tregear G.W. (2003). Increased myocardial 

collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific 

phenotype. Cardiovascular research 57: 395-404 

Eddie L.W., Bell R.J. Eddie L.W., Bell R.J., Lester A., Geier M., Bennett G., Johnston P.D., Niall 

H.D., (1986) Radioimmunoassay of relaxin in pregnancy with an analogue of human relaxin. 

Lancet 1:1344-1346 

Edwards D.R., Handsley M.M., Pennington C.J. (2008) The ADAM metalloproteinases. Mol 

Aspects Med 29: 258-289. 

Eefting F., Rensing B., Wigman J., Pannekoek W.J., Liu W.M., Cramer M.J., Lips D.J., 

Doevendans P.A. (2004) Role of apoptosis in reperfusion injury. Cardiovasc Res 61: 414–426 

Erikson M., Unemori (2001) Relaxin clinical trials in systemic sclerosis. Relaxin 2000. G. Tregear, 

R. Ivell R. Bathgate and J. Wade. Springer Netherlands: 373-381. 

Essig M.C., Schoenfeld C., Amelar R.D., Dubin L., Weiss G. (1982). Stimulation of human sperm 

motility by Relaxin. Fertil Steril 38:339-343 

Essig M.C., Schoenfeld C. Amelar R.D., Dubin L., Weiss G. (1982) Relaxin in human seminal 

plasma. Ann NY Acad Sci 380:224-230 

Evans J.A. (1959). Relaxin (releasin) therapy in diffuse progressive scleroderma; a preliminary 

report. AMA Arch Derm 79: 150-158. 

Failli P., Nistri S., Quattrone S., Mazzetti L., Bigazzi M., Sacchi T.B., Bani D. (2002) Relaxin up-

regulates inducible nitric oxide synthase expression and nitric oxide generation in rat coronary 

endothelial cells. FASEB J 16: 252-254 

Failli P., Bani D., Bencini A., Cantore M., Di Cesare Mannelli L., Ghelardini C., Giorgi C., 

Innocenti M., Rugi F., Spepi A., Udisti R., Valtancoli B. (2009). A novel manganese complex 

http://www.ncbi.nlm.nih.gov/pubmed/8107007
http://www.ncbi.nlm.nih.gov/pubmed?term=Dschietzig%20T%5BAuthor%5D&cauthor=true&cauthor_uid=15289446
http://www.ncbi.nlm.nih.gov/pubmed?term=Bartsch%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15289446
http://www.ncbi.nlm.nih.gov/pubmed?term=Stangl%20V%5BAuthor%5D&cauthor=true&cauthor_uid=15289446
http://www.ncbi.nlm.nih.gov/pubmed?term=Baumann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15289446
http://www.ncbi.nlm.nih.gov/pubmed?term=Stangl%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15289446
http://www.ncbi.nlm.nih.gov/pubmed?term=Amelar%20RD%5BAuthor%5D&cauthor=true&cauthor_uid=7117559
http://www.ncbi.nlm.nih.gov/pubmed?term=Dubin%20L%5BAuthor%5D&cauthor=true&cauthor_uid=7117559
http://www.ncbi.nlm.nih.gov/pubmed?term=Weiss%20G%5BAuthor%5D&cauthor=true&cauthor_uid=7117559


69 

 

effective as superoxide anion scavenger and therapeutic agent against cell and tissue oxidative 

injury. J Med Chem 52:7273-7283 

Fernandez J.W., Rezai-Zadeh K., Obregon D., Tan, J. (2010) EGCG functions through estrogen 

receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing 

of APP. FEBS Lett 584: 4259-4267. 

Ferrer-Sueta G., Radi R. (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals.  

         ACS Chem Biol 4:161-177. 

Fevold H. L., Hisaw F. L, Meyer R. K. (1930) The relaxative hormone of the corpus luteum. Its 

purification and concentration. J Am Chem Soc 52: 3340-3348 

Filipović M.R., Koh A.C., Arbault S., Niketić V., Debus A., Schleicher U., Bogdan C., Guille M.,  

         Lemaître F., Amatore C., Ivanović-Burmazović I. (2010) Striking inflammation from both     

         sides: manganese(II) pentaazamacrocyclic SOD mimics act also as nitric oxide dismutases: a  

         single-cell study. Angew Chem Int Ed Engl 49:4228-4232. 

Finkel T. (2005) Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 6:97-976. 

Formigli L., Francini F., Tani A., Squecco R., Nosi D., Polidori L., Nistri S., ChiappiniL., Cesati 

V., Pacini A., Perna A.M., Orlandini G.E., Zecchi Orlandini S., Bani D. (2005) 

Morphofunctional  integration between skeletal myoblasts and adult cardiomyocytes in 

coculture is favored by direct cell-cell contacts and relaxin tretament. Am J Physiol Cell 

Physiol 288: 795-804 

Formigli L., Perna A.M., Meacci E., Cinci L., Margheri M., Nistri S., Tani A., Silvertown J., 

Orlandini G., Porciani C., Zecchi-Orlandini S., Medin J., and Bani D. (2007) Paracrine effects 

of transplanted myoblasts and relaxin on post-infarction heart remodelling. J Cell Mol Med11: 

1087-1100 

Frangogiannis N.G., Smith C.W., Entman M.L. (2002) The inflammatory response in myocardial 

infarction. Cardiovasc Res 53: 31–47  

Fridovich I. (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264: 

7761-7764. 

Galkin A., Higgs A., Moncada S. (2007) Nitric oxide and hypoxia. Essays Biochem3: 29–42 

Garber S.L., Mirochinik Y., Brecklin C.S., Unemori E.N., Singh A.K., Slobodskoy L. Grove B.H., 

Arruda J.A., Dunea G. (2001). Relaxin decreases renal interstitial fibrosis and slows 

progression of renal disease. Kidney Int 59: 314-320 

Garber S.L, Mirochnik Y., Brecklin C., Slobodskoy L., Arruda J.A., Dunea G. (2003) Effect of 

relaxin in two models of renal mass reduction Am J Nephrol  23:8-12 

http://www.ncbi.nlm.nih.gov/pubmed?term=Grove%20BH%5BAuthor%5D&cauthor=true&cauthor_uid=11231342
http://www.ncbi.nlm.nih.gov/pubmed?term=Arruda%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=11231342
http://www.ncbi.nlm.nih.gov/pubmed?term=Dunea%20G%5BAuthor%5D&cauthor=true&cauthor_uid=11231342


70 

 

Gersh B.J., Sliwa K., Mayosi B.M., and Yusuf S. (2010) Novel therapeutic concepts: the epidemic 

of cardiovascular disease in the developing world: global implications. Eur Heart J 31: 642-

648 

Glebska J., Koppenol W. H. (2003).Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein 

and dihydrorhodamine. Free Radical Biology and Medicine 35: 676-682. 

