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Abstract. Solar coronal plumes are modelled by solving the

steady, ideal, 2-D, magnetohydrodynamic (MHD) equations

and assuming azimuthal symmetry around the plume axis. Since

magnetic fields are believed to play an essential role in plume

formation and structure, a self-consistent method of linearisa-

tion of the MHD equations with respect to the magnetic field

has been considered here. This consists of three distinct steps:

first a potential field is calculated as a deviation from the ra-

dial case due to a flux concentration at the plume base, then the

other plasma quantities are worked out by solving a Bernoulli-

like equation and finally the modifications to the zeroth order

field are found. Free functions of the model are the radial field

component at the coronal base, the density at the coronal base

and the temperature, which is assumed to be constant along the

field lines. This method allows one to reproduce basic features

of coronal plumes such as the super-radial expansion close to

their base. The results are compared with the observations.

Key words: MHD – Sun: corona – Sun: magnetic fields – solar
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1. Introduction

Solar coronal plumes were first observed in white light eclipse

photographs as long, faint rays of enhanced density (3 – 5

times denser than the background) located inside coronal holes

(e.g. Van de Hulst, 1950; Saito, 1965; Koutchmy, 1977). In

extreme ultraviolet (EUV) spectroheliograms they appear as

shorter spikes near the polar limb (Bohlin et al., 1975; Ahmad &

Withbroe, 1977; Widing & Feldman, 1992; Walker et al., 1993)

and they show lifetimes of several hours or even days. Recently,

diffuse Mg IX plume-like structures have been observed inside

low-latitude coronal holes undergoing limb passage (Wang &

Sheeley, 1995a), thus suggesting that coronal plumes are com-

mon features of all coronal hole regions and not only in the po-

lar caps (therefore the term coronal plume should be preferred

to polar plume, although the latter is more commonly used).

Plumes have been also identified in soft X-ray images (Ahmad

& Webb, 1978) and possibly even as weak radio sources (Gopal-

swamy et al., 1992). More recently, white light observations by
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the Spartan spacecraft coronograph, up to a height of 5 solar

radii, have been analysed by Fisher & Guhathakurta (1995).

Characteristic values of coronal plumes, as seen at the solar

limb, are widths of 6−7×104 km, number densities in the range

108 − 109 cm−3 and temperatures around 106 K (Mg IX lines,

where plumes intensities peak, form around 9.5 × 106 K). The

outflow velocity is unknown, but it should not be larger than,

say, 10 km s−1 at the base of the plume (plumes are observed

to be roughly in hydrostatic equilibrium), thus suggesting that

the bulk of the solar wind acceleration occurs at larger heights.

Finally, no measures of the magnetic field are available, although

usual coronal values for the plasma beta (≈ 1%) are commonly

assumed.

Together with macrospicules, short-lived (∼ 30 minutes)

jets of cooler chromospheric material, coronal plumes are be-

lieved to trace the open field lines structure and to provide a

major source of the solar wind. Possible remnants of the signa-

ture of these coronal hole fine structures have been discovered

(Thieme et al., 1990) by analysing high-speed streams data taken

by the Helios probes in the range 0.3 – 1 AU. Their results show

that plumes expand while retaining an overall pressure balance

with the background, thus suggesting that the magnetic field

open lines play an important role in confining the plume plasma

even in the outer corona. This behaviour has been investigated

by Velli et al. (1994), who proposed an interesting thin flux-

tube model in which the magnetic flux is conserved separately

both in the plume and in the surrounding coronal hole and total

pressure is balanced across the field lines.

Another fundamental observational result, confirming the

intrinsic magnetic nature of coronal plumes, is the connection

between plumes and magnetic surface features related with flux

concentrations. Before the Skylab era plumes were believed

to be rooted in unipolar flux concentrations in relation with

photospheric or chromospheric faculae, located at the vertices

between supergranular cells (Newkirk & Harvey, 1968). This

picture was supported by the coincidence of the mean plume

separation (≈ 7 × 104 km) and the size of a typical supergran-

ular cell. After the discovery of the presence of compact EUV

enhancements at the base of the most bright plumes (Bohlin et

al., 1975), which in turn correspond to X-ray bright points, the

attention has shifted towards magnetic bipolar regions (Golub

et al., 1974; Habbal, 1992; Dowdy, 1993). These observations
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have suggested a possible explanation for plumes formation:

