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The normal polarity prominence model of Hood & Anzer has been modified to include the
effect of a steady flow along the magnetic field lines. We consider two isothermal regions that
model the hot corona and the cool prominence, considered as a vertical sheet of dense material
with infinite length and height but finite width. The magnetic field, pressure and density are
assumed to be exponentially decaying in the vertical direction (the velocity is independent of
the height in our model) and equations for the horizontal behaviour are determined. Invariance
along the prominence direction is assumed, but the magnetic and velocity vectors retain all their
components.

The introduction of a field aligned flow results in the coronal magnetic field no longer being
force free and a pressure deficit allows a siphon flow to occur. Substantial coronal velocities
are possible but only sub-sonic (and hence in the low plasma (3 corona sub-Alfvénic) flows are
considered and these are consistent with observations.

Finally, we propose a simple model for the steady supply of material into a prominence to
balance the observed draining motions.

1. INTRODUCTION

Solar prominences have interested theorists and observers for many decades.
There are several problems related to the formation, support and eventual eruption
that have still to be fully resolved. Among them there is the question of the source
of the prominence mass. Two models have been basically discussed in the literature:
one is concerned with the condensation of material from the surrounding corona,
whereas for the other the mass source is the below chromosphere, with the material
being ejected or siphoned into the prominence. The siphon mechanism to transfer
material from the solar surface into a prescribed gravitational dip in a magnetic
coronal arcade, such as described in the classical static model by Kippenhahn &
Schliiter (1957) (from now on KS), has been shown to be possible by several authors,
starting from Pikel’ner (1971).

In the present paper the problem of a steady supply of material from the
solar surface into a quiescent prominence is treated, following the idea by Priest &
Smith (1979) who suggested, in a cartoon, how a fully formed prominence could be
supplied by material through a siphon mechanism with the prominence acting as a
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sink of material. They assumed that a Rayleigh-Taylor instability allows the plasma
to dribble across the magnetic field lines resulting in the observed slow down flow.
However, in this paper the possibility of the presence of a steady flow along the field
lines from the corona into the prominence will be fully demonstrated by solving the
complete set of the ideal MHD equations. The structure of the magnetic arcade
will result from the solution, that means that in our model the flow plays an active
role and is not just super-imposed over a static model, as done by the majority of
the other authors.

The steady flow model for normal polarity (that is when the magnetic field
passes through the prominence in the same direction as suggested by the underly-
ing photospheric field), quiescent prominences proposed in the present paper is a
generalization of the static model by Hood & Anzer (1990), from now on referred
to as HA.

2. THE MODEL

Consider an ideal, isothermal plasma in a uniform gravitational field (along the
z axis) with a steady mass flow that, for the sake of simplicity, is parallel to the
field lines. Furthermore, assume that all the physical quantities are independent of
y (in cartesian coordinates), that is /0y = 0. Now, write the magnetic field and
pressure in the form

B = Bo(X(kz),Y (kz), Z(kz)) e *?,
p = (B2/47)P(kz) e,
where By and k are dimensional constants. Using the basic MHD equations together
with the symmetry assumption the following form for the velocity is found

X
v =cA—=(X,Y,
v=c P( Y, Z),

with the functions Y (kz) and Z(kz) given by
Y = aX/(1-22X%/P), Z=X'.

In an isothermal atmosphere the density is simply p = p/c?, where ¢? = RT/u is the
square of the (constant) sound velocity. For all the mathematical demonstrations
the reader is implicitly referred to Del Zanna & Chiuderi (1995), where a general
treatment of symmetric MHD equilibria is presented, and to Del Zanna & Hood
(1995), from now on DH, where this prominence model is discussed in more detail.
After some lengthy calculations, the governing equations are found to be

g YR = X2 Y2+ (1 +qMLZ®
X(l—Mﬁ) ’

