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ABSTRACT
Extremely magnetized neutron stars with magnetic fields as strong as ∼1015−16 G, or mag-
netars, have received considerable attention in the last decade due to their identification as
a plausible source for Soft Gamma Repeaters and Anomalous X-ray Pulsars. Moreover, this
class of compact objects has been proposed as a possible engine capable of powering both
Long and Short Gamma-Ray Bursts, if the rotation period in their formation stage is short
enough (∼1 ms). Such strong fields are expected to induce substantial deformations of the
star and thus to produce the emission of gravitational waves. Here we investigate, by means
of numerical modelling, axisymmetric static equilibria of polytropic and strongly magnetized
stars in full general relativity, within the ideal magneto-hydrodynamic regime. The eXtended
Conformally Flat Condition (XCFC) for the metric is assumed, allowing us to employ the
techniques introduced for the X-ECHO code, proven to be accurate, efficient, and stable. The
updated XNS code for magnetized neutron star equilibria is made publicly available for the
community (see www.arcetri.astro.it/science/ahead/XNS). Several sequences of models are
here retrieved, from the purely toroidal (resolving a controversy in the literature) or poloidal
cases, to the so-called twisted torus mixed configurations, expected to be dynamically stable,
which are solved for the first time in the non-perturbative regime.

Key words: gravitation – magnetic fields – MHD – stars: magnetars – stars: neutron.

1 IN T RO D U C T I O N

Neutron stars (NSs) are the most compact objects in the Universe
endowed with an internal structure. Proposed originally by Baade
& Zwicky (1934) in the context of supernova explosions, they were
discovered only in 1967 by Hewish et al. (1968) as radio pulsars.
Today, NSs are among the most studied objects in high-energy as-
trophysics because they are known to power many astrophysical
sources of high-energy emission. The extreme conditions charac-
terizing their interior make them also interesting objects from the
point of view of nuclear and condense matter physics, and future
combined observations of both mass and radius of such compact
objects may finally discriminate on the different equations of state
(EoS) so far proposed (Feroci et al. 2012).

It was immediately evident that NSs can also harbour very high
magnetic fields, usually inferred to be in the range 108−12 G for
normal pulsars. It is indeed this very strong magnetic field that is
responsible for most of their phenomenology and emission. The
amplification of magnetic fields form the initial values prior to
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collapse to those enhanced values is believed to take place during the
formation of the compact object itself: surely due to the compression
associated with the collapse of the core of the progenitor star (Spruit
2009), it can be further increased by differential rotation in the
core leading to the twisting of fieldlines (Burrows et al. 2007),
and to possible dynamo effects (Bonanno, Rezzolla & Urpin 2003;
Rheinhardt & Geppert 2005). In principle, there is a large store of
free energy available during and immediately following the collapse
of the core and the formation of a proto-NS, such that a magnetic
field as high as 1017−18 G could be even reached.

The magnetar model for Anomalous X-Ray Pulsars and Soft
Gamma Repeaters (Thompson & Duncan 1996; Mereghetti 2008)
suggests that the magnetic field can reach at least values close to
1016 G at the surface of NSs. Accounting also for the effects of
dissipative processes (Viganò et al. 2013), given the typical ages of
known magnetars (∼104 yr), it is not unreasonable to expect that
younger magnetars with even higher magnetic fields might exist,
and more so immediately after collapse and formation, due to the
processes discussed above.

Magnetars could be fundamental also to explain another class
of objects typical of high-energy astrophysics, namely Gamma
Ray Bursts (GRBs). The combination of a rapid millisecond-like
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rotation of a compact NS with a magnetic field of typical magne-
tar strength can easily drive a relativistic outflow with energetics
of the order of ∼1049−50 erg s−1, enough to power a classical Long
GRB. Short GRBs have been instead usually associated with merger
events, rather than to core collapse of stellar objects, leading to the
formation of a rotating Black Hole (BH), similarly to the collapsar
scenario for Long GRBs (Woosley 1993; MacFadyen & Woosley
1999). However, the recent discovery, on the one hand of ex-
tended emission and flaring activity (pointing to a long-lived engine)
(Norris & Bonnell 2006; Rowlinson et al. 2010), and on the other
of a NS of mass 2.1 M� (Romani et al. 2012), suggests that it is not
unreasonable to expect a high-mass NS, rather than a BH, to form
from the merger of two low-mass NSs. Indeed, these assumptions
are in part at the base of the so-called millisecond magnetar models
for Long and Short GRBs (Bucciantini et al. 2009; Metzger et al.
2011; Bucciantini et al. 2012).

These extremely strong magnetic fields will inevitably introduce
deformations of the NSs (i.e. Haskell et al. 2008; Mastrano, Lasky
& Melatos 2013, and references therein). A purely toroidal field
is known to make the star prolate, while a poloidal field will tend
to make it oblate. Also the distribution of matter in the interior
will be affected, depending on the softness or stiffness of the EOS
describing the nuclear matter. Deformations could even be revealed:
if the system is rotating a natural consequence will be the emission of
Gravitational Waves (GWs), and the new generations of detectors
could search for the emission by these objects. Mastrano et al.
(2011), Gualtieri, Ciolfi & Ferrari (2011), Cutler (2002), Dall’Osso
& Stella (2007) have all estimated the losses of energy due to GWs
for newly formed NSs, a process that will compete with the emission
of relativistic outflows. More recently an upper limit to the magnetic
field inside the Crab Pulsar of 7 × 1016 G has been set from the
non-detection of GWs (Mastrano et al. 2011).

A newly born proto-NS with magnetic field of the order of
1015−16 G is expected to rapidly settle into an equilibrium con-
figuration, given that the corresponding Alfvén crossing time is
much smaller than the typical Kelvin–Helmholz time-scale (Pons
et al. 1999). Theoretical models for equilibria of classical mag-
netized stars have a long tradition, dating back to Chandrasekhar
& Fermi (1953) (also Chandrasekhar & Fermi 1953; Ferraro 1954;
Roberts 1955; Prendergast 1956; Monaghan 1965, 1966; Ostriker &
Hartwick 1968; Miketinac 1975; Woltjer 1960; Roxburgh 1966), up
to more recent developments (Tomimura & Eriguchi 2005; Yoshida,
Yoshida & Eriguchi 2006). Models for stars endowed with strong
magnetic fields in General Relativity (GR) have started to appear
only in the last years, due to the additional complexity of the equa-
tions. Many of these models focus on simple configurations of
either a purely toroidal (Kiuchi & Yoshida 2008; Kiuchi, Kotake
& Yoshida 2009; Frieben & Rezzolla 2012, hereafter FR12) or
a purely poloidal magnetic field (Bocquet et al. 1995, hereafter
BB95; Konno 2001; Yazadjiev 2012). However, as originally sug-
gested by Prendergast (1956), such configurations are expected to
be unstable (Tayler 1973; Wright 1973; Markey & Tayler 1973,
1974). More recently Braithwaite & Nordlund (2006); Braithwaite
& Spruit (2006); Braithwaite (2009) have shown, via numerical
simulation, that such instability can rapidly rearrange the magnetic
configuration of the stars. It is found that, if the magnetic helic-
ity is finite, the magnetic field relaxes to a mixed configuration
of toroidal and poloidal fields, which is roughly axisymmetric. In
these configurations the toroidal field is confined in a ring-like
region, immediately below the stellar surface, while the poloidal
field smoothly extends outwards. Such configurations are usually
referred as Twisted Torus (TT), and these models have been pre-

sented so far either in Newtonian regime (Lander & Jones 2009,
2012; Glampedakis, Andersson & Lander 2012; Fujisawa, Yoshida
& Eriguchi 2012), or within GR metrics following a perturbative
approach (Ciolfi et al. 2009; Ciolfi, Ferrari & Gualtieri 2010; Ciolfi
& Rezzolla 2013), where either the metric or the field is only de-
veloped considering first order deviations. In all cases, until very
recently (Ciolfi & Rezzolla 2013), it was difficult to investigate
toroidally dominated configurations (precisely those more likely to
result from the rearrangement of the field).

As we will show, convergence of the models in the extreme cases
of very strong magnetic field often requires higher order corrections,
even for the simplest configurations. For purely toroidal fields, for
example, the validity of the results in Kiuchi & Yoshida (2008)
(hereafter KY08) has been recently questioned by FR12, where
different models have been found for the same set of parameters. On
the other hand, purely poloidal configurations have been presented
only by BB95 and Konno (2001), and a study of both the parameter
space and the role of the distribution of internal currents have not
been fully carried out yet.

The main difficulty in solving for magnetized equilibrium mod-
els in GR is due to the non-linear nature of Einstein equations for
the metric. In particular for TT configurations and if rotation is
included, as we will show in the next section, many metric terms
must be retained and a large set of coupled elliptic partial differ-
ential equations has to be solved by means of numerical methods.
However, it is well known that non-linear elliptical equations can be
numerically unstable, depending on the way the non-linear terms
are cast. This might in part explain the discrepancies sometimes
present in the literature.

We present here a novel approach to compute magnetized equi-
librium models for NSs. Instead of looking for an exact solution
of Einstein equations, we make the simplifying assumption that
the metric is conformally flat, imposing the so-called Conformally
Flat Condition (CFC) by Wilson & Mathews (2003) and Wilson,
Mathews & Marronetti (1996). This allows us to greatly simplify the
equations to be solved, and to cast them in a form that is numerically
stable (Cordero-Carrión et al. 2009; Bucciantini & Del Zanna 2011).
Moreover, this approach improves upon previous works (Ciolfi et al.
2009, 2010; Ciolfi & Rezzolla 2013) where the metric was assumed
to be spherically symmetric. By approximating the metric, we are
able to solve for equilibrium without resorting to perturbative ap-
proaches. This allows us, on the one hand, to investigate cases with
a higher magnetic field, and on the other to capture strong defor-
mations of the stellar shape. Interestingly, where a comparison was
possible, we have verified that the assumption of a conformally flat
metric leads to results that are indistinguishable, within the accuracy
of the numerical scheme, from those obtained in the correct regime.
This suggests that the simplification of our approach does not com-
promise the accuracy of the results, while greatly simplifying their
computation.

This paper is structured in the following way. In Section 2, the
general formalism, the CFC approximation, and the model equa-
tions describing the structure and geometry of the magnetic field
and related currents are presented. In Section 3 we briefly describe
our numerical scheme and its accuracy. In Section 4 we illustrate
our results, for various magnetic configurations, and compare them
with existing ones. Finally we conclude in Section 5.