one or more bipoles are pushed by photospheric motions to-

wards an open flux region located at a supergranular junction;

eventually reconnection occurs, field lines open up and the re-

quired energy for plume formation is released. This mechanism

has been analysed in more detail by Wang & Sheeley (1995b),

whereas a systematic analysis of the effect of heating of the in-

ner corona at the plume base may be found in Wang (1994), who

also investigated the solar wind implications by solving the full

energy equation along the radial direction (although pressure

balance across the field lines is not taken into account).

However, so far there is little direct evidence for the rela-

tionship between plumes and network activity (magnetograms

cannot be taken at the limb, where the plumes are more easily

observable), though anyway it seems reasonable to assume that

plumes are rooted in open flux concentration regions. In support

of this idea come the observations of a super-radial expansion

of plumes near their base, say in the range 1 − 1.2R� (Saito,

1965; Ahmad & Withbroe, 1977; Ahmad & Webb, 1978). What

is observed is obviously a density behaviour, but if the plume

is to be in equilibrium, then it must be threaded by diverging

field lines with increasing height (Ahmad & Withbroe, 1977).

Potential field models trying to explain this behaviour were pro-

posed by Newkirk & Harvey (1968) and by Suess (1982), but

none of them include the plasma parameters in their analysis.

Suess’s model consists of an analytical, two dimensional field

in Cartesian geometry with a given vertical field at the plume

base. A comparison with the results by Ahmad & Withbroe is

also made, but unfortunately the whole analysis is affected by a

trivial mistake (a factor π missing in the decaying exponential

function of height).

The main goal of the present paper is to present a self-

consistent MHD model which correctly reproduces the observed

super-radial expansion near the plume base, assuming that mag-

netic effects are dominant in the inner corona but taking into ac-

count the pressure, inertial and gravity forces as well. This will

be achieved by solving the steady, ideal, 2-D MHD equations

linearised with respect to the magnetic field under the assump-

tion of a low-beta coronal plasma. The method of solution and

the general equations are presented in Sect. 2, whereas the ac-

tual plume model is discussed in Sect. 3, first in the simple radial

case and then assuming a flux concentration at the base of the

plume.

2. Low-beta, 2-D equilibria: basic equations in spherical ge-

ometry

The steady, ideal MHD equations may be written in the non-

dimensional form:

∇ ·B = 0, (1)

∇ · (ρV ) = 0, (2)

∇× (V ×B) = 0, (3)

(∇×B)×B = (β?/2)[M 2
?ρ(V · ∇)V +∇P + g?ρr

−2
er], (4)

where all the quantities have been non-dimensionalized against

typical coronal values and where the values of the three param-

eters

β? =
8πP?

B2
?

, M? =
V?

Vs?

, g? =
GM�mp

2kT?R�

indicate the relative importance of the various terms in Eq. (4)

(here Vs? =
√

2kT?/mp is a reference value of the sound speed

and all the other symbols have their usual meaning).

The main assumption in our model is that the magnetic

forces are dominant over all the others, namely pressure gra-

dients, gravity and inertial forces. In the low solar corona this is

a good approximation and the coronal plasma is thus regarded

as low-β. Hence, in order to linearise the MHD equations with

respect to the magnetic field, the following form for B is as-

sumed:

B = B0 + (β?/2)B1,

where its zeroth order component B0 is necessarily force-free

(from Eq. (4)).

Consider now a purely 2-D spherical coordinate system in

which all the quantities lie in the r - θ plane and do not depend

upon the azimuthal coordinate φ (the plume axis will coincide

with the symmetry axis θ = 0). Using the formalism of the flux

functions, Eqs. (1) to (3) give

B0r =
1

r2 sin θ

∂A0

∂θ
, B0θ = − 1

r sin θ

∂A0

∂r
,

B1r =
1

r2 sin θ

∂A1

∂θ
, B1θ = − 1

r sin θ

∂A1

∂r
,

Vr =
1

r2 sin θ

Ψ(A0)

ρ

∂A0

∂θ
, Vθ = − 1

r sin θ

Ψ(A0)

ρ

∂A0

∂r
,

where the magnetic flux function isA(r, θ) = A0+(β?/2)A1 and

Ψ is a free function of A0 (note that the velocity and magnetic

fields are parallel only at the zeroth order). In order to solve the

equations a relation between pressure and density is needed.

