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ABSTRACT

We present numerical simulations of the solar wind using a fully kinetic model which takes into account the
effects of particle’s binary collisions in a quasi-neutral plasma in spherical expansion. Starting from an isotropic
Maxwellian velocity distribution function for the electrons, we show that the combined effect of expansion and
Coulomb collisions leads to the formation of two populations: a collision-dominated cold and dense population
almost isotropic in velocity space and a weakly collisional, tenuous field-aligned and antisunward drifting population
generated by mirror force focusing in the radially decreasing magnetic field. The relative weights and drift velocities
for the two populations observed in our simulations are in excellent agreement with the relative weights and drift
velocities for both core and strahl populations observed in the real solar wind. The radial evolution of the main
moments of the electron velocity distribution function is in the range observed in the solar wind. The electron
temperature anisotropy with respect to the magnetic field direction is found to be related to the ratio between
the collisional time and the solar wind expansion time. Even though collisions are found to shape the electron
velocity distributions and regulate the properties of the strahl, it is found that the heat flux is conveniently described
by a collisionless model where a fraction of the electron thermal energy is advected at the solar wind speed.
This reinforces the currently largely admitted fact that collisions in the solar wind are clearly insufficient to force
the electron heat flux obey the classical Spitzer–Härm expression where heat flux and temperature gradient are
proportional to each other. The presented results show that the electron dynamics in the solar wind cannot be
understood without considering the role of collisions.
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1. INTRODUCTION

The solar wind is a low density, weakly collisional plasma.
The electron mean free path at 1 AU is of the order of 108 km,
comparable to the characteristic large scale variations of macro-
scopic quantities such as density, temperature, and pressure.
Under such circumstances, it is not surprising that the elec-
tron velocity distribution function (eVDF) is far from the
Maxwell–Boltzmann distribution function of a gas at thermo-
dynamical equilibrium. The typical eVDF observed in the solar
wind is mostly the superposition of a quasi-isotropic “core,” an
extended “halo” at energies beyond about 100 eV, and a narrow
“strahl” aligned with the magnetic field and displaced in the
antisunward direction with respect to the core at energies larger
than about 50 eV(Feldman et al. 1975; Rosenbauer et al. 1977;
Pilipp et al. 1987).

The characteristics of the eVDF have been modeled in dif-
ferent ways over the years. For example, Feldman et al. (1975,
1978a) and Pilipp et al. (1987) described the eVDF using es-
sentially a drifting (with respect the bulk speed) bi-Maxwellian
distribution function for the low-energy part of the eVDF (the
“core”) and another drifting bi-Maxwellian component for the
high-energy tails (the “hot” or the “halo” component). A differ-
ent approach has been followed by Maksimovic et al. (1997b)
who used Lorentzian (or Kappa) distribution functions to fit the
three-dimensional eVDF measured with the Ulysses spacecraft,
averaged over all directions. Maksimovic et al. (2005) reduced
the eVDF to a non-drifting bi-Maxwellian for the core, a non-
drifting Kappa distribution function for the halo, and the “strahl”
being defined as the residual population in the observed distri-
bution. In a similar way, Štverák et al. (2008) analyzed several

properties of the eVDF obtained by instruments on board Helios,
Cluster, and Ulysses. More recently, Štverák et al. (2009) added
to the model used by Maksimovic et al. (2005) and Štverák
et al. (2008) a truncated and drifting Lorentzian distribution to
better represent the observed macroscopic characteristics of the
“strahl” component. In a similar way, Feldman et al. (1982) and
Phillips & Gosling (1990) used a Lorentzian distribution for
the halo, a model for the strahl, and modeled the residual part
(the cold or core component) using a bi-Maxwellian distribution
function.

Several attempts have been made to asses the radial elec-
tron temperature gradient. The logarithmic slopes of the total
electron temperature βe as well as the power-law indices of
the core and halo populations, βc and βh, respectively, have
been estimated in the past using several instruments and meth-
ods, giving rise to a large spread in their estimations: while
Montgomery et al. (1968), using Vela 4 data, found βe in the
range [−0.4,−0.2], subsequent measurements with Interplan-
etary Monitoring Platform (IMP; Feldman et al. 1978b), Helios
(Rosenbauer et al. 1977; Marsch et al. 1989; Pilipp et al. 1990),
and Ulysses spacecrafts (Maksimovic et al. 2000), found that
the radial gradient was generally steeper than βe = −2/7 pre-
dicted for a collisional heat flux dominated model (Hartle &
Sturrock 1968), but flatter than the adiabatic value βe = −4/3.
Helios data showed slopes in the range [−0.7,−0.25] (Marsch
et al. 1989; Pilipp et al. 1990) depending on the kind of solar
wind considered with a less steep gradient for fast streams. On
the contrary, out-of-ecliptic Ulysses data during solar minimum
gave slopes around [−0.9,−0.8] (Maksimovic et al. 2000).
Combining Helios and Ulysses data, Maksimovic et al. (2005)
showed that the electron gradient power-law index can be in the
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range [−0.9,−0.6]. Also, the core electron temperature gradi-
ent shows a large spread estimation. Slopes of about βc = −0.35
were found using Mariner 10 and Voyager 2 data (Ogilvie &
Scudder 1978; Sittler & Scudder 1980; Sittler et al. 1981). A
steeper gradient with slopes around [−0.9,−0.6] has been ob-
tained using IMP and Mariner 10 (Feldman et al. 1979), Helios
(Pilipp et al. 1990), and Ulysses (Scime et al. 1994; Phillips
et al. 1995a; Issautier et al. 1998; Maksimovic et al. 2000) data.
For the halo population, observations typically showed flatter
gradients than the core with power-law index βh in the range
[−0.45,−0.25] (Scime et al. 1994; Phillips et al. 1995b;
Maksimovic et al. 2000).

