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Abstract. The normal polarity prominence model of Hood &
Anzer (1990) has been modified to include the effect of a steady
flow along the magnetic field lines. We consider two isothermal
regions that model the hot corona and the cool prominence, con-
sidered as a vertical sheet of dense material with infinite length
and height but finite width. The magnetic field, pressure and
density are assumed to be exponentially decaying in the verti-
cal direction (the velocity is independent of the height in our
model) and equations for the horizontal behaviour are dgtér-
mined. Invariance along the prominence direction is assumed,

but the magnetic and velocity vectors retain all their con'i‘]'jﬂd‘-"

nents.

The introduction of a field aligned flow results in the coro-
nal magnetic field no longer being force free and a pressure
deficit allows a siphon flow to occur. Substantial coronal ve-
locities are possible but only sub-sonic (and hence in the low
plasma 3 corona sub-Alfvénic) flows are considered and these
are consistent with observations.

Finally, we propose a simple model for the steady supply
of material into a prominence to balance the observed draining
motions.

Key words: MHD — Sun: corona — Sun: magnetic fields — Sun:
prominences — stars: coronae — stars: magnetic fields

1. Introduction

Solar prominences have interested theorists and observers for
many decades. There are several problems related to the for-
mation, support and eventual eruption that have still to be fully
resolved. Among them there is the question of the source of the
prominence mass. Two models have been basically discussed
in the literature: one is concerned with the condensation of ma-
terial from the surrounding corona, whereas for the other the
mass source is the below chromosphere, with the material being
ejected or siphoned into the prominence. The former hypothe-
sis seemed to be supported also by the observations of a coro-
nal cavity in the surroundings of a prominence. However, Saito
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& Tandberg-Hanssen (1973) found that the missing mass of
the cavity was insufficient to account for the prominence mass.
Moreover, the fact that a small number of quiescent prominences
contains as much mass as the entire corona (Athay 1976) must
also be taken into account.

The siphon mechanism to transfer material from the solar
surface into a prescribed gravitational dip in a magnetic coro-
nal arcade, such as described in the classical static model by
Kippenhahn & Schliiter (1957) (from now on KS), has been
shown to be possible by several authors. The first model is due

“to Pikel’ner (1971), who studied the 1-D equations for a steady

flow in a flux tube with a reasonable energy equation. Uchida
(1979) and Ribes & Unno (1980) proposed also stationary mod-
els belonging to this class, but in the latter the thermodynam-
ics of the system is not taken into account. Poland & Mariska
(1986) showed, in a time dependent numerical model, that a
sustained heat release in a loop may give raise to an evapora-
tion from below followed by a thermal instability at the top of
the loop and a similar result has been found also by Démoulin
& Einaudi (1988). Possibly, both mechanisms are responsible
for prominence formation. Wu et al. (1987) have investigated a
chromospheric injection process, but have demonstrated, solv-
ing numerically the 2-D radiative-conductive MHD equations,
that this mechanism alone cannot account for the observed mass.
An et al. (1988) have incorporated into this injection model the
effects of the shear in the magnetic field lines and of converging
motions at the chromospheric level.

In the present paper the problem of a steady supply of mate-
rial from the solar surface into a quiescent prominence is treated,
following the idea by Priest & Smith (1979) who suggested, in
a cartoon, how a fully formed prominence could be supplied by
material through a siphon mechanism with the prominence act-
ing as a sink of material. They assumed that a Rayleigh-Taylor
instability allows the plasma to dribble across the magnetic field
lines resulting in a slow, but steady down flow. However, in this
paper the possibility of the presence of a steady flow along the
field lines from the corona into the prominence will be fully
demonstrated by solving the complete set of the ideal MHD
equations. The structure of the magnetic arcade will result from
the solution, that means that in our model the flow plays an ac-
tive role and is not just super-imposed over a static model, as
done by the majority of the other authors.
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The sign of the average vertical steady flow observed in
prominences is still a controversial subject. Earlier observations
reported down flows in the threads of prominences seen at the
limb (Dunn 1960; Engvold 1976). When large prominences are
observed on the disk as dark filaments, however, the Doppler
signals indicate both up and down vertical motion with velocities
of the order of +6 kms™! in Ha (Kubota & Uesugi 1986;
Schmieder 1989; You & Engvold 1989), thus generating some
confusion in the literature concerning the actual motions in the
prominence fine-structure. However, in a recent analysis of old,
high-resolution observations of limb prominences, Zirker et al.
(1994) show that their measurements are in good agreement with
the current Doppler measurements on the disk. Their conclusion
is that the motions inside a prominence are rather turbulent and
that forces other than gravitational seem to control the velocity
field pattern.

