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Abstract
The frequency of natural hazards has been increasing in the last decades in Europe and

specifically in Mediterranean regions due to climate change. For example heavy precipita-

tion events can lead to disasters through the interaction with exposed and vulnerable peo-

ple and natural systems. It is therefore necessary a prevention planning to preserve human

health and to reduce economic losses. Prevention should mainly be carried out with more

adequate land management, also supported by the development of an appropriate risk pre-

diction tool based on weather forecasts. The main aim of this study is to investigate the rela-

tionship between weather types (WTs) and the frequency of floods and landslides that have

caused damage to properties, personal injuries, or deaths in the Italian regions over recent

decades. In particular, a specific risk index (WT-FLARI) for each WT was developed at

national and regional scale. This study has identified a specific risk index associated with

each weather type, calibrated for each Italian region and applicable to both annual and sea-

sonal levels. The risk index represents the seasonal and annual vulnerability of each Italian

region and indicates that additional preventive actions are necessary for some regions. The

results of this study represent a good starting point towards the development of a tool to

support policy-makers, local authorities and health agencies in planning actions, mainly in

the medium to long term, aimed at the weather damage reduction that represents an impor-

tant issue of the World Meteorological Organization mission.

Introduction
The frequency of natural hazards has been increasing in the last decades in Europe, and more
specifically in the Mediterranean regions, due to climate change [1, 2, 3, 4, 5, 6, 7]. Heavy pre-
cipitation events can lead to disasters through interaction between exposed and vulnerable
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people and the natural systems [8, 9, 10]. In particular, floods and landslides are considered
important natural disasters with significant effects in terms of the number of people affected
and the economic losses [11]. The impacts of floods and landslides are determined not just by
their magnitude, but also by human and societal choices related to infrastructures, behaviors
and other factors [12, 13, 14, 15, 16]. The immediate and direct impacts of these events on
human health include drowning, heart attacks, various injuries, and hypothermia. Further-
more, indirect impacts, such as infections, water-borne infectious diseases, mental health disor-
ders, respiratory diseases and allergies in both the medium and long term, should also be
considered as significant effects [17, 18, 19, 20, 21]. In Italy, it has been estimated that over
68% of the municipalities are at high hydrogeological risk [22] and in recent decades, intense
rainfall events have caused severe disruptions [23, 24].

In addition, the risk of natural disasters in Italy is still rising due to the increased population
density, progressive urbanization, abandonment of mountainous areas, unauthorized build-
ings, ongoing deforestation, and lack of maintenance of the slopes and waterways [25]. The
effects of floods and landslides are often underestimated because of the lack of an inventory
system and damage cataloging [26, 27]. Consequently, investigation of the historical effects of
these natural hazards is fundamental for the temporal reconstruction of the events and for
assessing their potential frequency and consequent effects [28, 29]. For this purpose, the
“Inventory of areas affected by landslides and floods in Italy Project” (AVI), commissioned by
the Department of Civil Protection and created by the National Research Council, has enabled
the development of a detailed Italian database of surveys and damage caused by landslides and
floods, from the early 1900s until today.

The increase in the frequency of these events calls for prevention planning to preserve
human health and reduce economic losses. Prevention should mainly be carried out with more
adequate land management, also supported by the development of an appropriate risk predic-
tion tool based on weather forecasts[30].

However, warnings for severe meteorological events potentially able to cause landslides and
floods are only issued a few hours before the event (now casting) or with 2–3 days' notice. This
is because weather forecast services only have high reliability in the short-medium term. None-
theless, the safety operation of major risk situations often requires several days or even weeks'
preparedness and a few days warning might not be sufficient.

Several innovative warning tools would therefore be very useful for this purpose. Seasonal
climate forecast models are used increasingly across a range of application sectors and could be
implemented in new procedures to support health prevention. These models have been devel-
oped from ensembles of integrations of numerical climate models [31] and offer good probabi-
listic reliability. Weather-circulation type (WT) classification could represent a useful tool for
improving the reliability of seasonal weather forecasts. The application of WT is a well-estab-
lished approach in synoptic and applied climatology, ranging from support for weather fore-
casting to climate model validations or downscaling [32, 33, 34, 35].