Goldsmith L.T., Weiss G., Steinetz B.G. (1995) Relaxin and its role in pregnancy. Endocrinol 

Metab Clin North Am 24:171-86 

Graham E.F., Dracy A. E. (1953). The effect of relaxin and mechanical dilatation of the bovine 

cervix. Journal of Dairy Science 36:772-777. 

Gude N.A., Emmanuel G., Wu W., Cottage C.T, Fischer K., Quijada P., Muraski J.A., Alvarez R., 

Rubio M., Schaefer E., Sussman M.A. (2008) Activation of Notch-mediated protective 

signaling in the myocardium. Circ Res 102: 1025–1035 

Guico-Lamm M.L., Sherwood O.D. (1988) Monoclonal antibodies specific for rat relaxin. II. 

Passive immunization with monoclonal antibodies throughout the second half of pregnancy 

disrupts birth in intact rats. Endocrinology 123:2479-85 

Gunnersen J.M., Crawford R.J., Tregear G.W. (1995) Expression of the relaxin gene in rat tissues. 

Mol Cell Endocrinol 110: 55-64 

Hall K. (1947). The effects of pregnancy and relaxin on the histology of the pubic symphysis of the 

mouse. Journal of Endocrinology 5: 174-185 

Hall K. (1948). Further notes on the action of oestrone and relaxin on the pelvis of the spayed 

mouse, including a single-dose test of potency of relaxin. J Endocrinol 5: 314-21 

Han X., Habuchi Y. and Giles W. R. (1994) Relaxin increases heart rate by modulating calcium 

current in cardiac pacemaker cells. Circ Res 74: 537-541 

Heeg M.H., Koziolek M.J., Vasko R., Schaefer L., Sharma K., Muller G.A., Strutz F. (2005) The 

antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of 

the Smad2 pathway. Kidney Int 68: 96-109 

Hescheler J., Meyer R., Plant S., Krautwurst D., Rosenthal W., Schultz, G. (1991) Morphological, 

biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat 

heart. Circ Res 69:1476-1486 

High F.A., and Epstein J.A. (2008) The multifaceted role of Notch in cardiac development and 

disease. Nat Rev Genet 9: 49–61 

Hisaw F. L. (1926). Experimental relaxation of the pubic ligament of guinea pig. Proc Ex. Biol Med 

23: 661-663 

http://www.ncbi.nlm.nih.gov/pubmed?term=Strutz%20F%5BAuthor%5D&cauthor=true&cauthor_uid=15954899


71 

 

Hisaw F. L. (1927). Eperimental relaxtion of the symphysis pubis of the guinea pig. Anat Rec 

37:126 

Hornsby D.J., Wilson B.C., Summerlee A.J. (2001). Relaxin and drinking in pregnant rats. Prog 

Brain Res 133:229-40 

Hsu S.Y., Kudo M., Chen T., Nakabayashi K., Bhalla A., van der Spek P. J., van Duin M., Hsueh 

A.J. (2000). The three subfamilies of leucine-rich repeat-containing G protein-coupled 

receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. 

Mol Endocrinol 14: 1257-71 

Hsu S.Y., Nakabayashi K., Nishi S., Kumagai J., Kudo M., Sherwood O.D., Hsueh A.J. (2002) 

Activation of orphan receptors by the hormone relaxin. Science 295: 671-674 

Hsu S.Y. (2003). New insights into the evolution of the relaxin-LGR signaling system. Trends 

Endocrinol Metab14: 303-309 

Jaber W.A., Holmes D.R. (2007) Outcome and quality of care of patients who have acute  

         myocardial infarction. Med Clin North Am. 91(4):751-68 

Jaeschke H., Woolbright B.L. (2012) Current strategies to minimize hepatic ischemia-reperfusion  

         injury by targeting reactive oxygen species. Transplant Rev (Orlando) 26:103-114 

Jennings R. B., Reimer K. A. (1991) The Cell Biology of Acute Myocardial Ischemia. Annual  

         Review of Medicine 42: 225-246. 

Johnson F., Giulivi C. (2005) Superoxide dismutases and their impact upon human health. Mol.  

         Aspects Med 26: 340-352. 

Kakouris H., Eddie L. W., Summers R. J. (1992) Cardiac effects of relaxin in rats. Lancet 339: 

1076-1078 

Kern A., Hubbard D., Amano A., Bryant-Greenwood G.D. (2008) Cloning, expression and 

functional characterization of relaxin receptor (leucine-rich repeat-containing g protein-

coupled receptor 7) splice variants from human fetal membranes. Endocrinology 149: 1277-

1294 

Kompa A.R., Samuel C.S., Summers R.J. (2002). Inotropic responses to human gene 2 (B29) 

relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. British Journal 

of Pharmacology 137: 710-8 

Kuenzi M.J., Sherwood O.D. (1992) Monoclonal antibodies specific for rat relaxin. VII. Passive 

immunization with monoclonal antibodies throughout the second half of pregnancy prevents 

development of normal mammary nipple morphology and function in rats. Endocrinology 

131:1841-7 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hsueh%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=10935549
http://www.ncbi.nlm.nih.gov/pubmed?term=Hsueh%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=10935549
http://www.ncbi.nlm.nih.gov/pubmed?term=Jaber%20WA%5BAuthor%5D&cauthor=true&cauthor_uid=17640546
http://www.ncbi.nlm.nih.gov/pubmed?term=Holmes%20DR%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=17640546
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jaber+2007+myocardial+infarction
http://www.ncbi.nlm.nih.gov/pubmed?term=Hubbard%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18079195
http://www.ncbi.nlm.nih.gov/pubmed?term=Amano%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18079195
http://www.ncbi.nlm.nih.gov/pubmed?term=Bryant-Greenwood%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=18079195


72 

 

Kuenzi M.J., Connolly B.A., Sherwood O.D. (1995) Relaxin acts directly on rat mammary nipples 

to stimulate their growth. Endocrinology 136:2943-7. 

Krajnc-Franken M.A., van Disseldorp, Koenders A. J., Koenders J. E., Mosselman S., van Duin M.  

Gossen J.A. (2004). Impaired nipple development and parturition in LGR7 knockout mice. 

