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Abstract. In this paper, we study recent results in the numerical solution of Hamiltonian partial differential equations (PDEs),
by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named
Hamiltonian Boundary Value Methods (HBVMs). We show that the use of energy-conserving methods, able to conserve a discrete
counterpart of the Hamiltonian functional (which derives from a proper space semi-discretization), confers more robustness to the
numerical solution of such problems.

INTRODUCTION

The numerical solution of Hamiltonian problems has been the subject of many researches in the last decades, within
the framework of the so called Geometric Integration. At the beginning, the focus was mainly on ODE problems,
where fundamental results, concerning symplectic and (more recently) energy-conserving methods, have been de-
rived. Later on, the investigation has also moved towards the setting of Hamiltonian PDEs, where symplectic [21],
multi-symplectic [18] and, more recently, energy-conserving methods, have been studied. In particular, we are here
concerned with some recent achievements concerning the use of energy-conserving methods in the HBVMs class
[4, 6], which prove to be effective and reliable.

HBVMs are energy-conserving Runge-Kutta methods derived in the framework of discrete line integral methods,
at first introduced in [15, 16, 17], and then developed in [7, 10, 12] (see also [8, 3] for the efficient implementation of
HBVMs). For a comprehensive introduction to such methods, we refer to the recent monograph [6].

In this paper, we consider the application of HBVMs for numerically solving Hamiltonian PDEs, with particular
reference to the semilinear wave equation,

utt(x, t) = uxx(x, t) − f ′(u(x, t)), (x, t) ∈ Ω ≡ [a, b] × [0,∞), (1)

(with f ′ the derivative of f ) and the nonlinear Schrödinger equation, which we write in the general form1

iψt(x, t) + ψxx(x, t) + f ′
(
|ψ(x, t)|2

)
ψ(x, t) = 0, (x, t) ∈ Ω, (2)

(with i denoting, as usual, the imaginary unit) which constitute significant instances of such problems. In both cases,
the problem is defined by considering suitable initial and periodic boundary conditions, i.e.,

u(x, 0) = u0(x), ut(x, 0) = v0(x) x ∈ [a, b], u(a, t) = u(b, t), ux(a, t) = ux(b, t), t > 0, (3)

1In the typical case, f (s) = κs2, with κ = ±1, depending on the fact that one is dealing with the focusing or defocusing case.



for (1), and

ψ(x, 0) = ψ0(x) ≡ u0(x) + iv0(x), x ∈ [a, b], ψ(a, t) = ψ(b, t), ψx(a, t) = ψx(b, t), t > 0, (4)

for (2). Moreover, we shall assume that the spatial interval is finite, i.e., −∞ < a < b < +∞. It is worth mentioning that
also the case of an infinite interval could be, in principle, tackled, by considering different computational paradigms
(e.g., [22, 23, 24]). Equations (1) and (2) can be cast in Hamiltonian form, by setting

v(x, t) := ut(x, t), for (1); ψ(x, y) ≡ u(x, t) + iv(x, t), for (2); y = (u, v)> ,

as follows:

yt = J∇H[y], with J =

(
0 1
−1 0

)
, and ∇H =

(
δ

δu
H ,

δ

δv
H

)>
the vector of the functional derivatives of the Hamiltonian functional H[y] ≡ H[u, v].2 It can be easily checked that,
because of the periodic boundary conditions,

H[u, v] =
1
2

∫ b

a

(
v2 + u2

x + 2 f (u)
)

dx =
1
2

∫ b

a

(
v2 − uuxx + 2 f (u)

)
dx, (5)

H[u, v] =
1
2

∫ b

a

(
v2

x + u2
x − f

(
u2 + v2

))
dx = −

1
2

∫ b

a

(
vvxx + uuxx + f

(
u2 + v2

))
dx, (6)

for (1) and (2), respectively. We also consider the quadratic functionals

J[u, v] =

∫ b

a
(uxv) dx, M[u, v] =

∫ b

a

(
u2 + v2

)
dx. (7)

J represents the momentum, for (1), whereasM represents the mass (i.e., the probability density), for (2). It is quite
easy to prove the following result.

