
 

 

  
Abstract—The stylistic design of new industrial products often 

starts from shaded handmade sketches which, usually, need to be 
converted into 3D digital models by using CAD software packages 
for the subsequent design phases. This conversion often represents 
the bottleneck of the whole development process. Shape from 
Shading (SFS), which attempts to recover the 3D geometry of an 
object starting from a single shaded representation, is potentially 
capable of speeding-up the 3D conversion. However, existing 
approaches prove to be extremely unstable and error prone mainly 
due to the under-determination of the SFS problem. In order to 
increase the performance of shading based reconstruction authors 
propose a step-by-step variational-based approach. In particular, the 
problem is solved into multiple steps, each one providing the 
initialization for the following, so that the solution gradually 
converges towards the final surface. Tested against a set of case 
studies, the method proved its effectiveness. 
 

Keywords—Shape from shading, variational approach, 3D 
design, stylistic content, Computer Aided Design, Numerical 
Optimization. 

I. INTRODUCTION 
OMPUTERAided Design software packages are universally 
recognized as essential to simplify and speed up all the 
development phases of new industrial products, from 

design to manufacturing. For this reason, projects usually start 
at the computer. However, this may not always occur; 
products characterized by a strong stylistic content, such as 
jewels, fashion accessories, ceramics, house-ware, plaques and 
coins are often designed by producing a set of handmade 
drawings or sketches. In order to take advantage of benefits 
related to the use of the computer, handmade sketches are 
manually drafted using a CAD package so as to obtain 3D 
virtual models better resembling the expected aspect of the 
final product. This process, usually needing close interaction 
between stylist and CAD operators, is inevitably time 
consuming. In order to confront with this issue, in the last few 
years a number of computer-based methods have been devised 
with the aim of speeding up the 3D reconstruction process 
from single images or sketches [1-4]. In case the three-
dimensionality of the shape is given by shading, the most 

 
M. Carfagni is with the Department of Industrial Engineering University of 

Florence (Italy), via di Santa Marta, 3 50139, Firenze (Italy). Phone: (+39) 
0552758731; fax: (+39)0552758755; e-mail: monica.carfagni@unifi.it.  

L. Puggelli is with the Department of Industrial Engineering University of 
Florence (Italy), via di Santa Marta, 3 50139, Firenze (Italy). 

important class of methods for retrieving the 3D model is the 
so called Shape-from-Shading (SFS). SFS allows to recover a 
proper surface that generates, under the same lighting 
condition, the same image as the original one, given in input. 
Extensively reviewed in [5, 6], SFS methods are based on the 
analysis of the relation between the brightness of a pixel in the 
digital image and the incidence angle of light beams with the 
represented surface. The equation that expresses such 
relationship, called irradiance equation, is formulated by using 
three alternative types of unknown: 
 

1. the depth map 𝑍𝑍(𝑖𝑖, 𝑗𝑗) which represents the surface 
height for each pixel (𝑖𝑖, 𝑗𝑗); 

2. the surface normal 𝑁𝑁��⃗ = [𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧] which represents 
the surface normal for the generic pixel (𝑖𝑖, 𝑗𝑗); 

3. the surface gradient ∇𝑍𝑍 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = (𝑝𝑝, 𝑞𝑞), that 

represents the rate of change of depth in 𝑥𝑥 and 𝑦𝑦 
directions. 

 
In order to simplify the reconstruction problem, the following 
hypotheses are usually made:  

1) 1) the reflectance model is Lambertian, i.e. the surface is 
supposed to be homogeneous and completely diffusing. As a 
consequence, the brightness of each pixel depends only on the 
light direction and on the surface orientation; 

2) 2) perspective is absent and the focal length of the “observer” 
is set at infinity; 

3) 3) the light source is set at infinity i.e. light beams are uniform 
and parallel each other. This gives the assumption that the 
light source can be expressed by a single vector for all the 
pixels. 
Under these assumptions, it is possible to relate brightness and 
surface orientation, in terms of surface normals as follows: 
 

𝐼𝐼(𝑖𝑖, 𝑗𝑗) = 𝑁𝑁��⃗ (𝑖𝑖, 𝑗𝑗) ∙ 𝐿𝐿�⃗  =𝑛𝑛x 𝑙𝑙x + 𝑛𝑛y𝑙𝑙𝑦𝑦 + 𝑛𝑛z𝑙𝑙z  (1) 

 
where: 
- 𝐼𝐼(i, j) is the image (size n × m) representing the shaded 

object whose surface is to be retrieved (i.e. the input 
image);  

- (i, j) are the coordinates of the generic pixel;  
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- L�⃗ = [lx, ly , lz] is the unit-vector opposed to light 
direction; 

All the normals that solve Eq. 1 lay on the lateral surface of a 
tipped cone (see Figure 1), whose axis coincides with the 
vector 𝐿𝐿�⃗   and whose aperture is proportional to the pixel 
brightness: 
 

