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Trolox enhances the anti-lymphoma effects of arsenic trioxide, while protecting against

liver toxicity
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Arsenic trioxide (As,03) is an effective therapy in acute
promyelocytic leukemia (APL), but its use in other malignancies
is limited by the higher concentrations required to induce
apoptosis. We have reported that trolox, an analogue of
a-tocopherol, increases As,0;-mediated apoptosis in a variety
of APL, myeloma and breast cancer cell lines, while non-
malignant cells may be protected. In the present study, we
extended previous results to show that trolox increases As,0;-
mediated apoptosis in the P388 lymphoma cell line in vitro, as
evidenced by decrease of mitochondrial membrane potential
and release of cytochrome c. We then sought to determine
whether this combination can enhance antitumor effects while
protecting normal cells in vivo. In BDF; mice, trolox treatment
decreased As,0;-induced hepatomegaly, markers of oxidative
stress and hepatocellular damage. In P388 tumor-bearing mice,
As,0; treatment prolonged survival, and the addition of trolox
provided a further significant increase in lifespan. In addition,
the combination of As,0; and trolox inhibited metastatic
spread, and protected the tumor-bearing mice from As,0; liver
toxicity. Our results suggest, for the first time, that trolox might
prevent some of the clinical manifestations of As,0;-related
toxicity while increasing its pro-apoptotic capacity and clinical
efficacy in hematological malignancies.
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Introduction

Arsenic trioxide (As,Oj3), first used in traditional Chinese
medicine, is highly effective in the treatment of patients with
acute promyelocytic leukemia (APL).'” Although the precise
mechanism of action of As,O5 in APL is unclear, in vitro studies
reported that As,O5 leads to cellular redox status perturbation,
cellular signaling modulation, differentiation, growth inhibition
and apoptosis.* Clinically achievable concentrations, that is
between 1 and 2 uM of As,Os, induce apoptosis and inhibit
growth of various malignant cells, including multiple myeloma
and human T lymphotropic retrovirus type l-associated adult
T-cell leukemia cells.”” Recently, Rousselot et al.?2 documented
in vivo activity of arsenic in the treatment of multiple myeloma
using a SCID mouse xenotransplantation model. In another
xenotransplantation model, As,O; (3.75mg/kg) induced a
significant reduction of L540Cy Hodgkin tumors.® Subsequent
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in vivo studies characterized the effectiveness of arsenic in
various hematological malignancies, and multiple phase I/11
clinical trials are underway to evaluate its feasibility, safety and
potential efficacy. Arsenic has also been tested in non-
hematological cancer. Using an orthotopic prostate metastasis
model, As,Os alone provided a dose-dependent inhibition of
both primary and metastatic lesions, although an increased
survival rate was only obtained in the group treated with the
combination of As,O3; and buthionine sulfoxamine (BSO), an
inhibitor of y-glutamyl cysteine synthase.'®

In spite of these and other studies showing sensitivity to
arsenic treatment in vitro and in vivo,>'* the degree of
sensitivity has been consistently less than in APL cells, and
clinical trials in different hematological malignancies and solid
tumors have had mixed results.'>™'® These initial investigations
suggest that arsenic trioxide, as a single agent, may have limited
clinical activity outside APL. Therefore, combinations with other
agents should be explored to increase antitumor efficacy and the
therapeutic index of As,Os.

Several compounds have been reported to increase As,Os-
mediated apoptosis in vitro.>'%?° BSO modulates the cellular
glutathione system and can significantly potentiate the effects of
As,O3, converting arsenic-resistant cell lines to a sensitive
phenotype.?'?? Although in vivo effects have been reported for
this combination,?* the observed additive toxicity may not be
selective for cancer cells, and BSO itself has not been
successfully developed for clinical use. Ascorbic acid (AA), a
key antioxidant molecule, augments the toxicity of As;Os
in vitro,**?> but controversy exists regarding its mechanism of
action,?® and its potential for utility in the clinic is under study.