Mol Cell Bio 24: 687-96 

Krantz J. C., Bryant H. H., Carr C.J. (1950). The action of aqueous corpus luteum extract upon 

uterine activity. Surg Gynecol Obstet 90:372-375 

Kratsios P., Catela C., Salimova E., Huth M., Berno V., Rosenthal N., Mourkioti F. (2010) Distinct 

roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult 

heart. Circ Res 106: 559–552 

Lekgabe E.D., Kiriazis H., Zhao C., Xu Q., Xiao L.M., Su Y., Bathgate R.A.D., Xiao J.D., Samuel 

C.S. (2005) Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats. 

Hypertension 46: 412-418 

Levraut J., Iwase H., Shao, Z. H., Vanden Hoek T. L., Schumacker P. T. (2003). Cell death during 

ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol 

Heart Circ Physiol 284: H549-58. 

Lewis M., Deshpande U., Guzman L., Grove B., Huang X., Erikson M., Pickford L. B., Unemori E. 

(2001). Systemic relaxin administration stimulates angiogenic cytokine expression and vessel 

formation in a rat myocardial infarct model. In Tregear GW, Ivell R, Bathgate RA, Wade DJ 

(eds). Relaxin 2001: Proceedings of the 3
rd

 international conference on relaxin and related 

peptides. Dordrecht, The Netherlands: Kluwer. p159-67. 

Li C., Jackson R. M. (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. 

Am J Physiol Cell Physiol 282: C227-241. 

Liem D.A., Honda H.M., Zhang J., Wood D., Ping P. (2007) Past and present course of 

cardioprotection against ischemia- reperfusion injury. J Appl Physiol 103: 2129-2136 

Lindoy L.F. (1989) The chemistry of macrocyclic ligand complexes, Cambridge, UK: Cambridge 

University Press 

Liu C., Eriste E., Sutton S., Chen J., Roland B., Kuei C., Farme N., Jornvall H., Sillard R., 

Lovenberg T.W. (2003). Identification of relaxin-3/INSL7 as an endogenous ligand of the 

orphan G-protein coupled receptor GPCR135. J Biol Chem 50:50754-64 

Liu J., Hou J., Xia Z.Y., Zeng W., Wang X., Li R., Ke C., Xu J., Lei S., Xia Z. (2013) Recombinant  

         PTD-Cu/Zn SOD attenuates hypoxia-reoxygenation injury in cardiomyocytes. Free Radic Res  

         47:386-393.  

http://www.ncbi.nlm.nih.gov/pubmed/7789319
http://www.ncbi.nlm.nih.gov/pubmed/7789319
http://www.ncbi.nlm.nih.gov/pubmed?term=CARR%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=15405619


73 

 

Ma S., Roozendaal B., Burazin T.C., tregear G.W., Mcgaugh J.L., Gundlach A.L. (2005). Relaxin 

receptor activation in the basolateral amygdala impairs memory consolidation Eur Neurosci 

33: 2117-22 

Masini E., Bani D., Bigazzi M., Mannaioni P.F., Bani-Sacchi T. (1994) Effects of relaxin on mast 

cells. In vitro and in vivo studies in rats and guinea pigs. J Clin Invest 94: 1974-1980 

Masini E., Di Bello M.G., Bani D., Bigazzi M., Bani Sacchi T., Mannaioni P.F. (1995). Relaxin 

inhibits histamine release from mast cells: involvement of nitric oxide production. Inflamm 

Res 44 suppl 1:S12-3 

Masini E., Bani D., Bello M.G., Bigazzi M., Mannaioni P.F., Bani-Sacchi T. (1997) Relaxin 

counteracts myocardial damage induced by ischemia-reperfusion in isolated guinea pig hearts: 

evidence for an involment of nitric oxide. Endocrinology 138: 4713-4720 

Masini E., Cuzzocrea S., Mazzon E., Marzocca C., Mannaioni P.F., Salvemini D. (2002) Protective  

         effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and    

         reperfusion injury in vivo. Br J Pharmacol 136:905-917. 

Masini E., Nistri S., Vannacci A., Bani Sacchi T., Novelli A., Bani D. (2004) Relaxin inhibits the 

activation of human neutrophils: involvement of the nitric oxide pathway. Endocrinology 145: 

1106-1112  

Mazoujian G., and Bryant-Greenwood G.D. (1990). Relaxin in breast tissue. Lancet 335: 298-9 

McCord J.M. (1985) Oxygen-derived free radicals in post-ischemic tissue injury. N Engl J Med 

312: 159–163  

McCord J.M.; Edeas M.A. (2005) SOD, oxidative stress and human pathologies: a brief history and  

         a future vision. Biomed Pharmacother 59:139-142 

McGowan B.M., Stanley S.A., Smith K.L., White N.E., Connolly M.M., Thompson E. L., Gardiner 

J.V., Murphy K.G., Ghatei M.A., Bloom S.R. (2005). Central relaxin-3 administration causes 

hyperphagia in male Wistar rats. Endocrinology 146(8):3295-300 

McGowan B.M., Stanley S.A., Smith K.L., Minnion J.S., Donovan J., Thompson E.L, Patterson M., 

Connolly M.M., Abbott C.R., Small C.J., Gardiner J.V., Ghatei M.A., Bloom S.R. (2006) 

Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul 

Pept 136: 72-77 

McGuane, J.T., Debrah, J.E., Sautina, L., Jarajapu, Y.P., Novak, J., Rubin, J.P., Grant, M.B., Segal, 

M. and Conrad, K.P. (2011) Relaxin induces rapid dilation of rodent small renal and human 

subcutaneous arteries via PI3 kinase and nitric oxide. Endocrinology 152: 2786-2796. 

Merbach A.E., Tóth E. (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance 

Imaging; John Wiley & Sons: New York.  



74 

 

Miriyala S., Spasojevic I., Tovmasyan A., Salvemini D., Vujaskovic Z., St Clair D., Batinic-   

Haberle, I. (2012)  Manganese superoxide dismutase, MnSOD and its mimics. Biochim.  

         Biophys Acta 1822: 794-814. 

Moore X.L., Tan S.L., Lo C.Y., Fang L., SuY.D., Gao X.M., Woodcock E.A., Summers R.J., 

Tregear G.W., Bathgate R.A., Du X.J. (2007) Relaxin antagonizes hypertrophy and apoptosis 

in neonatal rat cardiomyocytes. Endocrinology 148: 1582-1589. 

Moore X.L., Su Y., Fan Y., Zhang Y.Y., Woodcock E.A., Dart A.M., Du X.J. (2014) Diverse 

regulation of cardiac expression of relaxin receptor by α1- and β 1-adrenoceptors. Cardiovasc 

Drugs Ther 28:221-228. 