𝛽𝛽 = cos−1(𝐼𝐼(𝑖𝑖, 𝑗𝑗)) (2) 

 

 
Figure 1 - Cone of ambiguity 

Eq. 1, where the unknown is the vector 𝑁𝑁��⃗ , is usually expressed 
in terms of gradient 𝛻𝛻𝛻𝛻 [7-9]. The resulting equation is a first 
order non-linear partial differential equation (PDE) of the 
Hamilton-Jacobi type, called fundamental equation of shape 
from shading (Eq. 3): 
 

𝐼𝐼(𝑖𝑖, 𝑗𝑗)�1 + |𝛻𝛻𝛻𝛻|2 + �𝑙𝑙x , 𝑙𝑙y� ∙ 𝛻𝛻𝛻𝛻 − 𝑙𝑙z = 0 (3) 

 
If the light source is frontal, i.e. L�⃗ = [0 0 1], the problem is 
simplified and the equation is then reduced to the well-known 
“eikonal” form expressed by: 
 

𝐼𝐼(𝑖𝑖, 𝑗𝑗)�1 + |𝛻𝛻𝛻𝛻|2 − 𝑙𝑙z = 0 (4) 

 
Whichever is the selected unknown (𝑁𝑁��⃗  or 𝛻𝛻𝛻𝛻) the SFS 
problem results underdetermined. In fact, to each surface point 
correspond two (p, q) or three (�nx , ny , nz�) unknowns, while 
the image provides only one grey value (and so only one 
equation). For this reason the problem does not have a unique 
solution, thus all the SFS methods proposed in literature are 
based on strong assumptions aiming to reduce the complexity 
in retrieving a suitable 3D surface.  
According to scientific literature, it is possible to collect them 
in four groups: direct approaches [10, 11], local approximation 
[12], linear approximation [13, 14] and minimization-based 
approaches [15 - 17].  
This last class, used in the present work, is mainly based on 
hypothesis that the expected surface coincides with the 
minimum of an appropriate functional 𝐹𝐹, which consists of the 
linear combination of few contributions, called constraints.  

The main constraints, widely used in literature, are the 
following: brightness constraint (𝐵𝐵𝐵𝐵), integrability constraint 
(𝐼𝐼𝐼𝐼) and smoothness constraint (𝑆𝑆𝑆𝑆). Accordingly, in general, 
the functional 𝐹𝐹to be minimized is provided by the following 
equation: 
 

𝐹𝐹 = 𝐵𝐵𝐵𝐵 +  𝜆𝜆𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇𝜇𝜇 (5) 

 
Where 𝜆𝜆 and µ are respectively the weights for the 
Smoothness Constraint and the Integrability 
Constraint.Minimization approach is known to be the most 
robust one in case of noisy images [6]. Recent developments 
[18, 19] showed that, under few easy-to-set boundary 
conditions, this strategy provides satisfactory results, 
especially when the input image is a sketch.In any case, the 
effectiveness of local-minimization algorithms is strongly 
affected by the initialization given to the iterative 
minimization process. A proper initialization is crucial for 
retrieving surfaces reliably resembling the expected one since 
it allows a better convergence to the global minimum. The 
method proposed in this paper introduces an original 
minimization-based variational approach where the 
reconstruction problem is split into a sequence of SFS sub-
problems, each one providing the initialization for the 
following step. 
In particular, from the input image a set of k new images are 
derived by progressively increasing brightness. Then, a first-
attempt surface is reconstructed starting from the brightest 
image by using a planar initialization. Such a surface is used 
as initialization for the subsequent image (i.e. the second 
brightest image). The procedure is iterated until the input 
image is processed i.e. each intermediate step provides the 
initialization for the following one.  
In view of its application to handmade drawings, this work 
preliminary analyses the applicability of SFS to synthetic 
images seeking to improve, among the existing ones, the 
techniques based on minimization approach which are known 
to more robust in case of inexact shading (like the ones in 
handmade drawings).    

II. METHOD 
As already stated, variational approaches are aimed to 

minimize the Functional of Eq. 5, mainly based on the 
definition of three constraints. The most important one is the 
so called Brightness Constraint (𝐵𝐵𝐵𝐵). Derived directly from 
the irradiance equation (Eq. 1) this term points out the error 
between the reconstructed image and the original one: 

 

𝐵𝐵𝐵𝐵 = �(𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐼𝐼(𝑖𝑖, 𝑗𝑗))2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