We have demonstrated recently that trolox (6-hydroxy—
2,5,7,8-tetramethylchroman-2-carboxylic acid) enhances the
sensitivity of APL to As,Os in vitro. We extended these results to
NB4, an arsenic-resistant subclone of NB4, the IM9 multiple
myeloma cell line and a variety of breast cancer cell lines.?” In
all these malignant cell lines, treatment with As,O3 and trolox
increases intracellular oxidative stress, as evidenced by elevated
heme oxygenase-1 (HO-1) protein levels, JNK activation and
protein and lipid oxidation. Importantly, we found that trolox
could protect non-malignant cells from As,Os;-mediated cyto-
toxicity in vitro, suggesting that it may diminish or overcome the
adverse effects associated with As,Os; monotherapy in vivo,
potentially increasing the therapeutic index. As a presumed
antioxidant, trolox has been used to mitigate the toxic effects of
several compounds in animal models. Trolox reduced liver
necrosis in a model of hepatic ischemia reperfusion in rats*® and
decreased streptozotocin-induced liver and kidney damage in
mice.*?

In this study, we addressed the effects of As,O5 and trolox on
the viability of lymphoma P388 cells in vitro and in a mouse
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tumor model. We also investigated mechanisms underlying the
pro-apoptotic properties of this combination, and its potential
toxic effects in mice. We show that the combination of As,O3
and trolox decreases arsenic toxicity in non-tumor and tumor-
bearing mice, while increasing the survival time and limiting the
metastatic spread in mice bearing P388 lymphoma cells.

Materials and methods

Growth assays

P388 cells (provided by Dr Jing, Mount Sinai Medical Center,
New York) were treated with various concentrations of As,O3
+/— 100 um trolox for 6 days. Viable cells were counted by
trypan blue exclusion on days 1, 3 and 6. Logarithmic growth
phase was maintained at a density lower than 1 x 10°cells/ml
through dilution as required, and media +/— treatment was
replaced every third day.

Annexin V/propidium iodide staining

Cells were stained with annexin-V-FITC and propidium iodide
(P1) in binding buffer according to manufacturer’s (BD Pharmin-
gen, San Diego, CA, USA) and analyzed on a FACScan (Becton
Dickinson, San Jose, CA, USA). Apoptotic cells (Annexin V
positive/Pl negative) were quantified using the CellQUEST
software (Becton Dickinson).

Detection of the mitochondrial membrane potential (A ,,)
Changes in AY,, were determined with the J-aggregate-forming
lipophilic cationic fluorochrome JC-1 (Molecular Probes,
Eugene, OR, USA). Cells were incubated with 2.5 mg/ml JC-1
for 15 min. Cells were washed two times with PBS, resuspended
in phosphate buffered solution (PBS), and analyzed on a
FACScan. Data were analyzed and expressed as the ratio of
mean fluorescence intensity between FL2 (polarized, dimeric)
and FL1 (depolarized, monomeric) fluorescence.

Preparation of 5-100 fractions and assessment of
cytochrome c release

Cells were harvested, washed with ice-cold PBS and resuspended
in five volumes of buffer (75 mm NaCl, 8 mm Na,HPO,, 1T mm
NaH,PO,4, 1 mm EDTA, 350 ug/ml digitonin, 1 mm dithiothreitol,
0.1 mM. phenylmethylsulfonyl fluoride, 10um aprotinin and
10 uMm leupeptin). After 30 min on ice, the cells were centrifuged
twice at 750g, T0min at 4°C. Cytosolic S-100 fractions (super-
natants) were obtained by centrifugation at 100000 g for 60 min
at 4°C. Cytochrome c release into the S-100 fraction for each
condition was assessed by western blot analysis.

Western blotting

Livers were disrupted by a Polytron homogenizer (Brinkmann,
Westbury, NY, USA). Debris was removed by centrifugation at
700 g for 15 min, followed by centrifugation of the supernatant
twice at 14400 g for 15 min and finally at 100000 x g for Th at
4°C. Proteins were separated and probed as described pre-
viously?” with cytochrome ¢ (1:500: BD Pharmigen), HO-1
(1:1000, Stressgen), and HSP70 (1:5000: Stressgen). Immuno-
staining for f-actin confirmed equal protein loading.