Around filaments, the transition zone shows an ascending
behaviour with persistent large scale motions of the order of
5—10 km s™! (Lites et al. 1976; Dere et al. 1986) and horizontal
motions of the same order close to the prominence axis, with an
inclination of ~ 20° and parallel to the magnetic field structure.
Both these observational results clearly support the validity of
the basic assumptions of our model.

The steady flow model for quiescent prominences proposed
in the present paper is a generalization of the static model by
Hood & Anzer (1990), from now on referred to as HA. This
paper was concerned with normal polarity prominences (i.e.
the magnetic field passes through the prominence in the same
direction as suggested by the underlying photospheric field),
like in the classic KS model, but the dipped magnetic structure
inside the prominence was derived together with the overall
magnetic behaviour of the surrounding corona in a rigorous and
self-consistent manner. Here the main assumption was that the
magnetic field and gas pressure could be expressed as

B« (X(2),Y(z), Z(x))e **H | px P)e= ",

both inside and outside the prominence region, where H is the
coronal pressure scale height that, since it depends on the tem-
perature, was taken to be a prescribed function of the horizontal
coordinate x. In our paper these basic assumptions are main-
tained and the presence of a field-aligned velocity is allowed.
This will result to be a function of x only.

The method of solution adopted for our equations is similar
to that of Tsinganos et al. (1993), concerning MHD steady flows
in uniform gravity. However, their treatment does not allow for
the presence of the y component of the magnetic and velocity
fields and it is fully isothermal. Both these restrictions prevent
their solutions from being suitable for modelling flows in promi-
nences. Surlantzis et al. (1994) also treated the same problem in
asimilar way. They solved the 2-D generalized Grad-Shafranov
equation in the low § approximation in an attempt to modelling
steady flows in coronal loops. A barotropic relation P = P(p)
is assumed in order to eliminate an annoying term in the equa-
tion and then the temperature is taken as a function of the field
lines. But these two assumptions are in contradiction with any
reasonable equation of state.
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The paper is structured as follows. In Sect. 2 the basic equa-
tions and the assumptions for our model are presented. Section
3 is devoted to the discussion of the results from the numerical
integration of our equations for values of the parameters suit-
able for modelling flows in a realistic quiescent prominence.
Finally Sect. 4 discusses a possible simple model for the actual
replenishment of a prominence by means of the steady mass
flow along the coronal arcade field lines.

2. Basic model and governing equations

In this section the mathematical equations for our quiescent
prominence model are derived. This will be done in two steps.
In the first sub-section the general problem of dynamical MHD
equilibria in an isothermal and vertically stratified atmosphere
with uniform gravity is discussed, whereas the second sub-
section is devoted to the prominence model.

2.1. Isothermal MHD equilibria in uniform gravity

The purpose of this sub-section is to present the MHD equa-
tions governing a mass flow in an isothermal atmosphere with
a uniform vertical gravitational field. Since translational sym-
metry along one of the horizontal directions will be assumed,
the most suitable formalism should be that of the generalized
Grad-Shafranov equation. However, in this sub-section only the
physical assumptions will be presented and a more detailed anal-
ysis, following the correct Grad-Shafranov approach, is given
in the Appendix.

Consider an ideal, isothermal plasma in a uniform gravita-
tional field (along the z axis) with a steady mass flow that, for
sake of simplicity, is parallel to the field lines. The steady MHD
equations are

V - (pv) =0, (1
p(v - Vv =(1/4m)(V x B) x B — Vp — pge,, @)
V-B=0, 3)
vX B=0, 4)
p=cp, )

where g is the (constant) gravitational acceleration, c? = 22T/
is the square of the (constant) sound speed and all the other
symbols have their usual meaning.

Following the same approach as in HA, consider the mag-
netic field and the pressure to be separable respectively in the
form

B = By(X(kx), Y (kx), Z(kz)) e *, (©6)

p = (By/4m)P(ka)e**, )

where k~! is a characteristic length of the system and By is
a constant with the dimension of magnetic field. Under these
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assumptions, the MHD equations (1) to (5) lead to the following
form for the velocity field

v=eA S (XY, 2) ®

therefore v results to be independent from z in this model, and
to the relations

Z(kx)= X',

Y(kz) = aX/(1 — \*X?/P), )

where ) and « are two dimensionless parameters of the model.
After some lengthy calculations, Eq. (2) yields

AP - X2 Y2+ (1+qM}Z?