The solar wind electron heat flux is an important ingredi-
ent in the regulation of the expansion of the solar corona.
Early measurements (e.g., Montgomery et al. 1968) found a
qualitative agreement between the measured and the classical
Spitzer–Härm collision-dominated electron heat flux (Spitzer
& Härm 1953). On the other hand, more recent observations
at 1 AU using IMP 6, 7, and 8 spacecraft data (Feldman et al.
1975, 1976a, 1976b) and at 0.3 to 1 AU using Helios 1 and 2
data (Pilipp et al. 1987, 1990) indicate strong departure from
the Spitzer–Härm value. These studies also show that in un-
perturbed fast streams, the heat flux is mainly carried by the
high-energy field aligned electron population (e.g., Feldman
et al. 1975). A more extensive study of the electron heat flux
has been reported by Salem et al. (2003), who show that there is
no clear correlation between heat flux strength and solar wind
speed at 1 AU, whereas a correlation between the heat flux
strength and the so-called collisional age could be established.
Salem et al. (2003) also found that the Spitzer–Härm heat flux
is an upper limit for the measured electron heat flux at 1 AU;
this is probably a coincidence rather than the consequence of
some sort of regulating mechanism. Scime et al. (1994) have
analyzed the radial gradients of the electron heat flux from 1
to 5 AU using the three-dimensional spectrometer on Ulysses.
They found that the radial decrease can be expressed in terms of
a power law with exponent γ = −2.8 for the global data set and
a somewhat steeper gradient, γ = −3.0, when averaging over
a solar rotation. The radial decrease of the electron heat flux is
consistent with the local deposition of heat required to compen-
sate for the non-adiabatic cooling of the electrons. The observed
electron heat flux cannot be expressed in terms of the classical
Spitzer–Härm expression even within the frame of a two-fluid
model (electrons and protons; Cuperman et al. 1988). By fitting
the electron velocity distributions observed in the solar wind
with a bi-Maxwellian (core + drifting halo) velocity distribution
function, Feldman et al. (1975) show that the electron heat flux
is mainly carried by the halo population. The radial trend was
observed to be consistent with a theoretical interpretation where
the whistler heat flux instability reduces the halo–core relative
drift velocity for solar wind conditions above the instability
threshold (Gary et al. 1994). Scime et al. (1999) have shown
that in the high latitude solar wind observed by Ulysses the heat
flux component parallel to the magnetic field decreases as r−2.9

with no clear correlation with the heliographic latitude or the
solar wind speed. Similar results have been reported by Scime
et al. (2001) using long term measurements of the electron heat
flux from Ulysses.

From a theoretical point of view, the evolution of the eVDF,
and its role in accelerating the solar wind, has been investigated
using the collisionless (exospheric) approach. The earliest at-
tempts (Jockers 1970; Lemaire & Scherer 1971) were based
on the assumption of isotropic Maxwellians while more recent

works (Maksimovic et al. 1997a; Lamy et al. 2003; Zouganelis
et al. 2004) treated the case of non-thermal distributions with
an excess of high-energy particles. The consequences of ne-
glecting collisions in exospheric models have been investigated
by Zouganelis et al. (2005) by comparing exospheric calcula-
tions with kinetic simulations, including Coulomb-like colli-
sions (e.g., Landi & Pantellini 2003). The bottom line of the
comparison is that even though electron collisions are rare in
the solar wind, it appears that they play a role in fine shaping the
eVDF and, as consequence, in regulating the radial evolution of
macroscopic quantities.

The main objective of the present work is to investigate
the effect of electron–electron and electron–proton collisions
in shaping the eVDF in a radially supersonic expanding plasma.
Despite the Knudsen number (the ratio between the mean-free
path and the gradient scales of macroscopic quantities like the
density or the temperature) in the supersonic solar wind being
of the order of unity for both electrons and protons, the latter
are much less affected by collisions than the former. The reason
is that the solar wind is supersonic for protons and subsonic
for electrons. Under such circumstances the relative position
between protons is dominated by the expansion velocity which
systematically increases the inter-particle distance, rather than
by the thermal motion which has no systematic effect on the
relative position between particles. Indeed, correlations between
the shape of the eVDF and the ratio between the collisional time
and expansion time, the so-called collisional age, have been
shown to exist in the solar wind (Salem et al. 2003; Štverák
et al. 2008).

Previous works have already discussed the effect of collisions
on the properties of the solar wind electrons. Phillips & Gosling
(1990) have analyzed, within a fluid framework, the effect of
Coulomb collisions in regulating the temperature anisotropy,
showing that Coulomb collision can account for the temperature
anisotropy observed at 1 AU. Using a test-particle approach,
Lie-Svendsen et al. (1997) and Lie-Svendsen & Leer (2000)
were able to reproduce the high-energy tails observed in the
eVDF. In their model, however, the macroscopic characteristics
of the background plasma were computed from fluid models. A
similar approach, where the background plasma is now obtained
from exospheric models, has been used by Pierrard et al. (1999)
to study the formation of high-energy suprathermal tails in the
eVDF, as observed at 1 AU concluding that, in absence of
waves, Coulomb collisions and external forces are unable to
account for the formation of these tails which must be present
in the corona. With the same model, Pierrard et al. (2001b)
studied the eVDF evolution between 2 and 14 solar radii, a
region where the Knudsen number is significantly less than
unity. More recently, an analogous approach, using a linearized
Fokker–Planck operator, has been used by Smith et al. (2012) to
follow the eVDF evolution in the acceleration region of the fast
wind: although the region is characterized by a Knudsen number
substantially less than unity, they observe a discrepancy between
the computed heat flux and the classical Spitzer–Härm formula
which is consistent with what already observed by Landi &
Pantellini (2003) with the kinetic approach used also in the
present paper.

