

Cities, Buildings, People: Towards Regenerative Environments

PLEA 2016: 32nd International Conference on Passive and Low Energy Architecture

Edited by: Pablo La Roche and Marc Schiler

PLEA 2016 - Cities, Buildings, People: Towards Regenerative Environments, Proceedings of the 32nd International Conference on Passive and Low Energy Architecture;

July 11-13, Los Angeles, California

Edited by: Pablo LaRoche and Marc Schiler

Conference Chair: Pablo La Roche, Professor California State Polytechnic University Pomona, 3801 W Temple Av. Pomona, CA 91768 1(909)869-2700 pmlaroche@cpp.edu

Scientific Committee Chair: Marc Schiler, Professor School of Architecture University of Southern California Los Angeles, CA 90089-0291 1(213)740-4591 marcs@usc.edu

Cover Design: Maria Martinez-La Roche

©Copyright: PLEA 2016 Los Angeles

Publisher: PLEA 2016 Los Angeles Phone: 1(626)398-8253 Email: <u>marcs@usc.edu</u> Website: <u>www.PLEA2016.org</u>

Portions of this proceedings may be reproduced only with proper credit to the authors and the conference proceedings.

This book was prepared from the input files supplied by the authors. The publisher is not responsible for the use which might be made of the information.

ISBN: ISBN: 978-0-692-74961-6

- 1. Sustainable Architecture
- 2. Architecture Energy Congresses
- 3. Environmental Engineering
- 4. Building Science
- 5. Passive Solar Design

Organizing & International Advisory Committees	i
Scientific Committee	ï
Foreword	vii
	ix
Conference FAQs	IX
Session A1	
Responsiveness of Microclimate Simulation Tool in Recognising Diversity in Urban Geometry; Sharmin, Steemers	2
Developing Integrated Microclimate Analysis Tool for Environmental Resilience Assessment in the Tropical Urban Area; Ignatius, et al.	10
Generating Future Weather Files for Resilience; Brannon, Dickinson	17
Application of Parametric Study and Generative Algorithms to Optimize Building Physics Analyses; Merla, et al.	23
Selection of Energy Efficient Windows for Hot Climates Using Genetic Algorithms Optimization; Wang, et al.	29
Adaptive Envelope: Reducing Energy without sacrificing Comfort; Erickson	35
Infrared Thermography for Quick Thermal Diagnostic of Existing Building; Ganem, et al.	45
Comfort and Energy Savings: Thermal Zoning by Inclusion; Outers	52
Analysis of Thermal Comfort in Schools: Comparison between the Prescriptive Method and Simulation; Tondo, et al.	59
Passive Solar Facades, Thermal Comfort and Climate Change: Predictive Modelling with Near and Distant Weather Patterns; Peters, Aksamija	67
Active House Design; Eriksen, Ibbotson	74
Sustainable Development for Asia's Emerging Cities: Models and Challenges; Quinn	80
Session A3	
Hourly Data Set of Air Temperature for Near-Extreme Summer Conditions in Sub-Tropical High-Density Cities; Lau, et al.	87
Energy Demand and Urban Microclimate of Old and New Residential Districts in a Hot Arid Climate; Coccolo, et al.	92
On the Impact of Local Climatic Conditions on Urban Energy Use: A Case Study; Mauree, et al.	98
A Climatic Cartography for Sustainable Housing: Development of a meteorological classification in Galicia, Spain; Rodríguez-Álvarez, Pintos-Pena	104
Study of Household Energy; Zhang, et al.	112
Thermal Images as Indicators of Ecosystem Services; Ferreira, et al.	119
Session A4	
The Study of Dwelling Unit Performance on Thermal Comfort in Old Public Housing Project; Wongbumru, Dwancker	126
Using Passive Strategies to Prevent Overheating and Promote Resilient Buildings; Brotas, Nicol	135
Multi-Story Residential Buildings in North Greece; Kyropolou	143
Thermal Performance of Three Upper Deck Devices; Villegas-Gutierrez	151
Observations on Energy-use and Thermal Comfort in an Educational Building; Ogoli	159
Care Provision Fit for a Warming Climate; Gupta, et al.	166
Session A5	

Airflow Design for Middle Class Housing; McDonald, Greene	174
Indoor Thermal Comfort Evaluation of Naturally Ventilated Rural Houses of Dhaka Region, Bangladesh; Shajahan, Ahmed	180

Understanding Light in Architecture through Meaningful Testing; Kaçel, Lau	1	.87
Visitor Center for Riverside's Harada House; Uesugi, Bricker	1	.95
Reflecting on Roofing Research; Grant	2	201
Teaching Regenerative Studies Students about Thermal Comfort Practices; Lawrence-Zúñiga, et al.	2	208
Session A6		
	2	214
Educators as a Filtering Information Node; Black Teaching Project Integration of Self Produced Digital Videos in Architectural Technology Class; Medic		221
		21
Improving Sustainable Design Learning Outcomes Using Systems Thinking and Dynamic Systems Mo		
Environmental Sustainability Education in Brazilian Architecture and Urbanism Courses: Evaluation a	,,,,	.33
How to Make Japanese Architectural Students Understand Environmental Elements in Outdoor Livin	• <i></i> .	241
The Kilowatt Clock, the Energy Diary and the Pupil. A Story of Building User Involvement in Energy N	1anagement Carter; Selby 2	47
Session A7		
Simplified Energy Performance Assessment Method to Consider User Behavior and to Identify Main	Impact Factors on Energy; René, et al. 2	255
How Occupants Behaviours Affects the Life Cycle Energy of a House; Khajehzadeh, Vale	2	262
The Maturation of a Low-Impact Building; al Maiyah, et al.	2	269
Occupant Satisfaction in LEED and BREEAM-Certified Buildings; Altomonte, et al.	2	76
Daylighting Evaluation of a LEED Platinum Laboratory; Burkhart, Konis	2	83
Extended POE Research on Office Environment; Moon, et al.	2	90
Session B1		
Investigating A Method to Dynamic Assessment of Glare Using the HDR Technique; Vásquez, et al.	2	.97
Task Difficulty, Temporal Variables and Glare Response; Alto Monte, et al.	3	804
Is Exterior Glare Problematic?; Suk, et al.	3	811
The Impacts of Window Design on The Internal Luminous Environment; Dang	3	818
Energy Demand Analysis for Building Envelope Optimization for Hot Climate: A Case Study at An Naj	ah National University: Monna. et al. 3	325
Design Optimization For Energy-Efficient Skylit Office Spaces; Ghobad, et al.		32
Parametric Approach for Achieving Daylighting; Wagdy, Fathy		39
Light Zones vs. HVAC Loads; Trisha, Ahmed		346
Session B2		

Finding Low-income Building Clusters for Thermal Behaviour Assessment Using Self-Organizing Maps; Schaefer, Ghisi	354
Social Housing Construction Materials; Gallardo, et al.	360
Embodied Energy of Low Income Rural Housing in Uganda; Niwamara, et al.	367
Building Performance Evaluation of a Retrofitted Passivhaus Dwelling in Scotland; McGill, Sharpe	375
Environmental Retrofit of the Unexploited Roofscape; Stanitsa, et al.	382
Analysis of Energy Efficiency Retrofit Measures for Single-Family Residential Buildings in Fairbanks, Alaska; Sheehan, Kim	389
Retrofitting Existing University Campus Buildings to Improve Sustainability and Energy performance; Kesten Erhart, et al.	396
Optimising a Ventilation and Shading Concept for the Retrofit of a High-rise Building with a Fully Glazed Double Skin Facade; Ritcher, Carew	403

