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Abstract: We study the strong coupling behaviour of 1/4-BPS circular Wilson loops (a

family of “latitudes”) in N = 4 Super Yang-Mills theory, computing the one-loop correc-

tions to the relevant classical string solutions in AdS5×S5. Supersymmetric localization

provides an exact result that, in the large ’t Hooft coupling limit, should be reproduced

by the sigma-model approach. To avoid ambiguities due to the absolute normalization

of the string partition function, we compare the ratio between the generic latitude and

the maximal 1/2-BPS circle: any measure-related ambiguity should simply cancel in this

way. We use the Gel’fand-Yaglom method with Dirichlet boundary conditions to calcu-

late the relevant functional determinants, that present some complications with respect

to the standard circular case. After a careful numerical evaluation of our final expression

we still find disagreement with the localization answer: the difference is encoded into a

precise “remainder function”. We comment on the possible origin and resolution of this

discordance.
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1 Introduction and main result

The harmony between exact QFT results obtained through localization procedure for BPS-

protected Wilson loops in N = 4 SYM and their stringy counterpart is a thorny issue

beyond the supergravity approximation. For the 1/2-BPS circular Wilson loop [1, 2], in the

fundamental representation, supersymmetric localization [3] in the gauge theory confirms

the all-loop prediction based on a large N resummation of ladder Feynman diagrams [4] and

generalized to finite N in [5]. On the string theory side, this should equate the disc partition

function for the AdS5 × S5 superstring. Its one-loop contribution, encoding fluctuations

above the classical solution, has been formally written down in [6], explicitly evaluated
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in [7]1 using the Gel’fand-Yaglom method, reconsidered in [9] with a different choice of

boundary conditions and reproduced in [10]2 with the heat-kernel technique. No agreement

was found with the subleading correction in the strong coupling (λ� 1) expansion of the

gauge theory result in the planar limit

log〈W (λ, θ0 = 0)〉 = log 2√
λ
I1

(√
λ
)

=
√
λ− 3

4
log λ+

1

2
log

2

π
+O

(
λ−

1
2

)
, (1.1)

where I1 is the modified Bessel function of the first kind, the meaning of the parameter θ0

is clarified below, and the term proportional to log λ in (1.1) is argued to originate from the

SL(2,R) ghost zero modes on the disc [5]. The discrepancy occurs in the λ-independent

part above,3 originating from the one-loop effective action contribution and an unknown,

overall numerical factor in the measure of the partition function.

The situation becomes even worse when considering a loop winding n-times around

itself [7, 11], where also the functional dependence on n is failed by the one-loop string com-

putation. The case of different group representations has also been considered: for the k-

symmetric and k-antisymmetric representations, whose gravitational description is given in

terms of D3- and D5-branes, respectively, the first stringy correction again does not match

the localization result [12]. Interestingly, the Bremsstrahlung function of N = 4 SYM,

derived in [13] again using a localization procedure, is instead correctly reproduced [14]

through a one-loop computation around the classical cusp solution [2, 15].

Localization has been proven to be one of the most powerful tools in obtaining non

perturbative results in quantum supersymmetric gauge theories [3]: an impressive number

of new exact results have been derived in different dimensions, mainly when formulated on

spheres or products thereof [3, 16]. In order to gain further intuition on the relation between

localization and sigma-model perturbation theory in different and more general settings,

we re-examine this issue addressing as follows the problem of how to possibly eliminate the

ambiguity related to the partition function measure. We consider the string dual to a non-

maximal circular Wilson loop — the family of 1/4-BPS operators with path corresponding

to a latitude in S2 ∈ S5 parameterized by an angle θ0 and studied at length in [15, 17, 18] —

and evaluate the corresponding string one-loop path integral. We then calculate the ratio

between the latter and the corresponding one representing the maximal circle — the case

θ0 = 0 in (1.1). Our underlying assumption is that the measure is actually independent on

the geometry of the worldsheet associated to the Wilson loop,4 and therefore in such ratio

measure-related ambiguities should simply cancel. It appears non-trivial to actually prove

a background independence of the measure, whose diffeo-invariant definition includes in

fact explicitly the worldsheet fields.5 Our assumption — also suggested in [7] — seems

however a reasonable one, especially in light of the absence of zero mode in the classical

1See also [8].
2See appendix B in [10].
3See formula (1.4) below.
4About the topological contribution of the measure, its relevance in canceling the divergences occurring

in evaluating quantum corrections to the string partition function has been first discussed in [6] after the

observations of [19, 20]. We use this general argument below, see discussion around (4.8).
5See for example the discussion in [21].
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solutions here considered6 and of the explicit example of (string dual to) the ratio of a

cusped Wilson loop with a straight line [14], where a perfect agreement exists between

sigma model perturbation theory and localization/integrability results [13].7

The family of 1/4-BPS latitude Wilson loops falls under the more general class of

1/8-BPS Wilson loops with arbitrary shape on a two-sphere introduced in [15, 24, 25]

and studied in [26]. There are strong evidences that they localize into Yang-Mills theory

on S2 in the zero-instanton sector [15, 26–28] and their vacuum expectation values are

therefore related to the 1/2-BPS one by a simple rescaling. As originally argued in [18] the

expectation value of such latitude Wilson loops is obtained from the one of the maximal

circle provided one replaces λ with an effective ’t Hooft coupling λ′ = λ cos2 θ0. The ratio

of interest follows very easily

〈W (λ, θ0)〉
〈W (λ, 0)〉

∣∣∣∣
loc

= e
√
λ(cos θ0−1)

[
(cos θ0)−

3
2 +O(λ−

1
2 )
]

+O
(
e−
√
λ
)
, (1.2)

where in the large λ expansion only the dominant exponential contribution is kept (and

loc stands for “localization”). In terms of string one-loop effective actions Γ = − logZ ≡
− log〈W 〉, this leads to the prediction

log
〈W (λ, θ0)〉
〈W (λ, 0)〉

∣∣∣∣
loc

= [Γ(θ0 = 0)− Γ(θ0)]loc =
√
λ (cos θ0 − 1)− 3

2
log cos θ0 +O

(
λ−

1
2

)
,

(1.3)

where the leading term comes from the regularized minimal-area surface of the strings dual

to these Wilson loops, while the semiclassical string fluctuations in the string sigma-model

account for the subleading correction.

As usual, the one-loop contribution derives from the evaluation of ratios of functional

determinants in the quadratic expansion of the type IIB Green-Schwarz action about the

string classical background. The axial symmetry of the worldsheet surface simplifies these

two-dimensional spectral problem to infinitely-many one-dimensional spectral problems.

To solve them, we use the Gel’fand-Yaglom method originally developed in [29] and later

improved in a series of papers [30–35]. A concise review of this technique is presented

in appendix B. Unlike other procedures (e.g. heat kernel [11]), this method of regularizing

determinants effectively introduces a fictitious boundary for the worldsheet surface, besides

the expected conformal one. We then proceed with the analytical computation of the

functional determinants by imposing Dirichlet boundary conditions on the bosonic and

fermionic fluctuation fields at the conformal (AdS boundary) and fictitious boundaries,

whose contribution effectively vanish in the chosen regularization scheme [36, 37]. We

emphasise that this procedure differs from the one employed in [7], since the non-diagonal

matrix structure of the fermionic-fluctuation operator for arbitrary θ0 prevents us from

factorizing the value of the fermionic determinants into a product of two contributions.

6In presence of zero mode, a possible dependence of the path integral measure on the classical solution

comes from the integration over collective coordinates associated to them. In this framework, see discussion

in [22].
7See also [23], which analyzes the (string dual to the) ratio between the Wilson loop of “antiparallel

lines” and straight line.
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In the θ0 → 0 limit, we analytically recover the constant one-loop coefficient in the

expansion of the 1/2-BPS circular Wilson loop as found in [7, 10]

log〈W (λ, θ0 = 0)〉 =
√
λ− 3

4
log(λ) + log c+

1

2
log

1

2π
+O

(
λ−

1
2

)
, (1.4)

up to an unknown contribution of ghost zero-modes (the constant c). The expression above

is in disagreement with the gauge theory prediction (1.1).

We regularize and normalize the latitude Wilson loop with respect to the circular case.

The summation of the one-dimensional Gel’fand-Yaglom determinants is quite difficult, due

to the appearance of some Lerch-type special functions, and we were not able to obtain a

direct analytic result. We resort therefore to a numerical approach. Our analysis shows

that the disagreement between sigma-model and localization results (1.3) is not washed

out yet. Within a certain numerically accuracy, we claim that the discovered θ0-dependent

discrepancy is very well quantified as

log
〈W (λ, θ0)〉
〈W (λ, 0)〉

∣∣∣∣
sm

=
√
λ (cos θ0 − 1)− 3

2
log cos θ0 + log cos

θ0

2
+O

(
λ−

1
2

)
, (1.5)

suggesting that the “remainder function” should be

Rem(θ0) = log cos
θ0

2
. (1.6)

Before proceeding with the numerical analysis a series of non-trivial steps have been

performed and the final expression appears as the result of precise cancellations. As already

remarked, the fermionic determinants do not trivially factorize, and consequently we have

to solve a coupled Schrödinger system to deal with the Gel’fand-Yaglom method. It turns

out that the decoupling of the fictitious boundary relies on delicate compensations between

bosonic and fermionic contributions, involving different terms of the sum. As a matter of

fact, after removing the infrared regulator we obtain the correct ultraviolet divergencies

from the resulting effective actions. These are subtracted from the final ratio in order

to obtain a well-behaved sum, amenable of a numerical treatment. Unfortunately the

final result is inconsistent with the QFT analysis, opening the possibility that something

subtle is missing in our procedure. On the other hand we think that our investigation

elucidates several points at least in the standard setup to solve the spectral problem, and

thus should be helpful for further developments. We will comment on the possible origin

of the discrepancy at the end of the manuscript.

The paper proceeds as follows. In section 2 we recall the classical setting, in sec-

tion 3 we evaluate the relevant functional determinants which we collect in section 4 to

form the corresponding partition functions. Section 5 contains concluding remarks on the

disagreement with the localization result and its desirable explanation. After a comment

on notation in appendix A, we devote appendix B to a concise survey on the Gel’fand-

Yaglom method. Appendix C elucidates some properties which simplify the evaluation of

the fermionic contribution to the partition function, while in appendix D we comment on

a possible different choice of boundary condition for lower Fourier modes which that not

affect our results.
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2 Classical string solutions dual to latitude Wilson loops

The classical string surface describing the strong coupling regime of the 1/4-BPS latitude

was first found in [17] and discussed in details in [15, 18]. Endowing the AdS5 × S5 space

with a Lorentzian metric in global coordinates

ds2
10D = − cosh2 ρdt2 + dρ2 + sinh2 ρ

(
dχ2 + cos2 χdψ2 + sin2 χdϕ2

1

)
+dθ2 + sin2 θdφ2 + cos2 θ

(
dϑ2

1 + sin2 ϑ1

(
dϑ2

2 + sin2 ϑ2dϕ
2
2

))
, (2.1)

with the AdS radius set to 1, the corresponding classical configuration in AdS3 × S2

t = 0, ρ = ρ(σ), χ = 0, ψ = τ, ϕ1 = const,

θ = θ(σ), φ = τ, ϑ1 = 0, ϑ2 = const, ϕ2 = const, (2.2)

parametrizes a string worldsheet, ending on a unit circle at the boundary of AdS5 and on

a latitude sitting at polar angle θ0 on a two-sphere inside the compact space.8 Here the

polar angle θ spans the interval [−π
2 ,

π
2 ]. The worldsheet coordinates instead take values in

the range τ ∈ [0, 2π) and σ ∈ [0,∞).

The ansatz (2.2) does not propagate along the time direction and defines an Euclidean

surface embedded in a Lorentzian target space. It satisfies the equation of motions (sup-

plemented by the Virasoro constraints in the Polyakov formulation) when we set

sinh ρ(σ) =
1

sinhσ
, cosh ρ(σ) =

1

tanhσ
,

sin θ(σ) =
1

cosh (σ0 ± σ)
, cos θ(σ) = tanh (σ0 ± σ) .

(2.3)

An integration constant in (2.3) that shifts σ was chosen to be zero so that the worldsheet

boundary at σ = 0 is located at the boundary of AdS5. The remaining one, σ0 ∈ [0,∞),

spans the one-parameter family of latitudes on S5 at the boundary σ = 0, whose angular

position θ0 ∈ [0, π2 ] relates to σ0 through

cos θ0 = tanhσ0. (2.4)

Here the dual gauge theory operator interpolates between two notable cases. The 1/2-BPS

circular case falls under this class of Wilson loops when the latitude in S2 shrinks to a

point for θ0 = 0, which implies θ(σ) = 0 and σ0 = +∞ from (2.3)–(2.4). In this case the

string propagates only in AdS3. The other case is the circular 1/4-BPS Zarembo Wilson

loop when the worldsheet extends over a maximal circle of S2 for θ0 = π
2 and σ0 = 0 [22].9

The double sign in (2.3) accounts for the existence of two solutions, effectively doubling the

range of θ0: the stable (unstable) configuration mimizes (maximizes) the action functional

and wraps the north pole θ = 0 (south pole θ = π) of S5.