The work we present in this paper follows a fully kinetic
approach using a model already used to study the heat flux
properties in the low solar corona and the acceleration prop-
erties of a supersonic wind driven only by collisions and the
neutralizing electric field (Landi & Pantellini 2001, 2003).
The model is essentially stationary and neglects wave particle
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interactions, excluding the effects of plasma heating through
wave energy dissipation. The model can nevertheless provide
clues on how the radial expansion and collisions both shape the
eVDF and the macroscopic fluid quantities throughout the he-
liosphere. Mainly because of the non-inclusion of the effect of
waves in the model, but also because of numerical constraints,
we restrict our investigation to the interval from 0.3 to either 3
or 6 AU where the solar wind has already reached its supersonic
cruise velocity. The paper is organized as follows: in Sections 2
and 3, we give details on the numerical model and the setup
conditions of the simulations. The simulation results are pre-
sented in Section 4, and a discussion and conclusion are given
in Section 5.

2. THE MODEL

Details of the model have been given elsewhere (Pantellini
2000; Pantellini & Landi 2001; Landi & Pantellini 2001, 2003)
and will not be repeated here in full extent. We briefly recall the
basic features. The model is based on the numerical integration
of the one-dimensional motion of an equal number N of electrons
and protons allowed to move freely in the domain r0 < r < rmax.
Particles interact with the central gravitational field produced
by a star of mass M and the charge neutralizing electric field
E = E(r)r̂ , with r̂ = r/r . The system, including the particles,
is spherically symmetric so that the equations of motion for a
particle of mass m and charge q are simply

d2r

dt2
= − GM

r2
+

L2

m2r3
+

q

m
E(r), (1)

L ≡ mrv⊥ = constant, (2)

where G is the gravitational constant and L is the magnitude of
the angular momentum expressed in terms of the perpendicular
velocity v⊥ of the particle. According to the above equations,
particles may be interpreted as thin spherical shells, centered on
r = 0, rather than as point particles. In Equations (1) and (2), the
magnetic field does not appear explicitly. However, assuming a
radial magnetic field (a rough approximation of the Sun’s polar
magnetic field)

B = B0

( r0

r

)2
r̂ , (3)

no additional term has to be added in Equation (1) and
Equation (2) is equivalent to the conservation of the magnetic
moment μ ≡ mv2

⊥/2B, viz.,

d

dt

mv2
⊥

2B
= 1

2mB0r
2
0

dL2

dt
. (4)

The model must be regarded as pertinent for the high latitude
solar wind where the effects of the Sun’s rotation are negligible
and where the magnetic field lines are essentially radial. The
charge neutralizing electric field in Equation (1) is obtained in a
way similar to Landi & Pantellini (2001). The profile is adjusted
iteratively during the initialization phase until local charge
neutrality and zero current is obtained in all points of the system.
Collisions are introduced in the system according the following
rules. Two particles with relative absolute velocity u that happen
to be simultaneously located at the same radial distance r
perform an elastic collision with a probability Pαβ (u, r) =
Rαβ(u)r−2 where

Rαβ(u) =
{

1 if u < uαβ

(uαβ/u)4 otherwise, (5)

where the indices α and β refer to the species of the colliding par-
ticles (electron–electron, electron–proton, and proton–proton).
Thus, each time two particles meet, a random number p in the
range [0, 1] is drawn. If p � Rαβ a collision is performed, while
if p > Rαβ particles simply ignore each other. According to
Equation (5), a collision is systematically performed for any
two particles of species α and β meeting with relative velocity
less than uαβ . For larger velocities, the u−4 dependence of the
collision probability mimics the velocity dependence of the scat-
tering cross section for Coulomb collisions, whereas the r−2 de-
pendence accounts for the spherical geometry of the problem. In
the event of a collision, conservation of energy and momentum
do not suffice to specify the orientation of the post collision ve-
locities in the center-of-mass frame. In a fully three-dimensional
system, all directions are equivalent and the orientation of the
post collision velocities should be drawn uniformly over all
possible directions. In our one-dimensional model, the collision
frequency is highest for relative velocities along the radial direc-
tion and is essentially zero for relative velocities perpendicular
to the radial direction. We therefore choose the angle θ between
the radial direction and the post collision velocities of the par-
ticles in the center-of-mass frame according to θ = arccos

√
p,

where p is a random number uniformly distributed in the range
[0, 1]. With this particular choice, one ensures that the velocity
distributions are isotropic in the strongly collisional limit (see
chapter II.C in Pantellini 2000). Pantellini & Landi (2001) and
Landi & Pantellini (2001) have shown that using cutoff veloc-
ities uαβ of the order of, or smaller than, the typical relative
velocity between particles of species α and β, the transport
properties of such a plasma are very much the same as those of
a Fokker–Planck plasma.

The treatment of particles reaching one of the two boundaries
in the system is as follows. Each time a particle reaches the
lower boundary r = r0 it is re-injected back into the system at
r = r0, according to a specified velocity distribution function,
one for each species. At the upper boundary r = rmax, protons
are supersonic and almost all of them will be re-injected at the
lower boundary r = r0. Only a small fraction of protons will be
injected back into the system corresponding to the negative
velocity part of the prescribed proton velocity distribution
function at r = rmax. On the contrary, electrons are subsonic
and a significant fraction of them must be re-injected back
into the system from the top at r = rmax, the choice of
whether a given electron will be injected at the top or at the
bottom being determined by the equal proton and electron
flux (zero current) condition imposed at r = rmax. Since the
total number of particles in the system is kept constant, this
automatically ensures zero current everywhere in the system
once the stationary regime has been reached. The velocity
distribution function for the electrons injected from the upper
boundary is a drifting bi-Maxwellian having the same parallel
and perpendicular temperatures as that of the outgoing electrons
and same bulk velocity as protons. Distribution functions and
their moments shown in this paper have been obtained once a
stationary state with equal proton and electron densities in all
parts of the system has been reached.