Here the isothermal case will be assumed, thus

V · ∇T = 0 ⇒ P = T (A0)ρ, (5)

where the temperatureT is another free function ofA0 (thusT is

constant along the field lines). Making use of these assumptions,

the component of Eq. (4) acrossB0 splits into the two transfield

(or generalised Grad-Shafranov) equations

L (A0) ≡ ∂2A0

∂r2
+

sin θ

r2

∂

∂θ

(

1

sin θ

∂A0

∂θ

)

= 0, (6)

L (A1) = M 2
?

[

Ψ

ρ

dΨ

dA0

|∇A0|2 −
Ψ

2

ρ2
∇A0 · ∇ρ

]

−ρr2 sin2 θ

[

dE

dA0

+ (1 − ln ρ)
dT

dA0

]

, (7)
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whereas the component along B0 yields the Bernoulli equation

M 2
?

2

Ψ
2

ρ2

|∇A0|2
r2 sin2 θ

+ T ln ρ− g?
r

= E(A0) (8)

and E is the third free function of A0. For the mathematical

demonstrations (in the general case) see Del Zanna & Chiuderi

(1996).

The main result of the linearisation of the magnetic field is

clearly the decoupling of the transfield and Bernoulli equations.

This allows one to solve the problem in three distinct steps:

1. Solve the transfield equation, Eq. (6), for the unperturbed

field.

2. Solve the Bernoulli equation, Eq. (8), for the density.

3. Solve the transfield equation, Eq. (7), for the correction to

the field.

Clearly, the corrections to the magnetic field must remain small

and the condition for this is A1
<∼ A0.

The same approach in solving the MHD equations through

the magnetic field linearisation has been previously adopted by

Surlantzis et al. (1994, 1996) in order to model stationary flows

in coronal loops and arcades. As their investigation is only con-

cerned with closed field structures in cartesian and cylindrical

coordinates, our analysis may be also considered as an extension

to the complementary cases not contemplated in that work.

3. The plume model

As discussed in the introduction, plumes appear to be associated

with magnetic field concentrations at the coronal base. In this

case the potential unperturbed field could be modelled by solv-

ing Eq. (6) with an appropriate boundary condition at r = 1.

However, observations show that plumes structure is mainly ra-

dial from r ≈ 1.2R� onwards (Fisher & Guhathakurta, 1995),

hence the simple radial case will be assumed first as a starting

approximation in order to investigate more easily the physical

implications of the model. The analysis of the general case will

be done in Sect. 3.2, where the resulting plume structure near

the coronal base will be compared with observational data.

3.1. The radial case

Consider the zeroth order radial field

A0(θ) = 1 − cos θ ⇒ B0(r) = r−2
er,

in a region around the plume axis θ = 0 (where A0 ≈ θ2/2).

Through the definition of the Mach number

M =
V

Vs

=
M?Ψ√
Tρ r2

,

and using the continuity equation to eliminate ρ, the radial

derivative of the Bernoulli equation yields (the prime denotes a

derivative in respect to r)

(

M − 1

M

)

M ′ =
2

r
− g?

Tr2
. (9)

This is simply the famous Parker equation for radial, isothermal

winds (Parker, 1958). It is well known that the corresponding

phase plane (M, r) contains four different regions depending

on the position relative to the sonic point M = 1. The only

physically relevant solution for the solar wind problem is the

one crossing the sonic point with M ′ > 0 (Parker or transonic

solution) and eventually connecting via a shock to the inter-

stellar medium. Recently the breeze solutions (i.e. those always

subsonic in the phase diagram) have been shown to be unsta-

ble (Velli, 1994), thus confirming the necessity of the transonic

solution for steady, isothermal outflows.