In the following we assume a signature ( −, +, +, +) for the
space-time metric and we use Greek letters μ, ν, λ, . . . (running
from 0 to 3) for 4D space–time tensor components, while Latin
letters i, j, k, . . . (running from 1 to 3) will be employed for 3D
spatial tensor components. Moreover, we set c = G = 1 and all

√
4π
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Equilibrium models for magnetized NSs in GR 3543

factors will be absorbed in the definition of the electromagnetic
fields.

2 G E N E R A L F O R M A L I S M A N D M O D E L
E QUAT I O N S

In this section we will introduce the general formalism we have
adopted to construct equilibrium models. We will first present and
justify our assumptions on the symmetries and form of the space-
time that we have chosen. We will show how, under those assump-
tions, given a distribution of momentum-energy, one can solve Ein-
stein’s equations, and determine the associated metric. Then we
will illustrate how to determine an equilibrium configuration, for
the matter and the fields, on a given metric.

2.1 The 3 + 1 formalism and Conformal Flatness

Numerical relativity codes for the evolution of Einstein’s equations,
or for the evolution of fluid/MHD quantities within a fixed or evolv-
ing space-time, are nowadays built on top of the so-called 3 + 1
formalism (e.g. Alcubierre 2008; Gourgoulhon 2012). Any generic
space-time endowed with a metric tensor gμν can be split into space-
like hypersurfaces �t, with a timelike unit normal nμ (the velocity
of the Eulerian observer). The induced three-metric on each hyper-
surface is γ μν := gμν + nμnν . If xμ := (t, xi) are the space-time
coordinates adapted to the foliation introduced above, the generic
line element is

ds2 = −α2dt2 + γij (dxi + βi dt)(dxj + βj dt), (1)

where the lapse function α and the shift vector β i (a purely spatial
vector) are free gauge functions. When β i = 0 the space-time is
said to be static.

Consider now spherical-like coordinates xμ = (t, r, θ , φ) and
assume that our space-time is stationary and axisymmetric. This
implies the existence of two commuting Killing vectors, tμ := (∂t )μ

(timelike) and φμ := (∂φ)μ (spacelike) (Carter 1970, 1973), span-
ning the timelike two-plane � := Vect(tμ, φμ). Any vector Vμ

is said to be toroidal if Vμ ∈ � ⇒ Vμ = cttμ + cφφμ (with
cφ �= 0), and poloidal (or meridional) if it lies in the spacelike
two-plane perpendicular to �. Additional properties are valid for
the subset of circular space-times, for which the coordinates (r, θ )
span the two-surfaces orthogonal to �, leading to the simplification
gtr = gtθ = grφ = gθφ = 0, where all remaining metric tensor compo-
nents depend on r and θ alone. This type of metric is generated by
configurations of matter-energy for which the momentum-energy
tensor Tμν is also circular, and this happens when

tμT μ[ν tκφλ] = 0, φμT μ[ν tκφλ] = 0, (2)

where square brackets indicate antisymmetrization with respect to
enclosed indexes.

Consider now the case of rotating, magnetized compact objects
to be described as equilibrium solutions of the GRMHD system.
The stress-energy tensor reads

T μν = (e + p + b2)uμuν − bμbν +
(

p + 1

2
b2

)
gμν, (3)

where e is the total energy density, p is the pressure, uμ is the four-
velocity of the fluid, and bμ := F∗μνuν is the magnetic field as
measured in the comoving frame, and Fμν is the Faraday tensor (the
asterisk indicates the dual). Notice that the ideal MHD condition
is, for a perfect conductor, eμ := Fμνuν = 0, thus the comoving
electric field must vanish. For more general forms of Ohm’s law see

Bucciantini & Del Zanna (2013). When applied to the above form
of the momentum-energy tensor, the circularity condition holds
provided the four-velocity is toroidal, that is uμ ∈ � ⇒ uμ :=
ut(tμ + φμ), due to tμuμ �= 0, where  := uφ/ut = dφ/dt is
the fluid angular momentum as measured by an observer at rest at
spatial infinity. If one looks for magnetic configurations independent
of the flow structure, in the limit of ideal MHD, circularity requires
that the comoving magnetic field must be either purely toroidal,
bμ ∈ �, with bμuμ = 0 ⇒ bt = −bφ , or purely poloidal, that is
bμtμ = bμφμ = 0. In the latter case, stationarity requires solid body
rotation uφ/ut = const (Oron 2002), or  must be a constant on
magnetic surfaces (Gourgoulhon et al. 2011). For mixed (twisted
torus) configurations circularity does not hold.

In the case of circular space-times and spherical-like coordinates,
a common choice is to assume grθ = 0 and gθθ = r2grr (a two metric
is always conformally flat), leading to the quasi-isotropic form, than
can be written as

ds2 = −α2dt2 + ψ4(dr2 + r2 dθ2) + R2
q (dφ + βφ dt)2, (4)

where α(r, θ ), ψ(r, θ ) (the so-called conformal-factor), Rq(r, θ )
(the quasi-isotropic radius), and βφ(r, θ ) are the metric terms to
be derived from Einstein’s equations. Models of stationary and
axisymmetric equilibria of rotating NSs are generally built on top
of this metric (e.g. Gourgoulhon 2010), even in the magnetized case
(KY08; FR12; BB95) for either purely poloidal or purely toroidal
fields. However, in the mixed case, even if the above form of the
metric is no longer appropriate, sensible deviations are expected to
arise only for unrealistically large values of the magnetic field of
∼1019 G (Oron 2002). Moreover, it is known that even for highly
deformed objects, i.e. for rotating NSs at the mass shedding limit,
the difference ψ4r2 sin2θ − R2

q is of the order of 10−4, and the
metric can be further simplified to

ds2 = −α2dt2 + ψ4[dr2 + r2 dθ2 + r2 sin2θ (dφ + βφ dt)2]. (5)

Under this latter assumption, the spatial three-metric is conformally
flat, and the spherical coordinates can be identified with the canon-
ical isotropic coordinates. This form is better suitable to numerical
solution, as it is described below.

2.2 Solving Einstein’s equations in the Conformally
Flat Condition

The 3 + 1 formalism introduced in the previous section allows us
to recast Einstein’s equations, in a form that is particularly well
suited for numerical solutions. The first step in this direction is
to perform a 3 + 1 decomposition of the energy-momentum ten-
sor, on the same foliation. The Tμν for the GRMHD system in
equation (3) splits as

E := nμnνT
μν = (e+p)�2 − p + 1

2
(E2 + B2), (6)

Si := −nμγ i
ν T

μν = (e+p)�2vi + εijkEjBk, (7)

Sij := γ i
μγ j

ν T
μν = (e+p)�2vivj −EiEj −BiBj

+
[
p + 1

2
(E2 + B2)

]
γ ij, (8)

where Eμ := Fμνnν and Bμ := ∗Fμνnνare the spatial electric and
magnetic fields, respectively, as measured by the Eulerian observer,
that now we have written explicitly. In the 3 + 1 formalism, the ideal
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MHD assumption of a vanishing electric field in the comoving frame
becomes the usual relation

Ei = εijkv
jBk, (9)

where εijk = √
γ [ijk] is the 3D Levi–Civita tensor.

These quantities act as sources for Einstein’s equations. Ein-
stein’s equations are generally written in the so-called ADM form
(Arnowitt, Deser & Misner 1959) as a system of evolutionary equa-
tions, and constrained equations. The evolutionary equations for the
12 unknowns γ ij and Kij (the extrinsic curvature), in the case of a
stationary metric, as for the GRMHD equilibria we are looking for,
turn into a condition for the extrinsic curvature, which relates it
directly to the spatial derivatives of the shift vector

2αKij = Diβj + Djβi, (10)

where Di is the connection for γ ij (Dkγ ij ≡ 0) and Diβ
i = 0.

The constrained equations, known as Hamiltonian and momentum
constrains, take the form

R + K2 − KijK
ij = 16πE, (11)

Dj (Kij − Kγ ij ) = 8πSi, (12)

where R is the Ricci scalar associated with the three-metric and
K = Ki

i .
Let us now introduce the two final assumptions. First, we shall

seek static (non-rotating) configurations with vi = 0, then from
equation (9) Ei = 0 and also Si = 0 due to equation (7). In this
case also the space-time is static with β i = Kij = 0 and we have a
condition of maximum slicing (K = 0). Secondly, as we anticipated
we will assume that the three-metric is conformally flat

γij = ψ4fij , fij = diag(1, r2, r2 sin2θ ), (13)

where fij is the three-metric of asymptotic flat space, so that
also

√
γ = ψ6r2 sin θ (in this case the coordinates are said to be

isotropic). It is known that such an approximation is strictly ap-
plicable only for spherically symmetric distributions; however this
form of the metric is commonly used also for generic evolving
space-times (Wilson et al. 1996), especially for perturbations of
quasi-spherical equilibria or even collapses.

Under the above assumptions, Einstein’s equations turn into two
Poisson-like elliptic equations for the unknowns ψ and α (CFC
equations), of the form

�u = suq, (14)

where � := fij∇ i∇ i and ∇ i are, respectively, the usual 3D Laplacian
and the nabla operator of flat space (in spherical coordinates), u
is the generic variable (ψ or αψ), s is the corresponding source
term, and q provides the exponent of the non-linearity (q = 0 for
a canonical Poisson equation). However, it can be demonstrated
that only the condition sq ≥ 0 ensures that the solution u is locally
unique. Then the CFC equations are conveniently recast into a form
that guarantees this property, which is of paramount importance
in view of numerical integration of the system. This form is the
following:

�ψ = [−2πÊ]ψ−1, (15)

�(αψ) = [2π(Ê + 2Ŝ)ψ−2](αψ), (16)

where we have introduced rescaled fluid source terms of the form

Ê := ψ6E, Ŝ := ψ6S, (17)

and S = Si
i . In the case of static GRMHD equilibria, we have

E = e+ 1

2
B2, Sij = −BiBj +

(
p + 1

2
B2

)
γ ij , S =3p+ 1

2
B2.

(18)

Equations (15) and (16) are the system of equations for the metric
that will be solved here. Notice that this is a subset of the XCFC
(eXtended Conformally Flat Condition) system, in the static case.
This has been first presented by Cordero-Carrión et al. (2009), and
extensively validated in Bucciantini & Del Zanna (2011), where the
metric evolution was solved either as an initial data problem (the
XNS code for polytropic NSs with toroidal velocity and magnetic
field), or combined to the GRMHD equations within the ECHO
code (Del Zanna et al. 2007).

2.3 The Bernoulli integral and the Grad-Shafranov equation

Consider now the equations for static GRMHD equilibria in a sta-
tionary and axisymmetric metric in 3 + 1 form, also assuming β i

and Kij = 0 as in the CFC approximation of the previous sub-
section. Let us start from the case where a poloidal magnetic field
is present, for which a formulation based on the so-called Grad-
Shafranov equation [see e.g. Del Zanna & Chiuderi (1996)] for the
toroidal component of the vector potential is more convenient. The
most general formulation of this kind for GRMHD stationary and
axisymmetric equilibria, not necessarily in a circular space-time,
can be found in Gourgoulhon et al. (2011), to which the reader is
referred also for additional references.