Mullane K.M., Kraemer R., Smith B. (1985) Myeloperoxidase activity as a quantitative assessment 

of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14: 157-167 

Murphy M.P. (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1-13 

Muscoli C; Cuzzocrea S; Riley D.P.; Zweier J.L.; Thiemermann C.; Wang Z.Q.; Salvemini D. 

(2003) On the selectivity of superoxide dismutase mimetics and its importance in 

pharmacological studies. Br J Pharmacol 140: 445-460. 

Nemir M., and Pedrazzini T. (2008) Functional role of Notch signaling in the developing and 

postnatal heart. J Mol Cell Cardiol 45: 495–504 

Nguyen B.T., Dessauer C.W. (2005) Relaxin stimulates protein kinase Czeta traslocation: 

requirement for cyclic adenosine 3’,5’-monophosphate production. Mol Endocrinol 19: 1012-

1023 

Niessen K., Karsan A. (2007) Notch signaling in the developing cardiovascular system. Am J 

Physiol Cell Physiol 293, C1-11.  

Nistri S., Chiappini L., Sassoli C., Bani D. (2003) Relaxin inhibits lipopolysaccharide-induced 

adhesion of neutrophils to coronary endothelial cells by a nitric oxide-mediated mechanism. 

FASEB J 17: 2109-2111 

Nistri S.  Bani D. (2003) Relaxin receptors and nitric oxide synthases: search for the missing link. 

Reprod Biol Endocrinol 1:5 

Nistri S., Bigazzi M., Bani D. (2007) Relaxin as a cardiovascular hormone: physiology, 

pathophysiology and therapeutic promises. Cardiovasc Hematol Agents Med Chem 5: 101-

108 

Nistri S., Cinci L., Perna A.M., Masini E., Mastroianni R., Bani D. (2008) Relaxin induces mast 

cell inhibition and reduces ventricular arrhthmias in a swine model of acute myocardial 

infarction. Pharmacol Res 57:43-8 

http://www.rbej.com/content/1/1/5


75 

 

Nistri S., Pini A., Sassoli C., Squecco R., Francini F., Formigli, L., Bani D. (2012) Relaxin 

promotes growth and maturation of mouse neonatal cardiomyocytes in vitro: clues for cardiac 

regeneration. J Cell Mol Med 16: 507-519 

Novak J., Danielson L.A., Kercher L.J., Sherwood O.D., Ramirez R.J., Moalli P.A., Conrad K.P. 

(2001) Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J Clin 

Invest 107: 1469-1475 

Osheroff P.L., Cronin M.J., Lofgren J.A. (1992) Relaxin binding in the rat heart atrium. Proc Natl 

Acad Sci USA 89: 2384-2388 

Osheroff P.L., Ho W.H. (1993) Expression of relaxin mRNA and relaxin receptors in postanatal and 

adult rat brains and hearts. Localization and developmental patterns. J Biol Chem 268: 15193-

15199 

Pacher P., Schulz R., Liaudet L., Szabò C. (2005) Nitrosative stress and pharmacological 

modulation of heart failure. Trends in Pharmacological Sciences 26: 302-310. 

Palejwala S., Stein D., Weiss G., Monia B.P., Tortoriello D., Goldsmith L.T. (2001) Relaxin 

positively regulates matrix metalloproteinase expression in human lower uterine segment 

fibroblasts using a tyrosine kinase signalling pathway. Endocrinology 142: 3405-3413 

Peaker M., Taylor E., Tashima L., Redman T.L., Greenwood F.C., and Bryant-Greenwood G.D. 

(1989). Relaxin detected by immunocytochemistry and northen analysis in the mammary 

gland of the guinea pig. Endocrinology 125: 693-8 

Pei H., Yu Q., Xue Q., Guo Y., Sun L., Hong Z., Han H., Gao E., Qu Y., Tao, L. (2013) Notch1 

cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative 

stress. Basic Res Cardiol 108: 373 

Palejwala S., Stein D.E., Weiss G., Monia B.P., Tortoriello D., Goldsmith L.T. (2001) Relaxin 

positively regulates matrix metalloproteinase expression in human lower uterine segment 

fibroblasts using a tyrosine kinase signaling pathway. Endocrinology 142: 3405-3413. 

Perna A.M., Masini E., Nistri S., Bani Sacchi T., Bigazzi M., Bani D. (2005) Human recombinant 

relaxin reduces heart injury and improves ventricular performance in a swine model of acute 

myocardial infarction. Ann NY Acad Sci 1041 : 431-433 

Perna A.M., Masini E., Nistri S., Briganti V., Chiappini L., Stefano P., Bigazzi M., Pieroni C., Bani 

Sacchi T., Bani D. (2005) Novel drug development opportunity for relaxin in acute 

myocardial infarction : evidence from a swine model. FASEB J 19: 1525-1527 

Pesse B., Levrand S., Feihl F., Waeber B., Gavillet B., Pacher P., Liaudet L. (2005) Peroxynitrite 

activates ERK via Raf-1 and MEK, independently from EGF receptor and p21Ras in H9C2 

cardiomyocytes. Journal of Molecular and Cellular Cardiology 38: 765-775. 



76 

 

Petronilli V., Miotto G., Canton M., Brini M., Colonna R., Bernardi P., Di Lisa F. (1999) Transient  

         and longlasting openings of the mitochondrial permeability transition pore can be monitored  

         directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 765:725- 

         754. 

Piedras-Renteria E.S., Sherwood O.D, Best P.M. (1997) Effects of relaxin on rat atrial myocites. II. 

Increased calcium influx derived from action potential prolongation. Am J Physiol 272: 

H1798-H1803 

Pini A., Shemesh R., Samuel C.S., Bathgate R.A., Zauberman A., Hermesh C., Wool A., Bani D.,     

and Rotman G. (2010) Prevention of bleomycin-induced pulmonary fibrosis by a novel 

antifibrotic peptide with relaxin-like activity. J Pharmacol Exp Ther.335(3):589-99 

Poyton R.O., Ball K.A, Castello P.R. (2009) Mitochondrial generation of free radicals and hypoxic  

         signaling. Trends Endocrinol Metab 20:332–340. 

Prasanna N., Rasool M. (2014) Modulation of gene-expression profiles associated with sodium 

arsenite-induced cardiotoxicity by p-coumaric acid, a common dietary polyphenol. J Biochem 

Mol Toxicol 28: 174-180. 