Session B3	
Active House in Mediterranean Country; Brambilla, et al.	411
The Evaluation of the Variables of Overheating Under TM52 and its Impact on Life Cycle Calculations of Buildings; Din, Brotas	417
Solar Access Assessment for Mediterranean Urban Environments; Garcia-Nevado, et al.	423
Development of Future Probabilistic Hot Summer Years for Overheating Risk Assessment in the UK; Liu, Coley	429
Pilot Assessment of Indoor Environmental Quality; Ali, et al.	438
Traditional Building Materials; García, Espinosa	444
Sustainable Retrofitting os Dwellings in Brussels Capital Region: Five Scenarios of Evolution Using a Multi-Criteria Pre-Assessment Tool; Evrard, et al.	452
Session B4	
Design Guidelines for Net Zero Energy Houses; Sudbrack, Amorim	459
Drop Back to Green: Building Integrated Green for Carbon Neutrality; Nayeem, Ahmed	467
Roofing Choice Impacting Photovoltaic Energy Performance; Alshayeb, Chang	474
Experimental Investigation of the Cooling Effects of a Water to Air Heat Exchanger Combined with a Green Roof; Almodóvar, et al.	479
Architectural Design Scenarios with Building-Integrated Photovoltaic Solutions in Renovation Processes; Aguacil, et al.	486
Optimal Arrangement of Photovoltaic Panels; Carbonari, Scarpa	493
The Effects of Integrated Photovoltaic Shading System on Visual Comfort and Cooling Energy Savings; Lee, et al	500
Session B5	
Lessons from Vernacular Architecture in the Mexican Bajío; Sanchez-Perez, Rodriguez-Álvarez	507
Rammed Earth as a Building material, Is It Efficient for all Climatic Zones in Egypt?; Karram, Hatem	513
Revisiting Environmental Tradition: Dwellings in the Deserts of Saudi Arabia; Alshraim, et al.	520
Comparative Analysis of Cost and Energy Performance of Earth Construction and Conventional Systems, in Two Latin-American Cases: México City and Buenos Aires; Tovar-Jimenez, et al.	526
A Tale of Two Buildings: Sustainable Aspects of Louis I Kahn's Assembly Building in Dhaka and Le Corbusier's Assembly Building in Chandigarh; Ali, Mallick	533
The Feasibility of Zero Emission Residential Design: A Case Study across Three Climates; Franco, Stauffer	539
Iconic Image, Place and User Methodical Integration; Restrepo, Castaño	545
Solar Envelope for Sites with Existing Buildings; Bhattacharjee, et al.	552
Session B6	
Enhancing Public Life in a Mediterranean City: Bioclimatic Strategies for Outdoor Spaces in Valencia; Esteve Ganau, Rodriguez Alvarez	560
Housing rehabilitation as Strategy; Lopera Aguirre, Gonzalez Castaño	567
Can Smart City Tools Support Historical Cities Become More Resilient and Regenerative?; Apró, et al.	574
Toward Resilient Cities: Brussels-Capital Region Case Study; Bettignies Cari, et al.	582
Alternative Tourist Accommodation in Venice: Take away Architecture for Minimal Disruption; Ghione, Yannas	590
Ecological Symbiosis in the Southern California Bight; Sumanth	599
Achieving Net Zero Positive Water; Crosson	607
Resilient Technology Strategies Against Climate Change in Bogotá; Cubillos-González, Novegil-González	613

Session C1	
Design Process of Integrated Shading Systems in Schools; Farza, Kodama	622
Bi-Objective Optimization of Fenestration; Haav, et al.	629
Painting with Light: A Generative Design System for Daylighting Design; Caldas, Santos	634
New Parametric Framework Motivating Enviromentally Conscious Design; Aly, et al.	640
Numerical Study of Wind-induced Building Ventilation Potentials with Various Orthogonal Breezeway Network Patterns; He, Tablada	646
Windexchangers in a Building with a Window to Windward or to Leeward: Design Guidelines; Castillo, et al.	653
Session C2	
Real-Time Visual Comfort Feedback for Architectural Design; Jones, Reinhart	659
Accuracy of Measurements in Daylit Interior Scenes; Jakubiec, et al.	665
Building a Database of Opaque Materials for Lighting Simulation; Jakubiec	673
Robust Sky Modelling Practices in Daylight Simulations; Inanici, Liu	679
Exterior Glare Simulation: Understanding Solar Convergence from Concave Facades Using Heat Maps; Deng, et al.	686
Visualizing Thermal Data in a Building Information Model; Fan, et al.	694
	054
Session C3	
Sensitivity of Calculated Solar Irradiation; Peronato, et al.	702
Using Solar Screens in School Classrooms in Hot Arid Areas: The Effect of Different Performance Rates on Daylighting Levels; Kotbi, Ampatzi	708
Tensile Membrane Façade: Definition of Optical Properties in Daylighting Simulation and its Performance Impact; Lin, et al.	716
A Portable Testbed for Integrative Daylighting Design; Chiou, Lin	723
Retrofitting of Glazed Balconies for Residential Buildings in Zhengzhou, China; Jing, Yannas	731
Piano Pavilion at the Kimbell Art Museum; Guzowski	737
Session C4	
Unintended Consequences of Sustainable Architecture; Toledo, et al.	744
Vaastushastra: A Guide to Sustainable Building and Settlement Design; Agrawal, et al.	751
Passive Design in Tropical Climate: Key Strategies Implemented in a French Certified Sustainable Neighbourhoo; Grosdemouge, Garde	757
Impact of Passive Design Strategies on Air Conditioning Efficiency and its Relation with the new Colombian Standard of Sustainable Construction; Pineda, et al.	764
Regulation, Retrofit and the Changing Face of Irish Housing; Kinnane	770
Building Regulation as a Tool for Creating Desirable Urban Microclimate: Case Study in Dhaka; Rahman, Ahmed	776
Session C5	
Developing the Net Zero Energy Design; Kessling, et al.	784
The Energy Balance Index; DeKay, Giddings	791
Goodbye Passive House, Hello Energy Flexible Building?; Mlecnik	797
Experimental Research on the Cooling Performance of Green Roof with Radiant Cooling System; Yeom, La Roche	806
Solar Thermal Diurnal Cooling Strategy; Phillips, et al.	813
Sim[PLY]: Achieving Carbon Neutrality Through Innovative Building Assemblies and Processes; Albright, et al.	820

