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Introduction

In the last decade, the development of extraordinary experimental techniques in
the field of atomic physics, as well as in nanotechnology and photonics, allowed
for a huge step in the understanding of complex fundamental problems of physics,
especially in the field of condensed matter, where an extremely high number of
variables is involved. Exploiting these techniques, fully tailored quantum systems
can indeed be created, which guarantee an unparalleled control over their degrees
of freedom. This realizes the idea of R. Feynman of a quantum simulator [1],
i.e. a quantum system used to emulate another physical system by mimicking its
evolution [2–6].

A fundamental field in this context is represents by ultracold atoms. With
the development of laser cooling techniques [7] based on the interaction between
matter and monochromatic light, it was possible to cool neutral atoms down to
the quantum degenerate regime, where the effect of the Bose-Einstein [8, 9] and
Fermi-Dirac [10] statistics plays a fundamental role. Such breakthroughs were
followed by the introduction of a wealth of novel techniques devoted to efficiently
manipulate and probe ultracold atomic gases [11]. Optical lattices in particular
are a fundamental tool for the investigation of condensed matted systems, as they
offer the opportunity to realize a lattice environment with fully controllable degrees
of freedom, accurately implementing the Hubbard model [12]. This allowed for
the observation of a wide array of phenomena, ranging from the superfluid to
Mott insulator transition [13–15] and the Anderson localization [16] to fermionic
superfluid pairing [17], correlated tunneling and superexchange processes [18–20],
and reduced-dimensionality physics such as Tonks-Girardeau gases [21, 22].

Recently, a growing interest arose regarding the opportunities offered by alkali-
earth(-like) (AEL) atoms. This class of atoms was initially considered for the
realization of a new generation of frequency standards based on optical atomic
clocks [23], but was soon realized that they also offered very promising oppor-
tunities for the implementation of new quantum simulation [24–26] and quantum
information [27–30] schemes. AEL atoms possess indeed some peculiar proper-
ties that heavily differentiate them from alkali atoms, opening the possibility of
a plethora of new applications. For instance, interaction between fermionic AEL
isotopes with a high nuclear spin, such as 173Yb, belong to a particular symmetry
class called SU(N), which arises from the strong decoupling between orbital and
nuclear degree of freedom. A remarkable consequence of this symmetry is that
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Introduction

interactions between atoms are independent from the specific nuclear spin states, a
property that which allows for the realization of multicomponent fermionic gases
with tunable number of nuclear spin states [31–33] and heavily influences nearly
any interacting fermionic many-body state [34].

Moreover, AEL atoms are characterized by a more complex electronic structure
with respect to alkalis, which features a metastable state (or orbital, in analogy
to electrons in solids) with an extremely long (> 10 s) radiative lifetime. This
property provides a platform to the implementation of so far inaccessible many-
body phenomena, based on orbital interactions [26, 35, 36], enlarged symmetries
[26, 34] and strong effective gauge fields [37]. Moreover, the transition that connects
the ground to the metastable state has been exploited for the realization of optical
lattice clocks (hence the name "clock-transition") that reached a record stability and
accuracy of the order of 10−18 [38–40], paving the way to the redefinition of the SI
second.

This thesis covers several cross-disciplinary subjects related to two-orbital quan-
tum physics of fermionic systems, and in particular of fermionic isotope 173Yb of
Ytterbium. In first place, the attention is focused on the basic properties of the
interactions between atoms in different electronic states. In the experiment, we
observe that such atoms feature a special type of interaction, the so-called interor-
bital spin-exchange interaction [41], which lies at the heart of a wide array of
quantum phenomena in condensed matter, ranging from Kondo model [35, 42]
to heavy-Fermi behaviour [36, 43, 44] and orbital quantum magnetism [45, 46].
In order to be implemented, all these schemes rely on the excitation of the clock
transition. This requirement is fullfilled with the aid of ultranarrow laser systems
[47–50], able to excite the clock transition without deteriorating its spectral char-
acteristics. In order to reliably conduct experiments over long timescales, a high
level of stability and accuracy are required from these devices, which is not eas-
ily attainable outside of metrology institutes. In this thesis, I also show that the
necessary high degree of stability and accuracy can be reached by stabilizing the
ultranarrow laser system, developed during the years of my PhD [50], to an abso-
lute optical frequency reference disseminated from the Italian National Metrology
Instritute (INRIM, Turin) to our end-used laboratory (LENS, Florence) through a
long-haul optical fiber link [51]. Optical fiber links have already proved to be a
powerful tool for comparison between optical clocks and state-of-the-art frequency
standards [52, 53], and their potential can be exploited in several other applications,
ranging from geodesy [53, 54] to radioastronomy [55]. Optical fiber links could be
exploited for the dissemination of a primary absolute frequency reference to remote
non-metrological end-users, in such a way as to push the precision and accuracy
of local measurements and applications beyond the GPS limit, nowadays the com-
monly used frequency reference. In this thesis, I provide the first demonstration of
this capability: by disciplining our ultranarrow laser to the remote optical frequency
reference, we perform spectroscopy on the Ytterbium clock transition, reaching an
accuracy which goes beyond the limits of the GPS [56]. This high degree of accu-
racy and stability could allow for an effective excitation of the clock transition for
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indefinitely long timescales, with great benefit for the experimental setup reliability
and without any need of local metrologic infrastructure.

Finally, I also report on another experiment in which we observed that two-
orbital interactions can be tuned exploiting a new type of Feschbach resonance
[57], called Orbital Feshbach Resonance, very recently pointed out theoretically
[58]. The possibility to tune interactions is lacking in ground state AEL atoms,
due to the absence of hyperfine interaction and the existence of orbital Feshbach
resonances opens totally new avenues in the investigation of two-orbital many-body
physics, ranging from the BEC-BCS crossover in an ultracold gas of fermions
with orbital degree of freedom and the realization of novel forms of topological
superfluidswith spin-orbit coupling [58], to the investigation of two-orbitalHubbard
models [26] with tunable interactions.

This thesis is organized as follows.

• Chapter 1 introduces the basic concepts of the laser cooling and trapping
techniques, including a review on optical lattices, and of interactions between
ultracold atoms, introducing the concept of scattering length. The origin of
the SU(N) interaction symmetry is also briefly discussed. A final section is
dedicated to the description of the basic properties of Ytterbium electronic
and collisional properties.

• Chapter 2 contains a description of the fundamental parts of the experimental
setup, including the vacuum apparatus and laser systems, and of the exper-
imental procedures adopted to cool atoms down the atomic samples to the
degenerate level and to trap and manipulate them.

• Chapter 3 is divided in two main sections. In the first the ultranarrow laser
system at 578 nm, which I conspicuously contributed to devise and realize,
is described in details, including the infrared laser source and the doubling
cavity used to obtain visible radiation, the insulation of the reference ULE
cavity, the locking technique and an analysis of the laser performances. In
the second section, the optical fiber link that connects the italian metrological
institute to LENS is described, followed by a discussion on the analysis of
the our 578 nm laser long-term stability before and after the stabilization on
the fiber link.

• In chapter 4 the properties of the metastable state and of the clock transi-
tion are discussed, followed by a description of Doppler-free spectroscopy
experiments on spin-polarized samples. In the final part, the results of a
high-accuracy spectroscopy experiment are discussed, enlightening the ad-
vantages offered by a long term stabilization of the optical fiber link for
efficient frequency dissemination to non-metrological institutes.

• Chapter 5 is dedicated to the subject of interaction between atoms in different
orbitals and different spin states. After a theoretical introduction, I discuss the
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experimental results concerning a direct observation of the coherent nature
of the interorbital interaction and for a full characterization of its properties
as a function of the significant experimental parameters.

• Chapter 6 reports on the experimental study of orbital Feshbach resonances.
After a general introduction to the basic concepts of Feshbach resonances,
I briefly explain the mechanism at the basis of orbital Feshbach resonances.
The final part of the chapter is dedicated to the experimental investigation
of the resonance, including the determination of its approximate position for
different spinmixtures and a study of the inelastic losses across the resonance.

• Finally, in chapter 7 I review additional experimental results which were
achieved during the years of the PhD, but are not directly tied to two-orbital
physics. In particular, I review the investigation of the effects of SU(N)
symmetry in one-dimensional systems, and the observation of chiral edge
states with neutral atoms in a synthetic gauge field.
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Chapter 1

Ultracold atoms fundamentals

In this chapter we review some of the fundamental concepts of the field of ultracold
atoms. We first discuss the basic concepts of laser cooling and trapping techniques,
including a review of optical lattices. The fundamentals of atomic interaction
are ultra-low temperature are then discusses, together with brief discussion on the
origin of the SU(N) symmetry that characterize interactions between ground state
Ytterbium atoms. Finally, we present the main electronic and collisional properties
of the Ytterbium element.

1.1 Laser cooling and trapping

1.1.1 Laser cooling and optical potentials

The development of atomic cooling and trapping techniques is a directed conse-
quence of light-matter interaction properties. These techniques rely on the me-
chanical action that lights exerts on atoms, which is of two kind, dissipative and
conservative.

Dissipative force

In general, an atom interacting with light represents an open quantum system since
it is always coupled with the electromagnetic vacuum field which acts as a thermal
reservoir and causes spontaneous emission. Such a system can be described in the
master equation formalism in which the time evolution of the density matrix ρ̂ of
the atomic system is given by[59]:

d ρ̂
dt
=

1
i~

[
Ĥ, ρ̂

]
, (1.1)

where Ĥ is the total Hamiltonian of the system and is given by:

Ĥ = ĤA + ĤR + ĤI, (1.2)
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1 Ultracold atoms fundamentals

where ĤA and ĤR are, respectively, the atomic system and radiation field Hamilto-
nians and ĤI is the Hamiltonian describing the interaction between atoms and the
electromagnetic field:

ĤI = −d̂ · [E(r, t) + Evac (r, t)] (1.3)

where d̂ is the atomic dipole and the second term is the electromagnetic field which
is given the sum of the vacuum electromagnetic field Evac (r, t) and of the laser
field E(r, t), assumed to be a plane wave with wavelength λ:

E(r, t) = εE0 cos(k · r − ωt) (1.4)

where ε is the polarization vector and |k | = 2π/λ is the wavevector. The dissipative
force is the consequence of a series of cycles of absorption from the laser field
and spontaneous emission in the reservoir vacuum field. With the absorption of a
photon, the atom acquires a momentum ~k along the propagation direction of the
laser beam and, since the spontaneous emission in the vacuum field is isotropic,
the atomic motion can be damped out. This mechanism, often referred to as
"radiation pressure", is at the basis of laser cooling techniques such as Zeeman
slowing (section 2.2.1) and magneto-optical trapping (section 2.2.1). Considering
a two-level |g〉 − |e〉 atom, with |g〉 and |e〉 separated by an energy ~ω0, interacting
with a laser field, the expression of the dissipative force can be derived within
the master equations formalism (the so-called optical Bloch equations [59]). By
assuming theRotatingWaveApproximation (RWA), inwhich the rapidly-oscillating
components (at frequency ω0 + ω) are neglected and only the slowly-oscillating
terms (at frequency ω0 − ω) are retained, the force exerted by a plane wave of
intensity I, frequency ω and detuning ∆ = ω − ω0 on an atom at rest is given by:

Fdiss = ~kL
Γ

2

(
I/Is

1 + I/Is + (2∆/Γ)2

)
(1.5)

where Is = 4π2~cΓ/6λ3 is defined as the saturation intensity. In the so-called
"saturation regime" at I/Is � 1,∆/Γ, the dissipative force reduces to Fdiss =

~kΓ/2. This last expression highlights that the dissipative force directly originates
from the momentum transfer ~k induced by scattered photons at rate Γ/2. This
holds for near resonant light (∆ ∼ Γ), where the RWA is a good approximation.

Conservative force

The origin of the conservative force can be well described with a classical approach,
considering an electromagnetic E oscillating a frequency ω which induces in the
atom an oscillating electric dipole d = α(ω)E, where α(ω) is the atom polar-
izability. By time averaging the interaction between the induced dipole and the
electromagnetic field itself, obtains the expression for the so-called AC-Stark shift
(also called dipole potential or light shift) [60, 61]:
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1.1 Laser cooling and trapping

Vdip (r, ω) = −
1

2ε0c
Re[α(ω)]I (r), (1.6)

where I (r) = 2ε0c |E(r|2 is the intensity of the electromagnetic field and where
we have reintroduce the dependency on the spatial coordinates r = (x, y, z). The
expression for the dipole force can then be straightforward derived as:

Fdip = −∇Vdip (r, ω) =
1

2ε0c
Re[α(ω)]∇I (r). (1.7)

From this expression, it is evident how it is possible to confine atoms in potential
minima using tailored intensity profile. Typical applications of this confining
mechanism are dipole traps and optical lattices.

In general, in order to determine the exact polarizability, and hence the exact
form of the light-shift, on a certain atomic level, all other atomic states must be
considered [61], but a two-level approximation is enough to give the idea of the
working principles of dipole traps and optical lattices. It can be shown that starting
from the atom polarizability derived with a semi-classical approach [60], the AC-
Stark shift of the ground state |g〉 is given in first approximation by:

Vdip (r, ω) = −
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I (r), (1.8)

where ω0 is the frequency of the |g〉 → |e〉 transition and Γ its natural linewidth.
This expression can be further simplified in RWA, giving:

Vdip (r, ω) = −
3πc2

2ω3
0

(
Γ

∆

)
I (r). (1.9)

Form this expression, it is clear how the sign of the detuning ∆ of the dominant
transition influences the sign of the dipole potential: a positive or negative detuning
would induce a repulsive or attracting potential, respectively. For this reason, red-
detuned laser gaussian beams are typically used to realized nearly-harmonic traps
[62, 63], but also blue-detuned beams can be used to engineer specific potentials,
like quasi two-dimensional traps [64] or box potentials [65, 66].

As the dipole force still originates from the interaction between atoms and
the electromagnetic field, processes of absorption and spontaneous emission may
occur. It can be shown that the scattering rate associated to these kind of processes
is proportional to the imaginary part of the polarizability [60, 61]:

Γsc (r, ω) =
1

~ε0c
Im[α(ω)]I (r), (1.10)

which further simplifies in RWA, giving:

Γsc (r, ω) =
3πc2

2ω3
0

(
Γ

∆

)2
I (r), (1.11)

9



1 Ultracold atoms fundamentals

Since the photon scattering transfers energy to the atomic sample, in order not to
lose atoms from the trap is necessary to minimize the scattering rate, keeping at
the same time a strong enough dipole potential. Since Γsc ∝ 1/∆2 and Vdip ∝ 1/∆,
this condition can be obtain choosing a detuning that is high enough to minimize
the photon absorption but still small enough to exert a non-negligible dipole force.

For completeness sake, Eq. (1.8) and (1.9) for the dipole potential and the
photon scattering rate can be easily generalized to take into account all the possible
transitions from a certain state |n〉, giving in non-RWA:

V (n)
dip

(r, ω) = −
∑
m,m

3πc2

2ω3
mn

(
Γmn

ωmn − ω
+
Γmn

ωmn + ω

)
I (r),

Γ
(n)
sc (r, ω) =

∑
m,m

3πc2

2~ω3
mn

(
ω

ωmn

)3 (
Γmn

ωmn − ω
+
Γmn

ωmn + ω

)2
I (r),

(1.12)

whereωnm is the frequency of the transition |n〉 → |m〉 and Γnm its natural linewidth.

1.1.2 Optical lattices

Optical lattice represent a fundamental tool in quantum simulation of condensate
matter systems [11], as it represents for neutral atoms the equivalent of the lattice
potential experienced by electrons in solids. An optical lattice can experimen-
tally be generated by superimposing two counter-propagating gaussian beams with
wavevector ±kL , waist w0 and Rayleigh range zR and with the same polarization.
This creates a stationary interference pattern along the propagation direction z of
the two beams, which generates a dipole potential (1.6) that is given by:

Vlat (r, z) = V0e
−2 r2

w2 (z ) cos2(kL z) ' sEr cos2(kL z) +
1
2

mω2
rr2 +

1
2

mω2
z z2︸                   ︷︷                   ︸

Vext

, (1.13)

where we have expressed the potential depth V0 = sEr in terms of recoil en-
ergy Er = ~2k2

L/2m, with m the atomic mass, and the dimensionless parameter
s = V0/Er . The potential (1.13) generated by the two gaussian beams is the sum of
a periodic potential along the the beams propagation direction and of an external
trapping potential Vext . This trapping potential has two components, which can be
approximated as harmonic confinements: a weak confinement along the longitudi-
nal direction with harmonic frequency ωz =

√
2Er

mz2
R

√
s and a stronger confinement

along the radial direction with frequency ωr =

√
4Er

mw2
0

√
s. In presence of colli-

mated beams, these trapping terms can be neglected in first approximation, and the
potential simply reduces to the periodic term. This can be expanded around the
minimum in z = 0, obtaining the harmonic frequency associated to the lattice site:
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1.1 Laser cooling and trapping

ω =

√
2k2

L

m
V0 =

2ER

~
√

s. (1.14)

Adding additional laser beams along other directions, it is possible to create perfect
lattice potentials with up to three dimensions. For example, the lattice potential
created by three pairs of counter-propagating beams would be given by:

Vlat (x, y, z) = V0 cos2(kL x) + V0 cos2(kLy) + V0 cos2(kL z), (1.15)

wherewe have assumed the same amplitude andwavevector for all the beams andwe
have neglected the external harmonic confinement. Moreover, more exotic optical
lattice configuration, with a different translational symmetry than the simple cubic
one, can be obtained through the interference of laser beams coming from different
directions and possibly not orthogonally aligned to each other [67–70].

Optical lattices can also be used to tune the dimensionality of the investigated
system. For example, in first approximation, a deep 1D lattice divides an atomic
cloud into two-dimensional pancakes, while with deep 2D optical lattices it is
possible to confine the atomic motion along a single directions, realizing one-
dimensional systems. Indeed, a 2D optical lattice configuration allowed us to
study the physics of one-dimensional systems [32] (see section 7.1), while 3D
optical lattices have been used to perform interaction-free spectroscopy of the clock
transition and to investigate two-body collisions between different electronic states
in "zero-dimensional" traps [41] (see chapter 5).

Band structure and Bloch functions

The problem of a single particle in a periodic potential has been extensively studied
in the last century in solid state physics [71]. The problem is simplified by the
discrete translational symmetry of the systems, which implies, through the Bloch
theorem, a specific form of the eigenfunctions ψ (n)

k
(z):

ψ (n)
k

(z) = eikzu(n)
k

(z), (1.16)

where u(n)
k

(z) is a function with the same periodicity d = λL/2 of the potential,
that is u(n)

k
(z + d) = u(n)

k
(z). Bloch waves are characterized by their crystal

momentum, or quasimomentum, k, which is restricted to the first Brillouin zone,
i.e. −kL < k < kL [71]. The Schrödinger equation for a perfect one-dimensional
sinusoidal potential along z, can solved in terms of Mathieu functions, as it can be
written as:

[
d2

dw2 +

(
E
Er
−

s
2

)
− 2

( s
4

)
cos(2w)

]
ψ(w) = 0, w = kL z, (1.17)
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Figure 1.1: Energy bands of a 1D lattice for different lattice depth V0 = sEr . At higher
lattice depth, the bands flatten and the energy gaps increase. The lowest band tends to
harmonic oscillator frequency of Eq. (1.14).

which is the well-known Mathieu equation y′′ + [a − 2q cos(2z)]y = 0. with
parameters a = E/Er − s/2 and q = s/4. The eigenenergies of Eq. (1.17) is an
infinite series of dispersion relations E (n) (k), where k ∈ (−kL,+kL) and n is the
band index, separated by energy gaps. The eigenenergies for different values of s
are plotted in Fig. 1.1. Two main features of the energy bands appear clear from
the figure: with increasing s the band gaps increase accordingly, while the energy
bands gets narrower and approach the harmonic oscillator energy levels (dashed line
in Fig. 1.1) at high values of s. In this regime, the band gap can be approximated
as ~ω, where ω is the harmonic frequency defined in Eq.(1.14). In the case of 3D
lattices, the eigenenergies and the eigenfunctions can be computed easily since the
problem is separable:

E (nx,ny,nz ) (k) = E (nx ) (kx ) + E (ny ) (ky) + E (nz ) (kz ),

Ψk(r) = ψ (nx )
kx

(x)ψ (ny )
ky

(y)ψ (nz )
kz

(z). (1.18)

This fact has the peculiar consequence that in the 3D case, the gap between the
energy bands do not open as soon as s > 0 as in the 1D case, but for s & 2.24 (Fig.
1.2). This is caused by the fact that, in three dimensions, the first excited state,
which corresponds to the eigenenergy E (2,1,1) (k), at low s and for some values of
the quasi-momentum k, can be smaller than the lowest band energy E (1,1,1) (k).

The Bloch eigenfunctions described above, are strongly delocalized functions
which are not the suitable for the description of short-range interaction between
particle pairs. For this reason, let us introduce a different basis composed by
localised wave functions within each Bloch band, calledWannier functions [71]. In
order to simplify the description, let us suppose that the tight binding approximation

12
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Figure 1.2: Bandwidth of lowest (blue), first (yellow) and second excited band (green) as
a function of the lattice depth in units s of recoil energy. In a 1D lattice the gap opens as
soon as s , 0, while in 3D the gaps opens only for s ' 2.2.

[11] is valid, which can be done in the Wannier basis. In this regime, the overlap
between the Wannier functions centered on different lattice sites is non-negligible
only for nearest-neighboring sites. Moreover, we assume that the lattice is deep
enough that all energy scales are small compared to the energy gap to the first excited
band and only the lowest energy band is populated. For the typical experimental
condition, this situation holds for lattice sites with s > 5 [11, 12]. The usefulness of
theWannier function can be easily understood in the second quantization formalism,
in which the wavefunction Ψ is replaced with field operators Ψ̂. In particular the
field operator related to a Bloch wavefunction ψ (n)

k
(r) can be written as [11]:

ψ̂ (n)
k

(r) =
∑
i

wi (r)âi, (1.19)

where wi (r) is the Wannier function centered in the site i and â†i (âi) is the creation
(annihilation) operator of an atom in the site i. Within the approximation discussed
above, the Hamiltonian of non-interacting atoms in a lattice potential can be written
as:

Ĥ = −J
∑
〈i, j〉

â†i â j, (1.20)

where the notation 〈 〉 indicates that the summation runs over nearest-neighboring
lattice sites and the tunneling term J is given by:

J =
∫

d3rw∗i (r)
[

p̂2

2m
+ Vlat (r)

]
w j (r). (1.21)

The dependence of the tunneling J on the lattice depth expressed in units of recoil
energy is nearly exponential [11], meaning that the tunneling parameter can be
varied over a range spanning orders of magnitude simply changing the lattice
beams intensity. In this way, it is possible to realize both very deep lattices, in
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1 Ultracold atoms fundamentals

Figure 1.3: False-color time-of-flight image of the lattice momentum distribution of spin-
polarized fermions in a s = 30 3D optical lattice. With a number of atoms N = 2 × 104,
only the lowest band is populated.

which the atoms are strongly localized since the tunneling to neighboring sites is
negligible with respect to the experimental timescales, or shallow lattices, in which
the atoms are delocalized over several lattice sites, due to a fast tunneling rate.

Above, the assumption that only the lowest lattice band is occupied is made.
This condition is experimentally achieved by adiabatically ramping up the intensity
of the lattice beams with an exponential ramp, to avoid atoms to Landau-Zener
tunnel in the excited bands. In order to visualize the band population and check
that the lattice loading procedure was executed successfully, a useful observable
is the lattice momentum distribution of a Fermi gas in a optical lattice (Fig. 1.3).
This is measured by means of band mapping technique [72, 73], which consists
in switching off the lattice beams adiabatically with respect to the timescale 1/ω
(see Eq. 1.14), related to the lattice band gap, but faster than 1/ωtrap, associated
to the trap frequencies of the external trapping potential. The lattice momentum
is mapped onto the atomic velocity distribution, measured by absorption imaging
after ballistic expansion.

1.1.3 Nearly resonant optical potentials

Up to now we assumed that the frequency ω of the laser used to generate the dipole
potential is far-detuned from all the atomic transitions. A notable consequence of
this condition is that all the sublevels of the state for which the dipole potential is
calculated experience the same light shift. With a reference to Eq. (1.12), this is
true if the detuning ∆mn is greater that the energy separation between the sublevels
of the final state m.

For example, in the case 173Yb 1064 nm light is far detuned from the transitions
(see section 4.1.2) and all the mF = −5/2, · · · ,+5/2 states will experience the
same light shift. If instead the detuning is of the order of the hyperfine splitting
∆Eh f s, for example of the 3P1 state if 556 nm light, nearly-resonant with the
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1.2 Interactions at ultra-low temperatures

intercombination transition (see section 1.3.1), is used, then different nuclear spin
states will experience different light shift. In such case, the expressions of Eq.
(1.12) can be further generalized obtaining:

V (n)
dip

(r, ω) = −
∑
m,m

3πc2

2ω3
mn

|Cmn(q) |2
(
αJJ′Γmn

ωmn − ω
+
αJJ′Γmn

ωmn + ω

)
I (r),

Γ
(n)
sc (r, ω) =

∑
m,m

3πc2

2~ω3
mn

|Cmn(q) |2
(
ω

ωmn

)3 (
αJJ′Γmn

ωmn − ω
+
αJJ′Γmn

ωmn + ω

)2
I (r),

(1.22)

where Cmn(q) is the Clebsch-Gordan coefficient of the transition from the initial
state |n〉 |J, F,mF 〉 to a final state |m〉 = ���J

′, F ′,m′F
〉
excited by a photon with

polarization q = (−1, 0,+1) (in spherical basis) and αJJ′ =
2J′+1
2J+1 is the multiplicity

factor of a J → J ′ transition [60]. In particular, the Clebsch-Gordan coefficent
Cmn(q) can be written as:

Cmn(q) = (−1)2F′+J+I+mF ×
√

(2 f + 1)(2J + 1)(2F ′ + 1) ×

×

{
J J ′ 1

F ′ F I

}(
F ′ 1 F
m′F q −mF

)
(1.23)

where the arrays enclosed in curly brackets and round brackets denote the 6j-
symbol and the 3j-symbol respectively[60]. The dependence of the Clebsch-Gordan
coefficients on mF and the light polarization q is related to different line strengths
between transitions from different magnetic sublevels of the initial state manifold
excited by a certain polarization. This results in a different light shift for the different
mF states which is also dependent on the polarization of the incident light. These
nuclear spin state-dependent optical potentials represent a very powerful tool for
the manipulation of the atomic internal states. For example they are exploited in
the Optical Stern-Gerlach (OSG) technique to realize a spin-dependent dipole force
that splits the different spin components in the atomic cloud (see section 2.2.2).

1.2 Interactions at ultra-low temperatures

Atomic interactions play a crucial role in the field of quantum gases. First of all,
interactions are fundamental to reach the incredibly low temperatures necessary
to enter the degenerate regime since they are at the basis of evaporative cooling.
Moreover, they are one of the building blocks of any many body phenomena that
can be studied in experiment with quantum gases.

In this section, some basic, fundamental concepts regarding the interactions
between neutral particles at very low temperature will be introduced. In this
regime, the typical inter-particle distance is larger than the interaction range and the
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1 Ultracold atoms fundamentals

system properties are substantially determined by two-body collisional processes.
Since atoms are neutral particles, the interaction between them is not the long-range
Coulomb interaction, but can be described by a central potential V (r) arising from
the atomic dipole-dipole interaction. Following the approach of ref[74], we chose a
potential V (r) given by a van der Waals potential at large distances and a repulsive
hard core below a length scale rc of the order of the atomic radius in order to take
into account the repulsion between the two atoms electronic clouds:

V (r) =



−C6/r6 if r > rc
∞ if r ≤ rc,

(1.24)

where C6 is a constant and rc is a length of the order of a few Bohr radii a0. The
range r0 of the van der Waals interaction is given by [75]:

r0 =

(
2µC6

~2

)1/4
, (1.25)

where µ is the reduced mass of the two interacting particles. For two Ytterbium
atoms in the ground state C6 ∼ 2000 a.u. (atomic units) [76], which implies
an interaction range r0 ' 180 a0. The De Broglie wavelength λdB becomes
comparablewith r0 around 0.3mK,meaning that for degenerate Ytterbium quantum
gas both the De Broglie wavelength λdB and the inter-particle separation n−1/3 are
much larger than the effective range of interaction r0. This is in general true in
degenerate quantum gases. In this regime, the short-range details of the potential
become irrelevant, implying that the collisional process can be parametrized by
a single quantity, the scattering length, related to the phase shift acquired by the
scattered wavefunction, and that the potential can be replaced by any other with the
same associated scattering length.

In order to explicitly clarify the problem, let us consider the Hamiltonian
describing two particles with mass m scattering through a spherically-symmetric
potential V (r) in the center of mass frame:

Ĥ =
p̂2
r

2µ
+

L̂2

2µr̂2 + V (r̂), (1.26)

where p̂r is the relative radial momentum, L̂ is the relative angular momentum and
µ = m/2 is the reduced mass. For two particles with relative motion energy of
Ek = ~2k2/2µ, in the limit of r � r0, the asymptotic wave function ψk(r) can be
written as the sum of on incident plane wave and an outgoing scattered wave [75]:

ψk(r) r→∞
∼ eik·r + f (k, k′)

eikr

r
, (1.27)

where f (k, k′) is called scattering amplitude, with k and k′ the incoming and the
scattered wavevectors respectively, and with |k| = |k′ | = k since the collision is
elastic. Due to the spherical symmetry of the problem, the scattering amplitude
only depends on the angle θ between the incoming and outgoing wave vectors, so
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1.2 Interactions at ultra-low temperatures

that f (k, k′) = f (k, θ). Moreover, choosing the quantization axis z along k, both
the incident and scattered functions can be expanded in spherical partial waves with
mz = 0. In particular, The scattering amplitude will be given by [77]:

f (k, θ) =
∞∑
l=0

(2l + 1)
(

e2iδl (k) − 1
2ik

)
Pl (cos θ) , (1.28)

where Pl (cos θ) are the Legendre polynomials and δl (k) is the phase shift related
to the l-th spherical wave. The total cross section σtot can be then obtained through
the optical theorem [77]:

σtot (k) =
4π
k

Im[ f (θ = 0)] =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl (k). (1.29)

In Eq. (1.26), the potential V (r) is summed to the centrifugal potential giving a
total potential Vtot (r) which in partial waves assumes the form:

Vtot (r) =
~2l (l + 1)

2µr2 + V (r). (1.30)

In the low energy regime the energy of the relative particle Ek is not enough to
overcome the centrifugal barrier and the potential V (r) do not have any effect
unless in case of l = 0 scattering, also called s-wave scattering, in which there is no
centrifugal barrier and the atoms can effectively "feel" the presence of the potential.
In particular it can be shown that [77]:

δl (k) ∼ k2l+1. (1.31)

In case of s-wave scattering, the scattering amplitude in Eq. (1.28) is approximated
by:

f (k) ' fs =
ei2δ0 (k) − 1

2ik
=

1
k cot δ0(k) − ik

, (1.32)

where fs in the s-wave scattering amplitude. Time reversal symmetry implies that
δ0(k) must be an even function of k and therefore can be expanded to the order k2,
for k � r−1

0 , as [78]:

k cot δ0 = −
1
as
+

reff k2

2
, (1.33)

where as is the s-wave scattering length which can be defined as:

as = − lim
k→0

tan δ0(k)
k

, (1.34)

and reff , called effective range, is of the order of r0 for Van der Waals potentials.
Then the total cross-section (1.29) can be approximated as:
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1 Ultracold atoms fundamentals

σtot ' 4πa2
s . (1.35)

All the results obtained are valid in case of scattering between two distinguishable
particles. Quantum statistics plays a role in this, owing to the necessity to impose
the symmetrization (antysimmetrization) of the bosonic (fermionic) wavefunction.
This can be obtained imposing that Ψ(r1, r2) = εΨ(r2, r1), with ε = +1(−1) for
bosons (fermions). The asymptotic scattering wavefunctions of Eq. (1.27) assumes
the form:

ψk(r) ∼
eikz + εe−ikz

√
2

+
f (k, θ) + ε f (k, π − θ)

√
2

eikr

r
. (1.36)

Due to the parity (1)l of the spherical harmonic functions in Eq. (1.28) of the scat-
tering amplitude, it follows that the bosonic (fermionic) particle statistics doubles
the contribution of the even (odd) partial waves, canceling out the odd (even):

σtot =
8π
k2

∞∑
l even

(2l + 1) sin2 δl (k) Bosons,

σtot =
8π
k2

∞∑
l odd

(2l + 1) sin2 δl (k) Fermions. (1.37)

A remarkable consequence of this fact, is that in the low energy regime (i.e. in most
cases, with ultracold gases), where only s-wave scattering processing may occur, a
sample of spin polarized, indistinguishable fermions would not interact because of
the Pauli principle. This means that a spin polarized Fermi gas can be treated as an
ideal, non-interacting gas in the very low temperature regime.

1.2.1 The pseudo-potential

As stated above, in diluted quantum degenerate gases at low temperatures the
short-range details of the interaction potential are completely irrelevant to the
scattering process, and it is possible to replace V (r) with any other potential
with the same scattering length. Here we introduce a very convenient interaction
pseudo-potential, which has a very simple form and has the advantage to allow for
a significant simplification of the calculations. This pseudo-potential is determined
with a technique successfully borrowed from electrostatics [79], and takes the
name of Huang’s pseudopotential. Usually, in order to calculate the electrostatic
potential generated by a charge distribution on a sphere, this is substituted by an
equivalent series of point-like multipoles in the center of the sphere leading to
the exact potential outside the sphere. Following the same approach, since short
range details of the real potential are not important it is possible to replace the
boundary conditions imposed by a hard-sphere potential with a series of point-like
scatterers giving rise to s-wave, p-wave and so on. It was demonstrated [80] that
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1.2 Interactions at ultra-low temperatures

in case of s-wave scattering, the pseudo-potential that reproduces exactly a hard
sphere-potential has the form:

U (r) = −
~2

m
4π

k cot(δ0)
∂r (r ·). (1.38)

Using Eq.(1.33) in the limit k � 1/reff , we obtain the pseudo-potential:

U (r) = g δ(r)
∂

∂r
(r ·), (1.39)

with g = 4π~2as/m. With this formulation of the interaction potential, a formula
for the total cross section for bosons (or for distinguishable spin-1/2 fermions) can
be easely derived [75]:

σtot (k) =
8πa2

s

1 + k2a2
s

, (1.40)

which leads to the asymptotic results:

σtot =



8πa2
s if kas � 1

8π/k2 if kas � 1.
(1.41)

The first is the same result already found in Eq. (1.35) for the total scattering cross-
section, with a multiplicative factor of 2 to take into account the statistics, while the
second expresses the fact that at high energy, or at high values of scattering length,
the cross section depends only on the collisional energy, entering the so-called
unitary regime.

1.2.2 Emergence of SU(N) symmetry

In this section we will extend the results obtained above to the case of spinful
fermions and will briefly review the emergence of SU(N) symmetry in fermionic
173Yb. SU(N) symmetry has important consequences on the properties of many
interacting fermionic many-body systems [34]. Moreover, the consequences of
SU(N) symmetry are remarkable in many fields of physics beyond many-body
physics with ultracold gases, e.g. in quantum chromodynamics, where the interac-
tion between quarks is mediated by SU(3) gauge bosons known as gluons [81, 82].
Since the physical implications of SU(N) symmetry are not the main focus of this
work, only a brief review on the origin and consequences of this symmetry will be
discussed below. A more detailed and rigorous discussion on the nature of SU(N)
symmetry, as well as an extensive list of references on its consequences in different
physical systems can be found in Ref. [83]. In the same reference, the theoretical
treatment of the SU(N) symmetry is extended also to the metastable 3P0 state (see
also section 5.1.1), and its emergence in a mixture of fermionic Ytterbium atoms
in different electronic and spin states is observed [84].
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1 Ultracold atoms fundamentals

In the previous sections, no assumption has been made regarding the particle
spin. Let us now consider the case of two interacting particles with total spin F1
and F2 colliding with relative orbital angular momentum L. In general, in presence
of an atomic spin degree of freedom, the quantum mechanical exchange interaction
causes the inter-atomic potential to depend strongly on the total spin of the colliding
atomic pair [85, 86]. At small inter-particle distances, due to the non-negligible
overlap of the electronic clouds, the individual Fi and mi are no more good quantum
numbers. In this case the total internal angular momentum Fpair = F1 + F1 of
the pair of colliding atoms has to be considered. Supposing that the "spinor-gas
collision" approximation [86] holds, we assume a rotationally invariant short-range
interaction potential which implies that the the total angular momentum of the
colliding pair, namely Fpair + L, is conserved during the collision. In case of
ultracold s-wave scattering processes, the relative orbital angular momentum is
zero, and the conserved quantity is the total internal angular momentum of the
pair Fpair 1, as well as its projection Mpair along the quantization axis. A final
constrain is given by the particles spin-statistics, which implies that for s-wave
scattering Fpair has to be even [86] in order to have the correct symmetry of the
total wavafunction, a results that surprisingly holds both for bosons and fermions.

The pseudo-potential of Eq. (1.39), which is valid for bosons and spin-1/2
fermions, can then be generalized to the case of spinor condensates or higher-spin
fermionic gases [87, 88]. The pseudo-potential for a pair of spin-F atoms will be
given by:

Û (r) =
4π~2

m

∑
Fpair even

aFpair P̂Fpair δ(r), (1.42)

where m is the atomic mass, and aFpair and P̂Fpair are the scattering length and
the projector associated to the a colliding pair with total angular momentum Fpair

respectively. Finally P̂Fpair is the projection operator on the state ���Fpair

〉
and is

given by:

P̂Fpair =

+Fpair∑
Mpair=−Fpair

���Fpair, Mpair

〉 〈
Fpair, Mpair

��� . (1.43)

Note that the summation in Eq. (1.42) runs over even values of Fpair , implying
that all the scattering processes between two atoms with individual total angular
momentum F can be described by (2F + 1) scattering lengths (for example, binary
collisions between 173Yb atoms with F1 = F2 = 5/2 will have three possible
scattering lengths a0, a2, a4). In order to understand the effect of collisions on the
spin degree of freedom of the individual atoms, we shall consider the the coupling
between different single-atom spin orientations induced by the interaction. Let us

1Here we are also assuming that the spin-orbit coupling can be neglected through the short-range
molecular potential so that Fpair and L are conserved individually during the collision
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1.2 Interactions at ultra-low temperatures

assume an initial state of the form |F1,m1; F2,m2〉. The coupling to a final state
|F3,m3; F4,m4〉 will be given by:

〈F3,m3; F4,m4 | Û (r) |F1,m1; F2,m2〉 =

=
4π~2

m
δ(r)

∑
Fpair

∑
Mpair

aFpair

〈
F3,m3; F4,m4 |Fpair, Mpair

〉
×

×
〈
Fpair, Mpair |F1,m1; F2,m2

〉
. (1.44)

From this equation, it is clear that in general after a collision between atoms with
definite spin, different spin states may become populated due to the interference
of the different scattering channels with total angular momentum Fpair . These
collisional processes which populate different spin states (in which a non-zero
electronic angular momentum J couples the different nuclear spin states of the
interacting atoms) are called spin-changing collisions and have been observed in
alkali atoms, as for example bosonic 87Rb [89, 90] and fermionic 40K [91, 92].

In case of fermionic Ytterbium instead, due to the absence of electronic angular
momentum in the ground state, the nuclear spin is the only angular momentum
degree of freedom of the atom, so the total angular momentum is simply F = J+ I =
I. In this situation, the nuclear spin is strongly decoupled from the electronic cloud:
the spin degree of freedom is protected inside the nucleus, and it is substantially not
affected by the physics happening at the electronic cloud distance scale. Since the
scattering length is mainly determined by the electronic clouds of the two colliding
atoms, the scattering lengths associated to collisional channels with different total
angular momenta F are to a high degree all the same, due to the strong decoupling
between nuclear and electronic degrees of freedom. For 173Yb ground state it has
been calculated theoretically [26] a relative variation between different scattering
lengths of the order of δas/as ∼ 10−9, where as = 199.4 a0 [93]. Taking into
account this equivalence between the different scattering lengths aFpair and using
the completeness relation

∑
Fpair

∑
Mpair

= 1, for fermionic Ytterbium atoms in
the ground state (and in the metastable state, see section 5.1.1), the matrix element
in Eq. (1.44) reduces to:

〈F3,m3; F4,m4 | Û (r) |F1,m1; F2,m2〉 =

=
4π~2

m
δ(r)aFpair 〈F3,m3; F4,m4 |F1,m1; F2,m2〉 , (1.45)

which is different from zero only if the final state coincides with the initial state.
Under such conditions, the interaction Hamiltonian will be invariant under all
transformations belonging to the SU(N = 2F + 1) group. This means that not
only Fpair and Mpair are conserved, but also the spin projection of each atom is
now individually conserved, so that mF becomes a good quantum number at any
inter-atomic distance. Formally, the SU(N) symmetry can be extended to the total
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1 Ultracold atoms fundamentals

Hamiltonian of the system, which is given, in the second-quantization formalism,
by:

Ĥ =
∑
m

∫
Ψ̂
†
m(r)

(
−
~2

2m
∇2 + Vext (r)

)
Ψ̂m(r)dr

+ g
∑
m<m′

∫
Ψ̂
†
m(r)Ψ̂†m′ (r)Ψ̂m′ (r)Ψ̂m(r)dr, (1.46)

where Ψ̂α(r) is the annihilation field operator of a particle with spin component α.
More specifically, Hamiltonian (1.46) is invariant under the transformations:

Ŝm
n =

∫
Ψ̂
†
n(r)Ψ̂m(r) dr, (1.47)

which replaces a particle of spin m with one of spin n. The most striking conse-
quence of SU(N) symmetry is that no spin-changing collisions occur, which implies
all the spin mixtures are stable. Therefore, by suitable optical pumping techniques
(see section 2.2.2), it is possible to experimentally initialize atomic samples with
an arbitrary number N of spin components, with 2 ≤ N ≤ 6, which are stable
on the experimental timescales, paving the way to the study of SU (N )-symmetric
Hamiltonians with arbitrary N .