4 X1 - M2 ’ (19)
P'= —qPZ/X, (1
where the function ¢ has been defined as

Y+ M?—2M§ /N (12)

T M2 - M2+ MSNE

In these equations, y = 2[1/(2k H)— 1] is another dimensionless
parameter (H = c*/g = . 92T/ p1g is the pressure scale height),
whereas M and My are respectively the Mach and Alfvénic
Mach numbers, given by

2
M?= AZZ;—Z(XZ +Y2+ 2%, (13)

M?=X2X?%/P = M?*B3/2. (14)
Here (3 is the plasma beta, defined as usual as the ratio of the
kinetic and magnetic pressures p and p,, = | B|*/8m, that with
our assumptions becomes
B=2P/(X*+Y?+Z%). 15)

Equation (12) simply reduces to ¢ = -y in the static case A = 0
(the term 2M$§ /\? is proportional to A*). Note that this result is
exactly the same as in Tsinganos et al. (1993), but its validity has
been extended here to the more general case By # 0 and vy # 0.
Needless to say, in the dynamic case A # 0, the equations (10)
and (11) must be solved numerically, whatever the value of +.
This is a simple initial value problem for the set of unknown
functions P(kz), X (kz) and Z(kz), for any given values of the
parameters v, & and A.

For the general discussion above the critical points of the
equations and the solution topologies in the two-dimensional
case the reader is referred to Tsinganos et al. (1993). In the
present paper the analysis will be restricted to sub-sonic and sub-
Alfvénic flows (for which q and Z’ are always defined), since
the goal of our treatment is the investigation of the corrections
to the static case due to the introduction of a flow.
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2.2. The prominence solution

In our attempt to build a prominence model, consider a ver-
tical sheet of cool material of infinite height and length but
finite width, surrounded by the hot coronal region. The main
assumption in the HA model consists in considering both the
prominence and the surrounding corona as isothermal regions
with different constant temperatures, namely T¢q0; and Tho, With
Teool € Thot- The transition zone between these two regions is
then assumed to be so narrow that, taking as plane of symmetry
the y — z plane and considering for simplicity only the region
z > 0, the scale height profile can be assumed to be

H@) = {thl

where Zprom is the prominence half width and where Heoor =
T o0l / Heoolds Hhot = FeThor / Uhotg- Asin HA, the value 2 Hhor
is assumed here for the characteristic length k1.

In the present model we consider a flow aligned with the
magnetic field lines that, starting from one of the foot points of
the magnetic arcade, travels across the coronal region, enters
the prominence at T = Zyrom and then exits from the other side,
ending in the symmetric foot point of the arcade. The presence
of the flow modifies the matching conditions for the physical
quantities at the interface = Tprom, as well as at the symmetric
point £ = —Zprom, as follows:

0 <z < Tpom

16
T > Zprom, (16)

(B.1=0, 17)
[pve] =0, (18)
[pv} +p+(1/87)(B; + B — B2)] =0, (19)
[pvavy — (1/4m)By Byl =0, (20)
[pvsv; — (1/4m)B;B;]1 = 0, @1

where [ f] is the difference of the values of f in the two regions
at the interface, that is

[fl= ll_r% [f(xprom +e)— f(af'prom -l

These are essentially the jump conditions for a MHD oblique
shock withv || B (see, forexample, Priest 1982). Assuming that
the expressions for the physical quantities p, p, B and v given
in the previous sub-section are the same in the two regions, with
the same values of By and k in Eq. (6), relations (17),(20) and
(21) imply respectively

[X]=0, (22)
[(1-XX?%/P)Y]=0, (23)
(1 -XX?%/P)Z] =0. (24)

From Egs. (18) and (23) the matching conditions for the param-
eters A and « are derived, namely

Ahot = >\cool/ V2kHeool,  Qthot = Qicool
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where 2k Hcool = Heool/ Hhot << 1. The condition on the pres-
sure function P can be obtained from Eq. (19) with the aid of
Eqgs. (22) — (24):

[P+ X2 X*/P]+d’[(1 — \2X?*/P)" =0, (25)

where the factor a® = (1—\2X?/P)*(Y?+Z?)/2 is continuous.
This is a non-linear algebraic equation for the value of P after
the discontinuity and it has to be solved numerically. As it will
be shown in Sect. 3.1, there is a maximum value for A beyond
which no solution of Eq. (25) can be found. Note that in the
static case A = 0 the jump conditions (22) to (25) lead to the
continuity of the four functions X, Y, Z and P, as expected.

