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 We shoot a bullet vertically.  
Where will it land?

T
his seems a trivi-
al question, but we 
must consider the 
rotation of the Earth. 

For small elevations (small in-
itial velocities ν0), given the 
Earth's large radius, the motion 
of the Earth's surface can be 
considered to have a constant 
speed, and the projectile falls 
back on the point of launch.

But what happens if one in-
creases ν0? Is the landing point af-
fected by the rotation of the Earth?

It is not easy to answer this 
question without doing the cal-
culations. We can try to make 
some qualitative considerations, 
assuming the launching pad to be 
near the Equator. The projectile 
maintains its tangential velocity 
ωR0 (where R0 is the radius of the 
Earth and ω is the angular veloc-
ity of the rotation), but climbing 
up it "falls behind" with respect 
to the tangential velocity of the 
altitude reached, and therefore, 
during the upward motion, it de-
viates towards the West (for the 
same reason why the falling bod-
ies deviate eastward). But on its 
way down the opposite happens, 
and it is unclear whether this is 
enough to have the bullet land at 
the starting point. 

Another consideration is that 
the projectile motion is similar 
to the motion of a Foucault pen-
dulum, whose trajectories have 
the form of rosettes, preceding 
towards the West. But even this is Ju
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not enough to allow us to decide where the landing spot 
is. We have to resort to equations, which fortunately are 
not very difficult to handle (see Box). 

Naively one may expect a shift towards the West [1, 2], 
because the Earth will rotate during the flight time of the 
bullet, 200 seconds in this example. In this naïve picture, 
the bullet would be assumed to be fired purely vertically, 
without initial horizontal velocity (in the inertial reference 
frame). Following this reasoning, the bullet is bound to 
land West of the launching spot.

The equations show that, indeed, there is a shift to 
the West. However, it is of a very different nature and 

magnitude if compared to the naïve result: the tangential 
velocity of the Earth is 437 m/s, so, following the naïve 
picture, in 200 seconds the bullet would land about 87 
km towards the West. In reality it is only 1 km, as shown 
in the Box.

For more details, see Ref. [2]. n
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BOX

We proceed in the accelerated reference frame of the 
Earth. We can neglect the centrifugal force, which does 
nothing but diminish g. Inserting gravity (which we 
shall consider constant, for not too large elevations, 
say a maximum of a few kilometers) and the Corio-
lis force we get the following two equations for the 
horizontal coordinate x (axis tangential to the Equator, 
positive direction towards the West) and the elevation 
coordinate z:

m
..
x = 2mωz

.
, (1)

m
..
z = –mg–2mωx

.
,  (2)

where m is the bullet’s mass. We can integrate Eq. (1) 
from 0 (starting point x(0) = z(0) = 0, with z

.
(0) = ν0 and 

x
.
(0) =0) to t, yielding 

x
.
 = 2ωz, (3)

which tells us that the horizontal motion of the projectile 

is always directed towards the West. Obviously, the bullet 

will not fall on the starting point! Substituting Eq. (3) into 

Eq. (2) we get

z
..

 = –g–4ω2z. (4)

This means that the vertical motion is harmonic, which 
may be a bit surprising (but obvious if we remember 
the Foucault pendulum). By replacing the starting con-
ditions in the solution of Eq. (4) we obtain 

z(t) = 
g

—
4ω2

[cos(2ωt)–1]+
ν0— 

2ω
sin(2ωt) (5)

which, as anticipated, represents a harmonic oscilla-

tion centered in z(t) = 
g

—
4ω2

, actually below ground. 

To check the plausibility of this solution, let’s look at 
what happens in the limit ω→0: we get z(t)=ν0t− ½gt2, 
the standard free-fall accelerated motion. From here  
we can obtain an approximation for the flight time 

τ= 
2ν0 —
g

. Substituting Eq. (5) into Eq. (3) and integrating, 

we obtain  

x(t) = 
g

—
4ω2

[sin(2ωt)–2ωt]+
ν0— 

2ω
[cos(2ωt)–1] (6)

and in the limit ω→0 we have x(t) = 0, as expected. In 
the next (third) order, we obtain 

x (t) –~ ω(ν0t2–¹/₃gt3) (7)

Substituting the flight time τ= 
2ν0 —
g

 we get
 

x(τ) = 
4ων0

3

 — 
3g2

(8)

Inserting the rotation of the Earth, ω= 7.27·10−5rad/s 
(assuming to be at the Equator), and ν0= 1000 m/s 
(not unattainable speed with a good gun), we get a 
maximum height of 50 km (always neglecting the air 
resistance!, still small compared to the Earth's radius 
of 6000 km), a flight time τ= 200 s and a deviation 
towards the West of 1 km. 
In the presence of the air, the calculation is much 
more difficult. We cannot assume that the laws of 
laminar viscous motion apply, since at such speeds 
the motion will certainly be turbulent. But the bul-
let should quickly get to such heights that the air 
density is very low (above 10 km). We therefore 
expect that the bullet will fall at an intermediate 
distance from the starting point, again towards 
the West. 