3. SIMULATION SETUP

We assume to be located sufficiently far from the stellar
surface that the gravitational force in Equation (1) can be
neglected. The velocity distributions prescribed at the inner
boundary are characterized, for both electrons and protons, by
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Table 1
List of Parameter Used in the Simulations

N w0 L n0

(km s−1) (AU) (cm−3)

400 700 3 3
1600 700 3 12
3600 700 3 27
6400 700 3 49
400 350 3 3
1600 350 3 13
3600 350 3 27
6400 350 3 50

1600 700 6 6
3600 700 6 13
6400 700 6 23
10,000 700 6 36
1600 700 6 6
3600 700 6 13
6400 700 6 24
10,000 700 6 38

a drifting bi-Maxwellian

fα =
(

mα

2πkB

)3/2 1

Tα⊥T
1/2
α‖

e
− mα

2kB

[
(v‖−w0)2

Tα‖ +
v2⊥
Tα⊥

]
,

(6)

where α = {e, p} designs the species, mα the mass, kB is the
Boltzmann constant, and Tα‖, Tα⊥ the temperatures parallel and
perpendicular to the radial direction, respectively. Note that the
drift velocity w0 is the same for both species. We consider
typical values for fast streams in the inner heliosphere beyond
0.3 AU, with a mean velocity w0 = 700 km s−1. For the
protons, we assume a mean temperature Tp = (Tp‖ +2Tp⊥)/3 =
3 × 105 K (Schwenn 1990) with a temperature anisotropy
Ap = Tp⊥/Tp‖ = 2 (Matteini et al. 2007). For the electrons, we
choose a mean temperature Te = (Te‖ + 2Te⊥)/3 = 1.5×105 K.
Since one goal of the present work is to study the radial evolution
of the electron anisotropy, we begin the simulations with an
isotropic eVDF, i.e., Ae = Te⊥/Te‖ = 1.0.

For the given values of the electron and proton temperatures
and a typical density n ∼ 10 cm−3, the Fokker–Planck electron
collision frequency is about νe ∼ 4 × 10−5 s−1, corresponding
to an electron mean-free path of the order of 0.3 AU. Assuming
a system length L = rmax − r0 = 3 AU, the same collision fre-
quency is obtained in the simulation model for a number of elec-
trons N � 1000 and a cutoff velocity for the electron–electron
collisions uee = 0.4vee, where v2

ee = 2v2
e = 4kBTe/me

is the typical relative velocity between colliding particles at
r = r0 (Landi & Pantellini 2001). The electron–proton and
proton–proton cutoff velocities are scaled so that the ratio be-
tween the cutoff velocity and the most probable relative speeds
between colliding particles is the same, i.e., uαβ = 0.4vαβ .

In the simulations and in the paper, unless differently speci-
fied, temperatures are expressed in terms of T0 ≡ Te‖, velocities
in terms of v0 = √

2kBT0/me, and distances in terms of r0.
With these units a bulk speed of 700 km s−1 corresponds to
w0 = 0.3v0. Given our objective to investigate the effect of
Coulomb collisions in regulating the eVDF against the spher-
ical expansion, we have performed a set of simulations with
different densities, i.e., different number of particles, N, and dif-
ferent expansion velocities, namely, w0 = 700 and 350 km s−1,
respectively. The simulations are listed in Table 1.

Figure 1. Some basic quantities as a function of the radial distance for a typ-
ical simulation (specifically for n0 = 27 cm−3 and w0 = 350 km s−1). Top
panel: parallel and perpendicular electron temperature (solid), total electron
temperature anisotropy Te⊥/Te‖ (dashed), and the double adiabatic prediction
(dotted). Middle panel: same quantities for the proton temperature and temper-
ature anisotropies. Bottom panel: electric potential energy for the electrons.

4. RESULTS

Typical radial profiles of the main macroscopic quantities
are shown in Figure 1 for the case n0 = 27 cm−3 and
w0 = 350 km s−1. For the protons, collisions do not seem to play
a significant role in controlling the temperature anisotropy. The
proton perpendicular temperature decreases very rapidly while
the parallel temperature remains almost constant. The tempera-
ture anisotropy increases slightly slower than predicted by the
adiabatic invariants in a radially expanding wind (Chew et al.
1956). On the contrary, for the electrons, collisions are observed
to be important in regulating the thermal anisotropy which re-
mains substantially smaller than the adiabatic prediction.

Although there is no gravity in the system, an electric
field is needed to ensure equal densities and bulk velocities
for electrons and protons. The electrostatic potential energy
difference between the lower and the upper boundary is about
30 eV, which corresponds to about twice the thermal energy of
the electrons at the lower boundary (19 eV). The reason for the
existence of an electric field is due to the different behavior of
the subsonic electrons with respect to the supersonic protons
in a spherical collisionless expansion. For an isotropic drifting
Maxwellian distribution function at a given location, say r0,
and no collisions and electric field, the phase space density at
larger distances is regulated by the combined effect of kinetic
energy and magnetic moment conservation. Magnetic moment
conservation implies that perpendicular velocity is constrained
by v⊥ ∝ 1/r (see Equation (2)) and thus v⊥ must decrease
with r. At the same time, the kinetic energy conservation forces
the particle to move along a circle centered on zero velocity.
Since the particle’s velocity distribution function is centered
around the bulk velocity, the expansion causes the flattening
and the deformation of the initially circular velocity distribution
function contours, as illustrated in Figure 2.

For the supersonic protons, the fact that the bulk velocity is
much larger than the thermal velocity leads to the formation of
a cigar-like distribution still compatible with a bi-Maxwellian
description (upper right panel of Figure 2) and follows the
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Figure 2. Top: velocity distribution function at r = 3r0 obtained by applying Liouville’s theorem, assuming a drifting distribution as given by Equation (6) at r = r0
(dashed lines). Left and right panels are for a subsonic and supersonic population, respectively, corresponding to the parameters for protons and electrons at the base
of the simulation domain. Bottom: spatial variation of the moments for the subsonic (left) and the supersonic (right) case, respectively.