Cytochrome c oxidase (CcO) activity and cellular ATP levels
Mouse liver mitochondria were isolated using a mitochondria
isolation kit (Sigma). CcO activity was calculated based on the
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rate of oxidation of ferrocytochrome c (decrease in absorbance
at 550 nm). Ferrocytochrome ¢ concentrations were determined
using a kit (Sigma), with values expressed as pmol/min/mg
mitochondrial protein. The intracellular ATP concentration was
determined with a luminescent ATP detection kit (ATPLite;
PerkinElmer Life Sciences) and was measured using a multiplate
reader. ATP was calculated from a standard curve and was
expressed as uM ATP/mg wet tissue.

In vivo toxicity experiments

All procedures conformed to the NIH guidelines for the care and
use of laboratory animals, and were approved by the McGill
University Animal Care Committee. BDF; mice (Charles River
Laboratories, Wilmington, MA, USA) were randomly divided
into eight groups of five mice. Each group received trolox (2.5,
10, 20 or 50 mg/kg), As,O3 (7.5 mg/kg) or the combinations of
trolox and As,Oj interperitoneally. On alternate days for a total
of 14 injections. Animals were weighed every other day. One
day after the last dose of arsenic, blood was collected by cardiac
puncture. Serum was separated and total protein levels, glucose
content, activities of alanine aminotransferase (ALT), aspartate
aminotransferase (AST) and alkaline phosphatase (AKP) were
assayed using commercially available kits. Mice were killed by
cervical dislocation. Liver was extracted and washed in ice-cold
isotonic saline solution and weighed. Liver samples were fixed
in 10% phosphate-buffer formalin (pH 7.4), embedded in
paraffin, sectioned, stained with hematoxylin—eosin, and exam-
ined under bright field microscope by a pathologist. Lympho-
cyte infiltration and number of binucleated cells were quantified
in 10 random 0.159 mm? fields/sample.

In vivo anti-tumor experiments

P388 cells were injected i.p. in DBA/2 mice (Charles River
Laboratories, Wilmington, MA, USA). After 15 days, cells were
collected from the peritoneum, washed and resuspended in PBS.
For experiments, 0.1 ml containing 2 x 10° cells obtained from
the ascites was inoculated i.p. in BDF; mice. Mice were
randomly divided into six groups each with eight mice. After
24 h, each group was given saline, As,Oj3 (7.5 or 10 mg/kg) and
trolox (50 mg/kg) alone or in combination i.p. On alternate days
for a total of 14 injections. The percentage increase in lifespan
(ILS) over control was calculated as follows: [LS%=5T/
C%—100, where T is the test mean survival time, and C is the
control mean survival time. Macroscopically visible lesions
were counted in the liver, stomach, pancreas and intestine by a
pathologist blinded to the treatment groups. Sections of liver
were stained for hematoxylin and eosin to verify that the
counted visible liver lesions were indeed liver metastases.

Statistical analysis

Significance was determined by analysis of variance followed by
Newman—Keuls post-tests using Prism version 3.0 (GraphPad
software, San Diego, CA, USA). The combination index (CI), an
indication of the interaction between two drugs, was determined
by the formula a/A+b/B=1, where a is the IC50 of
As,O5 +trolox at a concentration b; A is the 1C5y of As,Os;
and B is the ICso of trolox. According to this formula, when
Cl<1, the interaction is synergistic, when CI=1, the interaction
is additive, and when CI> 1, the interaction is antagonistic.30



Results

Trolox significantly enhances As,Oj3-induced apoptosis
of murine lymphoma P388 cells