8There exist other solutions with more wrapping in S5, but they are not supersymmetric [18].
9See also [38] for an analysis of the contribution to the string partition function due to (broken) zero

modes of the solution in [22].
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The semiclassical analysis is more conveniently carried out in the stereographic coor-

dinates υm (m = 1, 2, 3) of S3 ⊂ AdS5 and wn (n = 1, 2, 3, 4, 5) of S5

ds2
10D = − cosh2 ρdt2 + dρ2 + sinh2 ρ

dυmdυm(
1 + υ2

4

)2 +
dwndwn(
1 + w2

4

)2 , (2.5)

υ2 = υmυm w2 = wnwn (2.6)

where the classical solution reads10

t = 0, ρ = ρ(σ), υ1 = 2 sin τ, υ2 = 2 cos τ, υ3 = 0 , (2.7)

w1 = w2 = 0, w3 = 2 cos θ(σ), w4 = 2 sin θ(σ) sin τ, w5 = 2 sin θ(σ) cos τ .

The induced metric on the worldsheet depends on the latitude angle θ0 through the con-

formal factor (σi = (τ, σ))

ds2
2D = hijdσ

idσj = Ω2(σ)
(
dτ2 + dσ2

)
, Ω2(σ) ≡ sinh2 ρ(σ) + sin2 θ(σ) . (2.8)

The two-dimensional Ricci curvature is then

(2)R =− 2 ∂2
σ log Ω(σ)

Ω2(σ)
= (2.9)

=− (2 cosh 2σ0 ± 2 sinhσ0 sinh (6σ ± 3σ0)−3 cosh (2 (σ ± σ0))+ 6 cosh (4σ ± 2σ0)+3 cosh 2σ)

4cosh (σ0) cosh3 (2σ ± σ0)
.

The string dynamics is governed by the type IIB Green-Schwarz action, whose bosonic part

is the usual Nambu-Goto action

SB = T

∫
dτdσ

√
h ≡

∫
dτdσLB (2.10)

in which h is the determinant of the induced metric (2.8) and the string tension T =
√
λ

2π

depends on the ’t Hooft coupling λ. The leading contribution to the string partition

function comes from the regularized classical area [18]

S
(0)
B (θ0) =

√
λ

2π

∫ 2π

0
dτ

∫ ∞
ε0

dσ
[
sin2 θ(σ) + sinh2 ρ(σ)

]
=
√
λ

(
∓ cos θ0 +

1

ε
+O(ε)

)
. (2.11)

Following [7] we have chosen to distinguish the cutoff ε0 in the worldsheet coordinate from

the cutoff ε = tanh ε0 in the Poincaré radial coordinate z of AdS. The pole in the IR cutoff ε

in (2.13) keeps track of the boundary singularity of the AdS metric and it is proportional to

the circumference of the boundary circle. The standard regularization scheme, equivalent

to consider a Legendre transform of the action [2, 39], consists in adding a term −
√
λχb

proportional to the boundary part of the Euler number

χb(θ0) =
1

2π

∫
ds κg (2.12)

=
3− cosh(2ε0) + cosh(2ε0 ± 2σ0) + cosh(4ε0 ± 2σ0)

4 sinh ε0 cosh(ε0 ± σ0) cosh(2ε0 ± σ0)
=

1

ε
+O(ε).

10The background of ϕ1, ϕ2, ϑ2 was set to zero in (2.2), but the bosonic quadratic Lagrangian does

not have the standard form (kinetic and mass terms for the eight physical fields) in the initial angular

coordinates.
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Here κg stands for the geodesic curvature of the boundary at σ = ε0 and ds is the invariant

line element. With this subtraction, we have the value of the regularized classical area

S
(0)
B (θ0)−

√
λχb(θ0) = ∓

√
λ cos θ0 , (2.13)

The (upper-sign) solution dominates the string path integral and is responsible for the

leading exponential behaviour in (1.2) and so, in the following, we will restrict to the

upper signs in (2.3).

3 One-loop fluctuation determinants

This section focusses on the semiclassical expansion of the string partition function around

the stable classical solution (2.7) (taking upper signs in (2.3)) and the determinants of the

differential operators describing the semiclassical fluctuations around it. The 2π-periodicity

in τ allows to trade the 2D spectral problems with infinitely-many 1D spectral problems

for the (Fourier-transformed in τ) differential operators in σ. Let us call O one of these

one-loop operators. For each Fourier mode ω, the evaluation of the determinant DetωO
is a one-variable eigenvalue problem on the semi-infinite line σ ∈ [0,∞) which we solve

using the Gel’fand-Yaglom method, a technique based on ζ-function regularization reviewed

in appendix B. Multiplying over all frequencies ω (which are integers or semi-integers

according to the periodicity of the operator O) gives then the full determinant

DetO =
∏
ω

DetωO. (3.1)

All our worldsheet operators are intrinsically singular on this range of σ, since their prin-

cipal symbol diverges at σ = 0, the physical singularity of the boundary divergence for the

AdS5 metric. Moreover the interval is non-compact, making the spectra continuous and

more difficult to deal with. We consequently introduce an IR cutoff at σ = ε0 (related

to the ε = tanh ε0 cutoff in z) and one at large values of σ = R [7]. While the former is

necessary in order to tame the near-boundary singularity, the latter has to be regarded as

a mere regularization artifact descending from a small fictitious boundary on the tips of

the surfaces in AdS3 and S2. Indeed it disappears in the one-loop effective action.

3.1 Bosonic sector

The derivation of the bosonic fluctuation Lagrangian around the minimal-area surface (2.7)

is readily available in section 5.2 of [40]. The one-loop fluctuation Lagrangian in static

gauge is

L(2)
B ≡ Ω2(σ) yT OB (θ0) y , (3.2)

– 7 –
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where the differential operator OB (θ0) acts on the vector of fluctuation fields orthogonal

to the worldsheet y ≡ (yi)i=1,...8. In components it reads11

[OB (θ0)]ij = − 1

Ω2(σ)
δij
(
∂2
τ + ∂2

σ

)
+mij + nij∂τ , (3.4)

where the non-vanishing entries of the matrices are12

m11 = m22 = m33 =
2

Ω2(σ) sinh2 σ
, m44 = m55 = m66 = − 2

Ω2(σ) cosh2 (σ+σ0)
,

m77 = m88 =
−2 + 3 tanh2 (2σ + σ0)

Ω2(σ)
, n78 = −n87 =

2 tanh (2σ + σ0)

Ω2(σ)
. (3.5)

The worldsheet excitations decouple in the bosonic sector, apart from y7 and y8 which

are coupled through a 2 × 2 matrix-valued differential operator. The determinant of the

bosonic operator is decomposed into the product

DetOB (θ0) = Det3O1 Det3O2 (θ0) DetO3 (θ0) . (3.6)

Going to Fourier space (∂τ → iω), formula (3.6) holds for each frequency ω with

O1 ≡ −∂2
σ + ω2 +

2

sinh2 σ
(3.7)

O2 (θ0) ≡ −∂2
σ + ω2 − 2

cosh2 (σ + σ0)
(3.8)

O3 (θ0) ≡

(
−∂2

σ + ω2 − 2 + 3 tanh2 (2σ + σ0) 2 i tanh (2σ + σ0)ω

−2 i tanh (2σ + σ0)ω − d2

dσ2 + ω2 − 2 + 3 tanh2 (2σ + σ0)

)
(3.9)

The unitary matrix U = 1√
2

(
i 1
−i 1

)
diagonalizes the operator (3.9)

O3 (θ0) = U † diag{O3+,O3−}U ,
O3+ (θ0) = −∂2

σ + ω2 − 2 + 3 tanh2 (2σ + σ0)− 2ω tanh (2σ + σ0) , (3.10)

O3− (θ0) = −∂2
σ + ω2 − 2 + 3 tanh2 (2σ + σ0) + 2ω tanh (2σ + σ0) .

We performed a rescaling by
√
h = Ω2(σ) (as in the analogous computations of [7, 14, 23])

which will not affect the final determinant ratio (4.1) (see discussions in appendix A of [6]

and in [7, 14, 23]) and is actually instrumental for the analysis in appendices B.2 and B.3.

We rewrite (3.6) as follows

DetωOB (θ0) = Det3
ωO1 Det3

ωO2 (θ0) DetωO3+ (θ0) DetωO3− (θ0) , (3.11)

11To compare with [40], and using the notation used therein, notice that the bosonic Lagrangian is

derived as

L(2)
B = δαβ∂αyi∂βy

i − δαβ
(
∂αy

iAβ ijy
j +Aiα jy

j∂βyi
)

+
(
δαβA`α iAβ `j −

√
γMij

)
yiyj , (3.3)

which defines in an obvious way mij and nij in (3.4).
12There would be an overall minus sign in the kinetic and mass term of the y1 fluctuation, which we disre-

gard in (3.4) for simplifying the formula, considering that it does not play a practical role in the evaluation

of determinants with Gel’fand-Yaglom and is reabsorbed in the Wick-rotation of the time coordinate t.

– 8 –
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where all the determinants are taken at fixed ω. To reconstruct the complete bosonic

contribution we have to perform an infinite product over all possible frequencies.

The operator O1 does not depend on θ0, and indeed also appears among the circular Wilson

loop fluctuation operators [7]. While its contribution formally cancels in the ratio (1.3), we

report it below along with the others for completeness. Both O2 (θ0) and O3 (θ0) become

massless (scalar- and matrix-valued respectively) operators in the circular Wilson loop

limit, which is clear for O3 (θ0) upon diagonalization and an integer shift in ω,13 irrelevant

for the determinant at given frequency, as long as we do not take products over frequencies

into consideration. Thus, in this limit one recovers the bosonic partition function of [7].

The evaluation of one-dimensional spectral problems is outlined in appendix B.2. The

fields satisfy Dirichlet boundary conditions at the endpoints of the compactified interval

σ ∈ [ε0, R]. Then we take the limit of the value of the regularized determinants for R→∞
at fixed ω and ε0. As evident from the expressions below, the limit on the physical IR

cutoff (ε in z or equivalently ε0 in σ) would drastically change the ω-dependence at this

stage and thus would spoil the product over the frequencies. It is a crucial, a posteriori,

observation that it is only keeping ε0 finite while sending R to infinity that one precisely

reproduces the expected large ω (UV) divergences [6, 40]. This comes at the price of more

complicated results for the bosonic (and especially fermionic) determinants. Afterwards

we will remove the IR divergence in the one-loop effective action by referring the latitude

to the circular solution.

The solutions of the differential equations governing the different determinants are

singular for small subset of frequencies: we shall treat apart these special values when

reporting the solutions. For the determinant of the operator O1 in (3.7) in the limit of

large R one obtains [7]

DetωO1 =

{
e|ω|(R−ε0) (|ω|+coth ε0)

2|ω|(|ω|+1) ω 6= 0

R coth ε0 ω = 0
(3.12)

and only the case ω = 0 has to be considered separately. Next we examine the initial value

problem (B.12)–(B.13) associated to O2(θ0), whose solution is

f(II)1(σ)=



1
2ω cosh(σ+σ0) cosh(σ0+ε0)

(
cosh (σ + ε0 + 2σ0) sinh(ω(σ − ε0))+

+ (ω+1) sinh((ω−1)(σ−ε0))
2(ω−1) + (ω−1) sinh((ω+1)(σ−ε0))

2(ω+1)

)
ω 6= −1, 0, 1

2(σ−ε0)−sinh 2(σ0+ε0)+sinh 2(σ+σ0)
4 cosh(σ0+ε0) cosh(σ+σ0) ω = −1, 1

(σ−ε0) sinh(σ0+ε0) sinh(σ+σ0)+sinh(σ−ε0)
cosh(σ0+ε0) cosh(σ+σ0) ω = 0 .