In the prominence and coronal isothermal regions the theory
developed in the preceding sub-section is applied. Therefore, the
numerical integration starts from the centre of the prominence
z = 0and goes on with H = H_ oo and v = 2(Hpot / Heool — 1) >>
1 until Zprom. Then the jump conditions (22) to (25) are applied
and the new initial values and parameters are derived. In the
corona kH = 1/2, v = 0 and the integration is continued until
Tedge, the foot point of the arcade where B, = 0 (X = 0).
Note that in the dynamic case, even if 4 = 0, the function g in
Egs. (10) and (11) is not zero and no analytic solution can be
found. Hence the solutions (2.15) in HA for a force free, constant
a-type coronal field with constant pressure in the horizontal
direction do not apply in the dynamic case. Deviations from
this solution will be analysed in the next section.

The initial values for our model are X(0) = Xy, Z(0) = Zy
and P(0) = P,. In order to obtain a solution for which the field
lines show a central dip, supporting the dense material of the
prominence against gravity, the conditions X (0) = 1, X’(0) =
0, X" (0) > 0 are assumed, thus Xy =1, Zy = 0 and

Bo = 2PO/(1 + ),02) > 2/')’(:001 =~ Hcool/Hhota

where Yy = Y(0) = oot /(1 — A2,/ Po). This means that, given
the scale heights ratio, the central pressure (or density) cannot be
too small while the magnetic field component along the promi-
nence cannot be too large in respect of the normal component.
Moreover, other two quantities are required to derive the values
of aeo1 and Acool. Suitable choices are Yy and M), and the other

parameters are given by:
ool = MoPo/(1+Y)'?
Qicool = Yo[1 — M§P0/(1 + Y;)z)]

Concluding, the parameters that can be selected in our
prominence model are five, namely half of the scale heights
ratio kHcoo1, Which yields the value of +, the dimensionless
prominence half width kzpom, the central pressure F in units
of Bg /4w (for z = 0), the magnetic field component Yy along
the prominence calculated at the origin = 0, z = 0 and finally
the Mach number M, at the centre of prominence.

3. Results

As values of the parameters of our model we choose the same
as in HA, so that the limit to the static case may be easily
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checked in order to compare the results. Therefore we take, for
the prominence region, the temperature and the mean molec-
ular weight respectively as Teoor = 6 X 103K and pigoor = 1,
giving a pressure scale height Hcoo1 = 180 km. The normal and
longitudinal field components at x = 0,z = 0 as B, = 5G
and By = 12G, yielding By = 5G and oeo1 = 2.4 (in the
limit Ao = 0), with a correspondent angle of § ~ 22.6°
between the field and the prominence. The average number
density is taken to be Tigeor = 2 X 107 m~3; considering this
value as the half of the central density, we take the central pres-
sure as p(0,0) = 2kgTo01Tcool = 0.0332 pascals, to be nondi-
mensionalized against B2 /4m ~ 0.2 pascals. The width of the
prominence is 2Zpom = 3000km. In the corona we choose
Thot = 106K and pino = 0.5, with a correspondent scale height
of Hpor = 6 x 10% km, so that k=1 = 1.2 x 10° km.
The values of the parameters for our model are then

kHeoor = 0.0015, kprom = 0.0125, Py = 0.167, Yo = 2.4,

that is exactly the same as in HA, to which a value for M has
to be added in order to fix the velocity field magnitude. The
equations are integrated for four different values of My, namely

M, = (0.0, 0.5, 0.8, 1.0) x 1073,

and the results are shown in Figs. 1 and 2.

InFigs. laand 1b the projections of the magnetic and veloc-
ity field lines onto a vertical plane normal to the prominence are
shown for a selection of equally spaced £-values, both inside the
prominence and for the overall arcade (with different scales).
Inside the prominence the field lines exhibit the classical KS
structure with X almost constant. The general behaviour is of
the classical support of the dense prominence against gravity
provided by the magnetic tension due to the central dip. The
half width of the coronal arcade is Teqge =~ 1.4 Hp. Figs. Ic
and 1d show the behaviour of the function Z(kx), again inside
the prominence and for the overall arcade. The rapid turn round
of B, at T = Tyom indicates the presence of a strong current
flowing inside the prominence, suggesting that the current sheet
models are a reasonable approximation. In Fig. 1e we show the
modulus of the magnetic field in units of By and for z = 0 in-
side the prominence as a function of kx. In Fig. 1f the relative
change in the same quantity, with respect to its static constant
value, is shown for the four chosen values of the initial Mach
number M, (in units of 10~3).