(A color version of this figure is available in the online journal.)

prediction from double-adiabatic theory (Schulz & Eviatar
1973) with constant parallel temperature and decreasing per-
pendicular temperature, as shown in the bottom right panel of
Figure 2. For a subsonic population, like the electrons, the pic-
ture is completely different. The application of Liouville’s theo-
rem with energy and magnetic moment conservation leads to the
formation of an asymmetric velocity distribution function (left
top panel of Figure 2) where the perpendicular cooling is com-
pensated by parallel heating and bulk flow acceleration (bottom
left panel). As a consequence of the acceleration, an electric
field is generated to prevent unequal proton and electron fluxes
similar to what we observe in our simulations. Note that the
electrostatic potential energy gain or loss across the system (see
Figure 1) is of the order of the electron thermal energy only, i.e.,
much less than the mean kinetic energy of the highly supersonic
protons. Under such circumstances, the zero field approxima-
tion underlying the simplistic model of Figure 2 is acceptable
and its prediction concerning the radial evolution of the VDF
pertinent, at least at the lowest level of details.

The two-dimensional structure of the eVDFs for four different
case simulations is shown in Figures 3 and 4. In Figure 3, we
report the eVDF in the slow stream case, w0 = 350 km s−1,
for a low (n0 = 4 cm−3) and a high (n0 = 75 cm−3) density
case. Distribution functions for the same densities in the fast

stream case, w0 = 700 km s−1, are reported in Figure 4. All
eVDFs are measured at r = 6r0, corresponding to a heliocentric
distance 1.8 AU in physical units. From the figure it is possible
to recognize two different electron populations: a relatively
isotropic cold core and an elongated and an anisotropic hot
component. The core component is collision-dominated and its
relative weight is regulated by the electron density, i.e., by the
collision frequency. On the contrary, the hot population is nearly
collisionless and its anisotropy is the effect of the focusing due
to the angular momentum conservation as illustrated in Figure 2.

A quantitative analysis of the two population’s characteristics
can be performed by a fitting procedure with an analytical model
of the form

ge = gc + gh. (7)

We consider that the cold (subscript “c”) and hot (subscript “h”)
populations can be described as a sum of two bi-Maxwellians

ge =
(

me

2πkB

)3/2
nc

Tc⊥T
1/2

c‖
e
− me

2kB

[
(v‖−wc)2

Tc‖ +
v2⊥
Tc⊥

]

+

(
me

2πkB

)3/2
nh

Th⊥T
1/2

h‖
e
− me

2kB

[
(v‖−wh)2

Th‖ +
v2⊥
Th⊥

]
,

(8)
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Figure 3. Electron velocity distribution functions at r � 1.8 AU for two simulations with bulk velocity w0 = 350 km s−1. Top and bottom panels refer to a dilute and
dense wind, respectively.

(A color version of this figure is available in the online journal.)

Figure 4. Electron velocity distribution functions at r � 1.8 AU for two simulations with bulk velocity w0 = 700 km s−1. Top and bottom panels refer to a dilute and
dense wind, respectively.

(A color version of this figure is available in the online journal.)
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Figure 5. Top panel: electron halo density relative to the total electron density
as function of the heliocentric distance. Bottom panel: drift velocities of the hot
electron population with respect to the protons. Curves refer to simulations with
different wind bulk speeds and densities as indicated.

where, nc and nh are the densities of the two populations and
wc and wh their drift velocities with respect the bulk speed of
the whole distribution. Otherwise, notations are the same as for
Equation (6). Assuming a decomposition of the eVDF as given
by Equation (8), in principle we have to fit eight parameters.
However, parameters are constrained by the following relations:

nc + nh = ne (9)

ncwc + nhwh = 0 (10)

ncw
2
c + nckBTc‖ + nhw

2
h + nhkBTh‖ = neme

〈
v2

‖
〉
e

(11)

2nckBTc⊥ + 2nhkBTh⊥ = neme

〈
v2

⊥
〉
e
, (12)

where ne, 〈v2
‖〉e, and 〈v2

⊥〉e are the expected values for density and
both the parallel and perpendicular kinetic energies computed
from the observed eVDF. As the model distribution function
depends nonlinearly on the fitting parameters, we adopt the
iterative Levenberg–Marquardt fitting technique (Marquardt
1963) constrained by the relations (9)–(12).

4.1. Density and Drift Velocities

Figure 5 reports the relative densities of the hot population as
a function of the heliospheric distance for four different simu-
lations (top panel), as well as the relative drift velocities of the

Figure 6. Break-point energy between cold and hot electron populations for
various simulations.

hot population with respect to the protons (bottom panel). Apart
from the most dilute cases, the relative density of the hot popu-
lation is well beyond 10% of the total electron density. The drift
velocities are between 1000 and 2000 km s−1. Both densities
and drift velocities appear to be in good agreement with solar
wind data at 1 AU observed for the halo population (Feldman
et al. 1978a; Pilipp et al. 1987, 1995b; here including the strahl
population) and we do not need any anomalous frictional pro-
cess to reduce the halo–core drift as suggested by Chen et al.
(2003). In the simulations, the shaping of the eVDF can only be
due to the combined action of collisions, expansion, and electric
field. Scudder & Olbert (1979) suggest that a transition between
collisional and collisionless electron expansion occurs for a par-
ticle energy somewhat larger than 7kBTc‖(r), Tc‖(r) being the
local parallel temperature of the cold population. In Figure 6,
we observe that the break-point energy (corresponding to the
point where the hot population starts dominating the cold popu-
lation) is somewhere between 2 and 4kBTc‖(r), clearly less than
suggested by Scudder & Olbert (1979). A clear correlation be-
tween wind density (i.e., collision frequency) and break-point
energy value is also observed. Nevertheless, the break-point en-
ergy observed in our simulations appears to be compatible with
observations of the break point for the so-called strahl popula-
tion, i.e., the hot portion of the eVDF moving predominantly
in the antisunward direction, form Helios, Cluster, and Ulysses
measurements (Štverák et al. 2009). The discrepancy between
our results and Scudder & Olbert (1979) could be related to the
fact that in the Scudder & Olbert (1979) model the halo popula-
tion is formed deep inside the corona, a region not included in
our simulations.