The main aim of this study is to investigate the relationship between WT and the frequency
of floods and landslides that have caused damage to properties, personal injuries, or deaths in
the Italian regions over recent decades. In addition, specific risk indexes (WT-FLARI) have
been developed for each WT at a national and regional scale.

The result of this work represent a good starting point towards the development of a tool to
support policy-makers, local authorities and health agencies in planning actions, mainly in the
medium to long term, aimed at the reduction of disasters. Disasters reduction represents an
important issue of the World Meteorological Organization mission [36]. Actions to be taken
on the eve on an emergency will nevertheless still predominantly managed through the use of
deterministic models able to better locate the phenomena, but in the medium to long term
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(months), the WT approach could instead make possible a better use of seasonal forecasts,
which, although in gradual improving, will unlikely be able to provide deterministic forecasts,
on the contrary could provide useful information on the prevailing WT.

Materials and Methods
The study was carried out with an analysis of the connection between atmospheric circulation
types and the damage caused by landslides and floods in Italy during the 1948–2003 period.
The analysis was based on the following datasets:

1. The NCEP/NCAR Reanalysis 1 (NCEP1) global grilled dataset [37, 38] was used to create a
national weather type classification for the investigated period, 1948–2003. The NCEP1
data, on 2.5°x2.5°, are available at http://www.cdc.noaa.gov/cdc/reanalysis.

2. A database of the most common weather and circulation types (WTs) in Europe by using
the cost733class software package to create, compare, visualize and evaluate weather and
circulation-type classifications [34,39]. Data sources are freely available at http://cost733.
met.no/. The NCEP reanalysis data were utilized on a latitude-longitude grid (30N-70N,
30W-30E) and then the Principal Component in T mode (PCT) was implemented, using a
geopotential height at 500htp [40, 41, 42, 43]. According to Philipp et al [34], there is no
clear statistical reason to prefer any of the classified methods of COST733 software package.
Consequently no new classification was created and implemented specifically for this study.
Therefore, we used an existing classification already applied both for operative-forecast pur-
pose (LAMMA-IBIMET) that for scientific study [34, 35]. The weather-type classification
was set to eight classes as representative of the main circulation types prevailing over the
Italian Peninsula (Fig 1, Table 1).

Fig 1. 500hPa geopotential height for each weather types (WT) classified by LAMMA-IBIMET for the period 1948–2011.

doi:10.1371/journal.pone.0144468.g001
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3. A database of landslide and flood events that caused damage created by the National Group
for Prevention of Hydrological Hazards (GNDCI) of the National Research Council (CNR)
with regard to the AVI Project commissioned by the Department of Civil Protection. The
AVI Inventory is a homogeneous and updated archive with a detailed spatial representation
of landslides and floods. This is an important tool for hazard-risk analysis and land-use
planning. In particular, landslides and floods that caused damage from the early 1900s until
today were collected and organized. Furthermore, within this study, the “Inventory of Land-
slide Phenomena in Italy” [44] was taken into account. However, in this study only years
with more reliable data starting from late forties were considered (http://avi.gndci.cnr.it/
welcome_en.htm). All data used in this work are available on https://github.com/
meteosalute/weather_landslide.

Flood and landslide events were organized and processed separately for each region, in
order to obtain a detailed overview of the number of events per day from 1948 to 2003. There-
fore, a comprehensive database for each Italian region was created on a daily basis including
the occurrence of WTs and of landslide/flood events which then were aggregated on a seasonal
and annual basis and expressed as relative frequency for each WT.

A non-parametric test [45] was used to compare the number of events for each WT between
seasons in the period 1948–2003.

These events together with exposure and vulnerability layers, represented by the population
density (inhabitants per km2), river surface (km) and non-plain surface (km2) were used as
input data to create a specific WT-related Flood and LAndslide Risk Index (WT-FLARI) cali-
brated at both annual and seasonal level.

The study design focused on “Crichton’s Risk Triangle” hazard-risk assessment methodol-
ogy [46] developed in the field of the ASCCUE (Adaptation Strategies for Climate Change in
the Urban Environment) project. The workflow of the hazard risk analysis employed to
develop the final mapping of the WT-FLARI is shown (Fig 2).

Table 1. The most commonWeather Types (WT) in Europe and prevailing circulation in Italy.