The first equation to consider is the divergence-free condition
for the magnetic field DiB

i = γ −1/2∂i(γ 1/2Bi) = 0, that under the
assumption of a conformally flat metric leads to

Br = ∂θAφ

ψ6r2 sin θ
, Bθ = − ∂rAφ

ψ6r2 sin θ
, (19)

where we have used the definition Bi = εijk∂jAk to rewrite the
poloidal components as derivatives of Aφ , as anticipated above. The
surfaces with Aφ = const are known as magnetic surfaces, and
they contain the magnetic poloidal fieldlines. The potential Aφ is
also known as magnetic flux function. Any scalar function S for
which Bi∂iS = 0 must necessarily satisfy S = S(Aφ), then must
be also constant on magnetic surfaces. The only other non-vanishing
equation of the static GRMHD system is the Euler equation in the
presence of an external electromagnetic field

∂ip + (e+p) ∂i ln α = Li := εijkJ
jBk, (20)

where Li is the Lorentz force and J i = α−1εijk∂j (αBk) is the con-
duction current (we recall that due to the ideal MHD assumption
the electric field and the displacement current vanish for vi = 0).

If we assume, as it is often done for NS equilibria, a barotropic
EOS, for instance e = e(ρ), p = p(ρ), then also the specific enthalpy
h := (e + p)/ρ, where ρ is the rest mass density, can be written as
a function of one of the previous thermodynamical quantities and
the above equation becomes

∂i ln h + ∂i ln α = Li

ρh
. (21)

Now, since the curl of the left-hand side vanishes, also the right-hand
side must do so and, in particular, it can be written as a gradient of
a scalar function. Moreover, since BiLi = εijkJjBkBi ≡ 0, this must
be a (free) function of the potential alone, constant on the magnetic
surfaces as previously discussed. The poloidal component of the
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Lorentz force can be then obtained through this novel magnetization
function M(Aφ) as

Li = ρh ∂iM = ρh
dM
dAφ

∂iAφ, (22)

and equation (20) can be integrated providing the Bernoulli integral

ln

(
h

hc

)
+ ln

(
α

αc

)
− M = 0, (23)

which, once the functional form M(Aφ) has been chosen and
Aφ(r, θ ) has been found, relates the enthalpy at each point to the
conditions set in the centre (labelled c), where we assume Mc = 0.

Consider now the φ component of the Lorentz force, which must
vanish due to axisymmetry. Thanks to equation (19) we then find
0 = Lφ = α−1Bi∂i(αBφ), thus

Bφ = α−1I(Aφ), (24)

where I(Aφ) is another free function and it is constant on the mag-
netic surfaces. This function is also strictly related to the poloidal
current, since we have

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

. (25)

The toroidal current can be retrieved from the poloidal component of
the Lorentz force in equation (22). Using also the original definition
Li = εijkJjBk we arrive at the expression

J φ = ρh
dM
dAφ

+ I
� 2

dI
dAφ

, (26)

where we have defined � 2 := α2ψ4r2sin 2θ . If, instead, derivatives
of the poloidal magnetic field components are worked out, one finds

J φ = − 1

ψ8r2 sin2θ

[
�∗Aφ + ∂Aφ∂ ln(αψ−2)

]
, (27)

where the following operators have been introduced

�∗ := ∂2
r + 1

r2
∂2

θ − 1

r2 tan θ
∂θ , (28)

∂f ∂g := ∂rf ∂rg + 1

r2
∂θf ∂θg. (29)

Finally, equating the two above expressions for Jφ , and introducing
the new variable Ãφ := Aφ/(r sin θ ) and the new operator

�̃3 := �− 1

r2 sin2θ
=∂2

r +
2

r
∂r + 1

r2
∂2

θ + 1

r2 tan θ
∂θ − 1

r2 sin2θ
,

(30)

for which �̃3Ãφ = �∗Aφ/(r sin θ ) (it coincides with the φ compo-
nent of the vector Laplacian in spherical coordinates), we retrieve
the Grad-Shafranov equation for the magnetic flux function Aφ

�̃3Ãφ + ∂Aφ∂ ln(αψ−2)

r sin θ
+ψ8r sinθ

(
ρh

dM
dAφ

+ I
� 2

dI
dAφ

)
= 0.

(31)

Provided the metric is known (the functions α and ψ in CFC), the
solution procedure is the following: after a choice for the free func-
tions M and I is made, equation (31) is solved over the whole
domain (with appropriate boundary conditions), so that the mag-
netic field and current components can be worked out. As antic-
ipated, the thermodynamical quantities are instead provided from
the Bernoulli equation (equation 23). In the remainder, we shall
provide the choices of the free functions for the various magnetic
configurations we are interested in.

2.4 Choice for poloidal and twisted torus configurations

When Aφ �= 0, for which the whole body of the previous section
applies, we need to specify the free functionsM and I, as discussed
just above, in a way appropriate for NS modelling. In analogy
with Ciolfi et al. (2009) we choose here a second-order polynomial
functional form for M, namely

M(Aφ) = kpol

(
Aφ + ξ

1

2
A2

φ

)
, (32)

where kpol is the poloidal magnetization constant, and ξ is the non-
linear poloidal term. On the other hand, the functional form for I
is chosen as

I(Aφ) = a

ζ + 1
�[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1, (33)

where �[.] is the Heaviside function, Amax
φ is the maximum value the

φ component of the vector potential reaches on the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted
torus magnetization index.

From equations (25) and (26) the poloidal components of the
conduction current are, for the assumed choices of the free func-
tions

J r = α−1Br a�[Aφ − Amax
φ ](Aφ − Amax

φ )ζ ,

J θ = α−1Bθ a�[Aφ − Amax
φ ](Aφ − Amax

φ )ζ , (34)

whereas the toroidal component is

J φ = ρh kpol(1 + ξAφ)

+ a2

(ζ + 1)� 2
�[Aφ − Amax

φ ](Aφ − Amax
φ )2ζ+1. (35)

The above choice of M(Aφ) and I(Aφ) guarantees that the cur-
rents are all confined within the star. In the purely poloidal case
a = 0, the linear term ∝Aφ in equation (32) always leads to magnetic
field configurations which are dominated by a dipolar component.
Only the non-linear term ∝ A2

φ can in principle lead to currents
that produce higher order multipolar magnetic field configurations.
However, as it will be discussed later, this kind of configuration
can only be realized numerically under special conditions. With our
choice, the toroidal component of the magnetic field differs from
zero only in a rope inside the star, from which the name of twisted
torus configuration.

2.5 Choice for purely toroidal configurations

In the case of a purely toroidal field, most of the formalism leading
to the Grad-Shafranov equation does not apply, since Aφ = 0 and
we cannot define the usual free functions on magnetic surfaces.
However, equation (20) is still valid and we can still look for a
scalar function M (though no longer a function of Aφ) such that
Li = ρh∂iM and leading to the usual Bernoulli equation (equa-
tion 23). The Lorentz force is conveniently written in terms of αBφ ,
and the Euler equation, for the usual assumptions of a barotropic
EOS and conformal metric, becomes

∂i ln h + ∂i ln α + αBφ∂i(αBφ)

ρh� 2
= 0. (36)

The above equation is integrable if also the last term can be written
as a gradient of a scalar function. If we now define the new variable,
related to the enthalpy per unit volume ρh, namely

G := ρh � 2 = ρh α2ψ4r2 sin2θ, (37)
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this is possible provided

Bφ = α−1I(G), M(G) = −
∫ I

G

dI
dG

dG, (38)

basically as in the previous case but with a change of depen-
dency, where the magnetization function is to be plugged into
equation (23).

A common assumption (KY08, FR12) is to choose a barotropic-
type expression for I too, for example

I(G) = KmGm, M(G) = − mK2
m

2m − 1
G2m−1, (39)

where Km is the toroidal magnetization constant, and m ≥ 1 is
the toroidal magnetization index. Once the CFC metric has been
provided (the functions α and ψ), the equilibrium is then found by
first solving the Bernoulli equation for the specific enthalpy h

ln

(
h

hc

)
+ ln

(
α

αc

)
+ mK2

m

2m − 1
(ρh� 2)2m−1 = 0, (40)

providing also ρ, e and p through the assumed EOS, while the
magnetic field is

Bφ = α−1Km(ρh � 2)m. (41)

When applied to the modelling of magnetized NSs, such choice of
the free function I (and consequently of M) ensures that the field is
fully confined within the star, and that it is symmetric with respect
to the equatorial plane.

3 N U M E R I C A L S C H E M E

The non-linear Poisson-like equations [equations (15) and (16)] are
a subset of those found in the XCFC formalism, and for this reason
we employ the same numerical algorithm described in Bucciantini
& Del Zanna (2013), to which the reader is referred to for a complete
description. Let us here briefly summarize it for convenience. Solu-
tions, for the scalar quantities of interest (ψ and αψ), are searched
in terms of a series of spherical harmonics Yl(θ )

u(r, θ ) :=
∞∑
l=0

[Al(r)Yl(θ )]. (42)

The Laplacian can then be reduced to a series of radial second order
boundary value ODEs for the coefficients Al(r) of each harmonic,
which are then solved using tridiagonal matrix inversion, on the
same radial grid where the solution is discretized. Given that the
equations are non-linear this procedure is repeated until conver-
gence, using in the source term the value of the solution computed
at the previous iteration.

If a poloidal field is present, also the Grad-Shafranov equation
(equation 31), needs to be solved. Interestingly, this can be reduced
to the solution of a non-linear vector Poisson equation, which is for-
mally equivalent to the equation for the shift-vector (to be more pre-
cise its φ component) in the XCFC approximation. Ãφ is searched
in terms of a series of vector-spherical harmonics

Ãφ(r, θ ) :=
∞∑
l=0

[Cl(r)Y ′
l (θ )]. (43)

The only difference is that now the source term is non-linear. Again
we can use the same algorithm, with a combination of vector spher-
ical harmonics decomposition for the angular part, and matrix in-
version for the radial part (Bucciantini & Del Zanna 2013). Now,
this is iterated until convergence, because of the non-linearity of the
source terms.

The use of spherical harmonics allows us to preserve the correct
behaviour on the axis, the correct parity at the centre, and the correct
asymptotic trend at the other radius, without the need to use a
compactified domain.