4.2. Temperatures

The behavior of the mean electron temperature, defined as
(Te‖ + 2Te‖)/3 as function of the radial distance, is shown in
Figure 7. All curves refer to fast stream simulations extending
out to a heliocentric distance L = 6 AU. Base densities are
n0 = 36, 23, and 13 cm−3 for the solid, dashed, and dot-dashed
lines, respectively. Clearly, the temperature profile cannot be
described by the adiabatic prediction ∝ r−4/3 or by a collisional
heat flux dominated model ∝ r−2/7. This is not surprising.
First, the presence of a beamed and hot population directed
antisunward carries an important heat flux and, hence, the
expansion cannot be an adiabatic one. Second, the r−2/7 curve
is based on the assumption of a Spitzer–Härm collisional flux,
where small departures from the Maxwell–Boltzmann velocity
distribution function and a collisional mean free path much
smaller than the characteristic scales of variation of temperature
and density are both assumed. These assumptions are also not
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Figure 7. Mean electron temperature against radial distance for different
simulations. All simulations refer to fast wind conditions with densities at
the base varying between 36, 23, and 13 cm−3 (solid, dashed, and dot dashed
curves). The r−2/7 and r−4/3 curves correspond to the collisional heat flux
dominate case and the adiabatic case, respectively. The shaded region outlines
the range of the electron temperature profiles from Ulysses measurements
ranging from T ∝ r−0.6 to T ∝ r−0.9.

Figure 8. Mean electron temperature profiles for the cold, hot, and the whole
electron population. Top and bottom panels refer to a tenuous fast wind and a
dense slow wind, respectively.

met in our simulations. Again, the electron temperature profile
appears to be in good agreement with Ulysses measurements of
the total electron temperature with logarithmic slopes varying
between βe = − 0.6 and −0.9 (Maksimovic et al. 2000, 2005).
However, the temperature profile in all the simulations do
not have a constant logarithmic slope with a tendency to
flatten at large distances. This is consistent with exospheric
model predictions with a rather adiabatic behavior for the cold
component and isothermal behavior of the hot component, the
latter becoming more prominent with increasing heliocentric
distance (Meyer-Vernet & Issautier 1998). A flattening of the
temperature profile with distance has also been inferred by
Cranmer et al. (2009) combining electron data from Helios and
Ulysses and over a smaller range by Le Chat et al. (2011) using
the Quasi-Thermal Noise spectroscopy technique on Ulysses.

In Figure 8, are shown the cold, hot, and the total electron
temperature profiles for two simulations: a tenuous fast wind
and a dense slow wind, respectively. From the figure it is clear
that the flattening of the total temperature is due to the hot

Figure 9. Total electron temperature anisotropy at r = 1.12 AU as function
of the collisional time to expansion time ratio (top panel) and of the Knudsen
number (bottom panel) for all the simulations with N > 400 listed in Table 1.
Asterisks refer to fast wind while square to slow wind simulations.

component. The cold component has a logarithmic slope of
about −0.8 for both simulations, while the hot component has
the tendency to follow an isothermal profile. The different total
temperature evolution for the two simulations appears to be due
to the different relative weight of the hot and cold components.
As already stated, the isothermal temperature profile for the
hot component is in agreement with the exospheric prediction
(Meyer-Vernet & Issautier 1998). This is not the case for the
collisional-dominated cold component for which exospheric
theory predicts an adiabatic temperature profile ∝ r−4/3, which
we do not observe in our simulations. The discrepancy suggests
the presence of a heat flux, obviously not measurable using a bi-
Maxwellian fit for the cold core velocity distribution function.
Moreover, the −4/3 prediction from Meyer-Vernet & Issautier
(1998) is based on the assumption of an isotropic velocity
distribution function for the cold component, while, as we will
see below, this is not entirely true in our simulations.

In Figures 9 and 10, the parallel to perpendicular temper-
ature anisotropy values at a prescribed heliocentric distance,
near 1 AU, are plotted. All simulations listed in Table 1 with
N > 400 are plotted, i.e., all simulations with a density larger
than 1 cm−3 at 1 AU. Figure 9 shows the anisotropy consider-
ing the whole distribution function, while in Figure 10 only the
cold component is considered. Higher values of the temperature
anisotropy are obviously obtained for the whole distribution
function. Anisotropies are in the range 1.5–3.0, in good agree-
ment with observations by ISEE3 (Phillips et al. 1989), but
somewhat higher than that reported by Salem et al. (2003) us-
ing WIND data. Cold component temperature anisotropies are
somewhat smaller, covering the range 1.2–2, also in good agree-
ment with core component measurements from Helios, Cluster,
and Ulysses (Štverák et al. 2008). In the top panels of both
Figures (9 and 10), temperature anisotropies are plotted
against the collisional age, defined as the ratio between the
collisional time τc = 1/νep and the expansion time τexp = L/v0,
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Figure 10. Same as Figure 9 for the cold component of the electron velocity
distribution function.

Figure 11. Electron heat flux vs. distance for a typical slow and fast wind (both
cases have n0 = 27 cm−3). The shaded region outlines the asymptotic heat
fluxes measured in all simulations, with logarithmic slopes in the range −2.2
and −2.4. The solid line is the heat flux profile predicted by Equation (13) (see
Feldman et al. 1975).

L = T/|∇T | being the typical scale of variation of the temper-
ature. In the bottom panels, the temperature anisotropies are
plotted against the thermal Knudsen number KT = λc/L with
λc being the local mean free path for a thermal electron. As
already pointed out in Landi et al. (2010), we observe a good
correlation between the temperature anisotropy and the colli-
sional age as in solar wind observations (Salem et al. 2003;
Štverák et al. 2008) regardless of whether we use the complete
eVDF or only the cold component. The correlation is lost when
we plot the temperature anisotropy against the Knudsen number
where we observe that the anisotropy depends on the expansion
velocity.

