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ABSTRACT2

Psychological research has found that human perception of randomness is biased. In particular,3
people consistently show the overalternating bias: they rate binary sequences of symbols (such as4
Heads and Tails in coin flipping) with an excess of alternation as more random than prescribed by5
the normative criteria of Shannon’s entropy. Within data mining for medical applications, Marcellin6
proposed an asymmetric measure of entropy that can be ideal to account for such bias and to7
quantify subjective randomness. We fitted Marcellin’s entropy and Renyi’s entropy (a generalized8
form of uncertainty measure comprising many different kinds of entropies) to experimental data9
found in the literature with the Differential Evolution algorithm. We observed a better fit for10
Marcellin’s entropy compared to Renyi’s entropy. The fitted asymmetric entropy measure also11
showed good predictive properties when applied to different datasets of randomness-related tasks.12
We concluded that Marcellin’s entropy can be a parsimonious and effective measure of subjective13
randomness that can be useful in psychological research about randomness perception.14

Keywords: randomness perception, overalternating bias, asymmetric entropy, Renyi’s entropy, Marcellin’s entropy, Shannon’s entropy,15
Differential Evolution algorithm16

1 INTRODUCTION

Explaining how people make inductive reasoning (e.g., inferring general laws or principles from the17
observation of particular instances) is a central topic within the psychology of reasoning. In particular,18
perception of randomness is a key aspect of these inferential processes. Perceiving a situation as nonrandom19
requires some kind of subjective explanation which entails the onset of inductive reasoning (Lopes, 1982).20
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On the contrary, if the phenomenon is seen as a mere coincidence, the observer does not hypothesize any21
explanation. For example, during World War II the German air force dropped on London V1 bombs: many22
Londoners saw particular patterns related to the impacts and consequently they developed specific theories23
about German strategy (e.g., thinking that poor districts of London were privileged targets). However, a24
statistical analysis of the bombing patterns made after the end of the war revealed that the distribution25
of the impacts was not statistically different from an actual random pattern (Hastie and Dawes, 2010).26
The opposite mistake happens when an observer fails to detect a regularity, thus attributing to chance a27
potential relation noticed: before Halley, no one had ever thought that the comets observed in 1531, 160728
and 1682 were the very same comet (Halley, 1752). Since 1950, many psychological studies have been29
devoted to investigate randomness perception and production: an important result is that people’s intuitive30
understanding of randomness in binary sequences is biased toward an over-alternation between different31
possible outcomes (the so-called overalternating bias).32

Given the importance of having a viable and flexible measure of subjective randomness, this study aims33
to evaluate how different kinds of entropy measures can predict judgments about sequence randomness. In34
particular, within the context of data mining and growing decision trees, has been developed an asymmetric35
measure of entropy (Marcellin et al., 2006). Such measure has proven to be very useful in dealing with36
unbalanced classes in medical and economic decisions. Nonetheless, such asymmetric entropy measure37
might also be beneficial in cognitive domains. In this paper we investigate its usefulness in order to model38
the overalternating bias.39

2 THE OVERALTERNATING BIAS

From a formal point of view, randomness is still an elusive concept and a shared definition has yet to be40
established. A variety of efforts have been sustained in order to provide a formal measure of randomness41
within mathematics, physics and computer science (Li and Vitányi, 1997; Volchan, 2002). Despite the42
lack of a clear and shared normative criterion, psychologists have been investigating extensively people’s43
subjective sense of randomness. Usually participants’ responses are compared to sampling distributions of44
statistics that characterize the stimuli. This strand of research has employed classically two types of tasks:45
production tasks and perception tasks. In the former, participants are asked to generate the outcomes of a46
random mechanism, for example simulating the results of tossing a fair coin. On the contrary, in perception47
tasks participants have to rate how much random on a Likert scale is the stimulus (commonly a string of48
binary elements) or to categorize the stimulus on the basis of the generating source (e.g., the sequence has49
been produced by a random or a non-random mechanism?).50