In Fig. 2 the pressure P (in units B3 /4 and for z = 0), the
Mach number M and the Alfvénic Mach number M are shown,
as functions of kz, both in the prominence and in the coro-
nal regions. The prominence pressure (Fig. 2a) is unaffected
by the flow, while in the corona (Fig. 2b) substantial percentage
changes of ~ 25% can be found. It is easily seen that only in the
static case the pressure is continuous at = Zprom, according to
Eq. (25). Note that the final pressure at = = Teqz. depends on the
strength of the flow. The density p and the plasma £, as | B| ~
const, behave like the pressure in the two regions but the density
show a discontinuity of (2kHeo) ™' < 1 at Tprom» €ntering the
corona, due to the jump in the sound speed c. Also the two Mach
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a: Projection of the field lines inside the prominence b: Projection of the field lines for the overall magnetic arcade
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Fig. 1. a Projection of the magnetic and velocity field lines inside the prominence on a plane normal to the prominence direction. A selection
of equally spaced £-values is shown. b Projection of the overall arcade for equally spaced £-values, different from a. ¢ The function Z(kx)
inside the prominence, that is the z-component of the magnetic field in units of By and for z = 0. d The function Z(kx) for the overall arcade.
e Modulus of the magnetic field in units of By and for z = 0 inside the prominence. f Relative change in the modulus of the magnetic field, in
respect to the static case, for z = 0. The reference numbers are the values of My in units of 1073
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a: P inside the prominence b: P outside the prominence
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Fig. 2. a The function P(kx) inside the prominence, that is the pressure in units of B3 /4 and for z = 0. b The function P(kz) outside the
prominence. The meaning of the reference numbers is the same as in Fig. 1f. ¢ The Mach number M (kz) inside the prominence. d The Mach
number M (kx) outside the prominence. e The Alfvénic Mach number M4 (kz) inside the prominence. f The Alfvénic Mach number Ma (kx)
outside the prominence
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numbers are discontinuous functions of kx at z = Zprom and the
flow is the strongest in the corona. Note that the flow is always
sub-sonic and sub-Alfvénic, but in the corona velocities of the
same order as the sound speed are allowed. For comparison, the
sound speed in the prominence is Ceool = v/gHeoor =~ 7km s~}
and in the corona chot = v/gHnot ~ 130km s~ . Therefore, if
in the prominence region the magnitude of the flow is in the
range 1 — 10 m s~!, that is essentially a static situation, in the
corona velocities as high as ~ 100 km s~ ' can be reached. This
is the reason why the pressure and the magnetic field are unaf-
fected by the flow inside the prominence but may differ from
the static case in the corona. This is even clearer in Figs. 2¢
and 2f, where the Alfvénic Mach number M, is plotted for the
two regions. Inside the prominence we have M? ~ 1077 and
outside M3 ~ 10~*. This means that in both cases M2 < 1, s0
that the factor 1 — M? can be taken as 1 in all the relations where
it appears, namely the definition of Y in Eq. (9), the equation
(10) for Z’ and the jump conditions (23) and (24) for Y and Z.

Concluding, the prominence region can be considered as
static, as the magnetic field and the pressure are not modified
by the flow because of the small Mach number and the negligible
Alfvénic Mach number. In the corona, the magnetic field is again
almost unperturbed by the flow, as the changes in its modulus
|B| and in the angle 6 = cot™!(Y/X) between the prominence
and the horizontal magnetic field, as well as in the jumps of both
the functions Y and Z at Zprom, have a maximum magnitude of
approximately 10~*. On the contrary the presence of the flow
substantially modifies the pressure. The result is that, in the
corona, even if v = 0, the pressure is no longer constant and
hence the situation is no longer force free. Again, the pressure
deficit shown in Fig. 2b does not result in a sensible deviation
of the magnetic field from the static situation but, on the other
hand, it balances a flow with M < 1, according to the Bernoulli
equation (A14) with v = 0.

3.1. The jump condition for the pressure and the limit on the
initial velocity

As it has been anticipated in Sect. 2.2, the freedom in choosing
the values of the initial Mach number Mj, that is the magnitude
of the overall flow, is limited by Eq. (25) which is satisfied only
if the flow is not too strong. Condition (25) may be rewritten as
follows:

f(P) =P+ X\ X*/P+d*(1 — X2, X?/P)~2—
hot hot

(P+ X2 X* /P +ad*(1 — X2

o X?/P)?) =0, (26)
where all the quantities are calculated at z = Tprom> P in the
corona just after the interface and P in the prominence just be-
fore it. In Fig. 3 the function f(P) is plotted for the usual values
of the parameters and for the four chosen values of M. It is
clear that a maximum value of M, exists and that for higher
values no solutions for the pressure satisfying the jump condi-
tion Eq. (26), given by the vertical dotted lines, can be found.
The presence of a limiting strength of the flow is not due to our

particular model nor to any magnetic effect, but it is a general
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The function f(P)
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Fig. 3. The function f(P) defined in Eq. (26), for the usual values of
the parameters and for the four chosen values of M, (in units of 1073).
The roots of the equation f(P) = 0 are given by the intersections of
the curves with the dashed line and these are the values of the pressure
P just after the interface z = Zprom. Note that for too high values of
My no solution for P can be found.