Solutions are discretized on a grid in spherical coordinates in
the domain r = [0, 25], θ = [0, π]. For purely toroidal or purely
poloidal cases we use 250 points in the radial direction and 100
points in the angular one. For TT configurations we instead used
500 points in the radial direction and 200 points in the angular one.
The radial domain has been chosen such that its outer boundary is
far enough from the stellar surface, so that higher order multipoles
in the various quantities (i.e. in the metric terms) become negligible.
The boundary conditions at the inner radial boundary at r = 0 are
chosen such that each radial coefficients Al(r), Cl(r) goes to 0 with
parity ( − 1)l. Note that this is different from imposing that they go to
0 as r l. This latter choice is only justified in vacuum, for a flat space-
time, while in all our cases, the source terms (including terms that
contain the vector potential itself) extend all the way to the centre.
The outer boundary of the computational domain is always located
outside the stellar surface, which is defined as the place where the
density drops below a fiducial small value (usually 10−5 to 10−4

times the value of the central density). This implies that at the outer
boundary both the equations for the metric coefficients α and φ

and the equation for the vector potential reduce to the equations in
vacuum. At the outer radius we impose that each coefficient Al(r),
Cl(r) goes to 0 as r−(l + 1).

Note that, unlike in previous works (Tomimura & Eriguchi 2005;
Lander & Jones 2009, 2012; Ciolfi et al. 2009, 2010; Glampedakis
et al. 2012; Ciolfi & Rezzolla 2013) we do not solve separately the
Maxwell and Einstein equations inside the star and outside it and
then match them at the surface. We instead solve these equations in
the full domain, including both the star (where the source term are
confined) and the outside ‘vacuum’. This automatically guarantees
that solutions are continuous and smooth at the stellar surface.
It also allows the stellar surface to adjust freely, and not to any
imposed shape. We have verified that the solutions we obtain are
independent of the location of the outer radius. Our previous results
(X-ECHO) for the metric solver indicate that this global approach,
where solutions of non-linear elliptic equations are searched over
the entire domain, at once, gives correct results, without the need to
introduce matching conditions, at often undefined surfaces. In fact,
while in a perturbative approach one can safely assume the stellar
surface to be spherical, this cannot be done for strong fields, and the
shape of the NS surface is itself unknown. The correct behaviour
on the axis is instead automatically guaranteed by the properties of
spherical harmonics.

We have verified that at this resolution, the discretization errors
of our solutions are �10−3, and at most reach 10−2 for the most
extreme TT configurations. This is likely due to the fact that in
the latter case, the toroidal field is concentrated in a narrow torus-
like region at the edge of the star, while for purely poloidal and
purely toroidal cases, all the quantities are smoothly distributed in
the domain.

In models with purely toroidal or purely poloidal field we have
used 20 spherical harmonics. For TT configurations we have used
about 40 harmonics. We have also verified that increasing the num-
ber of spherical harmonics does not improve significantly the re-
sults. Again the twisted torus configurations are the ones requiring
in general a higher number of spherical harmonics. We found that
10 are already sufficient to provide results with an accuracy of the
order of 10−3 both for the purely poloidal or purely toroidal cases.
Instead for the most extreme TT cases we used up to 50 harmonics.
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Table 1. Global physical quantities of the equilibrium models displayed in Fig. 1 with baryonic mass
M0 = 1.68 M� and maximum magnetic field strength Bmax = 6.134 × 1017 G. For the definition of the
various quantities see Appendix B.

Model ρc M re rp/re Rcirc H/W ē �

(1014 g cm−3) (M�) (km) (km) (10−1) (10−1) (1030 G cm2)

m = 0 8.576 1.551 12.08 1.000 14.19 0.000 0.000 0.000
m = 1 8.430 1.596 18.10 1.139 20.15 2.013 − 8.130 1.538
m = 2 8.588 1.577 14.01 1.104 15.92 1.246 − 3.730 0.862

A more detailed discussion of the number of spherical harmonics
needed to get convergent results of the Grad-Shafranov equation
alone (equation 31) is presented in Appendix A.

4 R ESU LTS

In this section we present a study of various equilibrium configu-
rations. In particular we analyse how the various global quantities
that parametrize the resulting models change, not only as a function
of the magnetic field strength, but also for different choices of the
field structure (the distribution of currents) and geometry.

Given that our work focuses on the role of magnetic field only, we
have adopted a simple polytropic EoS p = Kaρ

γa , with an adiabatic
index γ a = 2 and a polytropic constant Ka = 110 (in geometrized
units1). These values are commonly used in literature and allow us
a straightforward comparison with previous results (KY08; FR12;
BB95). In the unmagnetized case, for a central density ρc = 8.576 ×
1014 g cm−3, this EoS gives an equilibrium configuration character-
ized by a baryonic mass M0 = 1.680 M�, a gravitational mass
M = 1.551 M�, and a circumferential radius Rcirc = 14.19 km (see
Table 1). This will be our reference model for comparison to mag-
netized cases.

A detailed description of all the global quantities that can be
defined, and that can be used to parametrize each equilibrium model,
can be found in Appendix B.

4.1 Purely Toroidal field

Configurations with a purely toroidal magnetic field are obtained
with the barotropic-type expression for M(G) in equation (39).
Let us first discuss the role played by the magnetic exponent m. In
Fig. 1 we show the strength of the magnetic field and the distri-
bution of the baryonic density for two equilibrium configurations
characterized by the same baryonic mass M0 = 1.68 M�, the same
maximum value of the internal magnetic field strength Bmax = 6.134
× 1017 G but with different values of the toroidal magnetization in-
dex: m = 1 and m = 2, respectively. In Table 1 we characterize
these models. Concerning the distribution of magnetic field, they
look qualitatively very similar: as expected for a toroidal field, in
both cases the magnetic field vanishes on the axis of symmetry,
reaches a maximum deep inside the star and then decreases mov-
ing towards the surface where it vanishes. Quantitatively, however,
there are significative differences. In the case m = 1 the magnetic
field strength goes to zero on the axis as r sin θ , while the ratio
B2/p, a monotonically increasing function of radius, tends to a con-
stant at the stellar surface (the magnetic field decreases as fast as
the pressure). On the other hand in the case m = 2 the magnetic

1 This corresponds to Ka = 1.6 × 105 cm5 g−1 s−2.

field strength goes to zero on axis ∝(r sin θ )3, while the ratio B2/p
reaches a maximum inside the star, and then goes to zero at the stellar
surface.

Similar considerations hold for the distribution of the baryonic
density (Fig. 1). In both cases the magnetic stresses lead to a pro-
late deformation of the star. This affects the internal layers even
more than the outer ones. Indeed, the typical prolateness of the iso-
density surfaces in the core is larger than the deformation of the
stellar surface, and the external low-density layers. Interestingly, to
this axial compression of the internal layers corresponds an expan-
sion of the outer part of the star to larger radii, due to the extra
pressure support provided by the magnetic field. There are two no-
ticeable differences between the m = 1 and m = 2 cases, in this
respect. For m = 1 the iso-density surfaces are, to a good approxi-
mation, prolate ellipsoids, while in the m = 2 case they tend to be
more barrel-shaped. More important, despite the internal maximum
magnetic field being the same, the m = 2 case shows a much smaller
deformation. This can be explained recalling that the action of the
magnetic tension, responsible for the anisotropy, is ∝B2/R (R is
now the radius of curvature of the magnetic field line). For higher
values of m the magnetic field reaches its maximum at increasingly
larger radii, resulting in a relatively smaller tension. Based on our
results it is evident that a magnetic field concentrated at larger radii
will produce smaller effects, than the same magnetic field, buried
deeper inside. This can be rephrased in terms of currents, suggesting
that currents in the outer layers have minor effects with respect to
those residing in the deeper interior.

Apart from a qualitative analysis of the structure and configu-
ration of these equilibrium models, it is possible to investigate in
detail the available parameter space, and how the various quantities
are related. This will allow us also to compare our results with other
previously presented in literature, in particular the results by KY08
and FR12, for a purely toroidal magnetic field. KY08 and FR12
both solve for equilibrium in the correct regime for the space–time
metric, described by a quasi-isotropic form. Despite this, the results
are significatively different. However KY08 declare that they have
performed all the relativistic self-consistency checks. In Fig. 2 we
compare our results with KY08 and FR12 (for the case m = 1).
We plot the deviation of four quantities with respect to the unmag-
netized case, as a function of the maximum value of the magnetic
field strength inside the star. The deviation of a quantity Q is here
defined as:

�Q = [Q(Bmax, M0) − Q(0,M0)]

Q(0,M0)
. (44)

The sequence refers to a set of equilibrium models, characterized
by a constant baryonic mass M0 = 1.68 M�, as a function of the
maximum field strength Bmax. Following KY08 we show: the mean
deformation rate ē, the deviation of the gravitational mass �M, of
the circumferential radius �Rcirc and of the central baryonic density
�ρc. Our models are in complete agreement with FR12 and confirm
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3548 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 1. Meridional distribution and isocontours of the magnetic field strength B = √
BφBφ (top) and of the baryonic density (bottom) for models with

baryonic mass M0 = 1.68 M�, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If �M, �Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux �. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux �,
increases with �. Moreover for a given � the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant �. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of � this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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Equilibrium models for magnetized NSs in GR 3549

Figure 2. Variation, with respect to the unmagnetized equilibrium model, of the central baryon density ρc, of the gravitational mass M, of the circumferential
radius Rcirc and of the mean deformation rate ē along the equilibrium sequence of magnetized configuration with constant M0 = 1.68 M� and m = 1. Lines
represent the results by KY08 and FR12; points are our results.

Figure 3. Same comparison as the one shown in Fig. 2 but for the m = 2 case.
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3550 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 4. Sequences of equilibrium stellar models with purely toroidal field, for various fixed quantities. Top panel: with fixed baryonic mass M0 and fixed
magnetic flux �. Bottom panel: with fixed mean deformation rate ē and fixed maximum magnetic field strength Bmax. Left panels show configurations with
m = 1 while right ones show configurations with m = 2. M0 is expressed in unit of solar masses M�, � in unity of 1030 G cm2 and Bmax in unity of 1018G.
The red line is the unmagnetized sequence while the black dotted lines represent equilibrium configurations with low magnetic flux �. The filled circles locate
the models with the maximum gravitational mass at fixed magnetic flux. Details of these models are listed in Table 2. The yellow squares represent the models
shown in Fig. 1.

Table 2. Global quantities of the maximum mass models shown in Fig. 4. For the definition of the various quantities
see Appendix B.