Despite some methodological issues that characterize the psychological investigation of randomness51
(Nickerson, 2002), the basic finding of generation and perception of random binary strings (and two-52
dimensional grids of binary elements) is the overalternating bias: people identify randomness with an53
excess of alternation between symbol types compared to the normative criterion employed. In other54
terms, those sequences which actually present the modal number of alternations expected by chance55
are not perceived as maximally random because they contain too long runs of the same element. Falk56
and Konold (1997) made a series of randomness perception experiments that clearly showed such an57
overalternating bias. They employed 21-elements strings composed by two symbols, Xs and Os, such58
as XXXX. . . OOOO. The alternation rate of such sequences can be defined through the probability of59
alternation (P(A)) statistics: this value is defined as the ratio between the number of actual transitions and60
the number of total transitions in the sequence. More formally, for strings of length n and with a number of61
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runs (i.e., unbroken subsequences) r, the probability of alternation is62

P (A) =
r − 1

n− 1
(1)

Falk and Konold (1997) employed as a normative criterion to quantify the randomness of a sequence63
the second order entropy of the sequence computed with the classical Shannon entropy (Shannon, 1948).64
Such measure is based on the relative frequencies of the ordered pairs of symbols, called digrams (in the65
example, XO, OX, XX and OO); in particular, it quantifies the new information (in bits) contributed by66
the second member of the pair. It is possible to define second order entropy as the difference between the67
entropy of the digrams and the first order entropy (Attneave, 1959):68

H2 = H(digram) −H1 (2)

First order entropy can be computed through the classical Shannon formula:69

H1 =
∑

pilog
1

pi
(3)

Where pi is the probability of the symbol i. Similarly, the entropy of the digrams can be obtained on the70
basis of the probability of the ordered pairs of symbols:71

H(digram) =
∑

p(digram)log
1

p(digram)
(4)

The relationship between the probability of alternation and the second order entropy is a symmetrical,72
unimodal reversed-U curve with a maximum in correspondence of a probability of alternation value of 0.573
(Fig. 1). However, while measuring the subjective randomness rating of binary strings by manipulating the74
probability of alternation, participants indicated that the most random rated sequences were the ones with a75
probability of alternation of about 0.7. The resulting function is an asymmetrical U-reversed relationship76
negatively skewed (Fig. 1). This is a clear example of overalternating bias. The empirical function of77
subjective randomness is different from the function that is obtained by computing the second order entropy78
as a normative criterion of randomness.79

For example, strings such as XXXOXXOOXOO (P(A) = 0.5) are rated less random than80
OXXOXXOXOOX (P(A) = 0.7) although this is not true from a normative point of view. This kind81
of result is very robust and it has been found in a variety of studies. Reviewing the literature, Falk82
and Konold (1997) found that the sequences rated as most random ranged from a P(A) = 0.57 to 0.8.83
Nevertheless, these works employed a variety of stimuli (strings or two-dimensional grids), different sizes84
of the set of stimuli and a variety of task instructions (such as select the most random sequence or rate their85
randomness on a Likert scale).86

3 MEASURING SUBJECTIVE RANDOMNESS

Within psychology literature, two main measures of subjective randomness for strings of symbols have been87
proposed: Difficulty Predictor (DP) (Falk and Konold, 1997) and the model of Griffiths and Tenenbaum88
(Griffiths and Tenenbaum, 2003, 2004). Both measures try to quantify the complexity of a sequence in89
order to compute a score of subjective randomness in accordance with empirical data on human judgments.90
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The DP score is computed by counting the number of runs (any uninterrupted subsequence of the same91
symbol), and adding twice the number of subsequences in which the symbols alternate. For example, the92
sequence XXXOOOXOXO is composed by a run of Xs, a run of Os, and an alternating sub-sequence93
(XOXO), for a total value of DP equal to 4. If there are multiple ways to segment the string, DP is calculated94
on the partition that results in the lowest score. DP correlates very highly with randomness judgments95
and a variety of related tasks. However, DP is a parameter-free score and it is not possible to use it to96
quantify how subjective randomness changes in different conditions (e.g., by fitting DP to data obtained97
with different tasks to investigate the variation of the parameters). Moreover, as Griffiths and Tenenbaum98
observed Griffiths and Tenenbaum (2003), DP is not able to account for subjective randomness with strings99
of different length: for example, XXXXXXXXXXXOOXO and XXXOOXO have the same value of DP100
(4) but clearly the long uninterrupted run of Xs of the former provides a stronger evidence for some kind of101
regularity.102