Session C6	
Green Density: Interdisciplinary Education and Research Project for the Design of Sustainable Neighborhoods; Lufkin, Rey	827
Living the Informal City. Sustainable Design Education in Risk Areas; Romano, et al.	833
Physical Activity of Elderly in High Density Cities; Gong, et al.	840
The Educational Value of Masdar as an Exemplar Sustainable City; Wheeler, Rajan	846
Architecture, Urban Design, Planning and Urban Climate; Duarte, Monteiro	852
A Green Cities Checklist: A Subjective Rating Rubric; Haglund, Payne	862
Session C7	
Building as Material Deposit: Material Balances and "Recoverability" into Retrofitting Processes; Emilie, Sophie	867
Crisis Architecture: Colonising unfinished residential structures; Montoliu-Hernández, Rodríguez-Álvarez	873
Two Experimental Projects with Recycling of Demolished Building Materials; Huang, et al.	879
Sustainability Strategies for the Reuse of Dismissed Industrial Architecture; Thiebat, et al.	887
Construction with Recycled Materials; Zárate, Tépox	893
Development of Affordable Building Materials Using Agricultural Waste By-Products and Emerging Pith, Soy and Mycelium Biobinders; Lokko, et al.	900
Session D1	
Optimal Planning Tools for Carbon Neutral Neighborhoods by Integrating Existing Buildings; Kayo, et al.	908
Using GIS as a Decision Making Support Tool; Ishmaeel, et al.	914
Calibration of a Building Model; Law, et al.	920
When Form Follows Wind: A Natural Ventilation Information Tool for Architects; Alshaali, Alshaali	926
Towards a Pre-Design Method for Low Carbon Architectural Strategies; Jusselme, et al.	932
Impact Targets as Guidelines towards Low Carbon Buildings: A Preliminary Concept; Hoxha, et al.	938
Session D2	
Generation of Adaptive Structures; Caglar, et al.	947
Measuring Actual Daylighting Performance; Drosou, et al.	953
Daylighting Performance; Wagdy, et al.	960
Light on Chichu Art Museum, Lee Ufan Museum and Daylight Museum; Kawai, Lau	967
The Daylight Performance of Azuma House and 4 x 4 House Design by Tadao Ando; Kawai, Lau	974
Characterization of Anidolic Systems for Improving Natural Light and Achieving Energy Savings in School Buildings; Chávez, Ruíz	981
Session D3	
Improving Thermal Performance of Workspaces: Ventilation Design Strategies for Existing Garment Factories in Bangladesh; Hossain, et al.	987
An Overview Survey and Evaluation of Households' Indoor Thermal Environment in Different Climate Zones of China; Wang, Liu	994
Validating the Performance of a Double Skin Facade; Hamza, Zi	1002
Architectural and Environmental Housing Typology; Meliani, et al.	1009
Parametric Study of Thermal Comfort and Energy Performance of Naturally Ventilated Classrooms in the Tropic of Costa Rica; Vargas, Saelzer	1016
High-Performance Façades: Measuring the Impacts of Dynamic Shading Prototypes on Indoor Environmental Quality Using Yearly Simulations and Field Tests; Elzeyadi, et al.	1023

Session D4	
Towards a More Resilient Urban Morphology in Havana; Couret, Martínez	1034
Street Canyon Geometry and Microclimate; Chatzidimitriou	1041
The Effect of Urban Geometry on the Microclimate in Hot-Arid Climates; Bakarman, Chang	1048
Thermal and Visual Comfort Under Different Trees Cover; Samira, et al.	1056
Pocket Parks in São Paulo: The Potential for the Implementation; De Rosso, Cadima	1063
Visual and Thermal Comfort Optimization for Arid Urban Spaces using PArametric Techniques on the Scale of Compactness Degree;	1070
Fahmy, Elwy	1070
Session D5	
The Role of Building Controls in Zero Net Energy Buildings; Lyles, et al.	1079
Monitoring and Evaluating the Performance of a Net-Zero Energy Building in Oman; Rudolph, et al.	1086
Embodied Energy as a Key for Designing Low Carbon Schools; Santucci, et al.	1094
Peripheral Residential Development in Switzerland; Drouilles, et al.	1101
Towards Near Zero-Energy Neighbourhoods in High Density Conditions; Kolodiy, Capeluto	1108
Preparation for an Energy Positive Community in the UK; Jones, et al.	1114
Session D6	
Sustainable Design Education through Vernacular Architecture: A Case Study of Chanderi Region, Madhya Pradesh, India;, Patidar, et al.	1121
Low Carbon Developments in Practice: A Cross Border Experience; Iyer-Raniga	1129
Can a Skyscraper have a Low Environmental Impact- Simulating Energy Consumption for a 100m, 200m and 400m Tall Residential Tower;	1137
Saroglou, et al.	1144
Learning Sustainability by Designing High Quality, Low Cost, Energy Efficient Social Housing in Munich; Rossi	1144
Case Studies to Understand the Impact of Local Materials on Embodied Energy; Gazda, Buccellato	1154
The Pitkin Nursery Classroom Building: Simulation and Post-Occupancy Evaluation; Haglund, et al.	1160
Session D7	
Towards A New Prospective Basis for the Design Strategies of Active Façades; Clua, et al.	1167
GRoWing Smarter: Broadening frameworks for residential energy design; Bohm, Heckman	1174
Demystifying the Fired Clay Brick; Ahimbisibwe, Ndibwami	1180
Solar Attic Map: On-line Divulgation of Single-houses' Extensions with Integrated Solar Panels; Wegertseder, Alvarado	1188
Towards Regenerative Design by Responsible Energy-Water Design: Nexushaus as a Successful Case Study in Solar Decathlon 2015;	1193
Amindeldar, et al.	
Health in the Built Environment: Testing Health Impacts of Green Buildings; Burpee, et al.	1199
Session E1	
Effects of Urban Morphology on the Urban Heat Island; Banerjee, et al.	1207
Analyzing Urban Microclimate Air Temperature Measurements Using a Novel Parameter - The Partial Sky View Factor (SVFp);	1215
Habib, Sharplese	
Urban Strategies to Improve Building Façade Daylight Exposure; Fernández-Expósito, et al.	1222
The Influence of Increased Green Space in Reducing Surface Temperature in Cities:Three Design Alternatives for Downtown Las Vegas' Vision in Addressing Urbanization and the Urban Heat Island Effect; Batungbakal	1227
Local Climate Zone and the Definition of Roughness Classes for Wind Analysis of Cities; Prata-Shimomura, et al.	1233

The Effect of Density on Urban Microclimate - Simulation of Different Building Typologies for the Subtropical Sao Paulo, Brazil; Gusson, Duarte	1239
Modelling the Urban Radiant Fluxes Using View Factors; Lai, et al.	1248
Session E2	
Evaluation for Enviromental Comfort Performance in the Palestinian Schools; Haj Hussein, et al.	1254
Evaluation of Household Air Condition Use and Energy Consumption; Liu, et al.	1262
Downdraft Evaporative Cooling Towers; al-Hassawi	1270
Courtyard House in Beijing; Xueli, Lau	1275
Proposal for Use of Wind Catcher in the Classroom University; Andrade, et al.	1282
The Potential of Inclined Walls to Reduce Overheating Risk; Lavafpour, Sharples	1288
Spatial and Environmental Delight in Louis I Khan's Residential Building; Eyas, Bensen	1294
Session E3	
The Effect of Roof details on Natural Ventilation Efficiency in Isolated Single Buildings; Najaf Khosravi, et al.	1301
Let's Open These Windows! The influence of opening design parameters on natural ventilation; Medinihla, Labaki	1301
Performance, Prediction, and Optimization of Night Ventilation across Different Climates; Al-Hassawi	1305
A Rapid Indoor Airflow Mapping With Two-Dimensional Computational Fluid Dynamics; Kim	1324
Comparing LEED Certified and Conventional Schools in Houston, Texas, USA; Dhar, Adi	1330
Building Envelope Optimisation for a Single-family Detached Brazilian Mass Housing; Tubelo, et al.	1337
Feasibility Study on Using Sunlit View Factor to Model Outdoor Thermal Comfort: A Case Study in Sha Tin, Hong Kong; Lai, et al.	1345
reasibility study on osing sumit view ractor to woder outdoor mennal comort. A case study in sha fin, hong kong, tai, et al.	1343
Session E4	
Research and Practice: The Performance Optimization for Container Building; Yuan, et al.	1352
Refurbishing for Thermal Comfort: The Rehabilitation of an Abandoned Village School Building; Moghaddam, et al.	1360
Experimental Analysis of a Humid Fiber; Esparaza-López	1368
Environmental Performance Optimization of a Historical Courtyard House and the Revitalization of the HouJi Village; Finocchiaro, Xiuzhang	1375
Global Warming and Urban Heat Island in South-America; Palme, et al.	1382
The Effect of Shading, Infiltration and Ventilation Levels on Overheating and Heating Demands in UK Residential Buildings. Case study: Trent Basin, Regeneration, Abdulla, Rodrigues	1391
Session E5	
Bioclimatic Design and Urban Microclimate; Bhiwapurkar	1399
Occupation of Urban Land And Nocturnal Urban Microclimates; Grigoletti, Lazarotto	1407
Energy Needs and Vulnerability Estimation at an Urban Scale for Residential Neighbourhoods Heating in Madrid (Spain); Martín-Consuegra, et al.	1413
Study on the Impact of Microclimate on Energy Spatialization in Urban Areas; Tuli, Ahmed	1420
Water-Smart Urban Design; Antonelli, Kwok	1427
The Case for Localised Energy Management to Support Resilient Cities; Rodrigues, et al.	1434