Model ρc M M0 Rcirc rp/re H/W ē Bmax �

(1014 g cm−3) (M�) (M�) (km) (10−1) (10−1) (1018 G) (1030 G cm2)

m = 0 17.91 1.715 1.885 11.68 1.000 0.000 0.000 0.000 0.000

m = 1 18.65 1.780 1.901 14.84 1.088 1.670 − 4.587 1.129 1.613
17.50 1.852 1.960 17.74 1.107 2.373 − 7.833 1.216 2.150
16.85 1.945 2.041 20.86 1.138 2.956 − 11.36 1.265 2.690

m = 2 17.69 1.761 1.890 13.22 1.067 1.330 − 3.041 1.133 1.080
17.78 1.795 1.916 13.98 1.094 1.747 − 4.311 1.262 1.350
17.00 1.838 1.950 15.07 1.115 2.158 − 5.944 1.291 1.620

4.2 Purely poloidal field

In this section we will discuss the properties of NS models with
a purely poloidal magnetic field. Models with a purely poloidal
field have been presented in the past by BB95. However, a direct
comparison can only be done with one of their models. In fact they
only present, with full details, two magnetized models with poly-
tropic EoS. However one of them has a very high magnetic field

and strong deformation, and we could not reach those conditions in
our code. The polytropic index that they use is γ a = 2 while the
polytropic constant is Ka = 372, different from the fiducial value
we have adopted in this study. For the model that we could repro-
duce, we found an agreement with the BB95 results with deviations
�1 per cent for all quantities, except the magnetic dipole moment,
where the error is ∼ a few per cent. We want, however, to point out
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Equilibrium models for magnetized NSs in GR 3551

Figure 5. Left panel: magnetic field surfaces (isocontours of Ãφ ) and distribution of the magnetic strength B =
√

BrBr + BθBθ . Right panel: baryonic
density distribution. The blue curves represent the surface of the star. The model is characterized by M0 = 1.68 M�, Bmax = 6.256 × 1017 G and magnetic
dipole moment μ = 2.18835 erg G−1.

that our operative definition of magnetic dipole moment is different
than the one given by BB95, which is valid only in the asymptoti-
cally flat limit, where magnetic field vanishes (see the discussion in
Appendix B). Given that BB95 solve in the correct quasi-isotropic
metric, the comparison is also a check on the accuracy of the CFC
approximation. It is evident that the CFC approximation gives re-
sults that are in excellent agreement with what is found in the correct
full GR regime.

In Fig. 5 we present a model with a purely poloidal field. The
model has been obtained in the simple case ξ = 0, where only
linear currents are present: Jφ = ρhkpol. The model has a rest mass
M0 = 1.680 M�, a maximum magnetic field Bmax = 6.256 × 1017G,
and a dipole moment μ = 2.188 × 1035 erg G−1.

In contrast to the toroidal case, for a purely poloidal magnetic
field the NS acquires an oblate shape. The magnetic field threads
the entire star, and reaches its maximum at the very centre. The
pressure support provided by the magnetic field leads to a flattening
of the density profile in the equatorial plane. It is possible, for
highly magnetized cases, to build equilibrium models where the
density has its maximum, not at the centre, but in a ring-like region
in the equatorial plane (see Fig. 6). Qualitatively, these effects are
analogous to those produced by rotation. Rotation leads to oblate
configurations, and for a very fast rotator, to doughnut-like density
distribution. The main difference, however, is that rotation acts
preferentially in the outer stellar layers, leaving the central core
unaffected in all but the most extreme cases. A poloidal magnetic
field instead acts preferentially in the core, where it peaks.

Another difference with respect to cases with a purely toroidal
field is the fact that the magnetic field extends smoothly outside
the NS surface. Surface currents are needed to confine it entirely
within the star. As a consequence, from an astrophysical point of
view, the dipole moment μ is a far more important parameter than
the magnetic flux �, because it is in principle an observable (it is
easily measured from spin-down).

Similarly to what was done in the case of a purely toroidal mag-
netic field, we have built an equilibrium sequence, in the simplest
case ξ = 0, at fixed baryonic mass M0 = 1.680 M� (Fig. 7). Changes
in the various global quantities are shown as a function of the max-
imum magnetic field inside the star Bmax. The results in Fig. 7

Figure 6. Baryonic density distribution for an extremely deformed config-
uration with a toroidal-like shape. This configuration is characterized by a
baryonic rest mass M0 = 1.749 M�, a gravitational mass M = 1.661 M�, a
maximum field strength Bmax = 5.815 × 1017 G, a magnetic dipole moment
μ = 3.595 × 1035 erg G−1, a circumferential radius Rcirc = 19.33 km and a
mean deformation rate ē = 0.386.

show that the central density ρc decreases with Bmax while the
gravitational mass M, the circumferential radius Rcirc and the mean
deformation rate ē, which is now positive (oblateness), grow. As in
the toroidal case, for this sequence, there appears to be a maximum
value of magnetic field Bmax ≈ 6.25 × 1017 G. However, we have
not been able to build models with higher magnetization, and so
we cannot say if such value is reached asymptotically, or, as in the
toroidal case, increasing further the magnetization, leads to a re-
duction of the maximum field strength. The other main qualitative
difference with respect to the toroidal case is the trend of the cen-
tral density, which is now a monotonic function of the maximum
magnetic field. From a quantitative point of view we notice that the
central density is more affected by the magnetic field. In Fig. 8 we
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3552 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 7. Variations of global quantities with respect to a non-magnetized configuration along an equilibrium sequence at fixed baryon mass M0 = 1.680 M�,
for models with a purely poloidal magnetic field. Notation is the same as in Fig. 2.

Figure 8. Magnetic dipole moment μ as a function of the maximum field
strength inside the star Bmax for an equilibrium sequence with the purely
poloidal magnetic field and fixed baryon mass M0 = 1.680 M�.

also display the variation of the magnetic dipole moment μ along
the same sequence as a function of the maximum field strength
Bmax. The trend is linear for weak magnetic fields, and then seems
to increase rapidly once the field approaches its maximum.

Our choice for the magnetic function M allows us to investigate
the effects of non-linear currents terms Jφ = ρhkpolξAφ . Unfortu-
nately, we cannot treat configurations with just non-linear currents,

because in this situation the Grad-Shafanov equation has always a
trivial solution Aφ = 0, and our numerical algorithm always con-
verges to it. It is not clear if non-trivial solutions of the Grad-
Shafranov equation exist in any case, and it is just the numerical
algorithm that fails to find them, or if they only exist for specific
values of the background quantities (ρ, φ, α), and in this case it well
could be that no self-consistent model can be build. So to model
cases with ξ �= 0, is it necessary to add a stabilizing linear cur-
rent. This can be done either by adding a distributed current term
Jφ = ρhkpol, or by introducing singular currents, for example sur-
face currents. We will not consider here this latter possibility and
we will investigate configurations with distributed currents alone.
As anticipated, the non-linear current terms can in principle pro-
duce multipolar magnetic configurations. However, the symmetry
of the magnetic field geometry is dictated by the stabilizing lin-
ear currents. Given that a current Jφ = ρhkpol always gives dipolar
dominated magnetic fields, this geometry will be preserved also by
including non-linear terms. To obtain prevalent quadrupolar mag-
netic fields, one needs, for example, to introduce singular currents
that are antisymmetric with respect to the equator. Depending on
the sign of ξ the non-linear current terms can be either additive or
subtractive.

In Fig. 9 we show the distribution of the linear and non-linear
currents inside the star, both in the additive and subtractive cases.
Non-linear currents are more concentrated and they peak at larger
radii. In the additive case, we succeeded in building model where
non-linear currents are dominant in the outer stellar layers. On the
contrary, for subtractive currents, we could not reach configurations
with current inversions, and the level of the non-linear currents is at
most half of the linear term.
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Equilibrium models for magnetized NSs in GR 3553

Figure 9. Comparison among models with different current distributions. Left panel: modulus of the zero-current term J
φ
0 = ρhkpol (left-half) and first-order

one J
φ
1 = ρhkpolξAφ (right-half) for an equilibrium configuration with ξ = 20, M = 1.551 M� and μ = 1.477 × 1035 erg G−1. Right panel: same as the left

panel but for a model with ξ = −5, same mass M = 1.550 M� and magnetic dipole moment μ = 1.510 × 1035 erg G−1. The white line locates the points

where |Jφ
1 |/|Jφ

0 | ∼ 1. The blue line represents the stellar surface.

Figure 10. Variations of global quantities with respect to the non-magnetized configuration, as a function of the magnetic dipole moment, along an equilibrium
sequence with fixed gravitational mass M = 1.551 M�, and purely poloidal field. Notation is the same as in Fig. 2. Filled dots locate the points where

the maximum strength of zeroth-order term J
φ
0 = ρhkpol is equal to the maximum strength of first-order term J

φ
1 = ρhkpolξAφ . Details concerning these

configurations and those which show the higher value of μ for each sequence are listed in Table 3.

In Fig. 10 (see also Table 3) we compare how various global
quantities change, as a function of the magnetic dipole moment
μ for NSs with fixed gravitational mass M = 1.551 M�, and for
various values of the parameter ξ ∈ { − 10, −5, 0, 20, 40}. We
opted for a parametrization in terms of μ and M instead of Bmax and
M0, because the former are in principle observable quantities, and
as such of greater astrophysical relevance, while the latter are not.

Here we can note that, for a fixed dipole moment μ, the addition
of negative current terms (ξ < 0) leads to less compact and more de-
formed configurations, conversely the presence of a positive current
term (ξ > 0) makes the equilibrium configurations more compact
and less oblate. This might appear as contradictory: increasing cur-
rents should make deformation more pronounced. However, this
comparison is carried out at fixed dipole moment μ. This means
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3554 A. G. Pili, N. Bucciantini and L. Del Zanna

Table 3. Global quantities from selected configurations belonging to the equilibrium sequences shown in Fig. 10, at
M = 1.551 M�. For each value of ξ we show the details for the configuration with the maximal magnetic dipole moment.
For cases with ξ = 20, 40 we also present those configurations where ratio |J1|/|J0| � 1. For the definition of the various
quantities see Appendix B.

Model ρc M0 Rcirc rp/re ē H/W Bmax μ |J1|/|J0|
(1014 g cm−3) (M�) (km) (10−1) (10−1) (10−2) (1017 G) (1035 erg G−1)

ξ = 20 8.149 1.678 14.48 9.656 0.468 1.443 2.692 0.629 0.989
6.810 1.665 15.54 8.420 1.773 6.656 4.595 1.477 2.421

ξ = 40 8.426 1.680 14.35 9.827 0.127 0.979 1.417 0.118 0.990
7.320 1.670 15.11 8.857 1.352 4.837 3.964 1.230 4.023

ξ = −5 6.176 1.663 15.75 7.774 2.067 7.482 6.243 1.510 0.585

ξ = −10 7.543 1.674 14.79 8.996 1.014 3.099 4.782 0.911 0.691

Figure 11. Left panel: equilibrium sequences with fixed magnetic field moment μ and fixed baryonic mass M0. Right panel: equilibrium sequences with fixed
deformation rate ē and maximum field strength Bmax. The baryonic mass is expressed in units of M�, the magnetic dipole moment in units of 1035 erg G−1

and the maximum field strength in units of 1018 G. The red line shows the unmagnetized sequence while the filled dots locate the configurations with maximum
mass for a given dipole moment μ. Parameters for these configurations are listed in Table 4.