4.3. Electron Heat Flux

In Figure 11 the electron heat flux is plotted against the radial
distance for two simulations, both having a base density of
about n0 = 27 cm−3 and extending to 6 AU. For these two

Figure 12. Heat flux profiles (triangles) scaled by r2 for a fast (top) and slow
(bottom) wind. Diamonds correspond to the collisional heat flux predicted by
Equation (15). The dash-dotted lines highlight the asymptotic slopes for the
curves reported here.

simulations, and more generally in all of our simulations, we
find that the heat flux decreases approximately as a power law
with an index in the range [−2.3,−2.5] with steeper slopes
for the more collisional winds. The slopes reveal that heating
is provided by the electron thermal conduction although the
slopes observed in the simulations are somewhat less steep than
reported by Scime et al. (1994) using in-ecliptic Ulysses data
in the range 1–5 AU, where they observe a power-law index
of about −3. Similar results have been obtained with out-of-
ecliptic data (Scime et al. 1999) and data including the effect of
solar cycle activity variations (Scime et al. 2001). In Figure 11,
we have also plotted the bi-Maxwellian phenomenological heat
flux model proposed by Feldman et al. (1975):

qe � 1

2
nhwhkB[3(Th‖ − Tc‖) + 2(Th⊥ − Tc⊥)]. (13)

The gray solid line refers to the data fitting obtained from the
slow wind simulation reported in the same figure, showing an
excellent agreement between the observed heat flux and the
empirical formula equation (13). The good agreement between
the measured flux and the empirical formula equation (13)
implies that the electron heat flux is mainly due to the relative
drift of the hot population with respect to the bulk motion of the
whole plasma. A similar result has been obtained by Feldman
et al. (1975) and Scime et al. (1994) for the real solar wind.

Not surprisingly, the electron heat flux cannot be conveniently
described by the classical formula for a collisional-dominated
plasma (Spitzer & Härm 1953). In Figure 12 the heat-flux
profiles scaled by r2 for two simulations are reproduced, both
having the same density but different velocities. In the same
figure the equivalent collisional-dominated heat flux is also
reproduced, given by (Braginskii 1965)

qsh = −3.19
pekB

νepme

∇T . (14)

For purely radial variations of the temperature, the absolute
value of the collisional flux can then be rewritten in terms of the
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Figure 13. Normalized heat flux q/q
 (see Equation (16)) as a function of the
thermal Knudsen number at 1 and 2 AU for all simulations in Table 1. The solid
line corresponds to the normalized Spitzer–Härm flux (17).

(A color version of this figure is available in the online journal.)

thermal Knudsen number as

qsh = 3.19√
2

pe

√
kBT

me

KT. (15)

From Figure 12, it is clear that both the slopes and the magnitude
of the measured heat flux are completely different from that
predicted by the classical formula: the collisional-dominated
heat flux prediction appears to have a logarithmic slope of about
−3.5, consistent with a total electron temperature logarithmic
slope in the range [−0.8, −0.7], which is substantially steeper
than observed in the solar wind. The Spitzer–Härm flux appears
to be two to three times larger than the measured heat flux in
the inner part of the simulation domain. At larger distances,
because of its faster decrease, the measured heat flux outruns
the Spitzer–Härm flux.

In Figure 13 the heat flux at 1 AU and 2 AU for all simulations
are reported. The heat flux has been normalized to the free-
streaming heat flux (Hundhausen 1972):

q
 = 3

2
nekBTev‖e, (16)

with v2
‖e = 2kBT‖e/me. The free-streaming flux q
 is essentially

an upper limit for the flux as it corresponds to the case where
the whole thermal energy per particle 1.5kBT is advected at
the electron thermal speed. With the flow being along the
radial direction, the pertinent advection velocity is the parallel
thermal velocity rather than the global thermal velocity. In the
same figure, following Salem et al. (2003), we also report the
normalized Spitzer–Härm flux:

qsh

q


= 3.19

3
KT. (17)

From the figure we note that the normalized heat flux is almost
independent of the Knudsen number and, at 1 AU we have
qe/q
 � 0.3, a value close to that observed by Salem et al.
(2003). However, in our case the Spitzer–Härm heat flux does
not appear to be an upper limit for the electron heat flux as for
Salem et al. (2003). As already stated, in our simulations this
is due to the fact that the measured heat flux decreases more
slowly with distance than the Spitzer–Härm flux, the former
becoming dominant beyond 1 AU (see Figure 12). This is
also consistent with Scime et al. (1994) who observe electron

Figure 14. Radial evolution of the αh parameter from the collisionless heat flux
expression (18) for various kinds of wind.

heat fluxes exceeding the Spitzer–Härm value in the solar wind
beyond 2 AU.

Another interesting point which can be inferred from
Figure 13, also observed by Salem et al. (2003), is the fact
that the electron heat flux approaches and eventually exceeds
the Spitzer–Härm heat flux at low Knudsen numbers. In our
simulations, this occurs for KT � 0.2. This fact can be under-
stood assuming a collisionless form of the heat flux inspired
by the exospheric model proposed some time ago by Hollweg
(1974):

qnc = αh
3

2
nekBTew0 = αhq
Me. (18)

In this equation, αh is an order unity coefficient which depends
on the electron temperature and bulk velocity, and Me = w0/v‖e
is the electron Mach number. Using Equations (18) and (17) we
can write the ratio of the two heat fluxes (Landi & Pantellini
2003), viz.,

qnc

qsh
= 3αh

3.19

Me

KT
. (19)

From the equation it appears that the Spitzer–Härm flux exceeds
the collisionless heat flux provided

KT >
3αh

3.19
Me. (20)

In the inner domain of the simulation, for fast streams, Me ≈ 0.3
and using Equations (5)–(9) from Hollweg (1974) we have
αh ≈ 0.6. According to Equation (20), qsh > qnc if KT > 0.17
(see also Hollweg 1976). For slow streams, Me ≈ 0.15, αh ≈ 1,
and KT > 0.14. In the inner portion of the simulation domain KT
is always larger than 0.2 and the Spitzer–Härm flux effectively
exceeds the collisionless flux.