1.3 Ytterbium

Ytterbium (Yb) is a rare-earth element, the fourteenth in the lanthanide series
with atomic number Z = 70. It is the last element in the f-block of the periodic
table, meaning the 4f-shell is complete with 14 electrons. The full electronic
configuration is thus [Xe] 4f14 6s2. Due to this complete f-shell, its electronic
structure is substantially determined by the two valence electrons in the shell 6s and
its properties are therefore very similar to alkaline-earth atoms of the second group
and quite different from other rare-earth elements like Erbium and Dysprosium.

Ytterbium was discovered in 1878, when the Swiss chemist Jean Charles Galis-
sard de Marignac, while examining samples of gadolinite, found a new component
in the earth then known as erbia, and he named it ytterbia [94]. Nevertheless, due
to the difficulties in the separation process of Ytterbium, its physical and chemical
properties of Ytterbium could not be determined with any precision until 1953,
when the first almost pure sample of Ytterbium metal was obtained. Ytterbium is
soft, malleable and ductile, and has a bright, silvery appearance in its pure form.
Ytterbium metal slowly tarnishes reacting with moisture, and it quickly oxidizes
when dispersed in air and under oxygen. Ytterbium has a density of 6.90 g/cm3

near room temperature, lower than the typical 9 − 10g/cm3 of its neighbors in the
periodic table, due to a different crystalline structure. Also, Ytterbium has amelting
point of 824 °C and a boiling point of 1196 °C, significantly lower than those of
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1.3 Ytterbium

Isotope Mass (a.m.u.) Relative abundance (%) Nuclear Spin
168Yb 167.933894 0.13 0
170Yb 169.934759 3.05 0
171Yb 170.936323 14.3 1/2
172Yb 171.936378 21.9 0
173Yb 172.938208 16.12 5/2
174Yb 173.938859 31.8 0
176Yb 175.942564 12.7 0

Table 1.1: Summary of the properties of the seven stable isotopes of Ytterbium. Natural
abundances are taken from [99], while the atomic mass is taken from [100].

other rare-earth elements. This is quite an advantage, because the vapor pressure
necessary to obtain an acceptable atomic flux from the over (see section 2.1.1) is
reached at a temperature of the order of 400 − 500 °C, achievable by means of
relatively uncomplicated oven setups and well below the temperatures needed for
other rare-earth elements (i.e. ∼ 1150 °C for Holmium [95] and around 1300 °C
for Erbium[96] and Dysprosium[97]). In this temperature range, Ytterbium be-
comes highly reactive leading to rapid chemical deterioration of silica glass [98].
Ytterbium is also known to chemically bond to silica glass and (more weakly) to
sapphire already at room temperature, so particular care has to be taken with vac-
uum viewports, which should not be exposed to the atomic vapor or to a direct flux
without being heated.

Natural Ytterbium has seven stable isotopes: 168Yb, 170Yb, 171Yb, 172Yb,
173Yb,174Yb and 176Yb [99]. In table 1.1 the relative abundances and some funda-
mental properties of the different isotopes are reported. In Ytterbiummany isotopes
are present in relatively high natural abundance, differently from many alkali and
alkaline-earth(-like) atoms. The two isotopes with non-zero nuclear spin, 171Yb
(with nuclear spin I = 1/2) and 173Yb (I = 5/2), are fermionic, while all other
isotopes, including 174Yb which is the most abundant, are bosonic and have zero
nuclear spin (I = 0). The results presented in this work are obtained using a
fermionic isotope, the 173Yb, characterized by a large nuclear spin I = 5/2, strong
repulsive interactions in the ground state and by the possibility to directly excite the
lower triplet state, the 3P0.

1.3.1 Electronic states and transitions

Owing to its electronic configuration, which presents a full 4f shell and two electrons
in the 6s, the electronic properties of Ytterbium are similar to those of Helium and
alkali-earth atoms, like Strontium. Ytterbium level structure can be well described
by the LS-coupling (Russel-Saunders coupling). The two valence electrons can
couple in a spin singlet, in which the two electron spins are antiparallel, or a spin
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triplet, in which the spins are instead parallel. These two possible arrangements
divide the energy ladder in two different manifolds, which are completely separated
in the LS-coupling scheme, as a dipole transition between a singlet (S = 0) and a
triplet (S = 1) state would violate the spin selection rule ∆S = 0.

Ytterbium ground state is the 1S0. The total electronicmomentum J = 0 implies
that this state is completely insensitive to magnetic fields in bosonic isotopes, which
have nuclear spin I = 0. In fermionic isotopes, which have nuclear spin different
from zero, the ground state feels instead the presence of magnetic fields, but its
sensitivity is ∼ 3 orders of magnitude lower than in states with J , 0. Indeed, the
total angular momentum F is simply the nuclear spin I and no hyperfine structure
is present. In presence of magnetic field, the ground state of fermionic isotopes
simply splits in a Zeeman manifold whose energy levels for a given magnetic field
B are given by:

∆EZ (B) = gFmF µBB, (1.48)

where µB is the Bohr magneton and mF is the projection of the nuclear spin along
the magnetic field direction in units of ~. The term gF is the Landé factor, and is
given by:

gF = gJ
F (F + 1) − I (I + 1) + J (J + 1)

2F (F + 1)
+ gI

F (F + 1) + I (I + 1) + J (J + 1)
2F (F + 1)

.

(1.49)
If J = 0 the first term vanishes and it simply reduces to the nuclear g-factor:

gF = gI =
µI
µB |I |

, (1.50)

where µI is the nuclear magnetic moment in units of the nuclear magneton µN . In
particular the nuclear moment is +0.4919µN and −0.6776µN for 171Yb and 173Yb
respectively [100]. Being the nuclear magneton ∼ 2000 times lower than µB, hence
the reduced sensitivity of fermionic Yb ground state to magnetic fields.

The ground state is connected to the 1P1 state via a dipole allowed transition
(see Fig. 1.4) of wavelength λ = 398.8 nm and natural linewidth Γ = 2π × 27.9
MHz, corresponding to a lifetime of 5.7 ns and a saturation intensity of 57 mW/cm2

[101]. In bosonic isotopes, only a single transition F = 0 → F ′ = 1 is present,
while in fermionic isotopes due to the non-zero nuclear magnetic moment, the
hyperfine interaction generates additional structure in the 1P1 state. The resulting
hyperfine energy shifts are of the order of the GHz and are comparable to the isotope
shifts of the blue transition, and the spectrum shows a succession of resonances
from different isotopes. A complete characterization of the spectrum is given in
Ref. [102]. This transition is exploited in the Zeeman slower (see section 2.2.1) and
for the imaging of the atomic cloud.

Since the LS description is an approximation of the real atom, especially for
atomswith high atomic number asYtterbium, singlet and triplet states are connected
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Figure 1.4: Scheme of the main optical transitions of Ytterbium atoms used in this work.

by narrow optical transition, which are called intercombination transitions. These
transitions are allowed due to the presence of the spin-orbit interaction, which for
instance partially mixes the 1P1 and the 3P1 states allowing for a direct excitation
of the 3P1. The green 1S0 →

3P1 transition wavelength is 555.6 nm, with a natural
linewidth of Γ = 2π × 181 kHz [101]. Also in this case, in fermionic isotopes the
3P1 state has a hyperfine structure with a separation energy between the levels of
the order of the GHz, comparable to the isotope shifts. A detailed characterization
of this transition for all isotopes was reported in Ref. [103]. Due to its narrow
character, this intercombination transition is fundamental for both the magneto-
optical trap cooling stage and for the manipulation of the atomic sample, as showed
in section 2.2.2. Indeed, due to its non-zero angular momentum J, the coupling
of the 3P1 manifold to an external magnetic field is as large as in the alkali atoms
(gF′ = 0.425 for the 3P1 (F ′ = 7/2) state) and the magnetic field sensitivity is
gF′µB = 2π × 595 kHz/G that is of the order of 3Γ/G. This implies that already
with a modest magnetic field of tens of Gauss the Zeeman splitting is enough to
allow for the selective addressing of optical transitions of a specific nuclear spin
component without affecting the others.

Ytterbium is also characterized by an extremely narrow optical transition that
connects the ground state to the lowest triplet state, the 3P0. This transition, which
has a wavelength of 578.4 nm corresponding to a yellow color, is a doubly forbidden
transition, as it violates not only the electric dipole selection rule ∆S = 0, but is
also a J = 0→ J ′ = 0 transition. Nevertheless, in fermionic isotopes a very small
dipole matrix element arises from the hyperfine interaction that mixes the 3P0 state
with the 3P1, resulting in a natural linewidth of the order of 10 mHz. In bosons it
can instead be induced by quenching of the 3P0 state with the 3P1 by a magnetic
field (see section 4.1). In order to exploit such a narrow linewidth for precision
measurements, an extremely pure laser source is necessary, which is described in
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Isotope 168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 252.0 117.0 89.2 65.0 38.6 2.5 359.2
170Yb 63.9 36.5 -2.1 -81.3 -518.0 -209.5
171Yb -2.8 -84.3 -578 -429 141.6
172Yb -599 418 200.6 106.2
173Yb 199.4 138.8 79.8
174Yb 104.9 54.4
176Yb -24.2

Table 1.2: Summary of the s-wave scattering lengths between ground state Ytterbium atoms
in units of a0 [93].

details in Chapter 3. This transition is a fundamental element in the experiments
reported in this work. For this reason, its properties will be described in details
in Chapter 4, where a measurement of the absolute frequency of the 1S0 →

3P0
transition in 173Yb, which improves the known value by two orders of magnitude,
is also reported.

1.3.2 Collisional properties

Ytterbium isotopes are characterized by a wide range of interaction strengths in
the ground state. A complete characterization of the scattering properties between
ground state atoms in the s-wave regime has been carried out in Ref. [93] by means
of two-colour photoassociation spectroscopy on the 1S0 →

3P1 transition. The
measured s-wave scattering lengths, which are independent on the nuclear spin,
as already mentioned in sec. 1.2.2, are summarized in Table 1.2, and they can be
seen to vary from large negative to large positive values with a wide choice of
intermediate conditions. For this reason, as well as for the non-negligible presence
of both fermionic and bosonic isotopes, Ytterbium is an ideal candidate both for
the production of mono-isotopic quantum gases and for the study of Bose-Bose,
Bose-Fermi and Fermi-Fermi mixtures [104–107].

More recently, also the collisional properties between the 1S0 and 3P0 states
in fermionic isotopes have been studied [41, 84, 108, 109]. The knowledge of
these scattering properties is important due to the strong interest in exploiting the
metastable 3P0 state as tool in quantum simulation, as well as for the determination
and characterization of collisional shifts in optical lattice clock [110]. In particular,
in Chapter 5 an estimation of the scattering length relative to the spin-antisymmetric
��eg+

〉
state is determined from the frequency of spin-exchange oscillations driven by

the inter-orbital spin-exchange interaction [41]. This scattering length is remarkably
large if compared to that of the spin-symmetric state ��eg−

〉
, which we also estimate

to be in agreement with the value given in Ref. [84], giving rise to a strong
spin-exchange interaction.
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Chapter 2

Experimental setup and
procedure

This chapter briefly illustrates the main features of the experimental apparatus and
of the procedures adopted to trap, cool down an manipulate atomic Ytterbium.
After a description of the main components of the vacuum and laser setups, we will
describe the steps of the experimental procedure which produces degenerate atomic
gases of Ytterbium. To conclude wewill review the basic concepts of the techniques
employed to realize ultracold samples of fermions with arbitrary number of spin
components and to perform spin selective imaging. These subjects are described
in detail in Ref. [111].

2.1 Experimental setup

2.1.1 Vacuum system

The vacuum apparatus is shown in Fig. 2.1. The atomic source of the experiment
is an oven (1) containing 7 g of 99.9% pure Ytterbium chunks in natural isotopes
composition. The oven operates at a temperature of 525 °C, corresponding to a
vapor pressure of 10−2 Torr and to a most probable atomic velocity of ∼ 340 m/s
[7]. A square array of ∼ 100 small tubes (with 1 cm length and 0.2 mm internal
diameter) located at the exit of the oven allows for a collimation of the atomic beam
and the implementation of a first differential pumping state, which is permed by a
20 l/s Varian Starcell ion pump (3) placed after the oven. The oven is connected to
the rest of the setup by two small tubes (6) with lengths 8 and 10 cm, respectively,
and with internal diameter 5 mm, which define two other differential pumping
stage performed with a second 20 l/s ion pump (3) and a 55 l/s Varian Starcell
ion pump (14). Between the two tubes is located a pneumatic shutter (4) which is
used to block the atomic beam when the MOT is not loading in order to reduce the
Ytterbium coating of the sapphire Zeeman slower beam input window (17).

An all-metal VAT-48124 UHV gate valve (7) connects this first section to the
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Figure 2.1: 1) Oven. 2) UHV valve. 3) Ion pumps for differential pumping (20 l/s each). 4)
Compressed air shutter for atomic beam. 5) UHV valve. 6) Differential pumping tubes (not
shown). 7) VAT UHV gate-valve. 8) Zeeman Slower. 9) MOT chamber. 10) Compensation
coil. 11) Glass cell. 12) MOT coils. 13) Titanium sublimation pump (TSP). 14) Ion pump
for MOT chamber (55 l/s). 15) UHV Gauge, mod. Bayard-Alpert, Varian UHV-24p. 16)
UHV Valve. 17) Sapphire window with bellow. 18) Slowing beam at 399 nm.

UHV part of the apparatus, where the experiment takes place. The Zeeman Slower
(8) slows down the atoms from thermal velocity to a few tens of m/s (see section
2.2.1) in order to be captured in a magneto-optical trap (MOT, see section 2.2.1).
A compensation coil (10) is used to balance out the residual magnetic field of the
Zeeman slower in the MOT chamber. The MOT is implemented with two water
cooled anti-Helmholtz coils (12) (for details see Ref. [112]) mounted on a AISI
L316 stainless steel octagonal chamber (9). On the horizontal plane, the chamber
features seven CF40 flanges. One is used to connect the MOT chamber to the
Zeeman slower and the four flanges at 45◦ degrees with respect to the atomic beam
axis are used for the horizontal MOT beams. The two flanges orthogonal to the
atomic beam axis are used as input window for the optical transport beam and as
connector to the glass cell (11), respectively. All glass windows have broadband
AR coating from 400 to 1100 nm. The MOT chamber also has two CF100 flanges
on the vertical direction, both with a CF40 window in the center. The upper CF100
flange has two metallic mirror holders which are used to implement an in-vacuum
optical cavity (see section 2.1.1) along the axis of two of the four CF16 windows
in the horizontal plane of the MOT chamber (see Fig. 2.5). On the eighth side
of the horizontal plane, opposite to the Zeeman slower and along the atomic beam
axis, a CF63 flange connects the MOT chamber to a cross with a 55 l/s Varian
Starcell ion pump (14), which helps to keep a pressure of the order of 10−11 Torr
in the UHV part of the experiment. On top of the cross, we mounted a titanium
sublimation pump (TSP) (13) for an optimal maintenance of the UHV environment.
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The pressure is measured with a Ion Gauge UHV-24P Bayard-Alpert by Varian (15)
mounted at the bottom of the cross. Finally, the cross is connected through a bellow
to the sapphire input window (17) of the Zeeman slower beam (18), which is heated
to 250 °C to avoid atoms coming from the atomic beam to stick on it.

In-vacuum resonator

This experimental apparatus is characterized by the presence of an in-vacuum
optical cavity in the MOT chamber [113] to enhance the collection of atoms from
the MOT and pre-cool them before their optical transport in the glass cell (see next
section). The Fabry-Perot cavity is made up of two metallic mountings fixed to the
CF100 upper flange of the MOT, which hold two spherical mirrors with a radius
of curvature rc = 2 m, diameter d = 6.35 mm and thickness 2.3 mm. The mirror
reflectivity is R = 99.98%, which results in a theoretical finesse of F ' 1600. The
cavity length is L = 9 cm, leading to a free spectral range (FSR) of 1.67 GHz.
The cavity has been pre-aligned before evacuating the setup: the vertical degree
of freedom was adjusted using the screws present on the mirror holders while the
horizontal tilt was adjusted before tightening the holders to the flange. The cavity
geometry has been designed to achieve the largest possible beam dimension in order
to match the MOT size, compatibly with the trap depth which needs to be higher
than the MOT temperature. With these constraints, the beam waist has been chosen
as w0 = 300 µm. The measured finesse is F ' 1850, which results in a power
enhancement factor of the approximately 4F /π ∼ 2350 (neglecting the losses).
These parameters correspond to a trap depth of V0/kB ' 800 µK ' 8 TMOT with
an incident power of only 1.8 W.

Glass science cell

The UHV chamber also features a high optical access glass cell, in which the atoms
are transported from MOT chamber. In cold atoms experiments, it is becoming
more andmore common to perform theMOT in a separated vacuum chamber where
the atoms are captured and pre-cooled and then optically or magnetically transport
them in a separated science cell [114, 115]. This choice presents several advantages,
first of all a very high optical access, not achievable in a metallic chamber, which
is necessary to optical manipulation and high-resolution addressing of the quantum
degenerate sample. Moreover, experiments performed in the glass cell are not
influenced by the presence of residual magnetization of the metallic parts of the
vacuum apparatus, as well as of Kovar glass-to-metal seal.

Our glass cell is manufactured by Hellma Analytics. The cell has external
dimensions 60mm × 60mm × 18mm (see Fig. 2.2). The glass faces are 5 mm
thick, hence the internal dimensions are (50mm × 50mm × mm) mm. The cell
has a reduced thickness in the vertical direction (9 mm between the center and the
outer face) in order to allow for the possibility to implement single-atom resolution
imaging using a high-NA (numerical aperture) objective with a small working
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Figure 2.2: 3D model of the glass cell sealed to a CF40 flange.

distance. The glass cell is connected to the MOT chamber through a glass-metal
junction and a CF40 flange. The geometric centers of the glass cell and of the MOT
chamber are separated by 26 cm along which the atoms are optically transported
(see section 2.2.1).

2.1.2 Laser setup

Here we briefly describe the laser systems used for the production and manipulation
of degenerate Yb gases. Ytterbium lowest atomic transitions lay in the visible range
(399 nm, 556 nm and 578 nm, see section 1.3.1). Since at the time of construction of
the apparatus high-power sources with narrow linewidth were not available at these
wavelengths, we adopted a scheme based on cavity-enhanced second harmonic
generation (SHG) which produces visible light starting from the radiation emitted
by commercial infrared lasers. Far-off-resonance lasers at 1064 nm and 759 nm
are also used to produce dipole traps and optical lattices, which are necessary to
reach the quantum degeneracy and perform experiments. Additional details on the
399 nm and 556 nm laser systems, as well as for the 1064 nm and 759 nm systems,
can be found in [111, 112, 116, 117]. A separate section (3.1) is instead dedicated
to a detailed description of the 578 nm ultranarrow laser system, which is one of
the main topic of this work.

399 nm and 556 nm laser systems

Laser radiation at 399 nm is generated starting from a fiber-coupled tapered-
amplifier laser-diode system Toptica TA PRO laser delivering 1.1 W at 798 nm.
This radiation is then frequency doubled with a 15 mm long Lithium-Triborate
(LBO) non-linear crystal, cut for type-I phase matching and stabilized at a tempera-
ture of 55 °C. In order to increase the conversion efficiency of the SHG process and
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Figure 2.3: Scheme of the laser systems at 399 nm and 556 nm. The visible light is
generated by means of cavity-enhanced SHG starting from the radiation of two infrared
laser respectively at 798 nm and 1112 nm. For both lasers, part of the light is used to
perform spectroscopy on a atomic beam generated in an oven. The removable mirror RM
enables the switch of the 556 nm laser between bosons and fermions (see text and Ref. [111]
for details). The rest of the light of two laser is divided in different paths with multiple
purposes.

enhance the 399 nm output power, the LBO crystal is placed in a bow-tie optical
cavity. The cavity, formed by two plane mirrors and two concave mirrors, is based
on the same design of the 578 nm laser doubling cavity, which is discussed in detail
in section 3.1.2, with the exception of the optical components (crystal and mirrors).
It has a FSR of 749 MHz and the finesse is F ∼ 100. Similarly to the 578 nm
laser case, in order to deliver a stable laser output the cavity resonant frequency
can be locked to the TA PRO laser frequency with a piezo (PZT) by means of
Hänsch-Couillaud locking technique [118]. The cavity is located in an aluminum
box under low vacuum in order to increase thermal and acoustic insulation and
achieve a better lock stability. This results in a stable output of 550 mW of 399 nm
radiation out of 1 W of 798 nm pumping light. After the doubling cavity, a fraction
of the laser radiation at 399 nm is withdrawn (see Fig. 2.3) to perform spectroscopy
on an Yb atomic sample in order to lock the laser frequency on the 1S0 →

1P1
transition (see sec. 1.3.1). The rest of the light is used to slow down atoms in the
Zeeman Slower (section 2.2.1) and to perform absorption imaging (section 2.2.2).

The same technique described above is used for the generation of 556 nm
light. The infrared source is a fiber laser at 1112 nm (Menlo Systems Orange One)
whose radiation is frequency doubled by a 10 mm long Lithium Tantalate (LiTaO3)
periodically-poled (9.12 µm poling period) non-linear crystal placed inside a bow-
tie cavity. The cavity free spectral range is FSR = 567 MHz and the measured
finesse is F = 67. When locked using Haensch-Couillaud technique, the cavity
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outputs 1.050 W of 556 nm light with 2 W of 1112 nm pumping light. Also in this
case, a fraction of the visible light is power-stabilized and used for atomic spec-
troscopy (see Fig. 2.3) in order to lock the laser to the 1S0 →

3P1 intercombination
transition. The rest of the 556 nm light is used for the MOT (section 2.2.1), for
the OSG (see section 2.2.2) and optical pumping beams (section 2.2.2) and for the
Raman beams (see section 7.2).

The 399 nm and 556 nm laser frequencies are respectively locked on the
1S0 →

1P1 and 3S0 →
3P1 atomic transitions with standard fluorescence spec-

troscopy techniques and electronic feedback on the lasers piezos. Transverse spec-
troscopy is performed on an atomic beam generated in an additional oven with the
same characteristics as the one in the main setup. No Doppler-free saturation spec-
troscopy is needed for the 1S0 →

1P1 transition, due to its large natural linewidth
of 2π × 28 MHz. On the other hand, the 3S0 →

3P1 intercombination transition
has a natural linewidth Γ = 2π × 182 kHz hence, it is necessary to perform a
Doppler-free saturation spectroscopy. With this technique, the best signal-to-noise
ratio (SNR) is obtained for 174Yb, which is the most abundant isotope and has no
hyperfine structure, due to the zero nuclear spin. For experiments using bosonic
174Yb, the 556 nm light is shifted by 83 MHz with an Acousto-Optic Modulator
(AOM) in double passage configuration, so that the laser frequency is detuned by
−166 MHz from the 174Yb resonance. It is convenient to lock on this transition
also for fermionic 173Yb, which on the contrary has a worse SNR, due to the lower
isotopic abundance and to the hyperfine structure which splits the error signal in six
dispersive features. To achieve this, the laser frequency on the spectroscopy path
is shifted by a double-passage AOM at 351 MHz, then it is further shifted with a
resonant Electro-Optic Modulator (EOM) which adds a blue sideband at 1.85 GHz
to the carrier. The total shift is exactly the isotopic shift ∆174−173 = 2386 MHz, and
in this way the laser can be locked to the 174Yb transition while being still detuned
by −166 MHz from the 173Yb transition. This approach has the advantage that the
laser configuration is the same both for bosons and fermions, with the exception
of the spectroscopy part, which can be switched in a few minutes with a remov-
able mirror on a magnetic mount and turning on or off the EOM (see Fig. 2.3).
Additional details on this locking scheme can be found in Ref. [111].

1064 nm laser system

Laser radiation at 1064 nm is used to trap the atoms in the in-vacuum resonator
(section 2.1.1) and to perform optical transport from the MOT chamber to the
glass cell (section 2.2.1). The employed laser is a Nd:Yag Mephisto MOPA 25
(Innolight/Coherent) characterized by a maximum output power of 25 W and a
linewidth below 100 kHz. The 1064 nm laser setup in showed in Fig.2.4). After an
optical isolator, the beam is split in two paths, one for the resonator and one for the
optical transport, which are delivered to the experimental setup with high-power
photonic crystal fibers. In order not to damage the fibers due to high power involved,
the AOMs used to ramp the beams intensity are driven using a dual-frequency driver
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Figure 2.4: Scheme of the 1064 nm laser setup. The light is divided in two branches
delivered to the experimental table through optical fibers to perform optical transport as
well as to feed into the in-vacuum resonator. The resonator light power is stabilized after
the optical fibers and also the reflected light is stabilized with a dedicated AOM in order
not to burn the PDH photodiode during the evaporation ramps. The laser is locked to the
resonator with two PI controllers which act on the laser piezo and temperature.

[119], which prevents thermal-induced misalignment of the diffracted beams. In
order to lock the laser frequency to the in-vacuum resonator, a 37 MHz resonant
EOM is used to generate a Pound-Drever-Hall (PDH) [120] error signal, which
is processed by two PI (proportional-integral) controllers. One of them acts on
the laser piezo and is responsible for the fast corrections over a bandwidth of
approximately ≤ 10 kHz, while the seconds acts on the laser seed temperature,
which allows for large range (3 GHz/◦C) slow (1 Hz bandwidth) corrections. Since
the piezo PI has a limited DC gain, only the temperature is used to compensate for
the laser slow drifts. Moreover, since the resonator power is ramped during the
experimental cycle to perform evaporative cooling (see section 2.2.1), we actively
stabilize the power impinging on the PDH photodiode with an additional AOM,
which allows us to have the same error signal amplitude over a wide range of
resonator powers (from 100 µW to 2 W). Additional details on the locking scheme
can be found in [111].

759 nm laser system

The optical lattice light is generated using a standard commercial setup consisting
in a Coherent Verdi V18 laser emitting in single mode at 532 nm which acts as a
pump for a Titanium-Sapphire laser (Coherent MBR 110). The MBR is tuned to
lase at 759 nm, the so-called "magic wavelength" that induces the same light shift
on both the 1S0 and the 3P0 states. At this wavelength, the lattice light does not
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influence the frequency of the 1S0 →
3P1 transition, as will be discussed further in

section 4.1.2. The laser setup routinely outputs 3.5Wof 759 nm light, which is split
in three different optical paths, each featuring a dual-frequency AOM and an optical
fiber that deliver the light to the experimental table where the optical lattices along
three orthogonal directions are implemented. The three AOMs are driven with
three different frequencies, separated by tens of MHz to avoid cross-interference
terms. Finally, a small fraction of the laser light is coupled into a Fabry-Perot cavity
to monitor single-mode emission of the MBR.

2.2 Overview of experimental procedure

In this sectionwe review the fundamentals of the experimental procedures employed
to obtain quantum degenerate gases of both bosonic and fermionic Ytterbium and to
manipulate the atomic samples. Additional details on the experimental procedure
can be found in Ref. [111].

2.2.1 Cooling to the degenerate state

Zeeman slower

The Zeeman Slower (ZS) represents the first stage of the experimental cycle, which
is responsible for the slowing of the atomic beam coming out of the oven. It should
be noted, however, that the Zeeman slower is not the only suitable choice as first
slowing state, as alternative techniques has been successfully employed [121]. The
Zeeman slower uses the radiation pressure exerted on the atomic beam by a counter-
propagating laser beam in resonance with the 1S0 →

1P1 transition at 399 nm in
order to reduce the velocity of the atomic beam and allow for the capture of atoms in
the magneto-optical trap. A series of coils generates an inhomogeneous magnetic
field BZS (z) which induces a Zeeman shift which compensates for the decreasing
atomic velocity during their travel through the Zeeman slower. In this way, the
atoms are always resonant with the counter-propagating laser beam along the entire
path from the oven to the MOT chamber and the effective detuning from resonance
is null in every point in space [122]. The 399 nm light is particularly suited for this
purpose due to its large natural linewidth Γ = 2π × 28 MHz, which implies a larger
maximum atomic deceleration amax = ~kLΓ/2m (see Eq. (1.5)). In particular for
173Yb we use σ−-polarized light red-detuned by 983 MHz from the optically closed
F = 5/2 → F ′ = 7/2 transition, realizing a slowing scheme in which the light is
resonant with the atoms coming out of the oven at ∼ 330 m/s where there magnetic
field is null [123]. With this design, the magnetic field BZS (z) is maximum at the
end of the Zeeman slower, so a compensation coil is used to cancel out the residual
magnetic field in the MOT region.
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2.2 Overview of experimental procedure

Magneto-optical trap

After the Zeeman slower, the atoms are loaded in a magneto-optical trap which
traps and cools down the atoms using 556 nm light resonant with the 1S0 →

3P1
intercombination transition (also in this case, the optically closed hyperfine F =
5/2 → F ′ = 7/2 transition is chosen for 173Yb). Due to its narrow linewidth
(Γ = 2π × 182 kHz), using this transition allows for a much lower Doppler
temperature (kBTD = ~Γ/2) at the expense of a reduced capture velocity1 around
10 m/s for our parameters, namely a beam waist w0 ' 1.3 cm, a magnetic field
gradient b ∼ 1.6 Gauss/cm and a saturation parameter of I/Is = 80 for each of
the six beams (Ptot = 180 mW). Since the atomic velocity after the ZS is about
20 m/s [112, 125], in order to increase its capture velocity and the MOT loading
efficiency, the MOT beams are frequency modulated, adding Nsb = 18 equally-
spaced sidebands [126], red-detuned with respect to the atomic transition, which
result in a broadened effective linewidth of the transition. With this method, we can
routinely trap Nat = 7 × 107 173Yb atoms and Nat = 1 × 109 174Yb atoms. After a
20 sMOT loading time the sidebands are switched off and the single frequency light
is adjusted to minimize the temperature of the cloud. With the optimal parameters
we achieveT ' 25 µK for the fermionic 173Yb andT ' 80 µK for the bosonic 174Yb
isotope. These temperatures are significantly higher than the Doppler temperature
(TD = 4.3 µK) since the MOT density is large enough to let collisional heating
mechanisms [127, 128] prevent the Doppler limit to be reached. In any case these
temperatures are low enough to yield an efficient transfer inside the resonator optical
dipole trap (see section 2.2.1). For further details on the multi-frequency setup and
the MOT optimization, we refer to Ref. [112].

Resonator loading and evaporation

As explained in section 2.1.1, the laser at 1064 nm is locked in resonance with
the in-vacuum optical cavity (from now on referred to as "resonator") forming
a 1D optical lattice. In order to efficiently load the atoms into the lattice, after
an adiabatic switch-off of the ZS beam, the in-cavity power is ramped up using an
exponential ramp from idle level (Pidle = 100 µW) to an input power of Pin = 1.8W,
which corresponds to a trap depth V0/kB ' 800 µK, much higher than the MOT
temperature (∼ 25 µK for 173Yb, see previous section). In addition, the MOT is
compressed raising the magnetic gradient from bi = 1.6 to bf = 4.4 G/cm and the
center of mass of the atomic cloud is shifted with the aid of three compensation
coils in order to match the beam waist position and dimension. In this way, roughly

1 The capture velocity is the maximum velocity class that is possible to trap using a MOT and it
is defined as [124]:

vc = *
,

~2k2
L

m gF′MF′ µBb
+
-

Γ

2
I/Is

1 + I/Is
,

where b is theMOTmagnetic gradient, kL is the laser beamwavevector and Is the saturation intensity.
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Figure 2.5: Representation of the optical transport procedure. The transport beam is
focused in the MOT chamber with a lens with focal length f = 1000 mm. The lens is
mounted in an air-bearing translation stage, so that its focal point can be moved of 26 cm in
order to transport the atoms in the glass cell, where the evaporative cooling process takes
place.

80% of the atoms are transferred from the fermionic MOT to the resonator trap in
300 ms.

After the loading stage, the MOT beams and magnetic fields are switched off
and the atoms undergo evaporative cooling in the resonator, by lowering the trap
optical depth to Pin ∼ 250 mW using two consecutive exponential ramps. After
this pre-cooling stage, we obtain a spin-unpolarized sample of Nat ∼ 1×107 atoms
at approximately T ' 5 µK.

Optical transport and crossed dipole trap

In order to transport the atoms in the high optical access glass cell, we initially load
the atoms in an Optical dipole Trap (ODT) formed by a tightly-focused transport
beam at 1064 nm. The transport beam power is increased using a 200 ms-long
exponential ramp and right afterwards, the resonator power is ramped down to the
idle level (i.e. the minimum level), high enough to keep the 1064 nm laser locked to
resonator but too low to hold the atoms, which are then transferred to the transport
beam ODT. The transport beam is tightly-focused on a waist w0 = 30 µm and
has an initial power of 3.4 W, which correspond to a trap depth V0/kB ' 90 µK.
Approximately 30% of the atoms are loaded from the resonator to the transport
trap. The 30 µm beam waist is obtained by focusing a collimated beam with a
waist of ∼ 1 cm using a lens with focal length f = 1 m mounted on an air-bearing,
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2.2 Overview of experimental procedure

magnetically-driven translation stage Aerotech ABL 1500b (see Fig. 2.5) which
moves the beam focus and performs optical transport [114, 115]. In this way,
the atoms are transferred to center of the science cell along the 26 cm long path
that separates it from the MOT cell center in 2.5 s. This time is much longer
then the timescale of the longitudinal trapping frequency of the transport ODT
(ωz ' 2π × 5 Hz) in order to avoid heating during the transport process. With an
optimization of the transport parameters [129], we obtained a transport efficiency
of 66% with a final temperature only 30% higher than the initial one.

Once the atoms have been transported in the glass cell, an additional beam of
w0 = 60 µm and P = 3 W is focused onto the atoms. This beam is generated by an
IPG Fibertech multimode laser at 1070 nm and is orthogonal to the transport beam
in order to create a crossed dipole trap configuration (see Fig. 2.5), where the final
evaporative cooling is performed.

173Yb degenerate Fermi gas

In order to achieve Fermi degeneracy of the atomic cloud trapped in the crossed
ODT, the atoms undergo an final evaporative cooling stage. In this final cooling
stage, due to the fermionic character of the atoms, it is necessary to employ more
the one spin component, otherwise evaporating cooling would not be effective at
low temperature, since the s-wave scattering is inhibited by Pauli principle (see
section 1.2). The evaporation process is composed by two different exponential
ramps, the second of which is less efficient since the more the gas enters the
degenerate regime, the more the thermalization process is inefficient, due to the
Pauli suppression of collisional rate. At the end of the evaporation we routinely
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Figure 2.6: a. False-color time of flight image of the expanding Fermi gas. b. The points
are the integrated column density along the horizontal direction, while the red dashed and
blue solid lines represent respectively the result of a fitting procedure with a Gaussian and
with a Fermi gas Polylogarithmic distribution. At T/TF = 0.15 the deviation from the
Gaussian profile is clearly visible.
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obtain six-spin-components Fermi gases with N ' 1.4×105 atoms at a temperature
T ' 0.15TF where the Fermi temperatureTF is of the order of 200 nK. The trapping
angular frequencies of the final crossedODTare ~ω = 2π×(54, 100, 90) Hz, resulting
in a geometric mean trapping frequency ωgeom ' 2π × 79 Hz.

Optical lattices

The optical lattices (OL) setup consists of three, linearly polarized retroreflected
beams, one along the vertical direction and two orthogonal beams in the horizontal
plane, one of which forms an angle of 35 °with respect to the transport axis. The
power of all three lattice beams is actively stabilized by feedback loops that act on the
AOMs before the fibers (see section 2.1.2). The lattice depth s = V0/ER, in unit of
recoil energy (see section 1.1.2), can be calibrated using two independent methods
with 174Yb BEC: the Raman-Nath diffraction [130] and the amplitude modulation
of the lattice beams (AM) [131]. This allows us to determine the beam waists and
the radial trapping frequencies of the OL beams, comparing the measured lattice
depths with the theoretical values. The results of this calibration are reported
in Table 2.1. During the experiments, the atoms are adiabatically loaded from
the crossed-ODT to the optical lattice increase the lattice beam intensity with an
exponential ramp. With the waists reported in Table 2.1, the optical lattices in the
horizontal plane cannot hold the atoms against gravity and the crossed-ODT and/or
the vertical lattice are needed.

OL1 OL2 OL3

waist (µm) 96.1 111.3 102.3
ωz (s) [2π×Hz] 7.1

√
s 6.2

√
s 6.8

√
s

Table 2.1: Waist and radial trap frequencies of the three optical lattice beams.

2.2.2 Detection and manupulation of the degenerate Fermi gas

Imaging

The imaging of the atomic cloud is performed with standard absorption imaging
[132]. This technique consists in the detection with a CCD camera of the shadow
cast by the atomic cloud when illuminated by a resonant laser beam. In order
to reduce the interrogation time, we employ 399 nm light resonant with cycling
F = 5/2 → F ′ = 7/2 hyperfine component of the 1S0 →

1P1 transition. Starting
from the transmitted intensity profile It (x, y) of the resonant light probe through
the atomic cloud, it is possible to extract the column density of the cloud nc (x, y) =∫

n(x, y, z)dz integrated along the imaging direction z according to the relation:
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2.2 Overview of experimental procedure

It (x, y) = I0(x, y)e−σnc (x,y) −→ nc (x, y) = −
1
σ

log
(

It (x, y)
I0(x, y)

)
, (2.1)

where I0(x, y) is the beam intensity profile without the atoms and σ = 3λ2/2π is
the resonant scattering cross section of the atoms with λ being the wavelength of
the imaging laser. Taking into account the pixelated nature of the CCD camera, the
relation (2.1) will be given by:

nc (i, j) = −
S
σ

log
(

Pi j − Bi j

Fi j − Bi j

)
, (2.2)

where S is the pixel area including the magnification and Pi j, Fi j, Bi j are the inten-
sities detected by the pixel (i, j) corresponding to the imaging beam with atoms,
without the atoms and with the probe laser off, respectively. Several imaging se-
tups have been implemented to monitor the different stages of the experimental
cycle [111]. The main imaging setup in the glass cell is performed with a sin-
gle f = 150 mm lens providing a 3.2x magnification and a CCD camera (Andor
iXonEM+DU885KCSO). The camera has a CCD sensor with 1002× 1004 pixels of
size 8 × 8 µm and a resolution of 14 bit, and is used in fast kinetics mode in order
to minimize the effects of fluctuations of laser power and airflows.

Spin distribution initialization

In order to prepare atomic sample with a specific number of spin components, we
developed a spin-selective optical pumping (OP) protocol based on laser pulses
resonant with the 1S0 (F = 5/2) → 3P1 (F ′ = 7/2) transition. As already men-
tioned in section 1.3.1, since this is a narrow transition (Γ = 2π × 181 kHz), it is
possible to selectively address only one single Zeeman component of the excited
state manifold.

The initial atomic spin distribution coming from the MOT is approximately
thermal with six equally populated spin components. In order to separate the
Zeeman sublevels of the 3P1 (F ′ = 7/2) state, we apply a homogeneous magnetic
field of B = 22.7 gauss, generated by a pair of coils in Helmholtz configuration
located above and below the glass cell. The resulting relative Zeeman splitting
between adjacentmF levels is∆Z = 2π×13.6MHz ' 75 Γ. The pumping procedure
is executed right after the transport in the glass cell, before the evaporation, in order
to limit the effects of near-resonant light light scattering on the temperature of
the sample. Two independent beams OP+ and OP−, with circular polarization
σ+ and σ− respectively, are used so that only the transitions mF → mF ± 1 are
resonantly excited. After the pumping, whose efficiency approaches 100%, the
evaporative cooling takes place. Depending on the protocol, after the evaporation,
the unwanted spin components are blasted away with resonant pulses, that heat
the atoms, which are expelled from the shallower final crossed ODT. By properly
combining pumping and blast pulses, it is possible to produce balanced mixtures
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2 Experimental setup and procedure

Figure 2.7: Spin-resolved images of atomic samples with different numbers of spin compo-
nents, form 1 up to 6. The imagines are obtained by means of OSG technique described in
section 2.2.2.

with one up to six components, interacting within different SU (N ) symmetry
classes, where N ranges from 1 to 6. The specific optical pumping protocols to
obtain the different mixtures are described in Ref. [111].

Optical Stern-Gerlach

The "optical Stern-Gerlach" (OSG) technique [107, 133] relies on the state depen-
dent light shift discussed in section 1.1.3 in order to separate the different spin
components of the atomic sample and perform spin-selective imaging. As shown
in section 1.3, Ytterbium is a strongly diamagnetic atom which only has the nuclear
spin component in its ground state, resulting in a ∼ 2000 lower magnetic field
sensitivity than alkali atoms. In this case, an effective separation of the different
spin components via magnetic Stern-Gerlach is unfeasible due to the necessity of
an extremely high magnetic field gradient. The OSG technique is instead feasible,
since it relies on the optical dipole force and not on the atomic magnetic sensitivity.

In case of 173Yb (F = 5/2), 556 nm light near-resonant with the 1S0 →
3P1

transition can be used to implement optical Stern-Gerlach. Atoms will be subject
to a mF -dependent light shift which is given by the sum over the contribution of the
three hyperfine sublevels F ′ of the 3P1 state, namely F ′ = 7/2, 5/2, 3/2. According
to Eq. (1.22), the dipole force will be given by:

FmF (r, ω, q) =
3πc2

2ω3
mn

Γ

(
|C7/2,mF (q) |2

∆7/2
+
|C5/2,mF (q) |2

∆5/2
+
|C3/2,mF (q) |2

∆3/2

)
∇I (r),

(2.3)
where q refers to light polarization, ∆F′ = ω − ωF′ are the detunings from the F ′

states, Γ = 2π × 182 kHz is the decay rate of the 3P1 state and ω0 = 2πc/λ, with
λ = 556 nm. The principle of operation of theOSG technique is reported in Fig. 2.8.
Employing σ−-polarized laser light with a detuning ∆7/2 = −566 MHz ' 3100Γ,
a dipole potential which is maximum for the mF = −5/2 component is obtained.
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Figure 2.8: Working principle of the Optical Stern-Gerlach technique. The dipole potential
generated by near-resonant 556 nm light depends on the nuclear spin compontent mF . As
a consequence, a gaussian beam positioned so that the atoms are located in the maximum
intensity gradient exerts a spin-dependent dipole force on the atomic cloud. The different
spin components of the could can then be resolved in the imaging process after a time of
flight.