Table 4. Global quantities from the poloidal models with maximum gravitational mass in sequences
with fixed magnetic dipole moment μ, shown in Fig. 11. For the definition of the various quantities see
Appendix B.

ρc M M0 Rcirc H/W Bmax ē rp/re μ

(1014 g cm−3) (M�) (M�) (km) (10−2) (1017 G) (10−1) (10−1) (1035 erg G−1)

17.29 1.725 1.892 11.96 1.821 6.162 0.481 9.551 0.543
17.19 1.740 1.903 11.89 4.275 9.406 1.036 8.961 0.833
16.76 1.757 1.916 11.93 6.647 11.70 1.481 8.442 1.041
16.45 1.785 1.938 12.00 10.17 14.45 2.012 7.922 1.290

that any current added to the outer layers must be compensated by
a reduction of the current in the deeper ones (to keep μ constant).
Giving that deformations are dominated by the core region, this
explains why the star is less oblate. The opposite argument applies
for subtractive currents.

Finally, we have repeated a detailed parameter study, in analogy
to what has been presented in the previous section, to explore the
space (ρc, kpol). In Fig. 11 (see also Table 4) we show various
sequences characterized by either a constant baryonic mass M0, or
a constant magnetic dipole moment μ, or a constant maximum field
strength Bmax, or a constant deformation rate ē. We have limited our
study to models with ξ = 0, because the addition of other currents
leads in general to minor effects. Again, it is found that systems
with lower central densities are in general characterized by larger
deformation for a given magnetic field and/or magnetic moment.

There is, however, no inversion trend analogous to the one found
for purely toroidal configurations.

4.3 Mixed field

Finally, in this subsection we will illustrate in detail the properties
of TT configurations. For all the cases we present, we have adopted
a functional form for M identical to the one used in the purely
poloidal case [see equation (32)] but only assuming linear terms for
the toroidal currents, ξ = 0. Note, however, that the presence of a
toroidal field is equivalent to the existence of an effective non-linear
current term. The toroidal magnetic field is instead generated by a
current term I, given by equation (33). Again we have selected the
simplest case: a �= 0 and ζ = 0. We focus here on fully non-linear
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Equilibrium models for magnetized NSs in GR 3555

Figure 12. TT configuration with a gravitational mass M = 1.551 M�, a baryonic mass M0 = 1.660, a maximum field strength Bmax = 5.857 × 1017 G.
Left panel: baryonic density distribution. Right panel: strength of the toroidal (left half) and poloidal (right half) magnetic field components, superimposed to
magnetic field surfaces (isocontours of Ãφ ). The blue curve locates the stellar surface. The other global physical quantities of this configuration are listed in
the last line of Table 5.

solutions in the strong magnetic field limit. A study of the low
magnetic field limit is presented in Appendix A.

In Fig. 12 we present a typical TT model, and in particular this
configuration corresponds to the one with the highest toroidal mag-
netic field among all our models. As anticipated, the structure of
the poloidal magnetic field closely resembles what was found in
the previous section, on purely poloidal models: it threads the en-
tire star, reaches its maximum value at the centre, vanishing only
in ring-like region in the equatorial plane, and crosses smoothly
the stellar surface. The magnetic field outside the star is dominated
by its dipole component. On the other hand, the toroidal magnetic
field has now a rather different structure, with respect to purely
toroidal cases. It does not fill completely the interior of the star, but
it is confined in a torus tangent to the stellar surface at the equator.
It reaches its maximum exactly in the ring-like region where the
poloidal component vanishes. Of course, this behaviour is related
to our choice of the poloidal current distribution, and to our require-
ment that they should be confined within the star. In principle it is
possible to build models where the toroidal magnetic field fills the
entire star, but this can only be achieved if one allows the presence
of magnetospheric currents, extending beyond the stellar surface.

In the same Fig. 12 we also show the distribution of the baryonic
density. As we pointed out in Section 4.1 a magnetic field that
extends prevalently into the outer layers of the star has minor effects
on the stellar properties with respect to one that penetrates also
in the core region. Therefore, it is the poloidal component of the
magnetic field, which is also dominant, that is mostly responsible
for the deformation of the star in the TT configuration: the baryonic
density distribution, in fact, resembles closely what we obtained in
the purely poloidal configuration and the stellar shape is oblate and
the external layers have a lenticular aspect.

Fig. 13 (see also Table 5) shows a comparison between the
strength of the toroidal and poloidal magnetic field at the equator,
for various models characterized by the same gravitational mass
M = 1.551 M�, but different values of the magnetization constants
kpol and a. We found that, at a fixed value of a, the strength of both
the toroidal and poloidal field grows with kpol, while if one keeps
fixed the maximum strength of the poloidal field, then the region
occupied by the torus shrinks as a grows.

In Fig. 14 we show the relation between the magnetic dipole
moment and the value of the magnetic field strength in the
centre Bc along equilibrium sequences where the gravitational
mass has been kept fixed, M = 1.551 M�, for various values of
a = {0.0, 0.5, 1.0, 1.5, 2.0}. It is evident that at fixed magnetic
dipole moment, the field strength decreases with a. This can be
understood if one recalls that at higher values of a there is an
increasing contribution to the magnetic dipole moment from cur-
rents associated with the toroidal field (the same value of μ cor-
responds to a lower value of kpol). As a result the value of the
magnetic field at the centre, which is mostly determined by the
current term ρhkpol, drops. Moreover, it is also evident that there
appears to be a maximum asymptotic value that the central field can
reach, as we discussed in the previous section on purely poloidal
configurations, and that such value is smaller for higher values
of a.

In Fig. 15 we display, along the same sequences, how some global
quantities change as a function of the magnetic dipole moment μ.
We stress here that this parametrization is not equivalent to the one
in terms of the strength of the magnetic field at the centre. We can
notice that for a fixed μ the deviation from the unmagnetized case
is progressively less pronounced at increasing values of a. This
happens for the same reasons discussed above for Bc. Peripheral
currents, that contribute to the magnetic dipole moment, have mi-
nor effects on the magnetic field at the centre. On the other hand, it
is the poloidal field that penetrates the core and dominates the ener-
getics which is mostly responsible for these deviations. Moving to
higher values of μ along the TT sequences in Fig. 15 the mean defor-
mation rate ē and the circumferential radius Rcirc increase whereas
the central density ρc diminishes, just as in the purely poloidal
configuration.

It is also interesting to look at the same quantities as parametrized
in terms of the strength of the magnetic field, either the toroidal or
the poloidal component. In our models, for a < 1, the maximum
magnetic field inside the star is associated with the poloidal compo-
nent, and it is coincident with the central value Bc, while for a > 1
the maximum strength of the magnetic field is associated with the
toroidal component. This does not seem to depend on the overall
strength of the magnetic field. For the highest values the strength
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3556 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 13. Profiles of the strength of the poloidal and toroidal components of the magnetic field, along the equator. re is the equatorial radius. All models have
the same gravitational mass M = 1.551 M�. Top panels show three models with a = 0.5 and kpol = 0.04 (left), kpol = 0.18 (centre) or kpol = 0.31 (right). The
left bottom panel shows a model with a = 1.0 and kpol = 0.23, the central bottom panel with a = 1.5 and kpol = 0.22, and the right bottom panel with a = 2.0
and kpol = 0.19. The global physical quantities of these configuration are listed in Table 5.

Table 5. Global quantities for various TT models with the same gravitational mass M = 1.551 M� but different values of both Bmax and a. In the
last three lines we present the models with the highest maximum magnetic field that we could build, for each value of a. For the definition of the
various quantities see Appendix B.

a ρc M0 Rcirc re/rp ē H/W Bc Btor, max μ Hm Htor/H
(1014 g cm−3) (M�) (km) (10−1) (10−1) (1017G) (1017G) (1035 erg G−1) (1042 G2 cm4) (10−2)

0.5 8.488 1.680 14.24 1.000 0.033 0.011 0.745 0.194 0.173 0.031 2.893
0.5 7.890 1.675 14.70 0.935 0.715 0.251 3.338 0.944 0.862 0.791 3.228
0.5 5.373 1.650 16.88 0.723 2.636 1.285 5.344 1.974 2.308 5.512 4.082
1.0 5.545 1.647 17.41 0.733 2.510 1.455 4.409 3.983 2.790 8.079 7.262
1.5 5.454 1.645 18.11 0.711 2.552 1.566 4.134 5.582 3.199 7.752 7.282
2.0 6.713 1.660 16.40 0.816 1.636 0.880 3.758 5.857 2.152 3.234 6.696

Figure 14. Magnetic dipole moment μ as a function of Bc for various
values of the parameter a. All models have the same gravitational mass
M = 1.551 M�.

of the poloidal component of the magnetic field might reach its
maximum in the torus region (see the trend in Fig. 13).

In Fig. 16, these same sequences are shown in terms of their
energy content. We note that, at fixed Bc, the equilibrium configu-
rations with higher a are characterized by a higher value of both the
total toroidal magnetic field energy Htor, and the poloidal magnetic
field energy Htor, as expected. It is also evident that the parameter
a regulates the ratio of energy in the toroidal and poloidal compo-
nents of the magnetic field, Htor/H. We see that the ratio Htor/H

tends to a constant in the limit of a negligible magnetic field. In the
last panel in Fig. 16 we also show the relation between Bc and the
maximum strength of the toroidal magnetic field Btor,max. The ratio
Htor/H shows a clear maximum at ∼0.07 for a � 1.5. For smaller
values of a this ratio increases because the strength of the toroidal
field increases; however, for a � 1, the volume taken by the torus,
where the toroidal field is confined, begins to drop substantially,
and this leads to a smaller total energy of the toroidal component.
The net effect of the torus shrinkage over Htor/H is also evident
from Fig. 17 where the magnetic energy ratio is shown as a function
of the parameter a along a sequence with fixed Bc = 2 × 1017 G.

In Fig. 18 we show �ρc and ē as a function of Bc and Btor, max.
We can notice that for a fixed Bc the trend with a is exactly the
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Equilibrium models for magnetized NSs in GR 3557

Figure 15. Behaviour of the baryonic central density ρc, of the baryonic mass M0, of the circumferential radius Rcirc and the mean deformation rate for TT
equilibrium sequences with a fixed gravitational mass M = 1.551 M�. All quantities are shown as a function of the magnetic dipole moment μ. The models
corresponding to the extreme cases for each sequence are presented in details in the last four lines in Table 5.