Theorem 1 For problem (1)-(3) one has (see (5) and (7)):

H[u, v](t) = H[u, v](0), J[u, v](t) = J[u, v](0), ∀t > 0.

For problem (2)-(4) one has (see (6) and (7)):

H[u, v](t) = H[u, v](0), M[u, v](t) =M[u, v](0), ∀t > 0.

In other words, (5), (6), and (7) provide conservation laws for the corresponding problems.3

In the following sections we consider, at first, the numerical solution of (1)-(3), then moving to (2)-(4). Later on,
we sketch the main facts about HBVMs and, finally, we report some numerical tests and final conclusions.

SPACE SEMI-DISCRETIZATION FOR THE SEMILINEAR WAVE EQUATION

In order to numerically solve (1)-(3), we shall use a Fourier-Galerkin space semi-discretization, by expanding the
solution along the following periodic orthonormal basis for L2[a, b],4

c0(x) ≡
1

√
b − a

, c j(x) =

√
2

b − a
cos

(
2 jπ

x − a
b − a

)
, s j(x) =

√
2

b − a
sin

(
2 jπ

x − a
b − a

)
, j = 1, 2, . . . , (8)

2We shall use either one or the other notation, when convenient. Moreover, we shall sometimes omit the arguments, to simplify the notation.
3A further quadratic invariant, similar to the momentum, also exists for the nonlinear Schrödinger equation, though we shall not consider it

here.
4We shall consider different space discretizations elsewhere.



thus obtaining:
u(x, t) = γ0(t)c0(x) +

∑
j≥1

γ j(t)c j(x) + η j(t)s j(x). (9)

By introducing the infinite vectors and matrix

w(x) =



c0(x)
c1(x)
s1(x)
c2(x)
s2(x)
...


, q(t) =



γ0(t)
γ1(t)
η1(t)
γ2(t)
η2(t)
...


, D =

2π
b − a



0

1 ·
(

1
1

)
2 ·

(
1

1

)
. . .


, (10)

one obtains that (9) can be rewritten as u(x, t) = w(x)>q(t), and the problem can be cast as the infinite-dimensional
Hamiltonian ODE problem (where, as is usual, the dot denotes the time derivative)

q̇(t) = p(t), ṗ(t) = −D2q(t) −
∫ b

a
w(x) f ′(w(x)>q(t))dx, (11)

with Hamiltonian function

H(q, p) =
1
2

p> p +
1
2

q>D2q +

∫ b

a
f (w(x)>q)dx. (12)

The following result can be easily proved, by considering that

v(x, t) = ut(x, t) = w(x)> q̇(t) ≡ w(x)> p(t), (13)

ux(x, t) = w′(x)>q(t) ≡
[
D̃ w(x)

]>
q(t), D̃ =

2π
b − a


0

1 ·
(

−1
1

)
2 ·

(
−1

1

)
. . .

 ,
with D̃> = −D̃ and D̃D = DD̃.

Theorem 2 The Hamiltonian (12) is equivalent to (5), via the expansion (9). Similarly, the momentum (7) is
equivalent to:

I(q, p) = q>D̃p. (14)

Both (12) and (14) are constant of motion for the solution of (11).

In order for numerically solving problem (11), the series in the expansion (9) is truncated after N terms.5 In so doing,
the vectors and matrices in (10)–(13) become of dimension 2N + 1. The equation to be solved still remains formally
(11), the system being now of dimension 4N+2, by imposing that the residual be orthogonal to the functional subspace

VN = span { c0(x), c1(x), s1(x), . . . , cN(x), sN(x) } , (15)

which contains the approximation to the solution. Moreover, Theorem 2 still continues to hold true, even though now
the truncated invariants are only approximations to the corresponding original ones. Also, in order to obtain a practical
computational procedure, the integrals in (11) will be approximated, up to round-off, by using a composite trapezoidal
sum defined at the discrete points

xi = a + i(b − a)/m, i = 0, . . . ,m, (16)

which is known to quickly approximate the corresponding integrals, provided that f is suitably regular [4, 6].6 Con-
sequently, in the sequel we shall assume m to be large enough to assure this requirement. In such a case, by using a
classical result [20], any symplectic Runge-Kutta method, applied to solve the truncated version of (11), will conserve
the quadratic invariant (14) in the discrete solution while, in general, fails to conserve the invariant (12).