WT
number

Characteristics of circulation

1 Marked northward expansion of the Azores anticyclone with blocked anticyclonic circulation
over the North Atlantic and northerly winds over Italy

2 Moderate northward expansion of the Azores anticyclone with cyclonic circulation over south
Scandinavia and north-westerly winds over Italy

3 Marked cyclonic circulation over Iceland with anticyclonic circulation over northern central
Europe accompanied with increased precipitation over Italy, generated by intermittent Atlantic
perturbations

4 Cyclonic circulation over the North Atlantic and cyclonic circulation over west Mediterranean
Europe and central Mediterranean Europe with decreased precipitations over central
Mediterranean Europe

5 Cyclonic circulation over the north-west Atlantic with marked anticyclonic circulation over west
Mediterranean Europe and central Mediterranean Europe, inducing warm and dry conditions
over Italy

6 Anticyclonic circulation over Iceland and cyclonic circulation over central Europe, with higher
precipitation over Tuscany by intrusions of artic and polar continental air

7 South westerly flow over the North Atlantic with ridging over the British Isles towards
Scandinavia, with easterly wind over central Mediterranean Europe resulting in very cold dry
conditions

8 Cyclonic circulation over west Europe with a ridge over the eastern Mediterranean

doi:10.1371/journal.pone.0144468.t001

Floods and Landslides Risk in Italian Regions

PLOS ONE | DOI:10.1371/journal.pone.0144468 December 29, 2015 4 / 17

http://avi.gndci.cnr.it/welcome_en.htm
http://avi.gndci.cnr.it/welcome_en.htm
https://github.com/meteosalute/weather_landslide
https://github.com/meteosalute/weather_landslide


The risk concept is represented by harmful consequences on human health and the territory
resulting from the interaction between three components that form a triangle: hazard, expo-
sure, and vulnerability. The risk is defined as a function of these three components.

More specifically, a normalization procedure, followed by a weighted-layer combining pro-
cedure was applied for each Italian region. By means of the normalization procedure events
occurrence, exposure and vulnerability layers were rescaled from 0 to 1. The following step was
the combination of the normalized layers through a weighting procedure. The exposure and
vulnerability layers, (Table 2), were renormalized in a single “exposed and vulnerable layer”
where each variable was weighted at 33.3%.

Following, the “exposed and vulnerable” layer (weighted at 25%) was combined with the
event layer (weighted at 75%) to obtain the final WT-FLARI varying between 0 and 1 (Fig 2).
The final annual and seasonal mapping visualization of RI was carried out via identification of
specific thresholds indicating the actual ongoing risk. The threshold identification was per-
formed using quantiles, with particular reference to the values over 90% [47]:

Fig 2. Work-flow of theWeather Type-related Floods and Landslides Risk Index (WT-FLARI) assessment.

doi:10.1371/journal.pone.0144468.g002
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• very high risk (RI> 99%)

• high risk (95%<RI< 99%)

• medium risk (90%<RI< 95%)

• low risk (RI< 90%).

Extreme-value statistics describe the probabilities associated with a quantity exceeding a
given threshold value according to a Poisson distribution [48, 49, 50, 51].

The thresholds were only identified for the annual risk index and then applied to a seasonal
level instead, in order to obtain a risk assessment that also considered the weight given to each
WT in each season.

Results

Weather type distributions
The weather configuration characterized by the presence of the Azores High Pressure over the
Mediterranean Basin (WT5) showed the highest annual WT frequency (25%, Table 3), fol-
lowed by WT2 (22%) characterized by partial displacement of the Azores High Pressure to
Northern Atlantic Ocean resulting in the flow of maritime polar air masses towards Central
Europe and partly in the Mediterranean basin.

Annual frequencies ranging from 9% to 12% were observed whenWT1, WT3, WT4, WT7
andWT8 were considered. The weather configuration characterized by a large high pressure
block in Northern Europe and the Atlantic Ocean with cold air masses in Mediterranean Basin
and Central Europe (WT6) showed the lowest frequency with very few cases (18) during the
period studied. The predominance of WT2 and WT5 was also confirmed in all seasons
(Table 3), with frequencies often greater than 20%. In addition, other high frequencies were
also observed for the subtropical high pressure (WT4) in summer (14%) and spring (15%), and
for WT1 andWT3 in winter (13%) and autumn (11%) respectively.