Figure 16. Top left panel: toroidal magnetic energy Htor. Top right panel: poloidal magnetic energy Hpol. Bottom left panel: ratio of the toroidal magnetic
energy Htor to the total magnetic energy H. Right bottom panel: maximum value of the toroidal magnetic field strength Btor, max. All quantities are plotted
as a function of the central magnetic field strength Bc along the same sequences shown in Fig. 15.

opposite than the one shown previously for fixed μ. This might seem
counter-intuitive, given that both quantities are parametrizations of
the strength of the poloidal field. However, models with higher a,
at fixed μ, have weaker central fields, and smaller deviations, while

models with higher a, at fixed Bc, have higher total magnetic energy,
and as such higher deviations. The effects due to the tension of the
toroidal field (that would lead to a less deformed star) are dominated
by the drop in the central density due to the increase of magnetic
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3558 A. G. Pili, N. Bucciantini and L. Del Zanna

Figure 17. Ratio of the toroidal magnetic energy Htor to the total magnetic
energy H as a function of the parameter a along a sequence with fixed
gravitational mass M = 1.551 M� and central magnetic field strength Bc =
2 × 1017 G.

energy. For the same reason, when shown as a function of the
maximum strength of the toroidal magnetic field, models show that
higher values of a imply smaller deviations from the unmagnetized
case.

Finally in Fig. 19 we show the magnetic helicity Hm as a function
of either the field strength at the centre Bc or the maximum strength
of the toroidal magnetic field Btor, max. The magnetic helicity is an
important quantity in MHD because it is conserved in the limit of
infinite conductivity, and it can be shown that it is dissipated on a
much longer time-scale than the magnetic energy in the resistive
case (Candelaresi & Brandenburg 2011). It is generally expected
that MHD will rapidly relax to configurations that minimize mag-

netic energy, keeping fixed the magnetic helicity. At a fixed Bc, Hm

increases up to a � 1.5, then drops, for the same reason discussed
above for the energetics. Instead, at a fixed Btor, max, Hm decreases
with a since, in this case, the same toroidal magnetic strength cor-
responds to a weaker poloidal field.

In general, we found a qualitative agreement with previous results
(Lander & Jones 2009; Ciolfi et al. 2009, 2010; Ciolfi & Rezzolla
2013), concerning the shape, deformation, and expected distribu-
tion of the poloidal and toroidal components of the magnetic field.
In all of our models, the poloidal component is dominant and the
ratio Htor/H < 0.07. This agrees with previous results where it
was shown that only poloidally dominated models could be built
for simple electric current distributions, although recently a more
complicated prescription for the currents allowed one to build
toroidally dominated models (Ciolfi & Rezzolla 2013). For strong
fields, inducing an appreciable deformation, a direct comparison is
possible only with previous results by Lander & Jones (2009). They
adopt a different value of ζ = 0.1 instead of 0, their values of a
are not directly comparable with ours due to the different choice of
units, and their reference unmagnetized model is different. Notwith-
standing these differences, our results agree with theirs, on many
aspects. A direct quantitative, comparison with results by Ciolfi
et al. (2009, 2010); Ciolfi & Rezzolla (2013) is also not straight-
forward, because their choice for the functional form of the current
associated with the toroidal field, equation 33, is different from our
(they assume that the current is a cubic function of the vector poten-
tial while we assume it to be linear). Their perturbative approach in
principle corresponds to a low magnetic field limit. A more detailed
discussion in this limit is presented in Appendix A.

In the fully non-linear regime, given that we do not impose any
constrain on the shape of the stellar surface, and allow for oblate
configurations, our field may adjust to this change in shape. Indeed,
as shown in Fig. 15 we found that, for strong fields, inducing an
appreciable deformation, the ratio Htor/H is higher than for the
weak field limit by about 10–15 per cent.

Figure 18. Mean deformation rate ē (top) and �ρc (bottom) displayed as a function of Bc and Btor, max along the same sequences shown in Fig. 15.
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Equilibrium models for magnetized NSs in GR 3559

Figure 19. Magnetic helicity Hm as a function of the central magnetic field strength Bc (left) and as a function of the maximum toroidal magnetic field strength
Btor, max (left) along the same equilibrium sequences shown in Fig. 15.

We want to stress here that the Grad-Shafranov equation, equa-
tion (31), in cases where the currents are non-linear in the vector
potential Aφ , becomes a non-linear Poisson-like equation, that in
principle might admit multiple solutions (local uniqueness is not
guaranteed). This is a known problem (Ilgisonis & Pozdnyakov
2003), so we cannot safely say that these are the only possible
equilibria.

5 C O N C L U S I O N S

Magnetic fields are a key element in the physics and phenomenol-
ogy of NSs. Virtually nothing of their observed properties can be
understood without considering their effects. In particular, the ge-
ometry of the magnetic field plays an important role, and even small
differences can lead to changes in the physical processes that might
be important for NS phenomenology (Harding & Muslimov 2011).
Here we have investigated the role that a very strong magnetic
field has in altering the structure, by inducing deformations. For the
first time we have derived equilibrium configurations, containing
magnetic field of different geometries, assuming the metric to be
conformally flat. This is a further improvement on previous works,
which were either done in a Newtonian or perturbative regime, and
allows us to handle very strong fields, and to take into account the
typical non-linearity of Einstein equations.

We have presented a general formalism to model magnetic field
of different geometry, and illustrated our numerical technique. The
comparison with previous results (when available) has shown that
the assumption of a conformally flat metric leads to results that
are indistinguishable, within the accuracy of the numerical scheme,
from those obtained in the correct regime. The simplifications in
our approach do not compromise the accuracy of the results, while
greatly simplifying their computation.

For the first time we have carried out a detailed parameter study,
where the role of current distributions was analysed, for various
geometries of the magnetic field. We briefly summarize here the
key results:

(i) the characteristic deformation induced by a purely toroidal
field, fully confined below the stellar surface, is prolate: the mag-
netic field acts by compressing the internal layers of the star around
its symmetry axis, causing, on the other hand, an expansion of the
outer layers;

(ii) given the same strength, magnetic fields concentrated in the
outer part of the star lead to smaller deformations, with respect to
magnetic fields concentrated in the internal regions;

(iii) a purely poloidal field, that in our case extends also outside
the star, leads to oblate equilibrium configurations: the magnetic

stresses act preferentially in the central regions, where the field
peaks, leading to a flatter density profile perpendicularly to the axis
itself. We can also obtain doughnut-like configurations where the
density maximum is not at the centre;

(iv) the presence of additional currents located in the outer layers
of the stars leads only to marginal changes in its structure, and on
the shape of the magnetic field lines outside the stellar surface;

(v) for the same maximum magnetic field inside the star, purely
poloidal configuration can be characterized by smaller deforma-
tions, than purely toroidal ones (about a factor of one half in the
m = 1 case). However for higher values of m this trend might be
reversed;

(vi) we have computed TT configurations in the non-perturbative
regime. We confirm previous results, in either the Newtonian or
the perturbative regime, that only models where the poloidal com-
ponent is energetically dominant can be built for simple elec-
tric current distributions [this limitation could be avoided us-
ing more complex prescriptions for the currents as shown by
Ciolfi & Rezzolla (2013)]. These show oblate deformations that
are almost completely due to the poloidal field, acting on the
interior;

(vii) for a fixed central density, a higher magnetic field gives a
higher eccentricity, a higher radius, and a higher gravitational mass;

(viii) the more compact configurations, having a higher cen-
tral density, can support stronger magnetic fields, and show much
smaller deformations.

Our results are clearly indicative that the magnetic energy, or
the maximum strength of the magnetic field, are in general not
good indicators of the possible deformation of the NS. The current
distribution is a key parameter: magnetic field concentrated in the
outer layers of the stars are less important than similar fields located
in the deeper interior. Given that the magnetic field geometry might
strongly depend on the details of the NS formation (the stratification
of differential rotation, the location of the convective region, etc, ...),
one should be careful to make general statements based only on
energetic arguments.

We plan to further extend this work by investigating also rotat-
ing configurations and/or NS models with magnetospheric currents
that we have not touched upon here, and trying to provide some
more quantitative estimates on the possible GW emission from this
objects and its dependence on the strength and structure of the
magnetic field.

The updated XNS code for building magnetized NS equilib-
ria is publicly available for the community at www.arcetri.astro.it/
science/ahead/XNS/.

MNRAS 439, 3541–3563 (2014)

 at IN
A

F A
rcetri Firenze (O

sservatorio A
strofisico di A

rcetri Firenze) on O
ctober 20, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://www.arcetri.astro.it/science/ahead/XNS/
http://www.arcetri.astro.it/science/ahead/XNS/
http://mnras.oxfordjournals.org/


3560 A. G. Pili, N. Bucciantini and L. Del Zanna

AC K N OW L E D G E M E N T S

We thank the referee for his/her useful comments and suggestions.
This work has been done thanks to a EU FP7-CIG grant issued to
the NSMAG project (P.I. NB).

R E F E R E N C E S

Alcubierre M., 2008, Introduction to 3+1 Numerical Relativity. Oxford
Univ. Press, Oxford

Arnowitt R., Deser S., Misner C. W., 1959, Phys. Rev., 116, 1322
Baade W., Zwicky F., 1934, Phys. Rev., 46, 76
Bocquet M., Bonazzola S., Gourgoulhon E., Novak J., 1995, A&A, 301,

757 (BB95)
Bonanno A., Rezzolla L., Urpin V., 2003, A&A, 410, L33
Braithwaite J., 2009, MNRAS, 397, 763
Braithwaite J., Nordlund Å., 2006, A&A, 450, 1077
Braithwaite J., Spruit H. C., 2006, A&A, 450, 1097
Bucciantini N., Del Zanna L., 2011, A&A, 528, A101
Bucciantini N., Del Zanna L., 2013, MNRAS, 428, 71
Bucciantini N., Quataert E., Metzger B. D., Thompson T. A., Arons J., Del

Zanna L., 2009, MNRAS, 396, 2038
Bucciantini N., Metzger B. D., Thompson T. A., Quataert E., 2012, MNRAS,

419, 1537
Burrows A., Dessart L., Livne E., Ott C. D., Murphy J., 2007, ApJ, 664, 416
Candelaresi S., Brandenburg A., 2011, Phys. Rev. E, 84, 016406
Carter B., 1970, Commun. Math. Phys., 17, 233
Carter B., 1973, in Dewitt C., Dewitt B. S., eds, Black Holes (Les Astres