Based on our finding of synergy in NB4, AsR2, IM9 and a variety
of breast cancer cells lines,?” we first investigated whether trolox
would increase the in vitro efficacy of As,Os in a lymphoma cell
line for which there is an established animal model. As Figure Ta
shows, treatment of P388 cells for 6 days with 2 and 4 um As,O;
reduced the viable cell number by 19.0 and 51.7% of control,
respectively (P<0.001). Thus, P388 cells are less sensitive to
As,O3 than some leukemic cell lines, in which 0.5 and 1um
As,Oj3 are sufficient to induce a similar effect. Trolox (100 um)
alone had no effect on cell number at any time point. However, if
the cells were treated with 2 or 4 um As,O3 and 100 um trolox in
combination, 41.2 and 81.3% reductions in cell number were
observed (P<0.001, when compared to As,Os alone at either
dose). In all cases, trypan blue-positive cells were less than 3%.
A difference was also seen at 72h, where addition of trolox
enhanced the action of 4 uM As,O3 by decreasing cell number by
29% compared to As,Oj3 alone. The Cl value was determined to
be 0.619, documenting a synergistic interaction between As,Os
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and trolox. A variety of complementary techniques were then
performed to analyze whether the observed growth inhibitory
effects were the result of the induction of apoptosis in P388 cells.
Using annexin V/propidium iodide staining, we found that 24% of
the cells treated with 2 um As,O; were apoptotic after 48h
(Figure 1b). This percentage was nearly doubled when trolox was
added. Similarly, the addition of trolox to 4 um As,Os increased
apoptosis from 33.2 to 58.5% (P<0.001). Consistently, control
and cells treated with trolox exhibited JC-1 orange fluorescence
due to the formation of JC-1 aggregates, indicating that the
mitochondria were polarized (Figure 1c). Exposure to As,Os
induced a very rapid decline in A¥,,, as revealed by complete loss
of JC-1 orange fluorescence and a shift to JC-1 green fluorescence
due to the formation of JC-1 monomers. Consistently, a dose-
dependent decrease of A¥,,, was observed in the cells treated with
the combination of As,O3 and trolox. As a consequence of the
decreased mitochondrial membrane potential, cytochrome ¢ may
be released from the mitochondria, providing another marker of
apoptosis. As shown in Figure 1d, cytoplasmic cytochrome c
content was increased when trolox and As,O; were used in
combination at both As,O; doses. Thus, our data indicate that
trolox increases As,Os-induced apoptosis in P388 cells.

b 754
dkk
E__ i
=
= |=n 504
83
>9
§§
£ € 257
<
0
o>
S il
d
o" on
o e
X X
& N s
&£ o ;\? A
~ o 2] *
FIFT &5 ¢
S & I £ I O
O S oo & RS
— — e Cytoplasmic
cytochrome ¢
eSS aRaE TS E= | Ao

Trolox enhances As,Os-mediated growth inhibition and apoptosis in murine P388 lymphoma cells. (a) P388 cells were treated with

media (M), trolox (), 2 uM As,O3 (A), 4 um As,O5 (@) and the combination of trolox with 2 um As,Os (A) and 4 um As,O5 (O). Viable cells were
counted by trypan blue exclusion on days 1, 3 and 6. Bars denote standard deviations. Asterisks indicate significant differences (P<0.001) from
As,Os-treated cells. (b) P388 cells were treated with As,O5 and trolox for 48 h. Apoptosis was detected by annexin V-FITC and PI staining.
Apoptotic cells (Annexin V positive/Pl negative) were quantified using the CellQUEST software. (c) Ratios of mean fluorescence intensity (JC-1

orange fluorescence and JC-1 green fluorescence) were calculated to determine changes in A¥,,,. (d) S-100 fractions were isolated and cytochrome

c release into the S-100 fractions for each condition was assessed by western blot analysis. Asterisks indicate a significant difference (*P<0.05,
*#*P<0.01) from As,Os-treated cells. Number signs indicate a significant difference (P<0.001) from controls.
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Trolox decreases As,O3-mediated toxicity in vivo in
BDF; mice
In our previous work, we demonstrated that trolox decreases
cytotoxicity of As,Os; in mouse embryonic fibroblasts.?” In
addition, we have determined that trolox protects the non-
tumorigenic murine hepatocyte AML cells from As,O; toxicity
in vitro (data not shown), suggesting that synergistic toxicity of
the combination could be specific to tumor cells. To test this
hypothesis in vivo, we first conducted toxicological studies to
define the maximum tolerable dose of trolox in BDF; mice.

Trolox treatment was well tolerated and not toxic at the doses
studied (2.5, 10, 20, and 50 mg/kg), as indicated by assessment
of body weight over the course of the study; the average body
weight did not differ significantly from the control animals in
any treatment group. The higher dose approaches its maximum
solubility limit in 300 ul, the maximum volume that can be
injected in mice intraperitoneally.