Table 2. Population density, river surface and non-plain surface for each Italian Region.

Country Population density (Pop. per km2) River surface(km) Non-plain surface (km2)

Abruzzo 121 4671 10831

Basilicata 57 5550 9267

Calabria 129 9504 15221

Campania 422 6147 11675

Emilia Romagna 195 10587 11720

Friuli Venezia Giulia 155 4005 4866

Lazio 322 9464 13803

Liguria 289 3943 5416

Lombardia 410 10289 12623

Marche 164 5594 9401

Molise 70 2414 4460

Piemonte 172 15077 18684

Puglia 207 4395 9145

Sardegna 68 15104 19641

Sicilia 194 11122 22164

Toscana 161 15098 21056

Trentino Alto Adige 76 7355 13605

Umbria 105 5214 8464

Veneto 265 7553 8025

doi:10.1371/journal.pone.0144468.t002
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WT- related flood and landslide events
Almost half the flood and landslide events occurred in autumn (49%) followed by winter
(22%), summer (15%) and springer (14).

A statistical analysis (kruskal wallis test) showed that the weather type significantly discrim-
inate the frequency of events in each season (Autumn P<0.001, Summer P<0.001, Winter
P<0.001, Spring P<0.01). In particular WT8 is the weather type that has the highest frequen-
cies in each season (data not shown).

No significant seasonal events variations were observed whenWT1 and the rare WT6 were
considered (Table 3). However, in these weather conditions the highest frequency of events
was observed in winter.

The other WTs always showed significantly higher values in autumn than the other seasons
(Table 3). Other significant variations were also observed in winter with significantly higher
values than spring and summer when WT2 andWT3 occurred.

In particular, WT8 showed the highest frequency during autumn (34% of autumnal fre-
quencies of events), summer (29%) and spring (22%). During winter the highest frequency was
observed whenWT2 (23%) occurred, followed by WT8 (18%). Other high frequencies (>15%
of seasonal frequencies) were observed in summer for WT5 (22%) andWT2 (21%); in autumn
for WT5 (19%) and WT4 (15%); in spring for WT2 (19%) andWT5 (18%).

Several WTs caused damage, especially in northern Italy, while others occurred in central
and southern regions (Table 4).

For example, WT8 caused a greater number of events in central and northern Italian regions,
particularly Lombardy, Piedmont and Lazio, as well as Campania. Conversely, WT6 andWT7
determined effects, especially in Abruzzo, Calabria, Campania, Apulia, Sardinia and Sicily. Cam-
pania showed the highest frequency of flood and landslide events when almost all WTs occurred,
with the exception ofWT6 andWT8, where the records were held by Calabria and Lombardy
respectively. The region which showed the lowest frequency of events for eachWTs was Molise.

Exposure and vulnerability layer distributions
Among all regions, Liguria had the highest values of Exposed and Vulnerable Layers (Fig 3),
especially due to non-plain surface and the high number of rivers in relation to regional sur-
face. Even Campania showed very high values determined primarily by the high population

Table 3. Seasonal distribution of weather types and flood and landslide events from 1948 to 2003.

WT1 WT2 WT3 WT4 WT5 WT6 WT7 WT8

WT Frequency 10% 22% 11% 12% 25% 0% 11% 9%

N. E N. E N. E N. E N. E N. E N. E N. E

Season

A 506 27 960 158 574 150 511 219 1601 285 1 0 458 123 480 504

Sp 613 27 989 76 584 37 782 45 958 71 2 0 565 60 659 90

Su 272 25 1381 97 626 29 730 29 1199 100 0 0 601 50 343 136

W 675 70 1073 156 538 83 489 72 1309 99 15 2 550 63 383 119

ANOVASig. E p<0.01 p<0.001 p<0.001 p<0.001 p<0.001 p = 0.905 p<0.01 p<0.001

WT = Weather Type; N = the specific WT frequency; E = number of events related to a specific WT; Su = summer; A = autumn; W = winter; Sp = spring;

p = a non parametric method of the analysis of variances [45] was used to compare the number of events for each WT between season.

doi:10.1371/journal.pone.0144468.t003
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density. The lowest values were in Apulia, Veneto, Emilia Romagna and Friuli Venezia Giulia
where the contribution of the non-plain surface is very low.