Experimentally, the dipole force is obtained with a laser beam with a power of
10 mW focused on a waist w0 = 60 µm, which is aligned in such a way that the
position of the atoms corresponds to the point of maximum intensity gradient of the
laser beam. The spin-selective imaging of the atomic cloud is obtained performing
a 1.25 µs square pulse of OSG light, followed by a 4.5 ms time of flight before the
imaging. A magnetic field of 2.5 G is applied along the OSG beam direction to fix
the quantization axis. The population in the different nuclear spin states can then
be measured by means of absorption imaging.

Optical pumping and OSG setup

In the experiment, the OP+ beam is generated using a fraction of the MOT beam,
while the OP− and the OSG beams are generated by a dedicated beam (see Fig. 2.9).
The OP+ is superimposed on the OSG beam with a polarizing beam splitter (PBS)
and are injected in the same fiber. An independent fiber is dedicated to the OP−
beam. The two fibers deliver the beam to a vertical breadboard mounted above
the glass cell. A PBS placed immediately after the OSG and OP+ common fiber,
separates the two lights, combining at the same time the two OP± beams. The
horizontal and vertical polarizations of the two OP beams are then turned into σ+
and σ− respectively with two wave-plates. (see Fig. 2.9). On the now independent
OSG beam path, a f = 400 mm lens focuses the beam on a 60 µm waist in order
to maximize the optical gradient on atoms and a λ/4 waveplate adjusts the OSG
polarization. Two beam splitters combine the OP and OSG beams and the imaging
beam, which are then superimposed to the vertical optical lattice beam (OL3) with
a long-pass dichroic mirror. And all the four beams are directed towards the atomic
sample into the glass cell.

41



2 Experimental setup and procedure

f400

imaging

OP+

OP-

DM

OSG

OL3

BSBS

OSG
λ/2

λ/2

λ/2

λ/4

λ/2 λ/4

OP-, OP+

glass cell

glass cell coils

Figure 2.9: Schematics of the vertical breadboard laser setup. The OP+ and the OSG beam
are delivered by the same optical fiber with orthogonal polarizations and are separated by
a PBS, which also recombines together the OP+ with the OP− beam which is carried by a
separated optical fiber. The two OP beams are superimposed to the imaging beam with a
beam sampler (BS) and with the OSG beam with a second BS. Finally the four beams are
superimposed to the vertical optical lattice OL3 with a dichroic mirror.
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Chapter 3

Ultranarrow 578 nm laser
stabilized on a remote frequency
reference

The heart of every experimental setup which relies on the excitation an optical
clock transition is a laser characterized by extremely pure spectral properties. For
the realization of this kind of devices, the Pound-Drever-Hall [120, 134] technique
is pushed to its limits in order to tightly lock the laser to a very stable reference
[135], which usually consists in a high-finesse optical cavity realized in Ultra-Low-
Expasion (ULE) glass. With a proper PDH lock loop, the laser frequency noise
spectrum substantially reproduces that of the reference cavity. The very high finesse
allows for a very sharp error signal which, together with a carefully designed shape
and positioning of the cavity, opens the possibility to narrow the laser linewidth well
below the Hz level on short timescales [47, 48]. Moreover, the very low thermal
sensitivity of the ULE glass along with a proper stabilization of the cavity around
its zero CTE (coefficient of thermal expansion) temperature minimize the cavity
long term drift reducing it to the cavity intrinsic limit represented by the glass aging
drift [48, 136].

This chapter contains a detailed description of the narrow laser system at 578 nm
which is used to excite the 1S0 →

3P0 clock transition in 173Yb. The first part
is dedicated to the laser source, which consists in an infrared solid state laser,
frequency doubled to obtain 578 nm light and stabilized on an ULE glass cavity
[50]. The second part of the chapter is focused on the description of an optical
fiber link that is used to transfer to LENS in Florence an optical reference at
1542 nm, generated at the ItalianNationalMetrology institute (INRIM) in Turin. By
exploiting this remote optical reference, we determined the laser performances and,
through a digital feedback system, stabilized its long-term frequency fluctuations
allowing us to operate the laser on the clock transition with ease for weeks without
any need of hour to hour calibration through spectroscopy measurements.
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Figure 3.1: Scheme of the 578 nm laser system. The light is generated by an infrared ECDL
and is collimated by a pair of cylindric lenses. Before the doubling cavity, a small part of
the IR radiation is withdrawn and sent to an optical frequency comb (see sections 3.1.3 and
3.2.2). The 578 nm light is generated by a non linear crystal located in a bow-tie cavity,
frequency locked to the ECDL by means of Hänsch-Couillaud technique. A small part of
the visible light is delivered to the ULE cavity, after a double passage AOM at 104 MHz
(AOM2), while the rest is delivered to the experiment table after passing through a 40 MHz
AOM (AOM1). The two AOMs cover the frequency difference between the ULE resonant
mode and the clock transition. AOM1 and AOM2 are also used to correct the ULE drift,
respectively when the optical fiber link (see secction 3.2.4) is or is not available.

3.1 Ultranarrow laser system

As of today, the only available laser sources emitting directly at 578 nm are dye
lasers, which are expensive and difficult to maintain. For this reason, we opted for
a cheaper and more reliable solid state laser. Differently from other experiments, in
which the light at 578 nm is generated via sum frequency generation [137, 138], we
employ a cavity-enhanced Second Harmonic Generation (SHG) scheme in order to
obtain visible light at 578 nm from the 1156 nm infrared (IR) radiation emitted by a
solid state gain chip in external cavity configuration (ECDL) (section 3.1.1). Before
the injection of the doubling cavity, a small fraction of the ECDL infrared radiation
is withdrawn with a beam sampler and delivered to an optical frequency comb. The
light is coupled in a bow-tie optical cavity (section 3.1.2), where a nonlinear crystal
converts ∼ 150 mW of infrared light into ∼ 60 mW of visible light. The cavity
is frequency locked to the ECDL by means of Hänsch-Couillaud technique with a
piezo acting on one of the cavity mirrors.

After the doubling cavity, the beam is split in two paths (ULE path and atoms
path), as reported in fig 3.1. The light following the ULE path travels through
an AOM (AOM2) in double passage configuration and is then delivered to the
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ULE cavity through a 2 m long polarization maintaining optical fiber. As will
be explained in section 3.2.4, AOM2 is used to compensate for the ULE cavity
drift when the optical fiber link is available. The ULE cavity, placed in a vacuum
chamber, is located in a thermally stabilized insulation enclosure that provides
acoustic and thermal insulation from the environment lab, allowing for a laser
linewidth reduction below 50 Hz over 5 minutes [50]. The ULE insulation system
and the frequency narrowing procedure are described in detail in sections 3.1.3 and
3.1.4. The light in the atomic path is delivered to the experiment table through
a second PM optical fiber, after passing through an AOM (AOM1) acting as fast
switch and used to finely tune the light frequency. Additionally AOM1 is used to
compensate the ULE cavity linear drift with a feed-forward when the optical fiber
link is not available.

The good spectral properties and the high output power make this laser system a
very versatile tool. On one hand, its narrow linewidth makes its perfectly suitable in
precisionmeasurements, where a high spectral purity ismandatory (see section 4.3).
On the other hand, the high power allows for Rabi frequencies up to of a few kHz
in 173Yb atomic samples (see section 4.2.2), enabling the possibility to perform
sub-ms π-pulses. For this reason our laser is suitable also in short timescales
applications, where a fast manipulation of the metastable state is necessary.

3.1.1 Infrared laser source

The IR source of our laser system is a quantum dot gain chip Innolume GC-
1156-TO-200, capable of up to ∼ 250 mW out of an ECDL configuration. This
chip is characterized by a frequency-to-current response which shows a continuous
phase slip from 0 to 180° between 10 and 100 kHz of current modulation frequency,
making current a poor actuator for laser frequency locking to a stable reference with
a > 100 kHz bandwidth. In order to obtain a robust and high-bandwidth frequency
stabilization, we chose an ECDL configuration with an intra-cavity broadband
electro-optic modulator (EOM) as fast cavity length actuator [139]. A schematic
drawing and a picture of the ECDL are reported in Fig. 3.2. This design presents
several advantages. First, the cavity length of 12 cm reduces the ECDL linewidth
to approximately 20 kHz (estimated using the frequency doubling cavity as a
diagnostic Fabry-Pérot), one order of magnitude smaller than standard ECDLs
[140]. This value is obtained at the expense of a reduced mode-hopping-free
interval. In our case this is not a major drawback, as we are able to cover more than
one Free Spectral Range (FSR) of the reference ULE cavity without mode-hops
(see section 3.1.3). The second advantage relies on the possibility of using the intra-
cavity EOM as fast frequency actuator effective from DC up to the MHz level, due
to its nearly flat modulation depth and phase response. The EOM, manifactured by
Qubig GmbH (model EO-DC5M-BREWSTER), relies on a Brewster-cut (in order
to avoid reflections and Etalon effect) Magnesium doped LiNbO3 crystal. Its laser
frequency-to-voltage transduction is of the order of 1 MHz/V, hence no high voltage
amplifier is required to drive the EOM and a standard servo amplifier output can
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Figure 3.2: a Top view of the long cavity ECDL laser source at 1156 nm, with labeling
of the main components. Intracavity PBS and waveplate are tilted in order to avoid
backreflections. b Picture of the 1156 nm ECDL. Between the laser (on the left) and the
grating (on the right) the intra-cavity EOM is visible. On the laser baseplate the resistor
used for temperature stabilization are visible.

be used with benefits to the total bandwidth of the system. The EOM has two
floating electrodes which are connected in differential configuration to SMA-type
connectors so that two independent modulation signals can be used to drive the
EOM.

The cavity also houses a λ/2 waveplate and a polarizing beamsplitter (PBS) in
order to precisely tune and clean the polarization of the radiation. Their presence
contrasts a marked tendency of the ECDL to lase on different linear polarization
modes (with an angle of ∼ 15° between the two). The origin of this behavior is still
unknown, but we exclude temperature fluctuations and current surges as possible
causes since the laser temperature is stabilized and the supply current is accurately
filtered. These intra-cavity polarizing elements also minimize the Residual Ampli-
tude Modulation (RAM) due to the mismatch between the polarization of the light
and the axes of the EOM crystal.

The optical feedback is provided by a diffraction grating optimized for UV
(Thorlabs GH13-12U) that reinjects ∼10% of the light into the laser chip and forms
the Littrow external cavity. A piezoelectric stack (Piezomechanik PSt 150/4/7)
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enables the tuning of the laser frequency over a span of about 1 GHz. In this
configuration, the laser is able to deliver up to 200 mW of radiation at 1156 nm
with a 500 mA supply current, which is the maximum output of our current driver
(ILX Lightwave LDX-3620 Ultra-Low Noise). The chip is actually capable to
sustain supply currents up to 700 mA in external cavity, further increasing the
ECDL output power up to 250 mW.

The quantum dot chip and the grating are mounted on holders machined from
Ergal aluminium alloy screwed to a monolithic massive Anticorodal baseplate, al-
lowing for precise collimation of the laser beamand reinjection of the first diffraction
order. A home-made Arduino-based digital temperature controller (described in
details is section 3.1.3) stabilizes at 26.80 ± 0.01 °C the temperature of the laser
baseplate (and of the ULE reference cavity, see section 3.1.3). Also the EOM is in
direct thermal contact with the stabilized baseplate through an improved ceramic
thermalization mount. A Peltier stage between the baseplate and the laser diode
holder keeps the gain chip temperature fixed at 27 °C with 1 mK precision. More-
over, the ECDL is placed in a box providing thermal and mechanical insulation.
The full temperature stabilization system limits the ECDL frequency drift within a
few tens of MHz during one day of operation when not locked to the ULE cavity
frequency reference.

3.1.2 Second harmonic generation

In our setup, the visible light at 578 nm is generated via SHG realized through
a periodically poled LiNbO3 nonlinear crystal placed into a symmetrical bow-tie
optical cavity. The crystal, manufactured by HC Photonics, is doped with 5% of
MgO to raise its damage threshold and has a poling period of 8.9 µm. A copper
oven thermally stabilizes the crystal at the temperature of maximum conversion
efficiency of 65 °C and is mounted on a four-axis translation stage (New Focus
Model 9071) to adjust the crystal position with respect to the cavity optical axis.

The bow-tie optical cavity consists of two concave mirror with 100 mm radius
of curvature and two plane mirrors. The two concave mirrors (M1 and M2 in
Fig. 3.3) focus the beam in the non-linear crystal with a waist of ∼ 50 µm in order
to maximize the conversion efficiency. One of the two plane mirrors (M4) serves
as input coupler while the other (M3) is mounted on a low capacity piezoelectric
stack (Piezomechanik PSt 150/2x3/7, 170 nF) allowing the lock of the cavity
length to the infrared laser source. The cavity has a 545 MHz FSR and a finesse
∼ 100. The mirror holders are fixed to a monolithic Anticorodal base that rests
upon four small 1/4 inch-thick Sorbothane dampers to decouple the whole cavity
from acoustic noise delivered through the table top. The cavity is placed inside an
aluminum enclosure that is evacuated to 10−2 bar to further reduce its sensitivity
to air-delivered noise (see Fig. 3.3). The vacuum environment also suppresses
bistability effects caused by a non-linear dispersive effect induced by the presence
of water vapor resonances around 1156 nm.

The error signal used to keep the SHG cavity resonant frequency locked to the
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Figure 3.3: Schematic representation of the doubling cavity. The 1156 nm light is converted
in 578 nm radiation with an efficiency of ∼ 40%. The cavity resonant frequency is locked
to the 1156 nm laser frequency by means of Hänsch-Couillaud technique acting on a
piezo-mounted mirror (M3).

IR laser frequency is obtained employing the Hänsch-Couillaud technique [118].
This technique does not require any external modulation and exploits the strong
birefringence of the non-linear crystal to generate the error signal. It is generated
from the heterodyne detection of the twoorthogonal polarizations, which experience
different optical paths due to the crystal birefringence. This signal is fed to a
single proportional-integral (PI) servo amplifier stage that provides the feedback
on the cavity piezo with a −3 dB bandwidth of 300 Hz. With this system, we
are able to obtain up to 60 mW of 578 nm light from 150 mW of 1156 nm
radiation (40% conversion efficiency), which to our knowledge is the highest power
at this wavelength reported in literature for a non-dye laser. A small fraction
of the produced visible light (∼ 1 mW) is sent to the reference ULE cavity for
frequency stabilization of the laser source while the majority is delivered to the
experiment table through a polarization maintaining (PM) optical fiber. The high
output power of the doubling cavity represents a major advantage for spectroscopy
and manipulation of the atomic sample. For example, in fermionic isotopes, the
1S0 →

3P0 transition can be power broadened up to a few kHz with a 1 mm beam
waist, and Rabi frequencies of the order of the transition linewidth can be driven.
In bosonic isotopes instead, where the 1S0 →

3P0 transition has to be induced via
magnetic quenching with the 3P1 state (see section 4.1) and is much weaker than in
fermions, a high power allows for an easier observation and exploitation of the clock
transition. Moreover, such high power could allow for off-resonant manipulation
of ultracold fermionic ytterbium, e.g. for the realization of spin selective optical
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dressing or for optical control of atom-atom scattering [141].

3.1.3 ULE reference cavity

Since with a properly executed feedback loop a laser noise reproduces that of its
frequency reference, in order to reduce the laser linewidth to the Hz level, it is
required to lock the source to a very stable reference. A few Hz linewidth for an
optical transition means a stability of the order of 10−14. Since ∆ν/ν = ∆l/l, where
ν is the optical frequency and l the cavity length, for a reference cavity of 10 cm,
its length is not allowed to fluctuate more than a proton radius. For this reason, it is
fundamental to minimize the cavity sensitivity to all those perturbations that would
lead to a length fluctuation. Mechanical vibrations, for instance, would result in
laser frequency noise at acoustic frequencies increasing the laser fast linewidth. As a
consequence, the geometry of the cavity is studied so that it is minimally influenced
by vibrations and proper countermeasures are needed to insulate the cavity from
them. On the other hand, thermal fluctuations would induce long term frequency
drifts. ULE glass is then chosen since its linear coefficient of thermal expansion
(CTE) has a zero around room temperature and the temperature dependence of the
cavity length only retains its quadratic component:

∆ν

ν
= α(2) (T − T0) (3.1)

where α(2) is the quadratic CTE and is of the order 10−9. In order to minimize the
thermal sensitivity of the cavity it is crucial to determine its zero CTE temperature
and to thermally insulate the cavity.

TheULE system employed in our setup, manufactured byAdvanced Thin Films,
was fully characterized in a previous experiment [138]. Both the mirrors substrates
and the spacer are fabricated in ULE glass. The cavity FSR is 1.5 GHz and
its finesse, measured by means of ring-down technique [142], results ∼ 150000.
In order to minimize sensitivity to external vibrations, the cavity, shaped as a
notched cylinder, is suspended horizontally on viton pads at its Airy points, over an
aluminum holder. The position of these points has been previously determined with
a finite element analysis [138]. For a better acoustic and thermal insulation, the
cavity, surrounded by a cylindrical thermal copper shield, is positioned in a 25 cm
long horizontal stainless steel CF200 vacuum vessel and kept at 10−7 mbar by a
2 L/s ion pump. The vacuum chamber is placed on a passive vibration-insulation
platform (MinusK BM-8) which grants a reduction between 10 and 20 dB of the
acoustic noise in the Fourier frequency range from 1 to 100 Hz [138]. As a final
thermal and acoustic insulation stage from the lab environment, the whole system
is located inside an 80 cm × 80 cm × 80 cm home-made enclosure, of relatively low
weight (∼ 30 kg), made of joint layers of PVC and extruded polystyrene. A sketch
of the structure is reported in Fig. 3.4a. Extruded polystyrene is one of the best
commercially available thermal insulator (specific thermal resistivity λ−1

EP ∼ 30
m·K/W), while PVC is able to provide the mechanical support for the structure,
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Figure 3.4: Sketch of the insulation system of the ULE cavity and detail of one of the four
elements of the enclosure Peltier-based cooling stage.

and is a fair thermal insulator (λ−1
PVC ∼ 5 m·K/W). We also applied on the external

surface of the enclosure a resilient mat (Aetolia Isolnoise AE6) as an additional
low-frequency acoustic damper. We used commercial glue for linoleum floors to
stick together all the layers. The box can be opened to grant access to the optics
needed to couple the light to the ULE cavity, including the PDH EOM and other
polarization optics that benefit from a thermally stable environment in terms of lock
performances (see section 3.1.4).

The temperature of the ULE cavity (and of the ECDL baseplate, see section
3.1.1) is stabilized by the aforementioned Arduino-based digital temperature con-
troller, which is described in the following section (3.1.3). The controller acts
on two flat ribbon resistive heaters placed on the external surface of the vacuum
chamber with an heating power of around 1.2 W at regime. The system handles up
to 2.5 W during transients. The thermistor is placed on the copper shield and not
directly on the cavity in order not to break its symmetry thus increasing vibration
sensitivity. Due to the high vacuum environment, the ULE cavity thermalizes at the
temperature of the copper shield via irradiation since all of the other heat exchange
mechanisms are negligible.

A first measurement of the cavity zero CTE temperature T0 was performed in
Ref. [138], obtaining a value around 21 °C. This temperature is lower than our
working environment (23 ± 1 °C), so cooling is required in order to stabilize the
cavity at its zero CTE temperature. An optimal Peltier cooling systemwould require
two vacuum thermal shields for an ideal heat exchange [48], while in our system a
single thermal shield is present. On the other hand, cooling the vacuum chamber
with Peltier cells coupled to standard heat sinks would create thermal gradients due
to the low thermal conductivity of stainless steel. We also excluded the possibility
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Figure 3.5: a. Raw data of the ULE cavity thermal characterization. As a consequence of
a 0.2 °C temperature variation of the ULE cavity, the laser frequency shifts of some tens of
kHz due to the cavity length variation. After a temperature variation, the laser frequency is
monitored for some days. The discontinuity in the frequency measurement is due to comb
availability. b. Measured cavity resonant frequency as a function of temperature with a
parabolic fit to the data. The stationary point of the fit curve is the zero CTE temperature.

to cool the vacuum vessel with liquid and air flows as this would induce mechan-
ical vibration on the structure. The required cooling is provided by a low-cost
Peltier-based heat transfer stage, consisting in a set of four Peltier elements (Global
Component Sourcing ET-127-14-11) in thermal contact with internal and external
heat sinks through aluminum sockets (Fig. 3.4a). The Peltier cells maintain the
internal temperature around 17.5 °C (∼ 5 °C lower than lab temperature) stabiliz-
ing the internal heatsinks temperature at 12 °C with a total power consumption of
20 W. The effectiveness of this cooling stage is further increased with the addition
of two slow speed fans (∼ 100 rpm) on the external heat sinks with no visible
effect on the laser system noise. Thermal stabilization of the internal heat sinks is
implemented with a stand-alone digital temperature controller based on the scheme
of sec. 3.1.3, which also adjusts its setpoint depending on the external temperature
in order to compensate for different heat flows through the enclosure at different
environmental temperatures. This allows us to stabilize the inner air temperature
below the 0.1 °C level and keep it lower than the estimated zero CTE (see Fig. 3.4a).
In this way the vacuum system can be stabilized around 21 °C without the need of
an in-vacuum Peltier. The thermalization time of the entire system (ULE cavity and
external enclosure) is of the order of 2-3 days, still adequately manageable through
the digital thermal stabilization system. This scheme, in which both the reference
cavity and its insulation enclosure are temperature controlled, could also allow for
an easier stabilization of the cavity at high temperatures, heating the enclosure to
an intermediate value between room temperature and the cavity target temperature.

In order to determine the cavity zero CTE temperature we measured the fre-
quency of the infrared ECDL locked to the ULE reference resonator for temperature
values spanning between 19.9 °C and 21.3 °C. The laser absolute frequency is deter-
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mined with 1 kHz uncertainty by measuring the beat-note of the infrared light with
aMenloSystems FC-1500 frequency combwith repetition rate and carrier-envelope
offset (CEO) both referenced to a GPS-stabilized 10 MHz signal with a 5 ∗ 10−13

stability at 1 s, by means of RF lock technique (see appendix B). For each temper-
ature value, after a settling time of 2-3 days, the laser frequency is measured for a
few days in order to estimate a value of the aging linear drift, as shown in Fig. 3.5a.
For every temperature, the extrapolated linear drift is subtracted from the data and a
single frequency value can be determined. The obtained frequency values are plot-
ted versus the cavity temperature in Fig. 3.5b. The zero CTE temperature TC can
be found by fitting the points with a parabolic curve and determining the stationary
point of the curve. The value for TC has been measured as (+0.32 ± 0.03) °C in a
relative scale centered around 20.5 °C, corresponding to an absolute temperature
of 20.8 °C. The estimated linear aging drift of the ULE cavity for temperatures near
TC is of the order of 5 kHz/day, comparable with other values reported in literature
[48, 136].

Multi-channel digital temperature controller

In order to stabilize the temperature of the laser baseplate and of the ULE cavity
we developed a multi-channel, low-cost digital temperature controller based on
Arduino UNO® architecture. The controller consists in three main blocks. The
first block is a front-end responsible for the generation of the error signal that is fed
to second block containing the Arduino which computes the correction. The third
block is substantially constituted by a power supply and a thermal actuator (a set of
resistors or a Peltier element) with a series MOSFET transistor that regulates the
current flow through the actuator. Multiple front-ends and thermal actuators can be
connected to the Arduino block allowing for an easy and centralized management
of the temperature stabilization of the laser system key elements. A scheme of the
controller is reported in figure Fig. 3.6b. Every front-end measures the temperature
as the output of a voltage divider formed by a thermistor and a precision resistor. The
measured temperature voltage is compared to the setpoint voltage, obtained with a
simple 10 kΩ potentiometer, by a differential amplifier and an error signal centered
around 0 V is generated at the amplifier output. This error signal is amplified and
offset by 2.5 V by a second amplifier in order to obtain a 0−5 V signal that is fed to
one of the Arduino 10 bit analog inputs. The amplification stage is used to“zoom-
in” around the setpoint, overcoming the limitation represented by the Arduino ADC
resolution so that the desired controller precision can be achieved simply tuning its
gain. The algorithm running on Arduino computes a PI correction for every error
signal and the outputs are generated at the pulse-width-modulation (PWM) pins.
Every PWM channel controls the gate of a MOSFET transistor acting as a switch
to regulate the current flow through the thermal actuator, allowing for temperature
stabilization with minimal power dissipation on theMOSFET transistor. The PWM
signal and current wires are tightly twisted in order to avoid irradiated noise at the
PWM frequency (480 Hz). At the moment, only two front-ends are used, but their
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Figure 3.6: a. Essential schematics of the Arduino-based digital temperature controller.
The analog front-end performs the temperature reading, (the output of a voltage divider
between a thermistor (Rth) and a precision resistor (R1)) and compares it to the setpoint
temperature (controlled by R2). The error signal is translated into the (0 − 5) V range and
amplified so that it can be fed to the Arduino 10-bit ADC without loss of precision. Arduino
computes and generates the correction at the PWM outputs and drives a MOSFET gate to
regulate the mean current flow in a thermal actuation element (a set of resistors for the
ULE cavity and laser baseplate or a Peltier for the enclosure, see sections 3.1.1 and 3.1.3).

number can be increased up to six.

3.1.4 Laser frequency stabilization

In order to stabilize the laser frequency on the ULE reference cavity, a small fraction
(∼ 1 mW) of the 578 nm radiation is withdrawn after the doubling cavity. This
light passes through an acousto-optic modulator (AOM1), operating at 104 MHz,
in double passage configuration and is then delivered inside the ULE insulation
enclosure via a 2 m long PM optical fiber. The 7 MHz EOM (Thorlabs EO-PM-
NR-C4) used for the generation of the PDH signal is placed inside the enclosure,
in order to minimize the RAM induced by temperature fluctuations of the EOM
crystal. A Glan-Thompson polarizer on a tilt mount is used to carefully adjust the
polarization of the incoming light to match the EOM crystal axis. Moreover, in
order to minimize multiple internal reflections that would result in a low frequency
residual modulation of the PDH signal, the EOM is tilted with respect to the light
propagation axis.

A photodiode collects the incident light and drives a PI servo amplifier acting
on AOM1 to stabilize the power at 60 µW in order to minimize power induced
cavity resonance fluctuations. Such fluctuations may be caused both by coating
absorption (photo-thermal effect) or by radiation pressure [143]. For the cavity in
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Figure 3.7: Scheme of the ULE cavity optical setup and of the feedback system. After
passing through AOM2 (in double passage) the light is delivered in the ULE insulation
enclosure. The Glan-Thompson polarizer (GT) cleans the light polarization to match the
EOM crystal axis. Before the cavity, a polarizing beam splitter and a λ/4 waveplate build
the PDH error signal, while the direct reflection of the PBS (note that the polarization is
fixed by the GT polarizer) is used to stabilize the impinging light power acting on AOM2
RF amplitude.

use the fluctuations have been estimated in [138] of the order of 75 Hz/µW so a
power stability of 10−3 is required to maintain frequency fluctuations below 10 Hz.
We independently measured the power induced frequency shift with the aid of the
fiber link, as will be described in section 3.2.3.

The PDH error signal is obtained by demodulating and low-pass filtering the
output of a fast photodiode which collects the back-reflected light of the ULE glass
cavity. The signal is fed in parallel to three servo amplifier stages which act on
the ECDL piezo transducer and on the two intra-cavity EOM electrodes, as shown
in Fig. 3.7. The piezo servo only works in the very low frequency range (DC-
200 Hz), and its transfer function is enhanced in the very low frequency range
with an additional integrator stage below 16 Hz. The intra-cavity EOM is driven
by two independent servos, acting each on a single electrode with the ground
as common reference. The first is a PI, with limited DC gain in order to avoid
conflicts with the piezo loop. It provides corrections up to 200 kHz. The second
servo consists of a minimal circuit, AC coupled above 16 kHz, with a single fast
operational amplifier (AD818AN, 100 MHz bandwidth at unity gain). It provides
a proportional correction up to ∼ 1 MHz, with a derivative stage which helps in
lowering the PI servo bump and shifts its frequency up to ' 0.5 MHz. All the
elements of the feedback loops are battery powered in order to reduce the electronic
noise. We also carefully arranged a “star-like” topology for the ground circuit to
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Figure 3.8: Frequency noise spectrum of the locked laser compared to electronic noise and
amplitude noise of the out of resonance error signal. The black trace (c) is the frequency
noise of the laser locked to the ULE cavity. The red trace (b) is the amplitude noise
of the out-of-resonance backreflected light. The blue trace (a) is the electronic noise of
the photodiode and locking electronics. The Beta Line [144] is a limit above which the
frequency noise of the lock contributes to the laser linewidth.

minimize the noise induced by ground loops.
As we do not have a second system with comparable spectral characteristics to

check the laser performances, we optimized the lock using for diagnostic the spec-
trum of the demodulated in-loop PDH error signal measured by a (battery powered)
floating FFT spectrum analyzer. The spectrum, obtained after optimization of the
lock performances, is reported in Fig. 3.8 (black trace, c). The red trace (trace b) is
the spectrum of the error signal when the laser is not resonant with cavity modes
and represents our sensitivity limit. It is generated by the amplitude noise of the
light and the main contribution to it is due to RAM of the PDH EOM. The blue
trace (trace a) is the spectrum obtained with no light, that is the intrinsic noise of the
detector and the electronic chain of the feedback loop. The traces are composed by
three spectra for different Fourier frequency ranges normalized by their resolution
bandwidth and the volt-to-hertz conversion factor is estimated from the PDH signal
amplitude. Substantially for all frequencies above 1 Hz, the frequency noise is
reduced under the Beta Line [144], that discriminates whether the noise spectral
components either contribute (if above) or not (if below) to the laser linewidth. In
the low frequency region, which is the most critical in ultranarrow laser systems,
the frequency noise of the locked laser is reduced to the amplitude noise level. At
higher frequencies the lock noise grows up to a maximum around 500 kHz, which
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Figure 3.9: Scheme of the spectroscopy optical path. Before the optical fiber, AOM1 is used
to finely tune the laser frequency and to shape spectroscopy pulses. AOM1 is responsible
also for the drift compensation when the optical fiber link is not available. After the fiber
the light polarization is cleaned and adjusted so that it has π polarization on the atomic
sample. A sampler retroreflects part of the light to obtain a beatnote between the light
before and after the optical fiber.

is our lock bandwidth, but still stays between 30 and 40 dB below the Beta Line
level. In these in-loop spectra, the contribution of the cavity noise is not taken into
account and the real laser linewidth can be determined only by observing atomic
transitions.

3.1.5 Atomic spectroscopy

In order to perform spectroscopy on the atomic sample, the 578 nm probe light is
delivered to the experimental setup through a 10 m long PM optical fiber contained
in a protective tubing that provides insulation from air flows. Before the fiber,
an AOM (AOM1, see figures 3.1 and 3.9) operating at 40 MHz, driven by a PC
controlled synthesizer (Agilent 33522B), is used to finely tune the laser frequency
(adding an offset to the AOM central frequency) and to rapidly switch light on
and off (in cooperation with a fast mechanical shutter). In addition, in the case
in which the optical fiber link is not available for long-term stabilization of the
laser system (see section 3.2.4), the algorithm that drivers AOM1 can be configured
to compensate with a feed-forward the ULE aging drift measured in sec. 3.1.3.
Before the AOM, a beam sampler withdraws a small fraction of the light which
is collected by a photodiode. After the fiber, a polarizing beam splitter cleans
the light polarization and a λ/2 and a λ/4 waveplates compensate for polarization
variation induced by the glass cell. After the PBS a beam sampler retroreflects
part of the light into the fiber in order to obtain a beatnote between the light before
and after the fiber (Fig. 3.9). This beatnote could be used to realize a fiber noise
cancellation scheme [145] which at the moment is not implemented. In order to
determine the effective linewidth of the laser system, we performed spectroscopy
on a spin polarized sample of 173Yb. The details of the spectroscopy procedure
and conditions will be outlined in chapter 4, at the moment only the results of the
measurement will be shown. A typical spectrum of the 1S0 →

3P0 transition for a
degenerate spin-polarized Fermi gas of 173Yb loaded in a deep 3D optical lattice
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Figure 3.10: Clock transition observed with a 0.3 µW/mm2 intensity and with 100 ms
probe time. Every point is acquired at the end of a 30 s long experimental cycle for a final
acquisition time of 5 minutes. The FWHM linewidth is 46 Hz.

probed with a ∼ 10 µW/cm2 is reported in Fig. 3.10. During the data acquisition,
the feed-forward compensation of the ULE cavity aging drift has been used. The
linewidth is 46Hz over a total acquisition time of 5minutes. The observed linewidth
on these timescales is substantially determined by a residual drift of the laser, which
is present even operating the feed-forward to cancel the cavity linear aging drift.
This residual drift varies in a range of a few 0.1 Hz/s during the day and we ascribe
it to an imperfect thermal stabilization of the ULE cavity. The presence of this
residual drift induces non-negligible shifts of the laser frequency between different
experimental cycles (an experimental cycle lasts ∼ 35 s). For this reason, the
shape of the spectrum will be altered depending on the relative orientation between
the drift and scan directions, as will be also shown in section 4.3. Moreover, if
the laser frequency is kept at a fixed value, initially in resonance with the atomic
transition, after a certain number of experimental cycles, depending on the transition
linewidth, the laser will no longer be resonant with the transition. Such residual
drift represents the main limitation of the system and is studied in detail in section
3.2.3. Improving the thermal stabilization of the cavity could enhance the laser
performances, however in order to perform experiments over timescales of some
hours it is necessary to improve the laser long-term stability. For this reason, after
the characterization of the laser performances, we stabilized the laser on an optical
frequency reference, generated at INRIM (Italian National Metrology Institute) and
delivered to our laboratory through a long-haul optical fiber link, which is described
in the next section.
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3.2 Optical fiber link to a remote metrology institute

As discussed in the previous sections, the main limitation of our system is a residual
drift of the order of 0.1 Hz/s that compromises its long term performances. The
short term stability of the laser allows for linewidths ≤ 100 Hz, which are suitable
for the purposes of our experiments, however the residual drift prevents to effectively
employ the laser over long timescales (> 20− 30 minutes) without a calibration. In
order to eliminate the residual drift, we exploit the existence of an optical fiber link
that connects the Italian Metrological Institure (INRIM) to the LENS in Florence.
This link disseminates the INRIM primary standards to the LENS laboratories as
well as to several other institutes along the fiber link path.

This section is dedicated to a brief description of the optical fiber link. A
detailed analysis of the link is can be found in the PhD thesis in Ref. [146]. After
a general introduction to optical links, the attention is focused to the description
of the specific fiber link, describing the three main components that allowed us to
compare and lock our laser system to INRIM’s remote optical reference. After a
characterization of the performances of our ultranarrow laser system, we realized
a digital feed-back protocol which transfers the long term stability of the remote
optical reference to our laser system.

3.2.1 Introduction to optical fiber links

Currently, the most common technique employed for remote comparison of atomic
clocks and frequency standards is represented by microwave satellite links. These
links rely on a very well developed and extremely robust technology, that allows
for the realization of the International Atomic Time (TAI) and the Universal Co-
ordinated Time (UTC) [147, 148] averaging the signal of more than 250 atomic
clocks located all around the world. Presently, microwave satellites links relying
on the US Global Positioning System (GPS) are also the most widespread dis-
semination method, which allows for traceability to the second in the International
System (SI) of units with a typical fractional frequency uncertainty of 10−13 on a
day average [149]. However, GPS dissemination severely degrades the accuracy
of current state of the art frequency standards (2 × 10−16 [150]) and even more
that of the optical atomic clocks, which have already shown fractional accuracy
capabilities of 10−18 in few hours of measurement [38–40]. For this reason, the
development and characterization of long-haul optical fiber links, recently featured
a substantial thrust [51, 151, 152]. In the last years, optical fiber links have shown
undoubted effectiveness in comparing remote atomic clocks, beyond the ultimate
limit of GPS-based comparisons (> 10−16 [153]), attaining precision levels not
limited by the frequency transfer method [52, 53, 154, 155], and short-range OFLs
have recently been exploited in order to increase the spectral performances of a
local laser and to allow for precision molecular spectroscopy [156]. In Chapter 4,
we provide the first demonstration that optical fiber links can also be exploited for
the dissemination of a primary absolute frequency reference to remote laboratories,
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Figure 3.11: Conceptual scheme of an optical fiber link. The light of an ultrastable laser
(reference oscillator) is sent through an optical fiber to a remote receiver. At the fiber end,
part of the light is reflected back to the original station and heterodyne detected beating
it with the original light, allowing for the realization of a fiber noise cancellation scheme.
The reference oscillator is measured by two local oscillator at both ends, allowing for a
comparison of the two which is not limited by the link noise.

in such a way as to push the precision and accuracy of local measurements and
applications beyond the GPS limit.

A great advantage of optical fiber links is that they can be developed using the
existing telecom fiber infrastructure and are compatible with Dense Wavelength
Division Multiplexing (DWDM). This means that the a single channel of the In-
ternational Telecommunication Union (ITU) Grid can be dedicated to frequency
dissemination while Internet data are simultaneously transferred in other channels
[157, 158]. While in telecommunication the information is encoded via phase or
amplitude modulation of the optical carrier, in optical fiber links for metrological
applications the information is represented by the frequency of a non-modulated
continuous wave optical carrier. While other frequency dissemination techniques
through optical links have been developed, the delivery of a phase-stabilized opti-
cal carrier represents the most common choice and is particularly suitable for the
comparison between optical atomic clocks.

The realization of a metrological fiber link requires the employment of a ref-
erence CW laser with peculiar spectral properties. It is indeed necessary that the
coherence time tc of the laser source is greater than the round-trip time along the
fiber, in order not to deteriorate the transmitted signal quality. This means that the
laser linewidth needs to be:

∆ν ∼
1

2πtc
<

1
2π

c
2nL

, (3.2)

where L is the fiber length, n the refractive index and c the speed of light in
vacuum. This ultrastable laser works as a reference oscillator between two different
laboratories, where, typically, optical frequency combs are used to bridge the
gap between the reference oscillator and the local oscillators, being microwave or
optical.

While the adoption of an ultrastable laser source as reference oscillator prevents
the phase detection at the fiber ends to be degraded by laser noise, other noise
sources are present. Acoustic and seismic noise leads to variations of the fiber
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length and mechanical stresses and thermal fluctuations can cause local variations
of the refractive index, thus inducing a phase noise on the optical carrier. In order
to suppress such noise, a fraction of the transmitted light at the far end of the link is
withdrawn and sent back along the fiber. The heterodyne beatnote between the back-
reflected and the original signals enables the detection of the phase noise induced
by a double pass through the optical fiber and can be used as input of a feedback
loop that actively compensates the fiber-induced phase noise, typically using an
acousto-optic modulator, realizing a fiber noise cancellation (FNC) scheme [145].
It is important to note that with this technique the noise is actively compensated
at the injection side, while a null phase noise would be desirable at the end-user.
This condition is actually not achievable since the noise compensation bandwidth
is limited by the round-trip time along the fiber link at a value lower than the typical
acoustic frequencies, impliying that not all the noise is corrected. It has been
demonstrated [159] that the phase noise Power Spectral Density (PSD) Sφ,FE ( f )
at the far end of the fiber link is given by:

Sφ,FE ( f ) =
1
3

(2πτ f )2 Sφ,FR ( f ) (3.3)

where τ = nL/c is the time needed by the optical signal to travel through a fiber
of length L and refractive index n and Sφ,FR ( f ) is the phase noise PSD of the free
running optical link that is proportional to L. Equation 3.3 shows that the phase
noise at the remote end of a compensated link is proportional to L3 posing practical
limitations to the realization of extremely long links.

It is important to remark that several factors have to be kept under control in
a fiber link, ranging from Bragg reflection of the fiber to issues arising from the
complex structure of a link with intermediate stations, which are beyond the scope
of this introductory section. Reference [146] contains a detailed analysis of these
issue, as well as an exhaustive list of references.

3.2.2 The INRIM-LENS optical fiber link

The optical link that connects INRIM and LENS is 642 km long, for a total
171 dB of optical losses along the entire path. The link is named LIFT (Italian
Link for Frequency and Time) [160] and has been implemented on a dark fiber
of the Italian National Research and Education Network (NREN), provided by
Consortium GARR, that administrates the network. Nine dedicated Erbium Doped
Fiber Amplifiers have been installed along the path (see Figure 3.12), for a total
amplification of 156 dB [146]. The amplifiers are bidirectional, allowing for
the transmission along the fiber link of the optical reference oscillator and of the
retrorfletcted signal used for the fiber noise compensation. In the following sections
the attention will be focused on the three main parts that substantially form the link
infrastucture, i.e. the injection point at INRIM in Turin, the 642 km-long fiber link
and the LENS end-user in Florence.
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3.2 Optical fiber link to a remote metrology institute

Figure 3.12: Optical fiber link between Turin (Torino) and Florence (FIrenze) infrastucture
with the Erbium Doped Fiber Amplifiers locations. Image taken from [146].

The INRIM injection point

The optical reference oscillator and the primary frequency standards are located at
INRIM. The reference laser is an ultranarrow laser at 1542.14 nm. The laser source
is a single-frequency Distributed-Feedback (DFB) fiber laser (Koheras-Adjustik by
NKT Photonics), centered on the channel 44 of the ITU grid (1542.14 nm). The
laser frequency can be coarsely tuned adjusting the laser temperature, while the
fine tuning is achieved with a 100 kHz bandwidth piezo-stretcher. Similarly to the
578 nm laser of section 3.1, the 1542 nm laser is locked to an ULE reference cavity.
Due to the low bandwidth of the low-noise high-voltage amplifier used to drive the
piezo, its effectiveness is limited below 100 Hz, so an AOM is used as fast actuator,
for a total locking bandwidth on the ULE cavity of 100 kHz. The ULE cavity
is stabilized around 22 °C. Due to technical reasons, this temperature is far from
the estimated zero CTE temperature (between 0 and 10 °C), resulting in a thermal
sensitivity of ∼ 6 MHz/K and a drift of the laser of the order of 1 Hz/s.