Griffiths and Tenenbaum instead employed the Bayesian framework to develop a probabilistic model103
of the overalternating bias (Griffiths and Tenenbaum, 2003, 2004). The randomness perception task is104
addressed in terms of the statistical problem of Bayesian model selection: given a string, it has to be105
inferred whether the process that generated it was random or regular. From a rational point of view, the106
probability of obtaining a specific binary string given a random generating process is constant and equal107
to (12)

k where k is the number of elements of the string. Conversely, the probability of obtaining that108
particular sequence given a regular generating process is computed by means of a Hidden Markov Model109
(HMM): through the parameters of the model it is possible to determine regularities that people perceive110
when judging the randomness of a binary sequence. In sum, the authors showed how through a Bayesian111
framework is possible to model the perceived randomness of binary sequences and its sensitivity to motif112
repetition and other kind of regularities (such as various types of symmetry). By means of these models it113
is possible to predict accurately human judgments, including the overalternating bias. Depending on the114
kind of regularities that can be detected, it is possible to specify models of increasing complexity (from115
4 to 8 parameters). Overall, results show that the model with the highest number of parameters account116
better for observed data and that such parameters vary coherently with different experimental conditions117
(Griffiths and Tenenbaum, 2003, 2004). This model has a very high number of parameters and it is deeply118
grounded in a specific psychological theoretical framework (the Bayesian probabilistic perspective) greatly119
complicating its use for those who do not adhere to such perspective.120

DP and the Griffiths and Tenenbaum model are highly correlated and they are both able to account121
very well for randomness judgments. The aim of the present work is then to explore the possibility of122
modeling randomness judgments with a parsimonious, parameter-based model not grounded into any123
specific psychological framework. To this purpose, we focused on some of the various measures of entropy124
proposed within mathematics, physics, and information sciences.125

4 MEASURES OF UNCERTAINTY: RENYI’S ENTROPY AND THE ASYMMETRIC
ENTROPY OF MARCELLIN

As we have seen in Section 2, information theory has provided a normative criterion (the second order126
entropy) to quantify the uncertainty of strings of characters which are employed in experimental psychology.127

Moving however from Shannon’s definition and relaxing some of its assumptions, others generalized128
versions and families of information entropies have been obtained by authors like Rényi (1961), Beck129
and Cohen (2003), Tsekouras and Tsallis (2005), and Marcellin et al. (2006). Given indeed a distribution130
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over a set of events P = (p1, . . . , pN ), information entropy H was derived as a measure of the choice131
involved in the selection of an event (or in the uncertainty of the outcome), by requiring continuity in the132
events pi, monotonicity in N when equiprobability holds, and that if a choice can be broken down into two133
successive choices, the original H should be the weighted sum of the individual values of H (Shannon,134
1948). By relaxing, for instance, the third requirement to a less restrictive form of additivity, in which not135
only weighted sums are allowed but more general additive functions, Rényi (1961) obtained the following136
generalization137

Hα(P) =
1

1− α
log (

N∑
i=1

pαi ) (5)

where α is a non-negative integer and the scaling factor 1
1−α is given so that for a uniform distribution U it138

always holds Hα(U) = logN for all values of α. The previous expression is defined as the Renyi entropy139
of order α of a distribution P and it is widely used in statistics, biology and in quantum information theory140
as a measure of entanglement. It is a bounded, continuous, non-increasing and non-negative function of141
α, it is concave for α ≤ 1 and it loses concavity over the critical value αc which is a function of N . On142
passing, notice also that Renyi’s entropy can be given an interpretation in terms of p-norm on a simplex in143
N dimensions. Most of all, it obeys additivity meaning that given two distributions P and Q, it holds:144