 Qin X., Garibay-Tupas J., Chua P.K., Cachola L., Bryant-Greenwood G.D. (1997) An 

autocrine/paracrine role of human decidual relaxin. I. Interstitial collagenase (matrix 

metalloproteinase-1) and tissue plasminogen activator. Biol Reprod 56: 800-811 

Rakhit R.D., Kabir A.N., Mockridge J.W., Saurin A., Marber M.S. (2001) Role of G proteins and 

modulation of p38 MAPK activation in the protection by nitric oxide against ischemia-

reoxygenation injury. Biochem Biophys Res Commun 286: 995–1002. 

Riley D.P., Weiss R.H. (1994) Manganese macrocyclic ligand complexes as mimics of superoxide 

dismutase. J Am Chem Soc 116: 387-388. 

Riley D.P. (1999) Functional mimics of superoxide  dismutase  enzymes as therapeutic agents.  

          Chem Rev 99: 2573-2588. 

Riley D.P., Schall O.F. (2006) Structure–activity studies and the design of synthetic superoxide 

dismutase (SOD) mimetics as therapeutics. Adv Inorg Chem 59: 233-263. 

Robin E, Derichard A, Vallet B, Hassoun SM, Neviere R. (2011) Nitric oxide scavenging  

          modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacol Rep  

          63:1189-1194. 

Rosenkraz S., Flesch M., Amann K., Haeuseler C., Kilter H., Seeland U., Schulter K.D., Bohm M. 

(2002). Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice 

overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol 283: H1253-62 

http://www.ncbi.nlm.nih.gov/pubmed?term=Di%20Lisa%20F%5BAuthor%5D&cauthor=true&cauthor_uid=9929477
http://www.ncbi.nlm.nih.gov/pubmed?term=Pini%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Shemesh%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Samuel%20CS%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Bathgate%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Zauberman%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Hermesh%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Wool%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Bani%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed?term=Rotman%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20826567
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pini+A+2010+Bani+D


77 

 

Rubart M., Field L.J. (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68 :29-

49 

Salvemini D.; Wang Z.Q.; Zweier J.L.;  Samouilov A; Macarthur H.; Misko T.P.; Currie M.G.;  

         Cuzzocrea S.; Sikorski J.A.; Riley D.P. (1999) A non peptidyl mimic of superoxide  

         dismutase with therapeutic activity in rats. Science 286: 304-306. 

Salvemini D., Riley, D.P., Cuzzocrea S. (2002) SOD mimetics are coming of age. Nature Rev.  

          Drug Discov 1: 367-374. 

Samuel C.S., Tian H., Zhao L., Ameto E.P. (2003). Relaxin is a key mediator of prostate growth 

and male reproductive tract development. Lab Invest 83: 1055-67  

Samuel C.S., Parry L.J., Summers R.J. (2003). Physiological or pathological role for relaxin in the 

cardiovascular system. Curr Opin Pharmacol 3: 152-8 

Samuel C.S., Zhao C., Bond C.P., Hewitson T.D., Amento E.P., Summers R.J. (2004). Relaxin-1-

deficient mice develop an age-related prgression of renal fibrosis. Kidney In 65: 2054-64 

Samuel C.S., Unemori E.N., Mookerjee I., Bathgate R.A., Layfield S.L., Mak J., Tregear G.W., Du 

X.J. (2004) Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen 

production and reverses cardiac fibrosis in vivo. Endocrinology 145: 4125-4133 

Samuel C.S., Zhao C., Bathgate R.A., DU XJ., Summers RJ., Amento EP., Walker L.L., McBurnie 

M., Zhao L.;, Tregear G.W. (2005) The relaxin gene-knockout mouse: a model of progressive 

fibrosis. Ann N Y Acad Sci. 1041:173-81 

Samuel C.S., T.D. Hewitson (2007). Drugs of the future: the hormone relaxin. Cell Mol Life Sci 64: 

1539-1557 

Samuel C. S., Hewitson T.D., Zhang Y., Kelly D.J. (2008) Relaxin ameliorates fibrosis in 

experimental diabetic cardiomyopathy. Summers R J Endocrinology 149:3286-93 

Samuel C.S., Cendrawan S., Gao X.M., Ming Z., Zhao C., Kiriazis H., Xu Q., Tregear G.W., 

Bathgate R.A., Du X.J. (2011) Relaxin remodels fibrotic healing following myocardial 

infarction. Lab Invest 91: 675-690 

Sassoli C., Chellini F., Pini A., Tani A., Nistri S., Nosi D., Zecchi-Orlandini S, Bani D, Formigli L. 

(2013) Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated 

inhibition of TGF-β/Smad3 signaling. PLoS One21;8(5):e63896 

Schmidt M.R., Pryds K., Bøtker H.E. (2014) Novel adjunctive treatments of myocardial     

         infarction. World J Cardiol 26;6(6):434-43 

Scott D.J., Layfield S., Riesewijk A., Morita H., Tregear G.W., Bathgate R.A. (2004) Identification 

and characterization of the mouse and rat relaxin receptors as the novel orthologues of human 

http://www.ncbi.nlm.nih.gov/pubmed?term=Tregear%20GW%5BAuthor%5D&cauthor=true&cauthor_uid=15155573
http://www.ncbi.nlm.nih.gov/pubmed?term=Du%20XJ%5BAuthor%5D&cauthor=true&cauthor_uid=15155573
http://www.ncbi.nlm.nih.gov/pubmed?term=Du%20XJ%5BAuthor%5D&cauthor=true&cauthor_uid=15155573
http://www.ncbi.nlm.nih.gov/pubmed?term=Zecchi-Orlandini%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23704950
http://www.ncbi.nlm.nih.gov/pubmed?term=Bani%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23704950
http://www.ncbi.nlm.nih.gov/pubmed?term=Formigli%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23704950
http://www.ncbi.nlm.nih.gov/pubmed?term=Schmidt%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=24976915
http://www.ncbi.nlm.nih.gov/pubmed?term=Pryds%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24976915
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%B8tker%20HE%5BAuthor%5D&cauthor=true&cauthor_uid=24976915
http://www.ncbi.nlm.nih.gov/pubmed?term=Riesewijk%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15566402
http://www.ncbi.nlm.nih.gov/pubmed?term=Morita%20H%5BAuthor%5D&cauthor=true&cauthor_uid=15566402
http://www.ncbi.nlm.nih.gov/pubmed?term=Tregear%20GW%5BAuthor%5D&cauthor=true&cauthor_uid=15566402
http://www.ncbi.nlm.nih.gov/pubmed?term=Bathgate%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=15566402


78 

 

leucine-rich repeat-containing G-protein-coupled receptor 7. Clin Exp Pharmacol Physiol 