(3.13)

13In the language of [40], this shift corresponds to a different choice of orthonormal vectors that are

orthogonal to the string surface.
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The determinant is then given by f(II)1(R) and for R large one obtains the simpler

expression

DetωO2(θ0) =

{
e|ω|(R−ε0) (|ω|+tanh(σ0+ε0))

2|ω|(|ω|+1) ω 6= 0

R tanh(σ0 + ε0) ω = 0 .
(3.14)

We repeat the same procedure for O3+ (θ0). From the solutions

f(II)1(σ) =



(ω+1)e2(σ+σ0+ε0) sinh((ω−1)(σ−ε0))+(ω−1) sinh((ω+1)(σ−ε0))

(ω2−1)
√

(1+e4σ+2σ0 )(1+e2σ0+4ε0 )
ω 6= −1, 0, 1

(e2σ−2ε0−e−2σ+2ε0+4e2σ+2σ0+2ε0 (σ−ε0))
4
√

(1+e4σ+2σ0 )(1+e2σ0+4ε0 )
ω = −1, 1

(eσ−ε0−e−σ+ε0)(e2(σ+σ0+ε0)+1)
2
√

(1+e4σ+2σ0 )(1+e2σ0+4ε0 )
ω = 0

(3.15)

one finds for large R

DetωO3+(θ0) =



eR(ω−1)−σ0−(ω+1)ε0(ω+(ω+1)e2σ0+4ε0−1)
2(ω2−1)

√
1+e2σ0+4ε0

ω ≥ 2

Reσ0+2ε0√
1+e2σ0+4ε0

ω = 1

e−R(ω−1)+σ0+(ω+1)ε0

2(1−ω)
√

1+e2σ0+4ε0
ω ≤ 0 .

(3.16)

In view of the relation O3− (θ0) = O3+ (θ0) |ω→−ω, which follows from (3.10), we can easily

deduce the results for DetωO3−(θ0) by flipping the frequency in the lines above

DetωO3−(θ0) =



eR(ω+1)+σ0+(−ω+1)ε0

2(1+ω)
√

1+e2σ0+4ε0
ω ≥ 0

Reσ0+2ε0√
1+e2σ0+4ε0

ω = −1

e−R(ω+1)−σ0−(−ω+1)ε0(−ω+(−ω+1)e2σ0+4ε0−1)
2(ω2−1)

√
1+e2σ0+4ε0

ω ≤ −2 .

(3.17)

Notice that a shift of ω → ω − 1 in DetωO3+(θ0) and ω → ω + 1 in DetωO3−(θ0) gives

back the symmetry around ω = 0 in the distribution of power-like and exponential large-R

divergences which characterizes the other determinants (3.12) and (3.14). Such a shift —

also useful for the circular Wilson loop limit as discussed below (3.11) — does not affect

the determinant, and we will perform it in section 4.

3.2 Fermionic sector

The fluctuation analysis in the fermionic sector can be easily carried out following

again the general approach [40], which includes the local SO(1, 9) rotation in the tar-

get space [6, 41–45] that allows to cast the quadratic Green-Schwarz fermionic action into

eight contributions for two-dimensional spinors on the curved worldsheet background.

The standard Type IIB κ-symmetry gauge-fixing for the rotated fermions ΨI

Ψ1 = Ψ2 ≡ Ψ (3.18)
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leads to the Lagrangian14

L(2)
F = 2iΩ2(σ) Ψ̄OF (θ0) Ψ (3.19)

where the operator OF (θ0) is given by

OF (θ0) =
i

Ω(σ)
(Γ4∂τ + Γ3∂σ − a34(σ)Γ3 + a56(σ)Γ456)

+
1

Ω(σ)2

(
sinh2 ρ(σ)Γ012 + sin2 θ(σ)Γ0123456

)
. (3.20)

The coefficients a34(σ) and a56(σ) can be expressed as derivatives of the functions appearing

in the classical solution:

a34(σ) = −1

2

d

dσ
log Ω(σ) and a56(σ) =

1

4

d

dσ
log

cosh ρ(σ) + cos θ(σ)

cosh ρ(σ)− cos θ(σ)
. (3.21)

In the θ0 → 0 limit (hence θ(σ)→ 0), one gets

OF (θ0 = 0) = i sinhσΓ4∂τ + i sinhσΓ3∂σ −
i

2
coshσΓ3 +

i

2
sinhσΓ456 + Γ012 , (3.22)

which coincides with the operator found in the circular Wilson loop analysis of [7],15 once

we go back to Minkowski signature and reabsorbe the connection-related Γ456-term via the

τ -dependent rotation Ψ → exp
(
− τ

2 Γ56

)
Ψ. In Fourier space this results in a shift of the

integer fermionic frequencies ω by one half, turning periodic fermions into anti-periodic

ones. In the general case (3.20) we cannot eliminate all the connection-related terms

−a34(σ)Γ3 + a56(σ)Γ456, since the associated normal bundle is non-flat [40].16 Performing

anyway the above τ -rotation at the level of (3.20) has the merit of simplifying the circular

limit making a direct connection with known results. This is how we will proceed: for

now, we continue with the analysis of the fermionic operator in the form (3.20) without

performing any rotation. Then, in section 4, we shall take into account the effect of this

rotation by relabelling the fermionic Fourier modes in terms of a suitable choice of half-

integers.

The analysis of the fermionic operator (3.20) drastically simplifies noticing that the

set of mutually-commuting matrices {Γ12,Γ56,Γ89} commutes with the operator itself and

leaves invariant the spinor constraint (A.6) and the fermionic gauge fixing (3.18). By means

of the projectors

P±12 ≡
I32 ± iΓ12

2
, P±56 ≡

I32 ± iΓ56

2
and P±89 ≡

I32 ± iΓ89

2
, (3.23)

14We perform the computations in a Lorentzian signature for the induced worldsheet metric and only

at the end Wick-rotate back. The difference with (5.37)–(5.38) of [40] is only in labeling the spacetime

directions.
15See formula (5.17) therein.
16The arising of gauge connections in the covariant derivatives associated to the structure of normal

bundle is discussed at length in [40] and references therein. In particular, see discussion in section 5.2

of [40] for both the latitude and the circular Wilson loop limit.
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we decompose the 32 × 32 fermionic operator into eight blocks of 2 × 2 operators labeled

by the triplet {p12, p56, p89 = −1, 1}. Formally this can be seen as the decomposition into

the following orthogonal subspaces

OF (θ0) =
⊕

p12,p56,p89=−1,1

Op12,p56,p89F (θ0) (3.24)

Ψ =
⊗

p12,p56,p89=−1,1

Ψp12,p56,p89 (3.25)

where each operator

Op12,p56,p89F (θ0) ≡ i

Ω(σ)
(Γ4∂τ + Γ3∂σ − a34(σ)Γ3 − ip56a56(σ)Γ4) (3.26)

+
1

Ω2(σ)

(
−ip12 sinh2 ρ(σ)Γ0 − p12p56 sin2 θ(σ)Γ034

)
acts on the eigenstates Ψp12,p56,p89 of {P±12,P

±
56,P

±
89} with eigenvalues {1± p12

2 , 1± p56
2 , 1± p89

2 }.
Notice that the operator defined in (3.26) actually does not depend on the label p89. Then

the spectral problem reduces to the computation of eight 2D functional determinants17

DetOF (θ0) =
∏

p12,p56,p89=±1

DetOp12,p56,p89F (θ0) . (3.27)

A deeper look at the properties of Op12,p56,p89F allows us to focus just on the case of p12 =

p56 = p89 = 1. In fact, as motivated in details in appendix C.1, the total determinant can

be rewritten as follows

DetOF (θ0) =
∏
ω∈Z

Detω[(O1,1,1
F (ω))2]2Detω[(O1,1,1

F (−ω))2]2 . (3.28)

Using the matrix representation (A.3) and going to Fourier space, we obtain

O1,1,1
F (θ0) ≡

[ i

Ω(σ)

(
− iωσ2 + σ1∂σ − a34(σ)σ1 + ia56(σ)σ2

)
(3.29)

+
1

Ω2(σ)

(
sinh2 ρ(σ)σ3 − sin2 θ(σ)I2

)]
⊗M ≡ Õ1,1,1

F ⊗M ,

where M = σ2 ⊗ I4 ⊗ σ1. For simplicity of notation, from now on we will denote with

O1,1,1
F (θ0) the first factor in the definition above. In a similar spirit to the analysis for the

bosonic sector, we start to find the solutions of the homogeneous problem

O1,1,1
F (θ0) f̄(σ) = 0 (3.30)

where f̄(σ) denotes the two component spinor (f1(σ), f2(σ))T . The system of coupled

first-order differential equations now reads(
− sin2 θ(σ) + sinh2 ρ(σ)

)
f1(σ) + iΩ(σ) (∂σ − ω − a34(σ) + a56(σ)) f2(σ) = 0, (3.31)(

− sin2 θ(σ)− sinh2 ρ(σ)
)
f2(σ) + iΩ(σ) (∂σ + ω − a34(σ)− a56(σ)) f1(σ) = 0. (3.32)

17A non-trivial matrix structure is also encountered in the fermionic sector of the circular Wilson loop [7],

but the absence of a background geometry in S5 leads to a simpler gamma structure. It comprised only three

gamma combinations (Γ0,Γ4,Γ04), whose algebra allows their identification with the three Pauli matrices

without the need of the labelling the subspaces.
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We can cast it into a second-order differential equation for one of the unknown functions.

Solving (3.32) for f2(σ)

f2(σ) =
i

Ω (σ)

(
∂σ + ω − 1

2 tanhσ
− tanh (σ + σ0)

2

)
f1(σ) , (3.33)

and then plugging it into (3.31) one obtains

f
′′
1 (σ)−

(
1

2 sinh2 σ
− 1

2 cosh2 (σ+σ0)
+

(
1

2 tanhσ
+

tanh(σ+σ0)

2
− ω
)2)

f1(σ) = 0. (3.34)

It is worth noticing that the Gel’fand-Yaglom method has naturally led to an auxil-

iary Schrödinger equation for a fictitious particle on a semi-infinite line and subject

to a supersymmetric potential V (σ) = −W ′(σ) + W 2(σ) derived from the prepotential

W (σ) = 1
2 tanhσ + tanh(σ+σ0)

2 − ω. Traces of supersymmetry are not surprising: they repre-

sent a vestige of the supercharges unbroken by the classical background.18

As in the bosonic case, we have to separately discuss some critical values of the fre-

quencies. We only report the independent solutions of the equations above, where the

constants ci,1 and ci,2 have to be fixed in the desired initial value problem (i = I, II).

f(i)1(σ) =



ci,1e
σ(1+ω)+ci,2e

σ(1−ω)+σ0(2ω2 cosh(σ+σ0) sinhσ+ω cosh(2σ+σ0)+sinhσ0)√
(e2σ−1)(e2σ+2σ0+1)

ω 6= −1, 0, 1

ci,1e
2σ+ci,2(−4σe2σ+2σ0−2e2σ0+2−e−2σ)√

(e2σ−1)(e2σ+2σ0+1)
ω = 1

ci,1e
σ+ci,2(−e−σ−e3σ+2σ0+2σeσ(e2σ0−1))√

(e2σ−1)(e2σ+2σ0+1)
ω = 0

ci,1+ci,2(4σ−2e2σ+2e2σ+2σ0−e4σ+2σ0)√
(e2σ−1)(e2σ+2σ0+1)

ω = −1

(3.35)

f(i)2(σ) =



ci,1
2ieσ(2+ω)+σ0 (− cosh(2σ+σ0)+2ω cosh(σ+σ0) sinhσ)√

(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)(e4σ+2σ0+1)
+

−ci,2 ie
σ(2−ω)+2σ0 (2ω+sinh(2σ+2σ0)+2ω sinhσ0 sinh(2σ+σ0)−sinh 2σ)√

(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)(e4σ+2σ0+1)
ω 6= −1, 0, 1

−ci,1
i(2eσ−e3σ+e3σ+2σ0)√

(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)(e4σ+2σ0+1)

−ci,2
i(2e5σ+4σ0−e−σ+2σ0+e−σ+4(σ+1)e3σ+2σ0(1−e2σ0)−4(2σ+1)eσ+2σ0)√

(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)(e4σ+2σ0+1)
ω = 1

−ci,1 i
√

1+e4σ+2σ0√
(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)

−ci,2
i(e2σ−6e2σ+2σ0+e2σ+4σ0+2(σ−1)e4σ+2σ0(e2σ0−1)+2(σ+1)(e2σ0−1))√

(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)(e4σ+2σ0+1)
ω = 0

−ci,1
i(eσ−eσ+2σ0+2e3σ+2σ0)√

(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)(e4σ+2σ0+1)

−ci,2
i(2e−σ−e5σ+2σ0+e5σ+4σ0+4(σ−1)eσ(1−e2σ0)+4e3σ+2σ0 (2σ−1))√

(e2σ−1)(e2σ0+1)(e2σ+2σ0+1)(e4σ+2σ0+1)
ω = −1

(3.36)

18The same property is showed by (5.26) in [7].
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We are now ready to evaluate the determinants using the results of appendix (B.3), namely

considering Dirichlet boundary conditions for the square of the first order differential oper-

ator. Having in mind the solutions above and how they enter in (B.9) and (B.22), it is clear

that already the integrand in (B.27) is significantly complicated. A simplification occurs

by recalling that our final goal is taking the R→∞ limit of all determinants and combine

them in the ratio of bosonic and fermionic contributions. As stated above in the bosonic

analysis and shown explicitly below, for the correct large ω divergences to be reproduced,

it is crucial to send R → ∞ while keeping ε finite. In appendix (C.2) we sketch how to

use the main structure of the matrix of the solutions Y (σ) to obtain the desired large-R

expressions for the determinants in a more direct way.