Session E6	
ROOM - A Web-based Interactive Educational Tool on Building Physics; Weng, et al.	1442
Exploring Daylight: Using Applications-based Devices in Environmental Design Education; Treacy	1447
Inhabiting the Eneal. Teaching Approach of a Passive Cooling and Zero Carbon Buildings in na Extreme Hot Humid Climate. Studio Cases: Sinamaica Lagoon, Venezuela; Rodriguez, Penaranda	1455
Evaluation of Acoustic Comfort in High School Classrooms; Boukadoum, Abdou	1461
Structural Aesthetics and Light and Thermal Environmental of the Exposition Architecture Designed by Pier Luigi Nervi in Turin: Case Study: Palazzo Delle Esposizioni and Palazzo Del Lavoro; Li, Lau	1468
Louis I. Kahn's Climate Responsive Strategies in the Tropics: A Case Study on National Parliament Building, Bangladesh; Mostofa, Lau	1474
Session E7	
Retrofitting Existing Apartments for Energy Efficiency; Buhagiar, Zarb	1481
A Design Tool for Green Regeneration of Residential Neighbourhoods - Green Facades; Drori, et al.	1487
Architecture and Public Health; Gómez Patiño, Gonzalez Castaño	1494
Bioclimatic Strategies to Improve the Environmental Quality and Patients Health in an Adult Day Care Center; Chávez, et al.	1500
Promoting Regenerative Built Environment Lifecycles, Raines, et al.	1506
Session F1	
Decision Making Approach for Improving Energy Efficiency of Residential Buildings; Silva, Ghisi	1514
A Multi-Criteria Decision-Support Workflow for Early- Stage Neighborhood Design based on Predicted Solar Performance; Nault, et al.	1522
Examining Building Design Decisions under Long Term Weather Variability and Microclimate Effects; Agarwal, et al.	1530
Use of Passive Bioclimatic Strategies for an Office Building; Lopes, et al.	1536
Quantifying Passive School Design Strategies for the 21st Century in 16 Climate Zones; Kegel, O'Dea	1544
Effectiveness of Neighbourhood Retrofit Strategies in Mitigating the Urban Heat Island in Salcedo Village, Philippines; Pobre, Lannon	1550
Environmental Resilience of Schools through Children's Adaptive and Interactive Adaptability: Processes, Challenges and Opportunities; Célis-Mercier, et al.	1557
A Novel Methodology to Assess Mean Radiant Temperature in Complex Outdoor Spaces; Hatefnia, et al.	1563
Session F2	
Assessing the Impact of Contemporaru Urbanization on Bioblimatic Feature of Historic Architecture Through a Two-Step Simulation Process; Pastore, et al.	1571
Improving Pedestrian Thermal Sensation in Dubai; Al Sabbagh, et al.	1578
Cable Car Mobility: A New Possibility for an Innovative, Sustainable Urban Transport System; Ottone, et al.	1584
Inadequacy of Rules-of-Thumb to Determine Daylight Zone Depth for Different Shading Systems in Tropical Climate; Carvalho, et al.	1598
Daylight Tubes in Riyadh and Los Angeles; Aljammaz	1603
Three Dimensional Optimized BIPV Envelopes: Optimizing an Academic Institute Facade for Increased Energy Production; Shiff, et al.	1610
Acoustic Optimisation by Office and Facade Design; Pottgieser, Kirch	1615
Session F3	
The Influence Study of Entrance Air Infiltration Rate on Energy Consumption and Optimal Design of the High-Speed Railway Station in Cold Climate Regions; Xu, et al.	1622

Reduction of Air Infiltration in Timber Frame Dwellings through Enhanced Details; Recart, Díaz

Investigation of Condensation on the Indoor Surfaces of Basement Parking Facility in Residential Buildings Using a Building Simulation Tool; Hong, et al.	1637
Studying the Dynamic Relationship between Energy Supply Carbon Content and Building Energy; Demand, Vuarnoz, et al.	1644
ASHRAE's First Zero-Net Energy Modeling Competition; Buckley	1651
Simulation of Building Integrated Solar Energy Storage Sysments in Hot Humid Climates; Lichter-Marck, et al.	1658
A Comparative Eco-balance Evaluation of Materials Choices; Ragheb	1665
Large Housing, Furniture, Appliances and Resource-use; Khajehzadeh, Vale	1673
Session F4	
The Effects of Insulation and Air-tightness in Reducing the Overheating Risk of Retrofitted Social Housing; Sdei, McEvoy	1682
Strategic Hygrothermal Comfort Review of an Auditorium Designed with a Bioclimatic Approach; Villavicencio, et al.	1688
Thermal Indoor Environment and Air Quality of School Classrooms in a Teperate Climate; Trebilcock, et al.	1694
High-rise residential Building Enclosure; McKee, Yannas	1702
Hybrid Ventilated Primary Schools; Le, et al.	1708
Performance of Naturally Ventilated Buildings; Doctor-Pingel, Lavocat	1714
To Do Away with Airconditioning Comfort with Natural Ventilation in Tropical High Rise; Aldossary, et al.	1721
Courtyards as Semi-outdoor Learning Spaces: Exploring the Potential of Outdoor Learning in Primary Schools; Juneja, Cadima	1728
Session F5	
How Street-canyon Configurations Affect the Potential of Solar Energy; Mohajeri, et al.	1736
Potential Use of Building Facades; Tablada, Sashwat	1741
Renovation of social housing in the Netherlands; Guerra-Santin, et al.	1748
Build Simple: Climate Engineering 2.0; Santucci, et al.	1756
Methodologies for Studying Human-Microclimate Interactions for Resilient, Smart City Decision-Making; Passe, et al.	1761
Energy and Time-of-Use Savings; Bryan, Myers	1789
Designing Built Ecologies; Kenna, et al.	1775
The Value of Environmental Design in the Context of the Green Economy; Gonçalves	1783
Session F6	
Passive Dehumidification System with Zeolite in Concrete Block. Study Case: Warm Humid Tropic; Mejía, et al.	1792
Passive House Design-Build: Generative Full-Scale Pedagogy; Christenson, Srivastava	1798
Bioclimatic Design Approach Integration into Architctural Design: A Library Case; Study Zhu, Wang	1805
30 Years of Teaching Bioclimatic Design in Architecture in Graduate and Postgraduate Courses in Mexico City and Buenos Aires; Schiller, et al.	1811
Multi-Criteria Decision Making for the Thermal Renovation of Masonry Buildings; Seddiki, et al.	1820
Erosion as a Form Giver for Climate Responsive Architecture: Design Experiments with Natural Fluxes Demers;Potvin	1826
That is Too Radical For Us: Sustainable Design Education in East Africa Olweny	1820
Outside In: Using the Natural Movements of Sunlight, Wind and Rain	1839
	1033

Session F7

Building Energy Performance in Relation to Roofing Construction Technologies; Mohamed, Chang