5Clearly, the value of N has to meet suitable accuracy requirements for the approximate solution (see, e.g., [4, 14]).
6If the integrals are not approximated to machine accuracy, then (12) and (14) are no more conserved.



SPACE SEMI-DISCRETIZATION FOR THE SCHRÖDINGER EQUATION

In the case of the problem (2)-(4), by using the same basis functions (8), one obtains the expansions (9) and

v(x, t) = α0(t)c0(x) +
∑
j≥1

α j(t)c j(x) + β j(t)s j(x). (17)

In such a case, by using the same vectors and matrix defined in (10), as well as the additional infinite vector

p(t) =
(
α0(t), α1(t), β1(t), α2(t), β2(t), . . .

)>
, (18)

one obtains that
u(x, t) = w(x)>q(t), v(x, t) = w(x)> p(t),

and the problem can be rewritten as:

q̇(t) = D2 p(t) −
∫ b

a
w(x) f ′

(
(w(x)>q(t))2 + (w(x)> p(t))2

)
w(x)> p(t) dx,

(19)
ṗ(t) = −D2q(t) +

∫ b

a
w(x) f ′

(
(w(x)>q(t))2 + (w(x)> p(t))2

)
w(x)>q(t) dx,

which is Hamiltonian with Hamiltonian function

H(q, p) =
1
2

[
p>D2 p + q>D2q −

∫ b

a
f
(
(w(x)>q)2 + (w(x)> p)2

)
dx

]
. (20)

The following result is analogous to Theorem 2 for the present problem.

Theorem 3 The Hamiltonian (20) is equivalent to (6), via the expansions (9) and (17). Similarly, the mass func-
tional (7) is equivalent to:

M(q, p) =

∫ b

a

(
(w(x)>q)2 + (w(x)> p)2

)
dx. (21)

Both (20) and (21) are constant of motion for the solution of (19).

As done in the case of the semilinear wave equation, in order to practically solve problem (19), one has to
truncate the series in (9) and (17) to finite sums with N terms. Consequently, the approximate solution will belong to
the subspace (15) and, by requiring the residual be orthogonal to it, one obtain again a system of 4N + 2 differential
equations, formally still given by (19), with the vectors and the matrix in (10)-(18) now having dimesion 2N + 1.
Again, to approximate the integrals in (19) we make use of the composite trapezoidal rule defined on the abscissae
(16), with m large enough to obtain full machine accuracy, which will be assumed in the sequel.

We end this section by observing that, also in this case, the use of a symplectic Runge-Kutta method for solving
(19) guarantees the conservation of the quadratic invariant (21) in the numerical solution but, in general, not that of
the Hamiltonian (20).

HAMILTONIAN BOUNDARY VALUE METHODS (HBVMS)

In this section, we briefly sketch the basic facts about the class of energy-conserving Runge-Kutta methods named
Hamiltonian Boundary Value Methods (HBVMs), recently devised and studied in [3, 7, 8, 9, 10, 11, 12] for numerically
solving Hamiltonian ODE problems. Such methods, which are based on the concept of discrete line integral [15, 16,
17], have been also generalized to other conservative problems [1, 2], as well as to cope with the conservation of
multiple invariants [5, 11, 13]. As said above, we refer to the monograph [6] for a comprehensive introduction to this
subject.

Let us then consider a Hamiltonian ODE problem,

ẏ = J∇H(y) ≡ f (y), y(0) = y0 ∈ R
2m, J =

(
Im

−Im

)
,



with H(y) the Hamiltonian function. Since the integrator we are going to describe is a one-step method, it is enough
to skecth the first integration step, from t0 = 0 to t1 = h, where h is the timestep. We look for a polynomial
approximation σ, having degree s, such that:

σ(0) = y0, σ(h) =: y1 ≈ y(h), H(y1) = H(y0).