Liver damage has been reported to be a marker of arsenic
toxicity in different experimental animals.®'*> Therefore, we
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asked whether trolox could affect As,O3-associated hepatocel-
lular damage in vivo. Mice were randomly divided into groups
of five mice and treated with two doses of trolox and a dose of
As,05 (7.5 mg/kg) reported to be moderately toxic.”* None of
the animals exhibited discomfort or obvious distress throughout
the duration of the experiment. No significant differences in
weight were observed in any of the treated groups compared to
control. As depicted in Figure 2a, moderate hepatomegaly was
observed in the As,Oj;-treated group. The average liver weights
in the control and trolox groups were quite similar, with an
average of 1.07+0.14g, while in the As,Oj-treated group,
average liver weight was increased to 1.53+0.35g (P<0.05).
However, in the groups treated with the combination of As,O4
and trolox, the hepatomegaly was abrogated, with an average
liver weight of 1.104+0.1g (P<0.05 As,O5 vs. As,Os5 + trolox).

When hepatocellular injury occurs, the associated plasma
membrane leakage can be detected biochemically by assaying
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) activity in serum. Figures 2b and c show that both

200+

100+

Figure 2 Trolox decreases As,O3-mediated liver toxicity in vivo. Animals were treated as indicated in Materials and methods section. One day
after the last dose of arsenic, animals were killed and the livers were weighed (a). Blood was collected by cardiac puncture. Serum activities of
alanine aminotransferase (b) and aspartate aminotransferase (c) were assayed using commercially available kits in all the animals. Asterisks
indicate a significant difference (P<0.05) from As,Os-treated group. Number signs indicate a significant difference (*P<0.05, **P<0.01) from

control group.
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enzymatic activities were increased in the As,Os-treated group
by 4.2- and 3.5-fold compared to that of the control group,
respectively. However, in the animals treated with the
combination of As;O3 and either 10 or 20 mg/kg trolox, a
significantly decreased induction of AST and ALT activities was
observed (P<0.05). The activity of alkaline phosphatase, an
indicator of cholestasis, was not significantly affected by any of
the treatments (data not shown), suggesting that As,O3 can
induce a direct injury to the hepatocytes without blocking bile
excretion. We did not observe any change in glucose or total
protein levels in any of the groups (data not shown) or any
fulminant hepatic failure, perhaps due to the short duration of
the experiment.

Histopathological analysis of liver samples demonstrated a
cell injury pattern in the As,Os-treated group (Figure 3a),
characterized by hepatocellular degeneration, inflammatory
infiltrates composed of fibrinous exudates and polymorpho-
nuclear leukocyte aggregates, and areas with focal necrosis. A
marked increase in binucleated cells was observed, suggesting
regeneration of hepatocytes after acute toxicity. We tested
whether the addition of trolox would modify this cellular pattern
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of toxicity. Lymphocyte foci and binucleated cells were counted
in randomly selected fields by a pathologist blinded to the
treatment groups. A significant decrease in lymphocyte infiltra-
tion and binucleated cells was observed after treatment with
As,05 and trolox compared to As,Os alone (Figures 3b and c).
These results indicate that trolox significantly protects hepato-
cytes from As,Os-mediated toxicity.

Trolox decreases As,Os;-mediated oxidative stress and
ameliorates the As,O3z-mediated decrease in cellular
metabolic rate in BDF; mice

Oxidative damage may be a key mechanism by which arsenic
mediates its toxic effects. Because trolox decreases As,Os-
induced liver toxicity, we hypothesized that the addition of
trolox reduces hepatocellular oxidative stress induced by As,Os.
HO-1, an oxidative stress-responsive protein,33 was not
detected in the liver of control animals or animals treated with
trolox alone, but was markedly induced by As,O3. The addition
of trolox significantly decreased As,Os;-mediated HO-1 induc-
tion in all the animals (Figure 4a). The 70kDa heat shock