Control of Solar Radiation on Roofs and Thermal Performance in Buildings along the Peruvian Coast; Wieser	1854
Exactitude of Green Roof in Planned Residential Areas with Significant Vegetation at Ground Level (Tropical Climate); Afroz, et al.	1859
Effect of the Thermal Insulation on the Thermal Performance of an Extensive Vegetated Roof of a 1-story Supermarket Located in a Semiarid Climate; Pinto, et al.	1866
Restorative Passive Solar Redesign in Upstate New York; Rempel, et al.	1872
Skin Deep Resilience: Shocks and Stresses in the Building Facade; Patterson, et al.	1879
How do Green Façades Mitigate the Thermal Stress under Heat Waves: Case of Minhocão Elevate Highway, São Paulo (Brazil); Abreu-Harbich, et al.	1887
Measure of Occupants' Satisfaction in High Energy Performance Residential Buildings: Results from the Action Construire Avec l'Energie in Belgium; Dartevelle, et al.	1895
Poster Session	
Psychological Approach to Understanding and Predicting Energy-relevant Human Interaction with Buildings; von Grabe	1903
Reducing Greenhouse Gas Emissions; Rynning	1909
Occupant Perceptions of Daylit Spaces; Theodorson, Day	1916
Zero Energy House prototype for hot dry climate in noth-western Mexico; Sotelo-Salas, et al.	1923
Natural Building Workshop for Architecture Students in North-western Mexico; Sotelo-Salas, et al.	1929
Regenerative LA- Los Angeles Beyond Sustainability; Hand, et al.	1935
Field Experiments on Adaptive Thermal Comfort in Naturally Ventilated Classrooms in Constantine (Algeria); Sarah, Djamila	1943
Energy Use and Occupant Comfort; Woo	1950
Effect of Solar Envelope and Solar Fan on Solar Radiation; Naidja, et al.	1956
Bioclimatic Performance Of a Gabion Wall Envelope; Dávila et al.	1962

ORGANIZING COMMITTEE:

INTERNATIONAL ADVISORY COMMITTEE:

Pablo La Roche PLEA 2016 Conference Chair

Marc Schiler PLEA 2016 Scientific Committee Chair

Margot McDonald PLEA 2016 Practitioner Committee Chair

Eric Carbonnier PLEA 2016 Speaker Liaison

Dongwoo Yeom PLEA 2016 Committees Liaison

Christopher Horrocks PLEA 2016 Open Conference Web Manager

Samantha Gonzaga PLEA 2016 Public Relations and Marketing

Maria Martinez-La Roche PLEA 2016 Graphic and Web Design

Brie Jones PLEA 2016 Event Support Paula Cadima Architectural Association

Claude Demers Laval University

Denise Duarte University of Sao Paulo

Brian Ford Emeritus Professor University of Nottingham

Pablo La Roche Cal Poly Pomona University

Margot McDonald Cal Poly San Luis Obispo University

Edward Ng Chinese University of Hong Kong

Marc Schiler University of Sothern California

Simos Yannas Architectural Association

SCIENTIFIC COMMITTEE

Loyde Abreu-Harbich Federal University of Goias, Brazil.

Shorf Afza Bangladesh University of Engineering and Technology.Bangladesh.

Avlokita Agrawal ITT Roorkee, Haridwar, Uttarakhand, India.

Sura Al-Maiyah University of Portsmouthm School of Architecture, UK.

Rashed Alshaali UAE University, UAE.

Sergio Altamonte Nottingham University,UK.

Jose M Almodovar Melendo Universidad de Sevilla, Spain.

Hasim Altan UAE University, UAE.

Mohamed Aly Etman Rennselaer Polytechnic Institute, USA.

Mehdi Amirkhani Queensland University of Technology, Australia.

Carmen Antuña Rozado VTT Technical Research Centre of Finland, Finland.

Shady Attia Ecole polytechnique fédérale de Lausanne, EPFL. Switzerland.

Rahman Azari University of Texas at San Antonio, USA. Samuel Jensen Augustine California College of the Arts, USA.

Leonard Bachman Texas A & M University, USA.

Umberto Berardi Ryerson University, Canada.

Martha Bohm University at Buffalo, USA.

Ana Borbon Universidad de Sonora, Mexico.

Gail Brager University of California Berkeley, USA

Harvey Bryan Arizona State University, USA.

Waldo Bustamante Universidad Catolica de Chile, Chile.

Paula Cadima Architectural Association London, UK.

Guedi Capeluto Technion, Haifa, Israel.

Szu-cheng Chien Berkeley Education Alliance for Research in Singapure (BEARS), USA.

Joon-Ho Choi University of Southern California, USA.

Courtney Crosson University of Arizona, USA.

Rolando Cubillos Gonzalez Universidad Catolica de Colombia, Colombia. Kumar Biswajit Debnath Cardiff University, UK.

Mark DeKay University of Tennessee, USA.

Claude Demers Université Laval, Canada.

Stephen Dent University of New Mexico, USA.

Samuel Dominguez Amarillo Universidad de Sevilla, Spain.

Jiangtao Du University of Bath, UK.

Denise Duarte University of Sao Paulo, Brazil.

Meshack Efeoma Edinburgh School of Architecture and Landscape Architecture, UK.

Mohamed Eledeisy Sapienza University of Rome, Italy.

Ihab Elzeyadi University of Oregon, USA.

Carlos Esparza Lopez Universidad de Colima, Mexico.

Jose Espinoza Independent Consultant

John Evans Universidad de Buenos Aires, Argentina.

Arnaud Evrard Universite Catholique de Louvain, Belgium.

Anderson Ferreira Universidade Guarulhos, Brazil. Luca Finocchiaro Norwegian University of Science and Technology, Norway

Brian Ford Building Green Futures/Natural Cooling Ltd., UK.

Csilla Gal Independent Researcher, USA.

Paola Gallo University of Florence, Italy.

José Roberto García Chávez Professor-Researcher, Universidad Autonoma Metropolitana, Mexico.

Gabriel Gomez Azpeitia ISTHMUS Panamá y Universidad de Colima, Mexico.

Dania Gonzalez Couret Universidad de la Habana, Cuba

Rory Greenan TCD CPIT, New Zeland .

Walter Grondzik Ball State University, USA.

Rajat Gupta Oxford Brookes University, UK.

Bruce Haglund University of Idaho, USA.

Muhannad Haj Hussein An-Najah National University, Nablus, Palestinian Territory

Mary Hancock Oxford Brookes University, UK

Robert Hastings AEU Architecture, Energy & Environment Ltd. Austria. Anne Grete Hestnes Norwegian University of Science and Technology, Norway

Md Mohataz Hossain The University of Nottingham. UK

Guadalupe Huelsz Universidad Nacional Autonoma de Mexico, Mexico.

Mehlika Inanici University of Washington, USA.

Saiful Islam North South University, Bangladesh.

Usha Iyer- Raniga RMIT University, Melbourne, Australia.

J. Alstan Jakubiec Singapore University of Technology and Design, Singapore.

Samuel Jensen Augustine California College of the Arts, USA.

Genku Kayo Aalto University School Of Egineering. Finland.

Inji Kenawy British University. Egypt.

Nikolaus knebel German University Technology, Oman.

Robert Koester Ball State University, USA.

Kyle Konis University of Southern California, USA .

Roberta Consentino Kronka-Mulfarth Universidad de Sao Paulo, Brazil.

Alison Kwok University of Oregon, USA Pablo La Roche California State Polytechnic University Pomona. CallisonRTKL, USA.

Maria Lopez de Asiain Fundacion HABITEC, Spain.

Chunde Liu University of Bath, UK.

Richard Lorch Building Research and Information, UK.

Terri Meyer Boake University of Waterloo, Canada.