P' = —qPZ/X,
where the function g is defined as

oy MZ—2MS/N
1= 1M MZ+ MS/3
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In these equations o, A and ¥ are dimensionless parameters (y = 2[1/(2kH) — 1],
where H = ¢?/g = RT/ug is the pressure scale height), whereas M and M, are
respectively the Mach number |#|/c and the Alfvénic Mach number |7|/(|B|//37p).
The last equation simply reduces to ¢ = 7 in the static case A = 0 (the term 2M§ /A?
is proportional to A*). Note that this result is exactly the same as in Tsinganos et
al. (1993), but its validity has been extended here to the more general case By # 0
and vy # 0. Needless to say, in the dynamic case A # 0, the two equations must be
solved numerically, whatever the value of 4. This is a simple initial value problem
for the set of unknown functions P(kz), X(kz) and Z(kz), for any given values of
the parameters v, a and A.

In our attempt to build a prominence model, consider a vertical sheet of cool
material of infinite height and length but finite width, surrounded by the hot coro-
nal region. The main assumption in the HA model consists in considering both the
prominence and the surrounding corona as isothermal regions with different con-
stant temperatures, namely Ttoo1 and Thot, With Teoo] € Thot. The transition zone
between these two regions is then assumed to be so narrow that, taking as plane of
symmetry the y — z plane and considering for simplicity only the region & > 0, the
scale height profile can be assumed to be

H((Zf) = Heool, (O <zr< xprom); H(m) = Hyet, (:B > mprom)y

where Zprom is the prominence half width and where Heool = RTcoo0l/ fcoold, Hhot =
RThot/Photg- As in HA, the value 2Hp; is assumed here for the characteristic
length k—1.

In the prominence and coronal isothermal regions the theory developed above
is applied. Therefore, the numerical integration starts from the centre of the promi-
nence z = 0 and goes on with H = Hcool and ¥ = 2(Hnot/Hcool—1) > 1 until prom.
Then the jump conditions (e.g. Priest 1982) are applied and the new initial values
and parameters are derived. In the corona kH = 1/2, ¥ = 0 and the integration
is continued until Zeqge, the foot point of the arcade where B, = 0 (X = 0). Note
that in the dynamic case, even if v = 0, the function ¢ is not zero and no analytic
solution can be found.

In order to obtain a solution for which the field lines show a central dip,
supporting the dense material of the prominence against gravity, the conditions
X(0) = 1,X'(0) = 0,X”(0) > 0 are assumed. Moreover, other three quantities
are required to derive the values of acool and Acool- Suitable choices are Py, Yy
and My, respectively the values of pressure, magnetic field component along the
prominence axis and Mach number at # = 0, with the other parameters are given
by Acool = MoPo/(1+ Y#)/? and acoal = Yo[l — MEPo/(1 + Y3)].

3. RESULTS

As values of the parameters of our model we choose the same as in HA, so
that the limit to the static case may be easily checked in order to compare the
results. Therefore we take, for the prominence region, the temperature and the
mean molecular weight respectively as Tcool = 6 X 103K and peoo = 1, giving a
pressure scale height H.oo) = 180 km. The normal and longitudinal field components
at z =0,z =0 as B, = 5G and By = 12G, yielding Bo = 5G and acool = 2.4
(in the limit Aol = 0), with a correspondent angle of 6§ ~ 22.6° between the
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field and the prominence. The average number density is taken to be Tieoo] = 2 X
10'” m~3; considering this value as the half of the central density, we take the central
pressure as p(0,0) = 2kpTeoolTcool = 0.0332 pascals, to be nondimensionalized
against B?/4w ~ 0.2 pascals. The width of the prominence is 22prom = 3000 km.
In the corona we choose Thot = 106 K and pnot = 0.5, with a corresponding scale
height of Hpot = 6 x 10*km, so that k=1 = 1.2 x 10°km.

The values of the parameters for our model are then

kHeoor = 0.0015, kZprom = 0.0125, Py = 0.167, Y = 2.4,

that is exactly the same as in HA, to which a value for My has to be added in order
to fix the velocity field magnitude. The equations are integrated for four different
values of My, namely

M, = (0.0, 0.5, 0.8, 1.0) x 1073,

and the results are shown in Fig. 1. For more plots and discussions the reader is
referred to DH.