≅ � �𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐼𝐼(𝑖𝑖, 𝑗𝑗)�
2

(𝑖𝑖 ,𝑗𝑗 )∈𝛺𝛺

 
(6) 
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where 𝛺𝛺 is the image domain. 
Since, as already mentioned, Eq. 1 is underdetermined, the 
minimization of 𝐵𝐵𝐵𝐵 cannot help in detecting a unique 
solution. For this reason, it is necessary to introduce other two 
constraints. The first one is the Smoothness Constrain (𝑆𝑆𝑆𝑆); it 
imposes that the slope of the reconstructed surface changes 
gradually from a given pixel to its neighbourhood, so that the 
result appears as smooth as possible, penalizing large local 
changes in the surface orientation.𝑆𝑆𝑆𝑆is defined as follows (Eq. 
7 and Eq. 8): 
 

𝑆𝑆𝑆𝑆 = ���𝑁𝑁��⃗ 𝑥𝑥�
2

+ �𝑁𝑁��⃗ 𝑦𝑦�
2
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

≅ � �𝑁𝑁��⃗ (𝑖𝑖 + 1, 𝑗𝑗) − 𝑁𝑁��⃗ (𝑖𝑖, 𝑗𝑗)�
2

(𝑖𝑖 ,𝑗𝑗 )∈𝛺𝛺

+ �𝑁𝑁��⃗ (𝑖𝑖, 𝑗𝑗 + 1) − 𝑁𝑁��⃗ (𝑖𝑖, 𝑗𝑗)�
2
 

(7) 

 
Consequently: 
 

𝑆𝑆𝑆𝑆 = � �𝑛𝑛𝑥𝑥(𝑖𝑖 + 1, 𝑗𝑗) − 𝑛𝑛𝑥𝑥(𝑖𝑖, 𝑗𝑗)�2

(𝑖𝑖 ,𝑗𝑗 )∈𝛺𝛺

+ �𝑛𝑛𝑦𝑦(𝑖𝑖 + 1, 𝑗𝑗) − 𝑛𝑛𝑦𝑦(𝑖𝑖, 𝑗𝑗)�
2

+ �𝑛𝑛𝑧𝑧(𝑖𝑖 + 1, 𝑗𝑗) − 𝑛𝑛𝑧𝑧(𝑖𝑖, 𝑗𝑗)�2

+ �𝑛𝑛𝑥𝑥(𝑖𝑖, 𝑗𝑗 + 1) − 𝑛𝑛𝑥𝑥(𝑖𝑖, 𝑗𝑗)�2

+ �𝑛𝑛𝑦𝑦(𝑖𝑖, 𝑗𝑗 + 1) − 𝑛𝑛𝑦𝑦(𝑖𝑖, 𝑗𝑗)�
2

+ �𝑛𝑛𝑧𝑧(𝑖𝑖, 𝑗𝑗 + 1) − 𝑛𝑛𝑧𝑧(𝑖𝑖, 𝑗𝑗)�2 
(8) 

 
The second constraint is the Integrability Constraint (𝐼𝐼𝐼𝐼); it 
provides surfaces that can be integrated, i.e. for any point of 
the surface, the height is independent from the path of 
integration [20, 21]. The univocal relation between normal 
map and height results as follows: 
 

𝐼𝐼𝐼𝐼 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

≅ � ��𝑝𝑝(𝑖𝑖, 𝑗𝑗 + 1) − 𝑝𝑝(𝑖𝑖, 𝑗𝑗)�
(𝑖𝑖 ,𝑗𝑗 )∈𝛺𝛺

+ �𝑝𝑝(𝑖𝑖 + 1, 𝑗𝑗 + 1) − 𝑝𝑝(𝑖𝑖 + 1, 𝑗𝑗)�
− �𝑞𝑞(𝑖𝑖 + 1, 𝑗𝑗) − 𝑞𝑞(𝑖𝑖, 𝑗𝑗)�
− �𝑞𝑞(𝑖𝑖 + 1, 𝑗𝑗 + 1) − 𝑞𝑞(𝑖𝑖, 𝑗𝑗 + 1)��

2 
(9) 

 

 
Once the constraints are defined, the variational approach aims 
to solve the following equation: 
 

𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵 +  𝜆𝜆 ∙ 𝑆𝑆𝑆𝑆 + µ · 𝐼𝐼𝐼𝐼 (10) 

 
The minimization process makes use of a wide range of 
algorithms, such as for instance Gauss-Seidel, gradient-based 
ones or heuristic techniques [5]; however, a number of 
boundary conditions have to be satisfied to guide the 
convergence to a feasible solution. 
In this work, boundary conditions are selected according to 
[18] (where an interactive procedure is developed) as briefly 
recalled below: 
 
1. Morphology-based boundary condition: it requires to 

select which white regions in the input image correspond 
to local maxima or minima of the surface, seen parallel 
to the light direction. The normals on the outline of these 
areas are displaced radially, pointing outward in case of a 
maximum or inward in case of a minimum.  

2. Background boundary condition: it imposes that the 
background of the scene, once rebuilt, results perfectly 
horizontal. It is done by fixing the normals as vertical for 
each background pixel. 

3. Silhouette boundary condition: if the surface is clearly 
disconnected from the background, user can set the value 
of the normal around its contour as outward vector. 