hydrodynamic result when considering a flow through an inter-
face between two isothermal regions, where the energy flux is
not conserved (see the Appendix). Although the energy equa-
tion is different, a very similar situation holds for the detonation
waves, as described for example in Landau & Lifshitz (1959),
where the energy flux is not conserved because of the input of
energy due to the combustion of the gas.

A very good approximation of this maximum value My
of the initial velocity can be obtained easily through an analytic
study of Eq. (26) using the approximation M? < 1. After some
straightforward algebra it is easy to see that the function f(P)
has a minimum for P = Ao, XV X2+ Y2 + Z2 and that this
minimum must be negative. Then, replacing A\coo1 by Moo /2
and Apo; by (2k Hooo1) ~!/2 Mo By /2, this condition can be written
as a quadratic inequality for M. Finally, using the fact that
2kH o0 < 1, the solution is

M, < M(l)'nax = /2kH ool 5_2/)‘?2

Itis worth analysing in some detail the dependence of MF>
on the different parameters of our model. Throughout the whole
prominence, as in the classic KS model, X ~ X, = 1. There-
fore, the only factor that needs to be studied is 3/, taken at
the edge of the prominence region. It is obvious that the in-
fluence of M is negligible, as 8/, is calculated inside the
prominence; besides, also the initial values P, and Y; do not
affect the behaviour of M very much, as 3 is normalized
against Sy = 25 /(1 + YOZ) (MF*™(Pp) is a decreasing function
while M (Yp) is slowly increasing). Hence the two most im-
portant parameters are kZprom and kHool. The functional form
of B(kzpom) is, as a matter of fact, the same as P shown in
Fig. 2a, as the modulus of the magnetic field is almost constant

@7
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The maximum initial Mach number M,™*
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Fig. 4. The dependence of the maximum initial Mach number My,
defined in Eq. (27), by k Hcool is shown for four values of the parameter
kZprom, corresponding to the values of the total width of the prominence
printed in the picture.

towards the edge of the prominence (Fig. 1e). This means that
B/0Bo, as well as MJ™*, must be a decreasing function of the
width of the prominence. On the other hand, if the temperature
difference between the two regions is enhanced, that means in-
creasing veool and decreasing kHcoo1, then again the plasma (3
decreases because gravity becomes more important inside the
prominence and so the pressure falls off faster. The actual be-
haviour of M{™* as a function of kHcoo1 and kZprom is shown in
Fig. 4.

3.2. An analytic solution for the low (3 corona

We have seen that the results of our model agree with the ob-
servations of a low (3 coronal plasma, since its maximum value
is B ~ 0.002. Using the fact that 8 < 1 it is possible to derive
a zeroth order analytic solution as has been done in Tsinganos
et al. (1993) in the 2-D case.

From Eq. (14) it is clear that 8 < 1 implies M? < M2, so
that the function ¢ defined in Eq. (12) reduces to ¢ = 1—1‘47\—247, as
~ = 0. Using the relations in Sect. 2.1, the following expressions
for the Mach numbers are found:

M e_(MZ_Mgl)/Zz X

= 2
A X (28)
M2 X M

= = 29
= X M 29)

where X, My, and M are the maximum values of the respec-
tive functions assumed at the same point k2.

Finally, combining the definitions of M? and M? with
Eq. (29) yields

XIZ
xz =

M2 X2
ﬁ°‘—1\7f,§— —(1+a®)=1+a? [Yﬁ - 1] )
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with the solution

X(kz)= Xpcos[V1+a2k(z —zm)] (30)

for a static, constant a-type, force free field (e.g. Priest 1982).
Thus, the fact that in the corona the presence of a field aligned
flow does not affect the shape of the magnetic arcade has been
analytically demonstrated under the realistic assumptions of
small # and Alfvénic Mach number values. However, the situ-
ation is still dynamic and the values of the Mach and Alfvénic
Mach numbers are given by Eqgs. (28) and (29) respectively, in
perfect agreement with the plots in Figs. 2d and 2f.