The determinant of the operator O1,1,1
F for modes ω 6= {−1, 0, 1} reads for large R

Detω≥2[(O1,1,1
F )2] =

a0 e
2ω(R−ε0)

ω2 (1 + ω)2(ω − 1)

[
a1 Φ

(
e−2ε0 , 1, ω

)
+ a2 Φ(−e−2(σ0+ε0), 1, ω) + a3

]
Detω≤−2[(O1,1,1

F )2] =
b0 e
−2ω(R−ε0)

ω (1− ω)2

[
b1 Φ

(
e−2ε0 , 1,−ω

)
+ b2 Φ(−e−2(σ0+ε0), 1,−ω) + b3

]
(3.37)

where Φ(z, s, a) is the Lerch transcendent (4.5). The presence of the Lerch function is

just a tool to have a compact expression for the determinants. In fact, for the values of ω

relevant for us, it can be can be written in terms of elementary functions, but its expression

becomes more and more unhandy as the value of ω increases. The coefficients ai and bi
can be also expressed in terms of elementary functions. For the ai we have

a0 = e−R−
3σ0
2

sinh ε0 (tanhσ0 + 1) cosh (σ0 + ε0)

8
√

2 cosh (σ0 + 2ε0)

a1 = 4 sechσ0(tanhσ0 + ω)2 (3.38)

a2 = 4[2
(
1− ω2

)
ω2 coshσ0 − 2

(
1− ω2

)
ω sinhσ0 + sechσ0

(
sech2σ0 + ω2 − 1

)
]

a3 = tanh2 σ0 (coth ε0 + 1) cschε0 sech (σ0 + ε0)
[
eσ0 (coshσ0 − 2 sinhσ0 − sinh(2ε0 − σ0))

+ cosh(2σ0 + 2ε0))
]

+ 2ω
[
− ω2 cosh2 σ0 cschε0 sech(σ0 + ε0)

+ coshσ0

(
2ω2+ω+3ω2 cschε0 cosh(σ0+2ε0) sech(σ0+ε0)+ω coth2 ε0+2 coth ε0−2

)
+ 2
(
3ω cosh ε0 sech(σ0+ε0)−sinhσ0

(
ω−2ω coth ε0−csch2ε0

)
− sechσ0(coth ε0+1)

)]
while for the bi we get

b0 = eR−
σ0
2 sech2σ0

sinh ε0 (tanhσ0 + 1) cosh (σ0 + ε0)

8
√

2 cosh(σ0 + 2ε0)

b1 = −2

b2 = −2
[
ω
(
ω cosh(2σ0) + sinh(2σ0)

)
+ ω2 − 1

]
b3 = − cosh2 σ0

[
4ω tanh(σ0 + ε0)− 2ω coth ε0 + csch2ε0

]
− ω

− cosh(2σ0)(ω + 1)− sinh(2σ0) + cosh(ε0 − σ0)sech (σ0 + ε0) .

(3.39)
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The determinants of the lower modes have to be computed separately and they are given by

Detω=1[(O1,1,1
F )2]=ReR

e−
σ0
2 (tanhσ0+1) sinh ε0 cosh(σ0+ε0)

(e2σ0 + 1)3
√

2 cosh(σ0 + 2ε0)

[
− 2e4σ0

(
log

e2ε0 − 1

e2(σ0+ε0)+1
+

+ 2σ0

)
+

(e2σ0 +1)
(
e6σ0+4ε0 + (e2ε0 +1)e4σ0+2ε0 + e2σ0(−5e2ε0 + 3e4ε0 +3) + (e2ε0−1)2

)
(e2ε0 − 1)2(e2(σ0+ε0)+1)

]
(3.40)

Detω=0[(O1,1,1
F )2]=ReR

e−
σ0
2 (tanhσ0+1) sinh ε0 cosh(σ0+ε0)

(e2σ0 + 1)2
√

2 cosh(σ0 + 2ε0)

[
− 2e2σ0

(
log

e2ε0 − 1

e2(σ0+ε0)+1
+

+ 2σ0

)
+

(
e2σ0 + 1

) (
−e2σ0 + 3e2(σ0+ε0) + e4(σ0+ε0) − e2ε0 + e4ε0 + 1

)
(e2ε0 − 1)2 (e2(σ0+ε0) + 1

) ]
(3.41)

Detω=−1[(O1,1,1
F )2]=e3R e

−σ0
2 (tanhσ0 + 1) sinh ε0 cosh(σ0+ε0)

8 (e2σ0 + 1)2
√

2 cosh(σ0 + 2ε0)

[
− 2e2σ0

(
log

e2ε0 − 1

e2(σ0+ε0)+1
+

+ 2σ0

)
+

(
e2σ0 + 1

) (
e4σ0

(
2e2ε0 − 1

)
+ e2σ0

(
7e2ε0 − 2e4ε0 − 3

)
+ e2ε0

)
(e2ε0 − 1)2 (e2(σ0+ε0) + 1

) ]
. (3.42)

3.3 The circular Wilson loop limit

We report here the σ0 →∞ limit of all the bosonic and fermionic determinants, representing

the circular Wilson loop case θ0 = 0. The result for DetωO1 in (3.12) stays obviously the

same, while for the limits of (3.14), (3.16) and (3.17) one easily gets

DetωO2(θ0 = 0) =

{
e|ω|(R−ε0)

2|ω| ω 6= 0

R ω = 0
(3.43)

DetωO3+(θ0 = 0) =


e(R−ε0)(ω−1)

2(ω−1) ω ≥ 2

R ω = 1
e−(R−ε0)(ω−1)

2(1−ω) ω ≤ 0

(3.44)

DetωO3−(θ0 = 0) =


e(R−ε0)(ω+1)

2(1+ω) ω ≥ 0

R ω = −1

− e−(R−ε0)(ω+1)

2(ω+1) ω ≤ −2 .

(3.45)

The fermionic contributions (3.37)–(3.42) reduce in this limit to

Detω

[ (
O1,1,1
F (θ0 = 0)

)2 ]
=



e(R−ε0)(2ω−1)(ω(e2ε0−1)+1)
4(ω−1)ω2 (e2ε0−1)

ω ≥ 2

ReR+ε0

2(e2ε0−1)
ω = 0, 1

e3(R−ε0) (2e2ε0−1)
16(e2ε0−1)

ω = −1

e−(R−ε0)(2ω−1)((ω−1)e2ε0−ω)
4(ω−1)2ω (e2ε0−1)

ω ≤ −2 .

(3.46)
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4 One-loop partition functions

We now put together the determinants evaluated in the previous sections and present the

one-loop partition functions for the open strings representing the latitude (θ0 6= 0) and the

circular (θ0 = 0) Wilson loop, eventually calculating their ratio.

In the case of fermionic determinants, as motivated by the discussion below (3.22),

we will consider the relevant formulas (3.37)–(3.42) relabelled using half-integer Fourier

modes. In fact, once projected onto the subspace labelled by (p12, p56, p89), the spinor Ψ is

an eigenstate of Γ56 with eigenvalue −ip56 and the rotation Ψ→ exp
(
− τ

2 Γ56

)
Ψ reduces to

a shift of the Fourier modes by ω → ω + p56
2 . This in particular means that below we will

consider (3.37)–(3.42) effectively evaluated for ω = s + 1
2 and labeled by the half-integer

frequency s. In the bosonic sector — as discussed around (3.11) and (3.17) — we pose

ω = `+1 in DetωO3+ together with ω = `−1 in DetωO3−. This relabeling of the frequences

provides in (3.16) and (3.17) a distribution of the R-divergences that is centered around

` = 0 (i.e. with a divergence ∼ R for ` = 0 and ∼ e|`|R for ` 6= 0) in the same way (in ω) as

for the other bosonic determinants (3.12) and (3.14). This will turn out to be useful while

discussing the cancellation of R-dependence. Recalling also (2.13), we write the formal

expression of the one-loop string action

Z(θ0)=e
√
λ cos θ0

∏
s∈Z+1/2

[
Dets(O1,1,1

F )2 Det−s(O1,1,1
F )2

]4/2∏
`∈Z
[
Det`O1(θ0)

]3/2[
Det`O2(θ0)

]3/2[
Det`O3+ (θ0)

]1/2[
Det`O3−(θ0)

]1/2 .
(4.1)

To proceed, we rewrite (4.1) as the (still unregularized) sum

Γ(θ0) ≡ − logZ(θ0) ≡ −
√
λ cos θ0 + Γ(1)(θ0) (4.2)

Γ(1)(θ0) ≡
∑
`∈Z

ΩB
` (θ0)−

∑
s∈Z+1/2

ΩF
s (θ0) ,

where the (weighted) bosonic and fermionic contributions read

ΩB
` (θ0) =

3

2
log
[
Det`O1(θ0)

]
+

3

2
log
[
Det`O2(θ0)

]
+

1

2
log
[
Det`O3+

]
+

1

2
log[Det`O3−

]
ΩF
s (θ0) =

4

2
log
[

Dets(O1,1,1
F )2

]
+

4

2
log
[
Det−s(O1,1,1

F )2
]
. (4.3)

Equation (4.2) has the same form with effectively antiperiodic fermions encountered

in [7, 37].

Introducing the small exponential regulator µ, we proceed with the “supersymmetric

regularization” of the one-loop effective action proposed in [36, 37]

Γ(1)(θ0) =
∑
`∈Z

e−µ|`|

ΩB
` (θ0)−

ΩF
`+ 1

2

(θ0) + ΩF
`− 1

2

(θ0)

2


+
µ

2
ΩF

1
2

(θ0) +
µ

2

∑
`≥1

e−µ`
(

ΩF
`+ 1

2

(θ0)− ΩF
`− 1

2

(θ0)
)
. (4.4)
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In the first sum (where the divergence is the same as in the original sum) one can remove µ

by sending µ→ 0, and use a cutoff regularization in the summation index |`| ≤ Λ. Impor-

tantly, the non-physical regulator R disappears in (4.4). While in [7]19 the R-dependence

drops out in each summand, here it occurs as a subtle effect of the regularization scheme,

and comes in the form of a cross-cancellation between the first and the second line once the

sums have been carried out. The difference in the R-divergence cancellation mechanism is

a consequence of the different arrangement of fermionic frequencies in our regularization

scheme (4.4). In the circular case (θ0 = 0) this cancellation can be seen analytically, as

in (4.10)–(4.11) below. The same can be then inferred for the general latitude case, since

in the normalized one-loop effective action Γ(1)(θ0)−Γ(1)(θ0 = 0) one observes (see below)

that the R-dependence drops out in each summand.

A non-trivial consistency check of (4.4) is to confirm that in the large ` limit the

expected UV divergences [6, 40] are reproduced. Importantly, for this to happen one

cannot take the limit ε0 → 0 in the determinants above before considering `� 1, which is

the reason why we kept dealing with the complicated expressions for fermionic determinants

above. Using for the Lerch transcendent in (3.37)

Φ(z, s, a) ≡
∞∑
n=0

zn

(n+ a)s
(4.5)

the asymptotic behavior for |a| � 1 (i.e. |`| � 1 in (3.37)) [46]

Φ(z, s, a) ∼ sgn(a)

(
s(s+ 1)z (z + 1) a−s−2

2(1− z)3
− s z a−s−1

(1− z)2
+

a−s

1− z

)
, (4.6)

one finds that the leading Λ-divergence is logarithmic, and — as expected from an analysis

in terms of the Seeley-De Witt coefficients [6, 40] — proportional to the volume part of

the Euler number

Γ(1)(θ0) = −χv(θ0)
∑

1�|`|≤Λ

1

2|`|
+O(Λ0) = −χv(θ0) log Λ +O(Λ0) , Λ→∞ (4.7)

where

χv(θ0) =
1

4π

∫ 2π

0
dτ

∫ ∞
ε0

dσ
√
h (2)R (4.8)

= 1− 3− cosh(2ε0) + cosh(2(σ0 + ε0)) + cosh(2(σ0 + 2ε0))

4 sinh ε0 cosh(σ0 + ε0) cosh(σ0 + 2ε0)
= 1− 1

ε
+O(ε) ,

and we notice that this limit is independent from σ0 (θ0). This divergence should be

cancelled via completion of the Euler number with its boundary contribution (2.12) and

inclusion of the (opposite sign) measure contribution, as discussed in [6, 7]. Having this in

mind, we will proceed subtracting (4.7) by hand in Γ(1)(θ0) and in Γ(1)(θ0 = 0).