4. White points boundary condition: the only possible 
orientation for a pixel to have maximum brightness (i.e. 
white tone) is that the relative normal N��⃗  is aligned with L⃗. 
Therefore, the only possible solution for white pixels is 
that N��⃗  is coincident with L⃗ (see [22, 23]). 

As long as the typical optimization methods for SFS are local, 
the initialization is a nodal point: the success of the 
optimization method derives largely from the initial point of 
the procedure that is the surface from which the optimization 
algorithm starts. A typical starting point is the plane 
perpendicular to the light direction. It is important to note that 
this plane satisfies automatically all the white areas of the 
image.The proposed method aims to solve the problem using a 
step-by-step approach. Each step provides the initialization for 
the following one, so that the problem of finding a “proper” 
initialization for the general problem is overcame. Actually, 
all of the steps – with exception of the final one – have the 
main aim of recovering the initialization for the original 
problem.  
The general problem is, hence, broken down into SFS sub-
problems, each one “easier to solve” than the original one 
since the starting surface is closer to the expected one.  
Since the “first” initialization surface is planar, it is obvious 
that a “flattened” surface is easier to be reliably reconstructed. 
It is also clear that a surface flattened with respect to the light 
direction appears brighter (Figure 2), since surface normals 
progressively tend to the light direction. 
Moreover, it has been demonstrated [24] that by initializing 
the functional with a surface that roughly represents the 
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expected one is a better strategy when confronted with the use 
of planar initialization.  
On the light of these observations, generating from the input 
image a set of images with an increasing level of brightness 
(in such a set the darker image is the original one) allows 1) to 
use planar initialization only for the brightest image and 2) to 
use for the subsequent images an initialization surface closer 
to the one represented by the analyzed images themselves.  
In detail, the devised procedure consists of the following 
steps: 

 
 

Figure 2- Peaks with flattened surface and the correspondent image 
with light direction L�⃗ = [0,0, 1]. 

 
Step 1 - A set of k images is created by increasingly 
brightening the input image. The images are sorted in 
ascending order of brightness (so that the first one to be used 
is the brighter one while the last one corresponds to the 
original image). Even if conceptually the set of images could 
be obtained by increasing the brightness with a Δ𝐵𝐵 step equal 
to 1, this would involve, in the worst case, 255 sub-problems 
to be solved. To reduce the computational cost, a good 
compromise is to use a set of 10 images. Since the lighter 
image is considered reached when about 94% of pixels have 
brightness value equal to 255 (i.e. average brightness 𝐵𝐵𝐿𝐿 , 
excluding the background, equal to 240), and called 𝐵𝐵𝑂𝑂  the 
average brightness of the original image, it results:  
 

Δ𝐵𝐵 =
𝐵𝐵𝑂𝑂 − 𝐵𝐵𝐿𝐿

10  (11) 

 
Step 2 - The first sub-problem, corresponding to the brightest 
image, is solved by applying Eq. 10 and using the planar 
initialization (planar surface perpendicular to the light 
direction).  
 
Step 3 - The obtained solution is used as initialization to solve 
the following sub-problem. 
 
Step 4 - Step 3 is iterated until the original image is analyzed.  
 
Each step is solved using the BarzilaiBorwein not monotonous 
algorithm [25] that can be considered effective since the SFS 
problem is a typical unconstrained problem. Moreover, this 

method has been proved to be satisfying in terms of speed and 
accuracy to solve these types of problems. The main issue in 
applying such an optimization algorithm is to find an optimal 
criterion for stopping the minimization process.  
In this paper two criteria are adopted:  
- The first one evaluates the gradient of the functional (Eq. 
12); 
- The second one evaluates the relative error between two 
consecutive iterations 𝑥𝑥𝑘𝑘  and 𝑥𝑥𝑘𝑘−1 (Eq. 13). 
 

‖∇𝐹𝐹‖ < 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 (12) 

‖𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1‖
‖𝑥𝑥𝑘𝑘‖

< 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 (13) 

III. RESULTS 
In order to assess the effectiveness of the proposed method, 
three case studies have been carried out. In particular, the 
results obtained by using the standard planar initialization and 
the step-by-step procedure are compared both visually and in 
terms of reconstruction error.  
Tests were performed using synthetic images, in which the 
exact normal map is known. There are two main advantages of 
using synthetic images: the first is that it is possible to have 
the same surface with different light sources; the second, 
extensively used in this work, is that the complete knowledge 
of the exact normal map is fundamental to compare and 
validate the obtained solutions. This enables to assess very 
carefully the error made by each method, to compare the 
various methods and to obtain an objective evaluation of the 
goodness of the obtained solution. 
The case studies analyzed refer to three surfaces (see Figure 
3): 
 
• Donut - size [241 x 241] pixels. 
• Pin - size [473 x 420] pixels (see Figure 3). 
• Peaks - size [420 x 420] pixels. 
 