The annual WT-related flood and landslide Risk Index
TheWT8 is the most dangerous meteorological configuration at an annual Italian level (Fig 4).

Piedmont and Lombardy are the regions that reached the “very high”WT-FLARI level (red
in Fig 4), followed by Tuscany, Campania and Veneto, which showed the “high” risk level
(orange in Fig 4). A “moderate” risk level was observed in Lazio, Trentino Alto Adige and Friuli
Venezia Giulia (yellow in Fig 4).

WT2, WT3 and WT5 only showed a “moderate” risk level in Campania.
WT4 determined a “high” risk level in Piedmont, while the risk level was “moderate” in

Lombardy. Conversely, WT4 showed a “low” risk level for all central and southern Italian
regions which were generally protected by high pressure whenever WT4 occurred.

The very rare WT6 had the greatest effects on southern Italian regions. A “high” risk level
(Fig 4) was observed in the Marche and Calabria, which are more exposed to the eastern air-
flow that often determines a low depression between the Adriatic Sea and the Ionian Sea. On
the other hand, there were no risk conditions for WT1 andWT7, which were also characterized
by a predominant Eastern circulation.

Seasonal WT-related flood and landslide Risk Index
Varying seasonal WT-FLARI patterns were recorded. In autumn (Fig 5), the hazardous risk
levels (“Very High” and “High”), which were always associated with WT8 andWT4, prevailed
in the northern regions.

Table 4. Percentage of events for each region and for eachWTs.

Region WT1 WT2 WT3 WT4 WT5 WT6 WT7 WT8

Abruzzo 0.24 0.16 0.17 0.08 0.14 5.56 0.46 0.32

Basilicata 0.29 0.48 0.56 0.36 0.39 0 0.60 0.21

Calabria 0.39 0.34 0.65 0.24 0.45 5.56 0.64 0.16

Campania 0.92 1.79 1.68 1.15 1.44 0 1.20 2.31

Emilia Romagna 0.15 0.27 0.30 0.28 0.18 0 0.32 0.86

Friuli Venezia Giulia 0.15 0.32 0.39 0.12 0.10 0 0.18 0.97

Lazio 0.44 0.77 0.43 0.84 0.45 0 0.60 1.77

Liguria 0.29 0.23 0.60 0.84 0.26 0 0.09 1.23

Lombardy 0.05 0.48 0.65 1.07 0.49 0 0.23 2.68

Marche 0.24 0.20 0.17 0.08 0.20 0 0.51 0.38

Molise 0.05 0.07 0.04 0.04 0.06 0 0.05 0.11

Piedmont 0.10 0.27 0.60 0.64 0.47 0 0.37 2.47

Puglia 0.63 0.36 0.43 0.24 0.53 0 0.78 0.59

Sardinia 0.44 0.64 1.12 0.56 0.79 0 0.78 1.39

Sicily 0.73 0.36 0.39 0.44 0.49 0 1.01 0.64

Toscany 0.34 0.61 0.69 0.52 0.28 0 0.37 1.34

Trentino Alto Adige 0.24 0.55 0.47 0.32 0.28 0 0.32 1.45

Umbria 0.44 0.45 0.13 0.12 0.12 0 0.18 0.54

Veneto 0.34 0.59 0.43 0.28 0.28 0 041 1.45

doi:10.1371/journal.pone.0144468.t004
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In particular, the most dangerous risk level was concentrated in the north (Lombardy and
Veneto) and one central region (Tuscany) for WT8, and in the northwest (Lombardy) for
WT4.

The “High” risk was only observed in northern regions when WT8 occurred. The “Moder-
ate” risk was prevalently observed in the northeast and associated with WT8, and in one south-
ern region (Campania) for WT8 and WT2. “Moderate” risk was also observed in several
northern regions (Liguria and Lombardy) when WT4 and WT3 occurred.