19In this reference a regularization slightly different from [36, 37] was adopted.
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4.1 The circular Wilson loop

The UV-regulated partition function in the circular Wilson loop limit reads

Γ
(1)
UV-reg(θ0 = 0) =

∑
|`|≤Λ

ΩB
` (0)−

ΩF
`+ 1

2

(0) + ΩF
`− 1

2

(0)

2

+ χv(0) log Λ

+
µ

2
ΩF

1
2

(0) +
µ

2

∑
`≥1

e−µ`
(

ΩF
`+ 1

2

(0)− ΩF
`− 1

2

(0)
)
. (4.9)

The first line is now convergent and its total contribution evaluates for Λ →∞ to

∑
|`|≤Λ

ΩB
` (0)−

ΩF
`+ 1

2

(0) + ΩF
`− 1

2

(0)

2

+ χv(0) log Λ

=
Λ∑
`=3

log
16(`− 1)2(`+ 1)

(
`+ 1

ε

)3
`2
(
2`+ 1 + 1

ε

)2 (
2`− 1 + 1

ε

)2 + log
1536e−2Rε5/2(1 + 2ε)3

(1 + 3ε)4(1 + 5ε)2(1− ε)
+ χv(0) log Λ

= −2R+ log
16 Γ

(
3
2 + 1

2ε

)4
(1− ε)

√
εΓ
(
2 + 1

ε

)3 , (4.10)

where Γ is Euler gamma function. The R-dependence in (4.10) cancels against the O(µ0)

contribution stemming from the regularization-induced sum in the second line of (4.9)

µ

2

∑
`≥1

e−µ`
(

ΩF
`+ 1

2

(0)− ΩF
`− 1

2

(0)
)

= µ
∑
`≥3

e−` µ
[

2R+ log
(`− 1)`(1− ε)(2`+ 1 + 1

ε )

(`+ 1)2(1 + ε)(2`− 1 + 1
ε )

]
(4.11)

= 2R− 2 arctanh ε .

Summing all contributions and finally taking ε→ 0, the result is precisely as in [7]

Γ
(1)
UV-reg(θ0 = 0) =

1

ε

(
log

ε

4
+ 1
)

+
1

2
log(2π) , (4.12)

despite the different frequency arrangement we commented on. We have checked that the

same result is obtained employing ζ-function regularization in the sum over `. The same

finite part was found in [10] via heat kernel methods. There is no theoretical motivation

for the log ε/ε-divergences appearing in (4.12), which will be cancelled in the ratio (1.3).

In [7], this kind of subtraction has been done by considering the ratio between the circular

and the straight line Wilson loop.

4.2 Ratio between latitude and circular Wilson loops

In this section we describe the evaluation of the ratio (1.3)

log
Z (λ, θ0)

Z (λ, 0)
=
√
λ(cos θ0 − 1) + Γ

(1)
UV-reg(θ0 = 0)− Γ

(1)
UV-reg(θ0) (4.13)
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where Γ
(1)
UV-reg(θ0 = 0) is in (4.9) and Γ

(1)
UV-reg(θ0) is regularized analogously. The compli-

cated fermionic determinants (3.37)–(3.39) make an analytical treatment highly non-trivial,

and we proceed numerically.

First, we spell out (4.13) as

Γ
(1)
UV-reg(0)− Γ

(1)
UV-reg(θ0) =

2∑
`=−2

[
ΩB
` (0)− ΩB

` (θ0)−
ΩF
`+1

2

(0)+ΩF
`− 1

2

(0)

2 +
ΩF
`+1

2

(θ0)+ΩF
`− 1

2

(θ0)

2

]

+
Λ∑
`=3

2

[
ΩB
` (0)−ΩB

` (θ0)−
ΩF
`+1

2

(0)+ΩF
`− 1

2

(0)

2 +
ΩF
`+1

2

(θ0)+ΩF
`− 1

2

(θ0)

2

]
− (χv(θ0)− χv(0)) log Λ +

µ

2

[
ΩF

1
2

(0)− ΩF
1
2

(θ0)
]

(4.14)

+
µ

2

∑
`≥1

e−µ`
[
ΩF
`+ 1

2

(0)− ΩF
`− 1

2

(0)− ΩF
`+ 1

2

(θ0) + ΩF
`− 1

2

(θ0)
]

where we separated the lower modes |`| ≤ 2 from the sum in the second line,20 and in the

latter we have used parity `→ −`. The sum multiplied by the small cutoff µ is zero in the

limit µ → 0.21 The sum with large cutoff Λ can be then numerically evaluated using the

Euler-Maclaurin formula

n∑
`=m+1

f (`) =

∫ n

m
f (`) d`+

f (n)− f (m)

2
+

p∑
k=1

B2k

(2k)!

[
f (2k−1) (n)− f (2k−1) (m)

]
−
∫ n

m
f (2p) (`)

B2p ({`})
(2p)!

d` , p ≥ 1 , (4.15)

in which Bn(x) is the n-th Bernoulli polynomial, Bn = Bn(0) is the n-th Bernoulli number,

{`} is the integer part of `, f(`) is the summand in the second line of (4.14), so m = 2,

n = Λ. After some manipulations to improve the rate of convergence of the integrals, we

safely send Λ→∞ in order to evaluate the normalized effective action

∆Γ(θ0)sm ≡
[
Γ

(1)
UV-reg(0)− Γ

(1)
UV-reg(θ0)

]
sm

(4.16)

=
2∑

`=−2

ΩB
` (0)− ΩB

` (θ0)−
ΩF
`+ 1

2

(0) + ΩF
`− 1

2

(0)

2
+

ΩF
`+ 1

2

(θ0) + ΩF
`− 1

2

(θ0)

2


+

∫ ∞
2

[
f (`)− χv(θ0)− χv(0)

`

]
d`− (χv(θ0)− χv(0)) log 2

−f (2)

2
−

3∑
k=1

B2k

(2k)!
f (2k−1) (2)− 1

6!

∫ ∞
2

f (6) (`) B6 ({`}) d` .

20This is convenient because of the different form for the special modes (3.40)–(3.42) together with the

relabeling discussed above.
21This can be proved analytically since the summand behaves as µ e−µ``−2 for large `. Removing the

cutoff makes the sum vanish.
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In order to gain numerical stability for large `, above we have set p = 3, we have cast the

Lerch transcendents inside ΩF
s (θ0) — see (3.37) — into hypergeometric functions

Φ(z, 1, a) =
2F1(1, a; a+ 1; z)

a
, |z| < 1 ∧ z 6= 0 , (4.17)

and we have approximated the derivatives f (k)(`) by finite-difference expressions

f (k)(`) → ∆`−k
k∑
i=0

(−1)i
(
k

i

)
f
(
`+ (k2 − i)∆`

)
, ∆`� 1 . (4.18)

At this stage, the expression (4.16) is only a function of the latitude parameter σ0 (i.e.

the polar angle θ0 in (2.4)) and of two parameters — the IR cutoff ε0 and the derivative

discretization ∆`, both small compared to a given σ0. We have tuned them in order to

confidently extract four decimal digits. In figure 1a we compare the regularized one-loop

effective action obtained from the perturbation theory of the string sigma-model (4.16) to

the gauge theory prediction from (1.2)

∆Γ(θ0)loc ≡
[
Γ

(1)
UV-reg(0)− Γ

(1)
UV-reg(θ0)

]
loc

= −3

2
log tanhσ0 (4.19)

for different values of σ0. Data points cover almost entirely22 the finite-angle region between

the Zarembo Wilson loop (σ0 = 0, θ0 = π
2 ) and the circular Wilson loop (σ0 =∞, θ0 = 0).

The vanishing of the normalized effective action in the large-σ0 region is a trivial

check of the normalization. As soon as the opposite limit σ0 = 0 is approached, the

difference (4.16) bends up “following” the localization curve (4.19) but also significantly

deviates from it, and the measured discrepancy is incompatible with our error estimation.

Numerics is however accurate enough to quantify the gap between the two plots on a

wide range. Figure 1b shows that, surprisingly, such gap perfectly overlaps a very simple

function of σ0 within the sought accuracy

Rem(θ0) ≡ ∆Γ(θ0)sm −∆Γ(θ0)loc ≈ −
1

2
log(1 + e−2σ0) = log cos θ02 . (4.20)

We notice at this point that the same simple result above can be obtained taking in (4.14)

the limit of ε → 0 before performing the sums. As one can check, in this limit UV and

IR divergences cancel in the ratio.23 the special functions in the fermionic determinants

disappear and, because in general summands drastically simplify, one can proceed analyt-

ically getting the same result calculated in terms of numerics. We remark however that

such inversion of the order of sum and limit on the IR cutoff cannot be a priori justified, as

it would improperly relate the Λ cutoff with a 1/ε cutoff (e.g. forcing ` to be smaller than

1/ε). As emphasized above, in this limit the effective actions for the latitude and circular

case separately do not reproduce the expected UV divergences. Therefore, the fact that in

22When pushed to higher accuracy, numerics is computationally expensive in the vicinity of the two

limiting cases (σ0 = 0, θ0 = π
2

) and(σ0 =∞, θ0 = 0).
23This is also due to the volume part of the Euler number χv(θ0) being independent of σ0 up to ε

corrections, see (4.8).
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(a) Comparison between ∆Γ(θ0)sm
in (4.16) (orange dots) and ∆Γ(θ0)loc
in (4.19) (blue line). We set ε0 = 10−7,

∆` = 10−9.

(b) Fitting of the discrepancy (4.20) (red

dots) with the test function − 1
2

log(1 +

e−2σ0) (black line). We set ε0 = 10−7,

∆` = 10−9. The interval covers approxi-

mately 0.8◦ ≤ θ0 ≤ 89.4◦.

Figure 1. Comparison between string sigma-model perturbation theory and the predictions coming

from supersymmetric localization for the ratio between latitude and circular Wilson loops in terms

of the corresponding one-loop sigma-model (differences of) effective actions.

this limit the summands in the difference (4.14) show a special property of convergence —

which we have not analyzed in details — and lead to the exact result is a priori highly not

obvious, rendering the numerical analysis carried out in this section a rather necessary step.

On a related note, the simplicity of the result (4.20) and the possibility of getting an

analytical result for the maximal circle θ0 = 0 suggest that the summation (4.4) could

have been performed analytically also in the latitude case θ0 6= 0. We have not further

investigated this direction.

5 Conclusions

In this paper we calculated the ratio between the AdS5×S5 superstring one-loop partition

functions of two supersymmetric Wilson loops with the same topology. In so doing, we

address the question whether such procedure — which should eliminate possible ambiguities

related to the measure of the partition function, under the assumption that the latter only

depends on worldsheet topology — leads to a long-sought agreement with the exact result

known via localization at this order, formula (4.19).

Our answer is that, in the standard setup we have considered for the evaluation of the

one-loop determinants (Gelfand-Yaglom approach with Dirichlet boundary conditions at
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the boundaries, of which one fictitious24), the agreement is not found. A simple numerical

fit allows us to quantify exactly a “remainder function”, formula (4.20).25

As already emphasized, the expectation that considering the ratio of string partition

functions dual to Wilson loops with the same topology should cancel measure-related am-

biguities is founded on the assumption that the partition function measure is actually not

depending on the particular classical solution considered. Although motivated in light of

literature examples similar in spirit (see Introduction), this remains an assumption, and it

is not possible to exclude a priori a geometric interpretation for the observed discrepancy.

One reasonable expectation is that the disagreement should be cured by a change of the

world-sheet computational setup, tailored so to naturally lend itself to a regularization

scheme equivalent to the one (implicitly) assumed by the localization calculation.26 One

possibility is a choice of boundary conditions for the fermionic spectral problem27 different

from the standard ones here adopted for the squared fermionic operator.28 Also, ideally

one should evaluate determinants in a diffeomorphism-preserving regularization scheme. In

that it treats asymmetrically the worldsheet coordinates, the by now standard procedure

of employing the Gel’fand-Yaglom technique for the effective (after Fourier-transforming in

τ) one-dimensional case at hand does not fall by definition in this class. In other words, the

choice of using a ζ-function- like regularization — the Gel’fand-Yaglom method — in σ and

a cutoff regularization in Fourier ω-modes is a priori arbitrary. To bypass these issues it

would be desirable to fully develop a higher-dimensional formalism on the lines of [50, 51].