 
Figure 3 – Ground truth of the surfaces to be retrieved using the 

proposed method. 

Each one of these surfaces is illuminated with two light 
directions: [0 0 1], front light perpendicular to the plane of the 
background and [1 1 5], i.e. with a slant angle of 10° and a tilt 
angle of 45°.  
First, the set of images with increasing brightness is built (see 
for instance Figure 4 where the 10 images created for Pin case 
study are depicted).  
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Figure 4 – Pin case study: set of 10 images to be solved (light 

direction L�⃗ = [1 1 5]). 

Then, the 4-steps procedure described in the previous section 
is accomplished to retrieve the final surface. Tests have been 
carried out by crossing various parameters, as the weight λ 
used for the constraint and the tolerance 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1adopted for the 
stopping criterion in BarzilaiBorwein algorithm. In this way, it 
is possible to take into account many configurations of the 
SFS problem.In Figure 5 some results of reconstruction using 
the proposed method are depicted together with the results 
obtained by applying the standard method based on planar 
initialization. The final reconstruction of the surface is made 
starting from the solution calculated at the end of the 
procedures using the strategy described in [26]. 
 

 
Figure 5 - (a), (b) and (c) are the Donut with light direction L�⃗ =

[0, 0, 1], 𝜆𝜆=0.1 and toll1 = 10−2. (d), (e) and (f) are the Pin with 
L�⃗ = [1, 1, 5], 𝜆𝜆=0.01 and toll1 = 10−5. (g), (h) and (i) are the Peaks 

with L�⃗ = [1, 1, 5], 𝜆𝜆=0.1 and toll1 = 10−4. 

The better performance of the proposed method can be 
visually deduced; in fact, the reconstructed surface has more 
details and is more similar to the ground truth.  
A numerical comparison between the two methods is 
achievable by defining two kinds of errors. The first one, 
namely the “mean absolute deviation error”, is defined as the 

average value of the norm of the difference between the exact 
normal and the evaluated one: 
 

𝑒𝑒𝑒𝑒𝑒𝑒1 =
1

𝑛𝑛 ∙ 𝑚𝑚 � �𝑁𝑁��⃗ (𝑖𝑖, 𝑗𝑗) −𝑁𝑁���⃗ (𝑖𝑖, 𝑗𝑗)�
(𝑖𝑖 ,𝑗𝑗 )∈𝛺𝛺

 (14) 

 
Where n and m are the number of rows and columns of the 
image, 𝑁𝑁��⃗ (𝑖𝑖, 𝑗𝑗) is the true normal map and 𝑁𝑁���⃗ (𝑖𝑖, 𝑗𝑗) is the 
achieved one.  
The second error is defined as the average of the angle 
between the exact normal and the evaluated one. Since normal 
maps are composed by normal vectors, the dot product 
between the normals coincides with the cosine of the angle 𝜗𝜗 
between them: 
 

𝜗𝜗(𝑖𝑖, 𝑗𝑗) = cos−1 �𝑁𝑁��⃗ (𝑖𝑖, 𝑗𝑗) ∙ 𝑁𝑁���⃗ (𝑖𝑖, 𝑗𝑗)�   ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝛺𝛺 (15) 
 
In this way it is possible to define the error as follows:  
 

𝑒𝑒𝑒𝑒𝑒𝑒2 =
1

𝑛𝑛 ∙ 𝑚𝑚 � 𝜗𝜗(𝑖𝑖, 𝑗𝑗)
(𝑖𝑖 ,𝑗𝑗 )∈𝛺𝛺

 (16) 

 
The results of the two types of error (𝑒𝑒𝑒𝑒𝑒𝑒1 and𝑒𝑒𝑒𝑒𝑒𝑒2) are 
evaluated in the solution calculated at the end of the 
procedures and before reconstructing the surface.  
In Tables from 1 to 6 (see Annex 1) a comparison of measured 
errors for the proposed method (PM) and the standard one 
(SM) is described.  
Both errors show a substantial improvement of the proposed 
method over the standard one except for the Donut case with 
𝐿𝐿�⃗ = [1 1 5], 𝜆𝜆=0.1 and  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 = 10−4, 10−5 and 10−6.  
To further evaluate the numerical difference between the 
proposed method and the standard one it is also possible to 
define the relative errors as follows: 
 

𝑟𝑟𝑟𝑟1 =
𝑒𝑒𝑒𝑒𝑒𝑒1(𝑃𝑃𝑃𝑃) − 𝑒𝑒𝑒𝑒𝑒𝑒1(𝑇𝑇𝑇𝑇)

𝑒𝑒𝑒𝑒𝑒𝑒1(𝑃𝑃𝑃𝑃)  (17) 

𝑟𝑟𝑟𝑟2 =
𝑒𝑒𝑒𝑒𝑒𝑒2(𝑃𝑃𝑃𝑃) − 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑇𝑇𝑇𝑇)