Atefe Makhmalbaf GeorgiaTech/PNNL, USA.

Leonardo Marques Monteiro University of Sao Paulo, Brazil.

Andrea Martinez University of Southern California, USA.

Shannon McDonald Southern Illinois University, USA.

Emily McGlohn Mississippi State, USA.

Michael McGlynn Kansas State University, USA.

Simone Medio University of Lincoln, USA.

Christoper Meek University of Washington, USA.

Murray Milne University of California Los Angeles, USA.

Mahta Mirmoghtadaee BHRC TU. Germany.

Erwin Mlecnik Delf University Technology. Netherlands. Mahsan Mohsenin Florida A&M University, USA.

Marta Molina Universidad de Sevilla, Spain.

Ralph Muehleisen Argonne National Laboratory, USA.

Ranny Nascimento Michalski University of Sao Paulo, Brazil.

Edward Ng Chinese University Of Hong Kong. Hong Kong.

Mark Olweny Uganda Martyrs University, Uganda.

Sara Omrani Queenland University of Technology, Australia.

Ignacio Oteiza Instituto C.C. Eduardo Torroja - CSIC, Spain.

Massimo Palme Universidad Catolica del Norte, Chile.

Beta Paramita Universitas Pendidikan Indonesia, Indonesia.

Ulrike Passe lowa State University, USA.

Mic Patterson Facade Tectonics Institute, USA.

Giuseppe Peronato Ecole polytechnique fédérale de Lausanne, Switzerland.

Troy Peters Wentworth Institute, USA.

Andre Potvin University of Laval, Canada.

Alessandra Prata-Shimomura University of Sao Paulo, Brazil. Ash Ragheb Lawrence Technological University, USA.

Kamal Rajapaksha University of Moratuwa, Sri Lanka.

Rajan Rawall Center for Advanced Research in Buildings Science and Energy, India.

Alexandra Rempel Rensselaer Polytechnic Institute, USA.

Jorge Rodriguez Alvarez Universidade da Coruña, Spain.

Rosa Romano Universita Degli Studi Firenze, Italy.

Monica Rossi HTWL Leipzig, Germany.

Matthias Rudolph Stuttgart State Academy of Art and Design, Germany.

Holly Samuelson Harvard University Graduate School of Design, USA.

Matheos Santamouris National and Kapodistrian University of Athens, Greece.

Marc Schiler University of Southtern California, USA.

Kelly Shannon University of Southtern California, USA.

Adil Sharag-Eldin Kent State University, USA.

Maria Spastri University of Southtern California, USA.

Joana Carla Soares Gonçalves University of Sao Paulo, Brazil. Malini Srivastava North Dakota State University, USA.

Vera Straka Ryerson University Toronto, Canada.

Jae Yong Suk University of Texas at San Antonio, USA.

Lucelia Taranto Rodrigues The University of Nottingham.

Marija Todorovic University of Belgrade, Serbia.

Maureen Trebilcock Universidad del Bío-Bío, Concepcion, Chile.

Michael Utzinger University of Wisconsin, USA.

Elizabeth Valmont Arup, Los Angeles, USA.

Sergio Vera Pontificia Universidad Catolica de Chile, Chile.

Julian Wang University of Cincinnati, USA.

Andrea Wheeler lowa State University, USA.

Christopher Whitman Welsh School Of Architecture, Cardiff University, UK.

Barbara Widera Wroclaw University of Technology, Poland.

Jin Woo RMIT University, Australia.

Simos Yannas Architectural Association School of Architecture, UK. **Dongwoo Yeom** California State Polytechnic University Pomona, USA. University of Southern California, Los Angeles

Abraham Yezioro Technion, Haifa, Israel.

Noureddine Zemmouri Universtiy of Biskra, Algeria.

Zhi Zhuang Tongji University, China.

Living the informal city Sustainable design education in risk areas

BOLOGNA R¹, GALLO P.¹, ROMANO R.¹, CALCAGNO G.¹

¹Department of Architecture, University of Florence, Florence, Italy

ABSTRACT: Should architects deal with informal city? How can they increase its resilience, also adopting sustainable criteria? May planners image resilient cities without evaluate their impact on local and global environment? The paper describes the results of an international workshop "Living in risk areas. Sustainable urban redevelopment" within a cooperation agreement between the University of Florence (Italy) and the Universidade Federal de Santa Catarina (Brazil). The goal of the workshop was to create a new generation of designers, conscious in environmental design, also in the informal city. The methodological approach adopted was focused on the on-site analysis of a favela in the city of Florianopolis in Brazil, in collaboration with local expert, academic researchers and public administrators, which have worked on habitability in the risk areas, in a broadest meaning: natural, anthropic and social.

The working group analysed the environmental conditions of the urban context; the characteristics of settlement and its relations with the "formal" city; the building typology, construction technologies and materials; the social tissue, the livelihood economy of the inhabitants and their needs. The student's proposals are been specifically referred to the site's physical aspects and to the requirements determined by the cultural, social, and economic context, with a added value of a character of replicability in similar contexts.

Keywords: sustainable design, informal city, environmental sustainability, resilience

INTRODUCTION

The architectural research seminar "Living in risk areas. Sustainable urban redevelopment" is part of an international cooperation agreement between the Italian University of Florence and the Brazilian Federal University of Santa Caterina. The cooperation has been started in 2013 and still in progress.

The research and the teaching activities have been focused on social and urban adaptability to demographic and climatic problems of the informal cities of Latin America.

The goal of the international seminar is to promote the challenges of sustainability and resilience, developing a new design approach and new professional skills for the architect of the future that will be called to work in these risk area.

The urban context chosen as case study is the Serrinha Favela located in Florianopolis (BR), a new part of city that was comparable with the precarious model of informal city for its environmental, urban and social characteristics.

In particular, two design workshops were organized during the seminar:

- "Rethinking the living in the risk area of Latin America cities" in 2013,
- "Rethinking the margins for the risk area of Latin America cities", in 2015

The two international workshops, focused on the topic of urban and living infrastructures, have allowed fostering the transfer of knowledge between the teachers, researchers and students involved.

Figure 1: Serrinha Favela in Florianopolis.

The projects outcomes, focused on the urban and social regeneration of Serrinha Favela (Fig.1), are innovative design solutions that could be repurpose also in other risk areas of Brazilian cities. The work developed during the seminar and the two workshops is linked to the specific geographical, economic, cultural and social condition of Latin American Cities.

THE INFORMAL CITY

For the first time in history, more than half of the world population lives in high-density urban settlements, with a grooving trend will reach the 66% in 2050 (UNDESA, 2015). Only in the developed countries is expected the constructions of at least 70 million new homes in the next year (UN-Habitat).

This urbanization phenomenon regards mostly the population that shows economic, social and cultural disadvantages. This people adapts itself to live in poor settlements made up by precarious dwellings without any supporting infrastructure. The part of city where they live are known with many names: slums, favelas, villas miseria, shantytowns, bidonvilles. These informal settlements (that are usually illegal and out of public institutions control) generate unbearable living conditions from an environment, as well as social and cultural, point of view.

To get an idea of the size of this phenomenon, in 2012 about 863 million people (UN-Habitat, 2003), a third of the urban population of developing countries lives in informal settlements. (Sampo', 2012).

In Brazil, more than 11 million citizens (corresponding to 6% of population) still live in favelas. According to the Brazilian Institute of Geography and Statistics there are 3.2 million precarious and irregular dwellings (technically called *aglomerados subnormais*, commonly known as favelas) exposed to any kind risk. Actually, 618.000 of these informal houses are located on dangerous slopes, potentially subject to landslides, and 27.000 beneath high voltage pylons. (IBGE, 2011).