In spring (Fig 6), the most dangerous risk level only affected one northwestern region (Lom-
bardy) when WT8 occurred. Conversely, the “High” risk level only occurred in southern
regions, especially Campania when WT2, WT3, WT4, WT5, WT6 occurred, while for Molise
was only associated with WT7. The “Moderate” risk for northern regions was only associated
with WT8 (Liguria and Piedmont) andWT4 (Liguria), in central regions with WT8 (Tuscany

Fig 3. Incidence of normalized features for each Italian region.

doi:10.1371/journal.pone.0144468.g003
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and Lazio) andWT3 (Tuscany), and in southern regions with WT1 and WT8 (Campania) and
WT7 (Campania and Sicily).

In summer (not shown), the risk was strongly downsized and localized because the per-
turbed Atlantic flow generally affected northern and central Europe and only occasionally
Italy, above all, the northwestern regions. In particular, the “very high” risk level was only
observed in Piedmont and associated with WT8. No “High” risk was observed, while the
“Moderate” only involved one central region (Tuscany) when WT1 occurred.

In winter (Fig 7), the most dangerous risk level was recorded in central and southern Italian
regions when WT6 and WT8 occurred. In particular, the “Very High” risk level was associated
with WT6 in Abruzzo and Calabria and with WT8 in Campania. The “High” risk was observed
in one central region (Lazio) with WT8 and in one southern region (Campania) with WT2,
WT3, WT4 and WT5. The “Moderate” risk was observed in northern regions associated with
WT4 (Liguria and Lombardy) and WT8 (Veneto); in central regions with WT2 (Lazio), WT7
andWT8 (Marche), and in one southern region (Sardinia) with WT8.

Fig 4. Mapping of the annual WT-related Floods and LAndslides Risk Index (WT-FLARI).WT (Weather Type). WT-FLARI levels: red = Very High
(WT-FLARI > 99th perc.); orange = High (95th perc. >WT-FLARI > 99th perc.); yellow = Moderate (95th perc. >WT-FLARI > 90th perc.); white = Low
(WT-FLARI < 90th perc.)

doi:10.1371/journal.pone.0144468.g004
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Discussion
The main finding of this study is that the weather type that generally determines more per-
turbed flows on the Italian peninsula (WT8) is associated with the highest impact in terms of
damage. The greatest effects were observed during autumn, when WT8 determined a deepen-
ing of a low depression over the Gulf of Genoa with abundant rainfall in northern Italian areas.
However, other weather patterns might also have important effects with variations among sea-
sons and regions. In particular, this study revealed that the effects of each WT on a heteroge-
neous country such as Italy differ greatly between the northern and southern regions. The
effects can even be very different between neighboring regions.

For example, in the winter period, the meteorological configurations that determined a cold
easterly or north easterly flows generated rainfall primarily in the central and southern regions
due to being the sites of contrast between cold air masses from the northern latitudes and
warmer Mediterranean air [52, 53, 54]. For this reason, central and southern regions in

Fig 5. Mapping of the autumnWT-related Floods and LAndslides Risk Index (WT-FLARI).WT (Weather Type). WT-FLARI levels: red = Very High
(WT-FLARI > 99th perc.); orange = High (95th perc. >WT-FLARI > 99th perc.); yellow = Moderate (95th perc. >WT-FLARI > 90th perc.); white = Low
(WT-FLARI < 90th perc.)

doi:10.1371/journal.pone.0144468.g005
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particular, experienced WT-FLARI from moderate to very high risk levels. Conversely, the
northern regions, despite with lower temperatures, were not affected by heavy rainfall and
hence the level of risk is generally very low.

During the warm season, Italy is mainly affected by stable configurations of Azorean or
African High Pressure. Moreover, in summer, but also during the intermediate seasons, the
increased latent energy generated by high levels of solar radiation is potentially capable of gen-
erating strong convective precipitation even with a slight geopotential decrease [55, 56, 57].
Consequently, apparently unexpected risk conditions may be generated. This explains the
occurrence of dangerous events during weather patterns characterized by high pressure. For
example, weather types 4 and 5, although characterized by Azorean or subtropical high pres-
sure in the Mediterranean basin, determined high risk conditions in some northern Italian
regions during the autumn, even though few atmospheric disturbances were present.