𝑒𝑒𝑒𝑒𝑒𝑒2(𝑃𝑃𝑃𝑃)  (18) 

 
Where 𝑒𝑒𝑒𝑒𝑒𝑒1(𝑃𝑃𝑃𝑃) and 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑃𝑃𝑃𝑃) are the errors of the 
proposed method, while 𝑒𝑒𝑒𝑒𝑒𝑒1(𝑆𝑆𝑆𝑆)and 𝑒𝑒𝑒𝑒𝑒𝑒2(𝑆𝑆𝑆𝑆) are the 
errors of the standard one. In Tables from 7 to 9, the 
comparison between the proposed method and the standard 
one in terms of relative error are shown.  
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Table 1: Comparison of performance (%) – Donut. 

 𝒓𝒓𝒓𝒓𝟏𝟏 𝒓𝒓𝒓𝒓𝟐𝟐 

 [0 0 1] [1 1 5] [0 0 1] [1 1 5] 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 λ 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 

𝟏𝟏𝟏𝟏−𝟐𝟐 -574,80 -160,98 -131,48 -335,74 -576,56 -161,01 -132,46 -355,91 

𝟏𝟏𝟏𝟏−𝟑𝟑 -148,94 -261,85 -94,08 -454,35 -148,95 -261,89 -95,68 -478,33 

𝟏𝟏𝟏𝟏−𝟒𝟒 -125,28 -250,60 16,09 -537,69 -125,28 -250,63 16,13 -557,52 

𝟏𝟏𝟏𝟏−𝟓𝟓 -19,50 -74,50 4,70 -171,69 -19,50 -74,50 4,77 -178,56 

𝟏𝟏𝟏𝟏−𝟔𝟔 -1,41 -5,76% 1,12 -112,57 -1,41 -5,76 1,14 -117,48 

 
 

Table 2: Comparison of performance (%) – Pin. 

 𝒓𝒓𝒓𝒓𝟏𝟏 𝒓𝒓𝒓𝒓𝟐𝟐 

 [0 0 1] [1 1 5] [0 0 1] [1 1 5] 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 λ 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 

𝟏𝟏𝟏𝟏−𝟐𝟐 
-40,07 -27,80 -22,43 -81,33 -39,95 -27,68 -22,21 -80,05 

𝟏𝟏𝟏𝟏−𝟑𝟑 
-83,25 -45,45 -61,47 -130,30 -83,84 -45,71 -62,33 -134,27 

𝟏𝟏𝟏𝟏−𝟒𝟒 
-11,43 -140,83 -52,35 -176,47 -11,37 -141,79 -52,20 -180,72 

𝟏𝟏𝟏𝟏−𝟓𝟓 
-18,36 -35,85 -11,19 -153,86 -17,57 -35,94 -11,15 -156,53 

𝟏𝟏𝟏𝟏−𝟔𝟔 
-8,88 -27,03 -1,03 -134,95 -8,24 -27,08 -1,03 -137,44 

 
 

Table 3: Comparison of performance (%) – Peaks. 

 𝒓𝒓𝒓𝒓𝟏𝟏 𝒓𝒓𝒓𝒓𝟐𝟐 

 [0 0 1] [1 1 5] [0 0 1] [1 1 5] 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 λ 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 

𝟏𝟏𝟏𝟏−𝟐𝟐 
-79,14 -78,42 -129,96 -1,10 -79,44 -79,02 -124,97 -1,09 

𝟏𝟏𝟏𝟏−𝟑𝟑 
-72,40 -79,09 -567,00 -136,45 -72,83 -79,71 -591,24 -136,08 

𝟏𝟏𝟏𝟏−𝟒𝟒 
-63,15 -73,30 -599,22 -105,78 -63,41 -73,77 -622,06 -106,64 

𝟏𝟏𝟏𝟏−𝟓𝟓 
-61,10 -36,49 -165,93 -58,52 -61,23 -36,65 -171,38 -59,09 

𝟏𝟏𝟏𝟏−𝟔𝟔 
-61,51 -33,48 -124,64 -51,40 -61,69 -33,48 -128,78 -53,28 

 
 
 
 
 
 
 
 
 
 
 

 
 