No. of binucleated cells ©

Figure 3 Trolox modulates As,O; effects on liver morphology. (a) Photomicrographs ( x 40) of the liver samples from animals treated with saline
solution (Control), 50 mg/kg trolox (Trolox), 7.5 mg/kg As,O3 (As,Os) and the combination of As,Os and trolox (As,Os + Trolox). Inflammatory
infiltrates composed of fibrinous exudates and polymorphonuclear leukocytes are depicted using big arrows. Representative examples of
binucleated cells, an indication of hepatocellular regeneration following a toxic treatment, are shown using small arrows. Quantification of
lymphocyte foci (b) and binucleated cells (c) are also shown. Asterisks indicate significant differences (*P<0.05, **P<0.01) from As,Os-treated
group. Number signs indicate significant differences (*P<0.05, ***P<0.001) from control group.
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proteins (HSP-70 family) are important for protein folding and
help to protect cells from stress. HSP-70 expression has been
used as an indicator of As,O5 exposure in different experimental
models.** As depicted in Figure 4b, HSP-70 protein levels were
enhanced in the livers of As,Os-treated group, while they were
decreased to near basal levels when the animals were treated
with the combination of As,Os and trolox. The HSP70 antibody
recognizes the inducible form of HSP-70 (HSP-72) and the
constitutive form HSP-73, explaining the basal levels in the
control and trolox-treated groups.
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Thus, having established that As,O5 induces liver oxidative
stress, and that the addition of trolox significantly restores
hepatocellular redox homeostasis, we further analyzed whether
the hepatocellular metabolic rate was affected by this combina-
tion. Sulfhydryl groups in many enzyme systems react with
arsenicals, which may result in a block of the Krebs cycle,
interrupting oxidative phosphorylation, which in turn causes
marked depletion of ATP stores.” The activity of cytochrome c
oxidase in the liver is considered to be a good metabolic marker
for functional activity of cells. Therefore, we asked whether
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Figure 4 Trolox protects mice against As,Os;-mediated oxidative stress and blocks As,O3;-mediated decrease in hepatic metabolic rate. Animals
were treated as indicated in Materials and methods section. Western blotting was performed to determine total cellular HO-1 (a) and HSP-70 (b)
protein levels with f-actin as loading control in liver samples from all the animals. Densitometric analyses of blots from six animals were
performed. (c) Mitochondria from liver were extracted and cytochrome c oxidase activity was assayed. (d) ATP concentrations in hepatocytes were
measured with a luminescent ATP detection kit. Asterisks indicate significant differences (*P<0.05, **P<0.01, ***P<0.001) from As,Os-treated
group. Number signs indicate significant differences (*P<0.05, **P<0.01, ***P<0.001) from control group.
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As;0O5 could reduce CcO activity and ATP stores and whether
trolox might play a role in the restoration of the basal levels.
Figure 4c shows that the hepatic CcO enzymatic activity of
animals treated with As,O3; was decreased by 74.2%, while this
activity was only decreased by 48.6% with the combination of
As,0O3 and trolox (P<0.05). As predicted, As,O; treatment
induced a 63.5% decrease in liver ATP levels, while the animals
treated with As,O5 and trolox only showed a 32.2% reduction
(P<0.001) (Figure 4d). These results again show protective
effects of trolox on arsenic-mediated liver toxicity.

Trolox increases As,Os;-mediated antitumor effects in
BDF; mice bearing lymphoma P388 cells while
protecting against liver toxicity

On the basis of the in vitro potency and favorable in vivo
toxicity profiles, As,O3 and trolox were evaluated for in vivo
antitumor efficacy in mice bearing P388 murine lymphoma
tumors. The dose selection for As,O; (7.5 and 10 mg/kg body
weight) was based on the relatively low toxicity seen in our
initial study of non-tumor-bearing mice. Trolox was given at
50 mg/kg, which was not toxic in our preliminary results but
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approached the maximum solubility. As shown in Figure 5a,
As,O5 treatment prolonged survival, with median survival times
of 20 and 18 days for 7.5 and 10 mg/kg As,O3, respectively, as
compared to 14 days for controls (P<0.001). The median
survival time for animals treated with the combination of As,O5
and trolox was further prolonged to 24.5 and 22 days compared
to that of with As,O3 alone (P<0.001). Treatment with 7.5 mg/
kg As,O5 provided a 46.4% ILS (Figure 5b). When this dose was
combined with trolox, we observed a 73.5% ILS. Animals
treated with 10mg/kg As,Os, experienced an increased life
span of only 28.6% (P<0.001). We observed moderate weight
loss and lethargy in these mice (data not shown), suggesting that
this dose is toxic. However, the addition of trolox doubled the
increase in lifespan of 10 mg/kg As,O5 alone without evidence
of increased toxicity.