By considering the expansion

σ̇(ch) =

s−1∑
j=0

P j(c)γ j, c ∈ [0, 1],

along the orthonormal Legendre polynomials basis {P j} j≥0 on [0, 1] (i.e.,
∫ 1

0 Pi(x)P j(x)dx = δi j, the Kronecker delta),
one obtains:

σ(ch) = y0 + h
s−1∑
j=0

∫ c

0
P j(x)dx γ j, c ∈ [0, 1], y1 ≡ σ(h) = y0 + hγ0,

and, by using a corresponding line integral,

H(y1) − H(y0) ≡ H(σ(h)) − H(σ(0)) = h
∫ 1

0
∇H(σ(ch))>σ̇(ch)dc = h

s−1∑
j=0

[∫ 1

0
∇H(σ(ch))P j(c)dc

]>
γ j.

Energy conservation is then gained by setting

γ j := J
∫ 1

0
∇H(σ(ch))P j(c) dc ≡

∫ 1

0
f (σ(ch))P j(c) dc, j = 0, . . . , s − 1, (22)

due to the fact that J> = −J. In order to obtain a numerical method from (22), the involved integrals are approximated
by using a Gauss-Legendre formula based at the k Gauss-Legendre points c1, . . . , ck.7 In such a case, by setting Yi :=
σ(cih), i = 1, . . . , k, one obtains a k-stage Runge-Kutta method (with stages {Yi}), which is named k-stage Hamiltonian
Boundary Value Method of degree s, in short HBVM(k,s). By setting b = (b1, . . . , bk)> and c = (c1, . . . , ck)> the
vectors with the k Gauss-Legendre weights and abscissae, respectively, it is possible to see that the Butcher tableau of
a HBVM(k, s) method is given by

c IsP
>
s Ω

b>
, with Is =

(∫ ci

0
P j−1(x)dx

)
, Ps =

(
P j−1(ci)dx

)
∈ Rk×s, Ω = diag (b) ,

as well as to prove the following result [10].

Theorem 4 For all k ≥ s, a HBVM(k, s) method:

• has order 2s;
• when k = s it reduces to the s-stage Gauss collocation method;
• is energy-conserving for all polynomial Hamiltonians of degree not larger than 2k/s. For general and suffi-

ciently regular Hamiltonians, one obtains: H(y1) − H(y0) = O(h2k+1).

From the last point one easily realizes that energy conservation can always be obtained for polynomial Hamiltonians
while, for general ones, a practical energy-conservation be gained by choosing k large enough so that H(y1) − H(y0)
is within round-off errors. Moreover, this can be done by retaining a computational cost similar to that of the basic
s-stage Gauss collocation method (k = s), as one easily infers from the fact the the nonlinear system (22) has (block)
dimension s, independently of the number k of the Legendre points used for approximating the involved integrals (see
[8, 3] for more details).

It is worth mentioning that the implementation of HBVM(k, s) methods for solving both (11) and (19) can be
made very efficient, though we shall not consider this issue here (see [4], for the case of the semilinear wave equation).

7I.e., Pk(ci) = 0, i = 1, . . . , k, with Pk the k-th Legendre polynomial.



FIGURE 1. Soliton solutions of the sine-Gordon problem: kink-antikink (left); double pole (center); breather (right).

NUMERICAL TESTS

In this section we report a few numerical test, aimed at giving evidence of the fact that energy-conserving methods
may be more reliable than other methods (e.g., symplectic ones), for the numerical solution of Hamiltonian PDEs
such as (1) and (2). Let us consider, at first, the so called sine-Gordon equation, with periodic boundary conditions,

utt(x, t) = uxx(x, t) − sin(u(x, t)), (x, t) ∈ Ω ≡ [−20, 20] × [0,∞), (23)

possessing soliton solutions, when the initial conditions are prescribed as follows [4]:

u(x, 0) = 0, ut(x, 0) =
4
γ

sech
(

x
γ

)
, (24)

with γ a positive parameter. In particular:

• for 0 < γ < 1 one obtains a kink-antikink soliton (see the left plot in Fig. 1, for γ = 0.9999);
• for γ = 1 one obtains a double-pole soliton (see the plot at the center of Fig. 1);
• for γ > 1 one obtains a breather soliton (see the right plot in Fig. 1, for γ = 1.0001).