4. A SIMPLE MODEL FOR THE PROMINENCE MASS SUPPLY

Now we want to investigate a symmetric converging flow into the prominence,
as suggested, in a simple cartoon, by Priest & Smith (1979) as a possible explana-
tion for the steady replenishment of the prominence mass. As neither the governing
equations of our model nor the matching conditions at the interfaces between the
prominence and the corona depend on the actual direction of the flow, the only prob-
lem to solve is basically the question of the mass conservation inside the prominence.
Again, following the idea by Priest & Smith, we assume that the material sucked
into the prominence neutralizes cooling down and then dribbles down to the solar
surface.

Using the relations derived for our model, it is possible to calculate charac-
teristic quantities like the time scale 7 of the replenishment process and the down
flow velocity, simply derived by imposing the conservation of the total mass of the
prominence. Consider a prominence with a finite height extending from z = 0
to 2 = Zprom = 50000 km. The mass and the mass entering per unit time, as
functions of z and per unit length, are respectively given by 2 f;>" [ pdz dz and

2 [(PV2)zprom 47, yielding

2
m(z) ~ By PoZprom Potzprom (1 —e™2k2)
8mkcZ,
and B2 MoP.
m(z) ~ 0 (1 - &™),
47r'ccc°°]\/T+ Yo

where we have approximated f: Prom Pdz ~ (1/2) Pozprom and X (k&prom) = 1. The
characteristic time scale 7 is independent of the height:

TpromV/ 1+ Yo5

m
T=—~
m 2¢c001 Mo
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a: Field lines for the overall arcade b: P outside the prominence
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FIGURE 1. In this picture are shown: (a) the projections of the overall magnetic
arcade, (b) the non-dimensional pressure in the coronal region, (c) the Mach num-
ber inside the prominence and (d) the Mach number outside the prominence. These
are plotted for the four values of the initial Mach number My, in units of 10-3.
As we can see, the presence of the flow does not affect the magnetic structure of the
arcade, which shows the classical dip for the support of the dense material. On the
other hand, the coronal pressure is no longer constant and has a minimum at the
same place as the maximum of the Mach number. For comparison, the sound speed
in the prominence is Ccool =2 7 Km s~1 and in the corona Chot =~ 130 Km g1
Therefore, if in the prominence region the velocity varies between 1 — 102m S'_l,
that is essentially a static situation, the resulting coronal velocities can be as high

as~ 100Km s~}
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With the values of the parameters given in Sect. 3 and choosing My = 10~2 we find
T ~ 6.4 days. Since the largest initial Mach number has been chosen, the time scale
can be greater, in good agreement with the observed average life time of quiescent
prominences (=~ 1 month). Therefore, this result leads to the suggestion that the
existence of a quiescent prominence can be explained by a supply of chromospheric
material siphoned into the prominence along the magnetic arcade field lines. Once
this replenishment ends the prominence might disappear in a slow down flow towards
the solar surface. Obviously, the possibility of a final eruption is not taken into
account in this simple model.
The down flow speed m(z)/2 [y **"pdz is a function of z:

Ceool Mo

ve(2) ¥ ——mm———
( ) kszm‘\/ ]. + Y02

and the maximum velocity, at the chromosphere, is v4 ~ 0.12 kms™!. This value
is rather small and confirms the result of an almost static situation inside the
prominence region (vq has the same order of magnitude of the entering velocity, as
may be seen in Fig. 1c). '

[ 1 — e— 2k (zprom—2) ]’

5. CONCLUSIONS

In this paper an extention to the dynamic case of the static Hood-Anzer model
for quiescent prominences has been proposed. The possibility of a flow along the
field lines of the magnetic arcade supporting the prominence has been demonstrated
by solving the full set of MHD equations. As in the static model, the prominence
and the surrounding coronal regions are considered isothermal with different tem-
peratures. The results suggest that a pressure deficit around the prominence drives
a siphon flow and its velocity lies in the range of the observed speeds. Finally, a
simple model for the steady prominence mass supply has been proposed in order to
explain the observed draining motion.
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