The effects of the combination of As,O; and trolox on tumor
metastases were profound. At the time of killing or death due to
tumor progression, metastases were present in all of the eight
(100%) saline-treated control animals as seen macroscopically
and in histological sections (Figure 5c and data not shown).
Treatment with 7.5 and 10 mg/kg As,O5 reduced the number of
animals with metastases to 62.5 and 37.5%, respectively. The
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Figure 5 Trolox increases As,Os antitumor effects in BDF; mice. Animals bearing P388 lymphoma cells were treated as indicated in Materials
and methods section. Animal deaths were tabulated and Kaplan-Meier curves were generated to depict percent survival (a). Increase in lifespan of
treated animals relative to controls was calculated (b). Macroscopically visible lesions were counted in liver, stomach, pancreas and intestine in all
the animals (c). Asterisks indicate significant differences from As,Os-treated groups (*P<0.05, **P<0.01, ***P<0.001). Number signs indicate

significant differences (P<0.001) from controls.
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incidence of metastases was significantly decreased to 37.5 and bearing mice, as demonstrated by an increase in HO-1 protein
12.5% when trolox was combined with 7.5 and 10 mg/kg As,O4 levels (first lane of Figure 6a, compared to Figure 4a).
(P<0.001). We examined livers from tumor-bearing mice to Interestingly, treatment with trolox alone decreased the hepatic
analyze whether trolox could also modulate As,O3;-mediated oxidative stress. As,Oj; treatment caused some further increase
oxidative stress and its effects on the metabolic rate of these in HO-1 expression at both 7.5 and 10 mg/kg (Figure 6a and
animals. We found that the non-treated, tumor-bearing animals data not shown). However, addition of trolox significantly
had a higher baseline of liver oxidative stress than non-tumor- decreased HO-1 protein levels at both doses of As,O5 studied.
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Figure 6 Trolox protects tumor-bearing mice against As,Os;-mediated toxicity. Animals were treated as indicated in Materials and methods
section. Western blotting was performed in liver samples from all the animals to determine HO-1 (a) and HSP-70 (b) protein levels with f-actin as
loading control. Densitometric analyses of blots were performed using eight animals per group. (c) Mitochondria from liver were extracted and
cytochrome c oxidase activity was assayed. (d) ATP concentrations in hepatocytes were measured with a luminescent ATP detection kit. Asterisks
indicate significant differences (*P<0.05, ***P<0.001) from As,Os-treated group. Number signs indicate significant differences (**P<0.01,
###p<0.001) from control group.
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Similarly, HSP70 expression was consistently increased by
As,O3, and this effect was reduced by trolox (Figure 6b). We
then explored the effects of the As,O5 and trolox combination
on hepatic metabolic rate using assays of CcO and ATP as
shown before. Consistently, CcO activity (Figure 6¢) and ATP
stores (Figure 6d) were markedly reduced in the animals treated
with As,Os3, but significantly restored in the animals treated with
the combination of As,O5 and trolox. In addition, serum ALT
levels were less elevated when As,O; was given with trolox
(data not shown). These results show that although tumor-
bearing mice have baseline liver damage, consistent with our
data for non-tumor-bearing mice, trolox protects the liver from
arsenic-mediated toxicity.

Discussion

Although activity in many malignant cell lines requires
concentrations of As,Os that are not clinically achievable, our
previous work identified trolox as a compound that might have a
dual role depending on the cellular microenviroment. In
malignant cells, trolox synergizes with As,O; to increase its
toxicity while in non-malignant cells, trolox decreases As,Oj;-
mediated cellular damage. This is the first report showing that
the combination of As,O5; and trolox in vivo targets malignant
cells and limits cancer metastases, while decreasing damage to
normal cells.