Moreover, it turns out that the Hamiltonian (5) is a decreasing function of the parameter γ (see the left plot in Fig. 2).
Consequently, energy-conservation could be an issue, when numerically solving problem (23)-(24) with γ = 1, since
nearby values of the Hamiltonian may produce a qualitatively wrong approximation.

We first solve the problem, in the case γ = 1, by means of the HBVM(2,2) method (i.e., the symplectic 2-stage
Gauss collocation method), by using the following parameters:

N = 100, m = 201, h = 0.3, nsteps = 3000, (25)

where N defines the dimension, 2N + 1, of the approximation space (15), m defines the number of points (16) used for
approximating the integrals, h is the timestep, and nsteps is the number of integration steps. In so doing, one obtains
an energy error of approximately 8 · 10−4 (its correct value is H0 = 16) and a momentum error of 3 · 10−14 (its correct
value is I0 = 0). However, the numerical energy turns out to be larger than the correct value H0, so that we obtain a
kink-antikink approximation to the solution, as is shown in the plot at the center of Fig. 2. On the contrary, by using
the HBVM(8,2) method, with the same parameters as in (25), the method turns out to be practically energy-conserving
(the maximum energy error is less than 2 · 10−14). Moreover, also the momentum error turns out to be very small (less
than 10−13), because of the symmetry of the solution, and the computed solution turns out to be correct, as is shown
in the plot on the right in Fig. 2.

Let us now consider the nonlinear Schrödinger equation (2), defined with the periodic boundary conditions (4)
on the same domain as in (23). In particular, we consider:

f (s) = 0.2526896 · s6, u0(x) =
1

cosh(x)
, v0(x) = 0,



FIGURE 2. Sine-Gordon problem: Hamiltonian versus the parameter γ (left); numerical solution, when γ = 1, computed by
HBVM(2,2) (center); numerical solution, when γ = 1, computed by HBVM(8,2) (right).

which produce a solution with a blow-up around t∗ ≈ 2, as it can be seen in the left plot of Fig. 3. The corresponding
Hamiltonian value is H0 ≈ 0.24, whereas the mass has a value M0 = 2. If we use the HBVM(10,2) method, with
parameters (their meaning being the same as in (25))

N = 100, m = 1001, h = 0.1, nsteps = 1000, (26)

then the numerical solution (correctly) blows-up after 20 integration steps, with an energy error of 2 · 10−16 and a
mass error 2 · 10−4. On the other hand, by using the (symplectic) HBVM(2,2) method with the same parameters as
in (26), one obtains an energy error 2 · 10−6 and a mass error 7 · 10−15 but, in this case, the numerical solution
doesn’t blow-up, as is shown in the plot on the right of Fig. 3. In fact, one may see that all the 1000 integration steps
are performed by the method. Consequently, even though the mass is conserved,8 nevertheless, the Hamiltonian error
is responsible for the wrong qualitative behavior of the numerical approximation.

CONCLUSIONS

From the numerical tests reported above, one concludes that energy-conserving methods may be more reliable than
other (e.g., symplectic) integrators, when solving Hamiltonian PDEs. Moreover, also the possibility of preserving
multiple conservation laws could be of interest (see, e.g., [19, 25]). In this respect, multiple invariants-conserving line
integral methods, such as those defined in [5, 13] , could be considered. However, in the case of the equations studied
here, where the additional invariants are quadratic, the methods described in [11] could be the best choice. For this
reason, their application to Hamiltonan PDEs, as well as their efficient implementation, will be the subject of future
investigations.
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