4. A simple model for the prominence mass supply

The main purpose of this paper is to demonstrate the actual
possibility of the presence of a flow along the field lines of the
whole magnetic arcade, both inside and outside the prominence,
studying in detail the jump conditions at the interfaces between
the two regions. We have assumed that the mass flow starts from
one of the foot points, crosses the narrow prominence region and
then falls again down to the solar surface at the other foot point
of the same field line.

However, now we want to investigate a symmetric converg-
ing flow into the prominence, as suggested, in a simple cartoon,
by Priest & Smith (1979) as a possible explanation for the steady
replenishment of the prominence mass. As neither the govern-
ing equations of our model nor the matching conditions at the
interfaces between the prominence and the corona depend on
the actual direction of the flow, the only problem to solve is ba-
sically the question of the mass conservation inside the promi-
nence. Again, following the idea by Priest & Smith (1979), we
assume that the material sucked into the prominence neutralizes
cooling down and then dribbles down to the solar surface.

Using the relations derived for our model, it is possible to
calculate characteristic quantities like the time scale 7 of the re-
plenishment process and the down flow velocity, simply derived
by imposing the conservation of the total mass of the promi-
nence. Consider a prominence with a finite height extending
from z = 0t0 2 = Zyom = 50000 km. The mass and the mass
entering per unit time, as functions of z and per unit length, are
respectively given by 2 [;™" [ pdzdz and 2 [[(pVe)apem 42,
yielding

B3 PyTprom ok
~ 1 z 31
m(z) ST (1 —e %) 31)
and
2 Mo P
i(s) = —DMoBd(j okey (32)

Akceoory/ 1+ Y

where we have approximated fom"“‘"‘ Pdz ~ (1/2)PyTprom and
X (kzprom) ~ 1. The characteristic time scale 7 is independent
of the height:

m  Tpromy/ 1+Y7

T=—

~ 33
m 2cco01 Mo 33)
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With the values of the parameters given in Sect. 3 and choosing
My = 1072 we find 7 ~ 6.4 days. Since the largest initial
Mach number has been chosen, the time scale can be greater, in
good agreement with the observed average life time of quiescent
prominences (=~ 1 month). Therefore, this result leads to the
suggestion that the existence of a quiescent prominence can be
explained by a supply of chromospheric material siphoned into
the prominence along the magnetic arcade field lines. Once this
replenishment ends the prominence might disappear in a slow
down flow towards the solar surface. Obviously, the possibility
of a final eruption is not taken into account in this simple model.

The down flow speed 71u(z)/2 j;)x"“’"'pdx is a function of z:

Ceool Mo

velz) ~ ——2 2
kZpromy/ 1+ Y

and the maximum velocity, at the bottom end of the prominence,
isvg ~ 0.12 km s™'. This value is rather small and confirms the
result of an almost static situation inside the prominence region
(vq has the same order of magnitude of the entering velocity, as
may be seen in Fig. 2c).

[1— e—2k (Zprom—2) 1, (34)

5. Conclusions

In this paper the problem of steady flows in quiescent promi-
nences has been treated. The prominence has been considered
as a vertical cool sheet with finite length enbedded in the sur-
rounding hot corona. The magnetic field and gas pressure have
been assumed to be separable in the horizonthal and vertical
coordinates and an exponentially decaying behaviour has been
chosen for the latter. These assumptions are the same as in the
static HA model, so that our treatment may be considered as
dynamical extention to the static case.

Both the prominence and coronal regions have been re-
garded as isothermal (with different temperatures) and, in each
region, the generalized Grad-Shafranov equation for an isother-
mal, steady, MHD flow in uniform gravity has been solved. The
method used is similar to that of Tsinganos et al. (1993), but
here the vector fields retain all their components. The equa-
tions have been solved numerically and without the need of any
approximation. The two solutions have been then matched solv-
ing the set of jump conditions at the boundary surfaces between
the two isothermal regions. Since the energy flux is not con-
served crossing these surfaces, a limiting strength for the flow
has been found and this makes the flow always sub-sonic (and
sub-Alfvénic as the plasma [ is small everywhere).

The results are that the static magnetic configuration is
slightly affected by the presence of the flow only in the coronal
region, while the structure inside the prominence (that exhibits
the classic KS dip for the magnetic support against gravity) can
be still considered as static. On the other hand, the coronal pres-
sure shows a deficit allowing the flow to occur and therefore the
configuration is no longer force free as in the static case. The
average velocities in the corona are of the order of 50 km s,
in good agreement with the observations, whereas inside the
prominence v < 0.1 kms™".