As the reference laser is locked on an ULE cavity, it shows a good short-term
stability, but it is dominated by thermal induced fluctuations of the reference cavity
on a long-term scale. In order to deliver a optical signal which is stable in time, the
laser is referenced to the INRIMHM1 hydrongen maser and this is done through an
optical fiber comb (MenloSystems model FC1500-250-WG). HM1 has two outputs
in the RF domain, one at 10 MHz and one at 100 MHz. The former is used to
stabilize the CEO frequency of the comb, while the latter is frequency multiplied
to 1 GHz and used to stabilize the 4th harmonic of the comb repetition rate. Since
the comb is located in another floor of the INRIM building, the reference laser
is split and a fraction of the 1.5 µm light is delivered to the frequency comb via
100 m long optical fiber. Also the phase noise introduced by this relatively short
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Figure 3.13: Scheme of the metrological chain at INRIM station. The reference oscillator
is a distributed-feedback (DFB) laser locked to an ULE cavity with the laser piezo and
a fiber-couled AOM (ULE AOM). The drift of the reference laser is measured with an
optical frequency comb stabilized on an hydrogen maser and compensated by a digital PI
servo acting on an AOM (drift AOM). The maser is calibrated against the IT-CsF2 cesium
fountain clock.

fiber span is canceled with a FNC scheme analogous to that of the INRIM-LENS
link. The reference laser frequency is then measured by the frequency comb, and
a digital PI algorithm is used to correct and compensate for the ULE reference
cavity drift by acting on an fiber-coupled AOM placed at the laser output. This
allows the reference laser to inherit the hydrogen maser long-term stability and a
drift-free (or "dedrifted") frequency is distributed through the optical fiber link. The
HM1 frequency is continuously measured against the INRIM’s Cs fountain clock
IT-CsF2, in order to measure the maser frequency fluctuations and drifts, typically
below of few parts in 10−15 for several days of operation.

The INRIM side also hosts all the optical and electronic apparatuses responsible
for the fiber noise cancellation of the optical link. The scheme is relatively simple
and is reported in Fig. 3.14. Before the injection of the fiber link, a fiber-coupled
splitter delivers a fraction of the light to Faraday mirror1, which reflects it towards a
photodiode (PD). The light travels through a fiber-coupled AOM (AOM1 operating
around 40 MHz) and then enters the fiber link. In Florence, after a second 40
MHz AOM (AOM2), another splitter withdraws a part of the incoming light and a
Faraday mirror reflect it back to INRIM side. At INRIM, the back-reflected signal
is also delivered to the photodiode PD and the beatnote between the original and

1Faraday mirrors are adopted at both ends in order to avoid polarization fluctuations of the signal
induced by the fiber birifrangence: Faraday mirrors non only reflect the light but also rotate the light
polarization by 90 °C, so that the back-reflected light experiences polarization fluctuations which are
opposite to those experienced by incoming light.
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Figure 3.14: Schematic of the Fiber Noise Cancellation scheme implemented at the INRIM
side of the fiber link. The 160 MHz beatnote between the original and back-reflected light
is detected by a fiber coupled photodiode, high pass filtered and amplified. A tracking VCO
with a 200 kHz bandwidth cleans and regenerate the beatnote signal which is divided by a
factor 1280 and fed to a mixer working a phase detector. The mixer compares the beatnote
with a 125 kHz stable signal, and its output is used as error signal for an analog PI servo
amplifier that corrects the fiber link phase noise acting on AOM1.

the reflected light is detected. An optical filer before the photodiode filters out part
the noise induced by spurious back-reflections along the fiber and ASE (amplified
spontaneous emission, see next section). The 160 MHz beatnote is further cleaned
by a tracking VCO (Voltage-Controlled Oscillator) with a 200 kHz bandwidth,
whose output is a perfect copy of the beatnote within the bandwidth. The VCO
output is divided by 12802 and compared through quadrature mixing with a 125
kHz stable reference (the H-maser 10 MHz divided by 80), in order to obtain a
phase error. The mixer output is fed to PI stage whose output is used to modulate
the frequency of AOM1 in order to correct the fiber phase noise. The bandwidth of
this PLL (Phase-Lock Loop) is ∼ 50 Hz, limited by the round-trip time.

As a final note, it should be mentioned that, as a consequence of shocks or
fluctuations of the beatnote SNR, the FNC scheme may experience phase-slips, i.e.
sudden relocks of the PLL in different working points, that induce undesired offsets
of the delivered frequency. The occurrence of phase-slips is detected with a second,
independent VCO, not shown in Fig. 3.14, that tracks the round-trip beatnote. The
outputs of the this VCO and of the FNC VCO are synchronously counted and all
measurements differing bymore than 0.4Hz identify the occurrence of phase jumps.
This threshold is chosen according to the minimum slips amplitude, i.e. 1 cycle,
that is detected as a 1-Hz frequency outlier on a gate time of 1 s. With this redundant

2The beatnote is divided by this large factor in order to increase the dynamic range of the mixer.
In long fiber links, due to the low correction bandwidth, the uncompensated high frequency noise can
induce phase jumps if the dynamic range of the phase detector is limited. An exhaustive discussion
about this subject can be found in [146].
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beatnote tracking, the occurrence of phase-slips is continuously monitored during
measurements, so that it is possible to assign an uncertainty to the disseminated
frequency.

The fiber Link

As stated above, the transmission of the optical reference oscillator from Turin to
Florence would not be possible without a stepwise amplification of the signal due to
the attenuation of the 640 km long fiber. For this reason, a total of 9 Erbium Doped
Fiber Amplifiers (EDFA) have been installed along the path. EDFA are widely used
in long-haul optical telecommunications and have been optimized during the years
to achieve high gain, large bandwidth, and an adequate SNR. An EDFA is basically
nothing else than a fiber laser without feedback, which amplifies the original signal
maintaining its coherence properties. Typically these devices are unidirectional, but
in coherent optical links there is a further requirement: the optical amplifier must
be symmetrical, i. e. the optical path must be the same in the two directions. This
is requested in order to effectively cancel the fiber phase noise. The development
and proper operation of symmetrical EDFA in the fiber link needed an additional
effort, in order to overcome the difficulties given by the amplifiers noise sources.

Optical amplifiers, aswell as lasers, are indeed affected by spontaneous emission
since not all the electrons decay from the excited level to the ground state through
stimulated emission: some of them decay by spontaneous emission, and therefore
are no longer coherent with the input signal. The spontaneously emitted photons
may in turn be amplified, resulting in a degradation of the SNR. This process is
usually referred to as Amplified Spontaneous Emission (ASE). ASE optical power
forms a pedestal around the frequency peak, which may be several nanometers
wide and is the most important source of wideband noise in optical amplifiers. The
presence of ASE is evenmore problematic in a chain of EFDA, as the ASE produced
by every amplifier saturates the gain of the next amplification stage and decreases
the signal-to-noise ratio at detection. To mitigate the effect of ASE, the radiation is
optically filtered at most sites with standard telecom filters with FWHM ∼ 0.8 nm.
Nevertheless, the amplifiers ASE still represents a source of noise in the optical
fiber link. In addition to this, other phenomena related to the propagation along the
fiber, such as double Rayleigh backscattering [146], contribute to the deterioration
of the spectral properties of the fiber noise beatnote, compromising its effectiveness.
Also these effects were taken into account in the implementation of the fiber link
and an exhaustive discussion on their nature and the countermeasures adopted to
minimize them can be found in Ref. [146].

The analysis of the fiber link performances is reported in [51]. Figure 3.15a
shows the noise spectrum of the full 1284 km round-trip, with and without com-
pensation of the fiber noise. It can be seen that the adoption of the FNC scheme
is effective to cancel the fiber phase noise up to 20 Hz with nearly 40 dB of noise
suppression at 1 Hz and an even higher 70 dB suppression on 100 s timescale.
Figure 3.15b shows instead the frequency stability of the 1284 km fiber link, ex-
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Figure 3.15: a) Phase noise PSD of the uncompensated (black) and compensated (red)
link. A significant noise reduction is clearly visible up to the 10 Hz level, especially effective
in the very low frequency region (up to 70 dB on 100 s timescales). The blue curve is the
predicted noise of the theoretical model [51]. b) Frequency stability of the uncompensated
and compensated link with the same color code. The blue points are the frequency stability
at long times obtained applying a stronger data filtering (5 mHz). Figures taken from [51].

pressed in terms of Allan deviation (see appendix C) of the time series filtered
with different bandwidths [51, 146]. From the graph it is evident how the noise
cancellation allows for an improvement of the frequency stability at 1 second by
two orders of magnitude, from 10−12 to 1×10−14 on a 1 Hz bandwidth. An ultimate
frequency stability of the compensated link of 5×10−19 can be reached after 1000 s
of integration time, with a 5 mHz bandwidth data filtering.

The LENS end-user

At LENS, the light of the reference laser is compared with the light of the 578 nm
laser in order to stabilize the long term drift of the latter on the former. This goal can
be achieved by optically locking a frequency comb (see appendix B) to the optical
reference at 1542 nm and using it to measure the local 578 nm laser. Unfortunately,
the optical power of the reference laser at the LENS end of the fiber link is of the
order of 40 nW, too low for a proper optical lock of the frequency comb. In order to
increase the optical power, a regeneration laser has been installed in the laboratory
where the end of the fiber link is located.

The regeneration laser is a high-performance and cost effective diode laser
module built by Redfern Integrated Optics (RIO). The module contains a Planar
External Cavity Laser, with an integrated Bragg grating forming a laser cavity, as
well as the electronics for current modulation. Coarse frequency and optical power
adjustments are made by acting on the diode temperature, while fine tuning of
the diode frequency is provided by current modulation. The heterodyne beatnote
beatnote between the regeneration laser and the reference laser is detected and
compared with a stable 100 MHz RF reference with a phase comparator. The
output of the comparator acts on the RIO current in order to obtain a PLL with the
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Figure 3.16: Scheme of the Florence side of the optical fiber link. The heterodyne beatnote
between the incoming light and a local 1542 nm laser is detected with a photodiode and is
used to phase-lock it to the optical fiber link light with a PLL. The phase-locked regeneration
laser is then delivered to Ytterbium lab with a 150 m long uncompensated fiber. There it
serves as optical reference to lock a frequency comb, which is used to measure the 1156 nm
laser frequency.
This enables the stabilization of the ultranarrow laser on the fiber link with a digital PI
controller acting on the 578 nm laser ULE cavity AOM, as explained in the next section.

reference laser with a 100 kHz bandwidth. The regeneration laser output power
is of a few mW, and is delivered to the Ytterbium laboratory via a 150 m long
optical fiber. This fiber span introduces a frequency instability below 10−15, which
is beyond our stability goal, so no fiber noise cancellation has been implemented
up to now. In the Ytterbium lab, an optical frequency comb is stabilized on the
regenerated optical reference by means of optical lock technique (see appendix
B), thus inheriting the 10−14 stability at 1 s of the 1542 nm reference laser at
the end-point of the optical fiber link. A dedicated all-fiber Beat Detection Unit
(BDU) detects the beatnote between the 1156 nm infrared light of our ultranarrow
laser, withdrawn before the frequency doubling (see section 3.1) and delivered to
the comb’s BDU with a 10 m-long, uncompensated optical fiber, and the closest
tooth of the frequency comb. This allowed us first to characterize our ultranarrow
laser long-term stability against the H-maser-stabilized 1542 nm reference laser,
subsequently to develop a digital PI feedback algorithm to cancel the laser drift.

3.2.3 Ultranarrow laser characterization

As already mentioned in section 3.1.5, the main limitation of our laser system
stability is a residual erratic drift of the order of 0.1 Hz/s, which is present despite
the adoption of a feed-forward system to cancel the measured ULE cavity linear
aging drift. As a consequence, our laser system is not suitable for experiments
which rely on the interrogation of the clock transition over timescales of the hour
or longer, since it requires periodic recalibration with spectroscopic measurements.
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Figure 3.17: The points represent the measured beatnote between the 1156 nm laser and the
comb locked to the 1542 nm optical reference for two consecutive days (blue and orange).
The lines represent the fit of the single days data with the simple model of Eq. (3.4). The
two curves are not compatible, evidencing an underlying more complex behavior.

Exploiting the optical fiber link described in the previous section, we measured
the frequency of the 1156 nm laser locked to the ULE cavity for two consecutive
days against the 1542 nm optical reference, in order to analyze the behavior of the
ULE cavity drift. The results are reported in Fig. 3.17. In the figure, the data of two
consecutive days of measurements are represented by the blue and orange points.
We fit the two single-day datasets with a simple model:

y0 + mx + A sin(2πωx + φ) (3.4)

given by the sum of a linear (aging) drift and an oscillation, introduced, for example,
a residual oscillation of the temperature stabilization. Both datasets show an
oscillation on several hours timescale (∼ 11.5 hours and ∼ 12.5 hours from the
first and second day respectively) with an amplitude of the order of a few hundreds
Hz (370 Hz and 190 Hz). These oscillations can be ascribed to imperfections in the
thermal stabilization systems, like an excessive loop gain or thermal voltages and/or
ground loops that slightly shift the setpoint of the analog frontend (see section
3.1.3). On the other hand, the data suggest that other phenomena may induce
frequency fluctuations on longer timescales, since it is evident that the two fits are
not compatible. This means that the simple model of Eq. (3.4) is not suitable to
reliably forecast the underlying behavior of the system, which could be in principle
used to improve the feed-forward. For this reason an active correction of the laser
frequency has been implemented exploiting the optical frequency dissemination.

Exploiting the optical fiber link we also measured the power-induced deforma-
tions of the ULE cavity and the laser frequency sensitivity to residual amplitude
modulation of the PDH signal. For the former, we measured the 1156 nm laser
frequency with the frequency comb stabilized on the 1542 nm optical reference for
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different power values of the light coupled in the ULE cavity, obtaining a sensitivity
of 24 Hz/µW. This value is approximately three times lower than the estimation of
Ref. [138]. Regarding the RAM, we observed that the offset of our Pound-Drever-
Hall error signal monitored on an oscilloscope fluctuates approximately within a
range of approximately ±5 mV on a daily basis. In order to measure the corre-
sponding laser frequency variation we manually changed the PDH signal offset up
to ±30 mV and measured the laser frequency shift. The measured sensitivity is
2.9 Hz/mV, hence the observed RAM could induce frequency fluctuations of the
order of approximately ±14.5 Hz.

These measurements show that several improvements can be made on the
laser system to enhance its performances, for example improvements in the ULE
temperature controller, an active stabilization of the PDH EOM temperature to
reduce RAM and lowering the power coupled into the ULE cavity. Nevertheless,
the exact origin of the residual day-to-day fluctuations remains as of today unknown.

3.2.4 Long-term stabilization on the optical fiber link

In order to eliminate the observed long-term fluctuations, the 1156 nm laser fre-
quency is disciplined to the H-maser-stabilized optical fiber link. This is imple-
mented with a digital PI servo-controller algorithm running on the comb control
PC, which essentially acts on the ULE AOM (AOM2 in Fig. 3.7) frequency in order
to stabilize the beatnote between the 1156 nm laser and the H-maser-stabilized
frequency comb. The beatnote is read in λ-mode (i.e. a 1 s gate time reading is the
result of an average over multiple sub-second readings [161]) by the comb counter
software FXQE80 and recorded in a log file. The PI algorithm reads the log file and
averages over the last 20 counter readings, meaning a τav = 20 s averaging time,
which is the timescale below which no correction is needed since the 578 nm laser
has a better stability than the 1542 nm optical reference (see below). This averaged
beatnote frequency is compared with a setpoint frequency to obtain an error signal
ε and the PI correction is computed by the algorithm as:

fout = f0 + KPε + KI

∑
ε (3.5)

where KP and KI are the proportional and integral constants, respectively, and f0 is
the ULE AOM initial frequency. The new frequency fout is directly loaded by the
PI algorithm on the Direct-Digital-Synthesizer (DDS) (model AD9910 mounted on
an UG-207 evaluation board) that drives the ULE AOM. Additional details on this
subject can be found in Ref. [162], which contains an exhaustive description of the
setup and the software. In this way our laser systems benefits from the improved
long-term stability of the 1542 nm optical reference, retaining at the same time its
own short-term frequency stability for timescales below the averaging time τav.
On these timescale, the 1156 nm stability is higher that the 1542 nm reference.
This can be clearly seen in Fig. 3.18a. The blue curve represents the frequency
noise of the 1542 nm optical frequency measured at INRIM with an independent
ultrastable laser. The dark grey curve represents the spectrum of the frequency
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Figure 3.18: a. Red line: frequency noise of the beatnote between the 1156 nm laser and
the reference laser at 1542 nm; blue line: frequency noise of the HM-disciplined 1542 nm
laser measured at INRIM; black line: expected contribution of the optical link. All the
spectra are referred to the 1156-nm spectral region. b. Blue line (circles): fractional
frequency instability (Allan deviation) of the HM-disciplined 1542 nm laser measured at
INRIM; red line (triangles): Allan deviation of the beatnote between the reference laser
at 1542 nm and the 1156 nm laser, locked to it; green line (diamonds): Allan deviation
of the beatnote between the 1542 nm reference laser and the 1156 nm laser when a linear
drift of 0.1 Hz/s is removed off-line. All measurements are taken with 0.5 Hz measurement
bandwidth.

noise introduced by the fiber link. The ∼ 30 Hz bandwidth of the fiber noise
cancellation is clearly visible. The red trace is the noise spectrum of the beatnote
between the 1156 nm laser and the 1542 nm optical reference. All the curves are
referred to the 1156 nm spectral region. The red curve coincides with the worse
between the 1542 nm and the link noise for all Fourier frequencies down to 0.1 Hz,
with the exception of the spectral region between 1 and 30 Hz. However, in this
spectral region the effectiveness of the FNC (and so the noise level) is dependent
on the environmental conditions, so the discrepancy between the red and dark gray
curves can be ascribed to different conditions in different acquisition periods. In
conclusion, Fig. 3.18a shows that the 1156 nm laser has a better frequency stability
than the 1542 nm reference for Fourier frequencies higher than 0.1 Hz.

The situation is different at longer timescales, as shown in Fig. 3.18b. The
green curve is the Allan deviation of the drifting 1156 nm laser measured against
the 1542 nm optical reference and the blue curve is the Allan deviation of the
1542 nm optical reference. The two curves coincide up to 30 s, meaning that up to
this timescale the stability of the 1156 is better than the 1542 nm. For this reason
we choose a similar timescale averaging time τav (20 s) of our digital feedback.
The Allan deviation of the 1156 nm laser disciplined to the 1542 optical reference
is represented by the red curve. The long-term drift and fluctuations of the 1156
laser are suppressed, and its stability reaches the 10−15 level at 1000 s integration
time.

In chapter 4, it will be demonstrated that also the excellent accuracy of the
1542 nm optical reference, when referred to a primary Cs frequency standard, can
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be transferred from a metrological institute to a remote, non-metrological research
laboratory. This will be proved performing long-term, high-accuracy spectroscopy
of the 1S0 →

3P0 transition in a quantum degenerate gas of 173Yb.
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Chapter 4

Addressing the 173Yb clock
transition beyond the GPS limit

At the end of the previous chapter (see section 3.2), we described the technique
employed to refer our ultranarrow 578 nm laser to an optical frequency reference
at 1542 nm generated in the Italian National Metrology Institute (INRIM) and
traced to the SI second in order to improve its long-term stability. In this chapter
we show that, through this metrological chain, typical accuracies of the order
10−15 can be transferred from primary standards to non-metrological end-users
in short timescales below 104 s, whereas the GPS dissemination method would
only grant an accuracy of 10−13 [149]. Exploiting this absolute reference, we
performing high-accuracy spectroscopy of the 173Yb 1S0 →

3P0 clock transition,
determining its absolute frequency with an accuracy of 10−14 [56], limited by the
systematic uncertainty of our end-user laboratory. Noticeably, this value exceeds
by 20 times the uncertainty attainable with a GPS-based frequency transfer on the
same timescale [149]. With this measurement we demonstrate the effectiveness of a
long-haul optical for frequency dissemination beyond the GPS limit. This features
a potential fallout on a wealth of applications ranging from scientific research to
industrial development and production processes. Furthermore, our results could
readily be exploited for the investigation of true many-body quantum physics in
AEL atomic systems [26], and for the application of novel promising quantum
information schemes [28–30] where the frequency precision and the coherence of a
manipulation laser on typical experimental timescales are of the highest importance.

In the first part of this chapter, the properties of the 1S0 →
3P0 and of the

metastable 3P0 state are described, in particular it will be shown the mechanism
that enables the excitation of this doubly forbidden transition in fermions and
bosons. We will then review how to perform Doppler-free spectroscopy of the
clock transition, in which the observed linewidth is only limited by the power
broadening of the transition and show some basic experimental results. The last
part is instead dedicated to the description of the high-accuracy measurement of
the absolute frequency of the clock transition, including a discussion on the main
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4 Addressing the 173Yb clock transition beyond the GPS limit

sources of uncertainty.

4.1 The 1S0→
3P0 clock transition

The doubly-forbidden 1S0 →
3P0 represents one of the distinctive features of the

Ytterbium atom and of AEL atoms in general. Indeed, several schemes of quan-
tum simulation [26] and quantum information [28–30] with AEL atoms rely on
the possibility to excite the atoms to the metastable level 3P0, which represents an
additional degree of freedom that alkali atoms are lacking. The direct excitation
of the clock transition has so far been achieved in three isotopes, 174Yb, 171Yb
and 173Yb [163–165]. Its absolute frequency is know with great accuracy for two
isotopes, 174Yb and 171Yb, and are respectively 518 294 025 309 217.8 (0.9) Hz
[163] and 518 295 836 590 865.2 (0.7) Hz [164]. The clock transition frequency
in 173Yb is know only with a 4.4 kHz uncertainty, substantially because no op-
tical atomic clock is based on such isotope as of today. Its numerical value is
518 294 576 847.6 (4.4) kHz [165] and in the last part of this chapter we give the
results of our independent measurement which improves this result by two orders
of magnitude.

The excitation of the 1S0→
3P0 is in principle double forbidden, since it violates

both the total spin selection rule ∆S = 0 and the total eletronic angular momentum
selection rule which forbids J = 0→ J ′ = 0 transitions. Nevertheless, the total spin
selection rule is strict only in the LS approximation and can by violated due to the
presence of spin-orbit interaction which mixes spin-singlet (S = 0) and spin-triplet
states (S = 1), so that S is no longer a good quantum number. For example, the real
���
3P1

〉
state will be a mixing between the pure LS eigenstates ���

1P0
1

〉
and ���

3P0
1

〉
[166]:

���
3P1

〉
= α

���
3P0

1

〉
+ β

���
1P0

1

〉
. (4.1)

Since the ���
1P0

1

〉
state is coupled to the ground state by an electric dipole transition,

the ���
3P1

〉
state will inherits a dipole coupling with the ground state because of

β , 0. In Ytterbium, the 1S0 →
3P0 intercombination transition has a natural

linewidth of Γ = 2π × 181 kHz, and is exploited for the MOT cooling stage, as
already mentioned in section 2.2.1.

The fermionic isotopes of Ytterbium are also characterized by a non zero
nuclear spin I (I = 1/2 for 171Yb and I = 5/2 for 173Yb) that gives rise to a
non zero nuclear magnetic moment µN . This magnetic moment interacts by the
magnetic field generated by the electrons. This interaction provides an additional
state-mixing mechanism between states having the same total spin F = J + I, so J
is no longer a good quantum number. As a result, the 3P0 (F = 5/2 in 173Yb) state
will be mixed with the 3P1 (F = 5/2) state [166]:

���
3P0

〉
=

���
3P0

0

〉
+ α0

���
3P1

〉
, (4.2)
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where α0 is very small (i.e. 10−4 for 87Sr [166]) and the state ���
3P1

〉
was defined

in Eq. (4.1)1. Since a small admixture of the pure ���
1P1

〉
state is present in ���

3P1
〉
,

also in this case a very tiny electric dipole matrix element is inherited by the ���
3P1

〉
state. The exact mixing and the consequent matrix element of the transition can be
accurately estimated by relativistic many-body calculations [167, 168], obtaining a
natural linewidths of the clock Γ = 2π × 7 mHz and Γ = 2π × 6 mHz for 173Yb
and 171Yb respectively. Such a small linewidth implies a saturation intensity of the
order of 10−9 mW/cm2, which is an extremely low value in typical experimental
setups. As shown in section 4.2.2, due to this property, even with a relatively
modest intensity it is possible to drive coherent Rabi oscillation at frequencies of a
few kHz.

For sake of completeness, let us consider the case of bosonic isotopes, which
have zero nuclear spin and show no hyperfine interaction. For this reason, J is a
good quantum number and the clock transition is in principle strictly forbidden. In
this case the mixing between the 3P0 and the 3P1 state is induced by the application
of a static magnetic field [169, 170]. By labeling the states ���

1S0
〉
, ���

3P0
〉
and ���

3P1
〉

respectively as |1〉, |2〉 and |3〉, with the application of a static magnetic field B, the
state |2〉 will be mixed with the state |3〉, forming the state:

��2′
〉
= |2〉 +

ωB

∆32
|3〉 , (4.3)

whereωB = 〈2| µ̂ ·B |3〉, with µ̂ being the magnetic dipole operator, is the coupling
and ∆32 is the energy difference between the states |2〉 and |3〉. Since the ground
state |1〉 is coupled to the state |3〉 by the Rabi frequency ΩL = 〈3| d̂ · E |1〉, with d̂
being the electric dipole operator and E the laser electric field, the Rabi frequency
and the broadening associated to the |1〉 → |2′〉 transition will be given by:

Ω12′ =
ΩBΩL

∆32
, Γ12′ = Γ13

Ω2
L/4 +Ω

2
B

∆2
32

, (4.4)

where Γ13 is the natural linewidth of the |1〉 → |3〉 transition which implies a natural
broadening Γ of the order of the µHz [169]. In particular it can be shown that:

Ω12′ = α
√

I |B|, (4.5)

where I is the intensity of the probe (clock) laser and α = 186 Hz/(T
√
mW/cm2) for

Ytterbium. According to this relation, a probe beam of 20mW focused on a 100 µm
waist with a field of 20 G would induce a Rabi frequency Ω12′/(2π) ' 15 Hz. It is
worth noticing that the excitation of the clock transition in bosonic isotopes requires
a much higher power with respect to the case of fermions.

1Other terms with the same F are also mixed in the ���
3P0

〉
state, but with much lower coefficients,

so they have been neglected for sake of clarity. See Ref. [166] for details.
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Figure 4.1: Due to the hyperfine interaction that mixes the 3P0 state with the 3P1, the excited
state Lande g-factor geF is different than in the ground state ggF , implying a different Zeeman
splitting∆B at finitemagnetic field. The effect is that the clock transition is shifted by a factor
proportional to δg and to the nuclear spin mF . The Clebsch-Gordan coefficients CmF ,m

′
F

of the different transition are directly inherited from the 1S0 (F = 5/2) → 3P1 (F = 5/2)
transition (see appendix A).

4.1.1 Magnetic field splitting

As already mentioned, the electronic angular momentum J of the metastable 3P0 is
zero, like in the ground state 1S0, and therefore no hyperfine structure is present. In
the fermionic isotopes with non-zero nuclear spin, a magnetic structure is present,
and the Zeeman shift of each mF state, as already discussed in section 1.3.1, is
given by ∆EZ (B) = gFmF µBB, where gF is the Landé g-factor and µB the Bohr
magneton. The Landé factor is given by Eqs. (1.49-1.50) and for the pure 3P0 state
it the same as for the 1S0 state. In this ideal case, the clock transition, which is
sensitive to the differential Zeeman shift between the 1S0 and 3P0 states, would not
be influenced by the presence of the magnetic field. However, also in this case, due
to the nuclear spin-induced mixing with the 3P1 state, the electronic wavefunction
of the 3P0 is distorted and the Landé g-factor gF will be slightly different with
respect to the ground state. As a consequence, focusing of the case of 173Yb, the
different transitions 1S0 (F = 5/2,mF ) → 3P0 (F ′ = 5/2,m′F ) will be subjected to
a linear Zeeman shift given by [166]:

∆B = δgm′F µBB, (4.6)

where δg = geF − g
g
F is the differential Landè g-factor, with g

g
F and geF being

the Landè g-factors of the ground and metastable state respectively (see Fig. 4.1).
The differential Landè g-factor has been theoretically determined in [168] and
determines a Zeeman shift∆B ' mF B×113Hz/G·h. Themagnetic fields calculated
from the atomic transition spectra (see section 4.3.2) are compatible with the values
determined with other methods, so this value of the clock transition linear Zeeman
shift will be assumed, in the following parts of this thesis. With typical clock
transition linewidth of the order of 100 Hz, each nuclear spin state can be separately
addressed with a magnetic field of just a few Gauss. As a final note it shall be
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mentioned that the line strength of the individual 1S0 (F = 5/2,mF ) → 3P0 (F ′ =
5/2,m′F ) transitions are proportional to the Clebsch-Gordan coefficients CmF ,m

′
F
,

which are directly inherited from the 1S0 (F = 5/2,mF ) → 3P1 (F ′ = 5/2,m′F )
transitions (see appendix A).

4.1.2 The magic wavelength and orbital-dependent optical lattices

Typically in experiments, the excitation of the clock transition is performed on
atomic samples confined in deep optical lattices, which enable the possibility to
perform Doppler-free, recoil-free spectroscopy of the clock transition, as we will
see in section 4.2.1. As discussed in section 1.1.1, dipole potentials are intrinsi-
cally state-dependent, meaning that they depend on the transitions frequencies and
linewidth from the considered electronic state. Since the ground and the metastable
state are connected to the excited states via different transitions, the two state will
experience quite different dipole potentials. Considering the transitions reported
in appendix A, the dipole potentials for the 1S0 and 3P0 states can be calculated
using Eq. (1.12) and are plotted in Fig. 4.2 as a function of the wavelength. A more
accurate evaluation of the exact dipole potential requires relativistic many-body cal-
culations of the energies and matrix elements and has been carried out in Ref. [76],
but this is beyond the scope of this work. Away from resonances, the light shift
of the ground state is dominated by the presence of the 1S0 →

1P1 electric dipole
transition, while the narrow 1S0 →

3P1 transition only have an effect at relatively
small detuning. The dipole potential for the metastable state is instead dominated
in the visible by the 3P0 →

3S1 transition at 649 nm and the 3P0 →
3D1 transition

at 1389 nm in the infrared region (see appendix A).
From this plot it can be see that it is possible to obtain very different configura-

tion of differential dipole potential between the two states. Particularly interesting
are the so-called "magic wavelengths", for which the light shift for the two states is
the same in bothmagnitude and sign. This condition is satisfied for threewavelength
in the visible and near-infrared region, around 450 nm, 550 nm and 750 nm. The
last wavelength is detuned from all the transitions, and is particularly suitable for
the realization of optical lattices. A more accurate value of this wavelength is given
in [76], namely 759 nm, and has been experimentally determined in 171Yb and 174.
This subject will be further discussed in section 4.3.1, where the measured valued
for 173Yb will be given. Performing experiments in optical lattices at the magic
wavelength is advantageous, in particular in optical atomic clocks [23, 110], since
operating at the magic wavelength minimizes the frequency shift and broadening
of the clock transition, due to the fact that the differential light shift between the
ground and metastable states is null.

Another noticeable wavelength value is the so-called "anti-magic wavelength",
for which the light shift experienced by the ground and metastable state is equal
in magnitude but opposite in sign. This transition is located around 1115 nm, and
atoms in the ground and metastable state loaded in a lattice at this wavelength will
localize in the intensity maxima and minima respectively. This spatial "dislocation"
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Figure 4.2: Approximate light shift for the ground state (in blue) and for the metastable
state (in yellow) as a function of the wavelength in visible and near-IR region calculated
using Eq. (1.12). The dashed lines mark the magic and antimagic wavelengths. The circle
clearly identifies the location of the magic wavelength around 750 nm. This estimation is
corrected in Ref. [76], obtaining a more accurate value of 759 nm.

of the two electronic states is particularly interesting for the implementation of
artificial gauge fields [37].

Finally, it should be mentioned the case of lattice wavelengths for which the
two states experience different magnitude of light shift. Atoms loaded in a lattice
operating at such wavelength, would be almost free or tightly localized depending
on their electronic state, realizing a state-dependent optical lattice. For example,
for λ = 670 nm, near the 649 nm 3P0→

3S1, the ratio between the light shift for the
metastable and ground state is approximately 3.6, so a shallow s = optical lattice
for the 1S0 would be a rather deep s = 18 optical lattice for atoms in the metastable
state. This condition is particularly interesting for the implementation of the Kondo
lattice model [35, 42], in which the mobile ground state atoms will represent the
electrons and the localized metastable state atoms play the role of the magnetic
impurities. Moreover, a state dependent optical lattice could represent a valuable
tool to study the structure of the lowest lattice band in exotic lattice configurations,
simply performing clock transition spectroscopy. Indeed, the 3P0 state would show
a very flat lowest lattice band, as further discussed in the Conclusions.

4.2 Clock transition spectroscopy

As mentioned before, the most important peculiarity of the clock transition is
represented by its extremely narrow natural linewidth. In order to exploit it, it is
necessary to minimize all the effects that may lead to a broadening of the transition.
The main limitation in this sense is represented by the Doppler broadening of the
transition. If probed in free space, the clock transition has a Gaussian profile with
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FWHM given by:

∆νD =
1
λ0

√
8ln(2)kBT

m
, (4.7)

where kB is the Boltzmann constant, T the temperature and m the atomic mass.
Due to weak dependence on T , even at very low temperatures this broadening is the
dominant term, being still approximately 3 kHz at 10 nK. Standard Doppler-free
techniques, like saturation spectroscopy, are not feasible since the signal is provided
by only that fraction of atoms with velocity v slow enough to satisfy the relations
k · v < Γ, with k being the probe laser wavevector, resulting in an extremely low
SNR.Moreover, during the spectroscopic process, the atoms acquire a recoil energy,
which shifts the resonance frequency. For this reason, clock transition spectroscopy
is typically performed in deep optical lattices, which freeze the motional degree of
freedom allowing for Doppler-free, recoil-free spectroscopy. This is the so-called
Lamb-Dicke regime, which will be discussed below.

4.2.1 The Lamb-Dicke regime

For simplicity, let us consider the case of a two-level |g〉 − |e〉 atom, with energy
levels ~ωg and ~ωe, in a 1D harmonic potential with harmonic frequency ωho,
interacting with a laser field of frequency ωL and wavevector k. It can be shown
[171] that the total Hamiltonian of the system in the frame rotating with the laser
field is given by:

Ĥ = −~∆ |e〉 〈e| + ~ωho

(
â†â +

1
2

)
+
~Ω
2

[
eiη(â+â†) |e〉 〈g | + e−iη(â+â†) |g〉 〈e|

]
,

(4.8)
where ∆ = ωL − (ωe − ωg) is the detuning, Ω is the Rabi frequency for the
unconfined atom at rest, â† and â are the creation and annihilation operators of the
harmonic oscillator and the parameter η is known as Lamb-Dicke parameter and is
defined as:

η =
k xho
√

2
= k

√
~

2mωho
=

√
ωrec

ωho
, (4.9)

where xho is the harmonic oscillator length and ~ωrec = ~2k2/(2m) is the recoil
energy. The eigenstates of this Hamiltonian will be given by a linear superposition
of product states of electronic and harmonic oscillator degrees of freedom:

ψ =

∞∑
n=0

(cgn |g〉 |n〉 + cen |e〉 |n〉). (4.10)

Solving the Schrödinger equation for this state and the Hamiltonian (4.8), one can
obtain a set of differential equations for cgn and cen, in which the Rabi frequency
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Figure 4.3: a. Excitation spectrum for η = 0.5. The central peak is the carrier, which
corresponds to a purely electronic excitation from |g〉 to |e〉. The blue and red sidebands,
at distance lω0, correspond to the excitation and de-excitation, respectively, of l states of
the harmonic oscillator in addition to the electronic excitation. b. Plot of the squared Rabi
freqiencies |Ωmn |

2 as a function of the Lamd-Dicke parameter η for the lowest harmonic
oscillator states (n,m = 0, . . . , 3). At very high confinement (η � 1), substantially only
the carrier is excited. For lower confinements, the sidebands start to rise, until they are
comparable with the carrier. The dashed line marks the value of η = 0.5 considered for
the spectrum in panel a.

Ω, that couples the electronic states |g〉 and |e〉 of the atom at rest, is replaced by
[171]:

Ωmn = Ω 〈m | eiη(â+â†) |n〉 . (4.11)

This Rabi frequency not only couples the electronic states |g〉 and |e〉 at resonant
frequency ω0 = ωe −ωg, but at the same time can induce |n〉 → |m〉 transitions be-
tween different states |n〉 and |m〉 of the harmonic oscillator at resonant frequencies
ω0 + ~(m − n). By expanding the exponential term in Eq. (4.11), one can find the
explicit dependence of Ωmn on the Lamb-Dicke parameter η [171, 172]:

Ωmn

Ω
=




e−η
2/2

√
n!
m!η

m−nLm−n
n (η2) if m ≥ n

e−η
2/2

√
m!
n! η

n−mLn−m
n (η2) if m < n,

(4.12)

where Lαn (x) are the Laguerre polynomials. These Rabi frequencies correspond to
a transition spectra with a purely electronic transition at frequency ω0, namely the
carrier, and a series of blue(red)-sidebands at frequency ω0 + (m − n)ωho from the
carrier, which correspond to an excitation (de-excitation) of the harmonic oscillator
states (see Fig. 4.3a). The relative amplitudes of these transitions are given by
the square of the Rabi frequencies in Eq. (4.12) and depend heavily on the Lamb-
Dicke parameter. In Fig. 4.3b, the transition amplitudes |Ωmn |

2 for the carrier and
the lowest harmonic oscillator states sidebands are plotted as a function of η. It
can be seen that for very high confinement, in the so-called Lamb-Dicke regime
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(η � 1), the excitation probability is not-negligible only for the carrier and the
first blue and red sidebands. In this case, if the natural linewidth of the transition
Γ is much lower than omegaho, the carrier and the sidebands will be individually
addressable, leading to the so-called sideband-resolved regime. Furthermore, in this
regime a Boltzmann-distributed atomic sample would tend to occupy the harmonic
oscillator ground state, so the red-sideband amplitude will be reduced with the
respect to the blue-sideband one. As the confinement ωho decreases, η increases
and more sidebands appear at decreasing frequency distance between themselves,
with an amplitude which becomes more and more comparable with the carrier
as η grows. When the separation ωho becomes smaller the the natural linewidth
Γ, carrier and sidebands are no longer resolvable, and the usual Doppler gaussian
profile is recovered, if a Boltzmann thermal population of the atoms in the harmonic
oscillator states is considered (see Ref. [171]).

In conclusion, operating in a deep Lamb-Dicke regime has the remarkable
advantage that the carrier resonance clearly occurs at ω0 and the sidebands at
ω0 ± lωho, being the recoil energy and momentum of the probe laser are taken
up by the confining potential. It should be noted that in typical experimental
configurations, the confining potential is not an harmonic potential but an optical
lattice, which shows non-flat energy bands. If the bandwidth is greater than Γ, which
for a clock transition is typically limited by the larger between the laser linewidth
and the Fourier broadening due to the finite interrogation time, then the excitation
will be momentum selective. Considering the excitation of the carrier with a probe
laser with ∼ 100 Hz linewidth, this condition typically occurs employing optical
lattices with depth s . 12. Higher lattice depths are instead necessary to probe
momentum-independent sidebands.

4.2.2 Sideband-resolved spectroscopy of the clock transition

In order to perform spectroscopy of the clock transition, we load a degenerate Fermi
gas of 173Yb atoms in a three-dimensional deep optical lattice with typical depth of
20 to 30 Erec, so that the Lamb-Dicke condition is satisfied (0.30 ≤ η ≤ 0.33). The
optical lattice wavelength is tuned at the magic value of 174Yb [173], in order to
minimize the differential light shift of the clock transition, assuming that the isotope
shift between 174Yb and 173Yb is small. A measurement of the magic wavelength
for 173Yb will be determined in section 4.3.1. Moreover, before the excitation pulse
is shone on the atomic sample, the 1064 nm crossed dipole trap (see section 2.2.1)
is switched off, so that the only trapping potential is the optical lattice.

The clock probe beam is π-polarized (see section 3.1.5) and is overlapped with
the 1064 nm dipole trap beam perpendicular to the dipole trap beam (see section
2.2.1). The probe beam is angledwith respect to all lattice beams, implying that a 3D
lattice is mandatory to be in the Lamb-Dicke regime. The beam is collimated with
1 mmwaist on the atomic sample, in order to minimize the intensity inhomogeneity
that may lead to a broadening of the transition. In these preliminar experiments,
only the 578 nm laser average linear drift (see section 3.1.3) is compensated via
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Figure 4.4: Sideband-resolved spectroscopy of a spin polarized mF = +5/2 sample. The
separation between the carrier and the blue-sideband is 15.2 ± 0.4 kHz, compatible with a
s ' 20 lattice depth.

the feed-forward described in section 3.1.5). Due to the extremely small saturation
intensity Is ∼ 10−9 mW/cm2 (see section 4.1), the transition linewidth is typically
determined by the power broadening:

Γs = Γ

√
1 +

I
Is
', Γ

√
I
Is

(4.13)

where Γ is the natural linewidth (< 10 mHz) and I is the probe beam intensity. With
a maximum power of the order of 10 mW on the atomic sample, it is possible to
broaden the transition linewidth to a few kHz, which greatly eases the identification
of the clock transition when the laser frequency is only approximately known
(typically within a few tens of kHz from the atomic transition using the method
described in section 3.1.3). The linewidth can then be narrowed simply by reducing
the probe power, until the ultimate limit represented by the laser linewidth is reached.
As already mentioned in section 3.1.5, we could observe transition with a linewidth
as small as ∼ 50 Hz also without the stabilization on the optical fiber link, but in
this configuration the transition cannot be probed for long times (∼ 5 minutes, see
section 3.1.5), due to the residual drift of our laser. For applications where the
spectroscopic limit is not required, we can increase the power in order to broaden
the transition linewidth and operate for longer times in between subsequent laser
frequency calibrations (of the order of 30 minutes to a maximum of one hour with
a linewidth of ∼ 150 Hz).