Hα(P ?Q) = Hα(P) +Hα(Q)

Interestingly, entropy (5) encompasses several measures of uncertainty such as Hartley’s entropy,145
quadratic entropy, min entropy, and the Shannon entropy. Indeed, changes in the parameter α imply146
that probabilities are sort of weighted. More in detail, for α = 0 it returns the Hartley (max) entropy147
H0(P) = logN , so that lower values of α move toward equiprobability; if instead α = 2 it returns the148
quadratic (collision) entropy H2(P) = − log (

∑N
i=1 p

2
i ); while in the limit α → ∞ it returns the min149

entropy H∞(P) = mini (− log pi) so that higher values of α shift the attention toward the event with150
maximum probability. Finally, in the limit α→ 1, by means of L’Hopital’s rule, one can show that Renyi’s151
entropy becomes exactly Shannon’s entropy, which is the only limit in which the chain rule (or glomming152
formula) for conditional probability is satisfied.153

Alternatively, one might characterize a generic measure of entropy (including Renyi’s) as a non-negative,154
symmetric and strictly concave function, which is also bounded between a minimum (usually zero, attained155
when there is one pk = 1 while all others pi = 0 for i 6= k) and a maximum (attained for the uniform156
distribution). Within several fields like medicine, marketing, and fraud detection, however, two assumptions157
from the previous set can become critical: namely, the symmetrical behavior with respect to different158
permutations of the probabilities, and the association of the maximum entropy with the uniform distribution159
(which is essentially the Laplace’s principle of indifference). Entropy measures are indeed often employed160
in learning tasks and, in particular, in growing decision trees, in order to assign a leaf of the tree to a specific161
class by means of suitable splitting rules. Marcellin et al. (2006) noticed that in these cases a symmetric162
measure of uncertainty can be deceiving since not necessarily the different classes are balanced, meaning163
that their distribution is not a priori uniform. Moreover, the meaning of detecting a particular class can164
vary: for example, predicting a wrong disease (a false positive) has different consequences than missing a165
disease (a false negative), which reflects in non-equal misclassifications costs. In order to overcome these166
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limits, an asymmetrical measure of entropy was proposed:167

HW(P) =
N∑
i=1

pi(1− pi)
(1− 2wi)pi + w2

i

(6)

where W = (w1, . . . , wN ) is the worst distribution for which the maximum value is attained. Such a168
measure of entropy is non-negative, asymmetric (symmetry is restored ifW is uniform) and it is bounded169
between zero and a maximum.170

5 FITTING RENYI’S AND MARCELLIN’S ENTROPIES TO RANDOMNESS
JUDGEMENTS

5.1 Rationale of the study171

Given the properties of Marcellin’s asymmetric entropy, such measure might represent a suitable tool to172
model the overalternating bias. The most notable feature of Marcellin’s entropy is that the most uncertain173
distribution must be estimated from data if not a priori available. This feature should reflect that an174
asymmetry in the distribution entropy for the probability of alternation would imply that the maximum175
randomness is actually perceived when the frequencies of alternating and non-alternating digrams are not176
equal. In our specific case it is expected that maximum randomness is perceived when alternating digrams177
exceed non-alternating ones. On these basis, we fitted the second order entropy with Marcellin’s employing178
four parameters: wOO, wXX , wXO, wOX . The first couple is related to uniform digrams, whereas the179
second couple of parameters is related to alternating digrams. Given that XX and OO should be equivalent180
from a psychological point of view (as well as XO and OX), we constrained the corresponding parameters181
to be close to each other (see below for further details).182