A likewise fully two-dimensional method to deal with the spectral problems is the heat

kernel approach, which has been employed at least for the circular Wilson loop case (where

the relevant string worldsheet is the homogenous subspace AdS2) in [10, 11]. As there

explained, the procedure bypasses the need of a large σ regulator and makes ε appear only

in the AdS2 regularized volume, the latter being a constant multiplying the traced heat

kernel and thus appearing as an overall factor in the effective action. This is different from

what happens with the Gel’fand-Yaglom method, where different modes carry a different

ε-structure and one has to identify and subtract by hand the ε-divergence in the one-loop

effective action. However, little is known about heat kernel explicit expressions for the

spectra of Laplace and Dirac operators in arbitrary two-dimensional manifolds, as it is the

case as soon as the parameter θ0 is turned on. The application of the heat kernel method

for the latitude Wilson loop seems then feasible only in a perturbative approach, i.e. in the

24See also appendix D where a minimally different choice for the boundary conditions on the bosonic and

fermionic modes with small Fourier mode is considered, and shown not to affect the final result.
25See also discussion below (4.20), where we notice that the same result is obtained analytically via the

a priori not justified “order-of-limits” inversion.
26Morally, this resembles the quest for an “integrability-preserving” regularization scheme, different from

the most natural one suggested by worldsheet field theory considerations, in the worldsheet calculations of

light-like cusps in N = 4 SYM [47] and ABJM theory [48].
27For the bosonic sector, we do not find a reasonable alternative to the Dirichlet boundary conditions.
28For example, instead of squaring one could consider the Dirac-like first-order operator (3.29). Then,

Dirichlet boundary conditions would lead to an overdetermined system for the arbitrary integration con-

stants of the 2 × 2 matrix-valued, first-order eigenvalue problem. The question of the non obvious alternative

to consider is likely to be tied to a search of SUSY-preserving boundary conditions on the lines of [49].
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small θ0 regime when the worldsheet geometry is nearly AdS2.29 It is highly desirable to

address these or further possibilities in future investigations.
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A Notation and conventions

We adopt the following conventions on indices, when not otherwise stated,

M,N, . . . = 0, . . . , 9 curved target-space indices

A,B, . . . = 0, . . . , 9 flat target-space indices

i, j, .. = 0, 1 curved worldsheet indices

a, b, .. = 0, 1 flat worldsheet indices

(A.1)

Flat and curved 32×32 Dirac matrices are respectively denoted by ΓA and ΓM and satisfy

the so (1, 9) algebra

{ΓA,ΓB} = 2ηABI32 {ΓM ,ΓN} = 2GMN I32, (A.2)

where ηAB = diag (−1,+1, . . . ,+1) and GMN is the target-space metric (2.5).

We use the explicit representation for the 10D gamma matrices

Γ0 = i (σ3 ⊗ σ2)⊗ I4 ⊗ σ1 Γ5 = I4 ⊗ (σ3 ⊗ σ2)⊗ σ2

Γ1 = (I2 ⊗ σ1)⊗ I4 ⊗ σ1 Γ6 = I4 ⊗ (σ1 ⊗ σ2)⊗ σ2

Γ2 = (I2 ⊗ σ3)⊗ I4 ⊗ σ1 Γ7 = I4 ⊗ (−σ2 ⊗ σ2)⊗ σ2

Γ3 = (σ1 ⊗ σ2)⊗ I4 ⊗ σ1 Γ8 = I4 ⊗ (I2 ⊗ σ1)⊗ σ2

Γ4 = (−σ2 ⊗ σ2)⊗ I4 ⊗ σ1 Γ9 = I4 ⊗ (I2 ⊗ σ3)⊗ σ2

(A.3)

29We are grateful to A. Tseytlin for a discussion on these points.
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accompanied by the chirality matrix

Γ11 = Γ0123456789 = −I4 ⊗ I4 ⊗ σ3. (A.4)

The symbol In stands for the n × n identity matrix and σ1, σ2, σ3 for the Pauli matrices.

It is also useful to report the combination that appears in the expansion of the fermionic

Lagrangian (3.26)

Γ034 = (I2 ⊗ σ2)⊗ I4 ⊗ σ1. (A.5)

The two 10D spinors of type IIB string theory have the same chirality

Γ11ΨI = ΨI , I, J = 1, 2 . (A.6)

In Lorentzian signature they are subject to the Majorana condition, but this cannot be

consistently imposed after Wick-rotation of the AdS global time t. This constraint, which

would halve the number of fermionic degrees of freedom, reappears as a factor 1/2 in the

exponent of fermionic determinants (4.1).

Throughout the paper we make a notational distinction between the algebraic deter-

minant det and the functional determinant Det, involving the determinant on the matrix

indices as well as on the space spanned by (τ, σ). We also introduce the functional deter-

minant Detω over σ for a given Fourier mode ω, understanding that for any operator O
the relation (3.1) holds

DetO =
∏
ω

DetωO. (A.7)

The boundary condition along the compact τ -direction specifies if the product is over

integers or half-integers. The issue related to the regularization of the infinite product

is addressed in the main text. The frequencies ω label the integer modes in the Fourier-

transformed bosonic and fermionic operators. We change notation and use ` for the integer

and s for the half-integer frequencies of the (bosonic and fermionic resp.) determinants

entering the cutoff-regularized infinite products (more details in section 4).

Finally, a comment on the functions these matrix operators act on. They are column

vectors of functions generically denoted by f̄ ≡ (f1, f2, . . . , fr)
T . Computing functional

determinants with the techniques presented in appendix B involves solving linear differ-

ential equations, whose independent solutions f̄(i) ≡
(
f(i)1, f(i)2, . . . , f(i)r

)T
are labelled by

Roman numerals i = I, II, . . ..

B Methods for functional determinants

The evaluation of the one-loop partition function requires the knowledge of several func-

tional determinants of one-dimensional differential operators — the operators in Fourier

space at fixed frequency Detω (see appendix A). This task can be simplified via the pro-

cedure of Gel’fand and Yaglom [29] (for a pedagogical review on the topic, see [52]). This
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algorithm has the advantage of computing ratios of determinants bypassing the computa-

tion of the full set of eigenvalues and is based on the solution of an auxiliary initial value

problem.30

To illustrate how to proceed, let us consider the situation we typically encounter

DetωO
DetωÔ

, (B.1)

in which the linear differential operators O, Ô are either of first order (for fermionic degrees

of freedom)31

O = P0(σ)
d

dσ
+ P1(σ) , Ô = P0(σ)

d

dσ
+ P̂1(σ) , (B.2)

or of second order (in the case of bosonic excitations)

O = P0(σ)
d2

dσ2
+ P1(σ)

d

dσ
+ P2(σ) , Ô = P0(σ)

d2

dσ2
+ P̂1(σ)

d

dσ
+ P̂2(σ). (B.3)

The coefficients above are complex matrices, continuous functions of σ on the finite interval

I = [a, b].

In appendix B.1 we deal with a class of spectral problems not plagued by zero modes

(vanishing eigenvalues) for chosen boundary conditions on the function space.32 We closely

follow the technology developed by Forman [30, 31], who gave a prescription to work with

even more general elliptic boundary value problems. We collected all the relevant formulas

descending from his theorem for the bosonic sector in appendix B.2, and for the square of

the 2D fermionic operators in appendix B.3.

Let us also stress again that the Gel’fand-Yaglom method and its extensions evaluate

ratios of determinants. Whenever we report the value of one single determinant here and

in the main text, the equal sign has to be understood up to a factor that drops out in

the normalized determinant. The reference operator can be any operator with the same

principal symbol. The discrepancy can be in principle quantified for a vast class of operators

with “separated” boundary conditions [62–64], i.e. where conditions at one boundary are

not mixed with conditions at the other one.

B.1 Differential operators of the nth-order

We consider the couple of n-order ordinary differential operators in one variable

O = P0(σ)
dn

dσn
+
n−1∑
k=0

Pn−k(σ)
dk

dσk
, Ô = P0(σ)

dn

dσn
+
n−1∑
k=0

P̂n−k(σ)
dk

dσk
(B.4)

30This algorithms has been used for several examples of one-loop computations which perfectly reproduce

non-trivial predictions from “reciprocity constraints” [53] (see also [54] and [55]), and the general equivalence

between Polyakov and Nambu-Goto 1-loop partition function around non-trivial solutions [56]. Further one-

loop computations reproducing predictions from quantum integrability are in [57–60].
31See next section for a comment on the coincidence of the coefficient P0(σ) of the higher-derivative term.
32We mention that, for the plethora of physical situations where it is interesting to project zero modes out

from the spectrum, the reader is referred to the results of [34] for self-adjoint operators of the Sturm-Liouville

type as well as [32, 33, 61] and references therein.
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with coefficients being r× r complex matrices. The main assumption is that the principal

symbols of the two operators (proportional to the coefficient P0(σ) of the highest-order

derivative) must be equal and invertible (detP0(σ) 6= 0) on the whole finite interval I =

[a, b]. This ensures that the leading behaviour of the eigenvalues is comparable, thus the

ratio is well-defined despite the fact each determinant is formally the product of infinitely-

many eigenvalues of increasing magnitude. We do not impose further conditions on the

matrix coefficients, besides the requirement of being continuous functions on I.

The operators act on the space of square-integrable r-component functions f̄ ≡
(f1, f2, . . . , fr)

T ∈ L2 (I), where for our purposes one defines the Hilbert inner product

(∗ stands for complex conjugation)

〈f̄ |ḡ〉 ≡
∫ b

a
Ω2(σ)

r∑
i=1

f∗i (σ)gi(σ)dσ. (B.5)

The inclusion of the non-trivial measure factor, given by the volume element on the classi-

cal worldsheet
√
h = Ω2(σ), guarantees that the worldsheet operators are self-adjoint when

supplemented with appropriate boundary conditions.33 Indeed, to complete the characteri-

sation of the set of functions, one specifies the nr×nr constant matrices M,N implementing

the linear boundary conditions at the extrema of I

M


f̄ (a)
d
dσ f̄ (a)

...
dn−1

dσn−1 f̄ (a)

+N


f̄ (b)
d
dσ f̄ (b)

...
dn−1

dσn−1 f̄ (b)

 =


0

0
...

0

 . (B.6)

The particular significance of the Gel’fand-Yaglom theorem and its extensions, specialized

in [30, 31] to elliptic differential operators, lies in the fact that it astonishingly cuts down

the complexity of finding the spectrum of the operators of interests

Of̄λ(σ) = λf̄λ(σ) , Ô ˆ̄fλ̂(σ) = λ̂ ˆ̄fλ̂(σ), (B.7)

and then finding a meromorphic extension of ζ-function. All this is encoded into the elegant

formula

DetωO
DetωÔ

=
exp

{∫ b
a tr

[
R(σ)P1(σ)P−1

0 (σ)
]
dσ
}

det [M +NYO (b)]

exp
{∫ b

a tr
[
R(σ)P̂1(σ)P−1

0 (σ)
]
dσ
}

det
[
M +NYÔ (b)

] , (B.8)

for the ratio (B.1), and where R is defined below. This result agrees with the one obtained

via ζ−function regularization for elliptic differential operators. Notice that any constant

rescaling of M,N in (B.6) leaves the ratio unaffected. Moreover, if also the next-to-higher-

derivative coefficients coincide (P1(σ) = P̂1(σ)), the exponential factors cancel out. The

33The rescaling of the operators by
√
h operated in the main text removes the measure from this formula;

see appendix A in [6].
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nr × nr matrix

YO(σ) =


f̄(I)(σ) f̄(II)(σ) . . . f̄(nr)(σ)
d
dσ f̄(I)(σ) d

dσ f̄(II)(σ) . . . d
dσ f̄(nr)(σ)

...
...

. . .
...

dn−1

dn−1σ
f̄(I)(σ) dn−1

dn−1σ
f̄(II)(σ) . . . dn−1

dn−1σ
f̄(nr)(σ)

 (B.9)

accommodates all the independent homogeneous solutions of

Of̄(i)(σ) = 0 i = I, II, . . . , 2r (B.10)

chosen such that YO (a) = Inr. It can be thought of as the fundamental matrix of the

equivalent first-order operator acting on nr-tuples of functions. YÔ(σ) is similarly defined

with respect to Ô.