IV. CONCLUSIONS 
The present work proposed a novel strategy to improve the 

reconstruction of a surface starting from a single image. As 
known, minimization-based SFS procedures may converge 
towards a solution that does not coincide with the global 
minimum. In fact, if the iterative algorithm starts from an 
initial guess that is too far from the actual solution, it may 
takes a lot of iteration to come up to a solution. Even worse, 
since the result is obtained using local minimization 
algorithms, it may do not correspond with the global 
minimum.  
To overcome these issues, the proposed strategy breaks with 
the standard approach since it splits the retrieving process in 
multiple steps, each one of them corresponds with an easy 
sub-problem to solve that provides a proper initialization for 
the following one. The solution of the last sub-problem 
coincides with the solution of the original problem. More in 
detail, each step solves an SFS problem relative to a 
brightened version of the input image, so that the solution 
surface is actually a flattened version of the definitive one. 
Passing from one step to the following one, the image is 
darkened until the last step, in which the image corresponds to 
the original one. Since the initialization at the beginning is 
planar, this strategy is meant to be successful in overcoming 
the issue related to convergence of the minimization that has 
been faced in this work. 
To validate this procedure, the method was tested on a set of 
case studies, using several input images relative to 3 different 
synthetic surfaces with 2 alternative lightings and 12 different 
settings. Since the original surfaces are known, it has been 
possible to compare both normal maps and depth maps 
directly with the real ones. In order to evaluate the 
performance of this procedure, the same tests have been 
carried out using the standard approach.  
In light of the results, the improvements obtained seem 
substantial, reducing the relative error committed up to six 
times. The proposed method is able to produce better results in 
terms of both numerical error and surface reconstruction. Only 
in a few cases the standard method and the proposed one 
behave in the same manner. In future works, this strategy will 
be further tested on additional case studies, in order to confirm 
the results shown in this work and handmade drawings will be 
finally considered. Though shading in this kind of drawings, 
differently from synthetic images, is inexact, authors believe 
that shading analysis can still be useful and help recover at 
least the global shape of the represented object and/or 
curvature constraints (e.g. tangency) among contiguous 
regions of the object itself.  
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ANNEX 1 – TABLES 1-6 
 

Table 4: err1 - Donut. 

 L = [0 0 1] L = [1 1 5] 

 λ=0.1 λ=0.01 λ=0.1 λ=0.01 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 PM SM PM SM PM SM PM SM 
𝟏𝟏𝟏𝟏−𝟐𝟐 5,57639E-03 3,76296E-02 5,41376E-03 1,41286E-02 4,60939E-02 1,06699E-01 6,19278E-02 2,69846E-01 
𝟏𝟏𝟏𝟏−𝟑𝟑 5,01423E-03 1,24826E-02 3,89871E-03 1,41075E-02 3,61785E-02 7,02159E-02 5,15794E-02 2,85931E-01 
𝟏𝟏𝟏𝟏−𝟒𝟒 5,47432E-03 1,23326E-02 3,79262E-03 1,32969E-02 4,54100E-02 3,81037E-02 4,00743E-02 2,55550E-01 
𝟏𝟏𝟏𝟏−𝟓𝟓 9,95373E-03 1,18950E-02 6,78292E-03 1,18361E-02 6,57649E-02 6,26734E-02 5,22039E-02 1,41833E-01 
𝟏𝟏𝟏𝟏−𝟔𝟔 1,09978E-02 1,11524E-02 1,03791E-02 1,09773E-02 6,81437E-02 6,73772E-02 6,62929E-02 1,40916E-01 

 

Table 5: err2 - Donut. 

 L = [0 0 1] L = [1 1 5] 

 λ=0.1 λ=0.01 λ=0.1 λ=0.01 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 PM SM PM SM PM SM PM SM 
𝟏𝟏𝟏𝟏−𝟐𝟐 5,57728E-03 3,77334E-02 5,41392E-03 1,41308E-02 4,61858E-02 1,07364E-01 6,21315E-02 2,83264E-01 
𝟏𝟏𝟏𝟏−𝟑𝟑 5,01511E-03 1,24849E-02 3,89887E-03 1,41096E-02 3,62192E-02 7,08751E-02 5,16981E-02 2,98985E-01 
𝟏𝟏𝟏𝟏−𝟒𝟒 5,47540E-03 1,23348E-02 3,79283E-03 1,32988E-02 4,54714E-02 3,81379E-02 4,01283E-02 2,63851E-01 
𝟏𝟏𝟏𝟏−𝟓𝟓 9,95530E-03 1,18970E-02 6,78356E-03 1,18376E-02 6,60667E-02 6,29158E-02 5,23265E-02 1,45762E-01 
𝟏𝟏𝟏𝟏−𝟔𝟔 1,09995E-02 1,11542E-02 1,03802E-02 1,09785E-02 6,84878E-02 6,77051E-02 6,66059E-02 1,44852E-01 

 

Table 6: err1  - Pin. 