A typical spectrum for a spin-polarized mF = +5/2 Fermi gas is reported in
Fig. 4.4. The atoms are probed with 100 ms long pulses, then the remaining ground
atoms are detected by absorption spectroscopy, so that the transition signature
is a dip in the number of atoms. As discussed below, a 100 ms interrogation
time is longer than the system coherence time (∼ 30 ms, most probably limited
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Figure 4.5: Coherent Rabi oscillation of the ground state population driven with a ultra-
narrow laser intensity of ∼ 2.5 mW/cm2. The frequency is 160 Hz, leading to a pi-pulse
time of ' 3 ms. The oscillation shows a damping on a timescale of 30 ms, compatible with
a laser short-term linewidth of ∼ 40 Hz.

by the ultranarrow laser coherence time), so the excitation is performed in the
incoherent regime, in which only 50% of the ground state population is excited
to the metastable state. With a probe beam power of ∼ 20 µW, corresponding
to an intensity of ∼ 0.6 mW/cm2, the carrier and the lattice blue-sideband are
easily resolved. It should be noted that despite the fact that the sideband excitation
probability is smaller than that of the carrier, the two features have approximately
the same contrast, owing to the high saturation of the transition. We could not
observe any red-sideband, indicating the that atomic sample substantially occupies
only the lower lattice band. The separation between the two peaks is 15.2±0.4 kHz,
compatible with a s ' 20 deep lattice bandgap (15.8 kHz at s = 20). With such
separation the carrier can be easily resolved even with a few kHz power broadening,
enabling the possibility to perform fastRabi oscillation and sub-ms π and π/2 pulses.

Coherent excitation of the clock transition

The possibility to coherently excite the 1S0→
3P0 transition is a key feature for the

quantum simulation of many-body phenomena [26, 35] as well as for the imple-
mentation of quantum information schemes [28–30], since it enables the possibility
to manipulate the ground and mestastable state population in a controllable way,
without inducing decoherence in the atomic sample. For this reason, we also per-
form Rabi oscillation on the atomic samples, to verify the coherent nature of the
excitation process. An example of Rabi oscillation is reported in Fig. 4.5. With a
probe beam intensity of ∼ 2.5 mW/cm2, it is possible to drive a coherent oscillation
of 160 Hz for several cycles. The oscillation is damped on a timescale of ∼ 30 s
(τ−1 ∼ 40 Hz). This damping can be ascribed to the finite coherence time of the
excitation laser, as it would be compatible with the ≤ 50 Hz value estimated in
section 3.1.5. The figure shows a π-pulse of ∼ 3 ms, but it should be noted that
the oscillation is performed with a probe beam power of 80 µW. This value can be
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increased by a factor > 100, increasing the Rabi frequency by a factor > 10 (due to
the well-know square root scale with the intensity [60]), thus shortening the π-pulse
by an equivalent factor. A possible general constrain in this sense is represented
by the sideband-resolved condition: a too high-intensity would cause the carrier
and the sideband to overlap, with a consequent loss of coherence of the excitation
process.

4.3 Beyond-GPSabsolute frequencymeasurement of 173Yb
clock transition

While the presence of the long-term stochastic fluctuations of the ultranarrow
578 nm laser frequency (see section 3.2.3) is still acceptable for medium-precision
measurements as those described in section 4.2.2, in order to perform high-precision
measurements, the probe laser frequency has to be stabilized also on the long-term.
As discussed in section 3.2.4, this is obtained by disciplining our 578 nmultranarrow
laser to an optical frequency reference at 1542 nm, generated at INRIM and traced to
the SI second and transferred to LENS via a long-haul fiber link. By exploiting the
high degree of stability of the remotely-referenced 578 nm laser, we measured the
absolute frequency of the 1S0 →

3P0 clock transition in 173Yb with a uncertainty
of 10 Hz, reaching an accuracy of 2 × 10−14 in a timescale of 104 s [56]. This
accuracy level, which is limited by the systematic uncertainty of the experimental
apparatus and not by the remote primary frequency reference, could not be achieved
by stabilizing our laser on the GPS, since it only allows for an accuracy of 10−13 in
one day of measurements [149]. This measurement represents a demonstration that
optical fiber links can be exploited as primary frequency dissemination method,
which features a potential outcome on a wealth of applications where achieving an
ultra-high precision level is mandatory.

The advantages in terms of stability offered by referencing our ultranarrow
laser to the 1542 nm optical reference appear evident in Fig. 4.6. Here, we compare
two spectroscopic experiments carried out with and without the stabilization of our
probe laser on the 1542 nm optical reference. Spectroscopy is performed by shining
100 ms long pulses of 578 nm light with an intensity of ∼ 10 µW/cm2 on a spin-
polarized 173Yb Fermi gas at T ' 0.2TF in a 3D s = 30 optical lattice at the magic
wavelength. In particular, the transition spectra in Fig. 4.6a have been acquired with
the 578 nm laser simply locked to the ULE cavity, without any drift compensation.
Nine different dataset have been acquired in about 3 hours and 30 minutes. Each
scan takes typically 20 minutes, because of the characteristics of our setup, which
is optimized for experiments with ultracold quantum gases lasting more than 30 s
per run. In the entire duration of the experiment, the transition frequency shifted
by approximately 1300 Hz. Moreover, despite the fact that the power broadening
(∼ 50 Hz) did not change during the whole experiment, the different lines show
different widths (and/or shapes), varying between 30 and 100 Hz. This is caused
by the relative direction of frequency scan and laser drift. If the scan direction
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Figure 4.6: Long-time spectroscopy of the clock transition performed with the 578 nm
laser a not referenced and b. referenced to the 1542 nm optical frequency reference. In
panel a. the different spectra show different shapes and widths depending on the relative
scan and laser drift direction. In b. instead no fluctuations are visible and all the spectra
linewidths are ∼ 50 Hz. The horizontal axis of both figures have been rescaled so that the
zero frequency corresponds to the center of the earliest resonance.

follows the drift, the resulting linewidth is larger, if instead the scan direction is
opposite to the drift the lineshape features an "effective" reduced width. The spectra
of Fig. 4.6b have instead been acquired after having stabilized our ultranarrow
578 nm laser to the 1542 nm frequency reference over similar timescales. The data
points are averaged over 2-3 acquisitions. Here, no appreciable drift arises and
the residual fluctuations are well below the observed ≤ 50 Hz linewidth. It should
be noted that performing the same measurement with a lower power, the linewidth
can be narrowed below 30 Hz but with a reduced SNR: at resonance, the ground
state population decreases to about 70% of the initial value instead of the 50%
value expected in the incoherent excitation regime. This is an indication that the
linewidth measured in section 3.1.5 is ultimately limited by the laser stability over
the 100 ms pulse time scale. The remote long-term stabilization of the interrogation
laser represents a keynote result for the vast majority of experimental setups that
require a high degree of stability: the local sample can be employed as a "tool",
rather than as a frequency reference (as happening, in optical clocks), and in turn
the local laser can be used as a coherent manipulation device for the sample itself,
rather than as a probe.

This high degree of stability and accuracy is exploited to measure the absolute
frequency of the clock transition in 173Yb improving by two orders of magnitude
the literature value reported in Ref. [165]. Since 173Yb is a fermionic isotope with
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Figure 4.7: a. Clock transition spectra of the mF = +5/2 resonance acquired over 19000 s.
The FWHM is 40 Hz. The horizontal axis has been centered at the resonance position. b.
Full spectra of the two mF = ±5/2 nuclear spin components. The zero frequency on the
horizotal axis corresponds to a known arbitrary frequency of the probe laser.

non-zero nuclear spin, the transition frequency depends on the nuclear spin state
of the atomic sample at non-zero magnetic field. For this reason, in the following
measurements we cancel the linear Zeeman shift of the clock transition by alter-
natively probing spin-polarized samples with opposite nuclear spin mF = ±5/2 at
every experimental cycle. The obtained spectra feature two resonance, correspond-
ing to the two opposite nuclear spin states and are fitted with a double Lorentzian
curve with centers ν−5/2 and ν+5/2. The transition center is then determined as
νf it = (ν−5/2 + ν+5/2)/2.

In order to determine the absolute frequency of the clock transition, we collected
6 measurements spread over a period of three months, each consisting of a complete
scan of the transition, with typical linewidths between 40 Hz and 100 Hz FWHM
(see Fig. 4.7a). All the measurements have been carried out with a bias magnetic
field of 3.03(3) G, corresponding to a splitting of approximately 1700 Hz, which is
high enough to clearly resolve the resonances relative to the two spin components
(see Fig.4.7b). The lattice laser is tuned at the magic wavelength, and monitored
for the whole acquisition time with a residual uncertainty of 2 GHz (see section
4.3.1). In these measurements we load in the 3D lattice spin-polarized Fermi gas
with ∼ 2 × 104 atoms and a temperature of T ' 0.2TF , resulting in a negligible
population of the lattice excited band. In this regime, only one atom per lattice site
is present due to the Pauli exclusion principle, completely inhibiting the interaction-
induced shift. The atoms are interrogated with 100 ms long pulses of π-polarized
light at 578 nm. The runs had different duration, from 2000 s to 19000 s, for a total
measurement time of 40000 s. The measured frequency of the 1S0 →

3P0 clock
transition for 173Yb is:
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ν173
clock = 518 294 576 845 268 ± 10 Hz.

This measurement improves the uncertainty of a previous direct measurement [165]
by a factor 400, with an agreement between the two values. Consequently, combined
with other previous measurements [3], we improve the knowledge of the isotope
shifts of the 1S0 →

3P0 transition, which are:

ν171
clock − ν

173
clock = 1 259 745 597 ± 10 Hz,

ν173
clock − ν

174
clock = 551 536 050 ± 10 Hz.

The total measurement uncertainty is a combination of statistical (Type A) and
systematic (Type B) uncertainties.

The Type A uncertainty for each measurement is the quadratic sum of differ-
ent contributions. The first is the error of the Lorentzian fit, which is given by
σνf it = (

√
σ2
ν−5/2 + σ

2
ν+5/2 )/2, where σν±5/2 are the fit error on the peak centers. A

second contribution is the error related to the instability of the frequency combs at
INRIM and LENS (see section 3.2.2). Another contribution is represented by the
instability of the Cesium fountain on which the maser-stabilized 1542 nm optical
reference is referenced to. The total TypeA uncertainty is given by the root-squared-
sum of these four contributions and is different for each measurement, depending
on the specific run acquisition time. For the final measurement, we consider a com-
posed uncertainty of 1.9 Hz (4× 10−15 fractional frequency uncertainty), where we
considered a Student statistic for the data and a confidence level of 90%, due to the
limited number of measurements.

The Type B uncertainty considers different sources: the Cs fountain accuracy
and the phase-slips of the optical link (see section 3.2.2), which are related to the
metrological chain, and the physical effects in the end-user laboratory at LENS
which influence the clock transition frequency. The accuracy of the Cs fountain
is 2 × 10−16 [174], corresponding to 0.1 Hz at578 nm, whilst the contribution
by the phase-slips on the fiber link was < 0.1 Hz (1.5 × 10−16), measured by
redundant beatnote tracking (see section 3.2.2). We then consider several physical
effects in the experimental setup at LENS which influence the clock transition
frequency. In particular, two of them, the quadratic Zeeman effect and lattice
"magicness" are discussed in more detail in the subsequent sections (4.3.2 and
4.3.1 respectively). The quadratic Zeeman effect yields a bias of −0.59(3) Hz,
while the lattice frequency introduces an uncertainty of 8 Hz. In addition to these,
other effects are also considered. The blackbody radiation is accounted for by using
the sensitivity reported in Ref. [175]. The atoms are probed in the glass science
cell (see section 2.1.1) at thermal equilibrium with room temperature, resulting in a
frequency bias of −1.24(5) Hz for a room temperature of 298(3) K. Moreover, the
SI second is defined at the geoid gravity potential, hence the frequency reference
disseminated from INRIM is corrected for the gravitational redshift [176]. The
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Table 4.1: Uncertainty budget of the 173Yb 1S0 →
3P0 transition.

Contribution Bias (Hz) Uncertainty (Hz)

Lorentzian fit (∗) - 0.8 − 5
Cs fountain statistical (∗) - 0.9 − 2
Comb INRIM statistical (∗) - 0.4 − 1.2
Comb LENS statistical (∗) - 1 − 3
Total Type A (∗∗) - 1.9

Quadratic Zeeman -0.59 0.03
Lattice Stark - 8
Blackbody radiation -1.24 0.05
Probe laser light shift - 0.00015
Gravitation redshift 2.277 0.005
Total end-user Type B 0.5 8

Cs fountain standard accuracy - 0.1
Fiber link phase-slips (†) - 0.1-5
Total Type B (†) 0.5 9

Total (†) 0.5 10

(∗) Depending of the experimental run.
(∗∗) Composed uncertainty with Student 90% confidence level.
(†) In some measurements the phase-slips uncertainty was 5 Hz for
technical problems; in the total type B we considered the worst case
scenario.

orthometric height on the geoid of the LENS laboratory was measured during a
dedicated geodetic campaign2, and the resulting gravitational redshift is 4.81(1) ×
10−15 or 2.277(5) Hz. Finally, the probe light induces a negligible light shift
on the transition: according to the sensitivity of 15 mHz/(mW/cm2) reported in
Ref. [163] and to the laser intensity of 10 µWcm2, the light shift is 0.15 mHz, kept
as uncertainty contribution.

The uncertainty budget, together with the systematic biases, are reported in
Table 4.1. In the table, all the contributions coming from physical effects in
the LENS laboratory have been summed up in a single line, in order to clearly
distinguish it from the uncertainty introduced by the metrological chain. It is clear
that the final uncertainty of 10 Hz is by far dominated by the lattice AC-Stark shift,
with an uncertainty of 8 Hz. The final accuracy of the measurement is 2 × 10−14

over a timescale of 104 s, exceeding by a factor 20 the standard GPS accuracy over
the same timescale [149]. It should be noted that this measurement is limited by the
systematic uncertainty of the end-user laboratory. The inherent uncertainty of the
dissemination channel is limited to 2 Hz, corresponding to a relative uncertainty of

2A. Cina, private communication.
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4× 10−15. Noticeably, this beyond-GPS accuracy is achieved in timescales as short
as few hours and can be reliably reproduced over time periods of several months in
a non-metrological end-user laboratory.

4.3.1 Magic wavelength determination

As already mentioned in section 4.1.2, confining the atoms in a lattice at the magic
wavelength is crucial to maximize the measurement accuracy, since the differential
light shift induced by the trapping potential on the two involved levels is null at
the leading order. However, the lattice light introduces also other systematic shifts
due to higher-order AC-Stark shifts, like the hyperpolarizability [173, 177] and,
in fermionic isotopes as 173Yb, the vector and tensor Stark shifts [110, 164, 166].
While an accurate determination of these shifts is a fundamental concern in state-
of-the-art lattice clocks [110], their contribution is typically sub-Hz if the lattice
light is linearly polarized, as in our setup. As will be shown below, this value is
beyond the level of accuracy that can be reached in our experimental setup, so we
will consider these shifts negligible as long as the lattice laser operates at the magic
wavelength.

The magic wavelength has been previously determined with 10−7 precision
in optical lattice clock setups for 174Yb [170, 173] and 171Yb [164], with values
λm = 759.3537 nm and λm = 759.3559 nm respectively. Also the sensitivity of
differential light shift in the vicinity of the magic wavelength has been measured,
obtaining for both isotopes dα/dνmagic = −22(2) mHz/(GHz·Er ), where Er is
the lattice recoil energy. In order to determine the 173Yb magic wavelength, we
follow the approach of Ref. [170, 173] and measure the shift of the transition center
for different values of lattice depths and different lattice frequencies, stabilizing the
578 nm laser on the SI traced 1542 nm remote optical reference. The measurements
are performed at a fixed value of magnetic field B ' 3 G. The lattice frequency is
measuredwith awavelengthmeter (CoherentWaveMaster) with∼ 2GHz accuracy3
and the lattice depth ismeasured bymeans of lattice amplitudemodulation technique
(see section 1.1.2). The results of this measurement are shown in Fig. 4.8a, in which
the frequency shift is reported as a function of the lattice depth for four different
lattice frequencies (in four different colors). The points of each lattice frequency are
fitted with a linear model, and the four slopes are reported in Fig. 4.8b as a function
of the lattice frequency. A weighted linear fit to the data determines the magic
wavelength frequency as the zero-crossing of the curve, namely 394 845(5) GHz,
corresponding to 759.27(1) nm. The slope determines instead the sensitivity of
the differential light shift that is given by −0.052(1) mHz/(GHz Er ). With a lattice
depth of 30 Er and a lattice frequency uncertainty of ∼ 2 GHz, the lattice light
yields a systematic uncertainty of 8 Hz.

The values of the magic wavelength and of the differential light shift sensitivity
are slightly different than those measured for 174Yb and 171Yb. This may be caused

3The wavelength meter accuracy was estimated by repeatedly measuring the ULE-locked 578 nm
laser referenced to the optical fiber link.
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Figure 4.8: a. Shift of the clock transition center as a function of the lattice depth
for different optical lattice laser frequencies. The points have been offset to have zero
offset near the magic wavelength. b. Slopes of the lines of panel a as a function of the
lattice frequency. The zero-crossing represents the magic wavelength, corresponding to
759.27(1) nm (see text for details).

by the hyperfine interaction with different transition coupling strengths; further
investigations and additional more accurate measurement are required in order to
confirm and understand the origin of this shift. In any case, with our measurement
we found a value of lattice wavelength for which the transition frequency do not
depend on the lattice depth within ∼ 10 Hz uncertainty, indicating a minimum of
the differential light shift sensitivity.

4.3.2 Quadratic Zeeman effect

An effective method to cancel the magnetic linear shift of the clock transition is
to measure the average frequency between two opposite nuclear spin states ±mF .
This requires the application of a bias magnetic field to resolve the sublevels, giving
rise to a second order Zeeman shift ∆(2)

B that have to be taken into account. This
shift arises from the coupling between fine-structure levels mediated by the Zeeman
Hamiltonian [166] and is proportional to the square of the magnetic field:

∆
(2)
B = βB2. (4.14)

In order to determine the value of the parameter β, we measure the clock transition
center frequency for different values of magnetic field, operating the optical lattice
at the magic wavelength. For each measurement, the values of the magnetic
field is calculated from the separation between the ±5/2 peaks and considering
a linear Zeeman shift of 113 × mF Hz/G (see section4.1). The results of this
measurement are reported in Fig. 4.9a, in which the points are fitted with a quadratic
curve. From the fit we obtain β = −0.064(2) Hz/G2, comparable with the values
β = −0.07(1) Hz/G2 and β = −0.061(1) Hz/G2 measured respectively for 171Yb
[164] and 174Yb [163].
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Figure 4.9: a. Measurement of the quadratic Zeeman shift. The shift of the transition
center is measured for increasing values of the magnetic field, which is determined from
the separation between the mF ± 5/2 resonances. The points have been offset to have zero
shift at B = 0. The value of the parameter β = −0.064(2) Hz/G2 is detemined with a
quadratic fit to the points. b. Magnetic field values for a fixed coils current determined
from the separation of the mF = ±5/2 resonances. The shaded area indicates the average
and standard deviation of the points.

In order to determine the bias and the uncertainty introduced by the bias mag-
netic field, we precisely measure it from the distance between the mF = ±5/2
peaks at value of coil current used for the measurements in section 4.3.1. The
measurement of the absolute frequency is then performed at the same value of
coil current. Also in this case we use a linear Zeeman shift of 113 × mF Hz/G.
The measured values of magnetic field are represented by the circles in Fig. 4.9b.
The shaded area indicates the average and standard deviation of the data. Indeed,
by averaging the data, we determine the value of magnetic field corresponding to
the specific current value, namely B = 3.03, which leads to a frequency bias of
0.59 Hz in the measurement. The magnetic field stability is determined as the
standard deviation of the data and is σB = 0.03 G. With this values it is possible
to determine the systematic uncertainty due to the quadratic Zeeman shift, which
is given by σ

∆
(2)
B
= B2σβ + 2B βσB = 0.03 Hz.
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Chapter 5

Two-orbital spin-exchange
interactions

In this chapter we review the emergence of interorbital spin-exchange interactions
between ultracold two-electron atoms in the two lowest electronic states. This kind
of interaction represents one of the elementary building blocks of orbital quantum
magnetism and is at the base of many strongly correlated quantum phenomena in
condensed matter, ranging from heavy-Fermi behavior [36, 43, 44], to Kondo effect
[35, 42] to magnetic ordering [45, 46].

Here, we present how spin-exchange interaction arises from the coupling of
atoms in different electronic (meta)stable states and how this interaction has been
experimentally revealed and characterized in 173Yb atoms, paving the way towards
the realization of orbital magnetism in atomic systems. In particular we directly
measured the spin-exchange interaction by observing coherent oscillation driven by
the interorbital spin exchange [41]. In the last years, similar coherent spin-changing
dynamics have been observed in ground state atomic systems, arising from small
differences between the scattering length values in different collisional channels
in alkali atoms [89–92], or from second-order tunneling in an optical lattice [19].
In the case of 173Yb, not only this coherent coupling is remarkably strong in a
3D optical lattice, giving rise to very fast oscillations, but it also entangles two
stable internal degrees of freedom of the atom [178], the nuclear spin and stable
electronic states, which can be independently and coherently manipulated, opening
new realistic possibilities for both quantum information processing and quantum
simulation.

5.1 Two-body interorbital interactions

In this section we see how the signature of the two-orbital interaction can be
retrieved by performing spectroscopic experiments on a two-component Fermi gas
in a three-dimensional optical lattice. We first detail a simple theoretical model
which describes how a spin-exchange interaction arises in a pair of two-orbital
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atoms, and how the energy levels are modified by the presence of a magnetic field.
We then focus on the experimental spectrum show how the different visible peaks,
can be attributed to the different interaction processes described by the model.

5.1.1 Direct and exchange interaction

Let us start from the situation of two interacting atoms in a potential well and in
two different nuclear spin states |↑〉 and |↓〉, where the arrows are placeholders for
two arbitrary nuclear spin states. Let us introduce the possibility to excite the atoms
in the metastable 3P0 state with π-polarized clock laser light in order to conserve
the nuclear spin during the optical excitation. Let us also assume that the atoms
are characterized by the same spatial wavefunction φ(r). Imposing a global anti-
symmetrization of the wavefunction, the states that form the basis of the Hilbert
space are the following:

���ψgg

〉
= |gg〉 ⊗ |s〉 ⊗ φ(r1)φ(r2),

���ψeg

〉
s
=
|eg〉 + |ge〉
√

2
⊗ |s〉 ⊗ φ(r1)φ(r2),

���ψeg

〉
t
=
|eg〉 − |ge〉
√

2
⊗ |t〉 ⊗ φ(r1)φ(r2),

���ψgg

〉
= |ee〉 ⊗ |s〉 ⊗ φ(r1)φ(r2), (5.1)

where |g〉 and |e〉 denote an atom in the ground and excited (metastable) orbital
state respectively and |t〉 and |s〉 are the symmetric (triplet) and anti-symmetric
(singlet) two-particle nuclear spin states:

|s〉 =
|↑↓〉 − |↓↑〉
√

2
,

|t〉 =
|↑↓〉 + |↓↑〉
√

2
. (5.2)

Omitting the radial part, let us now focus the attention on the states involving atoms
in different electronic orbitals:

��eg+
〉
≡ |s〉

|eg〉 + |ge〉
√

2
=

1
2
[
|e ↑〉 |g ↓〉 − |g ↓〉 |e ↑〉 + |g ↑〉 |e ↓〉 − |e ↓〉 |g ↑〉

]
,

��eg−
〉
≡ |t〉

|eg〉 − |ge〉
√

2
=

1
2
[
|e ↑〉 |g ↓〉 − |g ↓〉 |e ↑〉 − |g ↑〉 |e ↓〉 + |e ↓〉 |g ↑〉

]
,

(5.3)

where, for simplicity, we have omitted the tensor product symbol. The explicit ex-
pression of these two states in quite cumbersome, so it is useful to find a more com-
pact notation for ��eg±

〉
states. Let us first introduce the following anti-symmetrized

two particle states:
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|e ↑, g ↓〉 =
|e ↑〉 |g ↓〉 − |g ↓〉 |e ↑〉

√
2

,

|g ↑, e ↓〉 =
|g ↑〉 |e ↓〉 − |e ↓〉 |g ↑〉

√
2

, (5.4)

in which a defined nuclear spin is associated to a specific orbital state. It is then
straightforward to see that the ��eg±

〉
states can be rewritten in term of these two

new states:

��eg±
〉
=

1
√

2
[
|e ↑, g ↓〉 ± |g ↑, e ↓〉

]
, (5.5)

This formulation is useful in order to derive a formal expression and understand
the effect of the two-body interaction potential for the states of Eq. (5.5). The
interaction potential in the four states of Eq. (5.1) can be written in terms of
pseudo-potential (sec. 1.2.1) and projector operators as [87]:

V̂ (r1 − r2) =
(
ggg P̂gg + geg+ P̂eg+ + geg− P̂eg− + gee P̂ee

)
δ(r1 − r2), (5.6)

where gX = 4π~2aX/µ, with µ being the reduced mass of the two particles and
aX and P̂X the scattering length and the projector, respectively, on the gg, eg+, eg−
and ee channels. In particular, it is useful to write down the projector on the ��eg±

〉
states:

P̂eg± = ��eg±
〉 〈

eg±�� =
=

(
|e ↑, g ↓〉 〈e ↑, g ↓| + |g ↑, e ↓〉 〈g ↑, e ↓|

)
±(

|e ↑, g ↓〉 〈g ↑, e ↓| + |g ↑, e ↓〉 〈e ↑, g ↓|
)
. (5.7)

In this expression it is possible to distinguish two different components of the
projection operator. The first two terms are related to processes in which the spin of
the ground state atom and of the excited state atom are not changed in the collision,
and is called direct interaction. The last two terms are instead related to processes
in which the interaction between a ground state and an excited state atom involves
a spin-flip. This second part is called exchange interaction. Using Eq. (5.7), the
interaction potentials for the ��eg±

〉
states can then be written as:

V̂eg = g0δ(r1 − r2)
[
a+eg P̂eg+ + a−eg P̂eg−

]
=

= g0

[( a+eg + a−eg
2

)
V̂ +

( a+eg − a−eg
2

)
V̂ex

]
δ(r1 − r2), (5.8)

where g0 = 4π~2/µ and in which V̂ = |e ↑, g ↓〉 〈e ↑, g ↓| + |g ↑, e ↓〉 〈g ↑, e ↓| is
the direct interaction term and V̂ex = |e ↑, g ↓〉 〈g ↑, e ↓| + |g ↑, e ↓〉 〈e ↑, g ↓| is the
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Figure 5.1: The spin-singlet ��eg+
〉
and spin-triplet ��eg−

〉
states have different interaction

energiesU±eg, that give rise to a non-zero interorbital spin-exchange interaction energyVex .
Due to this finite spin-exchange energy, a pair of atoms with a defined nuclear spin linked
to a specific electronic orbital will exchange their spin in a collision. Arrows and circles
colors (blue and red) label the nuclear spin while the gray shaded area around the circle
labels the excited electronic state.

exchange interaction term. The interaction in the ��eg±
〉
channels is simply given

by:

U±eg = φ
∗(r1)φ∗(r2) ⊗

〈
eg±�� Veg

��eg±
〉
⊗ φ(r1)φ(r2) = g0aeg±

∫
dr φ(r)4. (5.9)

Due to the presence of the exchange term in Eq. 5.8), Veg also describes interaction
mechanisms in which the two particles exchange their spin. This exchange process
takes place if the initial state is not an eigenstate of the system ��eg±

〉
, but a state

with definite spin and orbital states, e.g. as |g ↑, e ↓〉 (see Fig. 5.1), and is described
by an interaction energy of the form:

Vex = 〈e ↑, g ↓| Veg |g ↑, e ↓〉 = g0
a+eg − a−eg

2

∫
dr φ(r)4, (5.10)

where we have omitted the radial part in the left-hand side of the equation. From
this formula it is clear that this exchange process may happen only if the scattering
lengths of the ��eg+

〉
and ��eg−

〉
states are different, otherwise no spin-exchange

occurs. This condition is similar to the condition on spin-changing collisions
[87, 92], in which two atoms with initial spin component m f1 and m f2 could change
to new spin components m′f1 and m′f2 , with m f1 + m f2 = m′f1 + m′f2 , only if the
scattering lengths associated to the two different pairs are different. Using Eqs. (5.9)
and (5.10), the interaction energiesU±eg can be easily related to the exchange energy
Vex , as well as to the direct interaction V with a similar argument, obtaining (see
Fig. 5.1):
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5.1 Two-body interorbital interactions

V =
U+eg +U−eg

2
,

Vex =
U+eg −U−eg

2
. (5.11)

These results can be generalized to the case of a two nuclear spin component
degenerate Fermi gas in an optical lattice at the magic wavelength, for which the
trapping potential in the same for atoms in the ground state g and the metastable
state e. Since J = 0 for both g and e, the nuclear spin I is completely decoupled and
an arbitrary couple between the 2I + 1 nuclear spin components can be chosen (see
section 1.2.2). Let us assume also in this case that all the atoms are in the lowest
lattice band. We introduce three quantum numbers for the atoms: α, indicating the
orbital degree of freedom (g or e), m indicating the nuclear spin projection, and j
indicating the lattice site. In the second quantization formulation, the system can
be described by a field operator given by:

Ψ̂
†
αm(r) =

∑
j

w(r − rj )â†jαm, (5.12)

where w(r− rj ) is the Wannier function [11] centered in the lattice site j and â jαm

is the creation operator of an atom with spin component m and electronic state α in
lattice site j. Using an interaction of the form (5.6) it is possible to obtain the total
Hamiltonian of the system operating the substitution |g ↑, e ↓〉 → Ψ̂†

g↑
(r)Ψ̂†

e↓
(r′)

and |e ↑, g ↓〉 → Ψ̂†
e↑

(r)Ψ̂†
g↓

(r′), giving the following result[26]:

Ĥ = J
∑
αm〈i j〉

(â†iαmâ jαm + h.c.) +
∑
α,i

Uαα

2
n̂iα(n̂iα − 1)

+ V
∑
i

n̂ig n̂ie + Vex
∑
m,m′

â†igmâ†iem′ âigm′ âiem, (5.13)

where J =
∫

drw∗(r)(−~2∇2/2m) w(r + R) is the tunneling energy between near-
est neighbors, which is the same for g and e due to the magic wavelength lattice, and
Uαα = gαα

∫
dr|w(r) |4 and U±eg = g±eg

∫
dr|w(r) |4 denote the on-site interaction

energies.
As mentioned earlier, having J = 0, also the metastable state |e〉 = ���

3P0
〉

is decoupled from the nuclear spin and therefore its collisional properties do not
depend on the nuclear spin state. For this reason, also interorbital g−e interactions,
as well as e − e interactions within atoms in the |e〉 state, are expected to exhibit
SU(N) symmetry, meaning that also the scattering lengths a±eg and aee do not
depend on the nuclear spin state. For this reason, the two-component formulation
used so far can be easily generalized to themulti-component case−5/2 ≤ m ≤ +5/2
[26]. The Hamiltonian (5.13), which is the generalization to the case of two
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5 Two-orbital spin-exchange interactions

electronic states of the Hamiltonian (1.46), will be invariant under transformations
of the kind:

Ŝm
n =

∑
j

Ŝm
n ( j) =

∑
j,α

Ŝm
n ( j, α) =

∑
j,α

â†jαn â jαm, (5.14)

which are the generalization of the operators 1.47, obtained summing also over the
two electronic states α = g, e, which replace a particle with spin m with a particle
with spin n. The SU(N) symmetry represents a very interesting features of this
system, which offers interesting opportunities for quantum simulation of orbital
magnetism. Nevertheless, it should be noted that, since the hyperfine interaction
slightly mixes the 3P0 with the 3P1 state, the angular momentum decoupling is
slightly broken [166]. This leads to a violation of the SU(N) symmetry and to a
nuclear-spin-dependent variation δa of the scattering lengths, which is theoretically
estimated to be δa/a ∼ 10−3 in 87Sr [26]. The experimental investigation of this
violation is reported in section 5.2.5.

5.1.2 Laser excitation of a two-particle state

In the previous section we considered the presence of a π-polarized laser field
capable to promote atoms to the excited state without changing their nuclear spin.
Here we want to study the interaction of the laser field with the two-particle system.
Let us consider the case of two ground state atoms in a lattice site, with no external
magnetic field so that the states of the Zeeman manifold are degenerate. Let us
also suppose that the two atoms occupy only two spin state |↑〉 and |↓〉 and that the
laser light is π-polarized. Following the treatment of Ref. [179], the Hamiltonian
describing the coupling of the laser with the two atoms is given by:

ĤL = Ĥ1 + Ĥ2, (5.15)

where Ĥ1 and Ĥ2 are the laser-atom Hamiltonians of the two atoms that are given
by the sum of the transition processes that may occur for each spin state:

Ĥi =
~
2
Ω

(
Si↑ ��ei↑

〉 〈
gi↑�� + Si↓ ��ei↓

〉 〈
gi↓��

)
+ h.c. (5.16)

where Ω = degE/~ (deg being the dipole matrix element and E the laser electric
field), is the Rabi frequency and Si↑↓ are coefficients that include the angular
momentum contribution to the matrix element and the Clebsch-Gordan coefficients
of the transition and [60]. We remind here that Clebsch-Gordan of the F = 5/2 1S0
→ 3P0 transition are inherited from the 1S0 →

3P1 transition due to the hyperfine
mixing (see appendix A). The Hamiltonian (5.16) can be rewritten as:

Ĥi = |ei〉 〈gi | ⊗
~
2

(
Ω↑P̂i↑ +Ω↓P̂i↓

)
+ h.c., (5.17)

where the Clebsch-Gordan coefficients have been included in the Rabi frequency
Ω↑,↓ = S↑,↓Ω and P̂i↑ and P̂i↓ are the projectors on the spin states |↑〉 and |↓〉
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respectively. Adding and subtracting the terms Ω↑Pi↓ and Ω↓Pi↑, the Hamiltonian
can be rewritten as:

Ĥi = |ei〉 〈gi | ⊗
~
2

(
Ω
+1̂i +Ω

−σ̂zi

)
+ h.c., (5.18)

where 1̂ = P̂i↑+ P̂i↓ is the identity operator, that does not act on the spin state of the
atom, while σ̂zi = P̂i↑ − P̂i↓ is the σz Pauli matrix, which acts on the states |↑〉 , |↓〉
as σ̂zi |↑〉 = |↑〉 and σ̂zi |↓〉 = − |↓〉, and where we have introduced two new Rabi
frequencies:

Ω
+ =

Ω↑ +Ω↓

2
,

Ω
− =

Ω↑ −Ω↓

2
. (5.19)

The effect of the application of the laser field to a pair of atoms in the ground
state can be determined by operating the Hamiltonian (5.15) on the state |gg〉 ⊗ |s〉,
obtaining:

ĤL (|gg〉 ⊗ |s〉) =
~
2

(√
2Ω+ ��eg+

〉
+
√

2Ω− ��eg−
〉)
. (5.20)

From the definition (5.19) of Ω± it is clear that for spin mixtures with opposite spin
components, ±5/2, ±3/2 and ±1/2, the excitation to the ��eg+

〉
state is inhibited

because the Clebsch-Gordan coefficients have equal magnitude and opposite sign,
henceΩ+ is zero. In this case only the excitation to the ��eg−

〉
state is possible. In all

the non-symmetric spin mixtures instead the excitation to both the ��eg+
〉
and ��eg−

〉
states is possible.

5.1.3 Magnetic field mixing

The results obtained up to now are valid only with no external magnetic field. The
introduction of amagnetic fieldmodified theHamiltonian of the system, introducing
an additional term:

ĤZ = ĤZ1 + ĤZ2, (5.21)

where ĤZ1 and ĤZ2 are the Hamiltonians relative to the action of a magnetic field
respectively on atoms 1 and 2 and are given by ĤZi = gαF µB IziB, where gαF is the
g-factor for the electronic state α, µB the Bohr magneton and Izi the projection
of the nuclear spin along the quantization axis z defined by the direction of the
magnetic field B. We remind here that due to the hyperfine mixing of the 3P0 state
with the 3P1 state, the difference between δg = g

g
F − geF is 113 Hz/G [168]. The

matrix element of the Zeeman Hamiltonian (5.21) can be easily computed for the
states defined in Eq. (5.1) and are given by:
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〈gg | ĤZ |gg〉 = gg (m + m′)µBB, (5.22)
〈ee| ĤZ |ee〉 = ge (m + m′)µBB,〈

eg±�� ĤZ
��eg∓

〉
=

1
2

(m − m′)δg µBB,〈
eg±�� ĤZ

��eg±
〉
=

1
2

(m + m′)(ge + gg) µBB,

(5.23)

where m and m′ are generic nuclear spin components. By restricting to the subspace{��eg+
〉
, ��eg−

〉}
, the total Hamiltonian can be found adding the Zeeman Hamiltonian

ĤZ to the zero field Hamiltonian Ĥ0:

Ĥ0 =

(
U+eg 0

0 U−eg

)
. (5.24)

In a spectroscopic experiment in which the initial state is |gg〉, the measured
quantities will be the difference between the energies of the final and initial states,
hence the total Hamiltonian directly related to the spectroscopic observables will
be given by:

Ĥeg =
*..
,

(U+eg −Ugg) +
1
2
δg (m + m′)µBB

1
2

(m − m′)δg µBB
1
2

(m − m′)δg µBB (U−eg −Ugg) +
1
2
δg (m + m′)µBB

+//
-
,

(5.25)
in which the energy offset 〈gg | (H0 + HZ ) |gg〉 has been subtracted along the
diagonal. It is clear that in presence of a magnetic field B, the states ��eg±

〉
are no

longer the eigenstates of the Hamiltonian, and the new eigenstates can be found
diagonalizing the Hamiltonian Ĥeg. For a finite B, the zero field eigenenergies
Ueg± become:

UH,L
eg (B) =

1
2

(m + m′)δg µBB + V ±

√
V 2
ex +

(
1
2

(m − m′)δg µBB
)2
, (5.26)

where the labels H and L stand respectively for high-energy and low-energy. In the
particular case of two opposite nuclear spin components, m = −m′, the energies of
Eq. (5.26) simply reduce to:

UH,L
eg (B) = V ±

√
V 2
ex +

(
1
2
∆mδg µBB

)2
, (5.27)

with ∆m = m −m′. These eigenenergies are plotted in Fig. 5.2 as a function of the
magnetic field. In particular, the figure shows that for B → 0, the low-energy branch
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Figure 5.2: Qualitative plot of UL and UH eigenenergies of Eq. (5.26) as a function of the
magnetic field B for a symmetric m = −m′ mixture.

tends to U−eg, implying a positive exchange interaction Vex , as will be explained in
the next section.

The presence of the magnetic field also modifies the eigenstates of the Hamil-
tonian, which are no longer ��eg±

〉
but are given by:

���eg
L
〉
= γ(B) ��eg−

〉
+ δ(B) ��eg+

〉
���eg

H
〉
= −δ(B) ��eg−

〉
+ γ(B) ��eg+

〉
(5.28)

where the coefficients γ(B) and δ(B) depend on the magnetic field and satisfy the
conditions γ2(B) + δ2(B) = 1 and γ(0) = 1, δ(0) = 0. The coefficients γ2 and
δ2 are plotted in Fig. 5.3 as a function of the magnetic field. Since the mixing
depends not only on the the strength of the magnetic field but also on the nuclear
spin components m and m′, for a given magnetic field value the value of γ and δ
depends on the spin mixture. The maximum mixing is obtained for a m = 5/2,
m′ = −5/2 mixture. The exchange energy Vex has been measured exactly in this
configuration, as described in the following sections.

For very high magnetic field values, at which δgµBB � Vex , the Zeeman
energy is the dominant energy scale and the the eigenstates of the Hamiltonian tend
to a superposition of ��eg−

〉
and ��eg+

〉
:

���eg
L
〉
→

( ��eg+
〉
− ��eg−

〉
√

2

)
= |g ↑, e ↓〉

���eg
H
〉
→

( ��eg+
〉
+ ��eg−

〉
√

2

)
= |e ↑, g ↓〉 (5.29)
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G

Figure 5.3: Coefficients γ2 and δ2 as a function of the magnetic field for different spin
mixtures m,m′. The mixing coefficients are maximal for the mixture −5/2,+5/2. This will
be exploited in the initial state preparation for the observation of spin exchange oscillations
(see sec. 5.2.2).

These two states are eigenstates of the Zeeman Hamiltonian ĤZ . Evaluating the
total Hamiltonian Ĥeg of Eq. (5.25) on the basis {|e ↑, g ↓〉 |g ↑, e ↓〉} we obtain the
following result:

Ĥeg =

(
(V −Ugg) + mδgµBB Vex

Vex (V −Ugg) + m′δgµBB

)
. (5.30)

According to this Hamiltonian, at intermediate magnetic fields, the states |e ↑, g ↓〉
and |g ↑, e ↓〉 are mixed by exchange energy Vex . This coupling represents the key
mechanism giving rise to Orbital Feshbach Resonances, as will be shown in Chapter
6.

5.1.4 Spectroscopy of a two-spin states mixture

In this section a spectroscopy experiment on a sample of Ytterbium atoms in two
opposite spin states is presented. While in the case of a polarized sample a single
transition line was observed (with the exception of the blue lattice sidebands, which
do not depend on the symmetrization properties of the sample), in case of a two
spin mixture the full spectrum is not given by a single line (excluding sidebands),
but is more complex (see Fig. 5.4). The experiment is performed on a sample of
atoms loaded in a deep optical lattice, and in each lattice site it is possible to find
or a single particle in a certain spin state, or two particles, one in the |↑〉 state and
one in the |↓〉 state. Furthermore, due to the inhomogeneity given by the harmonic
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5.1 Two-body interorbital interactions

confinement, the doubly occupied sites will mostly accumulate into the core, whilst
singly occupied sites will concentrate mostly into the surrounding shell. In the
previous sections it was shown that doubly-occupied states are characterized by
an interaction energy between the two atoms in the lattice site. For this reason,
singly-occupied and doubly-occupied states will respond differently to the probe
laser and several peaks will be visible, each corresponding to a specific state within
the atomic sample. The transition frequency will be shifted by a quantity ∆ν,
corresponding to the difference between the interaction energy of the final state Uf

and the interaction energy of the initial state Ugg:

∆ν =
Uf −Ugg

h
, (5.31)

where h is the Planck constant. Provided a probe laser with a high enough frequency
resolution is available, it is then possible to directly measure the interaction energy
difference. Noticeably, as we will see in a while, the scattering length of the final
state can also be determined from the measured frequency shift, assuming to know
the spatial wavefunctions and the scattering length of the initial state.