Occlus)., p. 57
Chandrasekhar S., Fermi E., 1953, ApJ, 118, 116
Ciolfi R., Rezzolla L., 2013, MNRAS, 435, L43
Ciolfi R., Ferrari V., Gualtieri L., Pons J. A., 2009, MNRAS, 397, 913
Ciolfi R., Ferrari V., Gualtieri L., 2010, MNRAS, 406, 2540
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A P P E N D I X A : L I M I T O F W E A K M AG N E T I C
FI ELDS

In the limit of a weak magnetic field (i.e. for H � M), one can
safely assume that the metric terms α and ψ are the same as in the
unmagnetized case (up to corrections of the order of H/M). For
our models, which are also static, these are only function of the
radial coordinate r. In this limit, for our choice of magnetic current
distributions, ξ = 0 and ζ = 0, both the currents associated with the
toroidal field and the magnetic field itself become linear functions of
the vector potential Aφ . For a given value of the twisted torus mag-
netization constant a, the Grad-Shafranov equation, equation (31),
contains only terms linear in Aφ (Aφ is now a linear function of the
poloidal magnetization constant kpol). This implies that in the weak
magnetic field limit, the magnetic field structure and the geometry
of the magnetic field lines are independent of the strength of the
magnetic field. It is thus meaningful to talk about a low magnetiza-
tion limit, without reference to the exact value of the magnetic field.
This is quite different from previous results, published in literature.
For example the works by Ciolfi et al. (2009) and by Glampedakis
et al. (2012), following the choice initially suggested by Tomimura
& Eriguchi (2005), all assume that the function I is quadratic in
Aφ [qualitative analogous to taking ζ = 1 in our formalism, even
if their functional form for I is different from our generic form
equation (33)]. This implies that the currents associated with the
toroidal field are cubic in Aφ , and the Grad-Shafranov equation now
contains terms that are non-linear in Aφ . The same holds for the
choice presented by Lander & Jones (2009) which is equivalent to
take ζ = 0.1. In these cases the magnetic field structure is also a
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Figure A1. Ratio of the toroidal magnetic energy Htor to the total magnetic
energy H in the weak field limit, as a function of the parameter a, for our
fiducial NS model with M = 1.551 M�.

function of the magnetic field strength, and one cannot talk of a
generic low field limit, but the exact value of the field strength must
be specified.

Let us briefly describe here the properties of our solution in the
limit of a small field. We will consider a fiducial model, with a
central density ρc = 8.515 × 1014 g cm−3, corresponding to a
gravitational mass M = 1.551 M�, and a radius Rcirc = 14.24 km.
For convenience, all our results are shown in the case of a magnetic
field with a typical strength ≈1012 G (they can however be rescaled

to higher/lower values because of the linearity implied by our choice
for the distribution of the currents.).

In Fig. A1, the ratio of magnetic energy carried by the toroidal
component of the field, over the total magnetic energy, is shown as a
function of the twisted torus magnetization constant a. It is evident
that it is not possible to reach configurations that are toroidally
dominated. In Fig. A2, we show the equatorial profile of the poloidal
and toroidal components of the magnetic field, for various values
of the parameter a, as was done in Fig. 13 for the case of a much
stronger magnetic field. It is interesting to notice that, as was found
in previous studies, the region occupied by the toroidal field tends
to shrink towards the surface of the star (about 70 per cent from
a = 0.1 to a = 2.5). The effect is the same as seen in previous
works that used a different current’s distribution. In the same plot,
done keeping the poloidal magnetization constant kpol fixed, it is
also possible to see the contribution of the current associated with
the toroidal field, to the net dipole moment (the value of the polar
field increases with a). Again, as was found in the case of a strong
field, these peripheral current contribute only marginally (about
20 per cent for a = 2.5) to the net dipole moment.

Finally, in this low magnetic field limits, it is possible to investi-
gate the multipolar content of the magnetic field, and how does it
change with respect to the parameter a (i.e. to the ratio of toroidal
magnetic field energy over total magnetic energy). A simple way to
compare the various multipole terms is to look at the relative strength
of the Cl terms in the expansion of the vector potential, equation
(43), with C1 indicating the dipole term. This is not possible for
stronger fields, because the metric terms are no longer just a func-
tion of r, and the Cl will also contain a geometrical contribution
from the metric, which we cannot separate (spherical harmonics
are not eigenfunctions of the angular part of the Laplacian in a

Figure A2. Upper panels: profiles of the strength of the poloidal and toroidal components of the magnetic field, along the equator, in the weak field limit,
for our fiducial NS model with M = 1.551 M� and kpol = 10−6. re is the equatorial radius. Upper left panel is a model with a = 0.1. Upper right panel is a
case with a = 2.5. Lower panels: the strength of the poloidal (left) and toroidal (right) magnetic field at the equator for various values of the parameter a. The
shrinkage of the torus region, as well as the contribution to the poloidal field by extra currents associated with the toroidal field, is evident.
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Figure A3. Radial profiles of the norm of the Cl(r) terms in the harmonic decomposition of the vector potential [see equation 43], in the weak field limit. The
values are normalized to the maximum of the C1(r), for convenience. Left panel: a = 0.1. Right panel: a = 2.5.

generically curved space-time). In Fig. A3 we show the values of
various Cl terms (normalized to the dipole one) as a function of
radius. As expected, our magnetic configurations are always domi-
nated by the dipole term. The various multipoles reach a maximum
at the location of the torus, and then drop outside of the star as
r−(l+1). In the case a = 0.1 the various multipoles are more than
three to four orders of magnitude smaller than the dipole term, and
in general each multipole of order l is about one order of magnitude
smaller than the preceding one of order l − 1 (for smaller values
of a the various multipoles are so small that they are essentially
compatible with being due to numerical noise). In the case a = 2.5
the multipolar content of the magnetic field is much higher: the
quadrupole term l = 3 is only a factor 10 (at peak) smaller than
the dipole term, and in general the ratio between two successive
multipoles is only of the order of a few.

In this low magnetic field limit, when the metric terms are essen-
tially independent of the magnetic field strength, we have verified
that in order to get converged solutions of the Grad-Shafranov equa-
tion, equation (31), we need to truncate our decomposition of the
vector potential into spherical harmonics, equation (43), at lmax

such that all the neglected multipoles have at least an amplitude
Cl>lmax/C1 < 10−5. Please note that, while the overall accuracy of
our models is ∼10−3, the accuracy of the elliptic solver of the Grad-
Shafranov equation is ∼10−7. In fact, multipoles with amplitude
less than 10−7 times the leading dipole term are dominated by nu-
merical noise (see e.g. the behaviour of the Cl=9 terms in the left
panel of Fig. A3).

A P P E N D I X B : G L O BA L PH Y S I C A L
QUANTITIES

To characterize the equilibrium models obtained with our numerical
scheme we have computed a wide set of global physical quantities
that allow us to provide a parametrization, as complete as possi-
ble. Here we give their definition for the case of static magnetized
configurations, described within the CFC approximation.

The most relevant are: the gravitational mass

M :=
∫ (

e + 3p + B2
)
αψ6 sin θ dr dθ dφ, (B1)

the baryonic mass

M0 :=
∫

ρψ6r2 sin θ dr dθ dφ, (B2)

the proper mass

Mp :=
∫

eψ6r2 sin θ dr dθ dφ, (B3)

the total magnetic energy

H := 1

2

∫
B2ψ6r2 sin θ dr dθ dφ, (B4)

the magnetic energy in the toroidal component

Htor := 1

2

∫
BφBφψ6r2 sin θ dr dθ dφ, (B5)

the magnetic energy in the poloidal component

Hpol := 1

2

∫
(BrBr + BθBθ )ψ6r2 sin θ dr dθ dφ, (B6)

and the binding energy

W := M − Mp − H, (B7)

where the integrals are defined over the all three-dimensional space.
In order to characterize the geometrical properties of the mag-

netic field, other quantities must be introduced. When the magnetic
configuration possesses a toroidal component we can evaluate the
flux of the toroidal magnetic field through a meridional half-plane
which, analogously to KY08, is given by

� :=
∫ π

0
dθ

∫ ∞

0

√
BφBφψ4r dr. (B8)

In the presence of a poloidal magnetic field we can estimate
the magnetic dipole moment μ of the star. This is usually defined
(see BB95) by the leading term of the asymptotic behaviour of the
magnetic field components at r → ∞, where the space–time metric
is flat. However this definition, in our opinion, is not well suited for
a numerical scheme. At r → ∞ the magnetic field vanishes, and it
is not numerically safe, due to interpolation and round-off errors,
to compute a finite quantity as the ratio of two vanishing ones. On
the other hand, if computed at a finite distance, this definition might
introduce errors due to the metric curvature. Since our numerical
scheme does not use a compactified domain, and extends only over
a few stellar radii outside a NS, we have derived a definition of
magnetic dipole moment that takes into account the curvature of
space–time. This allows us to measure the dipole moment at finite
radii, and we have verified that the value does not depend on the
radius, as expected. From a multipole expansion of equation (31),
assuming that outside the star the line element is well approximated
by the Schwarzschild solution and selecting the dipole term (l = 1),
one can find a simple relation that connects the dipole moment μ to
the φ-component of the vector potential Ãφ , the gravitational mass
M and the radial coordinate r, namely

Ãφ = μ

(
1 + M

4r

)
sin θ

r2
. (B9)
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In the case of mixed field configurations, another important global
topological quantity is the magnetic helicity. Following Ciolfi et al.
(2009) the total magnetic helicity Hm can be defined as

Hm :=
∫

H 0
mαψ6r2 sin θ dr dθ dφ, (B10)

where H 0
m is the time component of the helicity four-current

Hα
m := −1

2
εαβμνAβFμν. (B11)

In our case the definition reduces simply to

Hm =
∫

(BiAi)ψ
6r2 sin θ dr dθ dφ, (B12)

where, using the gauge freedom of the vector potential, we can
impose Ar = 0 and express Aθ in function of Aφ as

Aθ = −1

sin θ

∫ r

∞

ψ2

α
I(Aφ) dr ′. (B13)

Finally there are global quantities related exclusively to the shape
and deformation of the star. These are the equatorial radius re, the
polar radius rp, the circumferential radius

Rcirc := ψ2(re, π/2)re, (B14)

and the mean deformation that, following KY08, is defined by

ē := Izz − Ixx

Izz

, (B15)

where Izz and Ixx are the moment of inertia, respectively, in the
parallel and orthogonal direction to the axis of symmetry

Izz :=
∫

er4 sin3 θdr dθ dφ (B16)

Ixx := 1

2

∫
er4 sin θ (1 + cos2 θ ) dr dθ dφ. (B17)

As was just pointed out in FR12 this definition of ē is strictly
Newtonian and may be not suitable for estimating the gravitational-
wave emission of a rotating distorted star.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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