Moreover, these settlements have to deal with the social risk connected to the presence of organized criminality, linked to the drug traffic.

In order to face with this situation, seemingly out of control, the Brazilian Government has launched a number of actions for social and urban requalification of *favelas*, in conjunction with the Soccer World Cup (2014) and upcoming Rio Olympics (2016). In particular, the most interesting government programs are "Morar Carioca" and "Minha Casa Minha Vida" (http://www.rio.rj.gov.br/web/smhc): the common goal is to find innovative urban models of social, economic and environmental development, to transform *favelas* from marginal and degraded areas to places where it is possible to live a normal lifestyle.

THE FAVELA SERRINHA IN FLORIANOPOLIS

Florianopolis is one of the Brazilian cities with the highest rate of economic well-being, mainly due to national and international tourism, origin of a flourishing turnover. The geographical location and natural beauty of the island make it one of the most popular places in the south of Brazil, especially during the summer months. However, in the rest of the year the absence of tourists in the island produces a significant reduction of residents and a consequent decrease of working demand.

Despite this (or perhaps because of it), also in Florianopolis, over the years have been built many favelas, with the same logic with which they were built in major urban centres of the Latin America. (Sugai, 2015).

Many poor and jobless people leave their places of origin or even leave the favelas of other cities and moved on the island of St. Catherine attracted by promises to improve their living and economic conditions.

However, these people find themselves in a critical economic circumstances also in Florianopolis, forced to live in poor housing, in the absence of supporting infrastructure (water, electricity, etc.), in unhealthy conditions, almost always beyond the control of government institutions.

As a recent research of the Universidade Federal de Santa Caterina (Sampaio, Heinish, Luiz, Rossetto 2013) shows one of the most critical urban situations of Florianopolis is the Serrinha favela. Here, in the last years, many people have decided to live after that they have moved in the city, building their poor houses (Fig.2).

The Serrinha Favela is located in the central area of the island near the formal city of Florianopolis, on the north slope of the Morro da Cruz (the central massif of the island) and it borders to east with the headquarters of the Universidade Federal de Santa Catarina. Thank to this location is possible to see the favelas from everywhere of the city and know its rapid and uncontrolled growth.

Figure 2: Serrinha: typical buildings

Usually, the houses built in the Favela are realized according to the urban model of Portuguese Servidao: the first buildings are located along a principal sloping road, that is the matrix of the new part of the city on which are inserted the secondary streets, parallel to the contour lines. This undisciplined development occurs through a process of deforestation and illegal occupation of land. The consequence is the increase of landslides risks' in a geographical area subject to heavy rainfalls in spring and autumn.

In Serrinha, families are numerous, and usually more families live in the same building, on different floors. For this region, generally, buildings located here are characterized by a vertical organization, with a overlapping planes where are located the primary living spaces: a kitchen with dining area and living room, a bathroom and other small spaces. As documented at the national level also the Serrinha inhabitants, although poor, have in their dwellings consumer goods that usually is possible to find in the houses of rich citizens: refrigerator, TV, and more often air-conditionings (IBGE, 2011).

Inside the *favela*, there is an informal housing market, which replace the formal one, managed by its own rules and based on the properties absolutely lacking any consistency titles: in fact, houses can be sold or rented generating an income to "owners" who sometimes, becoming wealthier, live outside the favela.

From the urban point of view, we can distinguish *favela* from formal city further because the lack of primary (water, electric, sewer) and secondary (adequate road networks to ensure easy connections between different parts of the settlement) urban infrastructures.

Finally, except for a waste recycling center, there is an evident absence of working and public spaces, such as health center, primary and secondary schools, spaces for cultural activities, markets, etc.

To find a solution for these urban phenomena the local municipality has developed in the recent years a "favela redevelopment program" to stem the rapid expansion that goes to interest also the university area. However, in the same time, to circumvent the prohibitions that are consequence of this program, the people that live in the favela build their houses during the night and in the days of religious holidays, when the governmental bodies are unable to do the legal control on the processes of construction.

TEACHING METHODOLOGY

The adopted teaching methodology has been developed to respond to complex issues of environmental and social assessment, in particular for a risk area. The complexity of the topic has also requested a strong discipline contamination, supported by a deep work of field analysis on site. The both workshops has been divided into three phases:

1. A preliminary phase, held at the University of Florence, characterized by multidisciplinary lectures by Italian and international professors, on issues of informal cities and sustainability, as well as on the role of architectural research. The training objective was to provide students basic knowledge and methodological tools necessary to approach the design phases.

2. An intermediate phase in Florianopolis focused on fieldwork on environmental conditions, urban settlement characteristics, construction techniques, as well as a phase of ethnographic analysis, determining the real inhabitants needs (Fig.3). This phase was conducted through interviews to the people and social association of the Favela, supported by the contribution of local administrators and technicians. (Fig.4). Furthermore, it was characterized by brainstorming, among Italian and Brazilian teachers and students, to develop and define the strategic objectives of the project.

3. A final phase of synthesis, held at the University of Florence, during which the Italian students have worked out on project proposals using all workshop outcomes. Moreover, in this last phase, the educational contributions was focused on the communication strategies and results dissemination, oriented to produce a scientific publications and to promote the participation of students in architectural international competitions.

The structure of the seminar was developed offering a full range of activities to achieve innovative and competitive skills, as expected by Dublin Descriptors (http://ec.europa.eu/education/policy/highereducation/bo logna-process_en.htm). In detail, the purpose was to stimulate cognitively the students to apply the knowledge acquired during their Architecture study, in an interdisciplinary way, enhanced with ethical and social input typical of the complex urban phenomena. Additionally the goal has been learning to communicate in clear and precise matters, the project proposals to the several customers.

Figure 3: Interviews of Italian Student to Serrinha inhabitants.

THE DESIGN WORKSHOP

Workshop 2013: Rethinking the living in the risk area of Latin America cities

The first architectural design workshop in 2013 explored the theme of housing infrastructure. It was focused on the design of a basic modular construction system just in its structural part: within those basic structural cells can find place the new housing units, according to the functional and/or economic users' requirements.

Two different technological scenarios were offered to the future dwellers, giving them the opportunity to choose the solution according to their resources:

- 1. In the first scenario, the objective was to orientate and enhance the community's local economy by recycling some types of waste (plastic bottles, cans, tetra Pac etc.) and combining them with cementitious binders to produce cladding and partition panels, according to guided procedures and models already experimented by the Unversidade Federal de Santa Caterina.
- 2. In the second scenario, the objective was to give dwellers the possibility to acquire traditional construction materials (clay blocks, insulated metal panels, wooden panels etc.), according to the principle of social selfdetermination, common in the informal communities.

Both scenarios represent a realistic constructive and economic model that allows preserving the typical formal features of the Brazilian favelas, where the variety of technological and material solutions is a significant element of identity.

Figure 4: Focus Group with local administrators during the workshop of 2015.

The modular design of the structural system has been developed on a basic unit of 4x4 mt, adaptable to the elemental living functions (eating, sleeping, etc.). In this modular grid, it is possible placing residential functions, collective services and open spaces. The structural system also becomes the infrastructural for the integration of plant networks (water and electricity). The simple geometric configuration of this technological scheme allows to achieve the objective to integrate the bioclimatic strategy to increase the indoor comfort inside the buildings (natural ventilation, water saving, etc.).

The proposed design module follows the settlement pattern of Servidao, but with a lower density with respect to favela settlement "one plot, one house". The proposed building typologies was characterized, in fact, by a prevailing vertical development to decrease the favela density trough free areas. In this urban scheme, the free areas could be changed in green areas, in order to limit landslides effect, typical of deforestation or could also be used as urban gardens for food production.