In the present model the temperature is a function of the field

lines, hence the sonic radius rsonic = g?/2T will be a function of

the field lines too. This means that the flow becomes supersonic

at different radii for different values of θ. Imposing the transonic

condition, the equation for M can be integrated again to give

M exp (−M 2/2) = (B0/B0sonic) exp (3/2 − 2rsonic/r), (10)

where B0 = 1/r2 is the magnitude of the magnetic field and

B0sonic = 1/r2
sonic. Notice that, because of the transonic condi-

tion, the function Ψ(A0) must be now derived from Eq. (10) and

hence it is no longer free.

The density is related to the Mach number through the

Bernoulli equation, which yields

ρ = ρbase exp[−(g?/T )(1 − 1/r)] exp(−M 2/2), (11)

where the relationshipE = T ln ρbase−g? has been assumed and

where ρbase(A0) gives the density profile at r = 1 in the static

case (for solar values Mbase ∼ 10−3, hence the dynamic effects

are actually negligible at the base of the corona). Note that for

a constant temperature everywhere the Mach number does not

depend upon θ (from Eq. (10)) and therefore the density profile

across the field lines remains the same at all heights.

In order to investigate the behaviour of the physical quan-

tities in our model, the shapes of the two arbitrary functions

ρbase(A0) andT (A0) have to be chosen. Here the following func-

tional forms will be assumed:

ρbase = 1 + (ρ0
base − 1) exp(−A0/A0w), (12)

T = 1 + (T 0 − 1) exp(−A0/A0w), (13)

where the density (temperature) is considered to be non-

dimensionalized against its value in the inter-plume region at

the coronal hole base, so that ρ0
base (T 0) gives the ratio between

the densities (temperatures) on the plume axis and in the back-

ground coronal hole. Observed values of ρ0
base are in the range

3–5. Expression (12) has been chosen following Ahmad & With-

broe (1977), where a gaussian-like density profile is shown to

provide the best fit to the observed EUV intensities when the

temperature is constant (the same analysis has been applied in

X-rays by Ahmad & Webb, 1978). An example of the resulting

2-D density structure near the plume base is shown in Fig. 1, in

which the radial decaying behaviour and the conservation of the

θ profile at all heights (for a constant temperature) are clearly

visible.
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Fig. 1. The density ρ, non-dimensionalized against its value at the

base of the coronal hole, as a function of θ and r. The parameters are

ρ0
base = 4, T 0 = 1, θw = 2◦ and g? = 11.5. Here θw is defined as the

characteristic angular half width at which the density drops by a factor

e−1 in respect to the corresponding axial value.

Fig. 2. The position of the sonic point as a function of θ in units of R�

(again θw = 2◦ and g? = 11.5). Three values of rsonic are shown: for

T (PL) = T (CH) (T 0 = 1.0, solid line), forT (PL) > T (CH) (T 0 = 1.2,

dashed line) and for T (PL) < T (CH) (T 0 = 0.8, dotted line). Note

that the sonic point is closer to the Sun for a hot plume and further for

a cold plume.

As pointed out earlier, the main effect of a variable tem-

perature is that the sonic point becomes a function of θ, thus

affecting also the radial density decay. Assuming a background

coronal hole temperature of T? = 106 K the resulting sound

speed is Vs? ≈ 130 km s−1 and g? = 11.5. In Fig. 2 the sonic

point position is shown as a function of θ for different values of

T 0, whereas number density and velocity radial variations are

given in Fig. 3 at the plume axis (PL) and for the coronal hole

(CH).

Note that the value of the temperature is a crucial parame-

ter for the density and velocity behaviour at large distances. A

plume to background temperature ratio as small as T 0 = 1.2 im-

plies a variation of∼ 1R� in the sonic point position and a den-

Fig. 3. The number density Ne (in units of cm−3) in logarithmic scale

and the velocity V (in units of 100 km s−1). The solid lines refer

to the plume axis (PL) whereas the dashed lines refer to the back-

ground coronal hole (CH). The parameters are Ne(PL) = 109 cm−3,

Ne(CH) = 2.5 × 108 cm−3, T (PL) = 1.2 × 106 K, T (CH) = 106 K,

θw = 2◦ and g? = 11.5.

sity ratio which increases quite rapidly with r. Unfortunately,

as Habbal et al. (1993) pointed out in an interesting review

of previous observations, temperature measurements in coronal

holes are affected by so many unknown parameters (tempera-

ture values can only be inferred using some models, where it is

usually supposed to be constant across the plume) and uncer-

tain quantities (like element abundances), that the accuracy in

the measurements cannot be better than 20%. Therefore, it is

obvious that there is no way to deduce our temperature profile

in Eq. (13) from observations (there is not even an agreement

whether a plume should be cooler or hotter than the surround-

ings), hence the comparison with observational data in the next

sub-section will be done assuming T = const. On the contrary,

the present model could be used to calculate the expected emis-

sion, for given values of the parameters T?, T 0, ρ?, ρ0
base and

θw.