If we restrict to even-order differential operators, then R(σ)= 1
2Inr and (B.8) simplifies:

DetωO
DetωÔ

=
exp

{
1
2

∫ b
a tr

[
P1(σ)P−1

0 (σ)
]
dσ
}

det [M +NYO (b)]

exp
{

1
2

∫ b
a tr

[
P̂1(σ)P−1

0 (σ)
]
dσ
}

det
[
M +NYÔ (b)

] . (B.11)

For odd n one gets a slightly more complicated structure, constructed as follows. Let us

assume that the (generalized) spectrum of the principal symbol of O, Ô, i.e. the matrix

(−i)n P0(σ), has no intersection with the cone C ≡ {z ∈ C|θ̄1 < argz < θ̄2} for some choice

of θ̄1, θ̄2. This is to say that O has principal angle between θ̄1 and θ̄2. It also follows that

no eigenvalue falls in the opposite cone −C ≡ {z ∈ C|θ̄1 + π < argz < θ̄2 + π}} when n is

odd. Consequently, the finitely-many eigenvalues fall under two sets, depending on which

sector of C \ (C ∪ −C) they belong to. The matrix R(σ) is then defined34 as the projector

onto the subspace spanned by the eigenvectors corresponding to all eigenvalues in one of

these two subsets of the complex plane.

We did not use this formula for odd n in this paper, but notice that this machinery

could be potentially applied to the first-order fermionic (3.29) operator.

B.2 Applications

We list the applications of the theorem (B.8) for the scalar-/matrix-valued operators in

the main text. In the following we leave out formulas for hatted operators and solutions

in order not to clutter formulas, understanding that they satisfy the same initial value

problems.

• Second-order scalar-valued differential operators O1, O2 (θ0), O3± (θ0),

Dirichlet boundary conditions f1 (ε0) = f1 (R) = 0.

M =

(
1 0

0 0

)
N =

(
0 0

1 0

)
Detω

[
d2

dσ2 + P2(σ)
]

Detω

[
d2

dσ2 + P̂2(σ)
] =

f(II)1 (R)

f̂(II)1 (R)
(B.12)

34Up to a factor 1
n

, see amendment in [31].
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The normalization of the matrix (B.9) tells that the function f(II)1 (σ) solves the

initial value problem

f ′′(II)1(σ) + P2(σ)f(II)1(σ) = 0 f(II)1 (ε0) = 0 f ′(II)1 (ε0) = 1. (B.13)

• Second-order 2× 2 matrix-valued differential operators O3 (θ0),

Dirichlet boundary conditions f1 (ε0) = f2 (ε0) = f1 (R) = f2 (R) = 0.

M =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 N =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


Detω

[
d2

dσ2 + P2(σ)
]

Detω

[
d2

dσ2 + P̂2(σ)
] =

f(III)1 (R) f(IV )2 (R)− f(III)2 (R) f(IV )1 (R)

f̂(III)1 (R) f̂(IV )2 (R)− f̂(III)2 (R) f̂(IV )1 (R)

(B.14)

where (
f ′′(III)1(σ)

f ′′(III)2(σ)

)
+ P2(σ)

(
f(III)1(σ)

f(III)2(σ)

)
=

(
0

0

)
f(III)1 (ε0) = f(III)2 (ε0) = f ′(III)2 (ε0) = 0 f ′(III)1 (ε0) = 1(

f ′′(IV )1(σ)

f ′′(IV )2(σ)

)
+ P2(σ)

(
f(IV )1(σ)

f(IV )2(σ)

)
=

(
0

0

)
f(IV )1 (ε0) = f(IV )2 (ε0) = f ′(IV )1 (ε0) = 0 f ′(IV )2 (ε0) = 1 .

(B.15)

• Second-order 2× 2 matrix-valued differential operators
[
Op12,p56,p89F (θ0)

]2
,

Dirichlet boundary conditions f1 (ε0) = f2 (ε0) = f1 (R) = f2 (R) = 0.

M =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 N =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 YO (σ) =

(
f(I)1 (σ) f(II)1 (σ)

f(I)2 (σ) f(II)2 (σ)

)
(B.16)

Detω
[
P0 (σ) d

dσ + P1 (σ)
]2

Detω

[
P0 (σ) d

dσ + P̂1 (σ)
]2 =

∫ R
ε0
dsY −1

O (s)P−1
0 (s)YO (s)∫ R

ε0
dsY −1

Ô
(s)P−1

0 (s)YÔ (s)
(B.17)

with

P0(σ)

(
f ′(I)1(σ)

f ′(I)2(σ)

)
+ P1(σ)

(
f(I)1(σ)

f(I)2(σ)

)
=

(
0

0

)
f(I)1 (ε0) = 1 f(I)2 (ε0) = 0

P0(σ)

(
f ′(II)1(σ)

f ′(II)2(σ)

)
+ P1(σ)

(
f(II)1(σ)

f(II)2(σ)

)
=

(
0

0

)
f(II)1 (ε0) = 0 f(II)2 (ε0) = 1 .

(B.18)

This is a corollary of (B.27).
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B.3 Square of first-order differential operators

As a consequence of the Forman’s construction, we can easily compute the ratio of determi-

nants of the square of first-order operators with reference only to the operators themselves.

Consider the matrix operator of the form (B.2)35

O = P0 (σ)
d

dσ
+ P1 (σ) (B.19)

and denote by YO (σ) its fundamental matrix, which solves the equation (here ′ is the

derivative with respect to σ)

P0 (σ)Y
′
O (σ) + P1 (σ)YO (σ) = 0, YO (a) = Ir. (B.20)

The matrix of fundamental solutions of the square of this operator

O2 = P 2
0 (σ)

d2

dσ2
+
[
P0 (σ)P

′
0 (σ) + {P0 (σ) , P1 (σ)}

] d

dσ
+ P 2

1 (σ) + P0 (σ)P
′
1 (σ) (B.21)

can be constructed via the method of reduction of order as

YO2 (σ) =

(
YO (σ)− Z (σ)Y

′
O (a) Z (σ)

Y
′
O (σ)− Z ′ (σ)Y

′
O (a) Z

′
(σ)

)
, YO2 (a) = I2r (B.22)

in which

Z (σ) = YO (σ)

∫ b

a
ds
[
Y −1
O (s)P−1

0 (s)YO (s)
]
P0 (a) Z (a) = 0 Z ′ (a) = Ir. (B.23)

encapsulates the solutions of Of̄ = 0 and two more ones of O2f̄ = 0.

Suppose that the spectral problem of the squared operator is determined by the bound-

ary condition

MO2 f̄ (a) +NO2 f̄ (b) = 0 . (B.24)

After some algebra, successive applications of (B.11), (B.22), (B.23) bring

DetωO2 =

√
detP0 (b)

detP0 (a)

det [MO2 +NO2YO2 (b)]

detYO (b)
. (B.25)

For Dirichlet boundary conditions at both endpoints σ = a, b used in the present paper

f1 (a) = f2 (a) = f1 (b) = f2 (b) = 0 (B.26)

MO2 =

(
Ir 0

0 0

)
NO2 =

(
0 0

Ir 0

)

then (B.25) gives

(
DetωO2

)
Dirichlet

=
√

detP0 (a) detP0 (b) det

[∫ b

a
dsY −1

O (σ)P−1
0 (σ)YO (σ)

]
. (B.27)

35We omit to report similar formulas for the hatted operator Ô = P0 (σ) d
dσ

+ P̂1 (σ).
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C Fermionic determinant DetOF (θ0): details

In this appendix we collect some details on the analysis of the fermionic determinant

DetOF (θ0) in (3.27).

C.1 Derivation of (3.28)

To begin our analysis of DetOF (θ0) in (3.27), let us observe that

Γ34Op12,p56,p89F Γ43 = −O−p12,p56,p89F . (C.1)

This fact can be used to show that

Det(O1,p56,p89
F )Det(O−1,p56,p89

F ) = Det[(O1,p56,p89
F )2]. (C.2)

Indeed, let us denote the “positive” eigenvalues of O1,p56,p89
F with {λn, Re(λn) > 0} and

the “negative” ones with {−µn, Re(µn) > 0}. Because of the relation (C.1), the spectrum

of O−1,p56,p89
F is given by

{−λn} ∪ {µn} . (C.3)

The ζ−function for the first operator is

ζ1,p56,p89(s) =
∑
n

(λn)−s + e∓iπs
∑
n

(µn)−s, (C.4)

while for the second operator we find

ζ−1,p56,p89(s) = e∓iπs
∑
n

(λn)−s +
∑
n

(µn)−s. (C.5)

Summing the two contributions we obtain

ζ1,p56,p89(s)+ζ−1,p56,p89(s) = (1+e∓iπs)

[∑
n

(λn)−s +
∑
n

(µn)−s

]
≡ (1+e∓iπs)Ξ(s) (C.6)

The spectrum of (O1,p56,p89
F )2 is given instead by

{λ2
n} ∪ {µ2

n} (C.7)

and the corresponding ζ−function is

Z(s) =

[∑
n

(λ2
n)−s +

∑
n

(µ2
n)−s

]
= Ξ(2s). (C.8)

Therefore

log
[
Det(O1,p56,p89

F )Det(O−1,p56,p89
F )

]
= −dζ

1,p56,p89(0)

ds
− dζ−1,p56,p89(0)

ds
= ±iπΞ(0)− 2Ξ′(0) , (C.9)

log(Det[(Op12,p56,p89F )2]) = −2Ξ′(0) ,

– 30 –



J
H
E
P
0
2
(
2
0
1
6
)
1
0
5

so that it holds

log(Det(O1,p56,p89
F )Det(O−1,p56,p89

F )) = log(Det[(O1,p56,p89
F )2])± iπΞ(0) . (C.10)

We can namely express the combination Det(O1,p56,p89
F )Det(O−1,p56,p89

F ) in terms of deter-

minant and the ζ-function in 0 (Ξ(0)) of the squared operator (O1,p56,p89
F )2.

We now use Corollary 2.4 of [63]

Z(0) = r

(
|α|+ |β|

2n
− n+ 1

)
, (C.11)

where 2n is the order of the differential operator, α, β are parameters that only depend

on the boundary conditions and r is the matrix dimension of the operators. In our case

(n = 1, |α| = |β| = 1, r = 2) it is Z(0) = 2 and thus via (C.8) Ξ(0) = 2, to conclude that

Det(O1,p56,p89
F )Det(O−1,p56,p89

F ) = Det[(O1,p56,p89
F )2] , (C.12)

and thus (C.2) is proven.

The determinant of the fermionic operator can then be written as36

Det[OF (θ0)] =
∏

p12,p56,p89=−1,1

Det[Op12,p56,p89F (θ0)]

= Det[(O1,1,1
F )2]2Det[(O1,−1,1

F )2]2, (C.13)

where we have used the property (C.10) and that the operators Op12,p56,p89F in (3.26) do not

depend on the value of p89.

We can also easily argue that Det[(O1,−1,1
F )2] = Det[(O1,1,1

F )2]. Let {λn, ψ(τ, σ)} be

the spectrum of O1,1,1
F , then {−λn,Γ4ψ(−τ, σ))} is the spectrum of O1,−1,1

F . Indeed it is

O1,−1,1
F Γ4ψ(−τ, σ) ≡ i

Ω(σ)
(Γ4∂τ + Γ3∂σ − a34(σ)Γ3 + ia56(σ)Γ4) Γ4ψ(−τ, σ)

+
1

Ω2(σ)

(
−i sinh2 ρ(σ)Γ0 + sin2 θ(σ)Γ034

)
Γ4ψ(−τ, σ)

= −Γ4

[
i

Ω(σ)

(
Γ4∂(−τ) + Γ3∂σ − a34(σ)Γ3 − ia56(σ)Γ4

)
ψ(−τ, σ)

+
1

Ω2(σ)

(
−i sinh2 ρ(σ)Γ0 − sin2 θ(σ)Γ034

)
ψ(−τ, σ)

]
≡ −Γ4O1,1,1

F ψ(−τ, σ) = −λn Γ4 ψ1(−τ, σ). (C.14)

Thus the eigenvalues of the squared operator (O1,−1,1
F )2 are the same of those of the squared

operator (O1,1,1
F )2 and consequently the two determinants coincide. In restricting ourselves

to one-dimensional spectral problems - and thus working in terms of Fourier modes ω and

referring to (3.1) - from the statement (C.14) one obtains

Detω[(O1,−1,1
F )2] = Det−ω[(O1,1,1

F )2] . (C.15)

from which (3.28) follows.