Fitting Marcellin’s entropy to data, we expect that wXO and wOX will be comprised between 0.5 and183
1, thus maximally contributing to the overall entropy of the sequence when the alternating digrams are184
more likely to appear. Their contribution to the sequence’s entropy should be reduced approaching a185
probability of 1.0 for alternating digrams, since it represents a completely alternating sequence, such as186
XOXOXOXO, that doesn’t result in an high subjective randomness. On the contrary, we expect that wOO187
and wXX will be comprised between 0 and 0.5 suggesting a high subjective randomness when an observer188
sees a low proportion of uniform digrams. Similarly to the previous case, the parameters wOO and wXX189
must be higher than 0 because a complete absence of uniform digrams does not suggest an high subjective190
randomness (as in the XOXOXOXO string).191

We compared the fit of Marcellin’s measure of entropy with the second order entropy computed with192
Shannon formula (as a reference) and with Renyi’s entropy (because it encompasses several measures193
of uncertainty). We fitted these three measures of entropy to the ten mean points of subjective ratings194
observed in Falk and Konold’s experiment (Falk and Konold, 1997). Finally, by employing the parameters195
of Marcellin’s entropy estimated with these means, we compared the correlations between such measures196
and other datasets of random judgments (obtained by Gronchi and Sloman, 2009), as well as DP and197
Griffiths and Tenenbaum model predictions.198

5.2 Target values199

We used Falk and Konold’s (1997) results to fit the models. As described before, in that work the authors200
asked to “rate each sequence on a scale of 0 to 10 according to your intuition of how likely it is that201
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such a sequence was obtained by flipping a fair coin”. They employed forty strings comprised in four202
alternative sets of 21 binary symbols (O and X). Each set was composed by 10 sequences with a probability203
of alternation ranging from 0.1 to 1 (in intervals of 0.1). Half of the sequences had 11 Xs and 10 Os and204
other half 10 Os and 11 Xs. For each value of probability of alternation, the mean randomness rating205
was computed obtaining a set of 10 points. We employed those values as a target function for the fitting206
problem.207

5.3 Parameter Fitting and Results208

In this Section we present the approach followed to find the optimal parameters of Renyi’s and Marcellin’s209
entropy models to fit the target function. First, we adopted the Euclidean distance between the target210
function and the H2 of model (2) as a fitness measure to quantify the goodness of the solution. More211
precisely, we wanted to find (i) an optimal alpha for Renyi’s entropy and (ii) an optimal set of weights212
for Marcellin’s entropy. To adapt the parameters for the minimization of a fitness measure is a classic213
optimization problem.214

In several domains of application researchers employ search methods, i.e. algorithms that test solutions215
of the problem until a satisfactory condition is met. These methods are usually adopted because they are216
“black box” approaches, thus they are not based on the formal properties of the quality function. As a217
consequence, convergence to the optimal solution is not guaranteed, thus we need statistical measures to218
identify the goodness of the solution.219

We used the Differential Evolution (DE) algorithm (Storn and Price, 1997) to solve our problem. DE has220
been recently used by researchers for several optimization problems because of its performance in unimodal,221
multimodal, separable, and non-separable problems (Das and Suganthan, 2011). DE is a population based222
algorithm, in which a member of the population is a vector that represents the parameters of the model.223
The size N of the population is usually between 2 and 20 times the number of elements of the vector. A224
large N increases the time to compute a new generation, but speeds up the convergence of the algorithm.225
To balance the two aspects we use N = 20. Each member of the population is evaluated via the fitness226
measure previously described. DE iteratively improves the population selecting a target member vta and227
making a comparison with a trial member vtr. The trial is generated in two steps: the mutation and the228
crossover. In the mutation, three random vectors v1, v2, v3, from the population, excluded the target, are229
combined in a mutant vector: vm = v1 + F · (v2 − v3), where F = (0, 2] is the differential weight. In230
the crossover, given the crossover rate CR = (0, 1), the trial member is computed randomly selecting an231
element either from the target or the mutant with probability 1− CR and CR respectively. Finally, DE232
compares the fitness measure of the target and the trial vectors. The one with the best value remains in233
the next generation and the other is discarded. The interested reader can refer to Cimino et al. (2015) for234
further information on the parameterization and the behavior of DE.235