951

Finally, the suggestion by Priest & Smith (1979) for the
mechanism of the prominence mass supply has been revisited
using the results of our model. The characteristic time scale of
the mass replenishment is of the same order of magnitude as the
observed average life time of quiescent prominences, suggesting
that their existence is indeed connected to the mass supply from
the below chromosphere.

Appendix A: the Grad-Shafranov formalism

In this Appendix the same results presented in Sect. 2.1 will
be derived following the Grad-Shafranov formalism, that is the
natural mathematical approach when modelling steady flows
with an ignorable spatial coordinate. A complete treatment of
this subject may be found in Del Zanna & Chiuderi (1995),
where several exact solutions are derived for the incompressible
case (among them there is an interesting class of arcade-type
solutions in uniform gravity in which the flow is not parallel
with the magnetic field) and to which the reader is implicitely
referred for any mathematical demonstration.

In the present case, consider all the physical quantities to be
independent of y (in cartesian coordinates), that is
8/0y = 0. (Al)
The assumption of translational symmetry allows one to write
the magnetic and velocity vectors respectively as

B = A[VE x e, +(x/h)eyl, (A2)

v="U/4np[VE x ey + (x/h)ey], (A3)
where £(z, z) is a dimensionless flux function, A, ¥ and y are
free functions of ¢ (the dot implies differentiation with respect
to &) and where
h(¢, p) = A* — W J4mp. (Ad)
The surfaces £ = const contain both the magnetic and veloc-
ity field lines and all the free functions of ¢ are called surface
functions.

Using the definitions of all the surface functions, it can be
demonstrated that Euler’s equation, Eq. (2), becomes

2

16h 14
24, 100 2 i )
hV<E + 26§|V£| +47 (47rp> (Vp - VEo+
10 [ .
(A W = A5
2a§<h>+4”” 0, (AS)
where the fourth surface function W(¢) is defined by
Lol 2

1/ ¥ X\ 2
2 1 x 2, (X -
Glnp+ 3 <4ﬂp> []V§| +(h) ] +gz=W. (A6)

Equation (A5) is the generalized Grad-Shafranov equation for
the flux function &(x, z), while Eq. (A6) is the generalized
Bernoulli equation for the density p(z, z) in the isothermal case.
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These two nonlinear equations are strongly coupled together, es--

pecially through the third term in Eq. (A5), which determines
also its mathematical nature.

The same assumptions as in Sect. 2.1 are recovered choos-
ing

€= X(kz)e %, (A7)
p = (B} /4nc?)P(kx)e %% (A8)
and the free surface functions as

A(€) = k™' By = const, (A9)
B(©) = k™' Bg /o, (A10)
X(© = a(k™ By, (Al1)
W =cng™7, (A12)

that also eliminates the z dependence in the two equations. Note
that in the planar case x = 0 these functions are the same as in
Tsinganos et al. (1993), although the formalism used is slightly
different.

Using these definitions it is now possible to rewrite the two
governing equations respectively as

(1-=MHXZ +X*+Y* - yP—

M}(1 - XP'/ZP)Z* =0, (A13)

yIn(X/X.) +In(P/P,) + (M?> — M?»)/2 =0, (A14)
where X, P, and M, are reference values for X, P and M,
respectively. After some lengthy calculations, involving the
derivative of Eq. (A14) in respect of kz, these lead to Egs. (10)
and (11).

Concluding,it is worth noticing that the jump conditions for
the prominence model at the boundary = = Zyrom, Eqs. (17), (18)
and (20) in Sect. 2.2, yield directly the continuity of the surface
functions A, ¥ and x defined in Egs. (A9) to (A11). However,
note that the function W does not have to be continuous since
the energy flux is not conserved at the boundary surface x =
Tprom between the two isothermal regions. In fact, the last jump
condition for the energy flux reads

Tprom+€ dT
S—dz =0,

- (A15)

[W]+ lim

e—0 Zprom—e€
where S is the entropy per unit mass, given by S = (%2/p)(1 —
In p) (Hameiri 1983; Agim & Tataronis 1985). It is clear that,
since dT'/dx behaves like a delta function for z = Zprom, the free
function W must be discontinuous at that point, according to
its definition in Eq. (A12). Therefore, the integral in Eq. (A15)
simply gives the input of energy necessary to balance the energy
flux W and need not to be evaluated (note that the z dependence
cancels from the two terms W and 5).

L. Del Zanna & A.W. Hood: A steady flow model for quiescent prominences
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