36The Corollary 2.4 [63] can be easily check to hold both for ζ−1,1(0) and for ζ1,1(0).
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C.2 Simplifying the large-R expression for Detω(O1,1,1
F )2

As from (B.25), the key-ingredient in the explicit computation of Detω(O1,1,1
F )2 (3.29) is

Y (σ), the 2 × 2 matrix of the fundamental solutions obeying the boundary conditions

Y (ε0) = I2, as in (B.22). It is not difficult to explicitly check that the structure of this

matrix can be parametrized as follows

Y (σ) = eω(σ−ε0)S1(σ) + e−ω(σ−ε0)S2(σ), (C.16)

where the entries of the matrices S1(σ) and S2(σ) depends on ω only through rational

functions. We can infer some important properties of these matrices from the fact that

Y (σ) obeys its secular equation

Y 2(σ)− tr(Y (σ))Y (σ) + det(Y (σ))I2 = 0 . (C.17)

In particular one can easily check that detY (σ) does not depend on ω. Then the secular

equation becomes the following equation for S1 and S2,37

e2ω(σ−ε0)(S2
1 − tr(S1)S1) + e−2ω(σ−ε0)(S2

2 − tr(S2)S2)

+{S1, S2} − tr(S1)S2 − tr(S2)S1 + det(Y )I2 = 0 (C.18)

and therefore

S2
1 − tr(S1)S1 = 0 , S2

2 − tr(S2)S2 = 0 , {S1, S2} − tr(S1)S2 − tr(S2)S1 + det(Y )I2 = 0 .

(C.19)

The matrices S1 and S2 must also satisfy the differential equations

P0∂σS1 + (P1 + ωP0)S1 = 0 , P0∂σS2 + (P1 − ωP0)S2 = 0 , (C.20)

where P0, P1 appear in the Dirac-like operator O1,1,1
F written in the form P0∂σ +P1. Since

P0 is invertible we can symbolically write this as S′i + MiSi = 0. This implies a set of

interesting properties:

(Si)1,2(S′i)1,1 − (Si)1,1(S′i)1,2 = −(Si)1,2[(Mi)1,1(Si)1,1 + (Mi)1,2(Si)2,1] (C.21)

+(Si)1,1[(Mi)1,1(Si)1,2 + (Mi)1,2(Si)2,2]

= (Mi)1,2det(Si) = 0.

and

(Si)21(S′i)2,2 − (Si)2,2(S′i)2,1 = −(Si)2,1[(Mi)2,1(Si)1,2 + (Mi)2,2(Si)2,2] (C.22)

+(Si)2,2[(Mi)2,1(Si)1,1 + (Mi)2,2(Si)2,1]

= (Mi)2,1det(Si) = 0.

Namely the ratios
(Si)11

(Si)12
and

(Si)21

(Si)22
(C.23)

37We omit the σ-dependence in the matrices.
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are σ−independent. They are also equal to each other, since the det(Si) = 0. Therefore

we can set

ai ≡
(Si)11

(Si)12
=

(Si)21

(Si)22
, (C.24)

where ai depends only on σ0, ε0 and ω. We can parameterize the matrices Si as follows

Si =

(
aipi(σ) pi(σ)

aiqi(σ) qi(σ)

)
. (C.25)

Equation (C.17) also completely determines Y −1(σ). In fact

Y −1(σ) =
1

det(Y )
(tr(Y )I2 − Y (σ)) =

=
1

det(Y )
[(tr(S1)I2 − S1)eω(σ−ε0) + (tr(S2)I2 − S2)e−ω(σ−ε0)] .

(C.26)

Next we construct the bilinear Y −1P−1
0 Y . We find

Y −1P−1
0 Y =

1

det(Y )
[(tr(S1)I2 − S1)eω(σ−ε0) + (tr(S2)I2 − S2)e−ω(σ−ε0)]P−1

0 [eω(σ−ε0)S1 +

+e−ω(σ−ε0)S2] ≡ A2e
2ω(σ−ε0) + B2e

−2ω(σ−ε0) +A0 + B0 (C.27)

with

A2 =
1

det(Y )
(tr(S1)I2 − S1)P−1

0 S1 , B2 =
1

det(Y )
(tr(S2)I2 − S2)P−1

0 S2 ,

A0 =
1

det(Y )
(tr(S1)I2 − S1)P−1

0 S2 , B0 =
1

det(Y )
(tr(S2)I2 − S2)P−1

0 S1 .

(C.28)

Because of the relations (C.19) we find that the matrices A2 and B2 are nihilpotent

A2
2 = B2

2 = 0 , (C.29)

and it holds

A2A0 = A0B2 = B2B0 = B0A2 = B0A0 = A0B0 = 0. (C.30)

The structure of the matrices Ai and Bi is very simple. They are in fact constant matrices

times a function of σ. This can be easily shown by means of the parametrization (C.25).

In fact

A2(σ)=
(q1(σ)2−p1(σ)2)

det(Y )Λ(σ)

(
a1 1

−a2
1 −a1

)
A0(σ) =

(q1(σ)q2(σ)− p1(σ)p2(σ))

det(Y )Λ(σ)

(
a2 1

−a1a2 −a1

)

(C.31)

B2(σ)=
(q2(σ)2−p2(σ)2)

det(Y )Λ(σ)

(
a2 1

−a2
2 −a2

)
B0(σ) =

(q1(σ)q2(σ)− p1(σ)p2(σ))

det(Y )Λ(σ)

(
a1 1

−a1a2 −a2

)
,

(C.32)

where we used that P0 ≡ Λ(σ)σ1.
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Our next goal is to compute

det

(∫ R

ε0

ds Y −1(s) P−1
0 (s) Y (s)

)
(C.33)

in (B.27). Since Y −1(s) P−1
0 (s) Y (s) is traceless in our case, we can also write the expression

above as

= −1

2

∫ R

ε0

dσ

∫ R

ε0

dσ′tr
(
Y −1(σ) P−1

0 (σ) Y (σ)Y −1(σ′) P−1
0 (σ′) Y (σ′)

)
. (C.34)

We can now use the representation (C.27) and the properties (C.28) to simplify the ex-

pression above. We obtain

det

(∫ R

ε0

ds Y −1(s) P−1
0 (s) Y (s)

)
=

= (a1 − a2)2

∫ R

ε0

dσ

(
p1(σ)2 − q1(σ)2

)
det(Y (σ))Λ(σ)

e2ωσ

∫ R

ε0

dσ′
(
p2 (σ′) 2 − q2 (σ′) 2

)
det(Y (σ′))Λ(σ′)

e−2ωσ′+

− (a1 − a2)2

[∫ R

ε0

(p1(σ)p2(σ)− q1(σ)q2(σ))

det(Y (σ))Λ(σ)

]2

.

(C.35)

This formula can be very efficiently used to simplify the fermionic determinant in its large-

R expansion. The second line is always negligible, the first one consists of two separate

integrals: for positive ω, the dominant part in the large-R limit will be the contribution

of the first (indefinite) integral evaluated at the upper endpoint times the contribution of

the second (indefinite) integral evaluated at the lower endpoint, whereas for negative ω the

roles of first and second integrals are swapped.

D Boundary conditions for small Fourier modes

In this appendix we comment on a different choice for the boundary conditions on the

bosonic and fermionic modes with small Fourier mode — choice followed in [7] for the

circular Wilson loop case — and show that it leaves unaffected the main results of this

paper, the effective actions for both the circle (4.12) and the normalized latitude (4.20).

In [7] the one-dimensional spectral problems in the radial coordinate σ are subject to

Dirichlet boundary conditions at both the boundaries σ = ε0 and (fictitious) σ = R, except

for the modes labeled by m = 0,38 for which Neumann boundary conditions are imposed

at σ = R.39 It is easy to modify our analysis of the bosonic sector in section 3.1 — where

we kept Dirichlet boundary conditions for all modes — and evaluate the effect of this other

choice. The relevant Fourier frequency corresponds to ` = 0 which, from the discussion at

the beginning of section 4, corresponds to the mode ω = 0 for O1 and O2(θ0), ω = 1 for

O3+(θ0) and ω = −1 for O3−(θ0). We use the subscript N to denote the new determinants

with Neumann boundary conditions in σ = R

f1(ε0) = ∂σf1(R) = 0 , (D.1)

38In the labelling of (5.35) after the supersymmetry-preserving regularization.
39See formulas (5.46)–(5.52) therein.
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instead of the Dirichlet ones f1(ε0) = f1(R) = 0 used in the main text. We read off the

result of the Gel’fand-Yaglom method for the ω = 0 frequency of (3.12) from (5.48) of [7],

since the operator O1 is the same for the circle and the latitude:

[Detω=0O1]N = coth ε0. (D.2)

For the other operators, the new boundary conditions change (B.12) as

M =

(
1 0

0 0

)
N =

(
0 0

0 1

)
Detω

[
d2

dσ2 + P2(σ)
]

Detω

[
d2

dσ2 + P̂2(σ)
] =

∂σf(II)1 (R)

∂σf̂(II)1 (R)
(D.3)

and accordingly modify (3.14), (3.16) and (3.17) as

[Detω=0O2(θ0)]N = tanh (σ0 + ε) ,

[Detω=1O3+(θ0)]N = [Detω=−1O3−(θ0)]N =
eσ0+2ε0

√
1 + e2σ0+4ε0

. (D.4)

The limit σ0 →∞

[Detω=0O2(θ0 = 0)]N = [Detω=1O3+(θ0 = 0)]N = [Detω=−1O3−(θ0 = 0)]N = 1 (D.5)

modifies the analogous results (3.43)–(3.45) for the circular Wilson loop. A comparison with

the formulas in the main text reveals that, at the level of the Gel’fand-Yaglom determinants,

the only change following from this different choice of boundary conditions is an overall

rescaling of the determinants by R.

The same phenomenon occurs in the fermionic sector, where backtracking the special

Fourier mode to our ω-labeling is less transparent, but becomes more visible in the circular

Wilson loop. The frequency m = 0 of formula (5.35) [7] is the determinant of the operator

−∂2
σ +

1

2
+

3

4 sinh2 σ
− 1

2
cothσ . (D.6)

To find it in the present paper, we begin with the Gel’fand-Yaglom differential equation

[
O1,1,1
F (θ0 = 0)

]2
(
f1(σ)

f2(σ)

)
=

(
0

0

)
(D.7)

and from its component equations[
−∂2

σ +

(
ω − 1

2

)2

+
1

4
+

3

4 sinh2 σ
−
(
ω − 1

2

)
cothσ

]
f1(σ) = 0 (D.8)[

−∂2
σ +

(
ω − 1

2

)2

+
1

4
+

3

4 sinh2 σ
+

(
ω − 1

2

)
cothσ

]
f2(σ) = 0 . (D.9)

it is evident that (D.6) governs f1(σ) for ω = 1 while f2(σ) for ω = 0.
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Extending this identification to arbitrary θ0, this argument tells that the only modi-

fication in appendix B.3 is the Neumann boundary condition on the first component for

ω = 1

f1 (ε0) = f2 (ε0) = ∂σf1 (R) = f2 (R) = 0 , (D.10)

which translates into replacing (B.26) with

MO2 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 NO2 =


0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

 , (D.11)

and on the second component for ω = 0

f1 (ε0) = f2 (ε0) = f1 (R) = ∂σf2 (R) = 0 , (D.12)

which is implemented by

MO2 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 NO2 =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 1

 . (D.13)

This also means that we cannot use the compact form (B.27) (still valid for ω 6= 0, 1) and
we have resort to the general expression (B.25). After a lengthy computation, the new
values of the determinants[

Detω=1[(O1,1,1
F )2]

]
N

=
√
ReR

e−
σ0
2 (tanhσ0 + 1) sinh ε0 cosh(σ0 + ε0)

(e2σ0 + 1)
3
√

2 cosh(σ0 + 2ε0)

[
− 2e4σ0

(
log

e2ε0 − 1

e2(σ0+ε0) + 1
+

+ 2σ0

)
+

(e2σ0 +1)
(
e6σ0+4ε0 + (e2ε0 +1)e4σ0+2ε0 + e2σ0(−5e2ε0 +3e4ε0 +3) + (e2ε0−1)2

)
(e2ε0 − 1)2(e2(σ0+ε0) + 1)

]
(D.14)

[
Detω=0[(O1,1,1

F )2]
]
N

=
√
ReR

e−
σ0
2 (tanhσ0 + 1) sinh ε0 cosh(σ0 + ε0)

(e2σ0 + 1)
2
√

2 cosh(σ0 + 2ε0)

[
− 2e2σ0

(
log

e2ε0 − 1

e2(σ0+ε0) + 1
+

+ 2σ0

)
+

(
e2σ0 + 1

) (
−e2σ0 + 3e2(σ0+ε0) + e4(σ0+ε0) − e2ε0 + e4ε0 + 1

)
(e2ε0 − 1)

2 (
e2(σ0+ε0) + 1

) ]
(D.15)

agree with (3.40)–(3.41), again up to an overall rescaling of their values by a factor of
√
R.

The analysis in section 4 goes through in a similar fashion, provided that the lower

modes ΩB
`=0(θ0), ΩF

s= 1
2

(θ0), ΩF
s=− 1

2

(θ0) take into account these new determinants. The reg-

ularized effective action (4.4) does not change when the limit µ→ 0 is taken.
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