Nevertheless, this article highlights the fact that the contribution of the “Exposure and Vul-
nerability layers” is essential for risk calculation. In regions where there is a high population

Fig 6. Mapping of the springWT-related Floods and LAndslides Risk Index (WT-FLARI).WT (Weather Type). WT-FLARI levels: red = Very High
(WT-FLARI > 99th perc.); orange = High (95th perc. >WT-FLARI > 99th perc.); yellow = Moderate (95th perc. >WT-FLARI > 90th perc.); white = Low
(WT-FLARI < 90th perc.)

doi:10.1371/journal.pone.0144468.g006
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density, a large number of rivers and little flat territory, the basic risk is generally higher. Cam-
pania is the most striking case, and in spring and winter, WT-FLARI is high for most weather
types. The highest risk observed in Campania was mainly due to the great vulnerability of the
territory and the high population density.

It must also be noted that this work has some limitations. In fact, the risk index was calcu-
lated according to the weather type for the event (E) day. However, the occurrence of floods or
landslides was influenced by the weather conditions occurring on the days immediately preced-
ing the event that caused the damage. Consequently, particularly prolonged rainy periods are
often an aggravating factor [58, 59, 60] because pre-existing wet ground causes an increased
risk of landslides. Moreover, river floods are also caused more frequently by prolonged rainy
periods [61].

Further research will also study the weather types in a time lag of a few days prior to the
event. This will ensure greater accuracy in calculating the risk index that will also take the per-
sistence of the weather type into account. With the increasing reliability of seasonal forecasts,

Fig 7. Mapping of the winter WT-related Floods and LAndslides Risk Index (WT-FLARI).WT (Weather Type). WT-FLARI levels: red = Very High
(WT-FLARI > 99th perc.); orange = High (95th perc. >WT-FLARI > 99th perc.); yellow = Moderate (95th perc. >WT-FLARI > 90th perc.); white = Low
(WT-FLARI < 90th perc.)

doi:10.1371/journal.pone.0144468.g007
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further calibration of WT-FLARI could allow for obtaining a very useful tool for preventing, or
attempting to reduce, the impact of extreme rainfall events that are becoming more and more
frequent [7, 62].

The World Health Organization (WHO), World Meteorological Organization (WMO),
European Commission (EC), European Environmental Agency (EEA) and other important
organizations encourage the development and evaluation of more effective and efficient inter-
ventions, such as early warning systems and in general, adaptation strategies to reduce negative
impacts [3, 63, 64, 65, 66, 67, 68].

Conclusions
In recent decades, the number of natural disasters caused by weather events has increased with
great economic losses and a large number of deaths. For example, between 2002 and 2014
there were 293 deaths in Italy and in 2013 alone, a total of 351 landslide and flood events were
recorded [22].

This study has identified a specific risk index associated with each weather type, calibrated
for each Italian region and applicable to both annual and seasonal levels. The risk index repre-
sents the seasonal and annual vulnerability of each Italian region and indicates that additional
preventive actions are necessary for some regions.

The result of this work represent a good starting point towards the development of a tool to
support policy-makers, local authorities and health agencies in planning actions, mainly in the
medium to long term, aimed at the reduction of disasters. Disasters reduction represents an
important issue of the World Meteorological Organization mission [36]. Actions to be taken
on the eve on an emergency will nevertheless still predominantly managed through the use of
deterministic models able to better locate the phenomena, but in the medium to long term
(months), the WT approach could instead make possible a better use of seasonal forecasts,
which, although in gradual improving, will unlikely be able to provide deterministic forecasts,
on the contrary could provide useful information on the prevailing WT. It is still necessary to
reiterate that the basis of a proper land policy remains the prevention to be made in the very
long term (years) taking into account the changing climate and the need to adapt infrastruc-
tures and behaviors in order to prevent the occurrence of disasters. However, this index is in
the experimental stage and it doesn’t take into account the man made environmental change
(for example land use, overbuilding, river flow, etc). Further investigations are required con-
cerning the choice of "exposure and vulnerability layers" that could impact on the results.
WT-FLARI will be further tested and calibrated, specifically to consider a time lag during the
days immediately preceding the catastrophic event. It would also be interesting to investigate
the frequency of the events and how the weather types have changed over past decades.
Changes in weather patterns will be one of the principal effects of climate change and may also
give rise to a different frequency of extreme weather events.
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