Since KT ∝ T 2
e ∇Te/(nTe), and Me ∝ 1/

√
Te, and assuming

a power-law temperature T ∝ r−βe one has Me/KT ∝ r5βe−2.
Thus, if βe > 2/5 = 0.4, which is the case in all simulations, and
assuming a constant value for the coefficient αh (see below), the
ratio qnc/qsh must increase with distance and eventually exceed
unity at some critical heliocentric distance that is shorter for fast
streams as shown in Figure 12.

In Figure 14, the radial variation of the αh parameter from
the collisionless expression for the flux (18) is plotted for fast
and slow wind velocities. The most striking feature is that
for the slow wind case, αh is roughly twice the fast wind
case, indicating, as was already apparent in Figure 13, that
q/q∗ = αhMe is less dependent on wind velocity than α itself.
This also appears to be once more consistent with the Holwegg’s
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expression where an anticorrelation between αh and the solar
wind velocity is predicted (see Figure 3 in Hollweg 1974). The
other interesting point is the overall tendency of αh to grow with
distance, at least after a short decreasing phase near the lower
boundary r = r0. This tendency is also visible in Figure 13,
indicating that both αhMe and αh are growing functions of
distance r. The overall conclusion is that a comparable value
of αh may be used for fast and slow streams with a radial growth
of the order of 0.1 per AU.

5. DISCUSSION AND CONCLUSION

We have presented stationary simulations of the solar wind
using a fully kinetic, electron–proton, spherically symmetric
code, which includes the effect of binary Coulomb collisions
and where the charge neutralizing electric field is computed
self-consistently. A purely radial magnetic field is assumed. The
simulation domain covers a heliocentric distance in the range
0.3 AU to 3 or 6 AU, where the wind has already reached its
asymptotic velocity and where the effect of gravity can safely
be neglected. In our study, we have focused primarily on the
evolution of the eVDF and its moments from the base of the
simulation domain at r = r0 where we assume an isotropic
Maxwellian eVDF. As we move to larger values of r, we
observe the formation of an eVDF with a slightly anisotropic
collision-dominated core, and a radially antisunward drifting
hot beam population. This collimated beam, made of electrons
with speeds exceeding a few times (∼4) the electron thermal
velocity, corresponds to the extrathermal population predicted
by Scudder & Olbert (1979). The relative drift velocities and
the densities of the two populations are compatible with the
core–strahl properties observed in the solar wind.

The electron temperature appears to decrease with the dis-
tance with logarithmic slopes in the range 0.6–0.9 in rather good
agreement with solar wind observations. Moreover, as noted by
Cranmer et al. (2009) for the real wind, we observe a flattening
of the temperature profile at larger distances and show that the
flattening is mainly due to the quasi-isothermal behavior of the
hot component as already observed in exospheric wind mod-
els (Meyer-Vernet & Issautier 1998). The electron temperature
anisotropy of the cold population in our simulations is found
to be in good agreement with those observed for the core com-
ponent in the solar wind (Štverák et al. 2008). On the other
hand, the total electron temperature anisotropy is larger than the
anisotropy measured at 1 AU by Salem et al. (2003). Several
reasons can account for the difference. (1) Coulomb collisions
are not efficient enough to scatter high-energy electrons to large
pitch angles (also see Pierrard et al. 2001a). (2) Particle scatter-
ing by sunward propagating whistler waves (Vocks et al. 2005;
Saito & Gary 2007a, 2007b) and/or the instability of the beam
component itself (Gary et al. 1994) may play a role in reducing
the anisotropy in the real wind but are not included in our sim-
ulations. (3) Magnetic field spiraling due to the Sun’s rotation
is not included in our simulations. Spiraling forces the close to
ecliptic magnetic field intensity to decrease more slowly with
distance than in a radial field keeping the perpendicular temper-
ature at a higher level.

The electron heat flux measured in our simulations drops
faster than r−2 implying a deposition of heat in the plasma and
a non-adiabatic temperature profile. The decrease of the heat
flux with distance appears to be less steep in our simulations
compared to the solar wind (Scime et al. 1994, 1999, 2001). The
difference could be related to the presence of electromagnetic
heat flux instabilities (Gary et al. 1994) as well as scattering

due to turbulent fluctuations at electronic scales. As shown by
Feldman et al. (1975) for the case of the solar wind, confirmed
by our simulations, the heat flux is mainly carried by the
antisunward drifting magnetic field aligned beam. As expected,
given the relatively high value of the Knudsen number, the
collisional expression for the heat flux (Spitzer & Härm 1953)
is unable to provide a convenient estimate of the flux. A better
estimate for the radial electron energy flux in our simulations is
provided by the collisionless model first proposed by Hollweg
(1974).

Despite its obvious shortcomings, our model has been able
to capture many properties of the solar wind electrons from
various interplanetary probes, using different instruments and
techniques. The fact that no such things as turbulence, recon-
nection, wave–particle interactions, shocks, etc., are included
in our simulations suggests that turbulent dissipation at elec-
tronic scales may not be easily estimated using the present data.
On the other hand, Coulomb collisions appear to be an essential
ingredient in shaping the eVDF, at least beyond the region of ac-
celeration. Thus, any reasonable kinetic model of the solar wind
expansion has to include collisions to conveniently describe the
dynamics of the eVDF.

The research leading to these results has received funding
from the European Commission’s Seventh Framework Pro-
gramme (FP7/2007-2013) under the grant agreement SHOCK
(project number 284515).
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