The results of this first architectural design workshop were also finalized to the participation to the international competition "Houses for change. Architecture for social responsibility" proposed by IE University. Two of the three participating groups from University of Florence, which were involved in the workshop, were selected among the 15 finalists, on a total of 148 proposals from all over the world (Fig.5).

Figure 5: One of the finalist Project of the international competition: "Houses for change. Architecture for social responsibility".

Workshop 2016: Rethinking the boundaries for the risk area of Latin America cities

The second design workshop was focused on the urban sustainable planning of the informal settlement, providing the placement of new infrastructures with public and private functions, approaching with a strong attention on the social aspects of community living. The main objective was to redesign the borders of the favela, transforming a physical and social limit in a formal element of connection between two adjacent but different urban areas. The project of public spaces is a key action in the regeneration process of the informal city (Friedman 2009), because increase the possibility to involve the inhabitants, not only in setting the project objectives, but above all in the managing of the redevelopment of the urban places where they live.

The teaching methodology provided primarily a deep fieldwork, encouraging students to get in touch and dialogue with the local community, the local urban management experts, the local university professors and the local voluntary organizations. The analysis highlighted on the one hand the tendency, typical of informal settlement, to constantly expand its borders without any services compensation, and on the other hand the presence of a very active social and economic pattern, who requires the presence of collective spaces as "right to the city" (Lefebvre, 1970). The objective of the analysis was to bring out the positivity of the informal system, and thus its true regenerative potential (Mang and Reed 2012), approaching the upgrading starting from the people before than the spaces, in order to transform the cultural, social and economic capital of the informal city in a formal capital (Roy, 2005) capable of creating resilience.

The proposal phase, still in progress, outlines in a masterplan an evolutionary urban development model for Serrinha, shaped on the transposition of the concept of social infrastructure in a network of physical spaces that are necessary to develop the community's resilience (Fig.6). The project proposal for Serrinha is developed respect the following thematic areas:

- Boundaries' Design, reducing the informal expansion of the informal city, with no physical obstructions, but providing spaces of public domain and stimulating a new relationship with the formal city based on the concepts of environmental sustainability and social cohesion;

- Social Capability and Economic development, responding to the need for awareness-raising activities, identity enhancement, training and strengthening of the local economy, as a basic prerequisite for the upgrading of the Favela. Among the functions to be located: spaces for the management of the waste recycling, kindergarten, community center, food market, health center, vocational training center and entertainment center;

- Social' Design, involving the community in a low impact self-building process. It is the key action in the process of setting up the network of public spaces, since it could be implemented through knowledge dissemination and the aware use of basic sustainable technologies. In particular, in this project the site occupation is thought as a gradual re-appropriation process of the public spaces, through the assignment of temporary uses and redevelopment of green boundaries with slow traffic roads, public open spaces and urban agricultural gardens.

Figure 6: "Rethinking the margins": masterplan.

CONCLUSION

The two international workshops have identified sustainable regeneration processes for the informal city, through the drafting of project guidelines. As matter of fact, models underpinning urban planning suffer the lack of technical and operational guidelines to support the elaboration of reliable scenarios. This procedural lack determined the need to approach design with an operating methodology aimed firstly to identify risk causes, and then to find solutions to improve the living quality of informal settlements, in their relationship to the territory.

The design proposals, processed during the educational workshop experiences, has been based on the following needs:

- to decrease informal land consumption, adopting models for public employment of "non-built areas" to accommodate spaces for the community;
- to increase green areas, intended as a linear and physical space, that redraws the boundaries of the informal settlements, and as a "non-built area" to be used in agricultural production;
- to reduce landslide risk, adopting urban solutions that promote rainwater saving;
- to increase technological solutions to promote selfconstruction processes, with the use of recycled and

/or recyclable materials and energy passive solutions at urban and building scale, with the aim to improve the indoor and outdoor comfort.

All proposals have been based on the concept of infrastructure as basic element in settlement update. It could provide network services necessary for the inhabitants of the favela, assuming not only the technical and constructive solutions, but also a model coherent with the economic capacity and user management (Abbott, 2002). These considerations arise from the observation that, in the case of Serrinha Favela as for many Brazilian ones, the local municipality attend regularly later, investing significant financial resources for solve problems arising from lacking services and general infrastructure at first of spontaneous settlement.

Therefore, in both cases the proposals predicted the intervention of municipalities in the settlement process by providing a general infrastructure system for the purpose to:

- regulate urban expansion on the territory;
- determining a settlement model compatible with the cultural traditions and characteristics;
- protect physical context;
- equip the residential segment with the primary services: roads, water supply, electricity, sewerage;
- establish social services for the community: social and cultural centers, childcare centers, commercial facilities and so on;
- establish the minimum conditions of security against the risks prevalent structural, hydrogeological, sanitary, electrical;
- stimulate initiatives, participation and community self-determination processes in a framework of general rules;
- promote local and legal economy self-sustaining.

The results of the workshop have been supported by the adopted teaching methodology: an active commitment to stimulate the creative re-thinking of local redevelopment dynamics through action design, as a participatory learning process.

Students shared innovative approaches: a design research based on a strong understanding of social and environmental local phenomena, in order to face today's challenges of sustainability from every point of view: environmental, social, economic.

According to the increasing necessity of improving the fundamental living condition of millions of people, students experimented a new way of playing the role of an architect-designer, as an exponent of real people's needs and mediator of social interests (Manzini, 2015) combining top-down and bottom-up approaches.

ACKNOWLEDGEMENTS

We would like to express our appreciation to the

members of Serrinha community for their support during the fieldwork and to the students for their commitment. We also thank prof. Fernando Barth for the organization and the Universidade Federal de Santa Catarina for the logistic support.

REFERENCES

Abbott J. (2002), *An analysis of informal settlement upgrading and critique of existing methodological approaches*, Habitat International, n. 26/2002, p. 303-315.

Friedman Y. (2009), L'architettura di sopravvivenza. Una filosofia della povertà, Torino, Bollati

Instituto Brasileiro de Geografia e Estatistica (2011), *Censo demografico 2010*. Available: http://www.ibge.gov.br/, [Online], Available: http://idmp.entpe.fr/ [16/01/2016].

Lefebvre, H. (1970), Il diritto alla città, Padova, Marsilio.

Mang, P. and Reed, B. (2012), Designing from place: a regenerative framework and methodology, *Building Research & Information*, 40(1), p.23-38.

Manzini E. (2015), *Design, When Everybody Designs*, MIT Press, Cambridge.

Roy, A. (2005), Urban Informality. Toward an Epistemology of Planning. *Journal of the American Planning Association*,

Vol. 71, n. 2, p. 147-158.

Sampaio A., L. Heinish, Luiz M. and A. Rossetto (2013), "Favela: dynamic space of adaptation and creativity", *Architecture and Resilience*, Proceedings of the 5th annual Symposium of Architectural Research, Tampere University of Technology, Tampere.

Sampo' L. (2012), The Post-Urban Age, verso una nuova forma di insediamento, *Boundaries "The other city"*, n. 4/2012, p.

Sugai M. I. (2015), Segregação silenciosa, Editoria UFSC, Florianópolis.

United Nations, Department of Economic and Social Affairs, Population Division (2015). *World Population Prospects: The* 2014 Revision, (ST/ESA/SER.A/366) UN, New York.

UN-Habitat, *Housing and Slum upgrading*, [Online] Available: http://unhabitat.org/urban-themes/housing-slum-upgrading/ 18/01/2016].

UN-Habitat (2003), *The challenge of Slum. Global report on Human Settlements 2003*, Hearthscan, London and Sterling.