31:828-832 

Scott D.J., Layfield S., Yan Y., Sudo S., Hsueh A.J., Tregear G.W., Bathgate R.A. (2006) 

Characterization of novel splice variants of LGR7 and Lgr8 reveals that receptor signalling is 

mediated by their unique low density lipoprotein class A modules. J Biol Chem 281: 34942-

34954 

Seal J.B., Gewertz B.L. (2005) Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 

19:572-584 

Seibold J.R., Korn J.H., Simms R., Clements P.J., Moreland L.W., Mayes M.D. Furst D.E, 

Rothfield N., Steen V., Weisman M., Collier D., Wigley F.M., Merkel P.A., Csuka M.E., Hsu 

V., Rocco S., Erikson M., Hannigan J., Harkonen W.S., Sanders M.E. (2000) Recombinant 

human relaxin in the treatment of scleroderma. A randomized, double-bind, placebo-

controlled trial. Ann Intern Med 132: 871-879 

Sheng H., Enghild J.J., Bowler R., Pate M., Batinic-Haberle I., Calvi C.L., Day B.J., Pearlstein  

         R.D., Crapo J.D., Warner D.S. (2002) Effect of metalloporphyrin catalytic antioxidants in  

        experimental brain ischemia Free Radic Biol Med. 33: 947-961. 

Sherwood C.D., O’Byrne E.M (1974). Purification and characterization of porcine relaxin. Arch 

Biochem Biophys 160: 185-196 

Sherwood O.D., Crnekovic V.E (1979) Development of a homologous radioimmunoassay for rat 

relaxin. Endocrinology 104: 893-897 

Shervood O.D. (2004). Relaxin’s physiological roles and other diverse actions. Endocr Rev 25:205-

34 

Simpson P.J., Fantone J.C., Lucchesi B.R. (1988) Myocardial ischemia and reperfusion injury: 

oxygen radicals and tissue injury. In Proceedings of Upjohn Symposium pp.63–77, Halliwell, 

Kalamazoo, MI, USA.  

Slemmer J.E., Shacka J.J., Sweeney M.I., Weber J.T. (2008) Antioxidants and free radical    

         scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem   

         15:404-414 

Skott O., Carter A.M. (2002) Relaxin is a vasodilatator hormone. Am J Physiol Regul Integr Comp 

Pysiol 283: R347-8 

Smeekens S.P., Montag A.G., Thomas G., Albiges-Rizo C., Carroll R., Benig M., Phillips L.A., 

Martin S., OhagiS., Gardner P. (1992). Proinsulin processing by the subtilisin-related 

proprotein convertase furin PC2, and PC3. Proc Natl Acad Sci USA 89: 8822.8826 



79 

 

Smith M.C., Danielson L.A., Conrad K.P., Davison J.M. (2006). Influence of recombinant human 

relaxin on renal hemodynamics in healthy volunteers. J Am Soc Nephrol 17:3192-7 

Sortino M.A., Cronin M.J., Wise P.M. (1989). Relaxin stimulates prolactin secretion from anterior 

pituitary cells. Endocrinology 124: 2013-5 

Spasojevic I., Li A.M., Tovmasyan A., Rajic Z., Salvemini D., St. Clair D., Valentine    

         J.S.,Vujaskovic Z., Gralla E.B., Batinic-Haberle I. (2010). Accumulation of porphyrin-based 

         SOD mimics in mitochondria is proportional to their lipophilicity. S. cerevisiae study of ortho  

         Mn(III) N- alkylpyridylporphyrins. Free Radic Biol Med S199:49. 

St.Louis J., Massiccote G. (1985) Chronic decrease of blood pressure by rat relaxin in 

spontaneously hypertensive rat. Life Sci 37: 1351-1357 

Sudo S., Kumagai J., Nishi S., Layfield S., Ferraro T., Bathgate R.A., Hsueh A.J. (2003) H3 relaxin 

is a specific ligand for LGR7 and activates the receptor by interacting with both the 

ectodomain and the exoloop2. J Biol Chem 278: 7855-7862 

Summerlee A.J., Hornsby D.J., Ramsey (1998). The dispogenic effects of rat relaxin: The effect of 

photoperiod and the potential role of relaxin on drinking in pregnancy. Endocrinology 

139:2322-8 

Summerlee A.J., O’Byrne K.T., Paisley A.C., Breeze M.F., Porter D.G. (1984) Relaxin affects the 

central control of oxytocin release. Nature: 372-4 

Sunn N., Egli M., Burazin T.C., Burns P., Colvill L., Davern P., Denton D.A., Oldfield B.J., 

Weisinger R.S., Rauch M., Schmid H.A., McKinley M.J. (2002) Circulating relaxin acts on 

subfornical organ neurons to stimulate water drinking in the rat. Proc Nat Acad Sci USA 99: 

1701-1706 

Svendsen A.M., Vrecl M., Ellis T.M., Heding A., Kristensen J.B., Wade J.D., Bathgate R.A., De 

Meyts P., Nøhr J. (2008). Cooperative binding of insulin-like Peptide 3 to a dimeric relaxin 

family peptide receptor 2. Endocrinology 149(3): 1113-1120 

Svendsen A.M., Zalesko A., Kønig J., Vrecl M., Heding A., Kristensen J.B., Wade J.D., Bathgate 

R.A., De Meyts P., Nøhr J. (2008). Negative cooperativity in H2 relaxin binding to a dimeric 

relaxin family peptide receptor 1. Mol Cell Endocrinol 296: 10-17 

Svendsen A.M., Vrecl M., Knudsen L., Heding A., Wade J.D., Bathgate R.A., De Meyts P., Nøhr J. 