In this study, we used the mildly As,Os-resistant P388
lymphoma cell line to assess the potential synergy of As,Oj
and trolox in vitro and in vivo. We found that the combination
of As,O5 and trolox enhanced growth inhibition and apoptosis
of P388 cells. These data support a synergistic effect of trolox in
enhancing As,Os toxicity consistent with previously published
work in NB4, AsR2, IM9, MCF7, T47D and MDA-231 cells.”’
These in vitro effects provided the rationale for experiments
using the P388 lymphoma cell line to determine how trolox
would affect As,Os activity and toxicity in vivo. We first
performed in vivo studies with As,O5; and trolox alone or in
combination to investigate whether trolox would affect arsenic
toxicity in BDF; mice. We observed As,Os-induced liver
toxicity, which has been previously reported to involve tissue
necrosis and other histological and biochemical changes in
several animal models.3® In these non-tumor-bearing mice, we
found that trolox protects normal hepatic cells from As,O;
toxicity. This is the first study to report in vivo protective effects
of trolox on arsenic-induced hepatotoxicity, although several
studies have demonstrated its efficacy in preventing toxicity of
other metals.?® In addition, studies have shown that a trolox
derivative (U-83836E) appeared to be beneficial in reducing
lipid peroxidation products and in partially preventing the
decrease in glutathione and antioxidant enzymes induced by
methanol in liver, serum®” and brains®® of rats. Lower doses of
trolox than used in the present study clearly reduced methyl-
mercury-induced toxicity in rats.>? These studies suggest that
trolox may decrease toxicity associated with a broad spectrum
of compounds.

Based on our in vitro results and the favorable in vivo toxicity
profile, we evaluated As,O5; and trolox for in vivo antitumor
efficacy in the peritoneal P388 murine lymphoma model. This
model was used to test the combination of ascorbic acid and
arsenic, which also was reported to be effective in vitro in
various cell lines. In addition, this model has been used to test
the effects of different antineoplastic drugs.**™** Trolox doses
ranging from 2 to 100mg/kg have been used in rats and
rabbits.**™*> The intraperitoneal route was chosen in an attempt
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to avoid the potential confounding factors on As,O3 absorption
through the gastrointestinal tract and to compare parenteral
arsenic effects with previous reports in the literature.***” We
showed that the addition of trolox to As,O; given to mice
bearing P388 lymphoma cells significantly increased their
survival time. It has been reported, using the same model, that
ascorbic acid enhanced antitumor properties of As,O3;%* Dai
et al. observed an increase in survival time with the combination
of AA and As,O3, although they used a lower dose of As,Os
(5 mg/kg), which did not increase the lifespan of the mice as a
single agent. Using 7.5 mg/kg As,Os, we obtained a significant
prolongation of survival that was markedly improved by the
addition of trolox. Most notably, our studies show the potential
for As,O5 and trolox given as a combination to limit metastases.
It remains critical to reconcile these two opposite effects of the
As,0O3 and trolox combination, that is, a cooperative action of
As, 05 and trolox against lymphoma growth and metastases with
the concomitant protection by trolox of normal cells in vivo.
Our data suggest that trolox may behave as a pro-oxidant in
cancer cells exposed to As,O;, while having antioxidant
properties in normal cells. Therapeutic enhancement by
antioxidants is counterintuitive to the apparent role of ROS in
apoptosis. However, the pro- or antioxidant effects of many
redox-active compounds may vary substantially as a function of
the cellular redox microenvironment and models employed. For
example, it has been proposed that the selectivity of certain
chemotherapeutic agents to cancer cells may be due, in part, to
the relatively low concentrations of antioxidant enzymes
documented in some malignant cells.***? It is noteworthy that
normal cells in general are more efficient in eliminating ROS
than malignant cells. Furthermore, a specific ROS or its
intracellular localization could be the critical determinant of
cell death or survival. Finally, it has been demonstrated that
vitamin E>® may modulate tumor cell permeability by altering
levels of lipid peroxidation in surface membranes, raising the
possibility that trolox differentially augments As,O; uptake by
malignant cells.

Our observation of reduced toxicity of As,O3 in vivo, delayed
death in mice bearing P388 tumor cells and reduction of
metastatic spread in this model suggests that the combined use
of As,O; and trolox may increase the therapeutic index of
arsenic and possibly decrease the development of secondary
tumors in patients with advanced lymphoma and other
malignancies.
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