Fig. 5.4 reports the spectrum of the 1S0 →
3P0 transition obtained performing

spectroscopy on an sample of Nat = 50 × 104 Ytterbium atoms prepared at tem-
perature T ' 0.2TF in a mixture of mF = ±5/2 nuclear spin states. The sample
is confined in a 3D optical lattice at the magic wavelength with a depth of 30 Er ,
where Er is the recoil energy. In order to properly split the different peaks, a mag-
netic field B ∼ 28 Gauss is applied. The π-polarized probe laser has an intensity
of the order of 10−4 W/cm2, resulting in linewidths of the order of 150 Hz, narrow
enough to clearly distinguish the different excitation peaks. Fig. 5.4 shows a total of
five different peaks, which are related to different excitation process. As pictorially
shown in the lower panel of Fig. 5.4, the peaks at the extreme left and extreme right
can be identified as resonances involving single atoms sitting in the external lattice
sites and are related to the excitation of the mF = ±5/2 states. This can be easily
verified by performing spectroscopy at the same magnetic field on a spin-polarized
atomic samples and observing that the resonances are in the same position as in
the two-spin case. Since the differential g-factor δg = 113 Hz/G is positive, it
is possible to assign the lowest energy peak to the mF = −5/2 state. The three
central peaks, which are not present in spectroscopy experiments on spin-polarized
samples, are related to the excitation of two particles states. The attribution of each
feature to a particular excitation channel is not trivial because the scattering lengths
of the different interaction channels are substantially unknown, and is based on the
analysis of displacement of the peaks position as a function of the magnetic field
[84].

In Fig. 5.5 different spectra for different values of themagnetic field are reported.
The central peaks can be identified as relative to the excitation of the ���eg

L
〉
state.

Its energy decreases at high values of magnetic field following a square-root trend
as expected from Eq. (5.26). In particular, since in the mixture mF = ±5/2 has
opposite spin components, the excitation to the ��eg+

〉
is forbidden (see section
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Figure 5.4: Spectrum of the clock transition for a mixture of mF = ±5/2 spin components.
The nature of the different excitation peaks is sketched in the lower panel. The extreme
right and left peaks are relative to the single particle resonances, while the central peaks
are relative to different excitation channels in doubly-occupied states. The different depth
between the |↓〉 and |↑〉 single-particle transitions may be ascribed to an unbalance of the
spin mixture due to an imperfect preparation of the initial state.

5.1.2), hence we can identify this peak as the one adiabatically connected to the
��eg−

〉
state at B = 0. In particular, this implies that U−eg is lower than U+eg and that

the exchange energy Vex = (U+eg −U−eg)/2 is positive.
The peak at lower energy close to the central peak has the same dependence

on the magnetic field as the ��eg−
〉
state (see inset of Fig. 5.5), but its energy is

systematically lower than that of the central peak. It can be identified as related to
a process of the kind |gg〉∗ → ��eg−

〉∗, in which both in the initial and final state one
of the atoms is in an excited band. This is evident considering that the scattering
length associated to this process would be the same as a−eg, and the difference in
interaction energy ∆U between the two states would be given by:

∆U = U−
∗

eg −U−eg =
4π~2a−eg

2µ

∫
dr

(
w2

0 (r)w2
1 (r) − w4

0 (r)
)
, (5.32)

where w0(r) and w1(r) are the Wannier functions in the fundamental and the first
excited bands, respectively. Since, in each lattice site, the overlap between the
fundamental and first excited Wannier function is lower than the overlap between
two fundamental Wannier functions, ∆U will then be lower than zero, meaning
that the ��eg−

〉∗ state has lower energy than ��eg−
〉
. Another evidence that this peak
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Figure 5.5: Clock transition spectroscopy of a two component sample for different values
of external magnetic field. The inset shows the trend of the different peaks as a function of
the magnetic field: the single particle peaks shift linearly with the magnetic field due to the
Zeeman energy, while the displacement of the states ���eg

L
〉
and ���eg

L
〉∗

is not linear. Finalyl
the |ee〉 position is independant on the magnetic field.

involves an excited state is that it gets stronger as the number of atoms populating
the first excited band of the lattice is increased, by loading in the lattice atomic
samples with a higher overall number of atoms.

Finally, the peak close to the central peak at higher frequency can be identified
as the transition to the |ee〉 state, inwhich both the atoms are excited to the e state. Its
identification is easy by noticing that thematrix element of the ZeemanHamiltonian
for the |ee〉 is given by 〈ee| ĤZ |ee〉 = ge (m+m′)µBB, which is identically zero for
m = −m′. Then, the position of the peak should not be influenced by the magnetic
field, that is actually the case in our observation (see inset of Fig. 5.4). Moreover,
this peak is typically lower, due to the two-photon nature of the process which
connects the |gg〉 state to the |ee〉 passing through the virtual state ���eg

L
〉
.
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Figure 5.6: Resonant frequency of the ���eg
L
〉
state for a mF = ±5/2 mixture as a function

of the magnetic field B. The experimental data are fitted with Eq. (5.11) with V −Ugg and
Vex as free parameters. The zero energy of the vertical axis corresponds to the center of
the single particles transition, determined as the center of the mF = −5/2 and mF = +5/2
transitions.

Determination of the scattering lengths

The spectra in Fig. 5.5 allow not only for the identification of the peaks, but also for
the determination of the scattering lengths associated to the interaction channels
��eg±

〉
and |ee〉, as explained below.

The position of the ���eg
L
〉
peak at a given magnetic field is related to the

difference in interaction energy UegL −Ugg. Fig. 5.6 reports the results of a fitting
procedure of the positions of the ���eg

L
〉
peak at different values of magnetic field

with the expression of Eq. (5.26). From the fit, it is possible to determine the
values of the parameters V − Ugg and Vex . The ground state interaction energy
Ugg = 4π~2agg/2µ

∫
dr|w(r) |4 can be calculated using the known value agg =

199.4 a0 for 173Yb [93] and exploiting the knowledge of the Wannier functions at
lattice depth 30 Er , so it can be subtracted from V . Then, from V and Vex we
extract the values of the interaction energies Ueg± according to Eq. (5.11). From
these values of Ueg± , the associated scattering lengths can be determined using the
Fermi-Hubbard interaction energy:

Ueg± =
4π~2aeg±

2µ

∫
drw4

0 (r). (5.33)

The resulting scattering length values are a−eg = (215 ± 40)a0 and a+eg = (2600 ±
500)a0. The value of a−eg is compatible with the value determined in [84] of
a−eg = (219.5 ± 2.0)a0. In the following sections, this more accurate value of the
a−eg scattering length will be used, since it is the results of a detailed study of the
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interaction energy U−eg for several spin mixtures. Regarding the scattering length
a+eg, it is important to note that it exceeds the harmonic oscillator length associated
to a lattice site, which of the order of ∼ 1000a0 for a s = 30 lattice. In this regime,
the Fermi-Hubbard model is no longer valid and the estimated interaction energy
ofU+eg/h = 40 kHz is incorrect. In order to properly estimateU+eg and its scattering
length an alternative theoretical model has to be developed. The simple case of two
strongly interacting particles in an harmonic trap has been resolved analytically in
Ref. [180]. This model will be explained and extended to the deep lattice case in
the section 5.2.3.

For sake of completeness, from the position of the |ee〉 peak, that is independent
on themagnetic field, it is in principle possible to determine a value for the scattering
length aee. The peaks position is indeed related to the energy difference:

∆U = Uee −Ugg =
4π~2(aee − agg)

2µ

∫
drw4

0 (r). (5.34)

From this equation, using the known value of agg = 199.4 a0 and knowing the
Wannier functions for a s = 30 lattice, it is possible to determine the scattering
length aee associated to the e-e interaction channel. This has been done in Ref. [84],
obtaining aee = 306.2 a0.

5.2 Interorbital spin-exchange oscillations

As we saw at the end of the previous section, incoherent spectroscopy is a valuable
tool to obtain information regarding the interaction properties of the interorbital
collisional channel, but it features somedrawbacks. First, it is not possible to directly
probe the ���eg

H
〉
state in symmetric spin mixtures, since this state is adiabatically

connected to the ��eg+
〉
state which cannot be excited in spin mixtures in which

m = −m′. This implies that in this case all the information about theU+eg interaction
energy have to be extracted from the data relative to the ��eg−

〉
channel, as explained

in the previous section. With this approach, it is possible to estimate a very high
scattering length a+eg, a value at which the Fermi-Hubbard model is no longer valid
so that the obtained interaction energy and associated scattering length becomes
unreliable. Moreover, spectroscopy experiments cannot highlight the coherent
nature of the interorbital spin-exchange interaction. The possibility to coherently
manipulate atoms interacting via interorbital spin-exchange could open new realistic
possibilities for both quantum information processing and quantum simulation.

This section reports the first direct observation of interorbital spin-exchange
oscillations [41], i.e. a process in which two atoms in different electronic orbitals
and with different nuclear spin states swap their spin as a direct consequence of the
spin-exchange interaction. Noticeably, this oscillatory dynamics is a demonstration
of the coherent nature of the interorbital spin-exchange interaction. As will be
explained later in this section, the frequency of these oscillations is directly related
to the exchange energy Vex , allowing for a direct measurements of the interaction
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Figure 5.7: Sketch of the interorbital spin-exchange oscillation process. A pair of atoms
in definite electronic and nuclear spin states periodically swap their spins at a frequency
determined by the exchange interaction.

energy U+eg even in mixtures where direct excitation is not possible. Later in
this section, it will be also shown how from the measured values of the interaction
energies an estimation of the a+eg scattering length can be obtained with a theoretical
model based on the model of Ref. [180], which takes into account the modification
of the wavefunctions induced by the strong interaction in optical lattices.

5.2.1 Origin of interorbital spin-exchange oscillations

In order to understand the origin of the interorbital spin-exchange oscillations, let
us suppose to prepare an initial state that is the superposition of ��eg+

〉
and ��eg−

〉
,

namely:

|ψ〉 = α ��eg+
〉
+ β ��eg−

〉
, (5.35)

where |α |2 + | β |2 = 1. Since ��eg+
〉
and ��eg−

〉
are eigenstates of the zero field

Hamiltonian, the temporal evolution of the state |ψ〉 will be given by, up to a global
phase factor:

|ψ(t)〉 = α ��eg+
〉
+ e
−2iVext

~ β ��eg−
〉
, (5.36)

where we remind that 2 |Vex | = U+eg−U−eg. Since ��eg±
〉
are eigenstates of the Hamil-

tonian, the projection of |ψ〉 on ��eg±
〉
is constant in time, but the phase evolution

between the two components affects the projection on a different basis, for example
influencing the probability to find an atom in a given electronic and spin state. Con-
sidering that the states ��eg±

〉
can be written as ��eg±

〉
= 1/
√

2 (|e ↑, g ↓〉 ± |g ↑, e ↓〉)
(see section 5.1.1), the probability to find one atom in the state |g ↑〉, considering
for simplicity the case α = β = 1/2, will be given by:

P(|g ↑〉) = |〈ψ(t) |g ↑, e ↓〉|2 = ���1 − e+2iVex t/~���
2
=

1
2

[
1 − cos

(
2Vext
~

)]
, (5.37)
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featuring an oscillation at frequency fosc = 2Vex/~ in which atoms in the ground
and excited state periodically flip and exchange their spin with each other (see
Fig. 5.7). The same can be found calculating the probability P( |e ↓〉), while for
P(|g ↓〉) and P(|e ↑〉) we obtain:

P(|g ↓〉) = P(|e ↑〉) = |〈ψ(t) |e ↑, g ↓〉|2 =
1
2

[
1 + cos

(
2Vext
~

)]
. (5.38)

In the more general case of an unbalanced superposition of ��eg+
〉
state, i.e. α , β ,

1/
√

2, the oscillation frequency of the probabilities (5.37) and (5.38) is unaltered,
whereas the amplitude of the oscillations is reduced. In particular, P(|g ↓〉) is by
given by:

P( |g ↓〉) =
1
2

[
1 + 2α

√
1 − |α |2 cos

(
2Vext
~

)]
, (5.39)

in which the relation β2 = 1 − |α |2 has been used. Surprisingly, the relative
amplitude of the oscillation has not a strong dependence on the unbalance. For
example, with a small admixture given by α2 = 0.9, the oscillation amplitude is
already around 0.6. As a consequence, spin-exchange oscillations may be visible
even with a highly unbalanced initial state.

5.2.2 Experimental observation of spin-exchange oscillations

The experimental sequence for the observation of the coherent interorbital spin-
exchange dynamics is explained in Fig. 5.8. The experiment is performed on
quantum degenerate Fermi gases of 173Yb in the symmetric spin mixture m = ±5/2,
which are produced by evaporative cooling in the crossed dipole trap at 1064 nm.
At the end of the evaporation ramp, approximately 4 × 104 atoms at a temperature
T ' 0.15 TF ' 25 nK are left. The atomic cloud is then adiabatically loaded in a
3D optical lattice operating at the magic-wavelength λL = 759.35 nm1. In order
not to induce unwanted light shift and inhomogeneous intensity broadening of the
clock transition, the optical dipole trap intensity is ramped to zero during the lattice
ramp up. Before the lattice loading, the dipole trap is slightly compressed in order
to enhance the fraction of doubly occupied sites in the central region of the cloud.
The atom number is adjusted in order to minimize the occupation of the first excited
band, which would lead to spurious |gg〉∗ → |eg〉∗ processes. With this procedure
the average filling is 0.5 ≤ n ≤ 1 atoms per lattice site per spin component.

In order to prepare the superposition of ��eg+
〉
and ��eg−

〉
state needed to detect

spin-exchange oscillation, a possible approach is to spectroscopically excite the
���eg

L
〉
and ���eg

H
〉
states and adiabatically ramp to zero the magnetic field B. Indeed,

at B , 0, the oscillation frequency UH
eg −UL

eg also depends on the magnetic field

1We used the magic wavelength of 174Yb since this experiment was carried out before the
measurement of the magic wavelength for 173Yb of section 4.3.1.
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Figure 5.8: Experimental sequence for the observation of spin-exchange oscillations. The
Fermi gas of 173Yb is prepared in a dipole trap and then loaded in a 3D optical lattice at
the magic wavelength at an initial depth sin ≥ 30 s. The ���eg

L
〉
state is excited with a clock

laser π-pulse performed at a magnetic field of 60 G. After the excitation the lattice depth
is lowered to the value s at which the oscillations will be detected. The magnetic field is
then quenched to a bias (3.5 G or higher), and the system is allowed to evolve for a time
tosc . The field is then lowered to 3.5 G and the atom number for each spin component is
measured by means of OSG technique.

(see Eq. 5.26), so "pure" spin-exchange oscillations can be observed only at B = 0.
Hovewer, this solution is not applicable at the studiedmixture, since it is not possible
to directly excite the |eg〉L state in spin-symmetric mixtures m = −m′ (see section
5.1.4). The adopted method relies instead on the excitation of the ���eg

L
〉
state at

high field values, where it is a superposition of ��eg±
〉
, followed by a quench of

the magnetic field to very low values in order to populate ��eg+
〉
via nonadiabatic

Landau-Zener tunneling. The atoms are excited by a π-pulse of 578 nm light
resonant with the |gg〉 → |egL〉 transition. The excitation is performed at a large
lattice depth sin ≥ 30 s, which grants the deep Lamb-Dicke regime. The excitation
is also performed at a magnetic field of 60 G, in order to have a sizeable admixture
of the spin-singlet state |eg+〉 into the |egL〉 state. We note that the employed spin
mixture mF = ±5/2 grants the maximal state mixing (|γ |2 ' 0.75, |δ |2 ' 0.25, see
section 5.1.3). After the excitation pulse the magnetic field is switched off with a
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Figure 5.9: Time resolved detection of a interorbital spin-exchange oscillations at a lattice
depth s = 30.8 with a bias magnetic field of 3.5 G. The points show the difference in fraction
population between |g ↑〉 and |g ↓〉 atoms. The points are the result of an average over 5
acquisitions and the line is the result of a fit using a damped sinusoidal function. A common
error bar based on the fit residuals has been assigned to the points.

MOSFET in a time tramp ' 25 µs, fast enough to have a significant population of
the |egH 〉 ' |eg+〉 state by nonadiabatic Landau-Zener excitation (with an initial
field of 60 G, a ramp time tramp ≤ 20 µs is necessary in order to have a ≥ 10%
population of the ��eg+

〉
state [181]). Before the magnetic field quench, the lattice

depth is ramped to a desired value of s < sin in 700 µs, in order to observe
spin-exchange oscillations at lattice depth different than the initial value.

The magnetic field quench allows us to start the spin dynamics, which is
observed by detecting the fraction of ground-state atoms in the different spin states
by performing optical Stern-Gerlach (OSG) detection after different evolution times
(see section 2.2.2). The bias OSG magnetic field of 3.5 G is generated with
an additional coil, always operating during the entire excitaion process. Clear
oscillations are visible observing the ground-state magnetization

M =
N (g ↑) − N (g ↓)
N (g ↑) + N (g ↓)

driven by the spin-exchange process. A typical oscillation is shown in Fig: 5.9.
These oscillations, which are visible for hundreds of µs and are characterized by
a very short period, represent a clear demonstration of the coherent nature of this
interorbital spin-exchange interaction.

As stated above, the measurement of the oscillation frequency provides a direct,
model-independent determination of the interaction energy, which is 2Vex = h ×
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Figure 5.10: Spin-exchange oscillation at s = 35 aquired for longer hold times. A damping
on timescales of the order of 2 ms is visible.

(13.9 ± 0.2) kHz for the data in Fig. 5.9. With reference to Fig. 5.16, it should
be noted that the presence of the finite bias magnetic field B ' 3.5 G used for the
measurement implies a slightly faster oscillation frequency than 2Vex/h (by ∼ 100
Hz). The experimental points have been offset by a constant value (' 5%) to take
into account a slight unbalance of the spin mixture resulting from an imperfect
preparation of the initial state. The oscillation in Fig. 5.9 shows an oscillation
amplitude that is lower than the maximum allowed value of 100%. This can be
ascribed mainly to the combination of a small initial admixture of the ��eg+

〉
in the

���eg
L
〉
state and of a non fully diabatic quench of the magnetic field, that results

in an even small admixture of the ���eg
L
〉
in the oscillation initial state (reasonably

below 10% [181]). Moreover, the sample includes atoms lying in singly-occupied
states, which do not participate to the spin-exchange dynamic but are still detected
during the imaging. Finally, not all the doubly-occupied states may be properly
excited to the ���eg

L
〉
state with the π-pulse. In order to clearly ascribe the observed

oscillation to the interorbital spin-exchange interaction, we have checked that these
oscillations disappear if no clock laser excitation pulse is performed and that the
same holds if the magnetic field is switched off slowly instead of with an abrupt
quench. We have also checked that no other nuclear spin states (different from |↑〉
and |↓〉) are populated during the spin-exchange dynamics.

We measure a finite lifetime of the spin-exchange oscillations, on the order
of ∼ 2 ms, after which the oscillation amplitude becomes comparable with the
scattering of the points, as shown in Fig. 5.10. In order to investigate the origin of
this damping, we have performed additional experiments in which we introduce a
variable waiting time twait between the laser excitation to the ���eg

L
〉
state and the

magnetic field quench that initiates the spin-exchange oscillations. For twait up to
30 ms (more than one order of magnitude larger than the observed damping time)
we can still detect high-contrast spin-exchange oscillations. For this reason, both
inelastic |g〉− |e〉 collisions in doubly-occupied sites and tunneling of highly mobile
atoms in excited lattice bands can be ruled out as possible sources of the damping
shown in Fig. 5.10. Moreover, also |e〉 − |e〉 inelastic collisions are significatively
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5.2 Interorbital spin-exchange oscillations

reduced, since only one excited atom is present in each doubly-occupied lattice sites.
Excluding these fundamental mechanisms of decoherence, it seems highly plausible
that the decay of the spin-exchange oscillations arises from technical imperfections,
associated e.g. to the switching of the magnetic field or to an imperfect stabilization
of the lattice beams intensity. Another possible source of decoherence may be the
residual drift of ultranarrow laser, which during the measurement presented in this
and the following sections (5.2.3 and 5.2.4) was not stabilized on the fiber link (see
section 3.2.4), but only partially corrected though feed-forward (see section 3.1.5).

5.2.3 Spin-exchange oscillations versus lattice depth

As stated above, the observation of spin-exchange oscillations allows for a direct,
model independent measurement of the difference between the interaction energies
Ueg± , simply measuring the oscillation frequency 2Vex = U+eg − U−eg. As seen in
section 5.1.4, from a qualitative argument we expect the scattering length a+eg to be
of the same order of magnitude of the harmonic oscillator length associated to a
lattice site. In this regime, the Fermi-Hubbard models fails to properly describe the
system. This is evident comparing the interaction energy U−eg ∼ 38 kHz obtained
with the fitting procedure of section 5.1.4 to the measured value U−eg ' 13.8 kHz.
For this reason, in order to obtain a value for the scattering length a+eg from the
measured interaction energies, we developed a theoretical model based of the
real wavefunctions of this strongly interacting system, which can no longer be
approximated by Wannier functions. The model is based on the analytic solution
to the problem of two strongly interacting particles in a harmonic trap developed
by Busch et al. in Ref. [180].

Let us consider the problem of two interacting particles of mass m in a lattice
site. The Hamiltonian of the system will be given by:

Ĥ =
p2

1
2m
+

p2
2

2m
+ Vlat (r1) + Vlat (r2) + Vint (r1 − r2), (5.40)

where Vint (r1 − r2) is the pseudo-potential defined in section 1.2.1:

Vint (r) =
4π~2

m
as

d
dr
δ(r), (5.41)

and the Vlat (ri) is the lattice potential of the i-th particle which is given by:

Vlat (r) = Vlat (x, y, z) = V0
∑

xi={x,y,z }

sin2(kL xi). (5.42)

where kL = 2π/λL is the wavevector of the laser. Considering a lattice site with
the minimum in the origin, the potential Vlat can be expanded giving:

Vlat (r) = V0

(
(kL xi)2 −

1
3

(kL xi)4 +
2
45

(kL xi)6 + · · ·

)
=

= V0(kLr)2 + Van(r) (5.43)
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where Van(r) term contains all the anharmonic corrections to the harmonic
potential V0(kLr)2. Let us now operate the following coordinate transformation:

R =
r1 + r
√

2
, r =

r1 − r
√

2
, (5.44)

that are similar to the usual "relative" and "center of mass" coordinates, but with
different coefficients. Using these coordinates, the Hamiltonian (5.40) can be
rewritten as:

Ĥ =
P2

2m
+

1
2

mω2R2︸             ︷︷             ︸
ĤCM

+
p2

2m
+

1
2

mω2r2 + Vint (r)︸                          ︷︷                          ︸
Ĥrel

+Van(R, r), (5.45)

which has the advantage that both the kinetic energy and the harmonic oscillator
frequencies ω = 2

√
sEr/~ =

√
2V0k2

L/m have the same dependency on m in both
the relative and center of mass (CM) terms of the Hamiltonian. The center of mass
term ĤCM of theHamiltonian (5.45) is an harmonic oscillatorwhose eigenfunctions
in spherical coordinates ψN,L,M (R) are identified by the usual quantum numbers
{N, L, M } and have the form:

ΨN,L,M (R) = AN,LRLe
− 1

2

(
R

aho

)2

LgY M
L (θR, φR), (5.46)

where AL,M is a normalization factor, aho =
√
~/mω is the harmonic oscillator

length, Lg are the Laguerre polynomials and Y M
L (θR, φR) are the spherical har-

momics with quantum numbers L, M . Slightly more complex is the term related to
the relative coordinate Ĥrel. Since it contains an interaction term which is non-zero
only in the origin, it is possible to distinguish between two different possibilities.
In case the interaction term can be neglected, the Hamiltonian Ĥrel reduces to an
harmonic oscillator with eigenfunctions ψn,l,m(r) of the same form of Eq. (5.46)
and identified by the quantum numbers {n, l,m}. This is a good approximation
when l , 0, since the harmonic oscillator eigenfunctions have a node in the origin.
For l = 0 instead, the point-like interaction term have to be considered and the
eigenfunctions have the form of Ref. [180]:

ψm,0,0(r) = Ae

(
− r2

2a2
ho

)
Γ

(
−

E
2~ω

+
3
4

)
U *

,
−

E
2~ω

+
3
4
,

3
2
,

r2

a2
ho

+
-
, (5.47)

where Γ is the Euler function,U are the confluent hypergeometric functions, A is a
normalization factor and E is the total energy, given by the solution of the equation:

√
2
Γ

(
− E

2~ω +
3
4

)
Γ

(
− E

2~ω +
1
4

) = aho
as

. (5.48)
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Figure 5.11: Series expansion of a lattice potentialV = sin2(kL x) (blue) line up to different
orders. The horizontal axis is in units of the lattice spacing d = λL/2. At the 10-th order,
the expansion faithfully reproduces a lattice site.

In any case, the presence of the Van(r in the Hamiltonian (5.45) mixes the relative
and center of mass degrees of freedom, making the problem impossible to be solved
analytically. In order to extend the Busch exact results for the harmonic oscillator
problem to the case of a lattice site potential, we diagonalized numerically the
Hamiltonian (5.45) on the basis of the eigenstates Φ(r,R) of ĤCM + Ĥrel, namely

Φ(r,R) = ΨQ (R)ψq (r), (5.49)

where ΨQ (R) are the wavefunctions of Eq. (5.46) and ψq (r) are the eigenstates
of Ĥrel discussed above and Q = {N, L, M } and q = {n, l,m} are the quantum
numbers for the center of mass and relative coordinates respectively. We evaluated
the anharmonic terms on this complete basis up to the 10-th order, which is high
enough to faithfully reproduce the lattice potential on the lattice site (see Fig. 5.11).
An higher order expansion, approximately to the 20-th order, would be necessary
in order to reproduce also the nearest neighbor sites potential and properly evaluate
tunneling processes, but since the measurements are performed at high lattice
depth, tunneling is not likely to occur on the experiment timescales. Moreover,
we observed that the model already converges considering wavefunctions with
principal quantum numbers N and n up to 4, and increasing them to 6 only yields
a 10−4 fractional difference.

By diagonalizing the numerically calculated Hamiltonian, we derive the energy
E0(as, s) of the ground state of two particles interacting with scattering length as

in a lattice site of depth s. The interaction energy related to the scattering length
as will finally be given by:

Uas = E0(as, s) − E0(0, s), (5.50)

where E0(0, s) is the energy of the system of two non-interacting particles. The
results are shown in Fig. 5.12, where the interaction energy is reported as a function
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Figure 5.12: a. Interaction energy of two particles in a lattice site calculated with three
different models (see text) for two lattice depth values, s = 11 and s = 30. The interaction
energy is well approximated by the Hubbard model only for low values of the scattering
length as . b. The same interaction energy is plotted up to higher values as . The interaction
energy saturates at the value of the energy separation between the ground and first excited
lattice bands, represented by the gray areas.

of the scattering length for three different models: the solid line is the interaction en-
ergy obtained with our model, in which the anharmonic corrections to the parabolic
potential are considered. The dotted curve is the interaction energy calculated with
in the model of Ref. [180], where the potential is quadratic with no anharmonic
corrections. The dashed line is the interaction energy calculated with the Hubbard
model which takes into account the full lattice potential and depends linearly on the
scattering length as. The curves are plotted for two different lattice depths, s = 11
and s = 30. The relative energy gaps between the lowest and first excited bands
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Figure 5.13: a. The experimental points are the spin-exchange frequency 2Vex measured
for different values of lattice depth s. The points are corrected for the effect of the bias
magnetic field of 3.5 G in order to obtain the zero field values. Each point is the average of
at least three acquisition and the error bar is the statistical error. The solid line is the fit of
experimental data with the theoretical model described in the text. b. Interaction energy
U+eg corresponding to the experimental points of the main figure calculated as the sum of
the measured 2Vex and the energy U−eg calculated for a+eg = 219.5 a0 [84]. The shaded
area is the energy difference between the ground and first excited lattice band.

are represented by the gray shaded areas (note that the gap for s = 11 is wider the
gap for s = 30, due to the energy bands being wider at a lower lattice depth). From
Fig. 5.12 it can be seen that the interaction energy is well approximated by the
Hubbard model for scattering lengths up to a few hundreds of a0, while at higher
values the discrepancy between the two models becomes macroscopic. Moreover,
Fig. (5.12)b shows that at very high values of the scattering length the interaction
energy saturates at the value of the gap between the lowest and first excited bands.
This behavior was expected from an extension of the model of Ref. [180], in which
the interaction energy saturates at the spacing between the oscillator energy levels,
to the lattice potential case.

The theoretical model we have developed is used to investigate the dependence
of the interaction energy on the lattice depth. The energy difference 2Vex =

U+eg − U−eg is obtained from the spin-exchange oscillation frequencies acquired at
different values of lattice depth s (see section 5.1.4). The experimental data are
then fitted with the function:

2Vex (s) = E0(a+eg, s) − E0(a−eg, s), (5.51)

where the eigenenergies E0(as, s) of our model are calculated leaving a+eg as a free
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Figure 5.14: Mean inter-particle distance in the model of Ref. [180] plotted versus the
scattering length. At higher interaction energies, the particles tend to stay separated
within the harmonic well. The insets shows the radial probability profiles of the Busch
wavefunctions ψ(r) for increasing scattering lengths. The horizontal axis of the insets are
in units of harmonic oscillator length calculated for a latticewell with s = 30, corresponding
to aho = 977 a0.

parameter and using a−eg = 219.5 a0, as measured in Ref. [84]. In order to obtain
the zero field energies, the experimental data are corrected for the contribution of
the 3.5 G bias magnetic field shift, measured according to the procedure described
in the following section. The result of the fit is shown in Fig. 5.13 and gives a spin-
singlet scattering length a+eg = (3300 ± 300)a0. This very large value of scattering
length causes the energy U−eg to almost saturate to the energy gap as shown in the
inset of Fig. 5.13, in agreement with the theoretical prediction.

5.2.4 Spin-exchange oscillations versus magnetic field

In addition to the analysis of the dependence of the spin-exchange oscillations
frequency on the lattice depth, we also studied the problem related to the presence
of a finitemagnetic field. Understanding the dependence of the oscillation frequency
on the magnetic field is useful, for instance to find out how to compensate for the
presence of the bias magnetic field, which is always necessary in the experiment in
order not to depolarize the sample. Importantly, also an estimation of the scattering
length a+eg may be obtained from the experimental data of oscillation frequencies
measured at different magnetic fields.

At a finite B the spin-exchange oscillation shows a faster frequency, as the
Zeeman energy contributes to the energy difference between |egL〉 and |egH 〉 (see
Fig. 5.2). In particular, according to the model of section 5.1.3, the energy
difference for a spin-symmetric mixture m = ±5/2, is given by Eq. (5.26):
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UH
eg (B) −UL

eg (B) = 2
√

V 2
ex + ∆B2. (5.52)

where we have defined ∆B = 5
2δgµBB. However this simple model is not taking

into account the fact that the two-particle spatial wavefunctions are significantly
modified in case of strong interactions between the particles. In order to get the
idea, let us consider the analytical wavefunctions ψ(r) of the Busch model for two
interacting particles in a harmonic well defined in (5.47). In these wavefunctions,
the maximum of the radial probability profile shifts to larger values of the inter-
particle distance r = r1 − r2/

√
2 with increasing values of the scattering length as

(see Fig. 5.14), indicating that the two particles tend to spatially separate in each
lattice site [182]. Since the states ��eg+

〉
and ��eg−

〉
are characterized by very different

scattering lengths, the spatial wavefuntion of these two states cannot be considered
the same, as supposed in section 5.1.3 and the off-diagonal matrix elements of
Eq. (5.22) should also take into account the spatial overlap between the two states
��eg±

〉
. The external magnetic field coupling between the two collisional channels

becomes:

〈
Φ
∓��

〈
eg∓�� ĤZ

��eg±
〉 ��Φ±

〉
= F ∆B, (5.53)

where we have introduced aFrank-Condon factor F between the two-particle spatial
wavefunctions of the ��eg+

〉
and ��eg−

〉
states which mitigates the mixing induced by

the external magnetic field and is given by:

F =
〈
Φ
∓��Φ±〉 =

"
dr dRΦ∓∗eg (r,R)Φ±eg (r,R). (5.54)

This overlap integral is calculated between the spin-triplet and spin-singlet wave-
functions Φ±eg (r,R), which are the eigenfunctions of the Hamiltonian (5.45) in the
previous section (that includes the anharmonic corrections). Fig. 5.15 shows the
Franck-Condon factor F = 〈Φ(a1) |Φ(a2)〉 for several pairs of scattering lengths
a1 and a2. As expected, F = 1 along the diagonal, where a1 = a2 and the two
states coincide, while it drops down to ∼ 0.6 if the difference between the scattering
lengths a1 and a2 is very high. Taking into account the motional degree of freedom,
the sum of the Hamiltonian Ĥ0 (5.24 and of the Zeeman Hamiltonian ĤZ can then
be written on the

{
|eg+〉, |eg−〉

}
basis as:(

U+eg F∆B
F∆B U−eg

)
, (5.55)

It should be noted that this is the same Hamiltonian shown in Eq. (5.25) in the case
of m = −m′ with the addition of the Franck-Condon factor F. By diagonalizing
the Hamiltonian (5.55), the eigenenergies EH

eg and EL
eg can be calculated and their

difference delivers the frequency of the spin-exchange oscillation at finite magnetic
field, given by:
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Figure 5.15: Franck-Condon factor of Eq. (5.54) describing the overlap of the spatial
wavefunctions for two different scattering lengths a1 and a2 in units of the Bohr radius a0.

ν =
EH
eg (B) − EL

eg (B)

h
=

2
h

√[
Vex

(
a+eg, a−eg

)]2
+

[
F

(
a+eg, a−eg

)
∆B

]2
, (5.56)

where F
(
a+eg, a

−
eg

)
is the Frank-Condon factor of Eq. (5.54) calculated for the

scattering lengths a+eg and a−eg and Vex

(
a+eg, a

−
eg

)
= (U+eg −U−eg)/2.

The circles in Fig. 5.16 are the measured spin-oscillation frequencies (UH
eg −

UL
eg)/h at lattice depth s = 30 at different values of magnetic field B, while the

squares indicate the energy of the |egL〉 state determined by fitting the position
of the peaks in the spectroscopic measurements (Fig. 5.4). The solid lines in
Fig. 5.16 show the predictions of the model in Eq. (5.56) using the parameters
a−eg = 219.5 a0 of Ref. [84] and a+eg = 3300 a0 obtained in section 5.2.3, which
determine a Franck-Condon factor F = 0.77 calculated by using the interacting
wavefunctions described above. The agreement with the experimental data is quite
good, showing the substantial validity of the Hamiltonian (5.55) in which the
Frank-Condon factor F is considered in the mixing terms. Additionally, we have
performed a simultaneous fit of the two datasets in Fig. 5.16 using Eq. (5.56) as
fitting function with U+eg and F as functions of the free parameter a+eg and with
a−eg = 219.5 a0. The result of this fitting procedure is also shown in Fig. 5.16
(dashed lines) and gives a+eg = (4400 ± 600) a0, which differs of ∼ 2σ from the
more precise value obtained with the fit of the data at different lattice depths shown
in Fig. 5.13. It is important to note that the discrepancy between the results
for scattering length a+eg obtained with the two different methods may be due to
the fact that in a strongly interacting regime the dependence of U+eg on a+eg is
extremely weak, as can be seen in Fig. 5.12. In this case, even small effects, coming
e.g. from experimental uncertainties or from higher-order contributions in the
theory, could imply significant changes. We also note that, in presence of a strong
confinement, the interpretation of the results in terms of an effective scattering
length should be considered [183]. However, we stress that while the determination
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Figure 5.16: The blue circles are the measured spin-exchange frequencies (UH
eg −UL

eg)/h
at different values of magnetic field at s = 30, while the green squares are the measured
energy of the |egL〉 state obtained from spectroscopy (Fig. 5.4). The solid lines are the
predictions of the model in Eq. (5.55) with a−eg = 219.5 a0 and a+eg = 3300 a0 derived in
Fig. 5.13 in section 5.2.3. The dashed lines show a fit of the points with the same model
leaving a+eg as free parameter.

of the scattering length a+eg is heavily model-dependent, the determination of the
exchange interaction Vex is free from any assumption and represents an accurate
measurement of the spin-exchange coherent coupling in a multi-orbital system.

5.2.5 Constraints on SU(N) symmetry violation

As already mentioned in section 5.2.1, also the interorbital interactions are charac-
terized by a SU(N) symmetry, implying that the scattering lengths a±eg assume the
same values for all the nuclear spin states mF . However, due to the hyperfine inter-
action, there is a tiny admixture of the 3P1 into the 3P0, which implies a violation
of the SU(N) symmetry leading to a relative scattering length difference δa/a, that
is expected to be of the order of 10−3 in 87Sr [26]. The interorbital spin-exchange
oscillations represent a valid tool in order to investigate this violation. The oscilla-
tions frequency is indeed fex = 2/hVex , and can be measured with a high degree
of accuracy due to the long-lived nature of the spin-exchange oscillations.

We try to give a constraint on SU(N) symmetry violation by measuring the
difference in oscillation frequency for two different mixtures of nuclear spin states.
In order to maximize the accuracy of the measurement of the oscillation frequency,
we exploit the presence of the optical fiber link described in 3.2.4 to stabilize the
frequency of the 578 nm laser. This allows for a stable excitation of the transi-
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Figure 5.17: interorbital spin-exchange oscillations measured for the spin mixtures m =
−5/2, m′ = +1/2 and m = −3/2, m′ = +3/2, respectively in blue and red. The dots
represents the experimental data and the solid lines are the fit with a sinusoidal function.
The measured frequencies are (14.11 ± 0.05) kHz and (14.08 ± 0.04) kHz for the blue and
red curves respectively, which are compatible within the error bar.

tion to the two particle ���eg
L
〉
state for the entire day, since the laser linewidth is

only limited by the short-term stability when the laser is stabilized on the remote
frequency reference. Moveover, as discussed in section 5.2.3, the oscillation fre-
quency depends on the lattice depth. For this reason, the data are taken alternating,
at each experimental cycle, between the two different spin mixtures considered in
the experiment. In this way, possible slow drifts in the lattice alignment lead to a
common-mode effect on the global dataset for the two cases. The measurement are
performed at a finite magnetic field of 3 G in order to define a quantization axis. At
finite magnetic field the oscillation frequency fex = 2/h(UH

eg − U+eg) depends on
∆m as:

fex =
2
h

√
V 2
ex +

1
2

F∆mδgµBB, (5.57)

where we have also considered the Frank-Condon factor F introduced in section
5.2.4. This equation suggests that for an accurate measurement of the difference
of fex in spin mixtures with different ∆m, one would need to take into account a
correction for the magnetic field term, which would also imply an exact knowledge
of the term F. For this reason, we perform the measurement on spin mixtures with
the same ∆m = m − m′, so that the magnetic field correction is a common factor.
A typical result of these measurement is reported in Fig. 5.17. The measurement

120



5.2 Interorbital spin-exchange oscillations

is performed on the spin mixtures m = −5/2, m′ = +1/2 and m = −3/2, m′ =
+3/2, which are reported as blue and red circles, respectively. The two oscillation
frequency are determined fitting the data with a sinusoidal function and are (14.11±
0.05) kHz for the blue curve and (14.08 ± 0.04) kHz for the red curve, featuring
a difference of 30 ± 60 Hz. We note that the reduced amplitude of the oscillation,
with respect to Fig. 5.9, is a consequence of the lower admixture of the ��eg+

〉
and

��eg−
〉
states in the considered mixtures with respect to the m = −5/2, m′ = +1/2

case. The two frequencies are compatible within the error bar and the difference
is compatible with zero. The same result is obtained for other measurements,
even between other mixtures with different ∆m taking in account the magnetic
field correction using our experimental parameters and using the value for F found
in section 5.2.4. We can conclude that no violation of the SU(N) symmetry is
observed within the level of uncertainty of ∼ 4 × 10−3 currently achievable with
our experimental setup. On the other hand, these measurements do not represent a
proof of the SU(N) symmetry, a task that would require a systematic investigation of
all the possible spin mixture combinations. We can conclude that, an improvement
of our experimental setup is needed in order to increase the accuracy of this kind
of measurement.
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Chapter 6

Orbital Feshbach Resonances

As already mentioned before, the presence of the metastable state and the SU(N)
symmetry of interactions are peculiar features of AEL atoms. Despite these remark-
able properties, two-electron atoms are, up to now, thought to lack the tunability of
interactions, due to their null electronic angular momentum in the ground state, that
precludes the existence of convenient magnetic Feshbach resonances at reasonable
values ofmagnetic field. This is a fundamental tool in ultracold gases of alkali atoms
[85], which allowed for breakthrough achievements, including studies of strongly
interacting fermionic systems, with the demonstration of high-density molecular
gases and the exploration of fermionic superfluidity at the BEC-BCS crossover
[78]. It is straightforward that disposing of a similar tunability for two-electron
atoms would open totally new avenues, including the study of the crossover in a
two-orbital system and the investigation of topological fermionic superfluids [58].
In this direction, Optical Feshbach resonances in two-electron atoms have been
proposed [184] and observed experimentally [185, 186], but their implementation
presents a high degree of difficulties, such as heating and losses. For this reason,
Optical Feshbach resonances are not a viable tool to be exploited for the observation
of true many-body quantum physics, although novel promising schemes have been
very recently investigated [187].