 L = [0 0 1] L = [1 1 5] 

 λ=0.1 λ=0.01 λ=0.1 λ=0.01 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 PM SM PM SM PM SM PM SM 
𝟏𝟏𝟏𝟏−𝟐𝟐 6,20026E-02 8,68440E-02 6,26886E-02 8,01144E-02 9,23989E-02 1,13127E-01 1,15015E-01 2,08554E-01 
𝟏𝟏𝟏𝟏−𝟑𝟑 4,27118E-02 7,82699E-02 5,47653E-02 7,96572E-02 5,97568E-02 9,64877E-02 9,89113E-02 2,27796E-01 
𝟏𝟏𝟏𝟏−𝟒𝟒 2,92924E-02 3,26394E-02 3,32822E-02 8,01547E-02 3,79512E-02 5,78173E-02 7,81139E-02 2,15959E-01 
𝟏𝟏𝟏𝟏−𝟓𝟓 2,61440E-02 3,09444E-02 3,19427E-02 4,33937E-02 4,66688E-02 5,18902E-02 4,44522E-02 1,12847E-01 
𝟏𝟏𝟏𝟏−𝟔𝟔 2,84040E-02 3,09267E-02 3,41609E-02 4,33937E-02 4,87477E-02 4,92495E-02 4,80312E-02 1,12847E-01 

 

Table 7: err2  - Pin. 

 L = [0 0 1] L = [1 1 5] 

 λ=0.1 λ=0.01 λ=0.1 λ=0.01 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 PM SM PM SM PM SM PM SM 
𝟏𝟏𝟏𝟏−𝟐𝟐 6,24013E-02 8,73307E-02 6,32023E-02 8,06979E-02 9,37350E-02 1,14550E-01 1,17238E-01 2,11085E-01 
𝟏𝟏𝟏𝟏−𝟑𝟑 4,28198E-02 7,87187E-02 5,50613E-02 8,02299E-02 6,01204E-02 9,75951E-02 1,00395E-01 2,35194E-01 
𝟏𝟏𝟏𝟏−𝟒𝟒 2,94619E-02 3,28113E-02 3,33578E-02 8,06565E-02 3,82030E-02 5,81466E-02 7,88932E-02 2,21469E-01 
𝟏𝟏𝟏𝟏−𝟓𝟓 2,64737E-02 3,11248E-02 3,20293E-02 4,35405E-02 4,69523E-02 5,21897E-02 4,46933E-02 1,14651E-01 
𝟏𝟏𝟏𝟏−𝟔𝟔 2,87398E-02 3,11088E-02 3,42619E-02 4,35405E-02 4,90378E-02 4,95409E-02 4,82856E-02 1,14651E-01 

 

Table 8: err1  - Peaks. 

 L = [0 0 1] L = [1 1 5] 

 λ=0.1 λ=0.01 λ=0.1 λ=0.01 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 PM SM PM SM PM SM PM SM 
𝟏𝟏𝟏𝟏−𝟐𝟐 6,01748E-02 1,07798E-01 6,14991E-02 1,09728E-01 8,35773E-02 1,92199E-01 1,93558E-01 1,95679E-01 
𝟏𝟏𝟏𝟏−𝟑𝟑 5,91592E-02 1,01993E-01 6,03640E-02 1,08106E-01 2,65856E-02 1,77325E-01 1,19747E-01 2,83139E-01 
𝟏𝟏𝟏𝟏−𝟒𝟒 6,64086E-02 1,08343E-01 6,14047E-02 1,06414E-01 2,95113E-02 2,06347E-01 1,38788E-01 2,85600E-01 
𝟏𝟏𝟏𝟏−𝟓𝟓 8,67289E-02 1,39717E-01 9,17136E-02 1,25179E-01 7,98369E-02 2,12309E-01 1,73148E-01 2,74480E-01 
𝟏𝟏𝟏𝟏−𝟔𝟔 8,91664E-02 1,44011E-01 9,94083E-02 1,32687E-01 9,45102E-02 2,12309E-01 1,68774E-01 2,55531E-01 

 

Table 9: err2  - Peaks. 

 L = [0 0 1] L = [1 1 5] 

 λ=0.1 λ=0.01 λ=0.1 λ=0.01 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏 PM SM PM SM PM SM PM SM 
𝟏𝟏𝟏𝟏−𝟐𝟐 6,07212E-02 1,08959E-01 6,20591E-02 1,11098E-01 8,61959E-02 1,93914E-01 1,95287E-01 1,97416E-01 
𝟏𝟏𝟏𝟏−𝟑𝟑 5,96887E-02 1,03162E-01 6,08914E-02 1,09430E-01 2,66012E-02 1,83879E-01 1,24496E-01 2,93912E-01 
𝟏𝟏𝟏𝟏−𝟒𝟒 6,70027E-02 1,09490E-01 6,19311E-02 1,07619E-01 2,95256E-02 2,13193E-01 1,43330E-01 2,96177E-01 
𝟏𝟏𝟏𝟏−𝟓𝟓 8,77334E-02 1,41452E-01 9,26335E-02 1,26582E-01 8,01691E-02 2,17564E-01 1,78439E-01 2,83888E-01 
𝟏𝟏𝟏𝟏−𝟔𝟔 9,02103E-02 1,45861E-01 1,00578E-01 1,34247E-01 9,50987E-02 2,17564E-01 1,72182E-01 2,63924E-01 
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