To identify the proper values of F and CR we ran the algorithm 10 times for 100 generations with the236
following combinations of parameters: F from 0.1 to 2 in steps of 0.1, and CR from 0.1 to 0.9 in steps of237
0.1. We considered two criteria: (i) the algorithm converges to the best fitness and (ii) the least average238
number of generations needed to find the solution. The convergence condition is met when at least one of239
the member fitness is lesser than the best fitness among all trials increased by 1%. The best set of CR and240
F is 0.9 and 0.6 respectively. With this setting we ran DE for 100 times and in Tab. 1 we summarized the241
results. For Renyi’s model optimization, all the runs converged toward the same solution. For Marcellin’s242
model 95% converged toward the best solution found among all trials. Only 5% converged toward a local243
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Table 1. Best parameter tuning for different entropy models and their respective best and worst fitness
measures (and percentage of convergence) found by DE.

Fitness Measure
Value (% convergence)

Entropy Best Parameters Tuning Best Worst
Shannon – 0.949 x

Renyi α = 2.37 0.875 (100%) (0%)

Marcellin wOO = 0.33, wXO = 0.68,
wOX = 0.69, wXX = 0.30 0.728 (95%) 0.755 (5%)

minimum. However, the worst solution found by DE with Marcellin’s model is still better than the best244
found with Renyi’s model.245

As described in Section 5.1, Marcellin’s model is subjected to two constraints: the first binds the weights246
wOO and wXX to be close to one another, and the second binds wXO to wOX . These constraints reflect247
that the uniform digram XX should be equivalent to OO from a psychological point of view (as well as XO248
should be equivalent to OX).249

2 · |wOO − wXX |
wOO + wXX

≤ 0.1 (7)

2 · |wOX − wXO|
wOX + wXO

≤ 0.1 (8)

In line with our expectations, we found that wOO, wXX were comprised between 0 and 0.5 whereas250
wXO and wOX were comprised between 0.5 and 1 (Tab. 1). Fig. 2 shows the best fit of the empirical data251
from Falk and Konold (target function, solid line) by the three entropy models. While Shannon’s (dashed252
line) and Renyi’s (dotted line) models show a symmetrical curve centered in P(A) = 0.5, Marcellin’s model253
(solid with circles) shows an asymmetrically right-skewed shape more closely approximating Falk and254
Konold’s data.255

5.4 Validation of Marcellin’s entropy as a measure of subjective randomness256

Given the parameters obtained for Marcellin’s entropy in the previous section, we computed its Pearson257
product-moment correlations with both the results of other randomness task experiments and other258
two subjective randomness scores (DP and Griffiths and Tenenbaum model). Griffiths and Tenenbaum259
parameters were estimated in a separate experiment (Gronchi and Sloman, 2009). The two datasets that260
we employed for validation were based on a categorization task: participants observed sequences of 8261
binary elements (Heads and Tails). All the possible sequences of 8 elements are 256, but since there are 2262
sequences for each different configuration of elements (e.g., TTTTTTTT is equivalent to HHHHHHHH),263
only half of them were employed (128). Participants were instructed that they were going to see sequences264
which had either been produced by a random process (flipping a fair coin) or by some other process in265
which the sequences of outcomes were not random, and they had to classify these sequences according to266
what they believed to be their source. Experiment A (Gronchi and Sloman, 2009) was conducted without267
measuring reaction times of participants whereas in experiment B (Gronchi and Sloman, 2009) participants268
were required to respond as fast as they could and reaction times were recorded.269
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Correlations were computed between the proportion of random responses given to each one of the 128270
strings and the corresponding measure of subjective entropy (Marcellin, DP and Griffiths & Tenenbaum).271
Experiment A results were highly correlated to all measures of subjective randomness: it was observed a272
correlation value equal to 0.60 for Marcellin, 0.67 for DP and 0.76 for Griffiths and Tenenbaum model.273
With regard to experiment B, correlation values were 0.67, 0.73 and 0.80 for Marcellin, DP and Griffiths &274
Tenenbaum respectively.275