In this chapter we describe the first experimental observation of a new kind of
Feshbach resonance, called Orbital Feshbach Resonance (OrbFR), affecting the the
scattering between atoms in different electronic states, which have been recently
proposed in Ref. [58]. The results of this observation are reported in Ref. [57]
and are confirmed by the independent, complementary measurements reported
in Ref. [188]. Exploiting this resonance, we realized a strongly interacting gas
of two-electron fermionic Yb atoms with orbital degree of freedom and tunable
interactions. After a short introduction to the subject of Feshbach resonances and
a description of the mechanism at the basis of OrbFR, it will be shown how we
could detect the OrbFR by observing a hydrodynamic expansion of the Fermi gas
in the strongly interacting regime. Finally, atom losses across the resonance will
be investigated, in order to determine the actual exploitability of this new kind of
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Figure 6.1: Open channel and closed channel molecular potentials. At energy E only the
open channel is accessible. Tunig the magnetic field B, the position of the closed channel
bound state can be adjusted and a Feshbach resonance occurs when it matches the open
channel energy threshold.

scattering resonance.

6.1 Introduction to Feshbach resonances

A Feshbach resonance is a resonance of the scattering length between two atoms.
The physical origin and the elementary properties of a Feshbach resonance can
be understood with a simple picture. Let us consider consider a pair of colliding
atoms with different internal degree of freedom. These atoms can interact in
different combinations, or channels (e.g singlet and triplet channels for two atoms
with spin states |↑〉 and |↓〉), which correspond to different molecular potentials.
In particular, the lowest energy potential is asymptotically connected, at large
internuclear distances r , to free ultracold atoms of the gas. In a collisional process
having energy E, this potential represents the accessible "open channel", which we
label as Vo (r). The other potential Vc (r), with asymptotic energy higher than E,
is called "closed channel" and is unaccessible during the collision due to energy
conservation. However, it can support the existence of a bound state with energy
Ec near the threshold of the open channel (see Fig. 6.1).

A Feshbach resonance occurs when the energy of closed channel bound state
Ec approaches the energy of the scattering state in the open channel. In this case,
even small couplings between the two channels can lead to a strong mixing between
them. In the case in which the magnetic moments of the two channels are different,
the two potentials can be energetically shifted with respect to one another by means
of an external magnetic field, leading to a magnetical Feshbach resonance. The
aforementioned finite coupling between the open and closed channels is fundamen-
tal for the emergence of the resonance. This coupling implies that the initial state
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Figure 6.2: Square-well potentials of the simplified Feshbach resonance model defined in
Eq. (6.1).

is no longer an eigenstate at closer internuclear distances and changes the character
of the bound state, which will be an eigenstate of the total interaction Hamiltonian,
different from that of the closed channel potential.

In order to clarify the main characteristics of a Feshbach resonance, let us
consider a simple model in which the two molecular potentials are represented
by square-well potentials, which can resolved analytically [85, 189]. The two
potentials will be given by:

Vo (r) =



−Vo if r < r0

0 if r > r0,
Vc (r) =




−Vc if r < r0

+∞ if r > r0,
(6.1)

where r0 is the characteristic length of the potential (i.e. equivalent to the van der
Waals length of a van der Waals potential). Let us also suppose that the closed
channel potential can be energetically shifted by an amount ∆µB, where ∆µ > 0
is the differential magnetic moment between the two channels and B the magnetic
field. Finally let us consider a coupling potential of the type:

Voc (r) =



−Voc if r < r0

0 if r > r0,
(6.2)

withVoc � |Vo−Vc |. The couplingVoc could embed different types of interactions.
In magnetic Feshbach resonances between alkali atoms, open and closed channels
are coupled by the hyperfine interaction, but also other mechanism are possible, as
will be explained later in this chapter. The total Hamiltonian will be then given by:
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Ĥ =
*...
,

~2k2

2mr
+ Vo (r) Voc (r)

Voc (r)
~2k2

2mr
+ Vc (r) + ∆µB

+///
-

, (6.3)

where mr is the mass of the atom pair. This Hamiltonian is valid for generic
molecular potentials Vo (r), Vc (r), and the associated Schrödinger equation is an-
alytically solvable for the considered case of square-well potentials. Let us first
consider the case in which Voc = 0. In this case the Hamiltonian is diagonal and
the two potentials can be treated independently. In particular, for zero energy E
and B , 0, only the open channel potential has a wavefunction ψo (r) that can be
described by the standard scattering theory of section 1.2, resulting in a scattering
length abg which depends on the size of the box. Moreover, both ψo (r) and abg

do not depend on the value of the magnetic field. The situation is different for the
closed channel potential. The magnetic field shifts the potential depth Vc and the
energy of its associated bound state Ec (see Fig. 6.1), which depends linearly on B.
In particular, the bound state energy will be zero at the magnetic field value B0 for
which ∆µB0 = −Ec (B = 0).

The Schrödinger equation can be resolved exactly also in the case in which
Voc , 0, with eigenfuncitons that are combinations of exponentials and oscillating
terms. For simplicity, the calculations are not carried out here and only the principal
results will be discussed. For E > 0, the open channel wavefunction ψo (r), will
show an oscillating behavior outside the box for r > r0, and a phase shift and related
scattering length are introduced by imposing the boundary conditions in r = r0.
When ψo (r) is coupled to the closed channel wavefuntion inside the box for r < r0,
the wavefunction picks up an additional resonant phase shift, due to the presence
of the closed channel bound state Ec (B):

δ0 = δbg + δres . (6.4)

It can be shown [85] that this phase shift, which depends on the magnetic field since
it is related to Ec (B), induces a magnetic-field-dependent resonant feature in the
scattering length, specifically:

a = abg

(
1 +

∆B
B − Bres

)
. (6.5)

Several important parameters characterize the Feshbach resonance. The shape is
determined by the its position Bres, the background scattering length abg and the
width∆B, that is defined as the difference Bres−Bzero, where Bzero is the magnetic
field value at which the scattering length is zero. Another important quantity is the
bound state energy. In the vicinity of the resonance position Bres, where the two
channels are strongly coupled, for large positive values of a a "dressed" shallow
molecular state exists with a binding energy [85]:
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Figure 6.3: Scattering length (blue curve) and binding energy (solid red) as a function
of the magnetic field B around a Feshbach resonance. The scattering length diverges
at magnetic field Bres and has a width ∆B. On the positive scattering length side of the
resonance, the bound state energy depends quadratically on the magnetic field and vanishes
for a → +∞ at Bres . Far from the resonance, where the mixing between closed and open
channel is small, the bound state energy reduces to that of the closed channel bound state
Ec , represented by the dashed red line.

Eb = −
~

2mra2 , (6.6)

and, since a ∝ B−1, with a quadratic dependence on magnetic field detuning
B − Bres. This region is of particular interest due to its universal features. Here the
molecular state can be well described by a single effective potential with scattering
length a given by Eq. (6.5). The bound state energy Eb has a zero crossing in
Bres, which is shifted by an amount δB = Bres − B0 from the zero crossing of the
unperturbed bound state Ec. In the vicinity of the resonance, where this quadratic
behavior holds, the bound state projection on the open channel will be close to 1.
Far from the resonance instead, where the state mixing is reduced, the bound state
energy reduces to that of the closed channel bound state Ec, as shown in Fig, 6.3,
and a linear dependence on the magnetic field is recovered.

In this context, it is possible to introduce the parameter Z , that is defined as the
closed channel fraction of the eigenstate of total Hamiltonian and that substantially
distinguishes between the shallow bound state behavior, quadratic in the magnetic
field, and the linear, closed channel dominated, regime. Near the resonance, for
B → Bres and a → ∞, Z is given by [85]:
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lim
a→∞

Z = ζ−1
�����
B − Bres

∆B

�����
, (6.7)

where the dimensionless parameter ζ−1 determines the rate at which the Feshbach
bound state state deviates from the open channel dominated regime when B is tuned
away from Bres. In the case of the box-potential model it is possible to derive an
analytic expression of ζ given by:

ζ =
µB

~2 a2
bg∆µ∆B. (6.8)

This expression clearly shows that the value of ζ is determined by the parameters
of the potential (in this particular case, by the magnetic field sensitivity and the
background scattering length, in addition to the width ∆B of the resonance). Equa-
tion (6.7) suggests that having a small closed channel fraction Z � 1 implies that
|B − Bres | � ζ∆B. If ζ � 1 then |B − Bres | � ∆B, which means that the bound
state has open channel character only for a small fraction of the resonance width∆B.
Such resonances are called "closed channel dominated", or "narrow", resonances.
If instead ζ ≥ 1 then |B − Bres | will be of the order of ∆B, that means that the
weakly bound character of the molecular state persists over a large portion of the
resonance width, and the resonance is well described by Eq. (6.5). In this case, the
resonance is defined as an "open channel dominated" or "broad" resonance. The
broad or narrow character of the resonance can also be related to the effective range
reff of the potential (see Eq. 1.33) with a similar argument. It can be shown [190]
that the open channel population, i.e. the open channel fraction, is given by:

Popen =
1

√
1 + 4reff/a

. (6.9)

This equation implies that Popen ∼ 1 if reff/a � 1. A high value of the effective
range implies that a � reff only for values of magnetic field in the vicinity of the
resonance |B − Bres | � ∆B, where the scattering length is very high. In this case
the resonance will be closed-channel dominated. If instead reff is small, then the
condition reff/a � 1 holds over a wider range of magnetic field and the resonance
will be open channel dominated.

6.2 Orbital Feshbach resonances

In the previous section we saw that for a Feshbach resonance to exist, a coupling
term between the two molecular potentials is needed. In alkali atoms, the electronic
ground state is 2S 1

2
and if the nuclear spin I , 0, only two hyperfine sublevels are

presents, namely F = I ± 1/2. If a magnetic field is present, the states are split
in a Zeeman manifold, and pairs of atoms interact through molecular potentials
which depend on their Zeeman level and can be relatively shifted by varying the
magnetic field. The mixing between the molecular potentials is provided by the
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Figure 6.4: Scheme of the 173Yb orbital Feshbach resonance mechanism affecting the
scattering between one |g〉 = 1S0 atom and one |e〉 = 3P0 atom in two different spin states
(see text for details).

hyperfine interaction, and the condition necessary for a Feshbach resonance to exist
are satisfited.

In the case of AEL atoms instead, the ground state has J = 0, so even if
fermionic atoms with opposite spins |↑〉, |↓〉 can interact through different singlet
and triplet potentials, no hyperfine interaction is present to provide the mixing
between the two, hence no magnetic Feshbach resonance can occur at realistic
values of magnetic field. However, it was very recently pointed out in Ref. [58] that
the AEL atoms orbital degree of freedom provided by the metastable state can be
exploited in order to lead to a new type of Feshbach resonance, the OrbFR, which
relies on the spin-exchange interaction described in chapter 5 as state-coupling
mechanism.

In order to understand how orbital Feshbach resonances are originated, let us
consider a pair of atoms in different electronic orbitals |g〉, |e〉 and in different spin
states m and m′ that we label |↓〉 and |↑〉. For large interatomic distances, when the
atoms are separated, interactions between them are negligible and the eigenstates
of the system are |e ↑, g ↓〉 and |g ↑, e ↓〉. These states, which are explicitly defined
in Eq. (5.4), link a defined nuclear spin to a specific orbital state. At finite magnetic
field, these two states have different threshold energies, separated by the differential
Zeeman energy δ = ∆µB = δg∆mµBB, with δg being the differential Landé g-
factor. In particular the |e ↑, g ↓〉 state will have the higher energy. For this reason
we will refer to this state as the closed channel |c〉, while |g ↑, e ↓〉 will be the open
channel |o〉 (see Fig. 6.4). In the rest of the chapter, we will use the more compact
notation |o〉 and |c〉 for the states |g ↑, e ↓〉 and |e ↑, g ↓〉, respectively. At lower
interatomic distances, the interactions are no longer negligible, and, as showed
in section 5.1.1, atoms can couple in two anti-symmetric states ��eg±

〉
, defined in
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Eq. (5.5) as linear combinations of the states |o〉 and |c〉. The very strong inter-
orbital spin-exchange interaction Vex , giving rise to a coupling between |o〉 and
|c〉 (see also Eq. (5.30)), becomes resonant when the Zeeman energy δ equals the
binding energy Ec of the least bound state in the closed channel. This coupling
mechanism is completely different from the hyperfine coupling, typical of magnetic
Feshbach resonances.

A formal demonstration of the orbital Feshbach resonance can be found in
Ref. [58]. The non interacting Hamiltonian in the {|o〉 , |c〉} basis is given by:

Ĥ0 =

(
~2∇2

2mr
+ δ

)
|c〉 〈c | +

(
~2∇2

2mr

)
|o〉 〈o| , (6.10)

where mr is the reduced mass. As shown in section 5.1.1, the interaction potential
is instead diagonal in the ��eg±

〉
base, and in particular it is given by Eq. (5.8), that

for clarity we rewrite as:

V̂ = V ( |o〉 〈o| + |c〉 〈c|) + Vex (|c〉 〈o| + |o〉 〈c|), (6.11)

where V and Vex are the direct and exchange pseudo-potentials (see section 5.1.1),
respectively, with direct and exchange scattering lengths ad and aex given respec-
tively by:

ad =
a+eg + a−eg

2
, aex =

a+eg − a−eg
2

. (6.12)

Defining then the two-body scattering wave function as [58]:

|ψ〉 =

[
eikr + fo (k)

eikr

r

]
|o〉 + fc (k)

e−
√
mδ/~2−k2 r

r
|c〉 , (6.13)

where fo,c (k) are the scattering amplitudes for the open and closed channels, and
by solving the Schrödinger equation (Ĥ0 + V̂ ) |ψ〉 = E |ψ〉 with E = ~2k2/2mr , it
is possible to find an expression for the scattering amplitude fo (k), which directly
leads to a magnetic field dependence of the open channel scattering length as =

limk→0 f0(k). The simple result for the pseudo-potential, which we do not report
here, can be easily extended to the case of a potential with finite van der Waals
range r0 [58], obtaining:

as =
−ad +

√
mδ/~2[(a2

d
− a2

ex ) − r0ad]√
mδ/~2(ad − r0) − 1

, (6.14)

where r0 is the van der Waals length and in which the magnetic field dependence is
contained in the term δ. It should be noted that the spin-exchange interaction term
is crucial for the existence of the orbital Feshbach resonance. Indeed, in case of
zero exchange interaction Vex = 0, the exchange scattering length aex = 0 and the
scattering length as becomes a constant, specifically, as = ad. In this case, there is
no mixing between open and closed channels, and the Feshbach resonance cannot
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Figure 6.5: Scattering length as of Eq. (6.14) plotted as a function of the magnetic field for
∆m = 1, · · · , 5. The resonance positions are identified by the colored vertical lines. The
resonance magnetic field is lower (∼ 40 G) for ∆m = 5 (blue line) and increases as ∆m−1.
The blue circle identifies the zero crossing for the ∆m = 5 mixture around 400 G.

occur. If instead Vex , 0, there is a non-zero mixing between open and closed
channel, allowing for the existence of the orbital Feshbach resonance, which will
have a width ∆B determined by the value of the exchange scattering length aex . In
particular, a stronger mixing, and thus a higher value of aex imply a higher ∆B.
The resonance position will instead be determined by the direct scattering length
ad. Indeed, according to Eq. (6.14), the scattering length as has a divergence for:

δ = δres =
~2

m(ad − r0)2 , (6.15)

where m = 2mr is the atomic mass. This equation shows that the resonance will be
located at lower values of magnetic field for higher values of the direct scattering
length ad. This is a direct consequence of the fact that a high value of ad implies
a shallow closed channel bound state |Ec | = ~2/ma2

d
, so that the Zeeman energy

δ equals the Ec for low values of magnetic field. For this reason, Ytterbium is an
ideal candidate for the observation of orbital Feshbach resonances: the values of
the scattering lengths a±eg reported in Chapter 5 imply a direct scattering length
ad of the order of thousands of Bohr radii, meaning that the resonance is expected
to be located in a very convenient range of a few tens of gauss. This is a major
advantage with respect to other systems, for example 87Sr in which, due to the
very small inter-orbital scattering length, the OrbFR is expected to be located at
magnetic field of the order of 103 − 104 G. Another remarkable feature of OrbFR
that can be deduced from Eq. (6.15) is that, since δ is proportional to ∆m, the
magnetic field B at which the resonance is observed scales as ∆m−1. This is a direct
consequence of the SU(N) interaction symmetry, that causes the binding energy
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Ec to be independent on ∆m. As a consequence, the energy δ = δg∆mµBB for
which the coupling between |o〉 and |c〉 is resonant has to be the same in all the spin
mixtures ∆m, hence the scaling with ∆m.

Finally, it is possible to identify a zero-crossing of the scattering length as in:

δ = δ0 =
~2

m(ad − r0 − a2
ex/ad)2

. (6.16)

In Fig. 6.5, we show the plot of the scattering length for different spin mixture
with ∆m = 1, . . . , 5, where we have used the parameters δgµB = 2π~ × 113 Hz/G,
r0 = 84.8 a0 Ref. [33] and the value 2ad = a+eg + a−eg ≈ 2100 a0, that we estimate
from our experimental measurements (see section 6.3.2). The curve shows that
the resonance position scales with ∆m−1. In particular, the resonance for the
∆m = 5 mixtures is located at the minimum value of magnetic field (∼ 40 G) and is
represented by the blue curve. This curve also shows a zero crossing around 400 G,
represented by the blue circle.

6.3 Observation of orbital Feshbach resonances

In this section, we discuss the experimental observation of orbital Feshbach reso-
nances in ultracold Fermi gases of 173Yb, which was very recently reported in for
the first time in [57].

6.3.1 Detection of the strongly interacting regime through hydrody-
namic expansion

In the experiment, we prepare different two-spin component mixtures with spin m↑
and m↓ and with ∆m = m↑ − m↓. The atoms are cooled in the crossed ODT at
1064 nm down to the degenerate level, obtaining a Fermi gas with a total atom
number of Nat ' 60 × 104 at T ' 0.15TF . The gas is subsequently loaded in a
second ODT operating at the magic wavelength λ = 759 nm, which traps both
|g〉 and |e〉 atoms and does not shift the |g〉 → |e〉 transition frequency, and with
beam waist ∼ 30 µm. The ODT is superimposed to optical lattice 1 (OL1) beam
(which is not used in this experiment). This beam results in a cigar-shaped trap
with trapping angular frequencies ~ω = 2π × (13, 188, 138) Hz, which imply a
peak atomic cloud density n ' 2.4 × 1013 cm−3 per spin component. In this way
the investigated system consists in a 3D gas, in which no confinement induced
resonances are present [191, 192], so that we directly probe the effect of orbital
Feshbach resonances. In order to excite the atoms in the |e〉 state without imparting
a momentum kick to the system, we direct the 578 nm laser beam on an alternative
path, which is superimposed with (OL2). The lattice beam is slowly ramped up to
s = 30, and the m↓ atoms are excited to the state |e〉 with a 400 µs pulse of 578 nm
light. In this way, the excitation is performed in a deep Lamb-Dicke regime (see
section 4.2.1), and the atoms are transferred in the state |e〉with a ≥ 80% efficiency
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Figure 6.6: False color absroption images of the remaining |g〉 atoms after the excitation
in the open channel for different expansion times tto f (a. 7 ms, b. 16 ms, c. 28 ms). At
short time of flight the could shape is determined by the shape of the trap, while at longer
tto f the aspect ratio of the cloud inverts due to the higher interaction energy in the strongly
confined direction.

without imparting an optical momentum kick in order to maintain the system at
equilibrium. Since the atoms are not isolated like in the case of the 3D lattice,
a fast excitation pulse is important in order to minimize inelastic losses during
the excitation, so the transition is power broadened in order to achieve faster Rabi
frequencies (see section 4.2.2). In order to resolve the Zeeman components of the
transition and only excite only one spin state, the excitation is performed at an high
magnetic field Bexc ranging from 72 to 167 G. Moreover, at these magnetic field
values the Zeeman energy is higher than the exchange energy, and the open and
closed channels are the eigenstates of the Hamiltonian. In this way it is possible
to excite the open channel |o〉 by exciting the m↓ atoms, which have a lower clock
transition frequency. After the excitation, the optical lattice is ramped down to zero
in 100 ms to recover a 3D atomic gas. At this point, the magnetic field intensity
is changed to desired B value in ∼ 2 ms. Immediately after, the 759 nm trap is
suddenly switched off, and the remaining ground state atoms are imaged after a
time of flight tto f .

In order to detect the onset of a strongly interacting regime, we keep themagnetic
field at the value B during the first 5 ms of the expansion, allowing for the release of
their interaction energy into kinetic energy, and we observe the evolution in time of
flight of the cloud aspect ratio (AR) Ry/Rx , with Ry and Rx being the atomic cloud
radii along the directions of strong andweak confinement, respectively. Under these
conditions, a weakly interacting gas will expand ballistically, eventually resulting in
a spherical shape (aspect ratio value of 1) for sufficiently long expansion times (much
larger than the inverse trap frequencies) [193]. On the contrary, the observation
of the aspect ratio inversion would represent a signature of hydrodynamic regime
for the Fermi gas, which has already been observed for alkali fermionic gases
close to magnetic Feshbach resonances [194]. This hydrodynamic regime occurs
in presence of strong interactions, which is a necessary condition for the onset
of fermionic superfluidity [195–197]. In the hydrodynamic limit, the collisional
rate Γ is larger than the geometric trapping frequency ω̄ = (ωxωyωz )1/3, causing
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Figure 6.7: Aspect ratio of a strongly interacting 173Yb Fermi gas prepared in the open
channel at B = 41Gas a function of the time of flight. The circles represent the experimental
data, and the labels a, b, c refer to the images in Fig. 6.6. The long-dashed gray line
represents the behvior expected from a non-interacting Fermi gas. The short-dashed black
line indicates the limit above which the experimental aspect ratio gets inverted because of
hydrodynamic expansion.

a faster expansion along the tightly confined axis of the harmonic trap because
of the larger density gradient. This can be clearly seen in Fig. 6.6, which shows
false color absorption images of an atomic cloud with nuclear spin components
m↓ = −5/2 m ↑= +5/2 at magnetic field B = 41 G for different value of time
of flight tto f , that clearly show an inversion of the cloud shape from prolate to
oblate. Fig. 6.7 shows instead the evolution of the aspect ratio as a function of tto f ,
represented by the circles (the points corresponding to the images in Fig. 6.6a,b,c are
labeled with the corresponding letter). The aspect ratio exceeds 1 for tto f ' 18 ms
and differs clearly from the long-dashed curve, which represents the aspect ratio
evolution in the non-interacting case, approaching 1 in the far field limit. It should
be noted that the value of the aspect ratio in the strongly interacting regime is
lower than that predicted by the hydrodynamic equations of superfluids at resonant
interactions (≈ 2 at our maximum expansion time) [198]. This discrepancy has
been already observed in [199], and could be ascribed to the fact that the expansion
does not take place entirely in the hydrodynamic regime, possibly due to a narrow
character of the OrbFR [200]. Indeed, as pointed out in section 6.1, a narrow
resonance implies a large effective range reff. In this case, the term depending on
reff of Eq. (1.33) cannot be neglected and the scattering amplitude (1.32) features an
additional dependence on k. In this case, it is possible that part of the gas is not in
the hydrodynamic regime. It is anyhow important to stress that the effective range
of the potential is not yet known and further theoretical investigation is necessary
in order to definitively attribute a narrow or broad character to the resonance.
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Figure 6.8: Aspect ratio of the atomic cloud after tto f = 28 ms as a function of the magnetic
field B for a ∆m = 5 mixture. The gray squares correspond to the AR measured in a mixture
prepared in the closed channel, whereas the blue circles correpond to the AR measured in
a mixture prepared in the open channel. The resonant feature of the latter is fitted with
a Lorentzian curve (blue solid line). The aspect ratio background signal is less than one
because the expansion is not fully in the far-field limit.

6.3.2 Location of orbital Feshbach resonance

In order to detect and locate the OrbFR predicted in Ref. [58], we study the
dependence of the asymptotic value of the aspect ratio as a function of the magnetic
field B, after the excitation of the open channel. In this way, the anisotropy
discussed in the previous section is used as a tool to detect the magnetic field values
at which the onset of the strongly interacting regime occurs, as already studied in
the case of alkali atoms [199]. The results of this measurement for the spin mixture
with ∆m = 5 at time of flight tto f = 28 ms are reported in Fig. 6.8. The blue
circles correspond to the excitation of the open channel, showing a maximum of
the anisotropy around B ∼ 40 G, which is a clear signal of enhancement of the
elastic collisional rate at the Feshbach resonance above the hydrodynamic regime.
If compared with the typical width of magnetic Feshbach resonances in alkali
atoms, this resonance shows a large feature, which is anyhow not related to a
broad character of the resonance itself. Indeed, this behavior a consequence of the
very small magnetic sensitivity of the energy levels, which depends on the nuclear
magneton and is three orders of magnitude lower than in alkalis. The data are
fitted with a Lorentzian curve, which is only used to determine the center of the
resonant feature. The result of the fit is represented by the solid blue line, and is
centered at B = (41 ± 1) G. The grey squares represent instead the aspect ratio
at tto f = 28 ms after the excitation of the closed channel. No resonant feature is
observed, and for all the magnetic field values, the measured aspect ratio remains
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Figure 6.9: a. Comparison between open channel mixtures with different ∆m, plotted as
a fuction of a rescaled magnetic field B̄ = B∆m/5. Different colors refer to different ∆m.
The different datasets collapse onto the same curve thus verifying the OrbFR scaling law,
which is in turn a direct consequence of the SU(N) symmetry of two-electron atoms. b.
Resonance centers of the data shown in b before the magnetic field rescaling plotted versus
∆m. The line is a fit with the expected ∆m−1 behavior.

constant slightly below the predicted value of 1 in the non-interacting case. The
same background value is observed also for the excitation of the open channel at
high values of magnetic field. This may be ascribed to the expansion non being
fully in the far-field limit, so that the cloud has no time to reach the steady value of
1.

It should be noted that, while we exclude possible confinement-induced shifts
due to the low trapping frequencies, the resonance position can be affected by
finite energy effects. The closed channel features a bound state with energy |Ec | =

~2/ma2
d
∼ h×20 kHz, where ad as been defined is Eq. (6.12), only about one order

of magnitude higher than the Fermi energy kbTF ∼ h × 4 kHz, so also scattering
states in the closed channel may play a role [58]. Moreover, the Fermi energy spread
corresponds to a magnetic field width kBTF/∆µ ∼ 7 G for a ∆m = 5 sample, which
may contribute to the observed width of the resonance. Nevertheless, from the fitted
position of the maximum of Fig. 6.8, by using Eq. (6.15) and a van derWaals length
r0 = 84.8 a0 Ref. [33] we obtain 2ad = a+eg+a−ag ≈ 2200 a0. It should be noted that
this is only a rough estimate, also considering the aforementioned possibly narrow
character of the resonance due to the tiny energy scales involved in the process. In
order to determine a more precise value, additional theoretical investigations are
required as well as further experimental efforts. However, with this value and by
using the model in Eq. (6.14) we obtain the behavior of the scattering length as a
function of the magnetic field for the ∆m = 5 case, which is represented by the blue
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line in Fig. 6.5. From this model it is also possible to estimate the magnetic field
value at which the scattering length features a zero crossing, obtaining B ≈ 400 G.
This value lays outside the range of our experimental setup (∼ 170 G), but has been
confirmed in the independent measurement of Ref. [188].

We have repeated the same measurement also for mixtures with progressively
smaller ∆m values, finding that the resonance position is shifted towards signifi-
cantly larger magnetic field values. The results of these measurement are reported
in Fig. 6.9a for all the values of ∆m, with the exception of ∆m = 1 whose center lies
outside the accessible magnetic field range. The different peak aspect ratio with
respect to Fig. 6.8 is due to the different employed excitation scheme, in which the
atoms are excited directly, without the application of the optical lattice, in a 3D trap
with different trapping frequencies ~ω = (22, 181, 139) Hz. In order to highlight
the scaling with ∆m, each resonance is plotted versus a rescaled magnetic field
B̄ = B∆m/5. The different datasets clearly show a very similar dependence on B̄,
which is a distinctive feature of the OrbFR mechanism and a direct consequence
of the SU(N) interaction symmetry of 173Yb. In particular, the collapse of the
experimental data onto the same curve verifies the scaling with ∆m−1, as can also
be seen by Fig. 6.9b in which the resonance centers before the rescaling are plotted
versus ∆m and fitted with a function proportional to ∆m−1.

6.3.3 Inelastic losses

For future studies of many-body physics exploiting this novel experimental scheme,
it is important to understand the effect of inelastic losses across the orbital Feshbach
resonance. With this aim, after the two-orbital Fermi gas prepared in the open
channel is loaded in the 3D dipole trap at 759 nm, we wait for a variable time thold
before switching the trap beams off. After a time a flight tto f = 28 ms we measure
the aspect ratio and the residual number of atoms Ng in the |g〉 state. Fig. 6.10
shows the measured aspect ratio as a function of the holding time at B = 60 G in the
trap, while Fig. 6.10 shows the number of atoms Ng. The aspect ratio slowly decays,
with a 1/e lifetime τ ' 380 ms, towards an asymptotic value slightly smaller than
1, corresponding to a weakly interacting regime as already observed in Fig. 6.8.
As already mentioned in the previous section, this value of the aspect ration is
lower than 1 because the expansion is not fully in the far-field limit. On the same
timescale, Ng decreases towards a non-zero value. This decay can be interpreted as
the result of inelastic collisions between |g〉 and |e〉 atoms progressively emptying
the two states. As a consequence of the atom loss, the gas slowly becomes less
and less interacting until the conditions for being in the hydrodynamic regime are
abandoned. The non-zero asymptotic value of Ng can be ascribed to an unbalance
in the state preparation, that causes the initial number of |g〉 atoms to be higher than
that of |e〉 atoms.

We note that the smooth decay of the aspect ratio in Fig.6.10 is an evidence of
the absence of shape excitations of the atomic cloud, confirming the adiabaticity
of the excitation and trap loading procedures. Indeed, non-adiabatic procedures
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Figure 6.10: a. Evolution of the aspect ratio for a ∆m = 5 cloud, initially prepared in the
open channel, after different holding times in the 759 nm trap at B = 60 G and a fixed time
of flight tto f = 28 ms. The asymptotic value of the aspect ratio is less than one because the
expansion is not fully in the far-field limit. b. Number of atoms for the same experimental
parameters as in a.

would have induced oscillations on timescales of the order of the inverse trap
frequencies, which instead are not observed. Moreover, we have also verified, by
means of OSG nuclear spin detection, that no inter-orbital spin-exchange dynamics
takes place during the experiment. This is mainly determined by the fact that
the spin-exchange interaction Vex is low in the 3D trap geometry employed in the
experiment. This causes the open and closed channel to be well defined (δ � Vex)
even for low differential Zeeman energies, and close the the Feshbach resonance we
do not observe any significant repopulation of the atoms in the ��g,m↓

〉
state which

was initially emptied during the loading of the open channel.
As a final characterization, we studied the atoms losses as a function of the

magnetic field across the Feshbach resonance. The results of these measurements
are reported in Fig 6.11. The lifetimes are estimated from a fit of the experimental
data with a single exponential function, as in Fig. 6.10, used to globally quantify the
losses. Actually, atom losses may be caused by several decay processes, including
atom+dimer and dimer+dimer inelastic collisions [201, 202], but the characteriza-
tion of the specific decay channels goes beyond the scope of this work and shall
be investigated in future works. However, also a single exponential approxima-
tion leads to interesting insights on possible exploitability of such resonance for
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Figure 6.11: Inverse 1/e lifetime of the ∆m = 5 open-channel mixture as a function of
the magnetic field. On the BEC side of the resonance the losses are increased due to the
presence of multiple decay channels.

many-body physics applications. Indeed, as Fig 6.11 shows, lifetime is strongly
asymmetric with respect to the center of the Feshbach resonance. In particular, the
loss rate increases on the BEC side (with positive scattering length) of the reso-
nance, as a consequence of the activation of the aforementioned inelastic channels.
Noticeably, however, the observed lifetime at the resonance seems to be rather long,
with a 1/e lifetime of ≈ 350 ms measured at B = 41 G. For this reason, orbital
Feshbach resonances represent a promising tool for future implementation of novel
many-body physics simulation schemes with Ytterbium atoms.
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Chapter 7

Review of other results

In this chapter we discuss further experimental results achieved during these years,
regarding the investigation of the role of spin multiplicity in interacting one-
dimensional systems [32] and the observation of edge physics in synthetic Hall
ribbons through a hybrid 2D lattice made of a real and a synthetic dimension
[203]. Since the phenomena observed in these experiments do not directly involve
two-orbital physics, which is the main focus of this work, they are only concisely
discussed in the following sections, for sake of briefness. The two experiments are
described in details, both from the theoretical and experimental point of view, in
the PhD theses of my coworkers G. Pagano [111] and M. Mancini [116], and in two
related papers [32, 203].

7.1 Aone-dimensional liquid of fermionswith tunable spin

Correlations in systems with spin degree of freedom are at the heart of fundamental
phenomena, ranging from magnetism to superconductivity. The system dimen-
sionality strongly influences the effects of correlations, a subject which was exten-
sively studied theoretically over the past fifty years in both fermionic and bosonic
systems[204–209]. Considering the case of fermions, a 2D or 3D fermionic system
can be described by the Landau-Fermi liquid theory. In this model, excitation of
quasi-particles with arbitrary small energy can exists for every momentum q, anni-
hilating a particle below the Fermi surface and recreating it above. The presence of
interactions doesn’t change much with respect to the non-interacting case. The ele-
mentary particles of such a system are fermionic quasi-particles, fermions dressed
by the density fluctuations around them, which behave as they were essentially free
with an effective mass m∗.

In one dimension instead, a fermion that tries to propagate has to "push" the
other particles because of the constraints of the direction of motion so that any
single-particle excitation becomes a collective one (see Fig. 7.1). Introducing the
spin degree of freedom further complicates the description, as a single fermionic
excitation splits into a collectivemode carrying density (or "charge") and a collective
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a b

Figure 7.1: a. In more than one dimension, quasi-particle excitation exist. b. In a
one-dimensional interacting system instead, only collective excitations can exist.

mode carrying spin. This characteristic clearly makes any attempt to describe
the situation within the Fermi liquid framework unsuccesful. A one-dimensional
interacting Fermi gas is instead described by the long-standing Luttinger Liquid
model [204, 210, 211] in the low-q regime. In 1D, the zero range interaction g1D
of the type U (x) = g1Dδ(x) is given by the expression [212]:

g1D = −
2~2

ma1D
=

2~2

m
a3D
a⊥

1
1 − 1.033a3D/a⊥

, (7.1)

where a3D is the scattering length in 3D and a⊥ =
√
~/mω⊥ is the harmonic oscilla-

tor length of the external harmonic confinement, transverse to the 1D string1. With
this definition, interactions can be parameterized with the adimensional parameter
[213]:

γ =
mg1D

~2n1D
=

2
a1Dn1D

, (7.2)

where n1D is the one-dimensional density. Eq. (7.2) has the counterintuitive con-
sequence that the role of interactions increases by decreasing the density of the
sample. Following the approach of Refs. [214, 215], the Luttinger liquid model can
be extended to the case of ultracold atoms, finding that the low energy physics of
the system is completely described by three quantities, the charge and spin "sound"
velocities vc and vs, respectively, and the charge Luttinger parameter Kc = K 2.
These quantities depend non-trivially on the interaction strength parameter γ. In
general, for non zero interactions (γ , 0) the two sound velocities are different,
giving rise to the so-called spin-charge separation. The parameter K instead varies
from K = 1 in the non-interacting case to K = 0.5 for γ → ∞.

The Luttinger theory discussed up to now is valid for the case of a two-spin
components system. A comprehensivemodel for the case of higher spinmultiplicity

1The energy ~ω⊥ have to be the highest energy scale of the system in order to consider it truly
one-dimensional.

2A fourth parameter, the spin Luttinger parameter Ks is identically Ks = 1 for a spin-rotationally
invariant system, like a SU(N)-interacting gas.
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is still lacking, as well as a systematic experimental investigation. Exploiting the
possibility to prepare stable mixtures of SU(N) interacting atoms we investigated
for the first time the physics of one-dimensional systems as a function of the number
of spin components N [32, 111], in an intermediate coupling regime with γ ' 4.8
and K ' 0.73. In the following sections, we will see how inter-particle interactions
cause static and dynamic properties of one-dimensional fermions to significantly
deviate from the Luttinger theory when the sample is prepared in more than two
spin states.

7.1.1 Momentum distribution

We prepare a 173Yb degenerate Fermi gas trapped in an harmonic potential at
T < 0.3TF and with Nat ' 6500 atoms per spin component. The spin population
distribution is initialized using the optical pumping techniques described in section
2.2.2. The atoms are confined in one-dimensional wires by loading the Fermi
gas in a two-dimensional optical lattice at 759 nm(see section 2.2.1) at s = 40,
corresponding to a transverse trapping angular frequencyω⊥ ' 2π×25 kHz. Since
the energy ~ω⊥ is more than one order of magnitude larger than the Fermi energy,
the occupation of excited radial modes is negligible, which makes our wires truly
one-dimensional. After a 10 ms holding time, the trap is suddenly switched off
in less then 10 ms. After a ballistic expansion of tTOF = 23 ms, the sample is
detected by means of absorbtion imaging (section 2.2.2), as done in previous works
to measure the momentum distribution n(k) of a Tonks-Girardeu gas [22]. The
momentum distribution is obtained by integrating the images along the strong-
confinement direction (orthogonal to the 1D wires), normalizing to the same unity
area, and fitting it with the Fermi gas momentum distribution function. Due to the
presence of the axial harmonic confinement, with(angular) frequency ωx ranging
from 2π × 60 Hz to 2π × 100 Hz (depending on the particular experiment), the
number of atoms per tube decreases from a maximum of 20 (per spin component)
in the central tube, to a vanishing occupation of the more peripheral tubes [111].
The final momentum distribution is then found by averaging over the contribution
from the different independent wires.

The result of the measurement for different numbers of spin components in
reported in Fig. 7.2. In the non-interacting case the data (solid blue) are very well
accounted for by the theory of a trapped ideal Fermi gas (dashed blue). Increasing
the number of spin components N , we observe a clear monotonic broadening of
n(k), with a reduction of the weight at low k and a slower decay of the large-k
tails. The observed n(k) broadening arises from a pure many-body effect and is not
accounted for by standard mean-field physics [32]. Indeed, if we consider a mixture
of spin-1/2 fermions in the limit of infinite repulsive interaction, the density-density
correlation function G↑↓(d) =

〈
n̂↑(x + d)n̂↓(x)

〉
(where n̂↑(x) and n̂↓(x) are the

density operators for the two spin components) falls to zero for d → ∞ as G↑↑(d)
does in the case of a spin polarized gas, thusmimicking the effects of Pauli repulsion
between distinguishable particles. This fermionization, restricting the effective
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Figure 7.2: a. Momentum distribution n(k) measured with time-of-flight absorption
imaging for different number of spin components N and with the same atom number Nat

per spin component. Each curve results from the average of 30 − 50 experimental images.
b. Theoretical n(k) for a N = 2 system derived using different models: ideal Fermi gas at
T = 0 (dashed), mean-field treatment of finite interactions atT = 0 (dotted), full many-body
problem for infinite interactions both for T = 0 (light solid) and T > 0 (dark solid). Only
the many-body curves account for the observed broadening.

space which is available to the particles, causes them to populate states with larger
momentum [216, 217]. We note that an opposite behaviour would be predicted by
a mean-field treatment of interactions: the effectively weaker confinement along
the wire induced by the atom-atom repulsion would lead to more extended single-
particle wavefunctions, hence to a decreased width of n(k). Moreover, the details
of n(k) depend nontrivially on the temperature, owing to the thermal population of
spin excitations. The finite temperature leads to a further broadening of the n(k)
(as showed in the inset of Fig. 7.2), explainable in terms of modified effective Fermi
momentum [218]. This aspect is further discussed in [32, 111].

7.1.2 Excitation spectrum

A distinctive feature of 1D fermions is the existence of a well-resolved excitation
spectrum at low momenta q � kF . Number conserving excitations in the ideal
1D Fermi gas correspond to particle-hole pairs with energy ~ω = vF~q, where vF
is the Fermi velocity. In case of an interacting gas, according to Luttinger theory
excitations acquire a purely collective character and the spectrum of phononic
excitations will be described by a linear dispersion w = cq, where c = vF/K is a
renormalized sound velocity which, in a two-component mixture, is larger than the
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Figure 7.3: a. Excitation spectra for non-interacting fermions in 1D. The points show the
measured increase in atomic momentum transfer after a Bragg excitation with energy ~ω at
a fixed momentum q ' 0.2k0

F for N = 1. The solid line is the calculated response function
for the ideal Fermi gas. b,c. Excitation spectra of the 1D interacting fermions with number
of spin components N = 2 (b) and N = 6 (c). The dashed lines are Gaussian fits to the
experimental points to extract the peak excitation frequency. The dotted lines represent
the calculation in the limit of infinite repulsion. Both experimental and theoretical spectra
have been normalized to unit area. The graphs in the inset show a sketch of the increase
of the dispersion relation curve at low q passing from ideal to two-component Fermi gas.
The red arrows indicate the shift in the excitation resonance.

Fermi velocity since the Luttinger parameter K lies in the interval 0.5 < K < 1.
The excitation spectrum of the fermionic tubes is characterized by performing
Bragg spectroscopy, which allows for the selective excitation of density waves with
energy ~ω and momentum ~q [111, 219], where ω = ω1 − ω2 and q = q1 − q2
are respectively the frequency difference and momentum difference along the tubes
direction between two Bragg beams. Note that we employed 759 nm light which
is far-detuned with respect to any atomic transition, so the Bragg excitation acts
equally on each spin components (i.e. we are only exciting charge modes). The
angle between the Bragg beams is small enough to guarantee that the transferred
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momentum is much lower than the Fermi momentum q � kF.
Fig. 7.3a shows the measured spectrum for N = 1 at low momentum transfer

q ' 0.2k0
F (with k0

F being the peak Fermi wave vector in the central tube). A clear
resonance is observed, in excellent agreement with the calculated response for ideal
fermions (solid line, with no free parameters). For N = 2 the resonance is clearly
shifted towards higher frequencies (Fig. 7.3b), as expected from Luttinger theory.
The measured shift (+15 ± 4)% agrees with the expected (+10 ± 2)% shift in the
sound velocity predicted on the basis of the Luttinger theory for a trapped system
[213]. For N = 6 the spectrum shows a much larger shift (+33 ± 4)% (Fig. 7.3c),
which disagrees with the predictions for N = 2, signalling an increased effect of
interactions. The calculated spectra for trapped fermions with infinite interactions
is also plotted (Fig. 7.3b,c dotted lines), which shows how the measured spectra lie
between the response of the ideal Fermi gas and that of a fermionized system.