(2009) Dimerization and negative cooperativity in the relaxin family peptide receptors. Ann N 

Y Acad Sci 1160:54-59 

Tan Y.Y., Wade J.D., Tregear G.W., Summers R. J. (1998) Comparison of relaxin receptors in rat 

isolated atria and uterus by use of synthetic and native relaxin analogues. Br J Pharmacol 123: 

762-770 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hsueh%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=12506116
http://www.ncbi.nlm.nih.gov/pubmed?term=Denton%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=11830674
http://www.ncbi.nlm.nih.gov/pubmed?term=Oldfield%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=11830674
http://www.ncbi.nlm.nih.gov/pubmed?term=Weisinger%20RS%5BAuthor%5D&cauthor=true&cauthor_uid=11830674
http://www.ncbi.nlm.nih.gov/pubmed?term=Rauch%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11830674
http://www.ncbi.nlm.nih.gov/pubmed?term=Schmid%20HA%5BAuthor%5D&cauthor=true&cauthor_uid=11830674
http://www.ncbi.nlm.nih.gov/pubmed?term=McKinley%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=11830674
http://www.ncbi.nlm.nih.gov/pubmed?term=Vrecl%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=Ellis%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=Heding%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=Kristensen%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=Wade%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=Bathgate%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=De%20Meyts%20P%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=De%20Meyts%20P%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=N%C3%B8hr%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18063691
http://www.ncbi.nlm.nih.gov/pubmed?term=Zalesko%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=K%C3%B8nig%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=Vrecl%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=Heding%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=Kristensen%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=Wade%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=Bathgate%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=Bathgate%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=De%20Meyts%20P%5BAuthor%5D&cauthor=true&cauthor_uid=18723073
http://www.ncbi.nlm.nih.gov/pubmed?term=N%C3%B8hr%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18723073


80 

 

Taylor M.J., Clark C.L. (1994) Evidence for a novel source of relaxin: atrial cardiocytes. J 

Endocrinol 143, R5-R8. 

Teerlink J.R., Metra M., Felker G.M., Ponikowski P., Voors A.A., Weatherley B.D., Marmor A.,  

         Katz A., Grzybowski J., Unemori E., Teichman S.L., Cotter G. (2009) Relaxin for the    

         treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised,  

         placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet 373:1429-39. 

Teerlink J.R., Cotter G,,  Davison B.A., Felker G.M., Filippatos G., Greenberg B.H., Ponikowski 

P., Unemori E., Voors A.A., Adams K.FJr., Dorobantu M.I., Grinfeld L.R., Jondeau G., 

Marmor A., Masip J., Pang P.S., Werdan K., Teichman S.L., Trapani A., Bush C.A., Saini R., 

Schumacher C., Severin T.M., Metra M. RELAXin in Acute Heart Failure (RELAX-AHF) 

Investigators. (2013). Serelaxin recombinant human relaxin-2, for treatment of acute hearth 

failure (RELAX_AHF): a randomised, placebo-controlled, parallel-group, dose-finding 

phaseIIb study. Lancet 381(9860):  29-39 

Thannickal V. J., Fanburg B. L. (2000) Reactive oxygen species in cell signaling. Am J Physiol 

Lung Cell Mol Physiol 279: L1005-28. 

Too C.K, Bryant-Greenwood G.D., Greenwood F.C. (1984) Relaxin increases the release of 

plasminogen activator, collagenase, and proteoglycanase from rat granulosa cells in vitro. 

Endocrinology 115:1043-50 

Toth M., Taskinen P., Ruskoaho H. (1996) Relaxin stimulates atrial natriuretic peptide secretion in 

perfused rat heart. J Endocrinol 150: 487-495 

Tozzi C.A., Poiani G.J., McHugh N.A., Shakarjan M.P., Grove B.H., Samuel C.S., Unemori E.N. 

Riley D.J. (2005). Recombinant human relaxin reduces hypoxic pulmonary hypertension in 

the rat. Pulm Pharmacol Ther 18(5): 346-53 

Unemori E.N., Amento E. P. (1990) Relaxin modulates synthesis and secretion of procollagenase  

and collagen by human dermal fibroblasts. J Biol Chem 265: 10681-10685 

Unemori E.N., Beck L. S., Lee W.P., Xu Y., Siegel M., Keller G., Liggitt H.D., Bauer E.A., 

Amento E.P. (1993) Human relaxin decrease collagen accumulation in vivo in two rodent 

model of fibrosis. J Invest Dermatol 101: 280-285 

Unemori E. N., Pickford L.B., Salles A.L., Piercy C.E., Grove B.H., Erikson M.E., Amento E.P. 

(1996) Relaxin induces an extracellular matrix degrading phenotype in human lung fibroblast 

in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Invest 98: 2739-2745 

Unemori E.N., Erikson M.E., Rocco S.E., Sutherland K.M., Parsell D.A., Mak J., Grove B.H.. 

(1999) Relaxin stimulates expression of vascular endothelial growth factor in normal human 

http://www.ncbi.nlm.nih.gov/pubmed?term=Liggitt%20HD%5BAuthor%5D&cauthor=true&cauthor_uid=8370965
http://www.ncbi.nlm.nih.gov/pubmed?term=Bauer%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=8370965
http://www.ncbi.nlm.nih.gov/pubmed?term=Amento%20EP%5BAuthor%5D&cauthor=true&cauthor_uid=8370965
http://www.ncbi.nlm.nih.gov/pubmed?term=Amento%20EP%5BAuthor%5D&cauthor=true&cauthor_uid=8981919
http://www.ncbi.nlm.nih.gov/pubmed?term=Grove%20BH%5BAuthor%5D&cauthor=true&cauthor_uid=10221717


81 

 

endometrial cells in vitro and is associated with menometrorragia in women. Hum. Reprod 14: 

800-806 

Unemori  E.N., Lewis M.; Constant J., Arnold G., Grove B.H., Normand J., Deshpande U., Salles 

A., Pickford L.B., Erikson M.E., Hunt T.K., Huang X. (2000) Relaxin induces vascular 

endothelial growth factor expression and angiogenesis selectively in wound sites. Wound 

Repair Regen 8: 361-370 

Van Der Westhuizen E.T., Summers R.J., Halls M.L., Bathgate R.A., Sexton P.M. (2007). Relaxin 

receptors-new drug targets for multiple disease states. Curr Drug Targets : 91-104 

Van der Westhuizen E.T., Halls M.L., Samuel C.S., Bathgate R.A., Unemori E.N., Sutton S.W., 

Summers R.J. (2008) Relaxin family peptide receptors—from orphans to therapeutic targets. 

Drug Discov Today 13:640–651 

Vivancos A.P., Castillo E.A., Biteau B., Nicot C., Ayte J., Toledano M. B., Hidalgo E. (2005) A 

cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. 

Proc Natl Acad Sci U S A, 102, 8875-80. 

Wang Z.Q., Porreca F., Cuzzocrea S., Galen K., Lightfoot R., Masini E., Muscoli C., Mollace V., 

Ndengele M., Ischiropoulos H., Salvemini D. (2004) A newly identified role for superoxide in 

inflammatory pain. J Pharmacol Exp Ther 309:869-878. 