The results shown so far for the radial case may be con-

sidered as simple applications of the hydrodynamic theory of

isothermal winds, since the magnetic effects have not been taken

into account yet. The last step left in our radial case analysis is to

calculate the modifications to the zeroth order radial magnetic

field, due to the unbalanced pressure gradient across the field

lines. In fact, as gravity and inertial forces act radially, Eq. (7)

becomes simply

L (A1) = −r2 sin2 θ
∂P

∂A0

,

where L is the operator defined in Eq. (6) and the pressure P
has been defined in Eq. (5). Making use of the expressions for

ρ and M , the equation for A1 can be written in the form

L (A1) = −r2 sin2 θ ρ

{

T

ρbase

dρbase

dA0

+

[

g?
T

− 1

2
+
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Fig. 4. The plasma beta is shown at the plume axis (PL) and in the

coronal hole region (CH) for β? = 0.02. The field line displacement δθ

is also shown as a function of r at the plume half width θw. The values

of the other parameters are the same as in Fig. 3.

1

1 −M 2

(

lnM + 2 ln
r

rsonic

)]

dT

dA0

}

, (14)

where the approximation M 2
base � 1 has been used. Note that

the sonic singularity is removed from the right-hand side thanks

to the choice of the arbitrary function Ψ(A0) corresponding to

the transonic solution.

Eq. (14) has been integrated numerically on a square grid

0 ≤ θ ≤ θmax, 1 ≤ r ≤ rmax with the conditionA1 = 0 on all the

boundaries. The solution automatically satisfies the symmetry

condition Bθ = 0 at θ = 0. The numerical technique imple-

mented is a linear multigrid solver using a v-cycle (see, for ex-

ample, Wesseling (1992) for general theory and Fiedler (1992),

Longbottom et al. (1996) for specific solar applications of multi-

grid methods). The multigrid scheme used here results in the

expected multigrid behaviour over classical iterative schemes,

i.e., the number of iterations to achieve convergence to round

off is independent of the number of grid points.

As expected, the modifications to the field lines are very

small as long as the condition β � 1 holds, and this also defines

the range within which our model retains its validity. In Fig. 4

the plasma beta, both on the plume axis and in the inter-plume

region, is plotted together with the angular displacement of the

corrected field lines, given by

δθ(r, θ0) = −β?

2

A1(r, θ0)

(∂A0/∂θ)θ0

= −β?

2

A1(r, θ0)

sin θ0

.

It is interesting to notice that, apart from the line-tying effect

at the coronal base (the field lines are supposed to be anchored

in the sub-photospheric high-beta plasma), along each field line

the behaviour of δθ follows exactly that of the plasma β. This

may be seen from a simple dimensional analysis of the equation

for A1, since A1/r
2 ∼ r2P and B0 = r−2, thus δθ ∼ A1 ∼ β.

Fig. 5. The field lines of the potential field calculated using Eq. (16)

as lower boundary condition. The values of the parameters are b = 100

and θw = 2.0◦. Since b > e2, closed structures are present (a large

value of b has been chosen in order to enhance the effect). The dashed

line indicates the X-point region where a current sheet might form in

response to photospheric motions of the bipole.