7.1.3 Collective breathing oscillations

More insight into the physics of multicomponent 1D fermions can be obtained by
studying the low-energy breathing oscillations inwhich the cloud radius oscillates in
time. It is indeed a well known fact that in the Luttinger model the spectrum is com-
pletely built by collective excitations, as single-particle excitations are suppressed
due to the reduced dimensionality. We measure the frequency of this collective
mode by suddenly changing the trap frequency and measuring the time evolution
of the radius. In Fig. 7.4a, we plot the measured squared ratio β = (ωB/ωx )2 of
the breathing frequency ωB to the trap frequency ωx as a function of the number
of spin components N (squares). For N = 1 the measured value is in good agree-
ment with the expected value β = 4 for ideal fermions (upper horizontal line).
By increasing N our data clearly show a monotonic decrease of β, induced by
the repulsive interactions in the spin mixture. Already for N = 4, the measured
value of β lies outside the interval of possible values obtained for the N = 2 case
[213], implying that a mixture with N > 2 is not simply a more interacting N = 2
mixture. The dependence of β on the interaction strength is remarkably non trivial
already for N = 2, as first predicted in [213]. Indeed, β = 4 in both the limiting
cases of an ideal gas (γ = 0) and a fermionized (γ = ∞) system, whereas for finite
repulsion it is expected to exhibit a nonmonotonic behaviour, with a minimum at
finite interaction strength. The theoretical curves in Fig. 7.4b show the expected
dependence of β on the interaction parameter η = N1

at (a1D/ax )2 in which N1
at is

the number of atoms per tube, a1D is the 1D scattering length and ax is the trap
oscillator length. These results have been derived by our collaborators at the Swin-
burne University by combining a Bethe Ansatz approach with the exact solution of
the hydrodynamic equations describing a 1D fermionic liquid with N components
[111, 220]. As N is increased, the curves exhibit an increasingly larger redshift of β,
and for N → ∞ they asymptotically approach the curve for 1D spinless bosons. The
circles indicate the theoretical values for the average η = 0.44 in our experiment.
The agreement between experiment and theory is excellent, as shown in Fig. 7.4a.
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Figure 7.4: a. The squares represent the measured ratio β = ωB/ωx )2 plotted as a function
of N , obtained as the weighted mean over sets of up to nine repeated measurements. The
circles show the theoretical predictions for the average interaction parameter η = 0.44 for
our experiment. The dashed line is a guide to the eye, while the violet shaded area around
the theoretical points indicates the uncertainty on the theoretical values resulting from
the experimental uncertainty ∆η = 0.08 coming from the experimental parameters. The
upper horizontal line shows the theoretical value for the non-interacting Fermi gas while
the lower line shows the result for 1D spinless bosons. b. The lines show the theoretical
dependence of β on the interaction parameter η. The circles are the predicted values for
our average interaction parameter also shown in a. In both panels the height of the grey
region shows the range of β for N = 2 and any possible value of the repulsion strength. Our
measurements show that N = 6 is already compatible with the predictions for a spinless
bosonic case.
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The experimental data and the theoretical curves clearly show that the effect of a
change of N are substantially different from those induced by simply changing the
interaction strength in an N = 2 mixture. A way to see this is to note that, by
increasing N , the constraints of the Pauli principle become less stringent and the
number of binary-collisional partners increases, causing the system to acquire a
more "bosonic" character. This bosonic limit, reported as black lines in Fig. 7.4,
for N → ∞ is a remarkable property of multicomponent 1D fermions that has been
pointed out theoretically only very recently by C.N. Yang [221].

7.1.4 Conclusions and perspectives

With this experiment we explored for the first time the physics of one-dimensional
multi-component interacting fermionic systems with tunable SU(N) symmetry.
In particular the possibility to create stable mixtures with different number of
spin components allowed us to study different regimes of interplay between Fermi
statistics and degree of distinguishability, observing how increasing the number
of spin components the system of one-dimensional fermions exhibits properties
of a bosonic spinless liquid. In a quantum simulation perspective, the controlled
realization of 1D multi-component fermions represents a powerful test bench for
large-spin models and paves the way to the observation in ultracold atoms of elusive
fundamental aspects of one-dimensional interacting systems, such as spin-charge
separation, first predicted for a N = 2 fermionic system. This work indeed concerns
exclusively charge (density) collective modes, since the excitations studied are all
spin-independent. Differently, given two spin species |↑〉 and |↓〉, a spin-selective
Bragg excitation [222, 223] should in principle allow for the comparison between
the charge and spin velocities through the measurement of the charge and spin
dynamical structure factors.
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7.2 Observation of chiral edge states in synthetic Hall rib-
bons

Ultracold atoms in optical lattices represent an ideal system for studying the physics
of condensed matter problems in a fully tunable and controllable environment.
One of the most intriguing subjects in condensed matter is the physics of the
gauge fields. These kind of systems are characterized by a so-called "topological"
ordering, which was subject of intensive studies during the last decades [224–
226]. A notable example is a system of electrons confined in two dimensional
structures and subjected to strong magnetic fields. When placed in a large enough
magnetic field, the Landau-level quantization becomes important and electrons
exhibit quantized orbits. In this Hall regime, the Hall conductance is an integer in
units of the quantum of conductance e2/h, and the transport becomes dissipationless
along the edges of the system [227, 228]. This is the so-called Integer Quantum
Hall effect.

In presence of a vector potential A(r), a free electron moving on a plane along
a closed trajectory γ will acquire an Aharonov-Bohm phase [229]:

Φ =
e
~

∮
γ

A(r) · dr = 2π
ΦB

Φ0
, (7.3)

where ΦB is the flux of the magnetic field B(r) = ∇ × A(r) through the surface
enclosed by the contour γ andΦ0 = h/e is themagnetic flux quantum. In presence of
a 2D lattice, the Aharonov-Bohm effect is described in terms of Peierls substitution
[230], in which the (formerly real) tunneling t between two adjacent lattice sites
becomes a complex number with phase ϕkn,m = eAk

n,m/~, where n,m are the lattice
site indexes and k = {x, y} labels the tunneling direction, called Peierls phase
(Fig. 7.5). The total phase acquired by a particle moving along a lattice plaquette,
linked to the flux of the perpendicular magnetic field through the plaquette surface,
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Figure 7.5: a. Representation of the Aharonov-Bohm effect (see text). b. In a 2D lattice
for a charged particle, the total phase is , 0 and the flux through a plaquette will be given
by the sum of the phases aquired along the sides.
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will then be given by, in units of Φ0:

Φ = ϕxn,m + ϕ
y
n+1,m − ϕ

x
n,m+1 − ϕ

y
n,m. (7.4)

With this definition and choosing the Landau gauge A = (0, xΦ, 0), the non inter-
acting lattice Hamiltonian can be written as:

Ĥ = −t
∑
n,m

[
â†
n+1,mân,m + eiΦn â†

n,m+1ân,m

]
+ h.c., (7.5)

in which only the tunneling along direction ŷ is complex, whereas the tunneling
along x̂ is real. Hamiltonian (7.5) is called Harper-Hofstadter Hamiltonian [231,
232]. Solving this Hamiltonian imposing periodic boundary conditions, the single-
particle energy spectrum exhibits a fractal selfsimilar structure as a function of the
flux α = Φ/2π, known as Hofstadter’s butterfly. The fractal structure emerges in
presence of a rational flux per plaquetteα = p/q; in this case the fundamental energy
band splits into q sub-bands with dispersion relations Eη (k), with η = {1, ..., q}
[230]. If open boundary conditions are instead imposed, the systems features a
certain number of "edge" states, which close the energy gaps present in the periodic
boundary conditions case and are characterized by a density distribution localized
on the edges of the system. The current of the edge states is chiral, meaning that it
circulates only in one sense which depends on the edge state considered and on the
sign of the magnetic flux. This type of behaviour is pictorially described in terms
of skipping orbits, cyclotron orbits that are naturally truncated at the edges of the
sample.

In the following sections, the emergence of chiral edge state in a system with
complex tunneling will be shown [203]. The details about these experiments are
extensively discussed in [116].

7.2.1 Synthetic gauge fields in synthetic dimensions

In recent years ultracold atoms have been extensively used for the quantum simula-
tion of gauge fields physics, exploiting light-matter interaction in order to imprint
the Peierls phase to the particles wavefunction [233–235]. These gauge fields,
first synthesized in Bose-Einstein condensates [236], have recently allowed for the
investigation of the bulk properties of topological matter with the realization of the
Harper-Hofstadter Hamiltonian in ultracold bosonic two-dimensional (2D) lattice
gases [237, 238].

In our work, we study instead the edge properties of fermionic ultracold gas con-
fined in a two-dimensional system with sharp and addressable edges, implemented
following Ref. [239]. The same approach was followed in Ref. [240] for the obser-
vation of edge properties in a bosonic system. We engineer a 2D lattice where one
dimension is represented by the real space, while the other is encoded in the nuclear
spin degree of freedom, which becomes an effective "extra-dimension", providing
direct access to edge physics by means of spin selective imaging (see section 2.2.2).
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Figure 7.6: a. Sketch of the experimental setup. The atoms are confined in 1D wires and
a shallow lattice is applied along the wire direction. Two beams induce Raman transitions
which also transfer a momentum to the atoms in the wire direction. b. Scheme of a σ+−σ−
Raman transition. The energy difference between the beams is twice the Zeeman separation
∆Z . The light is quasi-resonant with the intercombination transition so the atoms feel a
spin-dependent light shift.

Experimentally, the system is represented by an array of one-dimensional wires,
as in the experiment described in section 7.1, with the difference that a shallow
optical lattice with depth s = 6.5 is imposed along the wires direction x̂, creating
a real tunneling between the different lattice sites n (see Fig. 7.6a). The extra,
synthetic dimension is implemented by a pair of angled beams at 556 nm of fre-
quencies ω1 and ω2 and wavevectors k1 and k2, quasi-resonant with the 1S0→

3P1
transition, which induce Raman transitions between states with different nuclear
spin mF (see Fig. 7.6b). This can be seen as a tunneling in the nuclear spin "extra
dimension". In particular the beams polarization is σ±, so that they induce Raman
transitions with ∆mF = 2. Since |k1 | � |k2 | = k, the transferred momentum is
qR = 2k sin(θ/2) sin ϕ to the atoms along direction x̂ (see Fig. 7.6a). An atom in
the lattice site n in the real dimension x̂, tunneling in the extra dimension from the
site (n,mF ) to the site (n,mF + 2) will acquire a phase:

qRx = qRnd = qR
λL

2
n =

qR
2kL

2πn = Φn (7.6)

with kL being the optical lattice wavevector. Summing the phases along a plaquette,
one can find the flux of the "synthetic" magnetic field through it, which is exactly
given by Φ = 2π(qR/2kL) (see Fig. 7.7). Since the sign of the flux depends
on qr , the magnetic field direction can be reversed simply switching the beam
frequencies. With our experimental parameters, the flux is Φ ' 0.37π. Noticeably,
this is the Peierls substitution corresponding to a synthetic |B | values of thousands
of Tesla, completely out of reach in "real" experiments. Labeling the nuclear spins
mF = (−5/2,−1/2,+3/2) respectively m = (1, 2, 3) The Hamiltonian of the system
will be given by:
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Figure 7.7: Sketch of the 2D synthetic lattice. In the real dimension (n sites) the tunneling
is real and no phase is acquired by the atoms. Along the nuclear spin synthetic dimension
the tunneling imprints a phase shift to the atomic wavefunction. The flux though a plaquette
is given by the phase shift Φ.

Ĥ =
∑
n,m

[
−t â†

n+1,mân,m + µnn̂n,m +
~
2
ΩRmeiΦn â†

n,m+1ân,m + ξmn̂n,m

]
+ h.c.,

(7.7)
whereΩRm is the Rabi coupling between the states m and m+13, µn represents the
residual harmonic trapping and ξm is the spin dependent light shift induced by the
quasi-resonant Raman beams (see section 1.1.3). This last term is important as it
can be tuned in order to select the number of spin components (or legs) which give
the "extension" of the synthetic dimension [116]. This allowed us to study two-leg
(with spin components mF = −5/2,−1/2) and three-leg (with spin components
mF = −5/2,−1/2,+3/2) ladder systems, the latter being the minimal configuration
that is showing both edge and bulk states.

7.2.2 Equilibrium properties

In both the two-leg and three-leg case it can be shown that the lowest energy band
of the Hamiltonian (7.7) describes the propagation of "edge states" localized in
spin space at m = (−5/2,−1/2) (in the two-level system) and m = (−5/2,+3/2)
(in three-level system): these states propagate along x̂ in opposite directions. We
detect the chiral nature of the current carried by each spin state, starting from the
case of two-leg ladder. A quantum degenerate 173Yb Fermi gas with 1.6 × 104

atoms, spin-polarized in the mF = −5/2 state and an initial temperature T ' 0.2TF

is prepared in one-dimensional wires by slowly ramping up the power of the lattice
beams to a depth of s = 30, which grants a suppression of the dynamics along the
transverse directions. The shallow lattice along x̂ is ramped as well to s = 6.5,
preparing a system in which all atoms occupy the m = −5/2 leg with less than
one atom per (real) lattice site. Then, by controlling the intensity and frequency of
the Raman beams [116], we slowly activate the tunneling between the legs so as
to adiabatically load the fermionic system in the lowest band of Hamiltonian (7.7).
Despite the absence of a real bulk region, this two-leg configuration is expected

3Since only three states are involved, there will be only two Rabi frequencies, ΩR1 coupling the
−5/2 and −1/2 states, and ΩR2 coupling the −1/2 and +3/2 states
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Figure 7.8: a. (Top) False-color time of flight images of the atomic cloud for two different
spin states, m = −5/2 and m = −1/2. The images are the result of an average over
30 aquisitions. (Middle) Integrated momentum distributions n(k). The distributions are
centered at k , 0, depending on the specific spin state. (Bottom) h(k) = n(k) − n(−k).
The numerical plots are the momentum imbalance J (see text). b. Time-of-flight images
and h(k) for the m = −1/2 leg and opposite directions of the synthetic magnetic field.

to support chiral currents with atoms flowing in opposite directions along the legs
as investigated recently in bosonic systems [241]. To observe this, we measured
the relative motion of the atoms in the two legs by spin-selective imaging of the
lattice momentum distribution, obtained by time-of-flight imaging after switching
off the synthetic coupling and the optical lattice (see Fig. 7.8a). We are interested
only in direction x̂, which reflects the distribution of the lattice momenta k along
the legs (in units of kL). The lattice momentum distribution along ŷ is a uniform
square due to the presence of the strong optical lattice along the transverse (frozen)
real directions. In order to quantify the current, the momentum distribution in
integrated along ŷ and normalized, and the quantity

h(k) = n(k) − n(−k) (7.8)

is computed. Fig. 7.8a also reports n(k) and h(k). We then calculate the quantity
J =

∫ 1
0 h(k)dk, that provides a measurement of the lattice momentum unbalance

and quantifies the strength of the chiral motion of the particles along the two legs.
For the images in Fig. 7.8a, obtained for ΩR1 = 2π × 489 Hz and t = 2π × 134 Hz
(ΩR1/t = 3.65), we obtain J = +0.056(3) for m = −5/2 and J = −0.060(7)
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Figure 7.9: Lattice momentum unbalance |J | for the m = −5/2 leg as a function of ΩR1/t
for Φ = 0.37π. The circles are the experimental data and the error bars are obtained with
a bootstrapping method applied on ∼ 30 different measurements. The shaded area is the
result of a numerical simulation that includes thermal fluctuations [116].

for m = −1/2. These values are approximately equal in intensity and opposite in
sign, providing direct evidence for presence of chirality in the system. In order
to verify that the observed currents are direct consequence of the presence of the
synthetic magnetic field, we reversed the direction of B and performed the same
experiment. The results are reported in Fig. 7.8b, obtained for ΩR1 = 2π × 394 Hz
and t = 2π×87 Hz (ΩR1/t = 4.53) and a magnetic fluxΦ = ±0.37π. We observe a
change of sign in J, corresponding to currents circulating in the opposite direction.
This behavior confirms the interpretation of our data in terms of chiral currents
induced by a synthetic magnetic field in a synthetic 2D lattice.

In our system, the appearance of a chiral behavior is governed by several key
parameters, including the ratio ΩR1/t, the Fermi energy EF , and the flux Φ. In
particular, by varying the tunneling rates along x̂ and m̂ we investigate the rise
and fall of the edge currents as a function of the parameter ΩR1/t [241] without
affecting other relevant parameters, such as EF and the temperature. Figure 7.9
illustrates the measurement of |J | as a function of ΩR1/t (circles). As expected,
no chirality is observed for vanishing ΩR1, when the legs are decoupled. Chirality
is also suppressed for large inter-edge coupling ΩR1 � t. In the latter regime, the
largest energy scale in the system is the effective kinetic energy along the synthetic
direction and this contribution is minimized when the fermions occupy the lowest
energy state on each rung, which does not exhibit any chiral behavior. Themeasured
values of |J | compare well with the results of a numerical simulation, carried out by
our collaborators of IQOQI in Innsbruck, that includes thermal fluctuations (shaded
area in Fig. 7.9) [203].

The same measurements were performed for the three-leg ladder, with the same
experimental procedure. This is the minimal configuration that includes a bulk, the
mF = −1/2 state, while the mF = −5/2 and mF = +3/2 states representing the
edges. Also in this case, we observe the onset of chiral edge currents for values of
ΩR1 � t similar to those observed for the two-leg ladder [203], with the additional
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Figure 7.10: a. Time dependence of the average nuclear spin (i.e. the average position in
the extra-dimension) 〈m〉 after a quench on the Raman coupling in the synthetic direction,
measured with OSG technique. b. Time dependence of the average lattice momentum 〈k〉
along the x̂ direction, measured with time-of-flight imaging of the whole cloud. In both the
imgaes the circles are the experimental data, connected by thin lines, while the thick lines
are the theoretical predictions.

feature that the bulk state mF = −1/2 shows a very reduced current, in agreement to
the theoretical preditcion [116]. We have then demonstrated the existence of chiral
currents arising from the edge states of the system, in analogy to a Hall system.

7.2.3 Skipping orbits

Finally, exploiting the three-leg ladder configuration, we performed quench dynam-
ics experiments that provide direct evidence of chiral transport properties along the
edges. We prepared a system of lattice fermions in an initial state with zero average
momentum on the lower mF = −5/2 leg. The system is then quenched by suddenly
activating the complex tunneling in the synthetic direction, turning on the Raman
beams at resonance. The employed experimental parameters areΩR1 = 2π×490Hz
and t = 2π × 94 Hz, implying a value ΩR1/t = 5.2 where the chiral behavior is
maximum. The time dependence of the average spin 〈m〉 (or "position" in the syn-
thetic dimension) is measured by means of OSG detection (see section 2.2.2 and is
reported in Fig. 7.10a. In Fig. 7.10b instead, the time dependence of the average
lattice momentum 〈k〉 along x̂ is showed, measured by time-of-flight imaging of
the whole atomic cloud. In order to reconstruct the orbit on the ribbon surface, we
determine the average position in real space 〈x〉, starting from the knowledge of en-
ergy band dispersion versus lattice momentum, and then performing an integration
in time [116]. In this way we obtain a plot of 〈m〉 versus the average position in
real space 〈x〉, which is shown in Fig. 7.11. The dynamics displays a strong chiral
character, demonstrated by the in-phase oscillations in Fig. 7.10a, b and the orbits
in Fig. 7.11. Under the effect of the synthetic magnetic field, the fermions move
according to cyclotron-type dynamics, which is naturally truncated by the synthetic
edge, giving rise to a skipping-type orbit, as expected for a quantum Hall system
[224, 242]. The experimental data are in reasonable agreement with the theoretical
predictions, represented by the thick lines in Fig. 7.10a, b and Fig. 7.11. The mis-
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Figure 7.11: Plot of the average spin 〈m〉 versus the average position 〈x〉, representing the
trajectory in the x̂ − m̂ space. The circle, connected by the thin lines as a guide to the eye,
are the experimental data and the thick line is the theoretical predition (see text).

match between theoretical model and experimental data after the second orbit could
possibly be ascribed to an accumulation of integration error in the data analysis,
which amplifies the effects of the assumptions in the model (such as not accounting
for interactions). We note that both the data and the theoretical curves effectively
damped, as a result of averaging over many different fermionic trajectories. This
also justifies the reduction of the average orbit radius to less than one real lattice site
of Fig. 7.11. This behavior is very different from the case of a noninteracting Bose
gas, which would occupy a single condensed wave packet undergoing undamped
oscillations [240]. Anyhow, also interactions are envisioned to play a major role,
and further studies are tracking this issue [243].

7.2.4 Conclusions and perspectives

In this section we reported the observation of chiral edge states in a system of
neutral fermions subjected to a synthetic magnetic field. In particular by following
the innovative approach theorized in Ref. [239] we realized a system in which
the nuclear spin of the atoms is used to encode a lattice structure in an extra-
dimension, providing direct access to edge physics. By exploiting the high level
of control in our system, we studied the onset of chirality as a function of the
Hamiltonian couplings. These results are a demonstration of the feasibility of the
"extra-dimension" approach for the quantum simulation of gauge fields physics, and
represent the first step towards the investigation of both edge and bulk 2D topological
matter. In particular, a study of the combined effect of interactions and synthetic
gauge fields could lead to the observation of exotic states of matter [244] such as
chiral Mott insulator states, in ladder systems. Moreover, exploiting the possibility
to implement periodic boundary conditions in the synthetic dimension [245] opens
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the door to the study of the topological properties of bulk physics, potentially
allowing for the observation of the fractal structure of the Hofstadter spectrum, as
will be discussed in the Conclusions. Also, periodic boundary conditions could
also allow for the realization of the famous Laughlin pump [246], and so for the
observation the quantization of the Hall conductivity.
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Conclusions and perspectives

In this thesis, I have reported the experimental techniques and the the theoretical
efforts that have been employed in order to investigate the emergence of two-orbital
quantum physics phenomena in fermionic degenerate gases of 173Yb. Most of these
results are based on a narrow-line complex laser system, that i have mainly devised,
characterized and realized during the three years of PhD.

In a first set of experiments [41], we studied the two-orbital spin exchange inter-
action arising between two atoms in different nuclear spin and electronic state, by
exploiting the coherent addressing of the 3P0 metastable state using an ultranarrow
laser at 578 nm. The atomic samples are confined in a deep three-dimensional
optical lattice, so that high-precision spectroscopy can be performed on the sample
and the two-body interaction peaks of the spectrum can be resolved and individually
addressed. This possibility is exploited in order to selectively excite only doubly-
occupied lattice sites and study the two-orbital interaction. In our experiments,
we directly measured inter-orbital spin-exchange interaction energy by observing
for the first time significantly fast coherent orbital magnetization oscillations. In
particular, the exchange energy Vex , of the order of ∼ h × 10 kHz, is much larger
than both the Fermi (kBTF ) and the thermal (kBT) energies and is only limited
by the lattice band gap. From the direct measurement of Vex it was possible to
determine the inter-orbital scattering length a+eg associated to the spin-singlet ��eg+

〉
state, which exceeds the spin-triplet scattering length a−eg, determined with high
accuracy in Ref. [84], by ≥ 10 times. The measurement and characterization of
the spin-exchange interaction represents a very important step towards the quan-
tum simulation of two-orbital many-body models ranging from the Kondo model
[35, 42] to heavy-Fermi behavior [36, 43, 44] and magnetic ordering [45, 46].

The noticeably high spin-exchange energy played also a fundamental role in
the observation of orbital Feshbach resonances [57], which enables the tuning of
the inter-orbital scattering length. The mixing between a pair of two-orbital atoms
in the open or closed channel is indeed provided by the exchange interaction Vex ,
according to the theoretical model of Ref. [58]. In our experiments, the signature
of an increased interaction strength is represented by the anisotropic expansion of
the Fermi gas in time of flight. We observed the emergence of resonant interactions
at very convenient values of the order tens of Gauss in different spin-mixtures,
following the predicted scaling with ∆m. In addition, in order to determine the
effective feasibility of this interaction tuning knob, we studied the effect of inelastic
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Figure A: Conceptual scheme of an experimental proposal. A 1D electronic-state-
dependent optical lattice has a flat lowest band for metastable atoms and non-flat band
for ground state atoms. Imposing a synthetic magnetic flux using the nuclear spin degree
of freedom (see section 7.2), the ground state atoms lattice band is divided in several
sub-bands, which can be probed performing high-resolution spectroscopy of the clock
transition.

losses across the orbital Feshbach resonance. We found a lifetime of the order of
hundreds of ms at resonance, which make orbital Feshbach resonances a promising
tool for future investigations of many-body physics by using two-electron atoms.
While this system still requires an accurate study also from the theoretical point of
view, this observation is the starting point for a whole new range of experimental
investigations, ranging from the investigation of the BEC-BCS crossover in an
ultracold gas of fermions with orbital degree of freedom to the realization of two-
orbital Hubbard models [26] with tunable interactions and the realization of novel
forms of topological superfluids with spin-orbit coupling [58].

In another, transversal experiment [56], we demonstrate the possibility to per-
form precision measurements beyond the GPS level by performing high-accuracy
spectroscopy of the 173Yb clock transition after having disciplined our 578 nm
ultranarrow laser to a 1542 nm optical reference, traced to the SI second and trans-
ferred, via a 642 nm long fiber link, from the Italian National Metrology Institute
to the European Laboratory for Nonlinear Spectroscopy. Within this context, I
conspicuously contributed to the realization of the "receiving station" of the link
at LENS, which allows for the referencing of the local laser to the disseminated
signal. By exploiting the high degree of precision and accuracy of the disciplined
ultranarrow laser, we measure the absolute frequency of the 1S0→

3P0 transition in
173Yb with an uncertainty of 10 Hz (2 × 10−14), limited by our end-user laboratory
systematic uncertainties, improving the known value [165] by two orders of magni-
tude. We demonstrate that this dissemination method enables the transfer of typical
accuracies of 4 × 10−15 from primary standards to non-metrological end-users in

160



Figure B: The adoption of an high-resolution objective will allow for single-site imaging
and addressing of indivual atoms.

timescales as short as few hours, overcoming the same-timescale accuracy of the
GPS, nowadays the commonly used frequency and timebase dissemination method.
Such a result could not only grant great benefits in a wealth of applications ranging
from scientific research to industrial development and production processes, but
also be exploited for the implementation of novel quantum information [26] and
simulation [28–30] schemes, where the high-precision of the probe laser is of the
highest importance.

In this context, this infrastructure could be exploited, in combination with
the possibility to engineer electronic-state-dependent optical lattices and "extra-
dimension" approach outlined in section 7.2, to study the bulk physics of a system
subjected to a synthetic gauge field with periodic boundary conditions in both the
real and synthetic dimension. With the appropriate choice of the lattice wavelength,
it would be possible to realize an optical lattice that is shallow for ground state atoms
and deep for the metastable state. Owing to the flat nature of the metastable state
lattice band, it would be possible to study the structure of the ground state atoms
lattice band, by performing high-precision spectroscopy of the clock transition.
With our spectral resolution of the order of a few parts in 10−14 it would be possible
to distinguish bandgaps of the order of 10−20 Hz, possibly enlightening the fractal
structure of the Hofstadter spectrum (see Fig. A) once periodic boundary conditions
are imposed.

Finally, in the long-term several improvements to the experimental setup are
planned. In particular, the experimental setup, with its high-optical-access glass
cell, has been designed with the possibility to implement single-site imaging and
addressing of Yb atoms confined in optical lattices with a high-resolution objective.
In the past years, such technique has been successfully implemented in several
experiments with bosons [247–250] and more recently with fermions [251–253],
enlightening promising opportunities, also on the side of quantum information
tasks. In our case the high numerical aperture objective, in combination with the
ultranarrow laser, could grant the opportunity to encode and read-out quantum
information in individually addressed atoms (see Fig. B). The adoption of these
techniques in our experimental setupwill require a serious and challenging technical
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effort, at the same time offering the opportunity to lead to major achievements in the
investigation of quantummany-body systems and to the implementation of quantum
information protocols which rely on single atom addressing.
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Appendix A

Ytterbium transitions and
Clebsh-Gordan coefficients

Tables of Yb atomic energy levels and transitions from the 1S0 and 3P0 states used
to compute the dipole potentials reported in Fig. 4.2 and of the Clebsch-Gordan
coefficients of the 1S0 →

3P1 transition.

Table A.1: Ytterbium 1S0 energy levels and linewidths.

States Energy [cm−1] λ [nm] τ [ns] Γ/2π [MHz] Branching Ratio

6s6p (3P1) 17992.007(a) 555.802 870(a) 0.1829 -
6s6p (1P1) 25068.222(a) 398.911 5.46(a) 29.12 -

(7/2, 5/2) j = 1 28857.014(a) 346.536 14.6(b,c) 10.90 -
(5/2, 5/2) j = 1 37414.59(a) 267.275 70(a) 2.067 -

6s7p (3P1) 38174.17(b,c) 261.957 120(b,c) 1.326 0.8
6s7p (1P1) 40563.97(a) 246.524 10(a) 15.91 0.65
6s8p (3P1) 43659.38(b) 229.046 140(b) 1.136 -
6s8p (1P1) 44017.60(b) 227.182 50(b) 3.183 -

(a) NIST atomic spectra database, (b) Ref. [254], (c) Ref. [255], (d) Ref. [256].
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A Ytterbium transitions and Clebsh-Gordan coefficients

Table A.2: Ytterbium 3P0 energy levels and linewidths.

States Energy [cm−1] λ [nm] τ [ns] Γ/2π [MHz] Branching Ratio

6s5d (3D1) 7200.663(b) 1388.76 380(b) 0.423 0.639
6s7s (3S1) 15406.253(d) 649.087 14(d) 11.36 0.15
6s6d (3D1) 22520.281(b) 444.044 21(b) 7.01 0.582
6s8s (3S1) 24326.601(d) 411.073 34(d) 4.68 0.135
6p2 (1P1) 26516.981(b) 377.117 15(b) 10.61 0.35

6s7d (3P1) 27022.941(b) 370.056 38(b) 4.19 0.56
(a) NIST atomic spectra database, (b) Ref. [254], (c) Ref. [255], (d) Ref. [256].

Table A.3: Clebsch-Gordan coefficient for 1S0 →
3P1, π transition.
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Table A.4: Clebsch-Gordan coefficient for 1S0 →
3P1, σ+ transition.
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Appendix B

Optical frequency comb

A frequency comb is a spectrum consisting of a series of discrete, equally spaced
frequencies. Such frequency comb can be obtained through the stabilization of the
pulse train generated by a mode-locked laser, a technique that led to the award of
the Nobel Prize in Physics to John L. Hall and Theodor W. Hänsch in 2005.

In the following years an intense effort has been made to develop this tech-
nique, leading to the realization of highly reliable fiber-based devices, and making
frequency combs invaluable tools is many fields of experimental physics. Fre-
quency combs are used to perform absolute measurements of CW laser, as well
as to "bridge" different optical frequencies, due to their extremely broad spectrum.
Moreover, all these tasks are executed by transferring the optical frequencies into
the RF domain and viceversa, an operation that before the introduction of the fre-
quency combs required huge and extremely complex experimental apparatus. Here
we very briefly describe the principle of operation of an optical frequency comb,
how it can used to measure optical frequencies and the techniques used to stabilize
its main parameters. For additional details we refer to Ref. [257].

A frequency comb is based on a mode-locked pulsed laser, characterized in the
time domain by gaussian pulses of FWHM duration δt, with distance ∆T between
the wavefronts and a carrier-envelope phase shift ∆φ between two consecutive
pulses (see Fig. B.1). The correspondent spectrum in the frequency domain is
a series of frequencies equally spaced by a quantity determined by time between
consecutive pulses as:

fRR =
1
∆T

, (B.1)

that is called "repetition rate" frequency. The carrier-envelope phase shift is instead
related to a second quantity, called the "carrier-envelope offset" (CEO) frequency
f0, which represents the offset of the entire frequency spectrum and is defined as:

f0 =
∆φ

2π∆T
. (B.2)

With typical pulsed laser parameters, both fRR and f0 lie in the RF domain. For
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B Optical frequency comb
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Figure B.1: a. Emission of mode-locked laser in time. b. Corresponding spectrum in
the frequency domain. The distance fRR between the peaks and the initial frequency f0
are determined by the parameters ∆T and Deltaφ of the temporal evolution. The beatnote
between an unknown laser (grey dashed line) with frenquency f l and the nearest comb
tooth will have frequency fb .

example, the comb employed in our experiment (Menlo Systems FC1500-250-WG)
has fRR ' 250 MHz and f0 ' 20 MHz. Finally, the parameter δt will determined
the width of the Gaussian envelope of the frequency spectrum as:

∆ f =
1

2
√

2 ln 2∆t
(B.3)

However, in real frequency comb systems, the spectrum envelope will be mainly
determined by the laser medium gain curve, and this parameter substantially only
defines the extension of the comb spectrum but not its real shape. With these
definitions, the frequency of every tooth of the frequency comb will be determined
by the parameters fRR and f0 as:

fn = n fRR + f0, (B.4)

where n is the tooth number. This property can be exploited to measure the
frequency of a unknown CW laser by beating it with the frequency comb and
measure the resulting beatnote frequency fb. The laser frequency will then be
given by:

f l = n′ fRR + f0 + fb (B.5)

where n′ is the number of the comb tooth closest to the CW laser frequency.
Supposing to be able to measure the unknown laser frequency independently with
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an accuracy < fRR, then n′ is univocally determined and the laser frequency can be
found knowing the comb parameters fRR and f0, and the beatnote fb. However, the
precision and accuracy of a frequency measurement is limited by the uncertainty
that affects the comb parameters. In a pulsed laser indeed, the repetition rate and
CEO are subject to fluctuations, implying that both fRR and f0 have to be stabilized
in order to fix the position of the frequency comb teeth. Typically, fRR and f0 are
stabilized on external frequency references and, depending on the type of available
reference, two different methods can be used to lock the comb parameters in our
comb setup.

RF lock technique

The RF lock technique is used if only a RF absolute frequency reference is available,
as a GPS-stabilized quartz oscillator.

In order to stabilized the CEO frequency, the commonly employed method is
the " f -2 f " technique, which relies on the stabilization of the beatnote between
two comb teeth at frequency f and 2 f . For this reason, an octave spanning
frequency comb is necessary, so non-linear media as birefringent crystals or micro-
structured optical fibers are used to broaden the mode-locked laser spectrum, which
is typically only a few tens of nm. The lower frequency part of the spectrum
at frequency f = f0 + ni fRR is then independently frequency-doubled obtaining
2 f = 2 f0 + 2ni fRR and compared to the higher frequency part of the spectrum at
frequency f ′ = f0 + mi fRR. The heterodyne signal between the two will be given
by a series of beatnotes with frequencies:

δ f i = 2(ni fRR + f0) − (mi fRR + f0) = (2ni − mi) fRR + f0. (B.6)
With the aid of a low pass filter, it is possible to retain only the lowest frequency
beatnote, i.e. with ni = 2mi, and obtain exactly f0. This frequency can be then
stabilized over an external RF reference with a Phase Locked Loop (PLL), typically
acting on the laser pump power. With common RF references it is possible to easily
achieve a relative uncertainty of the order of 10−10.

The repetition rate is instead stabilized by directly measuring it with a photodi-
ode, fast enough to clearly detect two consecutive laser pulses. This signal, or one of
its harmonic, is then directly locked to the RF reference with a PLL which actively
stabilizes the repetition rate by controlling the cavity length of the frequency comb
laser, typically acting on a piezo-mounted mirror. The repetition rate is commonly
stabilized with an uncertainty ∆ fRR of the order of the mHz, corresponding to a
fractional uncertainty of 10−10, corresponding to an uncertainty ∆ f0 of the order of
the mHz.

With both f0 and fRR stabilized on the RF external reference, the measurement
of an unknown CW laser frequency f l given by Eq. (B.5) will have an uncertainty
given by:

∆ f l = n∆ fRR + ∆ f0 + ∆ fb (B.7)
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B Optical frequency comb

where∆ fb is the uncertainty of the beatnote frequency, which is typically dominated
by worse between the comb tooth and laser frequency uncertainty. Considering that
fRR ≈ 108 Hz (250 MHz for our comb) and the frequency range of visible and near
infrared lasers of the order of 1014, then the comb tooth n is of the order of 106.
As a consequence, an uncertainty ∆ fRR ∼ 1 mHz would result in an uncertainty
of the order of 1 kHz on ∆ f l. This uncertainty represents the ultimate limit of
the frequency measurement, which compromises the accuracy level of frequency
measurements of ultrastable laser sources, as that described in chapter 3.

Optical lock technique

The "optical lock" technique relies on the presence of an optical frequency refer-
ence in addition to the aforementioned RF reference. While the CEO frequency is
stabilized on the RF reference with the same technique described before, the repe-
tition rate is not stabilized directly, but the beatnote between the optical reference
and the comb is stabilized to fix the teeth positions. Being fr the optical reference
frequency, measuring it with the frequency comb will give:

fr = nr fRR + f0 + fbr, (B.8)
where nr is the the closest tooth with respect to fr and fbr the beatnote between the
frequency comb and the optical reference. In the optical lock scheme, the beatnote
fbr is stabilized on the RF reference with a PLL. Being f0 already stabilized, the
PLL acts on the repetition rate in order to fix the position of the tooth nr and keep
the beatnote fbr constant. This is done adjusting the frequency comb laser cavity
length with a fast actuator, which is typically an intra-cavity EOM, achieving an
uncertainty ∆ fbr of the order of mHz. Since fr is known, Eq. (B.8) can be inverted
to evaluate fRR and the unknown laser frequency f l will be given by:

f l = n fRR + f0 + fb =
n
nr

( fr − fo − fbr ) + fo + fb, (B.9)

with an uncertainty:

∆ f l =
n
nr
∆ fr +

(
1 +

n
nr

)
∆ f0 +

n
nr
∆ fbr + ∆ fb ∼

n
nr
∆ fr + ∆ fb . (B.10)

From this expression it is clear that the uncertainty of the frequency reference
determines the frequency measurement uncertainty with a multiplication factor
n/nr ' 1 instead of 106 as in the RF lock case. Eq. B.10 substantially shows that,
as a consequence of the locking procedure, the stability of the optical reference
is transferred directly to the comb teeth, resulting in a measurement uncertainty
simply limited by the worse between the reference and the unknown laser. It is
also clear that if the beatnote between the comb and the unknown laser is in turn
stabilized over an RF reference, as described in section 3.2.4, then the stability of
the optical reference will also be inherited, through the frequency comb, by the
unknown laser.
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Appendix C

Power Spetral Density and Allan
variance

In this appendix we briefly review some basic facts about the two main statistical
quantities used in frequency metrology: the phase noise power spectrum and the
Allan deviation. These subjects are extensively discussed in many textbooks, like
[258].

Let us consider a time-dependent quantity x(t), i.e. an oscillator’s instantaneous
phase or frequency. The power spectral density (PSD) of x(t) is defined as the
Fourier transform of the autocorrelation function R(τ) of x(t) defined as [258]:

R(τ) =
∫ +∞

−∞

x(t + τ)xstar (t) dt, (C.1)

in which we have assumed that the noise is stationary, i.e. that R(τ) does not depend
on t. The PSD will then by given by:

Sx ( f ) =
∫ +∞

−∞

R(τ)e−i2π f τ dτ. (C.2)

If we introduce the relative frequency variation

y =
δν

ν
, (C.3)

then the PSD Sy ( f ) of y(t) is an extremely useful quantity to investigate the noise
in oscillators, as different type of noise correspond to polynomials Sy ( f ) ∝ f i with
different exponents i (for example i = 0 for withe noise and i = −1 for flicker noise).
In a more complex system, where more than one typical kind of noise is present,
the PSD also allows for the identification of other peculiar features, like electronic
or mechanical resonant frequencies.

When an oscillator frequency is measured directly, e. g. with a frequency
counter, this measurement never corresponds to the "instantaneous" frequency, but
rather to an averaged frequency over a period of time ta (in frequency counters
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C Power Spetral Density and Allan variance

for example the averaging time ta is the gate time). Hence, the relative frequency
variation measured at an arbitrary time tk will be given by:

y(tk ) =
∫ tk

tk−ta

y(t) dt. (C.4)

If we assume a stationary noise, then 〈y(tk )〉 = 0 and the variance will be given by:

σ2 =
〈
y(tk )2

〉
=

〈�����

∫ +∞

−∞

y(t)h(t − tk ) dt
�����

2〉
, (C.5)

where h(t) is defined as:

h(t) =



1/ta if 0 < t < ta
0 elsewhere.

(C.6)

Being H ( f ) the Fourier transform of h(t)m, it can be shown that [258];

σ2 =

∫ +∞

−∞

Sy ( f ) |H ( f ) |2 df , (C.7)

where |H ( f ) |2 = sin2 (2π f ta )
(2π f ta )2 . It can be seen that the expression (C.7) of the classical

variance does not converge for some noise processes. For this reason, in frequency
metrology the classical variance has to be replacedwith another statistical estimator.
Let us then define the N-sample variance:

σ2(N, ta) =
〈

1
N − 1

*.
,

N∑
k=1

y(tk )2 −
1
N

N∑
j=1

y(t j )
+/
-

2〉
, (C.8)

where N is the number of samples of the full measurement of duration T . From
Eq. (C.8) it is possible to define the 2-sample variance, also called Allan variance,
as [259]:

σ2
y (ta) =

1
2
〈(y(tk ) − y(tk+1))2〉. (C.9)

This expression has the advantage that its transfer function |HA( f ) |2 = sin4 (2π f ta )
(2π f ta )2

acts as a second-order high-pass filter at low frequencies, making it convergent
for all the type of noise that can affect the oscillator. Starting from Eq. (C.8),
other statistical estimators, like the modified Allan variance [146], can be defined,
with a low-frequency behavior depending on the needs of the particular analysis.
However, the ultimately correct estimator of an oscillator stability, recommended
by the IEEE, is the Allan deviation, defined as the square root of the Allan variance
defined in Eq. (C.9).
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