Wang-Lee J.L., Lenhart J.A., Ohlet K.M., Ryan P.L, Bagnell C.A. (1998) Regulation of urokinase- 

and tissue-type plasminogen activator by relaxin in the uterus and cervix of the prepuberal 

gilt. J Reprod Fertil 114: 119-125 

Ward D.G., Thomas G.R., Cronin M.J. (1992) Relaxin increases rat heart rate by a direct action on 

tha cardiac atrium. Biochem Biophys Res Commun 186: 999-1005 

Weiss G., Goldsmith L.T. (2001). Relaxin and the cervix. Front Horm Res 27:105-12 

Weiss G. (1989) Relaxin in the male. Biol Reprod 40(2): 197-200 

Wilkinson T.N., Speed T.P., Tregear G.W., Bathgate R.A. (2005) Evolution of the relaxin-like 

peptide family. BMC Evol Biol 5:14 

Williams E.J., Benyon R.C., Trim N., Hadwin R., Grove B.H., Arthur M.J., Unemori E.N., Iredale 

J.P. (2001) Relaxin inhibits effective collagen deposition by cultured hepatic stellate cells and 

decreases rat liver fibrosis in vivo. Gut 49: 577-583 

Winslow J.W., Shih A., Bourell J.H., Weiss G., Reed B., Stults J.T., Goldsmith L.T. (1992) 

Endocrinology 130: 2660. 

Wollert K.C., Drexler H. (2010) Cell therapy for the treatment of coronary heart disease: a critical 

appraisal. Nat Rev Cardiol 7: 204-215 

Xie Y.W., Kaminski P.M., Wolin M.S. (1998) Inhibition of rat cardiac muscle contraction and  

http://www.ncbi.nlm.nih.gov/pubmed?term=Deshpande%20U%5BAuthor%5D&cauthor=true&cauthor_uid=11186125
http://www.ncbi.nlm.nih.gov/pubmed?term=Salles%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11186125
http://www.ncbi.nlm.nih.gov/pubmed?term=Salles%20A%5BAuthor%5D&cauthor=true&cauthor_uid=11186125
http://www.ncbi.nlm.nih.gov/pubmed?term=Pickford%20LB%5BAuthor%5D&cauthor=true&cauthor_uid=11186125
http://www.ncbi.nlm.nih.gov/pubmed?term=Erikson%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=11186125
http://www.ncbi.nlm.nih.gov/pubmed?term=Hunt%20TK%5BAuthor%5D&cauthor=true&cauthor_uid=11186125
http://www.ncbi.nlm.nih.gov/pubmed?term=Huang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=11186125
http://www.ncbi.nlm.nih.gov/pubmed?term=Halls%20ML%5BAuthor%5D&cauthor=true&cauthor_uid=17266534
http://www.ncbi.nlm.nih.gov/pubmed?term=Bathgate%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=17266534
http://www.ncbi.nlm.nih.gov/pubmed?term=Sexton%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=17266534
http://www.ncbi.nlm.nih.gov/pubmed?term=Unemori%20EN%5BAuthor%5D&cauthor=true&cauthor_uid=11559657
http://www.ncbi.nlm.nih.gov/pubmed?term=Iredale%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=11559657
http://www.ncbi.nlm.nih.gov/pubmed?term=Iredale%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=11559657


82 

 

         mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic    

         reoxygenation. Circ Res 82:891-897. 

Ye L., Haider H.K., Sim E.K.W. (2006) Adult stem cells for cardiac repair: a choice between 

skeletal myoblasts and bone marrow stem cells. Exp Biol Med 231: 8–19 

Yu B., Song B. (2013) Notch-1 signalling inhibits cardiomyocyte apoptosis in ischaemic 

postconditioning. Heart Lung Circ 23: 152-158. 

Zarre-Hoshyari-Khah R., Bartsch O., Einspainer A., Pohnke Y., Ivell R. (2001) Bioactivity of 

recombinant prorelaxin from the marmoset monkey. Regul Pept 97: 139-146 

Zhang C.X., Lippard S.J. (2003) New metal complexes as potential therapeutics. Curr Opin     

        Chem Biol7: 481-489.  

Zhang J., Yong-Fen Q., Bing G., Chun-Shui P., Jin Z., Li C., Jun Y., Jaw-Kang C., Chao-Shu T. 

(2005) Effect of relaxin on myocardial ischemia injury induced by isoproterenol. Peptides 26 : 

1632-1639 

Zhang Z.L., Fan Y., Liu M.L. (2012) Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes 

exposed to hypoxia/reoxygenation. Mol Cell Biochem 365: 243-250.  

Zhao S., Sherwood O.D. (1998) Monoclonal antibodies specific for rat relaxin. X. Endogenous 

relaxin induces changes in the histological characteristics of the rat vagina during the second 

half of pregnancy. Endocrinology 139:4726-34 

Zhao L., Roche P.J., Gunnersen J.M., Hammond V.E., Tregear G.W., Wintour E.M., Beck F. 

(1999) Mice without a functional relaxin gene are unable to deliver milk to their pups. 

Endocrinology 140:445-53. 

Zhou X.L., Wan L., Xu Q.R., Zhao Y., Liu, J.C. (2013) Notch signaling activation contributes to 

cardioprotection provided by ischemic preconditioning and postconditioning. J Transl Med 

11: 251. 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Zhao%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9886856
http://www.ncbi.nlm.nih.gov/pubmed?term=Roche%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=9886856
http://www.ncbi.nlm.nih.gov/pubmed?term=Gunnersen%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=9886856
http://www.ncbi.nlm.nih.gov/pubmed?term=Hammond%20VE%5BAuthor%5D&cauthor=true&cauthor_uid=9886856
http://www.ncbi.nlm.nih.gov/pubmed?term=Tregear%20GW%5BAuthor%5D&cauthor=true&cauthor_uid=9886856
http://www.ncbi.nlm.nih.gov/pubmed?term=Wintour%20EM%5BAuthor%5D&cauthor=true&cauthor_uid=9886856
http://www.ncbi.nlm.nih.gov/pubmed?term=Beck%20F%5BAuthor%5D&cauthor=true&cauthor_uid=9886856


83 

 

The results of this thesis have been the object of the following pubblications in extenso in peer-

revewed international journals: 

 

1. Boccalini G., Sassoli C., Formigli L., Bani D., Nistri S. (2014) Relaxin protects cardiac muscle 

cells from hypoxia/reoxygenation injury. Involvement of Notch-1 pathway. FASEB J pii: fj.14-

254854 

2. Nistri S., Boccalini G., Bencini A., Becatti M., Valtancoli B., Conti L., Lucarini L., Bani D. 

(2014) A new low molecular weight MnII-containing scavenger of superoxide anion protects 

cardiac muscle cells from hypoxia/reoxigenation injury. Free Radical Research 28:1-28  