6 DISCUSSION AND CONCLUSION

In the previous sections we investigated the potentiality of Marcellin’s asymmetric entropy for predicting276
randomness judgements and the overalternating bias. Fitting Marcellin’s entropy to randomness rating, we277
observed a better fit compared to subjective randomness measures based on classical Shannon’s entropy and278
on Renyi’s entropy, which represents a generalized form of such measures of uncertainty comprising many279
different kinds of symmetric entropies. The estimated parameters for Marcellin’s are coherent with the280
overalternating bias: when there is an overabundance of alternating substrings (compared to the Shannon281
entropy criterion which provides an equal proportion of these substrings) such typology of sequences282
signals an high value of subjective randomness. Specularly, when there is a lack of uniform substrings,283
those kind of strings indicate an high value of subjective randomness. Frequencies are, respectively, about284
68% for the former and 30-32% for the latter. The measure of subjective randomness based on Marcellin’s285
entropy has a significantly better fit compared to Renyi’s entropy that encompasses many measures of286
entropy. However, all these measures are symmetric around the equipartition of the events, so they are287
unable to account for the overalternating bias.288

We validated the asymmetric-entropy-based measure of subjective randomness correlating it with different289
datasets and other subjective randomness scores (DP and Griffiths and Tenenbaum model). Although these290
measures correlate with higher values to such datasets compared to Marcellin’s entropy, the correlation291
value of the latter are indeed high, with a minimum value of 0.60. Given the very noisy nature of292
these experiments, this result confirms the potentiality of Marcellin’s asymmetric entropy for modelling293
randomness judgements. Thus, Marcellin’s entropy represents a more parsimonious measure of subjective294
randomness compared to Griffiths & Tenenbaum model and, differently from DP, it is possibile to fit it295
to different datasets to compare parameters values related to different conditions. In sum, such measure296
can be considered a suitable alternative to DP and Griffiths and Tenenbaum model to quantify subjective297
randomness in future psychological studies.298
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Li, M. and Vitányi, P. (1997). An introduction to Kolmogorov complexity and its applications (New York:336
Springer Heidelberg)337

Lopes, L. L. (1982). Doing the impossible: A note on induction and the experience of randomness. Journal338
of Experimental Psychology: Learning, Memory, and Cognition 8, 626–636. doi:10.1037/0278-7393.8.339
6.626340

Marcellin, S., Zighed, D. A., and Ritschard, G. (2006). An asymmetric entropy measure for decision341
trees. In The 11th International Conference on Information Processing and Management of Uncertainty342
(IPMU), eds. B. Bouchon-Meunier and R. R. Yager (Editions EDK), 1292–1299343

This is a provisional file, not the final typeset article 10



Gronchi et al. Modeling overalternating bias with asymmetric entropy

Nickerson, R. S. (2002). The production and perception of randomness. Psychological Review 109,344
330–357. doi:10.1037/0033-295X.109.2.330345
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Figure 1. The empirical subjective randomness measured by Falk and Konold (solid line) and the second
order entropy computed by Shannon’s formula (dashed line).
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Figure 2. The target function (solid) is the empirical data from Falk and Konold. The entropies are
respectively computed by Shannon (dashed), Renyi (dotted) and Marcellin (solid with circles) formulas
after parameter fitting.

This is a provisional file, not the final typeset article 12


	Introduction
	The overalternating bias
	Measuring subjective randomness
	Measures of uncertainty: Renyi's entropy and the asymmetric entropy of Marcellin
	Fitting Renyi's and Marcellin's entropies to randomness judgements
	Rationale of the study
	Target values
	Parameter Fitting and Results
	Validation of Marcellin's entropy as a measure of subjective randomness 

	Discussion and conclusion