3.2. Flux concentration at the plume base

Although a background radial field is an excellent approxima-

tion at large distances, observations show evidence for a super-

radial diverging field close to the plume base (see the intro-

duction). As discussed briefly at the beginning of this section,

the zeroth order potential field can be modelled by choosing a

function f (θ) giving the non-radial contribution to B0r at the

coronal base. A possible choice is

f = b(1 − ω) exp(−ω); ω =
1 − cos θ

1 − cos θw

≈ θ2

θ2
w

,

where b is a free parameter (b = 0 gives the purely radial case)

and where the angular width θw is chosen to be the same as in

Eqs. (12) and (13) (A0w ∝ 1 − cos θw). Hence, the radial field

component and the flux function at r = 1 are

B0r(1, θ) ≈ 1 + b(1 − θ2/θ2
w) exp(−θ2/θ2

w), (15)

A0(1, θ) ≈ (θ2/2)[1 + b exp(−θ2/θ2
w)], (16)

giving a radial field outside the plume for θ � θw.

Since f (θ) has a negative minimum at θ ≈
√

2θw, where

its value is −b/e2, B0r can be negative if b > e2, thus giving

a region of negative emerging flux around
√

2θw. In Fig. 5 an

example is given with a large value of b. Note that this situ-

ation resembles very closely the proposed scenario for plume

formation, with close loops interacting with a stronger open

flux concentration located at a supergranular junction. The re-

quired heating might be provided in the X-point region above

the bipole, where a current sheet could form in response to pho-

tospheric motions of the bipole.

The main feature of our solution, characteristic of a potential

analysis, is that all the modifications to the radial field occur only

at low heights, on a scale corresponding to that defined by the
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Fig. 6. The flow speed on the axis (solid line) and in the background

coronal hole, where the field is radial (dashed line). The modifica-

tions due to the non-radial potential field appear only very close to the

coronal base, whereas after ≈ 1.2R� the velocity follows exactly the

behaviour expected for a purely radial field. The parameters used here

are ρ0
base = 4, T 0 = 1, b = 10 and θw = 2.0◦.

plume width: at larger distances the contributions of the higher

order multipoles of the photospheric field decay away and the

field assumes a radial configuration. This is the same result

found by Suess (1982) and the conclusion that can be drawn

is that the observed super-radial expansion is indeed due to a

magnetic effect, rather than a pressure or inertial one. However,

Suess’s model does not include any relationship between the

density and the magnetic field, necessary to compare the model

with the observations, while this comes out quite naturally and

in a self-consistent way from our model. Notice that similar

results are found in coronal hole models, where the super-radial

expansion occurs out to much greater distances (2–3R�, see, for

example, Wang & Sheeley, 1990) than in plumes, but where the

angular width of the structure is also larger by a corresponding

factor.

The best values for the two parameters θw and b, which

determine the shape of the non-radial potential field through

Eqs. (15) and (16), may be obtained by fitting the density struc-

ture derived from the theoretical model with some observational

data. In order to achieve this, the Bernoulli equation has to be

solved numerically for the transonic flow making use of the

non-radial, potential background field. However, since the non-

radial behaviour is confined to the coronal base, the position of

the sonic points remains unaltered and the Mach number is still

given by Eq. (10), where now B0 refers to the general potential

solution. The modifications to the velocity are shown in Fig. 6

and these result in a slight enhancement of the flow due to the

field concentration at the base.

The density distribution may be still derived from Eq. (11)

and the results are shown in Fig. 7, where a contour plot of the

density is presented together with the unperturbed (dashed) and

corrected (solid) field lines. The density contours are clearly

distorted by the field line concentration through the function

ρbase(A0). For a fully isothermal atmosphere (T 0 = 1) and ne-

Fig. 7. The corrected field lines (solid), the unperturbed field lines

(dashed) and a grey-scale density contour map (denser regions are

darker). The thicker line corresponds to the theoretical plume width,

defined as the angular distance at which the density drops by a factor

e−1 with respect to the axial value at the same height, whereas the

diamonds are taken from the EUV observations by Ahmad & Withbroe

(1977) (the data refers to the NP1 plume in their paper). The parameters

used are ρ0
base = 4, T 0 = 1, β? = 0.1, b = 10 and θw = 2.1◦.

glecting the effects of the flow in the low corona, this function

is proportional to the ratio of the density with its axial value at

the same height r:

ρ(r, θ)/ρ(r, 0) ' ρbase[A0(r, θ)]/ρ0
base,

thus providing a means to compare density data with the mag-

netic field used in the model. In Fig. 7 the thicker solid line refers

to a value e−1 in the density ratio, defined to be the half angu-

lar width of the plume, whereas the diamonds are the observed

values taken from the analysis by Ahmad & Withbroe (1977).

A good fit appears to be obtained for the values θw = 2.1◦ and

b = 10.

In spite of the impossibility of deriving with precision the

shape of the field lines from the data (a straight line would

appear to fit the data just as well!), it is important to remember

that observations of plumes taken at larger distances yield a

radial behaviour. For example, Fisher & Guhathakurta (1995)

found that the density FWHM of polar plumes remains constant

in angular width as a function of height extending from 1.16 to

5 R�. This observational evidence clearly indicates that the

super-radial expansion vanishes on a scale comparable with the

width of the plume, thus supporting our potential model.

The modification to the zeroth order field has been worked

out by solving directly Eq. (7) and deriving the function Ψ from

the knowledge of M and ρ (M?Ψ =
√
TMρ/B0). Notice that,

even for not very small values of the plasma beta (β? = 0.1 in

Fig. 7), the corrections to the field lines remain extremely small,

thus justifying our method of linearisation with respect to the

magnetic field.
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4. Conclusions

In this paper an MHD model for solar coronal plumes has been

presented. Coronal plumes have been treated as stationary, ax-

isymmetric structures and spherical coordinates have been em-

ployed. Since both observational evidence and theoretical in-

vestigations seem to agree about the intrinsic magnetic nature

of coronal plumes, a linearisation with respect to the magnetic

field has been used by assuming a low-beta coronal plasma.

This method allows one to decouple the momentum equation

components along and across the field lines and to tackle the

problem in three distinct steps:

1. The zeroth order potential field is calculated assuming a

background radial field and superimposing a non-radial con-

tribution due to a given flux distribution at the plume base.

2. A Bernoulli-type equation is solved for the density along

the zeroth order magnetic field lines in the isothermal case.

The transonic solution is imposed for the flow along each

field line.

3. The modification to the magnetic field, due to the unbal-

anced forces, is worked out by numerically solving a sec-

ond order, Poisson-like PDE for the magnetic flux function

(transfield or generalised Grad-Shafranov equation).

The method allows for the presence of three free functions,

namely the radial field component at the plume base, the density

at the plume base and the (constant) temperature along each field

line.

In the first part of the work, the plume structure has been

considered to be purely radial in order to investigate easily the

behaviour of the various physical quantities. The results are ob-

viously what is expected for an isothermal, radial solar wind but

with different conditions along each field line. For example, a

plume which is hotter than the surroundings shows an increasing

ratio of axis to background densities and higher flow speeds (the

sonic point occurs closer to the Sun). An original contribution

to our radial model is the calculation of the field line displace-

ment due to the unbalanced pressure gradients. This is shown

to follow closely the plasma beta behaviour, that is the angular

displacement decreases until 2–3 R� and then it increases at

larger distances, the only difference being due to the line-tying

constraints at r = R� and r → ∞. Obviously, our model retains

its validity only until the plasma beta becomes comparable with

unity, that is between 10 and 100 R� for typical coronal values,

well beyond observational limits.

In the second part the assumption of a purely radial back-

ground field has been relaxed by adding to it the contribution due

to a flux concentration at the plume base. The resulting poten-

tial field shows similarities with that believed to lead to plume

formation (closed bipolar loops interacting with a stronger open

flux region). However, the main result of our non-radial analy-

sis is the modelling of the observed super-radial expansion near

the plume base, through a direct comparison with observational

data. The good agreement between the theoretical model and the

observations confirms that the plume structure is mainly deter-

mined by magnetic effects, whereas pressure and inertial forces

only provide higher order perturbations. Another new feature is

a slight enhancement in the flow speed (by a few kilometers per

second) at the plume’s axis and close to the coronal base, due to

the concentration of the field lines; however this does not seem

to affect the flow at larger distances (the position of the sonic

points remains the same as in the radial case).

Future efforts to improve this model will follow three direc-

tions: a better modelling of the coronal potential field, allowing

for a non-radial plume axis (plumes far from solar poles appear

to be bent towards the equator), a more realistic treatment of the

plasma energetics, including heat deposition close to the plume

base, and possibly the relaxation of the low-beta assumption,

thus allowing one to model the behaviour of plumes at large

distances from the Sun.
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